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1. INTRODUCTION

1,1 oOverview of Research Project

The design of helicopter rotor blades involves not only considerations of
strength, survivability, fatigue, and cost, but also requires that blade
natural frequencies be significantly separated from the fundamental aerodynamic
forcing frequencies (e.g. Ref. 1). A proper placement of blade frequencies
is a difficult task for several reasons. First, there are manv forcing
frequencies (at all integer-multiples of the rotor RPM) which occur at rather
closely-spaced intervals. For example, 5/rev and 6/rev are less than 20%
apart. Second, the rotor R®M may vary over a significant range throughout the
flight envelope, thus reducing even further the area of acceptable natural
frequencies. Third, the natural modes of the rotor blade are often coupled
because of pitch angle, blade twist, offset between the mass center and
elastic axis, and large aerodynamic damping. These couplings complicate the
calculation of natural frequencies. In fact, the dependence on pitch angle
makes frequencies a function of loading condition, since loading affects
collective pitch. Fourth, the centrifugal stiffness often dominates the
lower modes, making it difficult to alter frequencies by simple changes in
stiffness.

In the early stages of the development of the helicopter, it was believed
that helicopter vibrations could be reduced (and even eliminated) by the correct
choice of structural coupling and mass stiffness distvibutions. lHowever, it
i1s easy to imagine how difficult it is to find iust the proper parameters such
that the desired natural frequencies can be obtained. The difficutties in
placement of natural frequencies have led, in many cases, to preliminarv

designs which ignore frequency placement. Then, after the structure is
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"finalized" (either on paper or in a prototype blade), the frequencies are
calculated (or measured) and final adjustments made. Rcference (2) describes
the development of the XH-17 helicopter in which a 300-1b weight was added to
each blade in order to cheange the spanwise and chordwise mass distribution and
thereby move the first flapwise frequency away from 3/rev. However, these
types of alterations are detrimental to blade weight, aircraft development
time, and blade cost. In addition, corrections usually are not satis-
factory; and the helicopter is often left with a noticeable vibration problem.
The state-of-the-art in helicopter technology is now to the point,
however, that it should be possible to correctly place rotor frequencies
during preliminary design stages. There are several reasons for this. First,
helicopter rotor blades for both main rotors and tail rotors are now being
fabricated from composite materials (Refs. 3 and 4), This implies that the
designer can choose, with certain restrictions, the exact EI distribution
desired. Furthermore, the lightness of composite blades for the main rotor
usually necessitates the addition of weight to give sufficlent autorotational
blade inertia. Thus, there is a considerable amount of freedom as to how
this weight may be distributed. Second, the methods of structural optimization
and parameter identification are now refined to the point where they can be
efficiently applied to the blade structure. Some elementarv techniques have
already becn used for the design of rotor fuselages (Ref, 5). It follows that
the time is right for the use of structural optimization in helicopter blade
design. Some work on this is already under develooment, and, although not
published, some companies are already experimenting with the optimum way to

add weight to an existing blade in order to improve vibrations.
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The purpose of the work discussed hiere is to investigate the possibilities

(as well as the limitations) of tailoring blade mass and stiffness distributions

to give an optimum blade design in terms of weight, inertia, and dynamic

characteristics.

The major objectives of the work are:

1)

k)]

4)

5)

6)

)i

8)

9)

To determine to.uhat extent changes in mass or stiffness distribution
can be used to place rotor frequencies at desired locations.

To estnblish\theoreticnl limits to the amount of frequency zhift.

To formulate realistic constraints on blade properties based on weight,
mass moment of inertia, size, strength, and stabilitv,

To determine to what extent the hub loads can be minimized by

proper choice of EI distribution.

To determine if the design for minimum hub loads can be approximated
by a design for a given set of natural frequencies.

To determine to what extent aerodvnamic couplings might affect the
opt’mum blade design.

T2 determine the relative effectiveness of mass and stiffness distribution
on the optimization procedure.

To determine to what extent an existing blade could be optimized with
minimal changes in blade structure.

To develop several "optimum profiles" for rotor blades operating under

various standard conditions.

The work is to focus on configurations that ar2 simple enough to vield

clear, fundamental insights into the structural mechanisms but whichk are

sufficiently complex to result in a realistic result for an optimum rotor blade.
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1.2 Overview of Current Report

This second semi-annual report serves two purposes:- 1) it informs our
sponsors and other interested parties what we have accomplished during the
last six months, and 2) it serves as an archive of data to which we expect
to refer frequently in coming months, as our research proceeds. As a result
of the latter, archival purpose, the report contains much information which
is not necessarily new, but which needs to be recorded in an orderly fashion
so that it may be easily accessed in the future.

The first section of the report detalls our experience with the CONMIN
optimization program applied to the problem of finding the optimal design
of a vibrating cantilever beam (see Fig. 1). This section gives the results
of parameter changes, the results obtained with varicus constraint forumulations,
and the cffect of allowing lumped weights at discrete points. Other aspects
that are studied include the autorctational constraint and the effect of
rotation. The principal conclusion of these investigations is summarized
as follows: CONMIN works reasonably well for all problems we have considered
so far.

The second part of the report discusses some numerical aspects of the
problem., One important aspect i3 the effect of the rimber of finite elements
on both the frequency calculstion and the sequence of optimal designs. Also
of importance is the effect of errors in the eigenvalue analysis as well as

the sensitivity of the frequency to small changes in blade dimensions
(manufacturing tolerances). The conclusion to be drawn from these numerical
studies 1s that if reasonable care is taken, nuwerical difficulties are not

significant for the problems we have considered thus far.
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2. EXPERIMENTS WITH THE CONMIN PROGRAM AND PARAMETERS

The CONMIN (Ref. 6) program was emploved to minimize the weight of the
cantilever beam, described in the introduction. Before extensive optimization
problems are solved, it is necessary to experiment with the program parameters
and determine the best values for the particular class of problems at hand.

The problem chosen for the numerical experiments involved minimization of
weight subject to two frequency constraints and to si&e congstraints on the
thickness. The non-rotating cantilever becam undergoing flapping vibrations
was examined. Specifically, the following questions were to be answered:

1) Do the gradients produced by analytical techniques match those

obtained by finite differences?

2) Is there any difference between results obtained with constraints on
the frequency in Hé. and those obtained with constraints on the square
of the circular natural frequency in (rad/sec)z? Can scaling of the
constraint function improve convergence?

3) Under what conditions do the starting values for thickness influence
the convergence properties of the problem? Can an original, infeasible
design (i.e., one which violates one or both of the frequency constraints)
be expected to converge to a feasible, optimal design?

The determination of the so-called "optimal design" in CONMIN is influenced

by several important parameters. Changes in the parameters can change the
final answer and can 1nfluehce the speed of convergence. The most important
parameters are ITRM, DELFUN, DABFUN. Convergence is defined whenever ITRM
consecutive iterations are encountered such that the values of DELFUN or DABFUN
(or both) are less than the stated values input to the program. The parameters

and default values are defined as follows:
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ITRM: Default Value = 3. Number of consecutive iterations to indicate

convergence by relative or absolute changes (DELFUN or DABFUN

respectively).

DELFUN: Default Value = 0.0001. Minimum relative change in the objective

function to indicate convergence, DELFUN = ABS (1.0 - 0BJ(J-1)/
0BJ(J)), where the objective functions for the current, Jth,
iterate and the previous,J—ISt, iterate are tested.

DABFUN: Default Value = 0.001 times the initial objective function

value. Minimum abgsolute change in the objective function to

indicate convergence. DABFUN = ABS (OBJ(J) - O0BJ(J-1)).
Note that a practical criterion for convergence is employed by the program.
Thus, slight differences in answers can be expected if problems are started
from different initial points, or if different values of ITRM, DELFUN, and
DABFUN are emploved.
The parameter CT is used to define whether or not a constraint is active.

The exact satisfaction of the Jth constraint, G(J)

0 is numerically unusable.

Rather, a band, CT in magnitude, on each side of the exact zero 1is employed.
The default value and formal definition of this parameter is:

CT: Default Value = -0.1. The J':h constraint, G(J), is considered to
be active if CT < G(J) < ABS(CT). The value of CT is sequentially
reduced in magnitude during the optimization process.

The parameter THETA is called the 'Push Off Factor", and is used by the
programmed Method of Feasible Directions (Ref. 7) to go from one feasible
design to another feasible, improved design. The default value is 1.0.
Larger values of THETA are appropriate for highly non~linear constraint

functions. Lower values are appropriate as the constraints approach linear

functions.
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The parameter PHI controls how quickly an infeasible design will be
moed in the direction of the feasible region. The default value = 5.0.
Values of PHI above 5 should be employved if a feasible solution cannot be
obtained.

Finally, the value of ITMAX defines the maximum number of interations
in the optimization process. If a solution cannot be obtained in ITMAX
iterations, the program is terminated. The default value 1is 10.

Herein, experiments with the parameters ITRM, DELFUN, DABFUN, CT, THETA,
PHI and ITMAX were performed to enable definition of the numerical values
that best fit the class of problem at hand. There are numerous other
parameters within CONMIN, but in this study the default values for these
other parameters were considered to be adequste.

2.1 The Basic Problem: Two Frequency Constraints

The problem to be considered 1s the non-rotating cantilever shown

in Figure 1. Each 24 inch long element has a different thickness of

flange. Letting t, be the thickness of the flange nearest the fixed end,

1

element thicknesses are numbered in order, such that the tip end has a

thickness denoted by t Corresponding values of moment of inertia of area

10°

are denoted by I1 th. sugh IlO' A material density and mcdulus of elasticity
of 0.1 1bf/cu.in. and 10 x 106 psi are used.
2
It can be shown that the ares, Ai(in ), weight, wi(lbf), and
4
moment of inertia, Ii(i“ ) are the following functions of the thickness,
(in)
ti :
Ai = (0,50 + 7.6 ty 1)
wi = 1,20 + 18.24 ty (2)
I --2—5+i{285-—228 + 60.8 2} 3)
1796 " 24 q Sy
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The thicknesses are constrained to lie within the range 0.05 inches
to 1.25 inches (the value for which the cross section would be a solid
rectangle).

A uniform cantilever with a thickness of 0.10 inches for each flange
would have the following firat two frequencies:

£, = 1,98 Hz

1

.‘.2 = 12.4 Hz

To engure that a feasible starting solution could be obtained with at least

one chosen thickness, the frequencies are constrained to be within + 0.2 Hz

of the frequencies 1,98 and 12.4. Thus, 1.8 < £, < 2.2 and 12.2 < f, < 12.6 Hz.

The mathematical programming problem becomes:
)0

. 10
Min, W = Min X wi = 12 + 18,24 ¢ L
i=1 i=1

S.T. 1.8 Hz < fl £ 2.2 Hz

12.2 Hz < f2 < 12.6 Hz

and, 0.05 < L < 1.25

1i»1,2,...10 (4)

The above problem has i\ :@n thickness decision variables. To preserve
generality for later work with more complex sections, it was decided to
use Moment-of-Inertia decision variables. The problem then becomes:

10
Min.2 = L Q(Ii)
i=1

S.T. G, =1.8 - fl 0

1
G, =€, -2220

A

- o -
Gy = 12,2 - £, < 0

G, = f,- 12620

and,  0.83073 < I < 5.20833

i=1,2...10 (5)
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In the above formulation, the 1th thickness has been written as a.

h

non-linear function, Q, of the it moaent of inertia

£ = QI 6)

The problem is foraulated in terms of ten moment of inertia decision varisbles,
I1 through Ilo’ four frequency constraint functions, and twenty side constraints.
The objective furction and frequency constraints are non-linear tunctions of

the decision variables,

2.1a Analytical Gradients vs Finite Differences

The CONMIN program has the option to compute gradients of the objective
faunction and constraints via Finite Differences. If possible, however, it is
more efficient for the user to provide analytically-derived gradients. 1In
Appendix I, the method used to obtain gradients is given in detail. By using
both methods on the same problem, it is possible to provide checks on the
derivation and programming of the analytical gradient method.

Tables 1A and 1B present the results from using the two options. An
original design with constant thickness of 0.05 inches leads to the designs
in Table 1A, whereas a starting thickness of 0.10 inches is the basis for
Table 1B. It is noted that the finite difference method leads to essentially
the same results as obtained with analytical gradients.

The four designs all converge to a common design defined bwv:

1) A thickness of element 1 of aobut 0.086 inches - 0.091 inches

2) The thickness of all other elements are governed by the

lower bound ;onstraint (0.05 inches)

3) The second natural frequency is governed by the lcwer bound

constraint (f2 = 12.2 Hz)

4) The first natural frequency is not actively constrained, and

ranges from 1.94 to 2.00 Hz.

e
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The sensitivity of the first (lowest) frequency to smill changes in
thickness will be considered later, along with the accuracy of the single
precision routine used for eigenvalue extraction.

It is instructive to make a further check on the solutions by running
an optimization problem with only one decision variable (Ii) and one
frequency constraiat (f2 > 12.2 Hz). All other thicknesses are held
constant at 0.05 inches. The snlution is started with t:i = 0,10 iunches,
and in 6 iterations converges to the results that follow:

Ii(ti);l.256 inche84(0.0902 inches)

fl:Z.Ol Hz

f2:12.21 Hz

Weight:21.85 1bf
These results can be considered to be the values toward which all four
runs should approach. Within the limits of numerical accuracy, all four
cases do converge to the values obtained in the calibration run.
Hereafter, all analyses are based on the use of analytical gradieats.
2.1 Various Forms of the Frequency Constraint Function
The constraint vrelations, described earlier, have been
G, =1.8-~-f£f, <0

1 1

G, = £ -2.220

12.2 - £

[}
]

250

4= £y - 126220

1 f2 are the natural frequencies in Hz, 7

(2]
]

where, f

The authors of CONMIN recommend use of constraint functions that are
mutually of the same order of magnitude, and that property is satisfied

by the formulations in Eqn. 7.
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It is instructive to see whether the use of eigenvalue constraists

alter the convergence of the problen,

Let ), = ith

1 eigenvalue (8)

- wiz (the square of the circular natural frequency)
1f Ai is extracted in units of (rad/sec)z, the alternate form
of the constraints becomes

*
-

¢t - (1.8(2m)?2 - A

Gy = - (2.2(2m))2

Gr = (12.220))2 - Ay

& WENN

G, = A, - (12.6(21))2

where, Al' A, are the eigenvalues in (rad/sec)2 (7a)

*
i

of magnitude and convergence difficulties wmay result.

The G, constraints in Eqn. 7a are no longer expected to be of the same order
To test the convergence properties, the two forms of the constraint
function are used on a problem with initial thickness of 0.05 inches. As
seen in Table 2, the formulation with eigenvalue constraints does converge,
but the optimal solution is not as good as that obtained bv using frequency
constraints .
When the cigenvalue constraints are used on a problem starting with
t = 0.10 inches, a very poor optimal solution is obtained. A good optimal

solution could be obtained by scaling the objective functicns by 10 and 100.

*k */
Gl = Gy 10

xR *
C, = 02/10

C** ‘*/100
3" Gy

KA */ 0 Y
(l[. - C[O 1 0 (7\))

i e i =
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Alternately, Gi constraints could lead to a good optimum if the constraint B

thickness, CT, were changed from -0.1 (the defzult value) to -8092.0.

Lo ey
g e ey g

When the eigenvalue ccastraints are used on a problem starting with i

TP

t = 1,25 inches, no feasible design is found. Attempts to move towvard a
feasible design by changing the parameter PHI from 5 to 50 to 150 are
unsuccessful.

For all further studies, frequency constraints of the form shown

]

AR AT VR W

in Eqn. 7 are employed. It is to be noted that if troubles are encountered,

T
TN R e

a more efficient form of Equation 7 can be employed to ensure objcctive

Loe e

function values of the same order of magnitude. 3

1 - (£,/£,) <0

and (£,/£,) -1<0 ©)

where, f,6K = 1th frequency, in Hz

i

fiL = lower bound on ith frequency, in Hz

fiU = upper bound on ith frequency, in Hz

2.1c Influence of Initial Design on Convergence and Optimal Design

e ':i."i"“‘“"“" o

Consider the three following initial designs:
Case 1 - constant thickness of 0.05 inches
Case 2 - Constant thickness of 0.10 inches

Case 3 - Constant thickness of 1.10 inches

T R I AT I

In Case 1, the initial design violates the lower bound on fz. while in
Case 3, the lower bound on both frequencies is violatad. Only in Case 2
does the initial design result in a feasible initial sclution.

The information for the three runs is presented in Table 3. In all

cases, feasible solutions were readily obtained, and eventually, the optimal
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solution was obtained. If the most difficult case (Caze 3) had been
required to meet more rigorous convergence criteria, a few more iterations
would have resulted in an improved optimal desaign.
Certainly, initial designs which are feasible and close to optimal
are ideal. DBut it is possible to start with designs which are not feasible,
and which are far from optimal. Unfortunately, such conclusions are problem
dependent. TFor more severe frequency constraints, or for added problem
constraints, it may be necessary to start with feasible or close-to-feasible
designs in order to optimize.
2.1d Paraweters ITMAX, ITRM, DELFUN, DABFUN
All data collected are based on the following values of the CONMIN
convergence control parameters.
ITMAX: Maximum number of iterations (default value = 10)
Values used: 40, 80
ITRM: Consecutive iterations for convergence (default value = 3)
Values used: 3, 5, 8
DELFUN: Relative change paragmeter (default value = (,0001)
Values used: 0.0001, 0.00005
DABFUN: Absolute change parameter (default value = 0.001 times the
initial objective function)
Values used: 0.011 (default value for t = 1.10 inches)
0.001 (default value for t = 0.10 inches)
0.0005 (default value for t = 0.05 inches).
In general, the default values for ITRM, DELFUN, and DABFUN lead to
good convergence properties. In about half of the runs, the objective
function does not change, or just barely changes, during the last ITRM

iterations., The other half have convergence governed by the DABFUN paranmeter,

bitiat e
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When larper thicknesases are used, higher initial objective function resgulta,

and tha dofault value for DAEFUN can be larger than desived.

To test the adequacy of the default values, Case 2 in Tabla 3 may be
rerun with tighter controlas. The results, {teration by {teration, are shown
in Table 4. The tighter controlled vun essontially doubles the number of
iterations, and halves DELFUN and DABFUN. Yot, the final results are
essentially identical.

The reccmmended parameters for such runs arae:

ITHAX = 40

ITRM = 3 (default value), or §

0.0001 (default value)

DELFUN

DABFUN = default value (0.05 inches < t < 0.25 inches)

0.0025 (t > 0.25 inches).

The paramataers stated may not be applicable either for larger probloms, or
for more severely constrained problema, The parameter will be critically
examined at several stages of the atudy.

2.1e Parameters THETA, PRI
Hligher valuea of THETA (The Push Off Factor) are recommended for highly

non-lincar constraint functiona. The default value (0 = 1), 10, 100, and
700 were tried on a specific initial design (t = 0.10 f{nches 1 = 1,355 1nchcsa).
The results are shown in Table 5. Clearly, changing the parameter from the
default value Jdoes not {mprove thoe rnp(ditv of the convergence or the qualicv
of the answer.

In sectfon 2.1b, experiments with PHI were reported.  Changing PHI from

5 (the default value) to 50 and 150 did uot enable an {nttfally {nfeanible

design to be moved {uto the feasible desipn space,

e T T g g
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Further designs are hereaciter based on default values for THETA and
PHI.

2.2 Piacement of Frequencies (More Severe Congtraints)

The constraints defined by Eqn. 7 can be generalized as follows:

Gé - fz - f2U'5 o (10)
where, the lower and upper bounds on the ith frequency,

in Hz, is given by fiL and f U regpectively.

i
Three cases are examined, as follows:
Case 4: Cases 1, 2, 3 were constrained by a band of + 0.2 Hz
around 2.0 Hz and 12.4 Hz. The band is now narrowed to
+ 0.1 Hz,
Case 5: The first two frequencies are separated, such that a
+ 0.2 Hz band is defined around 1.7 Hz and 13.0 Hz.
Case 6: The first two frequencies are brought closar together, such
that a + 0.2 Hz band is defined around 2.3 Hz and 11.8 Hz.
The results of the optimizations are shown in Table 6. Thus, within reason,
it is possible to re-proportion initial designs (feasible or infeasible) such
that frequencies are placed where desired during an optimization of weight.
2.2a Further Studies of Convergence Parameters
The recommended ITMAX, ITRM, DELUFUN, and DABFUN parameters (30, 3,

0.0001, 0.0025) are used in Case 4. The convergence of the objective

function to 3 significant figures scems to be incomplete in the 3rd figure.
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For Case 5, ITRM 1s changed from 3 to 5 and a surprisingly substantial
reduction in objective function is ottained. Five iterations appear to be
appropriate to maintain objective functions of 3 significant figures. For
Case 6, another check (not shown in Table 6) was made by tightening the
parameters to 40, 6, 0.00005, 0.0001. After 40 iterations, the convergence
criteria had not been satisfied, but probably would be in another few cycles.
The objective function was only chaﬁged from 0.593 to 0.590, but elements

2 and 3, originally 0.0703 and 0.0886 inches, were appreciably changed to
0.0832 and 0.0791 inches regpectively. The objective function is quite flat
near convergence, and small changes in objective function can be accompanied
by appreciable changes in structural configuration. The accuracy of
eigenvalue extraction, herein done by a standard library routine in single
precision, obviously has an effect on the defined final configuration.

A numerical study of eigenvalue calculations is presented in section 5.

Gl :j
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3. OPTIMAL DESTGNS FOR A NON~ROTATING CANTILEVER

With the experience gained by studying two frequency constraints, it
is possible to intelligently formulate the more difficult problems that
follow:

1) Added Constraints - A third frequency

2) Added Design Variables - Non-structural lumped mass

3) Added Constraint - The auto-rotation constraint (i.e., minimum

mass moment of inertia about an axis normal to the bean, and
located at the root).
3.1 Optimization with Three Frequency Constraints
In addition to the constraints shown in Eqn. 10, two more must be

added:

G5 = f3, ~ 520

Gg = £3 - £5,0

where, the lower and upper bounds on the 3rd frequency,

in Hz, is given by £, and f, respectively (11)

Three cases are examined, as reported in Tables 7A and 7B:
Case 7: A + 0.2 Hz constraint band 1s placed around the first three
frequencies of the initial design.
Case 8: The spread between the desired values of fl and f2 is
narrowed, and the deéired value of f3 is decreased by

1.0 Hz from that defined in Case 7.

Case 9: The spread between the desired values of fl and f2 is increased,

and the desired value of f3 is raised by 1.0 Hz from that

defined in Case 7.
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The more difficult optimizations (Cases 8 and 9) are repeated with different

starting points, and (in Case 9) with different convergence criteria. Con-

vergence to an estimated 99% accurate value of objective function is
accomplished for runs using ITMAX = 80, ITRM = 5, DELFUN = 0.0001, and
DABFUN = 0.0005. Designs initiated with various constant thickness values
converge to similar optimal designs. For example, Cases 9B and 9C both
result in minimum thickness for elements 2, 3, 4, 5, 9, and 10. Despite
identical objective functions, individual thicknesses for elcments 6, 7,
and 8 in Cases 9B and 9C are far from identical. Again it is noted that
rear optimum there can be apprecisble changes in structural configuration
with very minimal effect on the objective function.

3.2 Addition of Lumped Weights

The introduction of lumped weights (assumed to have mass, but not to

contribute to the moment of inertia of area, I, used in defining the gtiffness

matrix) increases the number of decision variables in the optimization
problem. For one such weight at the center of each element, there are now
twenty decision variables:

Il(toot element) through 110 (tip element)

wl(weight on root element) through wlO (weight on tip element)
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The problem is formulated as follows:
10 10
Min 2 = 182.4y I Q)+ LW,
i=1 i=1

S.T. G, = £

G, =f, - ¢

6= f3-f5y20

and, 0.83073 < I, < 5.20833
1=1,2,...10
0 < W, <100

i=1,2,...10
The newly defined symbols in Eqn. 1Z are as follows:
Y = element density, lbm/cu.in.

i

center, lbm

Very minor modifications are necessary to include the analytical

gradients of the objective function with respect to the lumped weights

and of the constraints with respect to the lumped weights:

%%— =1 (i=1,2,...10)
1

3K

= = [0]

B

M1

W, "B

N . S e e ke A et s s A e e Sl M A AR A A 7t

W, = weight of lumped mass at ith element

(12)

(13)
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where, Z ig the objective function

K 13 the stiffness matrix
M is the mass matrix
I is the identity (unity) matrix

g is the acceleration of gravity, 386.4 inches/sec2

The two msatrix derivatives in Eqn. 13 are used to define the partial deriv-

ative of the eigenvalue with respect to the decision variable, (3),/3W,).
i K

The remainder of the operations are outlined in Appendix I. Thus, the

optimization can still be based on analytical gradients.

Three cases have been investigated. The results are shown in’

Tables 8A and 8B.

Case 10:

Case 11:

A previous design with t = 0,10 (Case 7) is modified by
reduction of the densitv from 0.10 1bf/cu.in. to 0.05 lbf/cu.in.,
and by replacement of lost weight bv 1.512 1bf lumps at each
element center. There is more freedom to choose the decision
variables in Case 10 (i.e., the non-structural mass can be used
efficiently to move frequencies). The final result is a
constant-section beam of minimum thickness with lumped weights
as shown in the Table. The optimal weight is onlv about two-
thirds that of the optimal welght for Case 7.

Two runs were made with only one difference in initial design.
In 11A, 1 1bf lumped weights were used at each node, and in

11B lumped weights were not used. The final optimal designs
were almosé identical in all respects. Since all of the initial
frequencies had to be raised, it was most efficient to remove

all of the lumped weights of Case 1llA.
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Cage 12: The initial design of case 11A was used with a compressed
range of frequency constraints (from 1,8-35 to 2.6-32 Hz).
The optimal design involved a combination of thicknesses
greater than the minimum, and lumped weights. The tip 40% of
the beam was made of minimum thickness elements without
lumped weights.
Convergence for all the runs was excellent. Note that since the objective
function is now weight (with numerical values of 20 to 30 1bs) previously
used values of DABFUN are not appropriate. Herein, DABFUN was raised to
0.001. The other parameters were kept the same as before.
3.3 Addition of Auto-Rotational Constraint
Ihis congstraint is intended to be applied to rotating systems. However,
the constraint is added here as the next step in developing the larger
problem to be considered. Denoting the minimum mass moment of inertia about
a vertical axis through the root of the beam as Imin' and the actual moment
of inertia as Im’ it is required that Im z-Imin' Rearranging the information
into a more usable form, the seventh constraint, to be added to Eqn. 12

becomes:

G, =1-(1 /1 ,)<0 (14)

The gradients of G7 with respect to the decision variables are analytically
obtained, as shown in Appendix II.

Twc optimization runs are made. In the first run, Case 10 is re-run
with a Imin value of 500 1bf inches secz. This value is deliberately chosen
to be low, such that the constraint remains inactive throughout the run.

As expected, the results remained identical to that in Case 10. The optimal

design has an Im value of 807.7 1bf inches secz. The next case is reported
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in Table 9. A value of Imin = 1100 1bf inches sec2 is demanded, such that
the auto~rotational constraint is active during the optimization. For com~
parigon, the new Case 13 and the previcus Case 10 (without auto-rotational
constraint) are included in Table 9. Although satisfaction of the formal
convergence criferia is not met in 80 iterations, the optimization is close
to being finished. (DFLFUN and DABFUN < 0.0004 and < 0.005, respectively,
for the last five iterations). As expected, the tip element is thickened
and the lumped weight increased, since that is the most efficient way to

satisfy the auto-rotational constraint. At optimum the auto-rotational

constraint was, for all practical purposes, one of the active constraints.

.
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4. OPTIMAL DESIGNS FOR A ROTATING CANTILEVER BEAM

If the cantilever beam is rotating in a horizontal plane, centrifugal
forces are created which stiffen the system and increase the natural
frequencies in vertical vibration. The first natural frequency has as a
lower limit equal to the speed of rotation. Thus, for high speed of
rotation, placement of frequencies must be done with due consideration of
the centrifugal effects. These trends are shown in Table 10. For 300 RPM,
one bound on the fundamental frequency is 5 Hz. Despite vast ranges in
thickness and lumped weights, fl ranges only between 5.1 and 5.7 Hz for a
uniform cantilever. Frequency placement is much less dependent on stiffness
and mass distribution than for a non-rotating beam. The calculations in
Table 10 are based on Ref. 8.

The optimization formulation remains the same as shown in Eqn. 12
and supplemented by Eqn. 14. The major modification required involves the
contribution of element tension to the elcment stiffness matrices. The
added contribution alsc causes a modification of the frequency constraint
gradients. Some details of the derivations are shown in Appendix ITI. All
eigenvalue calculations are based on double precison routines.

In Table 11A, results for three optimizations are shown. The single
difference in input is the speed of rotation.

Case 1l4: This run is a repeat of the single precision run of Case 10.
The non-rotating beam solutions are almost identical. The
major difference is a slight re-crrangement of the lumped

weights,




Case 15:

Case 16:

Case 17:

=24

The speed of rotation is the low value of 30 RPM. There is
no difficulty in placing the frequencies in the same range

as required for the non~-rotating beam. The optimization
regults in a slight increase in weight over that for the
previous case.

With a speed of 100 RPM, the p.oblem does not fully converge
in 80 iterations. The objective function appears to be
accurate to two (rather than the requested three) decimal
places. The tip element aud tip weight are now relatively
large. The extra mass is needed to lower the frequency and
counteract the effect of the high speed.

With speeds of 300 RPM, the requested frequency placement
must be modified. Also, the convergence criteria is relaxed,
as shown in Table 11B.

This 300 RPM run converges in 39 iteratjons. The convergence
criteria is satisfied by the DABFUN requirement (3 consecutive
iterations with absolute change in objective function < 0.01).
Again, a large tip mass is needed, but that may be required
to satisfy the more demanding auto~rotational constraint.

The use of lumped mass appears to be the more efficient way
of controlling the fequency placement. In particular, masses
are placed at the tip and near the zero points of the 2nd

and 3rd mode shapes. In contrast, changes in thickness modify
both stiffness and mass, and are less effective in rerturbing

the frequencies.
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5. NUMERICAL ASPECTS OF THE PROBLEM

The results reported in Sections 2, 3 and 4 are encouraging, since

they demonstrate that, given a mathematical representation of a cantilaver ‘
beam under various conditions, the CONMIN program can produce an improved i

design. That 13, at least for the problems considered thus far, numerical

optimization is possible. Clearly, however, the design found through the ¢

use of CONMIN will be of no use if the mathematical representation of the
structure is at fault. Thus, in the present section, several numerical
aspects of the accuracy of the analysis model are considered.
5.1 Convergence with Increasing Number of Elements

One aspect of the mathematical representation of a structure with the
use of finite elements is the question of how many elements are required
to obtain an acceptable accuracy. For the present optimal design studies,
this question takes two forms: 1) are enough elements used to predict the
frequencies accurately, and 2) are enough elements used to describe the
optimal design (that is, will essentially the same optimal design result
if the mesh is refined)? The first question is addressed in Section 5.la; the
second in Section 5.1b.
5.1a Convergence of Frequency

To study convergence of frequency with increasing number of elements,
a vibrating cantilever beam is considered. The beam is non-rotating. The
analytical solution for the frequency in cps is known to be (Ref. 9)

2 o
NT O [sEL (15)
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where (NL)® = 3,515 (first mode)
= 22.4 (second mode)

L = length of beam

e

—
.
A

g = acceleration of gravity
E = elastic modulus

I = pmoment of inertia of cross-sectional area

Sl gar

W = weight per length of beam

5

ri i

For the example under consideration,

I = 20 ft
7

[N LY IR

L.

1bf/ft2

L2

= 10
4
I = 1.3555 inches

W = 1.5120 1bf/ft

IR T TR L SR GoARZY)

The results of the finite element analysis for various numbers of
elenents are shown in Table 12, 1t can be seen that as few as six elements ¥

gives a good approximation (less than one percent error) for the first

oo

frequency. As would be expected, the approximations for the second frequency
are not as accurate, but the error is only about two percent when ten :lements
are used. In general, these results indicate that the choice of ten elements
in the optimization studies described in Sections 2, 3 and 4 is justified.
5.1b Convergence of Optimal Design

To study how the optimal design changes as the numbzar of elements
increases, a cantilever beam with "N" elements and with lumped weights added
at the nodes but otherwise similar to the beam of Section 5.la and Figure 1
is considered. The density, and the constraints on the natural frequencies,

lumped weights, and moments of inertia are
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Y = 0.05 1bf/in>
1.0< £ <13 (2

10.0 < £, < 11.2 (Hz) (16)

0.0 < W, < 100.0 (1bf)

0.83073 < I, < 5.2083 (in%).

The initial design is

Ii = 1.3555
Wi = 15.120/N; I=1,2,...,N

which implies an initial value of OBJ (= the objective function = the
total weight) of 30.2249 1bf.

Results of the study are shown in Figures 3-8, 1In all cases, the
active frequency constraints were found to be

f, = 1.3 (Hz)

1

f, = 11.2 (Hz)

Figure 3 demonstrates, as one would expect, that the optimum weight
does in fact decrease as more elements are added to the mesh. The change
in optimum weight is quite small (note that the scale of the vertical
axis begins at 20.0).

Figures 4 and 5 show the variation of the lumped weight and the moment
of inertia (of the cross-sectional area) at the free end versus the total
number of elements in the mesh. It appears that these quantities do not
converge. This result can be explained, however, by referring to Figure 6,

in which the upper curve represents the total weight at the free end.
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(M(N) 1is the non-atructural, or, lumped weight; H(N) 1s the structural
weight associated with the mass distributed throughout element "N"). It
can ba seen from the figure that the total weight appears to converge
smoothly as the mesh i{s refined. The explanation for the apparent non-
convergence shown in figures &4 and 5 and the convergence shown in the top
curve of Figure 6 is that the "atructural weight" at the free end of the
cantilever is not really structural, since there is no portion of the beam
beyond the free end which needs to be supported. Thus, the optimization
routine is indifferent to whether structural or non-structural weight is
present at the free end - the only thing that counts is the total weight
at that end.

Figure 6 also shows the variation of the lumped weight slightly bevond
the middle of the beam. (All optimal designs had non-zero lumped weights
there and at the free end of the beam.) The weight can be seen to decrease
smoothly as the mesh is refined, although no asymptote appears present.

A possible explanation for this behavior is that as the mesh is refined, the
weight in the middle is being placed more efficiently - and thus less is
needed,

The various sketches in Figure 7 show the distribution of mass and
stiffness along the beam for increasing numbers of elements. It is
interesting t observe that the optimization routine finds it most efficient
to meet the contraints on frequency by varying the lumped weight rather than
by varying the stiffness (moment of inertia), since this latter quantity is
at its lower bound evervwhere except near the end of the beam.

As was pointed out previously in reference to Figures 4 and 5, the
optimization algorithm appears to treat the structural and non-structural

mass at the end of the beam as interchangeable.  To test this hvpothesis
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further, the optimal design problem statement was altered slightly by
decreasing the upper bound constraint on the moment of inertia from
5.2083 to 2.0. The resulting optimum design is shown in Figure 8, and
should be compared with the design (for N = 10) shown in Figure 7. HNote
that the constraint on the moment of inertia for element 10 is not active
in the optimal design of figure 8 (the constraint was active during the .
CONMIN iterations leading to this optimal design). Thus, the effect of

the constraint is to lead the optimization algorithm along a different

path than that followed when the constraint value was 5.2083. The design
found, however, has about the same total weight at the free end (= 9.9705 1bf)
as the previous ten-element optimum (= 9,9222 1bf). This result confirms the
hypothesis that CONMIN increases the moment of inertia at the free end only
as a means of increasing the mass there. Once that option is closed (that
is, the upper bound constraint is reduced to a value of 2.0), CONMIN simply
increases the lumped weight at the beam tip. This finding suggests that,
in future optimization studies, a tight constraint be imposed on the moment
of inertia at the free end, since little structural capuhbility is nceded
there, and necessary end mass can be adequately represented by the lumped
weight design variable.
5.2 Accuracy of Eigenvalue Calculatiocons

Among finite element analysts, the problem of the static analysis
of a cantilever beam subjected to an end load is notorious for being
numerically ill-conditioned. This ill-conditioning also becomes apparent
in the eigenvalue calculations associated with the present optimal design
studies. Table 13 fllustrates the magnitude of the errors arising {n the

cigenvalue calculaticns for a non-rotating cantilever like that of Figure 1,
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with thickness 0.1 inches, density 0.l.lbf/1n3, and no lumped mass. Column 1
in the table contains the first twenty frequencies of the beam, which were
obtained by a double-precision version of a code based on the Sturm—sequence
method witli inverse iteration. The eigenvalue is defined as the square of . he

frequency W (in rad/sec) in the equation
(IK] - @20e1){Y} = 0 . an

Here, K is the stiffness matrix, M the mass matrix, and Y the eigenvector.
Columns 2 and 3 contain the ejgenvalues for the same problem, but found by
the IEM scientific subroutine program "NROOT" (based on the Jacobi method)
in a single-precision versicn (column 2) and a double-precision version
(colum 3). The difference in the firgt entries in columns 1 and 2 is about
three percent.

An alternative manner of formulating the elgenvalue problem is to

write it as

(Ml -4 kD =0 (18)
w

The eigeavalue is now defined to be the reciprocal of the square of the
circular frequency. For this formulation of the problem; column 4 gives

the frequencies found by the Sturm-sequence method, and column 5 gives the
frequencies found by the single-precision routine "NROOT". The two methods
now give essenttally the same frequencies. The improved performance of the
single-precision "NROOT" routine is attributable to the fact that the
accuracy of the Jacobi algorithm is dependent on the order (in terms of size)
in which the eignevalues are found. By contrast, the Sturm-sequence method

is independent of the "largeness" or "smallness" of the eigenvalues.
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The significance of these errors in the eigenvalue calculations can
be seen by inspection of Table 14, in which are given optimal designs found
by COMMIN using both the inaccurate eigenvalue calculation and the accurate
eigenvalue calculation. The example corresponds to Cagse 6 of Table 6. The
designs are seen to differ appreciably.
5.3 Sensitivity of Frequency to Small Changes in Thickness

Because rotor blades can be manufactured only to within certain
dimensional tolerances, the question naturally arises as to the sensitivity
of the natural frequencles of the blade to small changes in blade dimensions.
Clearly, if small changes in blade dimensions produce large chqnges in
natural frequencies, then designing a theoretically optimum blade is futile:
the small variations in blade dimensions introduced during manufacturing would
destroy the optimally designed vibratory behavior. To study this questionm,
the data of Table 15 were generated for the cantilever beam described in
Section 4 (Case 14 of Table 11A). The first column in the table contains
the derivative of the fundamental frequency with respect to the thickness
of the first, second, third,..., and tenth (free end) element. If 0.01 inches
is taken as a representative manufacturing tolerance, then the data in column 1
show that the maximum corresponding change in the first fundamental frequency
is only about five percent (=0.01 + 4.791). Another aspect of this sensi-
tivity study is illustrated by the data in columns Z and 3. Columm 2
contains the derivative of the fundamental frequency with respect to the
welight of the individual elements. Since
3fl ati

11 _ 4 (19)

and
of

i
— = 9,12
aci

(t, is the thickness; see Fig. 1),

i

D pa o i



ot e e A A T TR PR bt pa s <
i

-32-

the entries in column 2 are derived by dividing the entries of column 1 by
9.12, Column 3 contains the derivative of the fundamental frequency with
regpect to the lumped weight of the individual elements. If 0.0L lbs is
taken as a representative manufacturing tolerance, then the data in columns
2 and 3 show that the maximum corresponding change in the first fundamental
frequency 1is about half a percent (=0.01 + 0.525).

It is also interesting to compare corresponding entries in columns 2 and
3 and to observe that they disagree near the blade root, with the discrepancy
diminishing appreciably as the free end is approached. Tre explanation for
this behavior lies in the fact thet as the distributed weight of an element
is increased, the cross-sectional area must of course also increase. Thus the
gsecond column in the table represents changes in stiffness as well as in mass.
It follows that a unit increase in distributed weight (as represented by
column 2) will produce a larger increase in frequency than is caused by a
unit decrease of lumped weight {(column 3), since, qualitatively speaking,
stiffness appears in the numerator and mass in the denominator of the

frequency expression, vK/M. Thus

Bfl g Bfl
om om
i i

The inequality is large near the root, because increasing element
stiffness has a large effect on structure stiffness. At the tip, the
structure stiffness 1is barely changed (as witnessed by the last two

entries in columns 2 and 3: - 0.227 and - 0.229).
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6. CONCLUSIONS

For the types of beam vibration problems described in this report,

the following conclusions may be drawn.

1. Either analytical or finite-difference gradients can be used. The

finite-difference approach will of course require many more function

evaluations, but it is easily implemented. Furthermore, the problems

considered are not especially sensitive to numerical error in gradient
calculations, therefore, we use analytic gradients; but we reserve the
finite-difference gradients as a viable alternative should they be needed.

2. The frequency constraints should be formulated directly in terms of
frequencies, rather than eigenvalues (frequency squared).

3. CONMIN can find an optimum design, after starting with an initially
infeasible design, at least for the problems considered.

4, The default values for CONMIN appear adequate, with the exception

of DABFUN ITMAX, for which a value of 40-80 works well.

5. Optimum designs can be found even for relatively tight constraints
on frequencies.

6. The objective function is relatively flat near the optimum, and
appreciably different distributions of stiffness may vield essentially the
same value of the objective function.

7. Two and three frequency constraints can be handled.

8. Using both stiffness and lumped mass as decision variables presents
no special difficulties. Indeed, the admittedly limited experience gained
thus far with these types of problems indicates that the optimization secems
to proceed nore rapidly {fewer iterations to obtain convergenc) if CONMIN

can add lumped mass rather than just add mass in the form of structural mass.

Thus the greater complexity of the problem, i.e., the increcased number of

e e
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decision variables, appears to be more than compensated by the greater
freedom in choosing a design.

9. Optimal designs for rotating beams subject to frequency and auto-
rotational constraints present no difficulties. Again, the use of lumped
mass (rather than structural mass) appears to be a more efficient way of

controlling frequencies.
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7. _NEAR FUTURE PLANS

At this writing, current research effort is concentrated on developing
a generic cross-section sufficiently general that both the bending and
torsional stiffnesses of currently existing blades can be matched. When a
suitable generic section has been attained, it will be used in studies of
the optimization of a non-rotating cantilever experiencing coupled flap, lag,
and torsional vibrations. Some preliminary studies of torsional and in-plane
vibration have already been done.

Preliminary work has also been done on the feasibility of using an
objective function involving the sum of the squares of frequencies, rather
than the weight. The results look promising, and this approach will be
pursued, especially if difficulties arise with the weight-objective function
approach, as more complex problems are analyzed.

Another topic of research in the immediate future will be the inclusion
of a stress constraint in the problem of the bptimization of a non~-rotating
cantilever. Preliminary exmaination of present optimum designs show no
particular stress problems; but, in principle, the stress constraint should

be necessary to prevent elimination of too much material from blade designs.
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APPENDIX I

GRADIENTS OF OBJECTIVE FUNCTION AND CONSTRAINTS

When analytical gradients are utf{lized in CONMIN, the following

derivations are necessary.
Let Z = objective function ;

gj = jth frequency constraint function .
th

t, - 1™ element thickness ;
Ii = ith element momant of inertia
Ai - ith eigenvalue of the vibration problem
92
1) To find 57 Ve employ the chain rule
i
oz 2z %4 _ oz 2Ty _
8Ii a:j aIi aci aci
10
Since Z = I ty (2)
iu}l
25 1 2 3
and, I, =gz + 24{285% - 228t + 60.8:1} (3
Then, 22— = 1{:-(285 - 456t, + 182 acz}-l )
en, oL, 24 1 4ty
Furthermore, ti = Q(Ii)
Finall 2 . L (285 - 456q,. | + 182.4Q 2} ]-l (5)
naLly, o1 24 (1,) RT6 )
i i i
ag
2) To find 5?1 we wlso employ the chain rule
K
] 3 of . 3
S ®
K i i K
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For conatrainta that are linear functions of frequency,

agi
LT w +l, =1, or O 7
i
1 1/2
Since fi - o7 Xi
af
i 1
- (8)
Ry

Bki
=— {8 obtained as & function of
BIK

the eigenvectors, mass matrix, and

(D

. stiffness matrix of the problem

1)

Fox, R. L., Optimization Methods for Enpineering Design, Add son-Weslev,

Reading, PA, 1971,

v — e =
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APPENDIX II

GRADIENTS OF THE AUTO-ROTATATIONAL CONSTRAINT

For a system of uniform elexents and lumped weights, the mass moment

of inertia, Im’ can be written as:

1= © Urfam) e I {eim)
all elements all wveights

r W
i 2 1,2 2
=7 {s PA, T dr} + % {23 (rU + rL) (1)
r
i
10 A 10 W

- { ps-‘-(rg- rg)} + 5
1=1 1=1

1,2, 2
7z ot

)

where, 0 = mass density

A, = area of ith element = 0,5 + 7.6 ti
W, = weight of ith lump

g = gravitational constant
r,.,r, = radius from beam root to the upver and lover end
of the element respectively. (Note that half of
the lumped wveight has been placed at the lower end

and upper end of the element).

g
1) To find 3?1 we employv the chain rule
i
337 1 BIm )
3T, " T GT) (2)
i min i
ot BIm ) BIm . BAi . Bti
’ T X T X T
811 A, Sci 811

285-456t +182.4¢
A

~~ P
—

~——

-5 -ri)}x(7.6)x( (3)

LS ol

[ “-’ﬁ' .
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2) To find o
1 2
337 . y +r
awi 2g
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» direct differentiation can be emploved

2
L

L T
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APPENDIX TIT

MODIFICATIONS TO ACCOMMODATE ELEMENTS IN TENSION

For an element under constant tension, T, the potential encrgy is

given by

L
vals &2

o Gx dx (1)

where W represents the vertical deflection coordinate in the Y direction,

as shown in Fig. 2.

From Ref. 2, the displacement function for W is given by:

v v
W = = 2% - wx® + 1Y) + 23 - ax® - 10
3 2
L L
v v
+ -—g- GLx? - 2%°) + -—f,_i(x3 - 1x%) (2)
L L

where, the nodal translations are V1 and v3. and the nodal rotations are
Vz and VA'

Substituting the derivatives of (2) into (1), performing the integration
over the length, and comparing the results to U = %{V}T [K(T)] {v} leads to

the identification of the added contribution to the element stiffness

matrix, (K.l 1.2/t 0.1 -1.2/L 0.1
~

(K,on] = T 2L/15 -0.1 -L/30
(T ~

Syma. 1.2/ -0.1

~~
2L/15 (3)
L. ' -

The element tensions are easily defined by computing the centrigual force

for cach lumped mass, and accumulating the frotal tension from tip to root of

———

(“)Petcrs. D.A, Ko, T., Korn, A., and Rossow, M.P., First Semi-Annual Status
Report on Design of Heliconmter Rotor Blades for Optimum Dvinamic Character-
istics,NASA-Langley Grant No. NAG-1-250, Sept. 15, 1982,

Ay N
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the besm. To keep a constant tension in each element, the distributed and

lumped weights were divided by two and placed at the element ncdes,

To compute analytical gradients, the partial derivatives of K(T)
with respect to the decision variables are needed.

K

3T for any element, the chain rule is used:

K 3K 23K 3T 3t
oL ~ 3T T3t *OI ()
The first term represents the matrix elements of Eqn. 3.

1) To find

The middle term can be obtained by writing the element tension as the
cumulated sum of miﬂzti terms, where, I = rotational speed in red/sec. Since
each mass is a function of thickness, the derivative of tension with respect

to thickness can be obtained.

The final term has been defined in Eqn. 3 of Appendix II.

9K
2) To find saill for any element, we use:

®eny L ¥y a1 "
BNK 9T BWK

The second term can be obtained by writing the element tensions caused

by the lumped masses, and then taking the appropriate partial derivatives.
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I0. Tables Inttial Values
Conatant t inches: 0.05
Conatant I inches‘: 0.831
(a) Objective Function, inches: 0.500
(b) Weight 1b€: 21.12
fl'ﬁzz 1.86
fz.nz: 11.6
Optimal Solution
(c) (c)
Analyticzal Gradients Finite Difference
Gradients
15 No. of Iterations 21
0.540 Objective Function inches 0.539
21.85 Weight 1bf 21.83
2.00 f1 Hz 1.99
12.20 (d) fz Hz 12.20
1.250(0. 0896) riinches“(:;UChes) 1.253(0.0899)
(Elements 2 through 10 were essentially
all at the lower bound value of side
constraint on thickness:
t = 0.05 inches, I = 0.831 anhes&)
Notes:
10
(a) Objective Function, inches = L ty
i=1
10
(b) Weight 1bf ~ 12 + 18.24 T ¢
a1 1

(¢) Convergence criteria were the same, except that ITRM was raised
from 3 to 8 cycles when finite differences were used.
(d) Both solutions have an active frequencv constraint: f. is at

its lower bound value.

Table lA: Comparison of Analvtical Cradient vs Finite Difference Solution

P ORT)
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Initial .Values

Constant t inches : 0.10
Constant I inches6 : 1.355 i
(a) Objective Function inches : 1.000 \ ‘é
(b) Weight 1bf : 30,24 :
fl Hz 3 1.98 L .
fz Hz s 1204 !
Optimal Solution
(c) (c)
Analytical Gradients Finite Difference Gradients
15 No. of Iterations 18
0.541 Objective Function inches 0.543
21.87 Weight'lbf 21.90
1.94 fl'Hz 1.94
12.20 (d) £, He 12,20
1.262(0.0908)  I1nches’(t, 12°S) - 1.214(0.0861)
0.831(0.0500) T inches’(t,'Rehes) 0.852(0.0519)
0.831(0.0500) 171nches“(c7i“°hes) 0.880(0.0545)

ORIGINAL FACT 1)
OF POOR QUALITY

(Elements 2-5 and 8-10 were all at the lower bound

value of side constraiat({tlickaess): t = 0.05 inches,

I = 0.831 inches™

Notes: 10
(a) Obiective function)inches = Tt
i=]

. 10
(b) Weighc.lbf = 12 + 18.24 T ¢t
. i=]1

i

i

(c) Convergence criteria for the two runs were identical,

(d) Both Solutions have an active frequency constraint:

it lower bound value.

Table 1B: Comparison of Analvtical Gradient vs Finite Di{ference Solution

f2 is at

N . A
R R PRI FEPUREL W O |
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Initial Values

Constant t inches :

4

Constant I inches :

(a) Objective function inches :

(b) Weight 1bf

. fl Bz

f2 Hz

(c)

Optinal Solution

Eigenvalue Constrainfy

gide constraint on thickness: t = 0.05 inches, I = 0,831 inches )

ORiGy: NAL
"

Y

0.05
0.831
0.500
21.12
1.86
11.6

(c)

Fragquency Constraints

21
0.539

21.83
1.99

12.20
1.253(0.0899)
0.831(0.0500)
0.831(0.0500)
0.831(0.0500)

0.831(0.0500)

4

12 Ko. of Itcrations

-0.551 Objective function inches
22.05 Weight 1bf

1.94 £ bz

12.20 () £, Hz

1.150(0.0799) I, ,inches’(e,'7CMe%)
0.846(0.0514) Is‘inchesa(tsincheg)
0.910(0.0573) I, inches®(e 2%
0.922(0.0584) I, 1nches4(c inches,
0.875(0.0541) 18,1nches“(c81°°h°°)

(Elcnents 2-4, 9, 10 were all at the lower bound value of
Notes:

(a) Objective function,inches = L t

(b) Weight,1bf = 12 + 18.24 L t

10

tuy *
10

1=1 *

(c¢) Convergence criteria for the two runs were identical. Gradients were
_computed by analytical techniques for the eigenvalue constrained run,
whereas finite difference techniques were used for the frequency

congtrained run.

(d) Both soluszions have an active ‘requencv constrain

lowar bound value.

Table 2:

f2 is at its

Comparison of Eigenvalue and Frequencv Constrainta

BT R R P AR 8 LI U L At

R S S . |
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f
Initial Values Caze 1 Case 2 Cage 3
Constant t,inches 0.05 0.10 1.101
Constant I,inches® 0.851 1.355 5.200
(a) Objective function inches 0.500 1.000 11.013
(b) Weight 1bf 21,12 30.24 212,87 ‘
£, Bz 1.86 1.98 1.46 (e) a
£, Hz 11.6 (e) 12.4 9.17 (e)
Optimal Solution (c)
No. of Iterations 15 15 18
Objective function inches 0.540 0.541 0.547
Weight 1bf 21.85 21.87 21.98
£, Hz 2.00 1.94 1.92
(d) fz, Hz - 12.20 12,20 12,26
I, tnches® (e, 7°Pe9) 1.250(0.0896)  1.262(0.0908)  1.327(0.0972)

(Elements 2 through 10 were essentially all at the lowevr bound
value of the side constraint on thickness: t = (.05 inches,
1= 0.831 inchesa)

Notes: 10

(a) Objective function,inches'= L t

quy 1

10
(b) Weight 1bf = 12 + 18.24 I ¢,
i=1 ©
(c) All gradients were computed by analytical techniques.

(d) All solutions have active frequency contraint: fz is at its
lower bound value.

(e) Initial frequency violates the constraint.

(£) In this case, a high value of the parameter DABFUN led to premature
designation of convergence. The solution is nearly optimal, but the

objective function was still changing in the 3rd significant figure.

Table 3: Comparison of Solutions Obtained for Various Initial Designs

t \
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Initial Values F Poog Q&E[,n‘j
Constzant t inches + 0.10
Constant I.inches“ ¢ 1l.355
Objective function, inches : 1,000
) Weight, 1bf : 30.26
fl’ Hz : s  1.98
fz, Hz : 12,4
v Obiectiva Function
(a) (b)
Using Default Parameters Using Tighter Convergence Criteria
0.54279 Iteration 10 (%) 0.56279
0.54212 Iteration 11 0.54279 (No change)
0.54076 Iteration 12 0.54083
0.54076 (No change) Iteration 13 0.54083 (No change)
0.54076 (No change) Iteration 14 0.54083 (No change)
0.54076 (No change)  Iteratiom 15 0.54072
Iteration 16 0.54072 (No change)
Iteration 17 0.54072 (No change)
Optimal Solution
15 No. of iterations 1?7
0.54076 Objective function inches 0.54072
21.87 Weight, 1bf 31.87
1.94 fl’ Hz 1.96
12.20 £2. Hz 12,20
1.2619(0.09076) I, inches® (r 1RENeS) .2615(0.09073)
Notes:
(a) Default values: ITRM = 3
DELFUN = 0.0001

DABFUN = 0.001
(b) Tighter Criteria: ITRM = 5
' DELFUN = 0.00005
DABFUN = 0.0005

(e¢) The first ten iterations were identical.

Table 4: Convergence Historv for Two Different Convergence Criteria

m‘.. R T T T B e
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(a) No. of Final Objective T nchea® £, 0z ®
. 1]
6 Iterations  Function ("t,inches) !
1 15 0.540 1.262(0.0908) 1.94
10 19 0.546 1.315(0.0960) 2.01
100 13 0.552 1.308(0.0953) 2.03
700 26 0.549 1.190(0.0838) 2.06 .
Notes:
(a) For all runs, Defzult Parzmeters were used:
PHI = 5.0 ,

ITRM = 3
DELFUN = 0.0001
- DABFUN = 0.001

(b) The second frequency, fz. was at the lower bound constraint
(f2 = 12.2 He).
(c) The initial design was based on constant thickness, congtant moment

of inertia of 0.10 inches and 1,355 1nchesa respactively.

Table 5: The Effect of Paramester THETA on the Optimal Solution
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ORIGINML orrn 1'3
Initial Values OF POOR QUAL'H{
Constant t,incheé s 0.25
Constant I,inches4 :  2.675
(a) .Objective function inches : 2.50 .
(b)'Weight'lbf s 57.60
fl' Hz : 2.02
fz, Hz s 12.6
Optinal Solutions (c)
Case &4 Case 5 Cage 6
f1L = 1.9 Hz flL = 1.5 Hz flL = 2.1 Hz
flU - 2.1 flU = 1.9 flU = 2.5
sz = 12,3 fZL = 12.8 fZL = 11.6
£2U = 12,5 f2U = 13.2 fZU = 12.0
No. of iterations 32 29 28
Objective function,inches 0.552 0.662 0.593
Weight, 1bf 22.07 24.08 22,81
£,, Hz 2.09 (e) 1.87 2.11 (d)
fz, Hz 12.32 (d) 12,80 (d) 11.96
tl,inches 0.1022 0.1122 0.0753
t,, inches 0.0500 (£) 0.0500 (f) 0.0703
t3‘inches I ]: 0.0886
t,,inches 0.0586
tslinches 0.0500 (f) 0.0500 (f)
tg,inches 0.0623
t7'inches 0.0791
c8‘inches 0.1059
tg, inches \% 0.0515
tlo,inches 0.0500 (f) 0.0514 0.0500 (f)
Notes: 10 10

(a) Objective function,inches = I ¢t

(¢) ITMAX = 40, ITRM = 5, DELFUN = 0.0001, DABFUN = 0.C025 for case 5 and,6.
For Case 4, ITRM = 3,

f=1 1

(d) Active lower bound contraint.
(f) Active side constraint.

Table 6:

Placement of Frequenciles

(b) Weight,lbf = 12 + 18.24 I ¢t

qm1 t

(e) Active upper bound constraint.
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Initial Values Case 7 Case 8A Case 8B
Constant t,inches 0.10 0.10 0.05
Constant I,inchesa 1.355 1.355 0.831
(a) Objective function, inches 1.000 1.000 0.500
(b) Weight 1bf 30.24 30.24 21.12 )
fl’ Hz 1.98 1.98 1.86 4 .
f2’ Hz 12.4 12.4 11.6 '
f3, Hz 34.8 34.8 32.7
ITMAX 40 ﬁ 8o.
ITRM 3 5.
DELFUN 0.0001 0.0001
DABFUN © w00l 0.0005
flL’flU' Hz 1.8,2.2 2.1,2.5
fZL’fZU’ Hz 12,2,12.6 11.6,12.0
f3L’f3U’ Hz 34.6,35.0 33.6,34.0
(c)Optimal Solution
No. of iteratlons 20 57 44
Objective function inches 0.579 0.623 0.611
Weight 1bf 22.56 23.37 23,13
fl’ Hz 2.02 2.11 2.10 (d)
f2’ Hz 12.51 12,00 (e) 12.00 (e)
f3, Hz (d) 34.60 33.62 33.60 (d)
ty inches 0.1178 0.0906 0.0884
ty inches (£) 0.0500 0.0560 0.0526
ty inches 0.0771 0.0744
t, inches 0.0995 0.0951
tg inches 0.0500 (f) 0.0500 (£)
ts inches (£) 0.0500
t, inches 0.0501
tg inches 0.0603
tg inches (£) 0.0500
tio inches (£f) 0.0500 0.0500 (f) 0.0500 (f)

(Con,‘hnucd\
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Notes: 10
(a) Objective function,inches = C.t
i=1

10
(b) Weight,1bf = 12 + 18.24 I t
1=1

i

i

(c) All gradients were computed by snaiytical technijues
(d) Active lower bound constraint
(e) Active upper bound constraint

(f) Active side constraint

Table 7A: Optimization with Three Frequercy Constraints




Initial Values

(a)

Constant c‘inches

Constant I,incheu6

(b) Weight,1lbf

(c) Optimal Solution

fl’ Hz
fz, Hz
53, Hz
ITMAX
ITRM

DELFUR
DABFUN
£
f
£

1wy B2
a2 Eayr B2
L fap B2

ORIGINAL PRCE 12
OF POOR QUALITY

Objective functicn,inches

No. of iterations

Objective function inches

Weight 1bf
fl’ Rz

£

29 Hz

f3, Hz
t,, inches

tz,inches

t3|inches

ta,inches

ts‘inches

t6.inches

t7‘inches

t8‘

inches

tg,inches

t10

Iinches

-53=
Casa SA Case 9B Case 9C
0.10 0.10 0.25
1.355 1.355 2.675
1.000 1.000 2.500

30.24 30.24 57.60
1.98 1.98 2.02
12.4 12.4 12.6
34.8 3.8 35.5
40 40 80
3 5 S
0.0001 0.0001 0.0001
0.001 0.00905 0.0005
<——— 1,5, 1.9 ——>
- 12.8,13.2 ————————p
g 35.6,36,0 ~———>
15 25 47
0.697 0.684 0.684
24.72 24.47 24,47
1.87 (e) 1.86 1.85
12.80 (d) 12.83 12.82
35.70 35.79 35.73
0.0927 0.1025 0.1074
0.0500 (£) 0.0500 (£) 0.0500 (f)
o.o%ao £) I' I—
0.0637 0.0500 (£) 0.0300 (f)
0.0827 0.0705 0.0621
0.0017 0.0943 0.0808
0.1064 0.1166 0.1335
0.0602 0.0500 (f) 0.0500 (f)
0.0500 (f) 0.0500 (£} 0.0500 (f)

(Conhnued\

e it e B b R i £ wn
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Noteg: 10

(a) Objaective function,inches = I t

gup ¢

10
)] Waight'lbf - 12 +18,24 T g

i=1
(c) All gradionts wara computed by analtyical techniques
(d) Activa lower bound constraint

(e) Active upper bound conatraint
(£) Active side constraint

Tabla 7B: Optinization with Three Frequency Constraints




Initial Values
Congtant t,inches

Constant I.incheaa
Density, Y'lb'Vinches
_ Constant Hillbf

3

(a)Objective function,lbf

(b)Weight,lbf
fl’ Hz

fz, Hz

f3,
oo frpe B2
EZL’EZU’ Hz
f3L’f3U' Hs
(c)Optimal Solution

Hz .

No. of iterations
Objective function 1lbf
Weight 1bf

1bf
1bf
1bf
1bf
1bf
1bf
1bf
t 1bf
t 1bf
tloinches and W, 1bf

t,inches and W
t
t
t
t
t

t

=

inches and

=

inches and

=

inches and

inches and W

L]
OO0 N SN

inches and

z

inches and

—
<e

inches and

O 0 N W N e

=

inches and

[
o

«55=

Case 10 Cana 11A Cage 11B
< 0.10 >
< 1.355 >
0.05 . 0.10 0.10
1.512 1.000 0.000
26,24 28.24 18.24
30.24 40,24 30.24
1.98 1.66 1.98
12.4 10.7 12.4
34.8 29.9 34.8
———— 1.8,2.2 >
€« 12.2,12,6 >
«—————— 34.6,35.0 >
53 38 19
9.252 10.557 10.557
15.25 22.56 22.56
2.12 1.96 2.03
12.60(e) 12.51 12.51
35.00(e) 34.60(d) 34.60(d)
0.0500(f) & O(f) | 0.1150 & O(E) 0.1147 & 0(f)
A o(f) | o.0s00¢f) A 0.0500¢¢) 4
0.056
2.214
0.001
o(f) | 0.0500¢8) 0.0500(£)
1.194 | 0.0535
0(£) | 0.0618
v o(f) | 0.0500(£) 0.0500(£) -

0.0500(£) 1.227

((On*'l.f\\)Cd \

0.05G0(£)a0(£)

0.0500(£) & O(f)
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Notes:
10 10
(a) Objective function,lbf - 82,4y L t, + I wi
{=1 i=)

(b) Weight,1lbf = 120y + objective function
(c) All gradients were computed by analytical techniques
For all cases, ITMAX = 80, ITRM = S, DELFUN = 0.0001, DABFUN = 0.001
(d) Active lower bound constraint
(e) Active upper bound constraint

(£) Active side constraint

Table B8A: Optimization Including Lumped Weights

~m —-a-‘u-..n-*j
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Initial Valuas

Constant t,inchaes

Conatant I‘inches6
Danaity‘Y,leIinchan3
Conatant Ui.lbf

(a) Objective function,lbf
(b) Waight,lbf

fl' Hz

fz. Hz

f3. He

14 , He

i fy
fa0r Eape H2

£ U Hz

e £
(c) Optimal Sclutfon
No. of {taerations
Objective function,lbt
Weight, 1bf

fl' Hz

f,, Hz

fJ. Hz

tl {inches and Nl‘lbf

t, inchas and W, Ibf

t3 {nches and N3|lbf

t, inches and W,,1bf
'Y

tS {nchaes and Nsllbf

te inches and N6|lbf
t7 fnches and N7|1bf
tg {nchea and ws‘lbf
ty inches and W bt

Q!
{nches and 1b(

)
“101

(‘ S H }l !\Uc’d.\

B L i aae a e L I L L B

Cage 12
0.10
1.355
0.10
1.000

28.24
40.24
1.66
10,7
29.9
2.6,3.0
10.5,11.0
31.6,32.0

46
23,5697
35.70
2,60 (d)
10.99
31.9¢9

0.1360 &

0.172,

0.1976

0.2053

0.0769

0.0500 (f,

0.0500 ()

0.527
0.435
0.426
0.3839
1.395
1.135
Q €9

e e g

SO v eaT A by s )

i
a

1



Notes:

(a)

4]
(c)

(CY

(o)

()

Table
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10 10
Objectiva function,lbf = 182.4y It + L W
o1 ¥} gar

Haighc.lbf w 120 + Objective function

All gradients werae conputed by analytical tachniques
ITMAX = 80, ITRM = 5, DELFUN = 0.0001, DADFUN = 0.001
Active lower bound constraint

Active upper bound constraint

Active side constraint

88: Optinmization Including Lumped Weights

DASERRE
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-3s- OF POOR QUALITY
Initial Values Case 10 Cage 13
Constant t inches, I incheaa. Y}br#inchess 0.10, 1.355, 0.05
Constant wi,lhf. 1.512
(a) Objective function, lbf 24.24
(b) Veight, 1bf 30.24
fl’ Hz 1.98
fz. Hz 12.4
£q, Hz 34.8 !
flL’ flU’ Hz 1.8,2.2
fZL’ fZU’ Hz . 12.2,12.6
f3L’ £3U' Hz ) 34.6,35.0
I minlbf inches sec O. .1100

(c) Optimal Solution

No. of iterations 53. 80

Objective function 1lbf 9.252 11.596

Weight 1bf 15.25 17.60

fl' Hz 2,12 1.80 (d)

fz, Hz ’ 12.60 (2) 12.59

£q, Hz ) 35.00 (e) 35.00 (e)

Im 1bf inches sec 807.7 1144 (®)

tl inches and Wl 1bf 0.0500 (£) &0 (£) 0.0500 (f) & 0(f)
t, inches and W, 1bf 4 0 (£) 0.0869 0(f)
ty inches and W3 1bf 0.056 0.0757 0.131
t, inches and W, 1bf 2,214 0.0500(£) 0.516
tg inches and Ws 1bf 0.001 : 0.235
te inches and We 1bf 0 (f) 0.142
t7 inches and W7 1bf 1.194 0.719
tg inches and Wg 1bf 0 (£) 1.175
ty inches and Wy 1bf \ 0 (f) 0.0500(£) 1.174
10 inches and wlo 1bf 0.0500(f£) 1.227 0.1094 1.833

(continved ).

[SEPR A



Notes:
10 10
(a) Objective function lbf = 182.4y I e, + T wi
i=1 i=1

(b) Weight 1bf = 120y + objective function
(c) Ali gradients were computed by znalytical techniques
For all cases, ITMAX = 80, ITRM = 5, DELFUN = 0,0001, DABFUN = 0,001
(d) Active lower bound constraint
(e) Active upper bound constraint
(£) Active side constraint

(g) Very close to being active auto-rotational constraint

Table 9: Optimization Including Auto-Rotational Constraint

[N ]
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y = 0.05 1bs/inches>, t = 0.10 inches Q = O RPM
(a) Wi = 1,5 1bf fl = 2,0 Hz

(a) Wi = 100 1bf f1 = 0.3 Hz

Yy = 0.05 1bn/inches3, t = 1.25 inches = (0 RPM

(a) Wi = 1.5 1bf fl = 1.4 Hz

(a) W1 = 100 1bf fl = 0.7 Hz

! = 300 RPM

fl = 5.7 Hz

f1 = 5.1 Hz

fl 300 RFM

f, = 5.5 Hz

5.2 Bz

rh
8

Note: (a) Lumped weights were assumed to be uniformly distributed

for purposes of computation.

Table 10: Influence of Rotational Speed, Mass, and Stiffness on the

Fundamental Frequency of a Uniform Cantilever
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[nitial Values Casa 14 Cace 15 Case 16
Constant,t, inches, I inchea,‘. Y 1bf/cu.in -<———-—-0.10,1.355,0.05 —>

Constant W, ,1bf < 1.512 ——————>

(a) Objectiva function, Ibf. e 24,24

(b) Weight, 1bf ~“——————— 30.24 >

flL' flU’ Hz “-—1.8,2,2 ——> \
£ors £ope iz » < 12,2,12,6 —————>

£3L’ £3U’ Hz . 44— 34.6,35.0 ——————>

I o 1bf inches sec < 500 > L
Q RPM 0 30 100 :
{c) Optinal Solution

No. of iterations 68 76 80

Objective function,lbf 9.252 9.303 16.718

Weight ,1bf : 15.25 15.30 22,72

£,, Hz 2.12 2.16 2.20(e)

f2’ Hz 12.60(e) 12.60(a) 12.59

f3. Hsz . 35.00(e) 35.00(e) 34.97

Im\lbf inches sec 796.7 811.7 1957

cl\inches and Wl\lbf 0.0;00(5) &§0 (£f) { 0.0500(f) & 0 (£f){0.0500(F)&0(E)
t,,inchas and W,,1bE A o ¢| 1% o o 4

t;‘inches and w;\lbf 0.022 ' 0 (f) [,
t,,inches and W, 1bf 2.377 2.345 0(£)
ts‘inchas and Ws\lbf 0 (£) 0 (£) 1.002
t6‘1nche3 and w6,1bf (0] (£) 0 (£) 0 (£}
t7\1nches and W7\lbf ' 1.145 1.121 0.40¢
ts'inches and Wg‘lbf . 0 (£) 0 (£) Vv 1,448
tg\inches and wgllbf ’ 0 (£) / 0 (£)]0.0500(f) O(f)
tlo'inchcs and Wlo’lbf 0.0500(f) 1.149 0.0500(f) 1.277 |0.3685 6.39¢

( Covd’\'r\uu’{ \

e e e e e e JERR SO



Notes:

(a)

(b)
(c)

(d)
(e)
(£)
(8)

Table
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10 10
Objectivae function 1bf = 182.4Y T e, + LW,

i=] fol
Weight 1bf = 120y + objectiva function

All gradients were cowmputed by analytical techniques

Eigenvalues were cozputed with double precision routines

For all cases, ITMAX = 80, ITRM = 5, DELFUN = 0.0001, DABFUN = 0.001
Active lower bound constraint

Active uppar bound constraint

Active side constraint

Active auto-rotational constraint

11A: Optimization of Rotating Beam
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Initial Values

Constant t,inches, I inchesa, Ylbm/cu.in.
Constant Wi,lbf

(a) Objective functionilb§,

(b) Weight,|bf

£ flU’ Hz

fZL' fZU’ Hz

fapr f3y0 B2 ,

I 1bf inches sec

min
Q RPM

i’

(c) Optimal Solution
No. of iterations
Objective function 1bf
Weight 1bf

fl’ Hz

f2’ Hz

f3, Hz

Im 1bf inches sec

t. ,inches and W, K 1bf 0.0500 (f)

1 v

cz‘inches and w2|1bf

t3‘inches and W, 1bf

t, inches and wa,lbf

ts‘inches and Ws‘lbf

te‘inches and W6)1bf

A

t7'inches and w7llbf

tq,inches and Wg,1bf

tg‘inches and W9.1bf v
tloiinches and Wlo}bf 0.0500 (f)

(Cﬁ?ﬂj'fnchJ\

Cagse 17

0.10,1.355,0.05

1.512
24.24
30.24

5.2,5.6
18.0,18.6
42.0,43.0
1100
300

39,
10.539
16.54
5.59 (e)
18.59 (e)
42.99 (e)
1113. (g)
&

0.002
0.591
0.712

0.745
0.438

3.492

(£)
(£

(£

(£)




Notes:

(a)

(b)
(c)

C))
(e)
(£)
(8)

Table
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’ 10 10
Objective function 1bf = 182.4y I ty + z wi
i=] i=]l
Weight) 1bf = 120y + objective function

All gradients were computed by analytical techniques

Eigenvalues were computed with double precisicn routines

For all cases, ITHAX = 80, ITRM = 3, DELFUN = 0.0001, DABFUN = 0.01
Active lower bound constraint

Active upper bound counstraint

Active side constraint

Active auto-rotational constraint

11B: Optimization of Rotating Beam
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Frequency
No. of First Second
Mode Error Mode Errox

Elements (Hz) () (Hz) (z) :
6 1.9678 0.6 12.142 3.6 E
8 1.9733 0.3 12.258 2.7
10 1.9761 0.2 12.312 2.3 ;
12 1.9780 0.1 12,342 2.0 :
14 1.9789 0.06 12.360 1.9
20 1.9805 0.03 12.385 1.7

Analytical 1.980 12.6

Table 12: Frequency vs. Number of Elements
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Frequency
(cne)

Mode No. (1) () (3) (%) (5)
1 2.01622 1.95462 2.01614 2.01614 2.01511
2 12.6354 12,6354 12.6355
3 35.3872 35,3916 35.3875
4 69.3934 69.3937
5 114.892 114.892
6 172.121 Rest are essentially 172.122 reat are
7 241.495 identical to (1) 241.495 essontially
8 323.537 323.536 tdencical
9 418.329 418.329

10 520.042 520.043 t ()

1 692.152 692.155

12 836.210 836.210
13 1013.68 1013.63
14 1223.45 1223.44
15 1470.15 1470.15
16  1758.30 ' 1758.31
17 2086.84 2086.85
18 2436.29 2436.30
19 2743.53 2743.53
20 3433.47 3433.43

Table 13: Frequencies Calculated bv Various Methods

T A T A




LU

-68-
Element Thicknesaas
(inchas)
Element Single-Pracision Double-Precision
Yo. Calculation Calculation
1 0.0753 0.0724
2 0.0703 0.0881 "
3 0.08386 0.0821
4 0.,0856 0.0564
S 0.0500 0.0500
6 0.0500 0.0500
7 0.0500 0.0500
8 0.0500 0.0500
9 0.0500 0.0500
10 0.0500 0.0500
Objective
Function 0.593 0.599
(LBF)

Table 14: Difference in Optimal Designs Caused bv Errors in

Eigeavalue Calculation

e e
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Elemant 68} (2) &)}
No. 3f1/3t1 3!1/351 afllami
(cpa/in.) (cpa/lbf) (cpa/1bf)
1 4.791 0.525 0.000
2 3.492 0.383 =-0.001
3 2.388 0.262 ~0.003
4 1.472 0.161 -0.009
5 0.729 0.080 -0.022
6 0.105 0.012 -0.043
7 -0.443 -0.049 =-0.073
8 -0.957 -0.105 -0.114
9 -1.489 -0.163 -0.166

10 =2.074 =-0.227 -0.22
Table 15: Sensitivity of Frequency to Changes in Thickness and Weight

i i — "
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-72- ORIGINAYL proz 1y
OF POOR QUALITY

] \ 1\!3
T = . - -
/../ C ? T —x
A ' Vs

Figure 2: [Element under Constant Tension.

t

22.0

21.5

21.0

0BJ (LEF)

20.5¢

) L 1 1 1 1 1 _ 1 1
20043685 10 12 14 6 18 20 22
TOTAL NUMBER OF ELEMENTS IN MESH

Figure 3: Obj vs. No. of Elements.
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OF PCOR QuALITY

100 R Weight At Frea End (mp)
- {
=
=
& 50
L
=
201

| S | 1 ! 1 ! 1} ) ] }
56 8 10 2 14 16 I8 20 22
n, TOTAL NUMBER OF ELEMENTS IN MESH

Figure 4: Lumped Weight Versua No. of Elements.

>4 6 8 10 12 14 16 18 20 22
n, TOTAL NUMBER OF ELEMENTS IN MESH

Figure S5: Moment of Inertia at ¥Free End Versus No. of Elements in Mesh.
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ORIGINAL PAGE tg
OF POOR QuaALITY

Vicight At Frea End (mp+ @)

Véaight Near Middle (mr},z,, M '“"/202)

@‘/C/ o e ~ o~
Do mmmmca o)

Figure 6:

18 I} 1 | 1 1 ) 1 L 1 | I
2 4 6 8 10 12 14 I I8 20 22

n, TOTAL NUMBER OF ELEMENTS IN MESH

CoxbinedWeight vs. No. of Elements.
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" OF POOR QUALITY

- my3 L1435 A~mg= 98510
024, 21,5436
nzs .
mG’ Fﬁag 1.6052
=TT
UM ogzors TN
mg= L8259 mae 87746 i
n=8 | 08U, = 216110
. (Note: OBJg> OBJg)
SONNANNNNNYN
Iumni . \%/Iaa 3.3512
N

my* " 10.4303

v, M= 5.6533
OBJ,y221.2455

-1,,=3.6678

mlo’ rﬁ‘o =2.6222

Figure 7: Ootimal Designs for Various Values of n.
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ORIGINAL PAGE (S

OF POOR QUALITY

mg=082884 [ | -me" 48994

4
n=l2  mp=0S969% )

0BJ;p = 21.020!

=
N\\\\t\\"&\\_\\\\\}Q
IL!MIT/

5= 43145
iy = 9:524%

mg= 092519 1 mya= 51907

&

n=l4  mg= 078329

a\\\\\\.f\\\x\\\\\\}_\
Iumn/

Figure 7: (Continued)
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CRIGIAL PAGE (T

~77- OF POOR QUALITY

mo® 16820 j'/mm: 5'365

n=1G

NN —L 5= 45334
m g * s = 8.9647 |
|
%
n=20 5
: Mog= 7.S8IS ..
] —Meo
mj3=0.3414 . 0BJyo=20.3768
m> = 1.2152 ) *
) Mog* Mgy = 87980 |

ARIEEEER...Y

: %‘—.[20 =1.488!

Figure 7: (Continued)
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CRIGINAL PAZs 8
OF POOR QUALITY

. A= 10 /m‘o"-' 8.7873 L.8M
: ) .
oBJ = 2!.l457 LBF
mg= 1.6810 (Note: oBJ £
- Previous 08J;g)
E&\\\\\\x\\"i*\\\_k? | ) 4
' reas II0= 0.983I1 IN:
ILIMIT .
Figure 8: Alternative Optimum - Found by Imposing Constraint 0.83073 < 1,4 < 2.0.
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