A Reproduced Copy OF

NASA CR -169,940

Reproduced for NASA by the
NASA Scientific and Technical Information Facility

- ...

SECOND SEMI-AMNUAL STATUS REPORT
on
NASA RESEARCH GRANT NO. NAG-1-250
for
Period Covering 16 July 1982 through 16 January 1983 ?
"DESIGN OF HELICOPTER ROTOR BLADES FOR OPTIME DYNAMIC CHARACTERISTICS"
by
David A. Peters, Professor and Chairman and
Timothy Kc. Research Assistant
Department of Mechanical Engineering
Washington University, Campus Box 1185
St. Louis, MO 63130
Alfred E. Morn, Professor
and
Mark P. Rossow, Professor
Department of Engineering and Technology
Southern Illinois University
Edvardsville, IL 62026

February 7, 1983
(NASA-CR-169940) DESIGN OF HELICCETEF ROTOR N83-18716
BLADES FOR CFTIMIU DYnAMIC CYAFACTEFISTICS
Semiannual status Report, 16 Jul. 1982 - 16 Jan. 1983 (Washington Univ.) 31 F Uncles MC ACS/MF A OI

ESL OIL G3/05 08769

TABLE OF CONTENTS

Page

1. Introduction. 1
1.1 Overview of Research Profect 1
1.2 Overview of Current Report 4
2. Experiments with the COMMIN Program and Parameters. 5
2.1 The Basic Problem: Two Frequency Constraints 7
2.1a Analytical Gradients vs. Finite Differences. 9
2.1b Various Forms of the Frequency Constraint Function 10
2.1c Influence of Initial Desien on Conversence and Optimsl Design 12
2.1d Parameters: ITMAX, ITRM, DELFUN, DABFUN 13
2.1e Parameters: THETA, PHI. 14
2.2 Placement of Frequencies (More Severe Constraints) 15
2.2a Further Studies of Convergence Parameters 15
3. Optimal Designs for a Non-Rotating Cantilever 17
3.1 Optimization with Three Frequency Constraints 17
3.2 Addition of iumped Weights 18
3.3 Addition of Auto-Rotational Constraint 21
4. Optimal Designs for a Rotating Cantilever Beam. 23
5. Numerical Aspects of the Problcm. 25
5.1 Convergence with Increasing Number of Elements 25
S.la Convergence of Frequency 25
5.1b Convervence of Optimal Design. 26
5.2 Accuracy of Eigenvalue Calculations. 29
5.3 Sensitivity of Frequency to Small Changes in Thickness 31

Page

6. Concluaions. 33
7. Near Future Plans. 35
8. References 36
9. Appendices 37
10. Tables 40
11. Eigures. 70

1. INTRODUCTION

1.1 Overview of Research Project

The design of helicopter rotor blades involves not only considerations of strength, zurvivability, fatigue, and cost, but also requires that blade natural frequencies be significantly separated from the fundamental aerodynamic forcing frequencies (e.g. Ref. 1). A proper placement of blade frequencies is a difficult task for several reasons. First, there are many forcing frequencies (at all integer-multiples of the rotor RPM) which occur at rather closely-spaced intervals. For example, $5 / \mathrm{rev}$ and $6 / \mathrm{rev}$ are less than 20% apart. Second, the rotor RDN may vary over a significant range throughout the flight envelope, thus reducing even further the area of acceptable natural frequencies. Third, the natural modes of the rotor blade are often coupled because of pitch angle, blade twist, offset between the mass center and elastic axis, and large aerodynamic damping. These couplings complicate the calculation of natural frequencies. In fact, the dependence on pitch angle makes frequencies a function of loading condition, since loading affects collective pitch. Fourth, the centrifugal stiffness often dominates the lower modes, making it difficult to alter frequencies by simple changes in stiffness.

In the early stages of the development of the helicopter, it was belleved that helicopter vibrations could be reduced (and even eliminated) by the correct choice of structural coupling and mass stiffness distributions. However, it is easy to imagine how difficult it is to find fust the proper parameters such that the desired natural frequencies can be obtained. The difficulties in placement of natural frequencies have led, in many cases, to preliminary designs which ignore frequency placement. Then, after the structure is

-2-

"finalized" (either on paper or in a prototype blade), the frequencies are calculated (or measured) and final adfustments made. Rcference (2) describes the development of the $\mathrm{XH}-17$ helicopter in which a $300-1 \mathrm{~b}$ weight was added to each blade in order to change the spanwise and chordwise mass distribution and thereby move the first flapwise frequency away from $3 / r e v$. However, these types of alterations are detrimental to blade weight, aircraft dovelopment time, and blade cost. In addition, corrections usually are not satisfactory; and the helicopter is often left with a noticeable vibration problem.

The state-of-the-art in helicopter technology is now to the point. however, that it should be possible to correctly place rotor frequencies during preliminary design stages. There are several reasons for this. First, helicopter rotor blades for both main rotors and tail rotors are now being fabricated from composite materials (Refs. 3 and 4). This implies that the designer can choose, with certain restrictions, the exact EI distribution desired. Furthermore, the lightness of composite blades for the main rotor usually necessitates the addition of weight to give sufficient autorotational blade inertia. Thus, there is a considerable amount of freedom as to how this weight may be distributed. Second, the methods of structural optimization and parameter identification are now refined to the point where they can be efficiently applicd to the blade structure. Some elementary techniques have already been used for the design of rotor fuselages (Ref. 5). It follows that the time is right for the use of structural optimization in helicopter blade design. Some work on this is already under development, and, although not published, some companies are already experimenting with the optimum way to add weight to an existing blade in order to improve vibrations.

The purpose of the work discussed here is to investigate the possibilities (as well as the limitations) of tailoring blade mass and stiffness distributions to give an optimum blade design in terms of weight, inertia, and dynamic characteristics.

The mafor objectives of the work are:

1) To determine to what extent changes in mass or stiffness diatribution can be used to place rotor frequencies at deaired locations.
2) To establish theoretical limits to the amount of frequency shift.
3) To formulate realistic constraints on blade properties based on weight, mass moment of inertia, size, strength, and stability.
4) To determine to what extent the hub loads can be minimized by proper choice of EI distribution.
5) To determine if the design for minimum hub loads can be approximated by a design for a given set of natural frequencies.
6) To determine to what extent aerodynamic souplings might affect the opt'mum blade design.
7) is determine the relative effectiveness of mass and stiffness distribution on the optimization procedure.
8) To determine to what extent an existing blade could be optimized with minimal changes in blade structure.
9) To develop several "optimum profiles" for rotor blades operating under various standard conditions.

The work is to focus on configurations that are simple enough to yield clear, fundamental insights into the structural mechanisms but which are : u fficiently complex to result in a realistic result for an optimum rotor blade.

1.2 Overview of Current Report

This second semi-annual report berves two purposes:- 1) it informs our sponsors and other intereated parties what we have accomplished during the last six months, and 2) it serves as an archive of data to which we expect to refer frequently in coming months, as our research proceeds. As a result of the latter, archival purpose, the report contains much information which is not necessarily new, but which needs to be recorded in an orderly fashion so that it may be easily accessed in the future.

The first section of the report details our experience with the CONMIN optimization program applied to the problem of finding the optimal design of a vibrating cantilever beam (see Fig. 1). This section gives the results of parameter changes, the results obtained with various constraint forumulations, and the effect of allowing lumped weights at discrete points. Ocher aspects that are studied include the autorotational constraint and the effect of rotation. The principal conclusion of these investigations is sumarized as follows: CONMIN works reasonably well for all problems we have considered so far.

The second part of the report discusses some numerical aspects of the problem. One important aspect is the effect of the r mber of finite elements on both the frequency calculation and the sequence of optimal designs. Also of importance is the effect of errors in the eigenvalue analysis as well as the sensitivity of the frequency to small changes in blade dimensions (manufacturing tolerances). The conclusion to be drawn from these numerical studies is that if reasonable care is taken, numerical difficulties are not signifi, ant for the problems we have considered thus far.

2. EXPERIMENTS WITH THE CONMIN PROGRAM ARD PARAMETERS

The COMMIN (Ref. 6) program was employed to minimize the weight of the cantilever beam, described in the introduction. Before extensive optimization problems are solved, it is necessary to experinent with the program parameters and determine the best values for the particular class of problems at hand. The problem chosen for the numerical experiments involved minimization of weight subject to two frequency constraints and to side constraints on the thickness. The non-rotating cantilever bcam undergoing flapping vibrations was examined. Specifically, the following questions were to be answered:

1) Do the sradients produced by analytical techniques match those obtained by finite differences?
2) Is there any difference between results obtained with constraints on the frequency in Hz . and those obtained with constraints on the square of the circular natural frequency in (rad/sec) ${ }^{2}$? Can scaling of the constraint function improve convergence?
3) Under what conditions do the starting values for thickness influence the convergence properties of the problem? Can an original, infeasible design (i.e., one which violates one or both of the frequency constraints) be expected to converge to a feasible, optimal design?

The determination of the so-called "optimal design" in COMMN is influenced by several important parameters. Changes in the parameters can change the final answer and can influence the speed of convergence. The most important parameters are ITRM, DELFUN, DABFUN. Convergence is defined whenever ITRM consecutive iterations are encountered such that the values of DELFUN or DABFUN (or both) are less than the stated values input to the program. The parameters and default values are defined as follows:

Default Value $=3$. Number of consecutive iterations to indicate convergence by relative or absolute changes (DELFUN or DABFUN respectively).

DELFUN: Default Value $=0.0001$. Minimum relative change in the objective function to indicate convergence. $D E L F U N=A B S(1.0-O B J(J-1) /$ $O B J(J))$, where the objective functions for the current, $J^{\text {th }}$, fterate and the previous, $J-1^{3 t}$, iterate are tested.

DABFUN: Default Value $=0.001$ times the initial objective function value. Minimum absolute change in the objective function to indicate convergence. $\quad D A B F U N=A B S(O B J(J)-O B J(J-1))$.

Note that a practical criterion for convergence is employed by the program. Thus, slight differences in answers can be expected if problems are started from different initial points, or if different values of ITRM, DELFUN, and DABFUN are employed.

The parameter $C T$ is used to define whether or not a constraint is active. The exact satisfaction of the $J^{t h}$ constraint, $G(J) \equiv 0$ is numerically unusable. Rather, a band, $C T$ in magnitude, on each side of the exact zero is employed. The default value and formal definition of this parameter is:

CT: Default Value $=-0.1$. The $J^{\text {th }}$ constraint, $G(J)$, is considered to be active if $C T \leq G(J) \leq A B S(C T)$. The value of $C T$ is sequentially reduced in magnitude during the optimization process.

The parameter THETA is called the "Push Off Factor", and is used by the programmed Method of Feasible Directions (Ref. 7) to go from one feasible design to another feasible, improved design. The default value is 1.0 . Larger values of THETA are appropriate for highly non-linear constraint functions. Lower values are appropriate as the constiaints approach linear functions.

The parameter PHI controls how quickly an infeasible design will be mored in the direction of the feasible region. The default value $=5.0$. Values of PHI above 5 should be employed if a feasible solution cannot be obtained.

Finally, the value of ITMAX defines the maxinum number of interations in the optimization process. If a solution cannot be obtained in ITMAX iterations, the program is terminated. The default value is 10.

Herein, experiments with the parameters ITRM, DELFUN, DABFUN, CT, THETA, PHI and ITMAX were performed to enable definition of the numerical values that best fit the class of problem at hand. There are numerous other parameters within COMMIN, but in this study the default values for these other parameters were considered to be adequate.

2.1 The Basic Problem: Two Frequency Constraints

The problem to be considered is the non-rotating cantilever shown in Figure 1. Each 24 inch long element has a different thickness of flange. Letting t_{1} be the thickness of the flange nearest the fixed end, element thicknesses are numbered in order, such that the tip end has a thickness denoted by t_{10}. Corresponding values of moment of inertia of area are denoted by I_{1} th. $u g h I_{10^{\circ}}$. A material density and modulus of elasticity of $0.1 \mathrm{lbf} / \mathrm{cu}, \mathrm{in}$. and $10 \times 10^{6} \mathrm{psi}$ are used.

It can be shown that the area, $A_{i}{ }^{\left(1 n^{2}\right)}$, weight, $W_{i}(\mathrm{lbf})$, and moment of inertia, $I_{i}\left(n^{4}\right)$ are the following functions of the thickness, $c_{i}^{(\ln)}$:

$$
\begin{align*}
& A_{i}=0.50+7.6 t_{i} \tag{1}\\
& W_{i}=1.20+18.24 t_{i} \tag{2}\\
& I_{i}=\frac{25}{96}+\frac{t_{i}}{24}\left\{285-228 t_{i}+60.8 t_{i}^{2}\right\} \tag{3}
\end{align*}
$$

The thicknesses are constrained to lie within the range 0.05 inches to 1.25 inches (the value for which the cross section would be a solid rectangle).

A uniform cantilever with a thickness of 0.10 inches for each flange would have the following first two frequencies:

$$
\begin{aligned}
& f_{1}=1.98 \mathrm{~Hz} \\
& f_{2}=12.4 \mathrm{~Hz}
\end{aligned}
$$

To ensure that a feasible starting solution could be obtained with at least one chosen thickness, the frequencies are constrained to be within $\pm 0.2 \mathrm{~Hz}$ of the frequencies 1.98 and 12.4 . Thus, $1.8 \leq f_{1} \leq 2.2$ and $12.2 \leq f_{2} \leq 12.6 \mathrm{~Hz}$.

The mathematical programing problem becomes:

$$
\operatorname{Min}, W=\operatorname{Min} \sum_{i=1}^{1.0} W_{i}=12+18.24 \sum_{i=1}^{10} t_{i}
$$

S.T. $\quad 1.8 \mathrm{~Hz} \leq \mathrm{f}_{1} \leq 2.2 \mathrm{~Hz}$

$$
12.2 \mathrm{~Hz} \leq \mathrm{f}_{2} \leq 12.6 \mathrm{~Hz}
$$

and, $0.05 \leq t_{1} \leq 1.25$

$$
\begin{equation*}
1 \sim 1,2, \ldots 10 \tag{4}
\end{equation*}
$$

The above problem has in thickness decision variables. To preserve generality for later work with more complex sections, it was decided to use Moment-of-Inertia decision variables. The problem then becomes:

$$
\begin{array}{ll}
\text { Min. } Z= & \sum_{i=1}^{10} Q\left(I_{i}\right) \\
\text { S.T. } \quad & G_{1}=1.8-f_{1} \leq 0 \\
& G_{2}=f_{1}-2.2 \leq 0 \\
& G_{3}=12.2-f_{2} \leq 0 \\
& G_{4}=f_{2}-12.6 \leq 0 \\
\text { and, } \quad & 0.83073 \leq I_{i} \leq 5.20833 \\
& i=1,2 \ldots 10 \tag{5}
\end{array}
$$

In the above formulation, the $i^{\text {th }}$ thickness has been written as a. non-linear function, Q, of the $i^{\text {th }}$ moment of inertia

$$
\begin{equation*}
t_{i}=Q\left(I_{i}\right) \tag{6}
\end{equation*}
$$

The problem is foraulated in terms of ten moment of inertia decision variables, I_{1} through I_{10}, four frequency constraint functions, and twenty side constraints. The objective furction and frequency constraints are non-linear functions of the decision variables.

2.1a Analytical Gradients vs Finite Differences

The COMMIN program has the option to compute gradients of the objective function and constraints via Finite Differences. If possible, however, it is more efficient for the user to provide analytically-derived gradients. In Appendix I, the method used to obtain gradients is given in detail. By using both methods on the same problem, it is possible to provide checks on the derivation and programaing of the analytical gradient method.

Tables $1 A$ and $1 B$ present the results from using the two options. An original design with constant thickness of 0.05 inches leads to the designs in Table 1A, whereas a starting thickness of 0.10 inches is the basis for Table 1B. It is noted that the finite difference method leads to essentially the same results as obtained with analytical gradients.

The four designs all converge to a common design defined by:

1) A thickness of element 1 of aobut 0.086 inches -0.091 inches
2) The thickness of all other elements are governed by the lower bound constraint (0.05 inches)
3) The second natural frequency is governed by the lower bound constraint ($\mathrm{E}_{2}=12.2 \mathrm{~Hz}$)
4) The first natural frequency is not actively constrained, and ranges from 1.94 to 2.00 Hz .

The sensitivity of the first (lowest) frequency to small changes in thickness will be considered later, along with the accuracy of the single precision routine used for eigenvalue extraction.

It is instructive to make a further check on the solutions by running an optimization problem with only one decision variable (I_{i}) and one frequency constrafat ($\mathrm{f}_{2} \geq 12.2 \mathrm{~Hz}$). All other thicknesses are held constant at 0.05 inches. The solution is started with $t_{i}=0.10$ inches, and in 6 iterations converges to the results that follow:

$$
\begin{gathered}
I_{1}\left(t_{i}\right): 1.256 \text { inches }{ }^{4}(0.0902 \text { inches }) \\
f_{1}: 2.01 \mathrm{~Hz} \\
f_{2}: 12.21 \mathrm{~Hz}
\end{gathered}
$$

$$
\text { Weight: } 21.85 \mathrm{lbf}
$$

These results can be considered to be the values toward which all four runs should approach. Within the limits of numerical accuracy, all four cases do converge to the values obtained in the calibration run.

Hereafter, all analyses are based on the use of analytical gradients.
2.13 Various Forms of the Frequency Constraint Function

The constraint relations, described earlier, have been

$$
\begin{align*}
& G_{1}=1.8-f_{1} \leq 0 \\
& G_{2}=f_{1}-2.2 \leq 0 \\
& G_{3}=12.2-f_{2} \leq 0 \\
& G_{4}=f_{2}-12.6=\leq 0 \tag{7}
\end{align*}
$$

where, f_{1}, f_{2} are the natural frequencies in Hz .
The authors of CONMIN recommend use of constraint functions that are mutually of the same order of magnitude, and that property is satisfied by the formulations in Eqn. 7.

ORICHALL EAC:
 -11OF POOR Quc: itiry

It is instructive to see whether the use of eigenvalue constraists
alter the convergence of the problem.
Let $\lambda_{1}=1^{\text {th }}$ eigenvalue

- ω_{1}^{2} (the aquare of the circular natural frequency) If λ_{i} is extracted in units of $(\mathrm{rad} / \mathrm{sec})^{2}$, the alternate form of the constraints becomes

$$
\begin{aligned}
& G_{1}^{\star}=(1.8(2 \pi))^{2}-\lambda_{1} \\
& G_{2}^{\star}=\lambda_{1}-(2.2(2 \pi))^{2} \\
& G_{3}^{\star}=(12.2(2 \pi))^{2}-\lambda_{2} \\
& G_{4}^{\star}=\lambda_{2}-(12.6(2 \pi))^{2}
\end{aligned}
$$

where, λ_{1}, λ_{2} are the eigenvalues in $(\mathrm{rad} / \mathrm{sec})^{2}$
The G_{1}^{*} constraints in Eqn. 7a are no longer expected to be of the same order of magnitude and convergence difficulties may result.

To test the convergence properties, the two forms of the constraint function are used on a problem with initial thickness of 0.05 inches. As seen in Table 2, the formulation with eigenvalue constraints does converge, but the optimal solution is not as good as that obtained by using frequency constraints.

When the eigenvalue constraints are used on a problem starting with $t=0.10$ inches, a very poor optimal solution is obtained. A good optimal solution could be obtained by scallag the objective functions by 10 and 100 .

$$
\begin{align*}
& G_{1}^{* *}=G_{1}^{*} / 10 \\
& c_{2}^{* *}=G_{2}^{*} / 10 \\
& G_{3}^{* *}=G_{3}^{*} / 100 \\
& G_{4}^{* *}=G_{4}^{*} / 100 \tag{7b}
\end{align*}
$$

Alternately, G_{i}^{*} constraints could lead to a good optimum if the constraint thickness, CT, were changed from $\mathbf{- 0 . 1}$ (the default value) to $\mathbf{- 8 0 0 . 0 .}$

When the eigenvalue ccontraints are used on a problem starting with $t=1.25$ inches, no feasible design is found. Attempts to move toward a feasible design by changing the parameter PHI from 5 to 50 to 150 are uncuccessful.

For all further studies, frequency constraints of the form shown in Eqn. 7 are employed. It is to be noted that if troubles are encountered, a more efficient form of Equation 7 can be employed to ensure objective function values of the same order of magnitude.

$$
1-\left(f_{i} / f_{i L}\right) \leq 0
$$

and $\left(f_{i} / f_{i U}\right)-1 \leq 0$ where, $f_{i}=i^{\text {th }}$ frequency, in Hz
$f_{i L}=$ lower bound on $i^{\text {th }}$ erequency, in Hz $f_{i U}=$ upper bound on $i^{\text {th }}$ frequency, in Hz
2.1c Influence of Initial Design on Convergence and Optimal Design

Consider the three following initial designs:
Case 1 - constant thickness of 0.05 inches
Case 2 - Constant thickness of 0.10 inches
Case 3 - Constant thickness of 1.10 inches
In Case 1, the initial design violates the lower bound on f_{2}, while in Case 3, the lower bound on both frequencies is violated. Only in Case 2 does the initial design result in a feasible initial solution.

The information for the three runs is presented in Table 3. In all cases, feasible solutions were readily obtained, and eventually, the optimal
solution was obtained. If the most difficult case (Case 3) had been required to meet more rigorous convergence criteria, a few more iterations would have resulted in an improved optimal deaign.

Certainly, initial desigas which are fcasible and close to optimal are ideal. But it is possible to start with designs which are not feasible, and which are far from optimal. Unfortunately, such concluaions are problem dependent. For more severe frequency constraints, or for added problem conscraints, it may be necessary to start with feasible or close-to-feasible designs in order to optimize.
2.1d Parameters ITMAX, ITRM, DELFUN, DABFUN

All data collected are based on the following values of the CONMIN convergence control parameters.

ITMAX: Maximum number of iterations (default value $=10$)
Values used: 40,80
ITRM: Consecutive iterations for convergence (default value = 3)
Values used: 3, 5, 8
DELFUN: Relative change parameter (default value $=0.0001$)
Values used: $0.0001,0.00005$
DABFUN: Absolute change parameter (default value - 0.001 tines the initial objective function)

Values used: 0.011 (default value for $t=1.10$ inches)
0.001 (default value for $t=0.10$ inches)
0.0005 (default value for $t=0.05$ inches).

In general, the default values for ITRM, DELFUN, and DABFUN lead to good convergence properties. In about half of the runs, the objective function does not change, or fust barely changes, during the last ITRM iterations. The other half have convergence governed by the DABFUN parameter.

Whon larger thicknesaes aro used, highar inltial objective function reaulto, and the dofault value for DABFUN can be larger than deaired.

To test the adequacy of the default values, Caso 2 in Tabla 3 nay be rerun with tighter controls. The rasults, iteration by iteration, ara shown in Tabla 4. The tightor controllod run ossontially doubles the nuber of iterations, and halves DELFUN and DABFUN. Yot, the final results are essentially identical.

The recomended parameters for auch runa ara:

```
ITMAX = 40
    ITRM = 3 (default value), or 5
DELFLN = 0.0001 (default value)
DABFUN - default value (0.05 inchea \leqt\leq0.25 inches)
    =0.0025 (t > 0.25 inches).
```

The paramotors stated may not be applicable either for larger probloms, or for more severoly conatrained problems. The parameter will bo critically axamined at several stages of the atudy.
2.1e Parameters THETA, PHI

Higher values of theta (The Push iff factor) are rocomended for highly non-linear constraint functions. The defatit value $(0=1), 10,100$, and 700 were tried on a spacific initial design (t -0.10 inches $1-1.355$ inchea ${ }^{4}$). The realts are shown in Table 5. Clearly, changing she farametor from the defaule value does not improve the rapldity of the convergence or the quality of the answer.

In section 2.16 , uxpuriments with PII wore reported. Changing fill from 5 (the defamlt value) to 50 and 150 did not eatable an inftally fafeadible destign to be moved fato the feasthle destin space.

Further designs are hereãiter based on default values for THETA and PHI.
2.2 Piacement of Frequencies (More Severe Constraints)

The constraints defined by Eqn. 7 can be generalized as follows:

$$
\begin{align*}
& G_{1}=f_{1 L}-f_{1} \leq 0 \\
& G_{2}=f_{1}-f_{1 U} \leq 0 \\
& G_{3}=f_{2 L}-f_{2} \leq 0 \\
& G_{4}=f_{2}-f_{2 U} \leq 0 \tag{10}
\end{align*}
$$

where, the lower and upper bounds on the $1^{\text {th }}$ frequency,
in $H z$, is given by $f_{i L}$ and $f_{i U}$ respectively.
Three cases are examined, as follows:
Case 4: Cases 1, 2, 3 were constrained by a band of $\pm 0.2 \mathrm{~Hz}$ around 2.0 Hz and 12.4 Hz . The band is now narrowed to $\pm 0.1 \mathrm{~Hz}$.

Case 5: The first two frequencies are separated, such that a $\pm 0.2 \mathrm{~Hz}$ band is defined around 1.7 Hz and 13.0 Hz .

Case 6: The first two frequencies are brought closar together, such that $a \pm 0.2 \mathrm{~Hz}$ band is defined around 2.3 Hz and 11.8 Hz . The results of the optimizations are shown in Table 6 . Thus, within reason, it is possible to re-proportion initial designs (feasible or infeasible) such that frequencies are placed where desired during an optimization of weight.
2.2a Further Stulies of Convergence Parameters

The recommended ITMAX, ITRM, DELFUN, and DABFUN parameters (30, 3, $0.0001,0.0025$) are used in Case 4. The convergence of the objective function to 3 significant figures seems to be incomplete in the 3 rd figure.

For Case 5, ITRM is changed from 3 to 5 and a surprisingly substantial reduction in objective function is obtained. Five iterations appear to be appropriate to maintain objective functions of 3 significant figures. For Case 6, another check (not shown in Table 6) was made by cightening the parameters to $40,6,0.00005,0.0001$. After 40 iterations, the convergence criteria had not been satisfied, but probably would be in another few cycles. The objective function was unly changed from 0.593 to 0.590 , but elements 2 and 3, originally 0.0703 and 0.0886 inches, were appreciably changed to 0.0832 and 0.0791 inches respectively. The objective function is quite flat near convergence, and small changes in objective function can be accompanied by appreciable changes in structural configuration. The accuracy of eigenvalue extraction, herein done by a standard library routine in single precision, obviously has an effect on the defined final configuration. A numerical study of eigenvalue calculations is presented in section 5.

3. OPTIMAL DESTGNS FOR A NON-ROTATING CARTILEVER

With the experience gained by studying two frequency constraints, it is possible to inteligently formulate the more difficult problems that follow:

1) Added Constraints - A third frequency
2) Added Design Variables - Non-structural lumped mass
3) Added Constraint - The auto-rotation constraint (i.e., minimum mass moment of inertia about an axis normal to the beam, and located at the root).

3.1 Optimization with Three Frequency Constraints

In addition to the constraints shown in Eqn. 10 , two more must be added:

$$
\begin{aligned}
& G_{5}=f_{3 L}-f_{3} \leq 0 \\
& G_{6}=f_{3}-f_{3 U} \leq 0
\end{aligned}
$$

where, the lower and upper bounds on the 3rd frequency,
In $H z$, is given by $f_{3 L}$ and $f_{3 U}$ respectively
Three cases are examined, as reported in Tables 7A and 7B:
Case 7: $A \pm 0.2 \mathrm{~Hz}$ constraint band is placed around the first three frequencies of the initial deaign.

Case 8: The spread between the desired values of f_{1} and f_{2} is narrowed, and the desired value of f_{3} is decreased by 1.0 Hz from that defined in Case 7.

Case 9: The spread between the desired values of f_{1} and f_{2} is increased, and the desired value of f_{3} is raised by 1.0 Hz from that defined in Case 7.

The more difficult optimizations (Cases 8 and 9) are repeated with different starting points, and (in Case 9) with different convergence criteria. Convergence to an estimated 99% accurate value of objective function is accomplished for runs using $\operatorname{ITMAX}=80$, ITRM = 5, DELFUN $=0.0001$, and DABFUN $=0.0005$. Designs initiated with various constant thickness values converge to similar optimal designs. For example, Cases 9B and 9C both result in minimum thickness for elements $2,3,4,5,9$, and 10 . Despite identical objective functions, individual thicknesses for elements 6, 7, and 8 in Cases 9B and 9C are far from identical. Again it is noted that near optimum there can be appreciable changes in structural configuration with very minimal effect on the objective function.

3.2 Addition of Lumped Weights

The introduction of lumped weights (assumed to have mass, but not to contribute to the moment of inertia of area, I, used in defining the stiffness matrix) increases the number of decision variables in the optimization problem. For one such weight at the center of each element, there are now twenty decision variables:

$$
\begin{aligned}
& I_{1} \text { (root element) through } I_{10} \text { (tip element) } \\
& W_{1} \text { (weight on root eiement) through } W_{10} \text { (weight on tip element) }
\end{aligned}
$$

The problem is formulated as follows:

$$
\begin{align*}
& \text { Min } 2=182.4 \gamma \sum_{i=1}^{10} Q\left(I_{1}\right)+\sum_{i=1}^{10} W_{1} \\
& \text { S.T. } \quad G_{1}=f_{1 L}-f_{1} \leq 0 \\
& G_{2}=f_{1}-f_{1 U} \leq 0 \\
& G_{3}=f_{2 L}-f_{2} \leq 0 \\
& G_{4}=f_{2}-f_{2 U} \leq 0 \\
& G_{5}=f_{3 L}-f_{3} \leq 0 \\
& G_{6}=f_{3}-f_{3 U} \leq 0 \\
& \text { and, } 0.83073 \leq I_{i} \leq 5.20833 \\
& i=1,2, \ldots 10
\end{aligned} \quad \begin{aligned}
0 \leq W_{i} \leq 100
\end{align*}
$$

The newly defined symbols in Eqn. 12 are as follows:

$$
\begin{aligned}
\gamma= & \text { element density, } 1 \mathrm{bm} / \mathrm{cu} . i n . \\
\mathrm{W}_{1}= & \text { weight of lumped mass at } \mathrm{i}^{\text {th }} \text { element } \\
& \text { center, } 1 \mathrm{bm}
\end{aligned}
$$

Very minor modifications are necessary to include the analytical gradients of the objective function with respect to the lumped weights and of the constraints with respect to the lumped weights:

$$
\begin{align*}
& \frac{\partial Z}{\partial W_{i}}=1 \quad(i=1,2, \ldots 10) \\
& \frac{\partial K}{\partial W_{i}}=[0] \\
& \frac{\partial M}{\partial W_{i}}=\frac{1}{\mathcal{E}}[N] \tag{13}
\end{align*}
$$

```
where, \(\quad 2\) is the objective function
\(K\) is the stiffness matrix
\(M\) is the mass matrix
I is the identity (unity) matrix
8 is the acceleration of gravity, 386.4 inches/sec \({ }^{2}\)
```

The two matrix derivatives in Eqn. 13 are used to define the partial derivative of the eigenvalue with respect to the decision variable, $\left(\partial \lambda_{i} / \partial W_{K}\right)$. The remainder of the operations are outlined in Appendix I. Thus, the optimization can still be based on analytical gradients.

Three cases have been investigated. The results are shown in Tables 8A and 8B.

Case 10: A previous design with $t=0.10$ (Case 7) is modified by reduction of the density from $0.10 \mathrm{lbf} / \mathrm{cu} . \mathrm{in}$. to $0.05 \mathrm{lbf} / \mathrm{cu} . \mathrm{in} .$, and by replacement of lost weight by 1.512 lbf lumps at each element center. There is more freedom to choose the decision variables in Case 10 (i.e., the non-structural mass can be used efficiently to move frequencies). The final result is a constant-section beam of minimum thickness with lumped weights as shown in the Table. The optimal weight is only about twothirds that of the optimal weight for Case 7.

Case 11: Two runs were made with only one difference in initial design. In 11A, 1 lbf lumped weights were used at each node, and in 11B lumped weights were not used. The final optimal designs were almost identical in all respects. Since all of the initial frequencies had to be raised, it was most efficient to remove all of the lumped weights of Case 11A.

Case 12: The initial design of case 11A was used with a compressed range of frequency constraints (from $1.8-35$ to $2.6-32 \mathrm{~Hz}$). The optimal design involved a combination of thicknesses greater than the minimum, and lumped weights. The tip 40% of the beam was made of minimum thickness elements without lumped weights.

Convergence for all the runs was excellent. Note that since the objective function is now weight (with numerical values of 20 to 30 lbs) previously used values of DABFUN are not appropriate. Herein, DABFUN was raised to 0.001 . The other parameters were kept the same as before.

3.3 Addition of Auto-Rotational Constraint

This constraint is intended to be applied to rotating systems. However, the constraint is added here as the next step in developing the larger problem to be considered. Denoting the minimum mass moment of inertia about a vertical axis through the root of the beam as $I_{\text {min }}$, and the actual moment of inertia as I_{m}, it is required that $I_{m} \geq I_{m i n}$. Rearrangisg the information Into a more usable form, the seventh constraint, to be added to Eqn. 12 becomes:

$$
\begin{equation*}
G_{7}=1-\left(I_{m} / I_{\min }\right) \leq 0 \tag{14}
\end{equation*}
$$

The gradients of G_{7} with respect to the decision variables are analytically obtained, as shown in Appendix II.

Twe optimization runs are made. In the first run, Case 10 is re-run with a $I_{m i n}$ value of 500 lbf inches $\sec ^{2}$. This value is deliberately chosen to be low, such that the constraint remains inactive throughout the run. As expected, the results remained identical to that in Case 10. The optimal design has an I_{m} value of 807.7 lbf inches $\sec ^{2}$. The next case is reported

In Table 9. A value of $I_{m i n}-1100$ lbf inches $\sec ^{2}$ is demended, such that the auto-rotational constraint is active during the optimization. For comparison, the new Case 13 and the previous Case 10 (without auto-rotational constraint) are included in Table 9. Although satisfaction of the formal convergence cri'eria is not met in 80 iterations, the optimization is close to being finishef. (DFLFUN and DABFUN ≤ 0.0004 and ≤ 0.005, respectively, for the last five iterations). As expected, the tip element is thickened and the lumped weight increased, since that is the most efficient way to satisfy the auto-rotational constraint. At optimum the auto-rotational constraint was, for all practical purposes, one of the active constraints.

4. OPTIMAL DESIGNS FOR A ROTATING CANTILEVER BEAM

If the cantilever bean is rotating in a horizontal plane, centrifugal forces are created which stiffen the system and increase the natural frequencies in vertical vibration. The first natural frequency has as a lower limit equal to the speed of rotation. Thus, for high speed of rotation, placement of frequencies must be done with due consideration of the centrifugal effects. These trends are shown in Table 10. For 300 RPM , one bound on the fundamental frequency is 5 Hz . Despite vast ranges in thickness and lumped weights, f_{1} ranges only between 5.1 and 5.7 Hz for a uniform cantilever. Frequency placement is much less dependent on stiffness and mass distribution than for a non-rotating beam. The calculations in Table 10 are based on Ref. 8.

The optimization formulation remains the same as shown in Eqn. 12 and supplemented by Eqn. 14. The major modification required involves the contribution of element tension to the elcment stiffness matrices. The added contribution alsc causes a modification of the frequency constraint gradients. Some details of the derivations are shown in Appendix III. All eigenvalue calculations are based on double precison routines.

In Table 11A, results for three optimizations are shown. The single difference in input is the speed of rotation.

Case 14: This run is a repeat of the single precision run of Case 10. The non-rotating beam solutions are almost identical. The major difference is a slight re-crrangement of the lumped weights.

Case 15: The speed of rotation is the low value of 30 RPM. There is no difficulty in placing the frequencies in the same range as required for the non-rotating beam. The optimization reaults in a slight increase in weight over that for the previous case.

Case 16: With a speed of 100 RPM , the pioblem does not fully converge in 80 iterations. The objective function appears to be accurate to two (rather than the requested three) decimal places. The tip element and tip weight are now relatively large. The extra mass is needed to lower the frequency and counteract the effect of the high speed.

With speeds of 300 RPM , the requested frequency placement must be modified. Also, the convergence criteria is relaxed, as shown in Table 11B.

Case 17: This 300 RPM run converges in 39 iterations. The convergence criteria is satisfled by the DABFUN requirement (3 consecutive iterations with absolute change in objective function ≤ 0.01). Again, a large tip mass is needed, but that may be required to satisfy the more demanding auto-rotational constraint. The use of lumped mass appears to be the more efficient way of controlling the fequency placement. In particular, masses are placed at the $t^{2}-p$ and near the zero points of the 2 nd and 3 rd mode shapes. In contrast, changes in thickness modify both stiffness and mass, and are less effective in nerturbing the frequencies.

5. NUMERICAL ASPECTS OF THE PROBLEM

The results reported in Sections 2, 3 and 4 are encouraging, since they demonstrate that, given a mathematical representation of a cantilever beam under various conditions, the CONMIN program can produce an improved design. That is, at least for the problems considered thus far, numerical optimization is possible. Clearly, however, the design found through the use of CONMIN will be of no use if the mathematical representation of the structure is at fault. Thus, in the present section, several numerical aspects of the accuracy of the analysis model are considered.

5.1 Convergence with Increasing Number of Elements

One aspect of the mathematical representation of a structure with the use of finite elements is the question of how many elements are required to obtain an acceptable accuracy. For the present optimal design studies, this question takes two forms: 1) are enough elements used to predict the frequencies accurately, and 2) are enough elements used to describe the optimal design (that is, will essentially the same optimal design result If the mesh is refined)? The first question is addressed in Section $5.1 a ;$ the second in Section $5.1 b$.
5.1a Convergence of Frequency

To study convergence of frequency with increasing number of elements, a vibrating cantilever beam is considered. The beam is non-rotating. The analytical solution for the frequency in cps is known to be (Ref. 9)

$$
\begin{equation*}
f=\frac{N^{2}}{2 \pi L^{2}} \sqrt{\frac{\mathrm{SEI}}{W}} \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
(N L)^{2} & =3.515 \text { (first mode) } \\
& =22.4 \text { (second mode) } \\
L & =\text { length of beam } \\
g & =\text { acceleration of gravity } \\
E & =\text { elastic modulus } \\
I & =\text { moment of inertia of crossmsectional area } \\
W & =\text { weight per length of beam }
\end{aligned}
$$

For the example under consideration,

$$
\begin{aligned}
& L=20 \mathrm{ft} \\
& \Sigma=10^{7} \mathrm{Ibf} / \mathrm{ft}^{2} \\
& I=1.3555 \text { inches }{ }^{4} \\
& W=1.5120 \mathrm{lbf} / \mathrm{ft}
\end{aligned}
$$

The results of the finite element analysis for various numbers of elements are shown in Table 12. It can be seen that as few as six elements gives a good approximation (less than one percent error) for the first frequency. As would be expected, the approximations for the second frequency are not as accurate, but the error is only about two percent when ten lements are used. In general, these results indicate that the shoice of ten elements In the optimization studies described in Sections 2, 3 and 4 is justified. 5.1b Convergence of Optimal Design

To study how the optimal design changes as the number of elements increases, a cantilever beam with " N " elements and with lumped weights added at the nodes but otherwise similar to the beam of Section 5.la and Figure 1 is considered. The density, and the constraints on the natural frequencies, lumped weights, and moments of inertia are
$\gamma=0.05 \mathrm{lbf} / \mathrm{in}^{3}$
$1.0 \leq f_{1} \leq 1.3(\mathrm{~Hz})$
$10.0 \leq \mathrm{f}_{2} \leq 11.2(\mathrm{~Hz})$
$0.0 \leq W_{1} \leq 100.0 \quad(\mathrm{lbf})$
$0.83073 \leq \mathrm{I}_{\mathrm{i}} \leq 5.2083\left(\mathrm{in}^{4}\right)$.

The initial design is

$$
\begin{aligned}
& I_{i}=1.3555 \\
& H_{i}=15.120 / \mathrm{N} ; \quad I=1,2, \ldots, N
\end{aligned}
$$

which implies an initial value of OBJ ($=$ the objective function o the total weight) of 30.2249 lbf.

Results of the study are shown in Figures 3-8. In all cases, the active frequency constraints were found to be

$$
\begin{aligned}
& \mathrm{f}_{1}=1.3(\mathrm{~Hz}) \\
& \mathrm{f}_{2}=11.2(\mathrm{~Hz})
\end{aligned}
$$

Figure 3 demonstrates, as one would expect, that the optimum weight does in fact decrease as more elements are added to the mesh. The change in optimum weight is quite small (note that the scale of the vertical axis begins at 20.0).

Figures 4 and 5 show the variation of the lumped weight and the moment of inertia (of the cross-sectional area) at the free end versus the total number of elements in the mesh. It appears that these quantities do not converge. This result can be explained, however, by referring to Figure 6 , In which the upper curve represents the total weight at the free end.
$(M(N)$ is the non-structural, or, lumped weight; $\bar{M}(N)$ is the atructural weight associated with the mass distributed throushout element " N "). It can be seen from the figure that the total weight appears to convarge smoothly as the mesh is refined. The explanation for the apparent nonconvergence shown in figures 4 and 5 and the convergence shown in the top curve of Figure 6 is that the "structural weight" at the free end of the cantilever is not really structural, since there is no portion of the beam beyond the free end which needs to be supported. Thus, the optimization routine is indifferent to whether atructural or non-structural weight is present at the free end - the only thing that counts is the total weight at that end.

Figure 6 also shows the variation of the lumped weight slightly beyond the middle of the beam. (All optimal designs had non-zero lumped weights there and at the free end of the beam.) The weight can be seen to decrease smoothly as the mesh is refined, although no asymptote appears present. A possible explanation for this behavior is that as the mesh is refined, the weight in the middic is being placed more efficiently - and thus less is needed.

The various sketches in Figure 7 show the Aistribution of mass and stiffness along the beam for increasing numbers of elements. It is interesting t observe that the optimization routine finds it most efficient to meet the contraints on frequency by varying the lumped weight rather than by varying the stiffness (moment of inertia), since this latter quantity is at its lower bound everwhere except near the end of the beam.

As was pointed out previously in reference to Figures 4 and 5, the optimization algorithm appears to treat the structural and non-structural mass at the end of the beam as interchangeable. To cest this hupothesis
further, the optimal design problem statenent was altered alightly by decreasing the upper bound constraint on tho moment of inertia from 5.2083 to 2.0. The resulting optinum degign is shown in Figure 8, and should be compared with the design (for $N=10$) shown in Figure 7. Note that the constraint on the moment of inertia for element 10 is not active In the optimal design of figure 8 (the constraint was active during the CONAIN iterations leading to this optimal design). Thus, the effect of the constraint is to lead the optimization algorithm along a different path than that followed when the constraint value was 5.2083. The design found, however, has about the same total weight at the free end (= 9.9705 lbf) as the previous ten-element optimum (= 9.9222 lbf). This result confims the hypothesis that COMMN increases the moment of inertia at the free end only as a means of increasing the mass there. Once that option is closed (that is, the upper bcund constraint is reduced to a value of 2.0), CONMIN simply increases the lumped weight at the beam tip. This finding suggests that, in future optimization studies, a tight constraint be imposed on the moment of inertia at the free end, since little structural capibility is needed there, and necessary end mass can be adequately represented by the lumped weight design variable.

5.2 Accuracy of Eigenvalue Calculations

 Among finite element analysts, the problem of the static analysis of a cantilever beam subjected to an end load is notorious for being numerically ill-conditioned. This ill-conditioning also becomes apparent in the eigenvalue calculations associated with the present optimal design studies. Table 13 illustrates the magnitude of the errors arising in the elgenvalue calculations for a non-rotating cantilever like that of Figure 1,with thicinness 0.1 inches, density $0.1 \mathrm{lbf} / \mathrm{in}^{3}$, and no lumped mass. Column 1 In the table contains the first twenty frequencies of the beam, which were obtained by a double-precision version of a code based on the Sturm-sequence method with inverse iteration. The eigenvalue is defined as the square of che frequency ω (in rad/sec) in the equation

$$
\begin{equation*}
\left([K]-\omega^{2}[\mathrm{H}]\right)\{Y\}=0 . \tag{17}
\end{equation*}
$$

Here, K is the stiffness matrix, M the mass matrix, and Y the eigenvector. Columns 2 and 3 contain the efgenvalues for the same problem, but found by the IBM scientific subroutine program "NROOT" (based on the Jacobi method) In a sirgle-precision version (column 2) and a double-precision version (column 3). The difference in the first entries in column 1 and 2 is about three percent.

An aiternative manner of formulating the eigenvalue problem is to write it as

$$
\begin{equation*}
\left([M]-\frac{1}{\omega^{2}}[K]\right)\{Y\}=0 . \tag{18}
\end{equation*}
$$

The eigenvalue is now c'efined to be the reciprocal of the square of the circular frequency. For this formulation of the problem, column 4 gives the frequencles found by the Sturm-sequence method, and column 5 gives the frequencies found by the single-precision routine "NROOT". The two methods now give essenttally the same frequencies. The improved performance of the single-precision "NROOT" routine is attributable to the fact that the accuracy of the Jacobi algorithm is dependent on the order (in terms of size) in which the eignevalues are found. By contrast, the Sturm-sequence method is independent of the "largeness" or "smallness" of the eigenvalues.

The significance of these errors in the eigenvalue calculations can be seen by inspection of Table 14, in which are given optimal designs found by COMMIN using both the inaccurate eigenvalue calculation and the accurate eigenvalue calculation. The example corresponds to Case 6 of Table 6. The designs are seen to differ appreciably.

5.3 Sensitivity of Frequency to Small Changes in Thickness

Because rotor blades can be manufactured only to within certain dimensional tolerances, the question naturally arises as to the sensitivity of the natural frequencies of the blade to small changes in blade dimensions. Clearly, if small changes in blade dimensions produce large changes in natural frequencies, then designing a theoretically optimum blade is futile: the small variations in blade dimensions introduced during manufacturing would destroy the optimally designed vibratory behavior. To study this question, the data of Table 15 were generated for the cantilever beam described in Section 4 (Case 14 of Table 11A). The first column in the table contains the derivative of the fundamental frequency with respect to the thickness of the first, second, third,..., and tenth (free end) element. If 0.01 inches is taken as a representative manufacturing tolerance, then the data in column 1 show that the maximum corresponding change in the first fundamental frequency is only about five percent $(=0.01+4.791)$. Another aspect of this sensitivity study is illustrated by the data in columns 2 and 3 . Column 2 contains the derivative of the fundamental frequency with respect to the weight of the individual elements. Since

$$
\begin{equation*}
\frac{\partial f_{1}}{\partial \bar{n}_{i}}=\frac{\partial f_{1}}{\partial t_{i}} \frac{\partial t_{i}}{\partial \bar{m}_{i}} \tag{19}
\end{equation*}
$$

and

$$
\frac{\partial \bar{m}_{i}}{\partial t_{i}}=9.12
$$

(t_{i} is the thickness; see Fig. 1),
the entries in column 2 are derived by dividing the entries of column 1 by 9.12. Column 3 contains the derivative of the fundamental frequency with respect to the lumped weight of the individurl elements. If 0.01 lbs is taken as a representative manufacturing tolerance, then the data in colums 2 and 3 show that the maximum corresponding change in the first fundanental frequency is about half a percent $(=0.01+0.525)$.

It is also interesting to compare corresponding entries in columns 2 and 3 and to ohserve that they disagree near the blade root, with the discrepancy diminishing appreciably as the free end is approached. The explanation for this behavior lies in the fact thet as the distributed weight of an element is increased, the cross-sectional area must of course also increase. Thus the second column in the table represents changes in stiffness as well as in mass. It follows that a unit increase in distributed weight (as represented by column 2) will produce a larger increase in frequency than is caused by a unit decrease of lumped weight (column 3), since, qualitatively speaking, stiffness appears in the numerator and mass in the denominator of the frequency expression, $\sqrt{K / M}$. Thus

$$
\frac{\partial f_{1}}{\partial m_{i}}>\frac{\partial f_{1}}{\partial \bar{m}_{i}} .
$$

The inequality is large near the root, because increasing element stiffness has a large effect on structure stiffness. At the tip, the structure stifiness is barely changed (as witnessed by the last two entries in columns 2 and 3: - 0.227 and -0.229).

6. CONCLUSIONS

For the types of beam vibration problems described in this report, the following conclusions may be drawn.

1. Either analytical or finite-difference gradients can be used. The finite-difference approach will of course require many more function evaluations, but it is easily implemented. Furthermore, the problems considered are not especially sensitive to numerical error in gradient calculations, therefore, we use analytic gradients; but we reserve the finite-difference gradients as a viable alternative should they be needed.
2. The frequency constraints should be formulated directily in terms of frequencies, rather than eigenvalues (frequency squared).
3. COMMIN can find an optimum design, after starting with an initially infeasible design, at least for the problems considered.
4. The default values for CONMIN appear adequate, with the exception of DABFUN ITMAX, for which a value of $40-80$ works well.
5. Optimum designs can be found even for relatively tight constraints on frequencies.
6. The objective function is relatively flat near the optimum, and appreciably different distributions of stiffness may vield essentially the same value of the objective function.
7. Two and three frequency constraints can be handled.
8. Using both stiffness and lumped mass as decision variables presents no special difficulties. Indeed, the admittedly limited experience gained thus far with these types of problems indicates that the optimization seems to proceed nore rapidly (fewer iterations to obtain convergenc) if CONMIM can add lumped mass rather than fust add mass in the form of structural mass. Thus the greater complexity of the problem, i.e., the increased number of
-34-
decision variables, appears to be more than compensated by the greater
freedom in choosing a design.
9. Optimal designs for rotating beams subject to frequency and autorotational constraints present no difficulties. Again, the use of lumped mass (rather than structural mass) appears to be a more efficient way of controlling frequencies.

7. NEAR FUTURE PLANS

At this writing, current research effort is concentrated on developing a generic cross-section sufficiently general that both the bending and torsional stiffnesses of currently existing blades can be matched. When a suitable generic section has been attained, it will be used in atudies of the optiaization of a non-rotating cantilever experiencing coupled flap, lag, and torsional vibrations. Some preliminary studies of torsional and in-plane vibration have already been done.

Preliminary work has also been done on the feasibility of using an objective function involving the sum of the squares of frequencies, rather than the weight. The results look promising, and this approach will be pursued, especially if difficulties arise with the weight-objective function approach, as more complex problems are analyzed.

Another topic of research in the inmediate future will be the inclusion of a stress constraint in the problem of the optimization of a non-rotating cantilever. Preliminary. exmaination of present optimum designs show no particular stress problems; but, in principle, the stress constraint should be necessary to prevent elimination of too much material from blade designs.

8. REFERENCES

1. NLebank, C. and Girvin, W., "Sikorsky S-76 Analysis, Design and Development for Successful Dynamic Characteristics." Proceedings of the 34 th Annual Natural Forum of the American Helicopter Society, May 1978, pp 78-23-1 through 78-23-17.
2. Hirsh, Harold; Dutton, Robert E., and Rasumoff, Abner, "Effect of Spanwise and Chordvise Mass Distribution on Rotor Blade Cyclic Stresses," Journal of the Americen Helicopter Society, Vol. 1, No. 2, April 1956.
3. Ellis, C. W. et al., "Design, Development, and Testing of the Boeing Vertol/Army YUH-61A," Proceedings of the 32nd Annial National Forum of the American Helicopter Society, Preprint 1010, May 1976.
4. Fenanghty, Ronald R. and Noehren, William L., "Composite Bearingless Tail Rotor for UTTAS," Journal of the American Helicopter Society, Vol. 22, No. 3, July 1977, pp 19-26.
5. Hanson, H.W. and Calapodas, M.J., "Evaluation of the Practical Aspects of Vibration Reduction Using Structural Optimization Techniques," Proceedings of the 35 th Annual National Forum of the American Helicopter Society, May 1979, pp 79-21-1 through 79-21-12.
6. Vanderplaats, G.N., CONMIN - A Fortran Program for Constrained Function Minimization. User's Manuol, NASA TMX-62.282, August , 1973.
7. Zoutendifk, G., Method of Feasible Directions, Elsevier Publishing Co., Amsterdam, 1960.
8. Peters, D.A. An Approximate Solution for the Free Vibrations of Rotating Uniform Cantilever Beams, NASA TMX-62.299, August, 1978.
9. Thomson, W. T., Mechanical Vibrations, Prentice-Hall, Inc., New York, 1953, pp 36 and 117.
-37-
10. APPENDICES

APPENDIX I

GRADIENTS OF OBJECTIVE FUNCTION AND CONSTRAINTS

When analytical gradients are utilized in COMIM, the following derivations are necessary.

$$
\text { Let } \begin{aligned}
z & =\text { objective function } \\
g_{j} & =j^{\text {th }} \text { frequency constraint function } \\
t_{i} & =i^{\text {th }} \text { element thickness } \\
I_{i} & =i^{\text {th }} \text { element moment of inertia } \\
\lambda_{i} & =1^{\text {th }} \text { eigenvalue of the vibration problem }
\end{aligned}
$$

1) To find $\frac{\partial Z}{\partial I_{i}}$ we employ the chain rule

$$
\begin{gather*}
\frac{\partial Z}{\partial I_{i}}=\frac{\partial Z}{\partial t_{i}} \times \frac{\partial t_{i}}{\partial I_{i}}=\frac{\partial Z}{\partial t_{i}} / \frac{\partial I_{i}}{\partial t_{i}} \tag{1}\\
\text { Since } Z=\sum_{i=1}^{10} t_{i} \tag{2}\\
\text { and, } I_{ \pm}=\frac{25}{96}+\frac{1}{24}\left\{285 t_{i}-228 t_{i}^{2}+60.8 t_{i}^{3}\right\} \tag{3}
\end{gather*}
$$

Then, $\frac{\partial Z}{\partial I_{i}}=1\left\{\frac{1}{24}\left(285-456 t_{i}+182.4 t_{i}^{2}\right\}^{-1}\right.$

$$
\text { Furthermore, } \quad t_{i}=Q_{\left(I_{i}\right)}
$$

Finallv, $\quad \frac{\partial Z}{\partial I_{i}}=\left[\frac{1}{24}\left\{285-456 Q_{\left(I_{i}\right)}+182.4 Q_{\left(I_{i}\right)}^{2}\right\}\right]^{-1}$
2) To find $\frac{\partial g_{j}}{\partial I_{K}}$ we also employ the chain rule

$$
\begin{equation*}
\frac{\partial g_{i}}{\partial I_{K}}=\frac{\partial g_{i}}{\partial f_{i}} \times \frac{\partial f_{i}}{\partial \lambda_{i}} \times \frac{\partial \lambda_{i}}{\partial I_{K}} \tag{6}
\end{equation*}
$$

For conatraints that are linear functions of frequency,

$$
\begin{equation*}
\frac{\partial g_{1}}{\partial f_{1}}=+1,-1, \text { or } 0 \tag{7}
\end{equation*}
$$

Since

$$
f_{1}=\frac{1}{2 \pi} \lambda_{1}^{1 / 2}
$$

$$
\frac{\partial f_{1}}{\partial \lambda_{i}}=\frac{1}{4 \pi \sqrt{\lambda_{1}}}
$$

$$
\frac{\partial \lambda_{1}}{\partial I_{K}} \text { is obtained as a function of }
$$

the eigenvectors, mass mstrix, and
. stiffness matrix of the problem (l)
(1) Fox, R. L.. Optimization Methods for Finginecring Design, Add son-Wenley, Reading, MA, 1971.

APPERDIX II

GRADIENTS OF THE AUTO-ROTATATIONAL CONSTRAIMT

For a sygtem of uniform elements and lumped weights, the mass moment of inertia, I_{m}, can be written as:

$$
\begin{align*}
& I_{\text {m }}=\sum_{\text {all elements }}\left\{\int r^{2} d m_{1}\right\}+\underset{\text { all weights }}{\sum}\left\{r_{1}^{2} m_{1}\right\} \\
& =\sum\left\{\int_{r_{i}}^{r_{1}} \rho A_{i} r^{2} d r\right\}+\sum\left\{\frac{W_{i}}{2 g}\left(r_{U}^{2}+r_{L}^{2}\right)\right. \tag{1}\\
& =\sum_{i=1}^{10}\left\{\rho_{3}^{A_{1}}\left(r_{U}^{3}-r_{L}^{3}\right)\right\}+\sum_{i=1}^{10} \frac{N_{i}}{28}\left(r_{U}^{2}+r_{L}^{2}\right)
\end{align*}
$$

where,

$$
\begin{aligned}
\rho= & \text { mass density } \\
A_{1}= & \text { area of ith element }=0.5+7.6 t_{1} \\
W_{1}= & \text { weight of ith lump } \\
g= & \text { gravitational constant } \\
r_{U}, r_{L}= & \text { radius from beam root to the upper and lower end } \\
& \text { of the element respectively. (Note that half of } \\
& \text { the lumped weight has been placed at the lower end } \\
& \text { and upper end of the element). }
\end{aligned}
$$

1) To find $\frac{\partial E_{7}}{\partial I_{1}}$ we employ the chain rule

$$
\begin{equation*}
\frac{\partial g_{7}}{\partial I_{i}}=-\frac{1}{I_{m i n}}\left(\frac{\partial I_{m}}{\partial I_{i}}\right) \tag{2}
\end{equation*}
$$

but, $\quad \frac{\partial I_{m}}{\partial I_{i}}=\frac{\partial I_{m}}{\partial A_{i}} \times \frac{\partial A_{i}}{\partial r_{i}} \times \frac{\partial t_{i}}{\partial I_{i}}$

$$
\begin{equation*}
=\left\{\frac{\rho}{3}\left(r_{U}^{3}-r_{L}^{3}\right)\right\} \times(7.6) \times\left\{\frac{285-456 t_{1}+182.4 t_{1}^{2}}{24}\right\}^{-1} \tag{3}
\end{equation*}
$$

ORIMINAL FAOE 15 OF POOR QUNBLTY
2) To find $\frac{\partial g_{7}}{\partial W_{i}}$, direct differentiation can be employed

$$
\begin{equation*}
\frac{\partial g_{7}}{\partial{\hbar_{1}}_{1}}=\frac{r_{U}^{2}+r_{L}^{2}}{2 g} \tag{4}
\end{equation*}
$$

APPENDIX III

MODIFICATIONS TO ACCOMODATE ELEMENTS IN TENSION

For an element under constant tension, T, the potential energy is given by

$$
\begin{equation*}
U=\frac{T}{2} \int_{0}^{L}\left(\frac{\partial W}{\partial X}\right)^{2} d X \tag{1}
\end{equation*}
$$

where W represents the vertical deflection coordinate in the Y direction, as shown in Fig. 2.

From Ref. 2, the displacement function for \mathcal{W} is given by:

$$
\begin{align*}
W(X)= & \frac{V_{1}}{L^{3}}\left(2 x^{3}-3 L x^{2}+L^{3}\right)+\frac{V_{2}}{L^{2}}\left(x^{3}-2 L x^{2}-L^{2} x\right) \\
& +\frac{V_{3}}{L^{3}}\left(3 L x^{2}-2 x^{3}\right)+\frac{V_{4}}{L^{2}}\left(x^{3}-L x^{2}\right) \tag{2}
\end{align*}
$$

where, the nodal translations are V_{1} and V_{3}, and the nodal rotations are V_{2} and V_{4}.

Substituting the derivatives of (2) into (1), performing the integration over the length, and comparing the results to $U=\frac{1}{2}\{V\}^{T}\left[K_{(T)}\right]\{V\}$ leads to the identification of the added contribution to the element stiffness matrix, $\left[\mathrm{K}_{(1)}\right]$

The element tensions are easily defined by computing the centrigual force for each lumped mass, and accumulating the rotal tension from tip to root of

[^0]
Ortankat ras
 43- OF POCR QUALIT

the beam. To keep a constant tension in eqch elenent, the distributed and lumped weights were divided by two and placed at the element nedes.

To compute analytical gradients, the partial derivatives of $K_{(T)}$
with respect to the decision variables are needed.

1) To find $\begin{aligned} & \frac{\partial K}{\partial T_{K}}(T) \\ & \quad \frac{\partial K}{\partial I}=\frac{\partial K}{\partial T} \times \frac{\partial T}{\partial t} \times \frac{\partial t}{\partial I}\end{aligned}$

The first term represents the matrix elements of Eqn. 3.
The middle term can be obtained by writing the element tension as the cumulated sum of $m_{1} \Omega^{2} r_{1}$ terms, where, $\Omega=$ rotational speed in red/sec. Since each mass is a function of thickness, the derivative of tension with respect to thickness can be obtained.

The final term has been defined in Eqn. 3 of Appendix II.
2) To find $\frac{\partial K_{(T)}}{\partial W_{K}}$ for any element, we use:

$$
\begin{equation*}
\frac{\partial K}{\partial W_{K}}=\frac{\partial K(T)}{\partial T} \times \frac{\partial T}{\partial W_{K}} \tag{5}
\end{equation*}
$$

The second term can be obtained by writing the element tensions caused by the lumped masses, and then taking the appropriate partial derivatives.

Inielal Values

Constant tinchos: 0.05
Conatant I inches ${ }^{4}$: 0.831
(a) Objectiva Function, inches: 0.500
(b) Waight lbf: 21.12
E_{1} IH3: $^{\mathrm{Hz}} 1.86$
$\epsilon_{21} \mathrm{~Hz}: 11.6$

Optimal Solution

(c)

Analytical Gradients
15
0.540
21.85
2.00
12.20
1.250(0.0896)

No. of Iterations
Objective Function Inches
Weight lbf
$f_{1} \mathrm{~Hz}$
(d) $\mathrm{f}_{2} \mathrm{~Hz}$
I_{1} inches ${ }^{4}\left(t_{1}^{\text {inches }}\right)$
(c)

Finite Difference Gradients 21

0.539

21.83
1.99
12.20
1.253(0.0899)
(Elements 2 through 10 were essentially
all at the lower bound value of side
constraint on thickness:
$t=0.05$ inches, $I=0.831$ inches ${ }^{4}$)

Notes:
(a) Obiective Function, inchas $=\sum_{i=1}^{10} t_{1}$
(b) Weight lbf $\sim 12+18.24 \sum_{i=1}^{10} t_{i}$
(c) Convergence criteria were the same, except that ITRM was raised from 3 to 8 cycles when finite differences were used.
(d) Both solutions have an active frequency constraint: f_{2} is at its lower bound value.

Table Li: Comparison of Analveical Gadient vs Finite Difference Solution
-45-

Initial.Values

ORIGINFL FRAR: "'s OF POOR QUALT:
Constant t inches 0.10Constant I inches ${ }^{4}$: 1.355
(a) Objective Function Inches 1.000
(b) Weight lbf 30.24
$\mathrm{f}_{1} \mathrm{~Hz}$ 1.98
$f_{2} \mathrm{~Hz}$ 12.4
Optimal Solution
(c)

Finite Difference Gradients
(c)

(c)

Analytical Gradients
15
0.541
21.87
1.94
12.20
$1.262(0.0908) \quad I_{1}$ inches ${ }^{4}\left(r_{1}{ }^{\text {inches }}\right)$
$0.331(0.0500) \quad I_{6}$ inches 4 (t_{6} inches)
$0.831(0.0500) \quad I_{7}$ inches $^{4}\left(t_{7}{ }^{\text {inches }}\right)$
No. of Iterations
Objective Function inches
Weight, lbf

$$
\mathrm{f}_{1}, \mathrm{~Hz}
$$

(Elements 2-5 and 8-10 were all at the lower bound value of side constraint (thicharess): $t=0.05$ inches, $I=0.831$ inches ${ }^{4}$)

18

$$
0.543
$$

21.90
1.94
12.20
Notes:
$1.214(0.0861)$
$0.852(0.0519)$
10
(a) Obtective function, inches $=\sum_{i=1} t_{i}$
10
(b) Weight, $1 \mathrm{lbf}=12+18.24 \sum_{i=1} \mathrm{t}_{1}$
(c) Convergence criteria for the two runs were identical.
(d) Both Solutions have an active frequency constraint: f_{2} is at it lower bound value.
Table 1B: Comparison of Analvtical Cradient vs Finite Difference Solution
OFIGMAD DARE
-46-

Initial Values

Constant t inches	$: 0.05$
Constant I inches	

(a) Objective function inches
$: \quad 0.500$
(b) Weight lbf
21.12
$\mathrm{f}_{1} \mathrm{Ez}$
$: \quad 1.86$
$\mathrm{f}_{2} \mathrm{~Hz}$
Optinsl Solution
(c)

Eigenvalue Constraints
(c)

Frequency Constraints

12
0.551
22.05
1.94
12.20
$1.150(0.0799) \quad I_{1} 1^{\text {inches }}{ }^{4}\left(\tau_{1}{ }^{\text {inches }}\right)$
$0.846(0.0514) \quad I_{5}$ inches $^{4}\left(t_{5}{ }^{\text {inches }}\right)$
$0.910(0.0573) \quad I_{6}$ inches $^{4}\left(t_{6}{ }^{\text {inches }}\right)$
$0.922(0.0584) \quad I_{7}$ inches $^{4}\left(t_{7}{ }^{\text {Inches }}\right)$
$0.875(0.0541) \quad I_{8}$ inches $^{4}\left(t_{8}{ }^{\text {inches }}\right)$

21

0.539
21.83
1.99
(Elenents $2-4,9,10$ were all at the lower bound value of aide constraint on thickness: $t=0.05$ inches, $I=0.331$ inches ${ }^{4}$)
Notes:
(a) Objective function, inches $=\sum_{i=1}^{10} t_{i}$ 10
(b) Weight, lbf $=12+18.24 \sum_{i=1} t_{1}$
(c) Convorgence criteria for the two runs were identical. Gradients were computed by analytical techniques for the eigenvalue constrained run, whereas finite difference techniques were used for the frequency constrained run.
(d) Both solutions tave an active feçuence constraint: f_{2} is at its lowar bound value.
Table 2: Comparison of Eigenvalue and Frequency Constraints

Initial Values

Oblecriva Function
(a)

Using Default Parameters

$$
0.54279
$$

$$
0.54212
$$

$$
0.54076
$$

0.54076 (No change)
0.54076 (No changa)
0.54076 (No change)

Iteration 10 (c)
(b)

Using Tighter Convergence Criteria

Iteration 11
0.54279
0.54279 (No change)

Iteration 12
0.54083

Itcration 13
0.54083 (No change)

Iterstion 14
0.54083 (No change)

Iteration 15
0.54072

Iteration 16
Itcration 17
0.54072 (No change)
0.54072 (No change)

Opeimal Solution

15
0.54076
21.37
1.94
12.20
$1.2619(0.09076)$

No. of itcrations
Oblective function inches
Weight, lbf
$f_{1}, \mathrm{~Hz}$
$\mathrm{f}_{2}, \mathrm{~Hz}$
I_{1} inches ${ }^{4}\left(\mathrm{t}_{1}\right.$ inches $)$

17
0.54072
31.87
1.96
12.20
$1.2615(0.09073)$

Notes:

(a) Default values: ITRM = 3

$$
\begin{aligned}
& \text { DELFUN }=0.0001 \\
& \text { DABFUN }=0.001
\end{aligned}
$$

(b) Tishter Criteria: ITRM $=5$

$$
\text { DELFUN }=0.00005
$$

$$
\text { DABFUN }=0.0005
$$

(c) The first ten iterations were identical.

Table 4: Convergence Historv for Two Different Convergence Criteria

(a) $\begin{array}{r} \\ \hline\end{array}$	No. of Itarations	Final Objective Function	$\begin{aligned} & I_{1} \text { inches }^{4} \\ & \left({ }^{t_{1}} \text { inches }\right) \end{aligned}$	$\mathrm{f}_{1}, \mathrm{~Hz}{ }^{(b)}$
1	15	0.540	1.262(0.0908)	1.94
10	19	0.546	$1.315(0.0960)$	2.01
100	13	0.552	$1.308(0.0953)$	2.03
700	26	0.549	$1.190(0.0838)$	2.06

Notes:

(a) For all runs, Defzult Parameters vera used:

PHI $=5.0$
ITRM = 3
DELFUN $=0.0001$
DABFUN $=0.001$
(b) The second frequancy, f_{2}, was at the lower bound constraint $\left(f_{2}=12.2 \mathrm{~Hz}\right)$.
(c) The inithal design was based on constant thickness, constant moment of inertia of 0.10 inches and 1.355 inches ${ }^{4}$ respectively.

Table 5: The Effect of Paramater THETA on the Optimal Solution

Initial Values

ORIGINA: RAR? IS OF POOR QUMint

Constant t, inches	$:$	0.25
Constant I_{1} inches 4	$:$	2.675
(a) .Objective function, inches	$:$	2.50
(b) Weight, 1bf	$:$	57.60
$\mathrm{f}_{1}, \mathrm{~Hz}$	$:$	2.02
$\mathrm{f}_{2}, \mathrm{~Hz}$	$: 12.6$	

Optinal Solutions (c)

	Case 4 $\begin{aligned} & f_{1 L}=1.9 \mathrm{~Hz} \\ & f_{1 U}=2.1 \\ & f_{2 L}=12.3 \\ & f_{2 U}=12.5 \end{aligned}$	Case 5 $\begin{aligned} & f_{1 L}=1.5 \mathrm{~Hz} \\ & f_{1 U}=1.9 \\ & f_{2 L}=12.8 \\ & f_{2 U}=13.2 \end{aligned}$	Case 6 $\begin{aligned} f_{1 L} & =2.1 \mathrm{HZ} \\ f_{1 U} & =2.5 \\ f_{2 L} & =11.6 \\ f_{2 U} & =12.0 \end{aligned}$
No. of iterations	32	29	28
Objective function, inches	0.552	0.662	0.593
Weight, lbf	22.07	24.08	22.81
$\mathrm{f}_{1}, \mathrm{~Hz}$	2.09 (e)	1.87	2.11 (d)
f_{2}, Hz	12.32 (d)	12.80 (d)	11.96
t_{1}, inches	0.1022	0.1122	0.0753
t_{2}, inches	0.0500 (f)	0.0500 (f)	0.0703
t_{3}, inches	A	\uparrow	0.0886
t_{4}, inches		\downarrow	0.0586
t_{5}, inches		0.0500 (f)	0.0500 (f)
t_{6}, inches		0.0623	\uparrow
t_{7}, inches		0.0791	
t_{8}, inches		0.1059	
t_{9}, inches	\downarrow	0.0515	\downarrow
t_{10}, inches	0.0500 (f)	0.0514	0.0500 (f)

Notes:
10
10
(a) Objective function, inches $=\sum_{i=1} t_{i}$ (b) Weight, lbf $=12+18.24 \sum_{i=1} t_{i}$
(c) ITMAX $=40, \operatorname{ITRM}=5, \operatorname{DELFIN}=0.0001, \operatorname{DABFUN}=0.0025$ for case 5 and. 6 . For Case 4, ITRM $=3$.
(d) Active lower bound contraint. (e) Active upper bound constraint.
(f) Active side constraint.

Table 6: Placement of Frequencies

Initial Values	ORIGRAL BEA: 3 -51- Of pOOR Quainty		
	Case 7	Case 8A	Case 8B
Constant t_{1} inches	0.10	0.10	0.05
Constant I , inches ${ }^{4}$	1.355	1.355	0.831
(a) oi,jective function, inches	1.000	1.000	0.500
(b) Weight, lbf	30.24	30.24	21.12
f_{1}, Hz	1.98	1.98	1.86
f_{2}, Hz	12.4	12.4	11.6
f_{3}, Hz	34.8	34.8	32.7
ITMAX	40		
ITRM	3		
delfun	0.0001		
dabfun	. 001		
$\mathrm{f}_{1 L}, \mathrm{f}_{1 \mathrm{U}}$, Hz	1.8,2.2		
$\mathrm{f}_{2 L}, \mathrm{f}_{2 U}$, Hz	12.2,12.6		
$\mathrm{f}_{3 L}, \mathrm{f}_{3 \mathrm{U}}$, Hz	34.6,35.0		
(c) Optimal Solution			
No. of iterations	20	57	44
Objective function inches	0.579	0.623	0.611
Weight 1 bf	22.56	23.37	23.13
f_{1}, Hz	2.02	2.11	2.10 (d)
f_{2}, Hz	12.51	12.00 (e)	12.00 (e)
$\mathrm{f}_{3}, \mathrm{~Hz}$ (d)	34.60	33.62	33.60 (d)
t_{1} inches	0.1178	0.0906	0.0884
t_{2} inches (f)	0.0500	0.0560	0.0526
t_{3} inches	\uparrow	0.0771	0.0744
t_{4} Inches		0.0995	0.0951
t_{5} Inches	\downarrow	0.0500 (f)	0.0500 (f)
t_{6} inches (f)	0.0500	1	\uparrow
t_{7} Inches	0.0501		
t_{8} inches	0.0608		
t_{9} inches (f)	0.0500	\downarrow	\downarrow
t_{10} inches (f)	0.0500	0.0500 (f)	0.0500 (f)
(continued)			

-52-

Notes: 10
(a) Objactive function, Inches $\underset{1=1}{E} \mathrm{E}_{1}$10
(b) Weight, $1 \mathrm{bE}=12+18.24 \sum_{i=1} \mathrm{t}_{\mathrm{i}}$(c) All gradients were computed by anaiytical technijues(d) Active lower bound constraint
(e) Active upper bound constraint
(f) Active side constraint
Table 7A: Optimization with Three Frequency Constraints

Intital Values	-53-	ORIGINAL PAGE 13 OF POOR QURZLITY	
	Casa 9A	Case 98	Case 9c
Constant t, inches	0.10	0.10	0.25
Constant $I_{\text {, inches }}{ }^{4}$	1.355	1.355	2.675
(a) Objective function, inches	1.000	1.000	2.500
(b) Weight, lbf	30.24	30.24	57.60
f_{1}, Hz	1.98	1.98	2.02
f_{2}, Hz	12.4	12.4	12.6
f_{3}, Hz	34.8	34.8	35.5
ITMAX	40	40	80
ITRM	3	5	5
DELFUN	0.0001	0.0001	0.0001
DABFUN	0.001	0.0005	0.0005
$\mathrm{f}_{1 L}, \mathrm{f}_{1 U}$, Hz	\leftarrow	1.5, 1.9	\longrightarrow
$\mathrm{f}_{2 \mathrm{~L}}, \mathrm{f}_{2 U}$, Hz	\leftarrow	.8,13.2	\longrightarrow
$\mathrm{f}_{3 \mathrm{~L}}, \mathrm{f}_{3 \mathrm{U}}$, Hz	\leftarrow	5.6,36.0	\longrightarrow
(c) Ontimal Solution			
No. of iterations	15	25	47
Objective function inchea	0.697	0.684	0.684
Weight, lbf	24.72	24.47	24.47
f_{1}, Hz	1.87 (e)	1.86	1.85
f_{2}, Hz	12.80 (d)	12.83	12.82
f_{3}, Hz	35.70	35.79	35.73
${ }_{1}{ }_{1}$ Inches	0.0927	0.1025	0.1074
t_{2}, Inches	0.0500 (f)	0.0500 (f)	0.0500 (E)
t_{3}, inches	\downarrow	\uparrow	
t_{4}, inches	0.0500 (f)	ψ	\downarrow
t_{5}, inches	0.0637	0.0500 (5)	0.0500 (f)
t_{61} Inches	0.0827	0.0705	0.0621
t_{7}, inches	0.0917	0.0943	0.0808
t_{8}, inches	0.1064	0.1166	0.1335
t_{9}, inches	0.0602	0.0500 (f)	0.0500 (f)
${ }^{1} 101$ inches	0.0500 (f)	0.0500 (f)	0.0500 (f)
(continued)			

-54-

Notes:
(a) Objactive function, inchas $=\sum_{i=1}^{10} t_{i}$
(b) Weight, Ibf $=12+18.24 \sum_{i=1}^{10} c_{i}$
(c) All gradiants vara computed by analtyical terhniquas
(d) Active lower bound constraint
(e) Active uppar bound conatraint
(f) Active side constraint

Tabla 7B: Optialzation with Three Frequency Constraints

Initial Valung	Casa 10	Cane 11A	Case 11B
Constent t inches Constant I_{1} inches 4	$\longleftarrow 0.10$		
Density, $\gamma, 1 \mathrm{bw} /$ inches ${ }^{3}$	0.05	0.10	0.10
Constant $\mathrm{H}_{1} \mathrm{l}$ lbf	1.512	1.000	0.000
(a)Objective function, ${ }^{\text {lbf }}$	24.24	28.24	18.24
(b) Height, Ibf	30.24	40.24	30.24
$f_{1}, \mathrm{~Hz}$	1.98	1.66	1.98
$\mathrm{f}_{2}, \mathrm{~Hz}$	12.4	10.7	12.4
$\mathrm{E}_{3}, \mathrm{~Hz}_{2}$	34.8	29.9	34.8
$\mathrm{f}_{1 L}, \mathrm{E}_{10}$, Ez		1.8,2.2	\longrightarrow
$⿷_{2 L}, ⿷_{2 U}$, Lz	\longleftarrow 12.2,12.6		\longrightarrow
$\mathrm{f}_{3 L}, \mathrm{f}_{3 \mathrm{~L}}$ * $\mathrm{H}=$	$\longleftarrow 34.6,35.0$		\longrightarrow
(c) Optimal Solution			
No. of iterstions	53	38	19
Objective sunction lbf	9.252	10.557	10.557
Weight lbe	15.25	22.56	22.56
$\mathrm{f}_{1}, \mathrm{~Hz}$	2.12	1.96	2.03
$\mathrm{f}_{2}, \mathrm{~Hz}$	12.60(e)	12.51	12.51
$\mathrm{E}_{3}, \mathrm{Kz}$	35.00(e)	34.60(d)	34.60(d)
t_{1} inches and W_{1} lbf	0.0500(f) \& 0(f)	$0.1150 \& 0(f)$	0.1147 \& $0(f)$
t_{2} inches and W_{2} lbf	\uparrow O(f)	0.0500 (f) \uparrow	0.0500(f) \uparrow
t_{3} inches and W_{3} lbf	0.056	\uparrow	\uparrow
t_{4} inches and W_{4} lbf	2.214		
t_{5} inches and $\mathrm{W}_{5} \mathrm{lbf}$	0.001	\downarrow	\downarrow
t_{6} inches and $W_{6} \mathrm{lbf}$	O(f)	0.0500(f)	0.0500 (E)
${ }^{4} 7$ inches and W_{7} lbf	1.194	0.0535	0.0525
t_{8} inches and $\mathrm{N}_{8} \mathrm{lbf}$	O(f)	0.0618	0.0616
t_{9} inches and W_{9} lbf	\downarrow (f)	0.0500(f) \downarrow	0.0500(f)
${ }^{t_{10}}$ inches and $\mathrm{W}_{10} \mathrm{lbf}$	$0.0500(£) 1.227$	$0.0500(\mathrm{E}) 80(\mathrm{~S})$	$0.0500(f) \& 0(f)$
	(continued)		

-56-

Notes:

(a) Objective function, 1bf $=102.4 \gamma \sum_{i=1} t_{i}+\sum_{i=1} W_{1}$
(b) Weight, Ibf = $120 \gamma+$ objective function
(c) All gradients were computed by analytical techniques

For all cases, ITMAX = 80, ITRM $=5$, DELFUN $=0.0001$, DABFUN $=0.001$
(d) Active lower bound constraint
(e) Active upper bound constraint
(f) Active side constraint

Table 8A: Optinization Including Lumped Weights

Initial Valuns

Constant $C_{\text {, inchas }}$
Conatant I, Inches ${ }^{4}$
Danaity, $Y, 1 b \mathrm{~m} /$ inchen 3
Constant $\mathrm{H}_{1}, \mathrm{lbf}$
(a) Objective function, lbt
(b) Naight, 1bf
$f_{1}, \mathrm{~Hz}$
$\mathrm{f}_{2}, \mathrm{~Hz}$
$\mathrm{f}_{3}, \mathrm{~Hz}$
$f_{1 L}, f_{1 U}$, HE
$f_{2 L} \cdot f_{2 U}, H z$
$\mathrm{f}_{3 \mathrm{~L}}, \mathrm{f}_{3 \mathrm{U}}$, Hz
(c) Opeimal Solution

No. of iterations
objective function, lbt
Naight, lbf
$f_{1}, \mathrm{~Hz}$
$\mathrm{f}_{2}, \mathrm{~Hz}$
f_{3}, H_{2}
t_{1} inches and w_{1} lbf
t_{2} inches and W_{2}, ibf
t_{3} inches and W_{3} ibf
t_{4} inches and W_{4}, $16 t$
c_{5} inches and W_{5} lbf
c_{6} inches and W_{6} lbs
${ }^{5}$, inches and $W_{7}, l b t$
t_{8} fuches and w_{5}, 1 bi
t_{0} inches and w_{y}, lbt
t_{10} faches and $W_{10,}$, 6 t

Casa 12
0.10
1.355
0.10
1.000
28.24
40.24
1.66
10.7
29.9
2.6.3.0
10.5.11.0
31.6,32.0

46
23.697
35.70
2.60 (d)
10.99
31.99

Notas:

$$
\text { (a) Objective function, lbf }=182.4 Y \sum_{i=1}^{10} t_{i}+\sum_{i=1}^{10} W_{i}
$$

(b) Waighe liff $=120_{i}+$ Objective function
(c) All gradienta were cooputed by analytical tachniques

ITMAX - 80, ITEM = 5, DELFUN $=0.0001$, DADFUN $=0.001$
(d) Active lover bound constraint
(e) Active uppor bound constraint
(f) Active side constraint

Table 8B: Optiaization Including Lumped Weights

$-60-$

Notes:

(a) Objectivo function, $1 \mathrm{bf}=182.4 \gamma \sum_{i=1}^{10} t_{i}+\sum_{i=1}^{10} W_{i}$.
(b) Weight $1 \mathrm{bf}=120 \gamma+o b j e c t i v e$ function
(c) All gradients were computed by analytical techniques

For all casen, ITMAX $=80$, ITRM $=5$, DELFUN $=0.0001$, DABFUN $=0.001$
(d) Active lower bound constraint
(e) Active upper bound constraint
(f) Active side constraint
(g) Very close to being active auto-rotational constraint

Table 9: Optimization Including Auto-Rotational Constraint

$\gamma=0.05 \mathrm{lbm} /$ inches $^{3}, t=0.10$ inches	$\frac{\Omega=0 \mathrm{RPM}}{f_{1}=2.0 \mathrm{~Hz}}$	$\frac{\Omega=300 \mathrm{RPM}}{f_{1}=5.7 \mathrm{~Hz}}$
(a) $W_{i}=1.5 \mathrm{lbf}$ $f_{1}=0.3 \mathrm{~Hz}$	$f_{1}=5.1 \mathrm{~Hz}$	

Note: (a) Lumped weights were assumed to be uniformiy distributed for purposes of computation.

Table 10: Influence of Rotational Speed, Mass, and Stiffness on the Fundamental Frequency of a Uniforn Cantilever
[nitial Values
Sonstanc, t, inches, I inches ${ }^{4}, Y$ lbf/cu.in Constant H_{1} lbf
(a) Objactiva function, lbf.
(b) Weight, Ibf

$f_{2 L}, f_{2 U}$, Hz
$f_{3 L}, f_{3 U}$, RL
$I_{\text {min }}$ lbe inches $\sec ^{2}$
$\Omega, R P M$
(c) Optimal Solution

No. of iterations
Objective function, lbf
Weight, lbf
f_{1}, Hz
$f_{2}, \mathrm{~Hz}$
$f_{3}, \mathrm{~Hz}$
$I_{m^{\prime}}$ lbf inches $\sec ^{2}$
t_{1} inches and W_{1}, lbE
E_{2} inches and W_{2} ibf
t_{3} inches and N_{3}, lbf
t_{4} inches and W_{4} ibf
t_{51} inches and W_{5} lbf
t_{6}, inches and W_{6} lbf
t_{7} inches and w_{7} ibf
t_{8}, inches and W_{8} itf
t_{9}, inches and $W_{g}, I b f$
t_{10}, inches and W_{10}, ibf

Case 14
cu. 1 n
(cortinued)

Notes: .
(a) Objective function $\mathrm{lbf}=182.4 \gamma_{i=1}^{10} \mathrm{t}_{i}+\sum_{i=1}^{10} W_{i}$
(b) Weight lbf $=120 \gamma+$ objectiva fuaction
(c) All gradients ware computed by analytical techniques

Eigenvalues were computed with double precision routines
For all cases, ITMAX $=80$, ITRM $=5$, DELFUN $=0.0001$, DABFUN $=0.001$
(d) Active lower bound constraint
(a) Active uppar bound constraint
(f) Active side constraint
(g) Active auto-rotational constreint

Table 11A: Optimization of Rotating Beam

Initial Values

Constant t,inches, I inches ${ }^{4}, \gamma 1 \mathrm{bm} / \mathrm{cu} . \mathrm{in}_{\mathrm{A}}$
Constant W_{1},lbf
(a) Objective function, lbf.
(b) Weight, lbf
$f_{1 L}, f_{1 U}, H z$
$\mathrm{f}_{2 \mathrm{~L}}, \mathrm{f}_{2 \mathrm{U}}$, Hz
$\mathrm{f}_{3 \mathrm{~L}}, \mathrm{f}_{3 \mathrm{U}}, \mathrm{Hz}$
$I_{\text {min }}$ lbf inches sec^{2}
Ω RPM 300
(c) Optimal Solution

No. of iterations
Objective function lbf
39.

Weight lbf
10.539
$\mathrm{f}_{1}, \mathrm{~Hz}$
$f_{2}, \mathrm{~Hz}$
$\mathrm{f}_{3}, \mathrm{~Hz}$
I_{m} lbf inches $\sec ^{2}$
t_{1}, inches and $W_{1}, 1 b f$
t_{2} inches and $W_{2}, 1 b f$
t_{3} inches and $\mathrm{N}_{3}, \mathrm{IbF}$
t_{4} inches and H_{4}, 1 ibf
t_{5}, inches and W_{5}, ibf
t_{6} inches and $W_{6},{ }^{1 b f}$
t_{7} inches and W_{7} ibf
t_{8} inches and W_{8}, lbf
t_{9}, inches and $W_{9}, 1 b f$
t_{10} inches and $\mathrm{W}_{10}{ }^{1 \mathrm{bf}}$

Case 17
$0.10,1.355,0.05$
1.512
24.24
30.24
5.2,5.6
18.0,18.6
42.0,43.0

1100

Notes:

(a) Objective function, $1 b \leq=182.4 \gamma \sum_{i=1}^{10} t_{i}+\sum_{i=1}^{10} W_{i}$
(b) Weight, lbf = 120Y + objective function
(c) All gradients were computed by analytical techniques

Eigenvaluss were computed with double precision routines
For all cases, $\operatorname{ITMAX}=80$, $\operatorname{ITRM}=3$, DELFUN $=0.0001$, DABFUN $=0.01$
(d) Active lower bound constraint
(e) Active upper bound constraint
(f) Active side constraint
(g) Active auto-rotational constraint

Table 11B: Optimization of Rotating Beam

Frequency

No. of	First Mode (Hz)	Error $(\%)$	Second Mode (Hz)	Error $(\%)$
6	1.9678	0.6	12.142	3.6
8	1.9733	0.3	12.258	2.7
10	1.9761	0.2	12.312	2.3
12	1.9780	0.1	12.342	2.0
14	1.9789	0.06	12.360	1.9
20	1.9805	0.03	12.385	1.7
Analytical	1.980		12.6	

Table 12: Frequency vs. Number of Elements

		-67			
		Freque (C몽			
Mode No.	(1)	(2)	(3)	(4)	(5)
1	2.01622	1.95462	2.01614	2.01614	2.01511
2	12.6354	12.6354	12.6355		
3	35.3872	35.3916		35.3875	
4	69.3934			69.3937	
5	114.892			114.892	
6	172.121	Rest are	entiajly	172.122	reat are
7	241.495	at		241.495	essontially
8	323.537			323.536	identical
9	418.329			418.329	
10	520.042			520.043	to (1)
11	692.152			692.155	
12	836.210			836.210	
13	1013.68			1013.63	
14	1223.45			1223.44	
15	1470.15			1470.15	
16	1758.30			1758.31	
17	2086.84			2086.85	
18	2436.29			2436.30	
19	2743.53			2783.53	
20	3433.47			3433.43	

Table 13: Frequencies Calculated by Various Metheds

Element Thicknessas (Inches)

Element No.	Singla-Praciaion Calculation	Doubla-Precision Calculation
1	0.0753	0.0724
2	0.0703	0.0881
3	0.0886	0.0821
4	0.0856	0.0564
5	0.0500	0.0500
6	0.0500	0.0500
7	0.0500	0.0500
8	0.0500	0.0500
9	0.0500	0.0500
10	0.0500	0.0500
Objectivo		
$\begin{aligned} & \text { Function } \\ & \text { (LBF) } \end{aligned}$	0.593	0.599

Table 14: Difference in Optimal Designs Caused bv Errors in
Eigenvalue Calculation
-69-

Elemant No.	(1) $\partial f_{1} / \partial t_{1}$ $(\mathrm{cpa} / \mathrm{In})$	(2) $\partial f_{1} / \partial \Phi_{1}$ $(\mathrm{cps} / \mathrm{bbf})$	(3) $\partial f_{1} / \partial \mathrm{m}_{1}$ $(\mathrm{cpa} / \mathrm{bb} f)$
1	4.791	0.525	0.000
2	3.492	0.383	-0.001
3	2.388	0.262	-0.003
4	1.472	0.161	-0.009
5	0.729	0.080	-0.022
6	0.105	0.012	-0.043
7	-0.443	-0.049	-0.073
8	-0.957	-0.105	-0.114
9	-1.489	-0.163	-0.166
10	-2.074	-0.227	-0.229

Table 15: Sensitivity of Frequency to Changes in Thickness and Weight

```
j
    -70-
```

11. FIGURES

Figure 2: Elesent under Constant Tension.

Figure 3: Obj vs. No. of Elements.

Figure 4: Lumped Height Versus No. of Elements.

Figure 5: Moment of Inertia at Free End Versus No. of Elements in Mesh.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 6: CoxbinodNaight va. No. of Elementa.

ORIGINAL PAGE 19 OF. POOR QUALITY

Figure 7: Optimal Designs for Various Values of n.

Figure 7: (Continued)

Figure 8: Alternstive Optiaum - Found by Imposing Conatraint $0.83073 \leq I_{10} \leq 2.0$.

$$
\begin{aligned}
& 8 \\
& 03 \\
& =\pi D \\
& \text { (D) } \triangle 4 \square \\
& \text { - } \\
& \text { FuLGMED } \\
& 1 \\
& A \sqrt{P} \quad 89 \quad \sqrt{9} 0
\end{aligned}
$$

End of Document

[^0]: (2) Peters, D.A. Ko, T., Korn, A., and Rossow, M. P., First Semi-Annual Status Report on Design of Heliconter Rotor Blades for Optimum Dvnamic Characteristics, NASA-Langley Grant No. Nac-1-250, Sept. 15, 1982.

