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COMPUTATIONAL METHODS FOR AERODYNAMIC DESIGN

USING NUMERICAL OPTIMIZATION

by

Martin F. Peeters

ABSTRACT

Five methods to increase the computational efficiency of aerodynamic

design using numerical optimization, by reducing the computer time required

to perform gradient calculations, are examined. Four of these methods have

flaws, while one shows promise. The promising method consists of drastically

reducing the size of the computational domain on which aerodynamic calcula-

tions are made during gradient calculations. Since a gradient calculation

requires the solution of the flow about an airfoil whose geometry has been

slightly perturbed from a base airfoil, the flow about the base airfoil is

used to determine boundary conditions on the reduced computational domain.

This method worked well in subcritical flow, but some unresolved problems

remain if it is used in supercritical flow.

l	
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L157 OF SYMBOLS

a speed	 of sound	 (m/sec)

c airfoil	 chord	 (m)

Cd drag coefficient

C1 lift	 coefficient

Cp pressure	 coefficient

(D doublet strength

f airfoil	 geometry

G constraint	 function

h shape	 function

K transonic	 similarity	 parameter

Ku curvature -	 d 
Ax	 l	 1

M Mach number

OBJ objective	 function

r coefficient	 of shape	 function

t airfoil	 thickness	 (m)

u,v perturbation	 velocity	 in	 x	 and	 y

respectively

Vol area within	 airfoil	 divided	 by 6

x,y Cartesian	 coordinates

z,y dimensional	 values	 of	 x,y	 (m)

y transonic	 lateral	 coordinate

ratio of specific heats

d	 thickness/churn

pertubation velocity potential

-6-
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velocity potential

Subscripts

b	 base flow

i,j	 mesh point indices in x and	 y	 directions,

respectively

L	 local condition

is	 lower surface

us	 upper surface

CY'	 freestream condition

Superscripts

q	 design iteration number

'	 pertubation from base flow
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Improved methods for the design of airfoils are always a

subject: of interest in aeronautical engineering. 	 To date the

most	 successful	 analytical	 methods	 for	 the	 design	 of

airfoils have relied on some form of	 inverse	 calculations.

An	 inverse	 calculation	 is	 one	 in which the desirea flow

field is	 specified and	 the	 airfoil	 shape	 is	 solved	 for,

which	 generates	 this	 flow	 field.	 Examples of the	 use	 of

inverse methods	 can	 be found in	 the work of Henne	 (ref.	 1),

or Chin ana Rizzetta	 (ref.	 2).

Inverse methods can be a definite aide in the design 	 of

airfoils	 but	 they	 do	 have	 some	 inherent	 drawbacks:	 1) J

Inverse methods require apriori 	 knowledge	 of	 the	 desired

pressure	 or	 velocity distibution along the airfoil, 	 2)	 The

desired flow field may be impossible	 to	 realize	 with	 any t

physically	 realistic	 airfoil	 shape,	 and 3)	 Constraints on

the airfoils characteristics are not easy to implement.

An alternative approach for the design of	 airfoils	 has

been	 proposed	 by	 Hicks,	 Murman,	 and Variderplaats	 (ref.	 3)•

The	 technique	 is	 to	 desgn	 airfoils	 using	 numerical

optimizaton	 in	 which	 an	 aerodynamic	 analysis	 code	 is

coupled to a	 numerical optimization code. 	 This method	 woula

allow	 the	 designer	 to	 optimize	 a	 single	 performance

characteristic	 of	 the	 airfoil	 while	 at	 the	 same	 time

constraining	 other	 performance	 characteristics	 of	 the

airfoil	 to	 be	 within	 certain	 values	 prescibed	 by	 the

-8-
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designer.

This method for designing airfoils is very flexible. It

gives the designer freedom to choose which performance

characteristics to optimize and how much degradation in

other performance characteristics is tolerable. Which

performance characterlstic is to be optimized and which

performance characteristics are to be constraints can be

varied, giving the designer accurate information on design

tradeoffs.

Initial work with this method has shown that while it

seems to work, it requires a considerable amount of c.p.u.

time, limiting its usefullness.	 The objective of this

present	 research	 is	 to	 explore ways in which the

computational effciency	 of	 designing	 airfoils	 using

numerical optimization can be increased.

The basic concepts involved in optimization will be

reviewed first. Thereafter modifications to the method that

could improve the computational efficiency will oe

discussed. Conclusions and recomendations will then be made.

Optimization Concepts

Consider an airfoil in which the upper burface is defined

by the functional relationship •F vs (x/c) and the lower

surface is defined by the functional relationship fis (x/c).

It is desired that a certain performance characteristic of

the airfoil is optimized. For example, assume that the drag

at zero angle of attack is to be m4nimzed. In this case the

-9-
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drag would be called the objective function. In doing the

optimization, it is desired that constraints be imposed on

other performance chr icteristics of the airfoil. For

example, the airfoil volume is constrained to be greater

than a specified minimum and the lift is constrained to be

greater than a specified minimum.

To perform the optimization, modifications will have to

be made to the airfoil geometry. This is accomplished by

adding shape functions to the initial airfoil so the urner

surface of the airfoil would be given by

(x/c) = fus ( x /c) + r, *h, (x/c) +...+ r+ *hh(x/c)
)4;h./

and similarly for the lower surface. The function h„(x/c) is

a shape function. Figure 1 illustrates some examples of

shape functions that have been used by Hicks and

Vanderplaats (ref. u) for optimization. The r„'s determine

the magnitude of each shape function added to the initial

airfoil. These are the only quantities that are varied in

the optimization process so the r„ 's are ref ered to as the

design variables.

The statement of the problem can be summarized as

follows:

Minimize OBJ(X)

Subject to: G; (X) < 0	 i=1,m

where X is a design vector

-10-
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The following terminology is useful when discussing

opt:'mization. The n dimensional space spanned by the vector

X is refered to as the design space. A constraint is said
J

to be inactive if G;(X) < 0; it is said to be violated if G;

(X) > 0 ; it is said to be active if G; (X) 	 a0. Since an

exact zero is rarely found on a computer, a more reasonable

definition for an active constraint is lG; (X)+ < d where a is

a small value. This will be the definition of an active

constraint used in this paper. A design is feasible if for

all i G;(X) <0. ine minimal feasible design is said to be

optimal.

How the optimization procedure actually works is best

explained by illustating a simple exampl- Consider the

problem:

Minimize Cd

Subject to :

Cl,04 -C^ < 0	 (lift constraint)

and

Volk ,, - Vol

whereX = Q̂
a

two shape functions

< 0	 (airfoil volume constaint)

r,	 and rZ are the coefficients of

The design space for this hypothetical problerr, is shown in

figure 2. Contours of constant objective function ( Cd ) and

the constraints are illustrated in the design space. assume

that the initial airfoil is given by



a x, v x,

013J)	 v a Cv

a X^ o x i

a x„ a x„
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r, = 0

r^ = 0

and that this initial airfoil is a feasible design.

The optimization process is an iterative procedure in

which the following recursive relationship is used

X I ' s = X	 S
	

Cl)

where q is the iteration number, vector S is the direction

of search in the design space and a is a scalar defining

the distance of tra ,: _ in the direction given by S. Each

optimization iteration thus procedds in two steps: First the

vector S giving the direction of travel is found, then the

scalar A is determined.

The procedure for determining S is somewhat different

depending on whether any constraints are active. In the

example of figure 2, it is assumed that no constraints are

active initially so the determination of S proceeds as

follows. Each design variable is separately perturbed to

determine its efY'ect on the objective function; thus a

finite difference approximation to the gradient of the

objective function is constructed as
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In this example there are only two design variables. F,,.r

each one an aerodynamic calculation must be performed .,;th

the design variable perturbed to determine the change in the

objective function.

Whith a finite difference arpro::imation to the gradient

of the objective function found, S can now be determines.

Different optimization schemes use different nethods to

^	 J
determine S. A steepest descent method would just make S the

negative of the gradient. Conjugate gradient methods (ref.

5) or quasi Newton methods (ref, 6) determine S as some

function of the gradient. In general, optimization schemes

determine S as some function of the gradient of the

objective function.

With S known, d must now be found. G( is found by

conducting a linear search in the direction of S until a

minimum is found, or until a constraint becomes active.

Again, different optimization codes will use different

methods to find a . A typical method would be to perform 3

evaluations of the objective function on the line defined by

S. A quadratic fit is then made with these 3 points and the

minimum is found. Similar ideas are used in other methods.

Now equation 2 can be used to determine a new airfoil

geometry. In the example given in figure 2 this would cause

a movement in the design space from A to B. This procedure

is repeated until either a minimum is found in the objective

function, or a constraint becomes active. In the example of

figure 2 the optimization procedure would move the design to
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C where the lift constraint becomes active.

At this point a somewhat differe:t procedure is used to

find the vector S. In addition to finding a Finite

difference approximation to the gradient of the objective

function, a finite difference approximation to the gradient

of the constraint function must be foun(,. This is done in

the same manner as before. Each design variable is perturbed

separately to determine its effect and the objective and

constraint functions. The determination of S again varies

from program to program, but usually the optimization

program will try to move the design closer to a minimum and

at the same time push it away slightly from the constraint.

Constrained and unconstrained optimization iterations are

performed as necessary until a feasible design is found

which minimzes the objective function (optimal design). In

the example of figure 2, this would move the design to point

E. There is no guarantee that this design is at an absolute

minimum. There may be rany local minima in the design space.

In general an improvement in the design will have been made,

but to have more assurance in finding the absolute minimum

the optimization procedure should be started at different

points in the design space. In the example of figure 2 point

E is a relative minimum. If the procedure was begun at point

F, the absoulute minimum, point G, would have been found.

-14-
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Examples of Airfoil Optimization

The concepts outlined above have been tested by numerous

people. Numerical optimization has been used to optimize low

speed, high lift airfoils (ref. 7) ; it has been used to

optimize airfoils in transonic flow (ref. 8,9). The results

obtained by hicks, Murman ano Vanderplaats (ref. 3) in which
airfoils in transonic flow are optimized, will be presented

as an example demonstrating the potential that this method

has for the design of airfoils.

Their optimization procedure couplea together an

aerodynamic analysis code based on the small disturbance

transonic potential equation and CONMIN (ref.10), a FORTRAN

program for constrained function minimization.

Some results from their work are presented in figure 3.

In each case the objective was to minimze drag (the only

drag present in this inviscid calculation is wave drag ). In

each case the freestream Mach number was 0.5; there were

seven design variables; the airfoils were symmetric. In the

cases of figures 3a and 3b the only constraint was an

airfoil volume constraint, the cases of figures 3c and 3d

imposed a curvature constraint on the airfoil and a

thickness/chord constraint in addition to the airfoil volume

constraint. In every case a significant reduction in drag

was realized.

-15-	 -
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Limitations of Airfoil Design Using Numerical Optimization

The above examples indicate that improved 	 airfoil

designs can be realized using numerical optimization as a

design tool. This method is, however, limited by its

excessive appetite for c.p.u. time. The examples presented

utilized an aerodynamic analysis code based on the small

disturbance transonic equation and had only seven design

variables.	 A snore realistic problem would utilize 	 an

aerodynamic analysis code based on the full potential
f

equation and might have fifteeen or more design variables.

In this case the c.p.u. requirements of numerical

optimization would generally be considered too large for the

method to be used.

It is found that a significant fraction of the time

spent in designing airfoils using numerical optimization is

spent on calculating the finite difference approximations to

the gradients of the objective and constraint functions.

Recall that a gradient calculation is made by separately

perturbing each design variable and then performing an

aerodynamic	 analysis	 to determine the change in the

objective function and the active constraint functions.	 The

flow about the unperturbed airfoil provides a good initial

guess for the solution of the perturbed airfoil, 	 but

computer times are still very large.

The objective of this research is to find a method for

computing the gradients of the objective ana constraint

-16-
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functions that require significantly less computer time than

the	 method	 outlined	 above.	 The	 finite	 difference

approximatiin	 to	 the	 gradients used only one sided

differencing to approximate the gradients. One sided

differencing is only first order accurate, suggesting that

numerical optimization does not require extremely accurate

gradient information. This research will take advantage of.

this fact and will try to make better use of the fact that

the solution for the perturbed body is only slightly

different from that of the unperturbed body. It is also an

objective of this research to find a method to calculate

gradients that is not specific to a particular set of

governing	 equations.	 That is, the method should be

applicable to the small disturbance transonic potential

equation,	 the	 full	 potential	 equation, and Eu.ler's

equations.

-17-
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CHAPTER 2. METHODS FOR FAST GRADIENT CALCULATIONS

Five different methods were examined tha'^ could quickly

solve for the flow about an airfoil whose getmetry has been

slightly perturbed. One of these methods shows promise in

meeting all the objectives stated above. The five methods

are: 1)Perturbation Equations, 2) Local Methods , 3) Local

Linearization 4) Method of Integral Relations, 5) Method of

Reduced Domains.

The first four methods listed were found to have various

shortcomings while the final method listed shows some

promise. This section will begin with a brief review of the

first four methods listed above ; after which a more

extensive review of the Method of Reduced Domains will be

given.

All preliminary investigations were performed using the

small disturbance transonic potential equation. A review of

the important details involved in solving this equation is

presented in the Appendix.

1)Perturbation Equations:

An obvious first step in solving a flow problem which is

a perturbation from a known base flow is to rewrite the

governing equations with the parameters split into two

parts. The first part would satisfy the base solution and

the second part would be a perturbation from the base

solution. Writing the potential as

(^ — 4)ti}$,

—1 b-

a
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ana plugging this into the small disturbance potential

equation yields

/	 (31

Discarding higher order terms in the perturbation potential

and ncting that the base potential satisfies the equation

yields the desired perturbation equation

tax - (^*i) ¢x0, *p ^y y = O	 Cat)

The perturbation form of the potential must also be

substituted into the shock jump relations for a complete

formulation of the problem. The method was not pursued,

however, because equation 4 is essentially no simpler to

solve than the original small disturbance equation.

2) Local Methodz

Local methods try to relate the pressure at the airfoil

surface with the local geometry of the airfoil. This is a

method proposed by Davis (ref. 11) in which he uses the work

of Spreiter and Alksne and	 their	 method	 of	 local

linearization (ref.	 12) as a basis to derive the following

equations:

C p	 Z^hl(Ytt,̂ l
! (n^i r ) - I ( ^` 'i1 	 ' ^^ 11t C^ t^) {;^ J M4 > l (Sa)

CP 	Z	 r t (I' f1m ' 
r
^l'/`1 "^^ ^L
	

3	 /`^'	 ^^rf^} J ^3 1

where

^: ( I /( /- ( YW/ .I C^
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and

do

To obtain these very simple equations, a considerable

number of questionable assumptions had to be made in

addition to the original assumptions made by Spreiter and

Alksne in their development of local linearization. Becuase

of all the assumptions made, the validity of equation 5 was

put in doubt so the method was not pursued further.

3) Local Linearization:

An attempt was made to use the work done by Spreiter and

Alksne that did not require the plethora of assumptions made

in local. methods. Local linearization is valid for purely

subsonic flow, purely supersonic flow, and flow with free

stream Mach number very close to 1. The method will be

outlined for purely subsonic flow. The ideas used in this

case are also usea in the supersonic case and the case where

freestream Maoh number is near 1.

The analysis begins with the small disturbance transonic

potential equation

Let

and initially treat	 as a constant. This yielcs the simple

equation

-20-



^: F'Un^t Qlir,1 iTY

the solution of which is

r) xo	 t
This equation can now be differentiated with respect to	 x

yielding

d u _ 	 ^ C /off
d-X	 x

The expression for a	 is now substituted back into equation

10	 and	 this	 ordinary	 differential equation	 is solved

yielding

where

k =	 17,E C^t^)

and C is a constant of integration. The above step is an

attempt to compensate for the approximation made initially

in the analysis in which ^ is treated as a constant. The

above steps may seem somewhat arbitrary, but Spreiter and

Alksne have shown that this sequence of steps leads to the

most reasonable approximation.

The only thing that remain: to be done is the evaluation of

the constant of integration. The method given by Spreiter

and Alksne for the evaluation of C is not used. Equation 11

can be rewritten as

3k

The flow about a base airfoil is known so substituting in

U: b	and (/b in the above equation yielas an expression for

-21-
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C.	 Note	 that	 C will	 now	 be a	 function of	 x.	 With	 C(x)

known,	 u(x,0)	 can be	 found from equation	 11 yielding

u (x, o) :	 I< I(k2l (ud 0 c(X))) 1', - /7,01	 ► 	 I / 1)

Equation 13 was used to solve for Cp for the perturbed

airfoil. The base airfoil used was a parabolic arc with ; =

.08. The freestream Mach number was .75• This yielded a flow

that was subsonic everywhere. Four perturbations in the

fora, of shape functions were separately added to the base

airfoil. The four shape functions are presented in figure 4.

Each shape function was multiplied by a factor of .004.

The flow about the perturbed airfoil was solved using

equation 13 and also using the finite difference solver

outlined in Appendix A. The changes in pressure coefficient

from the base to perturbed airfoil for each perturbation is

shown in figure 5. The results look very promising. The

curves obtained using equation 13 or the finite difference

method lie nearly on top of each other. The computer time

required to solve the problem with equation 13 is 3 orders

of magnitude less than the time required by the finite

difference method.

Attempts were	 made	 to	 extend	 this	 method	 to

supercritical flow, but these failed. The fundamental

problem is that the ideas used in local linearization cannot

be applied to mixed flow. The ability to extend this methoc

to the full potential equation or Euler's equations also

seems doubtful.

-22-



OF POOR QUALITY

For these reasons, the method was abandonned. If,

however, there Is a need to design subcritical airfoils

where the small disturbance potential equation is a

reasonable approximation, then this method should work very

well.

4) Method of Integral Relations

The purpose of this method is to reduce the dimension of

an equation by 1. How this is done is best explained by

illustrating a simple example. Consider the following two

dimensional equation

	

aT	 ^S	 o	 (^y

	

J^A	 jj

where the boundary conditions

6 (x) U)	 9,	 c (x, yo). y ) = 9
are given. This equation can be integrated with respect to y

yielding YA.Y

^x	 o

If F can be written as a(x)*b(x,y)	 where	 b(x,y)	 is	 a known

function then the	 integral	 can	 be	 performed yielding

^x
where

Qlx) = J b<x, y) cry
a

This one dimensional equation is much simpler to solve

than the original two dimensional equation. The success of

-23-
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this method depends on the accuracy with which b(x,y) is

known. It was hoped that since a solution of a flow that is

,just slightly perturbed from a base flow is desired, the

base flow should provide a reasonable approximation to the

function b(x,y).

To use this method on the small disturbance transonic

pote c, tial equation, the equation must be written in

divergence form as follows

^	 y

thus in this case

F = k ^x _ (^t ^)/^ ^X^	 (/q4)

G	 Oy	 (lg 6^

07 is given at y = 0 and goes to 0 as y goes to infinity so

the limits of integration are 0 and infinity. Writing F as

gives for the function b(x,"r)

b rx, y ) = Fb l x , ,^ /Fb c x, ^)
	

(a.07

The problem with this is that Fb(x,0) may be equal to zero

at some point in the flow. In fact F d (x,y) may be zero at

some point in the flow so that with b(x,9) written as a

ratio, the possibility always exists that the denominator

will be zero.

Other forms for b(x,y) were investigated such as

assuming that b(x,y) was an exponential function or an

algebraic function. Again, the flow about the base airfoil

-24-
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was used as a guide to determine the exact form that b(x,y)

should take. No reasr-:able way of using the base airfoil to

determine bix,y) was found. For this reason the method coulo

not be used.

5) Method of Reduced Domains

The basic idea behind this method is very simple. When

calculating the flow about the perturbed airfoil the same

solver is useci as the one used to calculate the flow about

the base airfoil, but the size of the domain on which the

calculation is made is greatly reduced. The motivation

behind this is that a perturbation in airfoil geometry will

primarily affect the flow very close to the airfoil so that

the base flow will provide reasonable boundary conditions

for the reduced domain. Figure 6 is a typical comparison of

the domain size used to calculate the flow about the base

airfoil -Id the perturbed airfoil.

The reduction in c rputer time that can be expected

using the method of reduced domains comes about not only

t.case the number of mesh points is fewer so the number of

calculations per iteration is fewer, but also because fewer

mesh points generally lead to a higher convrgence rate.

Suppose that a problem is solved using an iterative,

finite difference scheme and that we want to reduce the size

of the error by 10-1". The number of :teraticns to ao this,

p, is given by
J

i

-25-
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where 3 is the spectral radius.

For a Laplace equation

^Px. f u r y = 
o	 ^^ ^- l

solved with a Jacobi iterative scheme on a square domaic

with ax and ay equal, we have

'/( N	 3)

where N is the number of mesh points.

The rate of convergence is thus dependent on the number

of mesh points in this case. While the rate of convergence

for the small disturbance potential equation or the full

potential equation cannot be found analytically, it is

expected that the rate of convergence will be a function of

the number of mesh points.

Unlike the first four methods tried this method makes

its a,proximation in the boundary condtions used when

solving for the flow about the pert.tirbed airfoil, not in the

actual method of solution. Some advantages to this are

immediately apparent:1) MaJor changes to existing cones are

not requirea since the same solver is used, 2) Application

of this method to codes based on different governing

equations is possible, 3) A tradeoff exists between accuracy

and speed, the larger the domain the more accurate the

solution,	 but also the greater the c.p.u. requirement. This

last advantage is important because it gives flexibility in

using the method of reduced domains. In soiue applications

the size of the cc.main coulc be reuuced substatiaily thereby

-26-
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greatly reducing c.p.u. requirements. However, the size of

the aomain could always be increased if accuracy became a

problem.

Some trends can be found in the accuracy of using the

base flow for boundary conditions by examining the inner and

outer expansions used at different Mach numbers to derive

the small disturbance potential equation from the full

potential equation.

To derive the small disturbance potential equation valid

for subsonic and supersonic flaw

(/- lye ) ox  f ^ y y = O	 (Z y ^

from the full potential equation

requires the use of inner and cuter expansions of the form

where

Y - 116,
and E, is a small parameter related to	 the	 airfoil

thickness.

To derive the small disturbance potential equation valid

for transonic flow

t
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from the full potential

following inner and out

where

equation requires the use

er expansions

El ^^` (x,y^ t f3 ^i (X,^ r .. .

of the

Cz^`1

and ej. is a small parameter related to	 the	 airfoil.

thickness.

The important point is that for supersonic and subsonic

flow the inner solution is valid only for y of order 6, ,

while for transonic flow the solution is valid for y of

order 1. This means that a perturbation in airfoil geometry

will affect the flow for a greater distance from the airfoil

in transonic flow than in subsonic or supersonic flow. The

accuracy of using the base flow for boundary conditions at

the edge of a given reduced domain should therefore be less

in transonic flow than in subsonic or supersonic flow.

A complete outline of the inner and outer expansion

procedure can be found in reference 13.

Wind Tunnel Analogy

There is a physical analog to computing the flow about

the perturbed airfoil on a reduced domain that offers

insight into the problem. 	 Determining the	 aerodynamic

characteristics of an airfoil	 by performing wino tunnel

tests is similar , to the methou of reduced domains. 	 In each

_2b_
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case the flow is affected by the outer boundary.

The hypothetical wind tunnel in which the perturbec

airfoil is tested is, however, special. The solution fcr the

base airfoil is obtained on the full domain so that if the

domain is reduced, the exact boundary conditions are

availiable at the edge of the reduced domain. If the flow in

the interior of the reduced domaii. is perturbed and then the

problem is solved with the Name airfoil as before, exactly

the same answer as that found on the full domain will be

computed.	 This means that the hypothetical windtunnel has

been constructed in such a way as to give aerodynamic

characteristics for the base airfoil which are the same as

if the base airfoil had been tested in free air. Figure 7

shows the base airfoil in the hypothetical windtunnel.

Solving for the flow about a slightly perturbed airfoil is

thus like testing the slightly perturbed airfoil in the

hypothetical windtunnel.
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CHAPTER 3. RESULTS OF STUDIES USING THE METHOD OF' REDUCED
DOMAINS

Exploratory Studies

Results presented in this section compare the change in

Cp caused by perturbations in airfoil geometry as computed

on the full domain and the reduced domain. The base airfoil

in each case was a parabolic arc at zero angle of attack,

and the four perturbations of figure 4 multiplied by a small

factor were separately added to the base airfoil.

It is difficult to quantify the performance of the

method of reduced domains without doing an optimization run.

A subjective assessment of the resultz will be used

initially in this chapter to develop confidence in the

method. Later in this chapter an actual optimization test

will be performed.

Initially all results presented will be frocn subcritical

tests. Greater difficulty was anticipated for supercritical

tests and these are discussed after the subcritical results

are properly understood.

In solving the flow on the reduced domain, using as the 	 {

basis for the solution the small disturbance potential

equation, two different tyres of boundary conditions can be

specified. Either the potential can be specified at the edge

of the domain (Dirichlet boundary condition) or the normal

derivative of the potential, the transverse velocity, can be

specified (Neumann boundary condition).
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Solving the flow about the perturbea airfoil on the

reduced domain and specifying the potential to be that of

the base flow on the outer boundary is analogous to testing

the perturbed airfoil in the hypothetical windtunnel with a

freejet boundary condition at the tunnel walls. That is, the

specification of the potential to be that of the base flow

on the outer boundary forces the pressure to be that of the

base flow on the upper boundary of the reduced domain. In a

windtunnel with free jet boundaries, one expects the peak

perturbation velocitie:3 to be underestimated thus

underestimating the peak perturbation Cp.

Figure 8 shows the results where the base potential was

specified at the edge of the reduced domain. The flow

conditions in this case were:

freestream Mach number = 0.7
thickness/chord	 = 0.1
perturbation multiplication factor = 0.001

The size of the reduced domain is shown in figure 9. The

number of mesh points in this reduced domain was 116 while

is was X965 for the full domain. The underprediction of the

change in Cp is consistent with the above arguements. The

results are, however , reasonably accurate and the average

c.p.u. requirement in computing the flow on the reduced

domain was approximentaly 60 times smaller than the c.p.u.

requirement for computing the flow on the full comain.

The next boundary condition tested was a 	 Neumann

boundary condition on the upper boundary of the reduced

domain.	 The finite difference algorithm used in these

k
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computations required the specification of the potential at

the upstream boundary, so the potential at the upstream

boundary was specified to be that of the base flow. For

convenience, the potential was specified to be that of the

base flow at the downstream boundary also. In all

computations where a Neumann boundary condition was used at

the upper boundary, the above outlined boundary conditions

were used at the upstream and downstream bounaaries.

Specifying the transverse velocity to be that of the

base flow on the edge of the reduced domain is analogous to

solid wall boundaries on the hypothetical windtunnel. Solid

wall boundaries on a windtunnel constrain the flow to be

tangential to the solid wall. In this case one would expect

a test in the hypothetical wind tunnel on the perturbed

airfoil to overestimate peak velocities thus overestimating

the perturbation in Cp.

The results presented in figure 10 are consistent with

this prediction. The flow conditions in this case were:

freestream Mach number = 0.7
thickness/chord	 = 0.1
perturbation multiplication factor = 0.001

The size of the domain used in this case is presented in

figure 9. The average c.p.u. requirement for computing the

flow on the reduced domain was reduced by a factor of 45 as

compared to the c.p.u. requirement of the full domain. The

smaller reduction in c.p.u. time in this case as compared to

the previous case was anticipated since Neumann bounaary

conditions generally lead tc slower convergence.
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Windtunnels usually have ventilated walls to try to

;en the effect of the walls on the flow. The next section

tribes attempts to correct the boundary conditions used

;he edge of the reduced domain in the hope of yieldig a

accurate solution.

idary Condition Modifications

Modifications were made to each of 	 the	 boundary

U tions used above. The Dirichlet boundary condition was

.fied by treating the perturbation in geometry of the

airfoil as a perturbation doublet and then adding the

perturbation in potential caused by this doublet to the base

potential on the outer boundary. The Neumann boundary

condition was modified by treating the perturbation in

geometry of the airfoil as a wavy wall and using a

simplified analysis to determine the effect of this

perturbation on the transverse velocity at the boundary.

In Appendix A it is shown that in the far field the

airfoil is treated as though it were a doublet. This

treatment of the airfoil allows the potential to be

determined in the Car field by use of equation A5. This

equation is accurate only if it is used at points a

considerable distance from the airfoil ( at least 1 chord

length ).The accuracy of equation A5 diminishes when it is

applied closer and closer to the airfoil, but how rapidly

the accuracy decays is not known. As an approximation,	 this

equation was used to determine the change in potential at

-33-
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the edge of t,",e reduced domain caused by the perturbation in

airfoil geometry.

The doublet was positioned on the airfoil at the chord

station where the amplitude of the perturbation was at a

maximum. Equation A6 is the equation for the doublet

strength. The equation has one part due to the airfoil

volume and a second nonlinear part. The contribution. from

the nonlinear part is generally small so in computing the

perturbation doublet strength it was negleted. The equation

for the doublet strength was therefore

where f '(f) is the perturbation in airfoil geometery.
Figure 11 presents the results obtained with the above

outlined boundary conditions. The flow conditions for this

test were:

freestream Mach number = 0.7
thickness/chord	 = 0.1
perturbation multiplication factor = 0.001

The size of the reduced domain is given in figure 9. The two

curves lie reasonably close to each other. The average

computing time required on the reduced domain was

approximately 40 times less than that required on the full

domain.

Modifications of Neumann boundary conditions is similar

to changing the hypothetical windtunnel shape. The problem

is to determine the extent of the modifications required.

This problem can be restated as the problem of determining

i
a
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how much of the perturbation in transverse velocity at the

airfoil surface is translated to the edge of the reduced

domain. As a guideline to determine the decay in the

transverse velocity a simple wavy wall model for the

perturbation is used.

Consider the small disturbance transonic	 potential

equation

t 0- y = U	 (3v)

subject to the boundary conditions

^x	 ^y	 are {ini	̂ 40

and

V N, u) _	 y C'X, u)	 t9 roc 6 r,

Let us solve this equation for subsonic flow where

( 1(-()'"') ox	 ) is always greater than zero.	 To make the

mathematics tractable let us approximate the coefficient of

the fix„ term as a constant, A 
a.
	 This equation, with the

boundary conditions given, can be solved in closed form

using separation of variables. The solution is
ti

'^ (x, y) = B(CosdX)e	 C3l}

Note that the local value of 	 is used at every point.

The important information from equation 31 is the rate

at which velocities at Y = 0 decay. Using the aecay rate of

this equation gives for the velocity at any point Y

4y (-X y l -y ^'^, ^) e `y `
9 ()C, 0)	 ` 3 2-
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Equation 32 can be used to approximate the perturbation

velocity at the edge of the reduced domain. To use equation

32 ,B , which determines the wavelength of the wavy wall

must be known. Since the airfoil is similar to a half sine

wave, B was made to be 77' .

Figure 12 presents the results of using the

approximations just oulined. The flow conditions in this

test were:

freestream Mach number 	 = 0.7
thickness/chord	 = 0.1
perturbation multiplication factor = 0.001

The size of the reduced domain is given by figure 9. The

two curves lie very nearly on top of each other, indicating

that the above approximation is a very good one. The average

computing time required on the reduced domain was 50 times

less than that required on the full domain.

These subcritical results are encouraging. The results

obtained with the four different boundary conditions used

above appear to be at least reasonably accurate and

sometimes very accurate. The saving in c.p.u. time in each

case was substantial.

The same four boundary conditions outlined above were

tested in supercritical flow. The one difference is that the

wavy wall formula given above is valid only in subsonic

	

flow. A supersonic wavy wall formula is required for cases	 A

where the flow at the eage of the outer bounaary is

supersonic. The derivation of this formula is completely

analogous to the aerivation presented for the subsonic flow.

i
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The result is

As can be seen, the transverse velocity at the airfoil

surface does not decay but propogates along characteristics.

In locally supersonic flow the boundary condition was

therefore applied as follows: The slope of the

characteristic was determined from the local Mach number at

the boundary. The characteristic was then approximated as a

st-raight line. This line was followed to the airfoil surface

where the perturbation transverse velocity was known. This

transverse velocity was then propogated 'back up along the

approximation of the characteristic to the boundary of the

reduced domain, where it wa- added to the base transverse

velocity. This procedure is illustrated in figure 13.

The runs made with the boundary conditions being: 1) The

base potential, 2) The base transverse velocity, and 3) The

base potential with the potential due to a perturbation

doublet added to it, were all ruv under the same conditions:

freeesteam Mach number 	 = 0.32
thickness/chord	 = 0.1
perturbation multiplication factor = 0.001

The size of the domain used is shown in figure 9.

Figure 14 shows the results where the base potential was

specified on the edge of the reduced domain. The effect of

the perturbation doublet was negligible , the results being

essentially those presented in figure 14. The results in

these cases are not very goon. The largest changes in Cp

-37-
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occur near the shock and these are not captured wel

the base transverse velocity was specified at t

boundary of the reduced domain, the computations we

converge to a solution.

The tests in subcritical flow using the wa

approximation yielded the best results so it was hoped that

they would yield good results in the supercritical case. The

initial test was a conservative one in which the flow was

only slightly supercritical. The test conditions in this

case were:

freestream Mach number 	 = 0.78
thickness/chord	 = 0.10
perturbation multiplication factor = 0.0011

The size of the reduced domain used is shown in figure 9.

Results are presented in figure 15. As can be seen the

results are not very accurate. It seems that supercritical

flow is much more sensitive to boundary conditions than

subcritical flow.

The flexibility of the reduced domain method was put to

use to try to overcome these difficulties. The outer edge of

the domains used generally crossed through a region with

supersonic flow. This was the probable cause of

dissappointing results just presented. To get around this,

the shape of the domain was altered so that the outer

boundary was always in subsonic flow. A typical dcmain for

supercritical flow calculations is presented in figure 16.

Figure 16 also shows the boundary conditions tested. The

base potential was specified everywhere except at the very

—38—
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top of the "notch" part of the domain.

base potential was specified or the base t

was specified.

For each boundary condition a series of tests were

conducted in which the domain size was increased until

consistently acceptable results were obtained. For these

tests the flow conditions were:

freestream Mach number = 0.82
thickness/chord = 0.10
perturbation multiplicatin factor = 0.001

Figure 17 presents what are considered acceptable

results for• the Dirichlet boundary condition and figure 19

shows results for the Neumann boundary condition. The

corresponding domain size required to achieve these results

is shown in figure 19. The number of mesh points in the

reduced domain with Neumann boundary conditions was 218

while the number of mesh points in the reduced domain with

Dirichlet boundary conditions was 1140. Recall that the the

number of mesh points in the full domain was 3965.	 As can

be seen, the size of the domain required to obtain

reasonable results using the Dirichlet boundary condition is

considerably larger than the domain required to achieve

reasonable results using the Neumann boundary condition. An

explanation for this phenomena has not yet been found.

The average c.p.u. time required to get the results on

the reduced domain is about 30 times less than on the full

domain if a Neumann boundary condition is used and about 6

times less if a Dirichlet boundary condition is used. While
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the reduction in c.p.u. 	 time is not as	 large as tl^e

reduction	 realized	 in subcritical flow,	 it is still

substantial.

Summary of Results of Exploratory Studies

The results can be summarized as follows:

Sucbritical Flow

1) Reasonably accurate results can be obtained

on a substantially reduced domain.

2) There is flexibility in applying boundary

conditions. Different boundary conditions

yield different results but all of these

results seem acceptable.

3) The c.p.u. requirement of the reduced

domain calculations is from 40 to 60 times

lower than the c.p.u. requirement for full

domain calculations, depending on boundary

conditions applied.

Supercritical Flow

1) Reasonably accurate results can be obtained

on a substantially reduced domain but the

outer t undary of the reduced domain must be

in subsonic flow.

2) There is no flexibility in applying

boundary conditions. Fast and reliable results

can only be obtained with the use of Neumonn

boundary conditions.
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3) The c.p.u.requirement of the reduced aomain

calculations is 30 times smaller than the

c.p.0 requirement of full eomain calculations.

Note that the savings in computer time using the method

of reduced domains cam p about primarily because of the

reduction in the number of calculations required per

iteration. The reduction in the actual number of iterations

on the reduced domain was not urge, always being less than

a factor of 2.

Pull Potential Equation Calculations

The knowledge gained from applying the method of reduced

domains to an aerodynamic analysis code based on the small

disturbance potential equation is now applied to the full

potential equation. The	 full	 potential	 equation	 is

considerably more accurate than the small disturbance

potential equation and so is used much more frequently in

the design of airfoils.

A computer code that solves the full potential equation

is much more complex than one that solves the small

disturbance potential equation. PL.06, a nonconservative full

potential equation solver written by Antony Jameson, was

used in these tests. PL06 was chosen because it is the

aerodynamic analysis code in use at NASA Ames for numerical

optimization of airfoils. A complete outline of the

fundamentals involved in solving the full potential equation

can be found in reference 14.
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Test s were	 conduct e 	 us i n 	 FLC6	 i n which	 the	 s  Z  of	 the

computational	 domain was	 greatly	 reduced.	 FLOb	 maps	 the

airfoil	 onto	 a	 unit	 circle and	 then	 performs	 an	 inversion

such	 that	 infinity	 is mapped	 into	 the	 origin	 of	 the	 unit

circle.	 Thus	 the computational	 domain	 used	 in FLOb	 is	 the

inside	 of	 a	 unit	 circle	 .	 The	 outer	 boundary	 of	 the	 reduced

domain must	 be	 in	 subsonic	 flow,	 so	 for	 a	 typical	 case	 of	 a
1

lifting	 airfoil	 with	 a	 3uper • 3unic	 zone	 on	 the	 upper	 surface

of	 the	 airfoil,	 the	 computational	 domain woulu	 be	 like	 that

9

shown	 in	 figure	 -1 0.	 Because	 of	 the	 coordinate	 system	 used	 i::, r

FLOb,	 a	 reduction	 in	 domain	 size	 like	 the	 reduction	 shown	 in
fi

t'igur• e	 .'U,	 reduced	 the	 number	 of	 mesh	 points	 by	 a	 factor	 of
i

only	 5	 or	 U .

FLOG	 also	 user	 two	 steps	 in	 solving	 the	 equation:	 a

relaxation	 step,	 and	 a	 t'a3t	 solver	 step.	 The	 relaxation	 step

gives	 slew	 convergence,	 but	 can	 be	 used	 on	 ir• r• (-gular•	domain a

shapes	 and	 l;a	 valid	 for-	 , upersonic	 flow.	 The	 fart	 solver•

step	 give3	 very	 r':apid	 CO11Ver'gence	 in	 subsonic	 t'low,	 but =

becomes	 less	 and	 lean	 sLable>	 as	 they 	local.	 Mach	 11Umber

increase::	 and	 goes	 unstable	 in	 aupet , 3onic.	 flow.	 A1so,	 the

fait	 :3oIvrr•	can	 only	 be	 used	 on	 regular•	donlvin	 shape3.	 Tile

two	 :at.epS	 combined	 converge	 reasonably	 fast	 in	 tr'an3.1nlc

flow.

11 eOJIIZIe	 tAlC	 reduced	 compuL,Itional	 domain	 1^	 11'r et ular	 in

shape,	 the	 f:a3t	 :+ol veer	 Cannot	 be	 used	 over	 the	 whole:	 domain.

Therefore,	 they	fait.	 Solver	 i::	 usey u	 only	 1n	 the	 region	 shown

in	 C I	 LI r v	 :U.	 The	 r el.1xtlon	 ate p	 i:..I	 u:ed	 over	 t. tic	 whole

I

5



domain. Not being able to j-e the fast sclver on the

complete reduced domain does not slow convergence since that

part of the domain where it is not used is a region of

supersonic flow.

Tests were run on the airfoil shown in figure 21 at zero

angle of attack, with a freestream Mach number of 0.8

resulting in a supersonic zone on the upper and lower

surface of the airfoil. A single perturbation givenby

Pert = o.00/ t 5i 1, (A x	
/

	

)	 ( 3 It

was added to the upper and lower surface of the airfoil. The

boundary conditions used at the edge of the reduced domain

were: 1) Potential specified to be that of the base flow

everywhere, 2) Potential specified to be that of the base

flow everywhere except on the "notch" part of the grid where

the normal velocity was specified to be that of the base

flow. An unexpected result was found from these tests. While

in case 1 the solution did not capture the shock movement as

expected from tests performed on the small disturbance

potential solver, case 2 converged so slowly that the

required c.p.u. time was as large as that needed to solve

for the perturbed flow on the full domain.

This fundamental difference in results from the small

disturbance potential solver and FL06 did not seem

reasonable. One important difference in the two codes was

that	 FL06 is a nonconservative code while the small

disturbance solver is a conservative code. A comparison was
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made on the rate of convergence of the conservative and

nonconservative forms of the small disturbance code. These

tests showed that while the two forms of the code had nearly

identical convergence rates on the full domain, the

conservative form of the code converged in fewer than half

the number of iterations required by the nonconservative

form of the code on the reduced domain. While not a

conclusive result, this strongly suggests that the method of

reduced domains can be made to work for supercritical flow

if the aerodynamic analysis code is conservative.

Optimization Calculation

Since the method of reduced domains could not be made to

work in supercritical flow using FLO6, the method was tried

on a subcritical case. The objective of this test was not to

design a better airfoil but was to demonstrate that the

method of reduced domains will produce reasonable results in

an actual optimization test.

The optimization code used for this test is called

QNMDIFF. It employs a quasi -Newton method for unconstrained

Dptimization. The base airfoil used for this test was a 17

percent thick airfoil designed for general aviation

applications (GA(W)-1). The airfoil geometry can be found in

reference 15.	 Computations were made at a Mach number of

0.22 and at zero angle of attack. The objective function

used was the sum of the differences between a target

pressure distribution along the upper surface of the airfoil
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and the actual pressure distribut4on, that is
^	 L

The target pressure distrabution used was that of the

(GA(W)-1) airfoil. The initial airfoil used was

(GA(W)-1) airfoil to which four shape functions ha(

added. Thus the optimized airfoil would be one in whict

magnitude of the four shape f,.nctions was 0. The four shape

functions used were the ones shown in figure 4. The initial

magnitudes of the shape functions were:

function 1 magnitude = 0.0100
function 2 magnitude = 0.0087
function 3 magnitude = 0.0093
function 4 magnitude = 0.0021

Table 1 compares the design vector and value of the

objective function at the end of each optimization iteration

as computed in the regular way and using the method of

reduced domains. Figure 22 presents graphically the

objective function history of the two methods. In each case

the objective function had been reduced substantially after

6 iterations and the design vector was very close to the

exact answer of 0,0,0,0.

This optimization test required 40 aerodynamic

evaluations in gradient calculations and 21 aerodynamic

evaluations in line search calculations. QNMAIFF sometimes

requires central differences in gradient calculations which

is why the number of aerodynamic evaluations for gradient

calculations is not 4*6-24. Each gradient calculation. took
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approximately one tenth the c.p.u. time on the reduced

domain as comparea to the full domain. The total amount of

computer time required for this optimization calculation

using the method of reduced domains was aproximately 45% of

the time required in using the standard method.
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CHAPTER 4. CONCLUSIONS AND RECOMMENDATIONS

The method of reduced domains has the potential to

significantly reduce the computer time required in designing

airfoils using numerical optimization. There are, however,

unresolved complications in using the method if the flow is

supercritical.	 The use of a nonconservative potential code

leads to	 unacceptably	 slow	 convergence	 rates	 when

computations are performed on the reduced domain. It is

probable that this problem would be eliminated if	 a

conservative potential code was used.

Future work on the method of reduced domains should

concentrate on understanding the effect that different

boundary conditions have on computations using a reduced

domain. This paper has presented results of using different

boundary conditions. Explaining why one boundary condition

works better than another has proved elusive. With the

proper understanding of the effect of boundary conditions,

the full potential of this method would be known.

This research has concentrated on reducing the computer

'	 time required to determine the gradients needed by the

optimization program. Research is also warranted on

increasing the efficiency of the line search. Making full

use of the fact that the line search is a one dimensional

problem could yield a signifigant reauction in c.p.u.

requirements. Another area of possible research is in

determining the best way to modify the airfoils shape.
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Different design variables will yield different design

spaces and one design space may be much more conducive to

numerical optimization than another.
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APPENDIX. METHOD OF SOLUTION OF THE SMALL DISTURBANCE
TRANSONIC POTENTIAL EQUATION

Cor^sider the similarity form of the small disturbance

transonic potential equation

(^Jt+ ^^^) +s1^ Cry) =	 .^ 1

^^	 Y

where

K C ^- r1.0 ) /No
 i'l,

and

y ; g y3 MAy

The pressure coefficient is the y, given by

cP :	 ^x C ^^ ^„^ y )	 ^,^ z )

If the profile of the airfoil is given by

	

y- J, fox ) 	 (43)
then the Neumann boundary condition, transferrer to the axis

i^

^ y - 	
ax
	 .4 ;^ )

In the far field the airfoil is treated as a doublet. This

gives for the potential in the far field

(t(x , ^) = (^'^'') ( xr'(x^^Ky.>>	 (AS)

where	 = doublet stength	 40

	

J 'PO d^	 - 2. -f f I ^r 7

w
--i0i-
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The numerical method used to solve this	 equation

proceeds as follows. 	 Let p,,` be a central difference

approimation to the x derivatives

l	 Q, y L

where

ot ')	 4__.., -

y	 2 G -X

and let qi,y be a central difference approximation to the y

derivatives

471
Define the following switching func'ion

Then a fully conservative finite difference scheme to solve

the small disturbance potential equa 	 is

Details of this method can be found in references 14,16,

and 17.
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