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COMPUTATIONAL METHODS FOR AERODYNAMIC DESIGN
USING NUMERICAL OPTIMIZATION

by

Martin F. Peeters

ABSTRACT

Five methods to increase the computational efficiency of aerodynamic
design using numerical optimization, by reducing the computer time required
to perform gradient calculations, are examined. Four of these methods have
flaws, while one shows promise. The promising method consists of drastically
reducing the size of the computational domain on which aerodynamic calcula-
tions are made during gradient calculations. Since a gradient calculation
requires the solution of the flow about an airfoil whose geometry has been
slightly perturbed from a base airfoil, the flow about the base airfoil is
used to determine boundary conditions on the reduced computational domain.
This method worked well in subcritical flow, but some unresolved problems

remain if it is used in supercritical flow.
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LIST OF SYMBOLS

a speed of sound (m/sec)

¢ airfoil chord (m)

Cd drag coefficient

Ct lift coefficient

Cp pressure coefficient

o doublet strength

£ airfoil geometry

G constraint function

h shape function

K transonic similarity parameté; A

. t d(/§)]*?

Ku curvature = ia-(’-f—{—‘-{)[/’[?%—']/

M Mach number

0BJ objective function

r coefficient of shape function

t airfoil thickness (m)

u, v perturbation velocity 1in x and vy direction,

respectively

Vol area within airfoil divided by §

X,y Cartesian coordinates

X,y dimensional values of X,y (m)

Y transonic lateral coordinate

¥ ratioc of specific heats
thickness/chora

¢ pertubation velocity potential
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d} velocity potential
Subscripts
% b base flow
g i, mesh point indices in x and
respectively !
L local condition
ls lower surface
us upper surface
on freestream condition
%
5 Superscripts
; q design iteration number
é ! pertubation from base flow
;
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Improved methods for the design of airfoils are always a

subject of interest in aeronautical engineering. To date the

most successful &analytical methods for the design of

airfoils have relied on some form of inverse calculations.

An inverse <calculation is one in which the desiread flow

field is specified and the =eirfoil shape 1is solved for,

generates this flow field. Examples of the use of
1),

witich
inverse methods can be found in the work of Henne (ref.

or Chin ana Rizzetta (ref. 2.

Inverse methods can be a definite aide in the design of

airfoils but they do have some inherent drawbacks: 1)

Inverse methods require apriori knowledge of the desired

pressure or velocity distibution along the airfoil, 2) The

desired flow field may be impossible to realize with any

pnysically realistic airfoil shape, and 3) Constraints on

the airfoils characteristics are not easy to implement.

An alternative approach for the desigr of airfoils has

been proposed by Hicks, Murman, and Vanderplaats (ref. 3).

The technique 1is to desgn airfoils using numerical

optimization in which an aerodynamic analysis code 1is

coupled to a numerical optimization code. This method would

allow the designer to optimize a single performance

characteristic of the s&irfoil while at the same time

constraining other performance characteristics of the

airfoil tc be within certain values prescibed by the
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designer.

This method for designing airfoils is very flexible. It
gives the designer freedom to choose which performance
characteristics to optimize and how much degradation 1in
other performance characteristics 1is tolerable. Which
performance characteristic is to be optimized and which
performance characteristics are to be constraints can be
varied, giving the designer accurate information on design
tradeoffs.

Initial work with this method has shown that while it
seems to work, it requires a considerable amount of c.p.u.
time, limiting its wusefullness. The objective of this
present research is to explore ways 1in which the
computaticnal effciency of designing airfoils using
numerical optimization can be increased.

The basic <concepts involved in optimization will be
reviewed first. Thereafter modifications to the method that
could 1improve the computational efficiency will pe

discussed. Conclusions and recomendations will then be made.
Optimization Concepts

Consider an airfoil in which the upper surface is defined
by the functional relationship fys (x/¢c) and the lower
surface 1is defined by the functional relationsaip fys (x/c).
It is desired that a certain performance characteristic of
the airfoil is optimized. For example, assume that the drag

at zero angle of attack is to be minimzed. In this case the

-9-
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drag would ©be <called the objective function. In doing the
optimization, it is desired that constraints be imposed on
other performance chs icteristics of the airfoil. For
example, the airfoil volume is constrained tc be greater
than a specified minimum and the lift is constrained to be
greater than a specified minimum.

To perform the optimization, modifications will have to
be made to the airfoil geometry. This is accomplished by
adding shape functions to the initial airfolil so the urner

surface of the airfoil would be given by

fos (x/c) = fus (f/C) + r *h (x/c) +...+4 r, *h, (x/c)
tailia

and similarly for the lower surface. The function h,(x/c¢) is
8 shape function. Figure 1 {llustrates some examples of
shape functions that have teen wused by Hieks and
Vanderplaats (ref. 4) for optimization. The rn's determine
the magnitude of each shape function added to the initial
airfoil. These are the only quantities that are varied 1in
the optimization process 50 the n, 's are refered to as the
design variables.

The statement of the problem can be summarized as

follows:

Minimize OBJ(X)
Subject to: G;(i) <0 i=1,m

where X 1is a design vector

=10~
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The following <terminolcgy 1s wuseful whnen discussing

optimization. The n dimensional space spanned by the vector

X is refered to as the design space. A constraint 1s said

to be inactive if G;(i) < 0; it is said to be violated if G/

(X) >0 ; it is said to be active if G (X) =0. Since an
exact zero is rarely found on a computer, a more reasonable
definition for an active constraint ist;(Xﬂ < €& where € s
a small value. This will ©be the definition of an active
constraint used in this paper. A design is feasible 1if for
all 1 G;(X) <0. “ne minimal feasible design is said to be
optimal.

How the optimization procedure actually works s Dbest

explained by illustating a simple exampl=. Consider the

problem:
Minimize CJ
Subject to
Claw =Cg <O (lift constraint)
and
Volsn = Vol <0 (airfoil volume constaint)
where X = (R) r, and ry are the coefficients of

two shape functions

The design space for this hypothetical problem is shown in

figure 2. Contours of constant objective function ( C4 ) and
the constraints are illustrated in the design space. Assume

that the initial asirfoil is given by

-11=-
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and that this initial airfoil is a feasible design.

The optimization process is an iterative procedure in

which the following recursive relationship is used
Y’” :Y‘Z +A*§ ([)

where q is the iteration number, vector'§ 1s the direction
of search 1in the design space and & {s a scalar defining
the distance of trav . in the directicn given by §. Each
optimization iteration thus procedes in two steps: First the
vector '§ giving the direction of travel is found, then the
scalar A is determined.

The procedure for determining‘g is somewhat different
depending on whether any constraints are active. In the
example of figure 2, it is assumed that no constraints are
active 1initially so the determination of '§ proceeds as
follows. Each design variable 1is separately perturbed to
determine its efiect on the objective function; thus a

finite difference approximation to the gradient of the

objective function is constructed as

3(08)) {eﬁ.,'zu) }

-3 3 Al &
vo8) = ¥ (08)) = | acwaey) (2)
¥ X o X
v (08J) A (op))
? ’xh L S Xn j
-12-

b e e b i e N T A L s e Ao e eans B s e s eeth . ane e Wrera e T et 58 WAL a0 n. e, OB 4G v o Ao s s vt s ARy A




A

B ek e R S S

e

¥ T LT S s

S T e TR R SR T AT T R T T T e TR T R A AR T A AR R R T e S

URIGINAL PAL.
OF POOR OUALLTY

In this example there are only two design variables. Fur
each one an eterodynamic calculation must be performed » ith
the design variabie perturbed to determine the change in the
objective function.

Whith a finite difference arproximation to the gradient
of the objective function found,'g can now be determineaq.
Different optimization schemes wuse different mnethods to
determine 3. A Steepest descent method would just make 3 the
negative of the gradient. Conjugate gradient methods (ref.
5) or quasi Newton methods (ref. 6) determine T as some
function of the gradient. In general, optimization schemes
determine S as some function of the gradient of the
objective function.

With S known, & must now be found. (! is found by
conducting a linear search in the direction of'g until a
minimum is found, or wuntil a constraint becomes active.
Again, different optimization codes will wuse different
methods to find & . A typical method woulc be to perform 3
evaluations of the objective function on the line defined by
§, A quadratic fit is then made with these 3 points and the
minimum is found. Similar ideas are used in other methods.

Now equation 2 can be used to determine a new airfoil
geometry. In the example given in figure 2 this would cause
a movement in the design space from A to B. This procedure
is repeated until either a minimum is found in the objective
functicn, or a constraint becomes active. In the example of

figure 2 the optimization procedure would move the design to

13-
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C where the lift constraint becomes active.

At this point a somewhat differeant procedure is used to
find tne vector S. In addition to finding a finite
difference approximation to the gradient of the objective
function, a finite difference approximation to the gradient
of the constraint function must be found. This is done 1in
the same manner as before. Each design variable is perturbed
separately to determine 1its effect and the objective and
constraint functions. The determination »of ?; again varies
from program to program, but wusually the optimization
program will try to move the design closer to a minimum and
at the same time push it away slightly from the constraint.

Constrained and unconstrained optimization iterations are
performed as necessary until a feasible design 1is found
which minimzes the objective function (optimal design). In
the example of figure 2, this would move the design to point
E. There is no guarantee that this design is at an absolute
minimum. There may be rany local minima in the design space.
In general an improvement in the design will have been made,
but to have more assurance in finding the absolute minimum
the optimization procedure should be started at different
points in the design space. In the example of figure 2 point
E is a relative minimum. If the procedure was begun at point

F, the absoulute minimum, point G, would have been found.

-14-
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Examples of Airfoil Optimization

The concepts outlined above have been tested by numerous
people. Numerical optimization has been used to optimize low
speed, high lift airfoils (ref. 7) ; it has been wused to
optimize airfoils in transonic flow (ref. 8,59). The results
obtained by Hicks, Murman ana Vanderplaats (ref. 3) in which
airfoils in transonic flow are optimized, will be presented
as an example demonstrating the potential that this method
has for the design of airfoils.

Their optimization procedure couplec together an
aerodynamic analysis <code based on the small disturbance
transonic potential equation and CONMIN (ref.10), a FORTRAN
program for constrained function minimization.

Some results from their work are presented in figure 3.
In each <case the objective was to minimze drag (the only
drag present in this inviscid calculation is wave drag ). In
each case the freestream Mach number was 0.8; there were
seven design variables; the airfoils were symmetric. In the
cas2s of figures 3a and 3b the only coastraint was an
airfoil volume constraint, the cases of figures 3c and 3d
imposed a curvature constraint on the airfoil and a
thickness/chord constraint in addition to the airfoil volume
constraint. In every <case a significant reduction in drag

was realized.

-15-
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Limitations of Airfoil Design Using Numerical Optimization

The above examples 1indicate that improved airfoil
designs <can be realized using numerical optimization as a
design tool. This method is, however, limited by 1its
excessive appetite for c.p.u. time. The examples presented
utilized an aerodynamic analysis code based on the small
disturbance transonic equation and had only seven design
variables. A wmore realistic problem would wutilize an
aerodynamic analysis <code based on the full potential
equation and might have fifteeen or more design variables.
In this case the c.p.u. requirements of numerical
optimization would generally be considered too large for the
method to be used.

It is found that a significant fraction of the time
spent in designing airfoils using numerical optimization is
spent on calculating the finite difference approximations to
the gradients of the obJective and constraint functions.
Recall that a gradient calculation is made by separately
perturbing each design variable and then performing an
aerodynamic analysis to determine the change 1in the
objective function and the active constraint functions. The
flow about the unperturbed airfoil provides a good initial
guess for the solution of the perturbed airfoil, but
computer times are still very large.

The objective of this research is to find a method for

computing the gradients of the objective ana constraint

-16-
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functions that require significantly less computer time than
the method outlined above. The finite difference
approximation to the gradients used only one sided
differencing to approximate the gradients. One sided
differencing 1is only first order accurate, suggesting that

numerical optimization does not require extremely accurate

gredient information. This research will take advantage of.

this fact and will try to make better use of the fact that
the solution for the perturbed body 1is only slightly
different from that of the unperturbed body. It is also an
objective of this research to find a method to calculate
gradients that is not specific to a particular set of
governing equations. That 1is, the method should be
applicable to the small disturbance transonic potential
equation, the full potential equation, and Euler's

equations.

-17-
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CHAPTER 2. METHODS FCOR FAST GRADIENT CALCULATIONS

Five different methods were examined tha:. could quickly

s

solve for the flow about an airfoil whose geumetry has been
slightly perturbed. One of these methods shows promise in
meeting all the objectives stated above. The five methods
are: 1)Perturbation Equations, 2) Local Methods , 3) Loccal
Linearization 4) Method of Integral Relations, 5) Method of
Reduced Domains.

The first four methods listed were found to have various

shortcomings while the final method 1listed shows some

I |

promise. This section will begin with a brief review of the

e

| first four methods 1listed above;, after which a more
extensive review of the Method of Reduced Domains will be
given.

All preliminary investigations were performed using the

T

small disturbance transonic potential equation. A review of

the important details involved in solving this equation 1is

i m ae

presented in the Appendix.

1)Perturbation Equations:
An obvious first step in solving a flow problem which is
a perturbation from a known base flow is to rewrite the

governing equations with the parameters split 1into twec §
parts. The first part would satisfy the base solution and ]

the second part would be a perturbation from fthe base

solution. Writing the potential as ?

é Q= P+ @

-1 &=
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ana plugging this into the small disturbance potential

equation yields
\

1] / - l._ - (3/
(K-(8+D)(Payt B) (Bt Bi) + Oy + B35 ° C

Discarding higher order terms in the perturbation potential

and ncting that the base potential satisfies the equation

yields the desired perturbation equation

/

(k~(3+) Do, ) Oxx ~ (¥01) @iy, * D55 = O C4)

The perturbation form of the potential must also be
substituted 1into the shock Jjump relations for a complete
formulation of the problem. The method was not pursued,
however, because equation 4 is essentially no simpler to

solve than the original small disturbance equation.

2) Local Methods

Local methods try to relate the pressure at the airfoil
surface with the local geometry of the airfoil. This is a
method proposed by Davis (ref. 11) in which he uses the work
of Spreiter and Alksne and their method of local
linearization (ref. 12) as a basis to derive the following

equations:

Co* Yp2(vn) {(”f‘/)°[(n;.,)>/z <% N} ) £, 175 / M1 (Sa)

Co = T [ (0 3 1 O €15 ner ()

where

ML (l/(/~ (ﬁl)/l C‘D’)

P

D T
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and

Co™ s Yums) {(—-———m:} ‘)'ng
1+ (/2 He
To obtain these very simple equations, a considerable
number of questionable assumptions had to be made {in
addition to the original assumptions made oy Spreiter and
Alksne 1n their development of local linearization. Becuase
of all the assumptions made, the validity of equation 5 was

put in doubt so the method was not pursued further.

3) Local Linearization:

An attempt was made to use the work done by Spreiter and
Alksne that did not require the plethora of assumptions made
in local methods. Local linearization is valid for purely
subsonic flow, purely supersonic flow, and flow with free
stream Mach number very close to 1. The method will be
outlined for purely subsonic flow. The ideas used in this
case are also usea in the supersonjc case and the case where
freestream Mach number is near 1.

The analysis begins with the small aisturbance transonic

potential equation

(/‘M:'N,:(JH) ox)@)ﬂ ¢ @yy - O (d)
Let
< L
A s “‘Nw‘ﬂ-(ﬂﬂ¢h> (;)
and initially treat as a constant. This yielas the simple
equation

NG +O, =0 (¢)

-0~
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the solution of which is

W(x,00 = Q,(%0): /ﬁ ‘ff,” 7“»;‘ (9)

This equation can now be differentiated with respect to x

yielding

- _Lodu (10)
A Tdx

The expression for % is now substituted back into equation

au
dx

10 and this ordinary differential equation 1is solved

yielding

- 2/32 (/-/‘7;, ~/<u)%' s w tC /)

where

k= M (%)

and C is a constant of integration. The above step 1is an
attempt to compensate for the approximation made initially
in the analysis in which ) is treated as a constant. The
above steps may seem somewnat arbitrary, but Spreiter and
Alksne have shown that this sequence of steps leads to the
most reasonable approximation.

The only thing that remains to be done is the evaluation of
the constant of 1integration. The method given by Spreiter
and Alksne for the evaluation of C is not used. Equation 11

can be rewritten as

C: '?Z (/‘/‘7;~/(u) Y2 - U (/l)

The flow about a base airfoil is known so substituting in

U.

‘4 and Ua in the above equation yielas an expression for

-21-
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C. Note that C will now be a function of x. With C(x)

known, u(x,0) can be found from equation 11 yielding
Y t .
u(x, O) H I( [(’%r (Ub ¢ ((ﬂ))} 3- ”& ¢/ ] ( /3)

Equation 13 was used to solve for Cp for the pertu-bed
airfoil. The base airfoil used was a parabolic arc with J =
.08. The freestream Mach number was .75. This yielded a flow
that was subsonic everywhere. Four perturbations in the
form of shape functions were separately added to the Dbase
airfoil. The four shape functions are presented in figure 4.
Each shape function was multiplied by a factor of .004.

The flow about the perturbed airfoil was solved using
equation 13 and also wusing the finite difference solver
outlined in Appendix A. The changes in pressure coefficient
from the base to perturbed airfoil for each perturbation is
shown in figure 5. The results 1look very promising. The
curves obtained using equation 13 or the finite difference
method lie nearly on top of each other. The computer time
required to solve the problem with equation 13 is 3 orders
of magnitude less than the time required by the finite
difference method.

Attempts were made to extend this method to
supeircritical flow, but these failed. The fundamental
problem is that the ideas used in local linearization cannot
be applied to mixed flow. The ability to extend this methoa
to the full potential equation or Euler's equations also

seems doubtful.

22~
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For these reasons, the method was abandonned. If,
however, there s a need ¢to design subcritical airfoils |
where the small aisturbance potential equation is a
reasonable approximation, then this method should work very

well.
4) Methcd of Integral Relations

The purpose of this method is to reduce the dimension of
an equation by 1. How this is done 1is best exp.ained by
illustrating a simple example. Consider the following two

dimensional equation

_a_f ¢ Q__g > o (/9)
J X 2y

where the boundary conditions
G (%,0) = 9, G (% Ynar )T 92

are given. This equation can be integrated with respect to y

yielding

thy

A [Fp e gy s o (15)

If F can be written as a(x)#*b(x,y) where b(x,y) is a known

function then the integral can be performed yielding

D (Bxyramx) o+ o = 9, = © (/G)

d X

Yoay
Bex) fbu,,) dy

where

This one dimensional equation is much simpler to solve

than the original two dimensional equation. The success of

«23=~
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this method depends on the accuracy with which b(x,y) 1is
known. It was hoped that since a solution of a flow that is
just slightly perturbed from a base flow {s desired, the
base flow should provide a reasonable approximation to the
function b(x,y).

To use rhis method on the small disturbance transonic
potential equation, the equation must Dbe Written 1in

divergence form as follows
% (Ko,-0t)y ') + B (05) = © (17 )

thus in this case
ook @u - (3402 6.} (1%4)
G - 4); (i126)

(ﬁy is given at ? = 0 and goes to 0 as 7 goes to infinity so

the limits of integration are 0 and infinity. Writing F as

Fix,§) - /p(x,o)& Fb(x;964a(x;d (/q)
gives for the function b(x,Y)
bx5) = Folx5)/F (%0) (10)

The problem with this is that F,(x,0) may be equal to zero
at some point in the flow. In fact Fb(x,y) may be zero at
some point in the flow so that with b(x,Y) written as a

ratio, the possibility always exists that the denominator

will be zero.
Other forms for &t{x,y) were 1investigated such as
assuming tnat b(x,¥) was an exponential function or an

algebraic function. Again, the flow about the base airfoil

-24-
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Wwas used as a guide to determine the exact form that b(x,y)
should take. No reasc-able way of using the base airfoil to
determine b(x,?) was found. For this reason the method coula

not be used.

5) Method of Reduced Domains

The basic idea behind this method is very simple. When
calculating the flow about the perturbed zirfoil the same
solver is used as the one used to calculate the flow about
the base airfoil, but the size of the domain on which the
calculation is made 1is greatly reduced. The motivation
behind this is that a perturbation in airfoil geometry will
primarily affect the flow very close to the airfoil so that
the base flow will provide reasonable boundary conditions
for the reduced domain. Figure 6 is a typical comparison of
the domain size used to calculate the flow about the base
airfoil -nd the perturbed airfoil.

The reduction in c¢.nputer time that can be expected
using the method of reduced domains comes about not only
t-case the number of mesh points is fewer so the number of
calculations per iteration is fewer, but also becauss fewer
mesh points generally lead to a higher convargence rate.

Suppose that a problem is solved wusling an 1iterative,
finite difference scheme and that we want to reduce the size
cf the error by 16". The number of :teraticns to ao this,

p, is given by )
P2 M (log,, 0 (21)
v

1
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where 7 1s the spectral radius.

For a Laplace equation
@x‘ *@YY by O \

solved with a Jacobl iterative scheme on a square domain

with Ax and Ay equal, we have

o= 1= TNt (23)
where N is the number of mesh points.

The rate of convergence is thus dependent on the number
of mesh points in this case. While the rate of convergence
for the small disturbance potential equation or the full
potential equation cannot be found analytically, it is
expected that the rate of convergence will be a function of
the number of mesh points.

Unlike the first four methods tried this method makes
its acproximation in the boundary condtions wused when
solving for the flow about the perturbed airfoil, not in the
actual method of solution. Some advantages to this are
immediately apparent:1) Major changes to existing coaes are
not required since the same solver is used, 2) Application
cf this method ¢to codes based on different governing
equations is possible, 3) A tradeoff exists tetween accuracy
ana speed, the larger the aomain the more accurate the
sclution, ©but also the greater the c.p.u. requirement. This
last advantage is important bDecause it gives flexipility 1in
using the method of reduced domains. In sowme applications

the size of the dacmain coulc be reduced substatially thereby

-26a-
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greatly reducing c.p.u. requirements. However, the size of
the aomain could always be increased if accuracy became a
problem.

Some trends can be found in the accuracy of using the
base flow for boundary conditions by examining the inner and
outer expansions used at different Mach numbers to derive
the small disturbance potential equation from the full
potential equation.

To derive the small disturbance potential equation valid

for subsonic and supersonic flow
(/‘N;>¢Xx t ¢77:O (24)

from the full potential equation

Ca* JA‘)(P"*(0‘-«%’)@”’2@’@7 ¢*y "o (25)

requ@res the use of inner and outer expansions of the form
d = Vb [P € (x,5)r & @ (x9)+.. ] 24a)
¢0:, U‘Z@u“(’x/‘/)* ¢, q3‘°(x)/)f ff,/l @zo (X,y)l ] 62(5)

where

9 d >’/£/

and 6, is a small parameter related to the airfoil
thickness.
To derive the small disturbance potential equation valid

for transonic flow

[/‘ e - M2 (rt) @] Dew + by =0 (2 ?)
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from the full potential equation requires the vuse of the

following 1nner and outer expansions

@': U,[@;‘(x,’) t €, ql)‘“(x,y) ¢ c‘: 41; (x,',)r@.] (:Zga)
O Us [P(X 11 ER () E G aplr] (234

where

Jf = €, )

and €1 is a small parameter related to the airfolil
thickness.

The important point is that for supersonic and subsonic
flow the inner 3olution is valid only for y of order ¢, ,
while for transonic flow the solution 1s wvalia for y of
order 1. This means that a perturbation in airfoil geometry
will affect the flow for a greater distance from the airfoil
in transonic flow than in subsonic or supersonic flow. The
accuracy of wusing the base flow for boundary conditions at
the edge of a given reduced domain should therefore be less
in transonic flow than in subsonic or supersonic flow.

A complete outline of the inner and outer expansion

procedure can be found in reference 13.
Wind Tunnel Analogy

There is a physical analog to computing the flow about
the perturbed airfoil on a reduced domain that offers
insight 1ntuv the problem. Determining the aerodynamic
characteristics of an s&sirfoil by pertforming wina tunnel

tests 1s similar to the methou of reauced dJdoumains. In each
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case the flow is affected by the outer boundary.

The hypothetical wind tunnel in which the perturbec
girfoil is tested is, however, special. The solution fcr the
base airfoil is obtained on the full domain so that if the
domain 1is reduced, the exact boundary conditions are
availiable at the edge of the reduced domain. If the flow in
the interior of the reduced domaii. is perturbed ancd then the
problem 1is solved with the same airfoil as before, exactly
the same answer as that found on the full domain will De
computed. This means that the hypothetical windtunnel has
been constructed in such a way as to give aerodynamic
characteristics for the base airfoil which are the same as
if the base airfoil had been tested in free air. Figure 7
shows the base airfoil 1in the hypothetical windtunnel.
Solving for the flow about a slightly perturbed airfoil 1is
thus 1like testing the slightly perturbed airfoil in the

hypothetical windtunnel.

-29-
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CHAPTER 3. RESULTS OF STUDIES USING THE METHOD OF REDUCED
DOMAINS

Exploratory Studies

Results presented in this section compare the change 1in
Cp caused by perturbations in airfoil geometry as computed
on the full comain and the reduced domain. The base airfoil
in each case was a parabolic arc at zero angle of attack,
and the four perturbations of figure 4 multiplied by a small
factor were separately added to the base airfoil.‘

It is difficult to quantify the performance of the
method of reduced domains without doing an optimization run.
A subjective assessment of the results will be wused
initially in this <chapter to develop <confidence 1in the
method. Later in this chapter an actual optimization test
will be performed.

Initially all results presented will be from subcritical
tests. Greater difficulty was anticipated for supercritical
tests ;nd these are discussed after the subcritical results
are properly understood.

In solving the flow on the reduced domain, using as the
basis for the solution the small disturbance potential
equation, two different types of boundary conditions can be
specified. Either the potential can be specified at the edge
of the domain (Dirichlet boundary condition) or the normal
derivative of the potential, the transverse velocity, can be

specified {(Neumann bounaary condition).
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Solving the tlow about the perturbea airfoil on the
reduced domain and specifying the potential to be that of
the base flow on the outer boundary 1s analogous to testing
the perturbed airfoil in the hypothetical windtunnel with a
freejet boundary condition at the tunnel walls. That is, the
specification of the potential to be that of the base flow
on the outer boundary forces the pressure to be that of the
base flow on the upper boundary of the reduced domain. In a
windtunnel with free jet boundaries, one expects the peak
perturbation velocities to be underestimated thus
underestimating the peak perturbation Cp.

Figure 8 shows the results where the base potential was
specified at the edge of the reduced domain. The flow

conditions iIn this case were:

freestream Mach number =z 0.7
thickness/chord = 0.1
perturbation multiplication factor = (C.001

The size of the reduced domain is shown in figure 9. The
number of mesh points in this reduced domain was 116 while
it was 3965 for the full domain. The underprediction of the
change in Cp is consistent with the above arguements. The
results are, however , reasonably accurate and the average
c.p.u. requirement in computing the flcw on the reduced
domain was approximentaly 60 times smaller than the c.p.u.
requirement for computing the flow on the full comain.

The next boundary condition tested was a Neumann
boundary conditicon on the upper boundary of the reduced

~ o

domain. The finite airference algorithm wused in these

-31-

e m.w}m.«nm‘




B e A bl e e L S

12

ORIGINAL G 1S
OF POOR QUALITY

computations required the specification of the potential at

the upstream boundary, so the potential &t the upstream

boundary was specified to be that of the base flow. For
convenience, the potential was specifiec to be that of the
base flow at the downstream boundary also. In all

computations where a Neumann boundary condition was used at

the upper boundary, the above outlined boundary conditions
were used at the upstream and downstream bouncaries.

Specifying the transverse velocity to be that of the

AT T TR TR T AT e

base flow on the edge of the reduced domain is analogous to é

solid wall boundaries on the nypothetical windtunnel. Solid
wall Dboundaries on a windtunnel constrain the flow to be

tangential to the solid wall. In this case one would expect

.

a test in the hypothetical wind tunnel on the perturbed

airfoil to overestimate peak velocities thus overestimating

the perturbation in Cp.

TP L ANNUR 1V S TR

The results presented in figure 10 are consistent with
this prediction. The flow conditions in this case were:
freestream Mach number 0.7 .

thickness/chord = 0.1
perturbation multiplication factor = 0.001

The size of the domain used in this case 1is presented 1in
figure 9. The average c.p.u. requirement for computing the
flow on the reduced domain was reduced by a factor of 45 as
compared to the c.p.u. requirement of the full domain. The
smaller reduction in c¢.p.u. time in this case as compared to

the previcus case was anticipated since Neumann bounaary

conditions generally lead tc slower convergence. ;
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Windtunnels usually have ventilated walls to try to
lessen the effect of the walls on the flow. The next section
describes attempts to correct the boundary conditions used
on the edge of the reduced domain in the hope of yieldig a

more accurate solution.
Boundary Condition Modifications

Modifications were made to each of the boundary
conditions wused above. The Dirichlet boundary condition was
modified by treating the perturbation in geometry of the
airfoll as a perturoation doublet and then adding the
perturbation in potential caused by this doublet to the base
potential on the outer boundary. The Neumann boundary
condition was modified by treating ¢the perturbation in
geometry of the airfoil as a wavy wall and wusing a
simplified analysis to determine the effect of this
perturbation on the transverse velocity at the boundary.

In Appendix A it is shown that in the ftar field the

airfoil 1is treated as though it were a doublet. This

treatment of the airfoil allows the potential to be .

determined in the ¢ar field by use of equation A5. This
equation is accurate only if it 1is wused at points a
considerable distance from the airfoil ( at least 1 chord
length ).The accuracy of equation A5 diminishes when it 1is
applied <closer and <closer to the airfoil, but how rapidly
the accuracy decays is not known. As an approximation, this

equation was used to determine the change in potential at

-33-
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the ecge of the reduced domain causec by the perturbaticn in
airfoil geometry.

The doublet was positioned on the airfoil at the chord
station where the amplitude of the perturbation was at a
maximum. Equation A6 is the equation for the doublet
strength. The equation has one part due to the airfoil
volume and a second nonlinear part. The contribution from
the nonlinear part is generally small so in computing the
perturbation doublet strength it was negleted. The equation

for the doublet strength was therefore
]
D= ax[{1) 4} (21)

where fYﬂ is the perturbation in airfoil geometery.
Figure 11 presents the results obtained with the above
outlined boundary conditions. The flow conditions for this
test were:

freestream Mach number

thickness/chord

= 7
z 1
perturbation multiplicati

0.
0.
on factor = 0.001
The size of the reduced domain is given in figure 9. The two
curves lie reasonably close to each other. The average
computing time required on the reduced domain was
approximately 40 times less than that required on the full
domain.

Modifications of lNeumann boundary conditions is similar
to changing the hypothetical windtunnel shape. The problem

is to determine the extent of the modifications required.

This problem <can be restated as the problem of determining
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how much of the perturbation in transverse velocity at the
airfoil surface 1is translated to the edge of the reduced
domain. As a guideline to determine the decay 1in the
transverse velocity a simple wavy wall model for cthe

perturbation 1is used.

Consider the small disturbance transonic potential

equation

(K-(34)8,)0er + P55 = © (30)
subject to the boundary conditions

(Dx ) @;’ are f/ni/r al o

and

Vix,o) = d)y(%u)= & (& %

Let us solve this equation for subsonic flow where
(K-(yt) @ x ) is always greater than zero. To make the
matnematics tractable let us approximate the coefficient of
the ¢h, term as a constant, Al . This equation, with the

boundary conditions given, <can be solved in closed form

using separation of variables. The solution is

4>y(x,9) : 9(Co;<9x)e‘y‘”‘("'°) (3/)

Nocte that the local value of } is used at every point.
The important information from equation 31 is the rate
at which velocities at Y = 0 decay. Using the cecay rate of

this equation gives for the velocity at any point Y

o : ~y & A \
Oy (%3] = By (xo)e 2N (32)

il
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Equation 32 can be wused to approximate the perturbation
velocity at the edge of the reduced domain. To use equation
32 ,(9, which determines the wavelength of the wavy wall
must be Kknown. Since the airfoil is similar to a half sine
wave, @ was made to be 7.

Figure 12 presents the results of using the
approximations just oulined. The flow conditions in this
test were:

freestream Mach number = 0.7

thickness/chord = 0.1

perturbaticn multiplication factor = 0.001
The size of the reduced domain is given by figure 9. The
two curves lie very nearly on top of each other, indicating
that the above approximation is a very good one. The average
computing time required on the reduced domain was 50 times
less than that required on the full domain.

These subcritical results are encouraging. The results
obtained with the four different boundary conditions used
above appear to be at least reasonably accurate and
sometimes very accurate. The saving in c.p.u. time in each
case was substantial.

The same four boundary conditions outlined above were
tested in supercritical flow. The one difference is that the
wavy wall formula given above 1is valid only in subsonic
flow. A supersonic wavy wall formula is required for cases
where the flow at the edge of the outer bounacary is
supersonic. The derivation of this formula 1is completely

analogous to the gerivation presented for the subsonic flow.
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The result is
by (x.5) = 5 (x0)[x- N7 ] (33)

As can be seen, the transverse velocity at the airfoil
surface does not decay but propogates along characteristics.
In locally supersonic flow the boundary condition was
therefore applied as follows: The slope of the
characteristic was determined from the local Mach number at
the boundary. The characteristic was then approximated as a
straight line. This line was followed to the airfoil surface
where the perturbation transverse velocity was known. This
transverse velocity was then propogated back wup along the
approximation of the characteristic to the boundary of the
reduced domain, where it wa~- added to the Dbase transverse
velocity. This procedure is illustrated in figure 13.

The runs made with the boundary conditions being: 1) The
base potential, 2) The base transverse velocity, and 3) The
base potential with the potential due to a perturbation
doublet added to it, were all run under the same conditions:

freeesteam Mach number 0.82

thickness/chord 0.1
perturbation multiplication factor = 0.001

"n o0

The size of the domain used is shown in figure 9.

Figure 14 shows the results where the base potential was
specified on the edge of the reduced domain. The effect of
the perturbation doublet was negligible , the results teing
essentially thcse presented in figure 14. The results 1in

these <cases are not very good. The largest changes in Cp
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occur near the shock and these are not captured well. When
the base transverse velocity was specified at the upper
boundary of the reduced domain, the computations would not
converge to a solution.

The tests in subcritical flow wusing the wavy wall
approximation yielded the best results sc¢ it was hoped that
they would yield good results in the supercritical case. The
initial test was a conservative one in which the flow was
only slightly supercritical. The test conditions in this
case were:

freestream Mach number 0.78

thickness/chord 0.10
perturbation multiplication factor = 0.0014

The size of the reduced domain used is shown in figure 9.

Results are presented in figure 15. As can be seen the
results are not very accurate. It seems that supercritical
flow is much more sensitive to boundary conditions than
subcritical flow.

The flexibility of the reduced domain method was put to
use to try to overcome these difficulties. The outer edge of
the domains used generally crossed through a region with
supersonic flow. This was the probable cause of
dissappointing results Jjust presented. To get around this,
the shape of the domain was altered so that the outer
boundary was always in subsonic flow. A typical dcmain for
supercritical flow calculations is presented in figure 16.
Figure 16 also shows the boundary conditions tested. The

base potential was specified everywhere except at the very
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top of the '"notch" part of the domain. There, either the
base potential was specified or the base transverse velccity
was specified.

For each boundary condition a series of tests were
conducted in which the domain size was increased until
consistently acceptable results were obtained. For these
tests the flow conaitions were:

freestream Mach number = 0.682

thickness/chord 0.10
perturbhation multiplicatin factor = 0.001

(1 1]

Figure 17 presents what are considered acceptable
results for the Dirichlet boundary condition and figure 18
shows results for the Neumann boundary condition. The
corresponding domain size required to achieve these results
is shown in figure 19. The number of mesh points in tne
reduced domain with Neumann boundary conditions was 21¢&
while the number of mesh points in the reduced domain with
Dirichlet boundary conditions was 1140. Recall that the the
number of mesh points in the full domain was 3965. As can
be seen, the size of the domain required to obtain
reasonable results using the Dirichlet boundary condition is
considerably larger than the domain required to achieve
reasonable results using the Neumann boundary condition. An
explanation for this phenomena has not yet been found.

The average c.p.u. time required to get the results on
the reduced domain is about 30 times less than on the full
domain if a Neumann boundary condition is used and about 6

times less if a Dirichlet boundary condition is used. While
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the reduction in c¢.p.u. time 1Is not as large as the
reduction realized in subcritical frflow, it is still

substantial.

Summary of Results of Exploratory Studies

The results can be summarized as follows:

Sucbritical Flow
1) Reasonably accurate results can be obtained
on a substantially reduced domain.
2) There is flexibility in applying boundary
conditions. Different boundary conditions
yield different results but all of these
results seem acceptable.
3) The <c¢.p.u. requirement of the reduced
domain calculations is from 40 to 60 times
lower than the c¢.p.u. requirement for full
domain calculations, depending on boundary
conditicns applied.

Supercritical Flow
1) Reasonably accurate results can be obtained
on a substantially reduced domain but the
outer : undary of the reduced domain must be
in subsonic flow.
2) There is no flexibility in applying
boundary conaitions. Fast and reliable results
can only be obtained with the use of Neumann

boundary c¢onditions.
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3) The c.p.u.requirement of the reduced aomain

calculations is 30 times smaller than the

¢.p.-u requirement of full comain calculations.

Note that the savings in computer time using the method

of reduced domains came about primarily because of the
reduction 1in the number of calculations required per
iteration. The reduction in the actual number of iteratiocns
on the reduced domain was nct iarge, always being less than

a factor of 2.

Full Potential Equation Calculations

The knowledge gained from applying the method of reduced
domains to an aerodynamic analysis code hased on the small
disturbance potential equation 1is now applied to the full
potential equation. The full potential equation is
considerably more accurate than the small cdisturbance
potential equation and so is used much more frequently 1in
the design of airfoils.

A computer code that solves the full potential equation
is much mcre c¢omplex than one that solves the small
disturbance potential equation. FLO6, a nonconservative full
potential equation solver written by Antony Jameson, was
used 1in these tests. FLO6 was chosen because it is the
aerodynamic analysis code in use at NASA Ames for numerical
optimization of airfoils. A complete ocutline of the
fundamentals involved in solving the full potential equation

can be found in reference 14,
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Tests were conducted using FLUO {n which the size of the
computational domuain was greatly reduced. FLOO maps the
airfoifl onto a unit circle and then performs an inversion
such that {nfinfty i{s mapped into the origin of the unit
circle. Thus the computational domain used in FLO6 {s the
inside of a unit circle . The outer boundary of the reduced
domain must be {n subsonic ftlow, so fur a typical case of a
lirfting wsirfoil with a supersonic zone on the upper surface
ot the afrfoil, the computational domain woulg be like that
shown {n t'igure 20, Because of the coordinate system used |3
FLOO, a reduction in domain size like the reduction shown {n
rigure 20, reduced the number of mesh points by a factor of
only 5 or o,

FLOOG also uses two steps {n solving the equation: a
relaxation step, and a fast solver step., The relaxation step
sives slow convergence, but can bLe used on irregular domain
shapes and {3 valid tor .upersonic tlow, The fast 3solver
step gives very rapid convergence {n subsonic tlow, but
becomes less and less stable a3 the local Mach onumber
inereases  and  pgoes unstable {n supersonic flow. Also, the
fast solver can only be used on regular domain shapes. The
two  steps  combined converge reasonably tust in transonic
'low.

Because the reduced computational dowain 15 i1rregular in
shape, the fast solver cannot be used over the whole domain,
Theretfure, the fast solver (s used only 1n the region showh

tn Ctgure J0.  The relaxtion step {3 used over the whole
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demain. Not being able t¢ u.e the fast sclver on the
complete reduced domain does not slow convergence since that
part of the domain where it s not used is a region of
supersonic flow.

Tests were run on the airfoil shown in figure 21 at zero
angle of attack, with a freestream Mach number of 0.8
resulting in a supersonic 2one on the upper and lower

surface of the airfoil. A single perturbation given by
Pert = 0.c01% sia(7 x) /3‘7‘)

was added to the upper and lower surface of the airfoil. The
boundary conditions used at the edge of the reduced domain
were: 1) Potential specified to be that of the base flow
everywhere, 2) Potential specified to be that of the Dbase
flow everywhere except on the "notch" part of the grid where
the normal velocity was specified to be that of tne base
flow. An unexpected result was found from these tests. While
in case 1 the solution did not capture the shock movement as
expected from tests performed on the small disturbance
potential solver, <case 2 <converged so slowly that the
required c.p.u. time was as large as that needed to solve
for the perturbed flow on the full domain.

This fundamental difference in results from the small
disturbance potential soclver and FLO6 did not seem
reasonable. One important difference in the two codes was
that FLO6 is a nonconservative code while the small

disturbance solver is a conservative code. A comparison was
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made on the rate of convergence of the conservative andg
nonconservative forms of the small disturbance code. These
tests showed that while the two forms of the code had nearly
identical convergence rates on the full domain, the
conservative form of the code converged in fewer than half
the number of iterations required by the nonconservative
form of the <code on the reduced domain. While not a
conclusive result, this strongly suggests that the method of
reduced domains can be made tc work for supercritical flow

if the aerodynamic analysis code is conservative.

Optimization Calculation

Since the method of reduced domains could not be made to
work in supercritical flow using FLO6, the method was tried
on a subcritical case. The objective of this test was not to
design a better airfoil but was to demonstrate that the
method of reduced domains will produce reasonable results in
an actual optimization test.

The optimization code used for this test is <called
QNMDIFF. It employs a gquasi -Newton method for unconstrained
dptimization. The base airfoil used for this test was a 17
percent thick &zirfcil designed for general aviation
applications (GA(W)=1). The airfcil geometry can be found in
reference 15, Computations were made at a Mach number of
0.22 and at zero angle of attack. The objective function
used was the sum of the differences between a target

pressure distribution along the upper surface of the airfoil
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and the actual pressure distribution, that is
T

08J= & (Cp.-Cpi ) (35)
1o
The target pressure distrabution used was that of the actual
(GA(W)=1) airfoil. The 1initial airfoil wused was the
(GA(W)=1) airfoil to which four shape functions had been
added. Thus the optimized airfoil would be one in which the
magnitude of the four shape f . nctions was 0. The four shape

functions used were the ones shown in figure 4. The initial

magnitudes of the shape functions were:

function 1 magnitude = 0.0100
function 2 magnitude = 0.0087
function 3 magnitude = 0.0093
function 4 magnitude = 0.0021

Table 1 compares the design vector and value of the
objective function at the end of each optimization iteration
as computed in the regular way and using the method of
reduced domains. Figure 22 presents graphically the
objective function history of the two methods. In each case
the objective function had been reduced substantially after
6 1iterations and the design vector was very close to the
exact answer of 0,0,0,0.

This optimization test required 40 aerodynamic
evaluations 1in gradient calculations and 21 aerodynamic
evaluations in line search calculaticns. QNMDIFF sometimes
requires central differences in gradient calculations which
is why the number of aerodynamic evaluations for gradient

calculations is not 4*6=24, Each gradient calculation took

~45-
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approximately one tenth the c¢.p.u. time on the reduced
domain as comparea to the full domain. The total amount of
computer time required for this optimization <calculation
using the method of reduced domains was aproximately 45% of

the time required in using the standard method.
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CHAPTER 4. CONCLUSIONS AND RECOMMENDATIONS

The method of reduced domains has the potential to
significantly reduce the computer time required in designing
airfoils wusing numerical optimization. There are, however,
unresolved complications in using the method if the flow 1is
supercritical. The use of a nonconservative potential code
leads to unacceptably slow convergence rates when
computations are performed on the reduced domain. It is
probable that this problem would be eliminated if a
conservative potential code was used.

Future work on the method of reduced domains should
concentrate on understanding the effect that different
boundary conditions have on computations wusing a reduced
domain. This paper has presented results of using different
boundary conditions. Explaining why one boundary condition
works better than another has proved elusive. With the
proper understanding of the effect of boundary conditions,
the full potential of this method would be known.

This research has concentrated on reducing the computer
time required to determine the gradients needed by the
optimization program. Research 1is also warranted on
increasing the efficiency of the line search. Making full
use of the fact that the line search is a one dimensional
problem <could yield a signifigant reauction ir <c.p.u.
requirements. Another area of possible recearch 1is 1in

determining the best way to modify the airfoils sharpe.
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Different design variables will yield different design

spaces and one design space may be much more conducive to

numerical optimization than another.
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APPENDIX. METHOD OF SOLUTION OF THE SMALL DISTURBANCE
TRANSONIC POTENTIAL EQUATION

Consider the similarity form of the small disturbance

transonic potential equation

l ‘Al .
A(ke,- () @)) ¢ 0070 = 0 (Al
Ox + Y
where
I / 1
Ko (-Ha)/Ha §7
ana
~ y
y = 53/‘70)/
The pressure coefficient is ther given by
¥y
Cpf“lq)x(g /ﬂ:’) (’/Il}
If the profile of the airfoil is given by
y: i f(fx) (A3)
then the Neumann boundary condition, transterrea to the axis
is
Py - of (4%)
3 K
In the far field the airfoi: is treated as a doublet. This

gives for the potential in the far tield
G (x5)= ()ﬁk‘\) (Dx/(xlékyl?) (45)

where D = doublet stength

L [fe9) dy v 0 [[drdy fae)

‘e
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The numerical method used to solve this equation
proceeds as follcws. Let Py be a central difference

approimation to the x derivatives

oy [feaos ]

2% &
Wwhere
e K- ()| Qe - Gy ]
A o K= [ Perny - O
and let qg; be a centcral difference approximation to the vy
derivatives
gij: Qigu- 2P, @i j- (A8)

oyt

Define the following switching funct {on

/U{.)‘ 2 0 lf‘ A'-'). >oO (5VAJ'¢4:.) (/4 ?a/
/‘.:j 2 ) '-/' /4,"} Va’ (Supeuou'.) (/4 76)

Then a fully conservative finite difference scheme to solve

the small disturbance potential equsa is
/9/,,‘ ’ fc'.)' -/U(;/'Pc',/ r/flo'./,)- /)a'-///' e O (A/0)

Details of this method can be found in references 14,16,

and 17.
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