(NASA-TM-82511)CESCRIPTION OF AN83-18837MATHEMATICAL MODEL AND COMFUTEF SIMULATIONOF SEPARATION OF THE NOSE CAP FROM THE SOLIDUnclassOF SEPARATION OF THE NOSE CAP FROM THE SOLIDUnclassCSCL 22E G3/18ROCKET BOOSTER (NASA)33 p HC A03/MF A01UnclassCSCL 22E G3/1802853

NASA TECHNICAL MEMORANDUM

NASA TM-82511

DESCRIPTION OF A MATHEMATICAL MODEL AND COMPUTER SIMULATION OF SEPARATION OF THE NOSE CAP FROM THE SOLID ROCKET BOOSTER

By Arthur J. Schwaniger, Jr. and Hughlen I. Murphree Systems Dynamics Laboratory

December 1982

NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

	TECHNIC	L REPORT STANDARD TITLE PAGE				
1. REPORT NO. NASA TM:82511	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.				
4, TITLE AND SUBTITLE Description of a Mathematical Mode of Separation of the Nose Cap from	el and Computer Simulation a the Solid Rocket Booster	5. REPORT DATE December 1982 5. PERFORMING ORGANIZATION CODE				
7. AUTHOR(S) Arthur J. Schwaniger, Jr. and Hughl	len I. Murphree	B. PERFORMING ORGANIZATION REPORT #				
9. PERFORMING ORGANIZATION NAME AND AD	DRESS	10. WORK UNIT NO.				
George C. Marshall Space Flight Cen Marshall Space Flight Center, Alaba	nter ma 35812	11. CONTRACT OR GRANT NO.				
12. SPONSORING AGENCY NAME AND ADDRESS		13. TYPE OF REPORT & PERIOD COVERED				
National Aeronautics and Space Ad	ministration	Technical Memorandum				
Washington, D.C. 20546		14. SPONSORING AGENCY CODE				
15. SUPPLEMENTARY NOTES		1i				
Prepared by Systems Dynamics Lab	oratory, Science and Engineering Dire	ctorate.				
16. ABSTRACT	· · · · · · · · · · · · · · · · · · ·					
cap separation is discussed and the results of the applications are presented. With the information given a user should be able to exercise the computer program with a minimum of effort. ORIGINAL PAGE 13 OF POOR QUALITY						
	1					
17. KEY WORDS	18, DISTRIBUTION ST	ATEMENT				
	Unclassified —	Unlimited				
19, SECURITY CLASSIF, (of this report)	20, SECURITY CLASSIF, (of this page)	21. NO. OF PAGES 22. PRICE				
Unclassified	Unclassified	32 NTIS				

TABLE OF CONTENTS

.

		Page
I.	INTRODUCTION	1
II.	THE MATHEMATICAL MODEL	1
	 A. Coordinate Systems. B. Equations of Motion and Integration C. Aerodynamics. D. Data Form. 	1 2 3 4
III.	USING THE COMPUTER PROGRAM	4
	 A. General Information	4 4 5
IV.	CONCLUSION	6
REFEI	RENCES	28

PRECEDING PAGE BLANK NOT FILMED

LIST OF ILLUSTRATIONS

·. •

Figure	Title	Page
1.	Coordinate systems and preload parameters	7
2.	Parameters used in DIST subroutine	8
3.	Comparison of motion of base of nose cap as simulated and observed in sled test	9

LIST OF TABLES

Table	Title	Page
1.	Listing of DCAP	10
2.	Listing of NOSECAP	11
3.	Output Parameters	27

TECHNICAL MEMORANDUM

DESCRIPTION OF A MATHEMATICAL MODEL AND COMPUTER SIMULATION OF SEPARATION OF THE NOSE CAP FROM THE SOLID ROCKET BOOSTER

I. INTRODUCTION

The design of the decelerator subsystem for the Space Shuttle Solid Rocket Boosters includes a nose cap mounted at the forward end of the booster over the Drogue and Pilot parachute packs. The decelerator subsystem sequence of events begins with the ejection of the nose cap. In designing the system, it was necessary to determine what velocity increment had to be imparted to the nose cap so that it would separate without contacting the chute packs. Several different approaches were taken. A series of wind tunnel tests was conducted and a full scale test, using a rocket sled to propel a nose cap to high speed conditions, were run. In order to apply an analytic approach, a mathematical model was formulated. The equations of motion of the nose cap were derived by Steve Winder and Hughlen Murphree, both of the Systems Dynamics Laboratory, in 1974. The original computer program to implement the generation of nose cap trajectories was done by Hughlen Murphree. This report documents the model and computer program giving the system of equations, coordinate systems, and details of input and output data required to simulate a nose cap trajectory.

The aerodynamic characteristics of the nose cap depend on whether or not it is in close proximity to the booster. When the cap is close to the booster the aerodynamic characteristics are functions of both angle of attack and displacement from the booster. When the cap moves without a large afterbody, as it did in the rocket sled tests, the aerodynamic characteristics are functions of only angle of attack. (Mach number is essentially constant during the separation movement.) The program provides an option for simulation of either case.

Because of design features of the SRB and the nose cap, the internal pressure in the cap could be very low at the time of separation. Thus, the external pressure would act to retard the separation. Provisions are made to include this effect by incorporating the internal pressure during separation as a function of separation velocity and displacement.

The model incorporates two dimensions of translation and one of rotation. The British system of units is used throughout.

II. THE MATHEMATICAL MODEL

A. Coordinate Systems

The basic coordinate system used is an inertial system with origin fixed at the center of gravity of the nose cap at time zero. The X_{11} axis is horizontal and the Z_{11} axis is vertical with positive direction downward. Flight path angle, γ , is measured positive upward from the X_{11} axis to the velocity vector. Attitude angle, θ , is measured positive upward from the X_{11} axis to the long axis of the nose cap, and angle of attack, α , is measured from the velocity vector to the long axis of the nose cap. The velocity

components of the cap in this system, \dot{X}_{11} and \dot{Z}_{11} are called U_{11} and W_{11} , respectively. The velocity components of the booster are also given in this system and are called U_{1B} and W_{1B} .

A body fixed coordinate system, with the origin fixed at the center of gravity of the nose cap, the X_1 axis fixed on the long axis of the cap with positive direction toward the nose, and Z_1 axis perpendicular to X_1 , is used as the system in which the cap motion is described. The velocity in this system is denoted by U_1 and W_1 . These systems are illustrated in Figure 1.

Finally, a coordinate system whose origin moves with the booster and whose axes are fixed parallel to X_{11} and Z_{11} is used to record the motion of points on the nose cap relative to the booster. These coordinates are denoted by X and Z with subscripts to identify the point being tracked. The velocity components of the cap in this system are called U and W.

B. Equations of Motion and Integration

A flat earth with constant gravity magnitude and direction is assumed. The booster motion during the time of interest is assumed to be of constant velocity magnitude and direction and the atmospheric density is assumed constant. These assumptions are warranted by the fact that the nose cap separates from the booster and clears the drogue pack in less than 0.1 sec.

The velocity and attitude of the mated booster and nose cap are given as U_{11} , W_{11} , and θ . The ΔV of nose cap separation is given as DV. The first step is to express the velocity of the cap in the body fixed system. This is done by the equations:

 $U_1 = U_{1I} \cos \theta - W_{1I} \sin \theta + DV$

$$W_1 = U_{1I} \sin \theta + W_{1I} \cos \theta$$

Next using X_m to represent nose cap mass and X_I for moment of inertia, the time derivatives of U_1 , W_1 , and θ are given as:

$$\dot{U}_1 = -W_1 \dot{\theta} - G \sin \theta + \frac{F_A + F_P}{X_m}$$
 ORIGINAL PAGE IS
OF POOR QUALITY

$$\ddot{\theta} = \frac{-F_{\rm N}(\rm CG-CP) + X_{m1}}{X_{\rm I}}$$

 $\dot{W}_1 = U_1 \dot{\theta} + G \cos \theta + \frac{F_N}{X_m}$

where

G = acceleration due to gravity

ORIGINAL PAGE IS OF POOR QUALITY

 F_A = aerodynamic axial force

 F_N = aerodynamic normal force

 F_P = force due to difference between ambient pressure and nose cap internal pressure.

CG = cap center of gravity location

CP = cap center of aerodynamic pressure location

 X_{m1} = pitch moment coefficient times reference diameter times $\rho V^2 A/2$.

These equations are numerically integrated by the Runge-Kutta method yielding U_1 , W_1 , and $\dot{\theta}$. U_1 and W_1 are transformed to U and W as follows:

 $U_{11} = U_1 \cos \theta + W_1 \sin x$

 $W_{11} = -U_1 \sin \theta + W_1 \cos \theta$

 $\mathbf{U} = \mathbf{U}_{11} - \mathbf{U}_{1B}$

 $W = W_{11} - W_{1B}$.

Finally, U, W, and $\dot{\theta}$ are integrated to produce X, Z, and θ .

C. Aerodynamics

The aerodynamics of the nose cap are given in Reference 1 as functions of angle of attack, α , with separation distance from the booster as a parameter. If motion of the cap from the vicinity of the booster is to be simulated, the aerodynamic coefficients are determined by linear interpolation among points in tables with both α and separation distance as independent variables. If motion of the cap without an afterbody present, as with the rocket sled tests, is to be simulated, the coefficients are determined as functions of α alone using the data for separation distance equal to one diameter or greater.

The differences between internal and external pressure are given as functions of separation distance for various cap separation velocities in Reference 2. This pressure difference applied over the base area of the cap is introduced in the equations of motion of the cap as a retarding force along the X_1 axis.

D. Data Form

Most applications of the nose cap trajectory model are done in terms of the angle of attack, dynamic pressure, altitude, and flight path angle of the mated booster and nose cap at the instant of separation. These parameters do not appear explicitly in the model and were not used in the original computer program. The latest version of the program, however, has these parameters for input and incorporates the simple transformations that were originally done by hand each time a simulation was set up. One exception to this is altitude. The atmospheric density, ρ , which appears in the aerodynamic force and moment, and the gravitational acceleration, G, are functions of the altitude at which separation takes place. These must be calculated or determined from tabular data beforehand and must be input to the program.

III. USING THE COMPUTER PROGRAM

A. General Information

The source program is written in Fortran IV and is stored and functions on the Honeywell Sigma V computer. It is called NOSECAP. The data file is called DCAP. DCAP and NOSECAP are listed in Tables 1 and 2.

B. Input

The computer program is set up specifically for the aerodynamic data as it is given in Reference 3. This reference gives axial force coefficient, normal force coefficient, and pitching moment coefficient as functions of angle of attack, α , with the parameter, separation distance divided by length, $\Delta X/D$. Thirteen values of α are chosen and listed as AL(I). Axial force coefficients are specified as CAT1(I) through CAT4(I) where the l signifies the value at separation distance, $\Delta X/D$, equals 1 and 4 signifies separation distance equals 0. XCMT1(I) through XCMT4(I) similarly represents pitch moment coefficient for separation distance 1 through 0. CNT1(I) through CNT6(I) represents the normal force coefficient since the reference gives six curves for normal force coefficient instead of four. If the number of entries in these tables is changed, the dimension statements must be changed accordingly.

If the data are to be used to represent separation from the booster, the statement in line 146 of the program is used as part of the comment started in line 145, that is the letter C remains in the first column. If the sled test is to be simulated, the letter C is removed from the beginning of line 146 and the program proceeds with the quantity XCHK = 1.

The above data are part of the program and can only be changed by modification of the program. The following data are located in the data file and are read by the program.

The difference between internal and ambient pressure is given in Reference 2 as a function of separation distance with nose cap velocity as a parameter. If the pressure difference is to be taken into account, the appropriate curve should be chosen and the data loaded as separation distance equals A01 and pressure differential equals DPR. This table is dimensioned for twelve points. If more or fewer points are to be loaded, the dimension statement should be changed accordingly. If pressure difference is to be neglected, DPR should be loaded as zero.

The next data loaded are G, the gravitational acceleration in ft/sec^2 ; RHO, the atmospheric density in slugs/ft³; and XLENG, the length of the nose cap in inches.

The next line of data is CPP, the location of aerodynamic center of pressure in percent of body length, and REFD, the reference diameter in inches.

The next line of data is XI, the moment of inertia in slug ft^2 ; ALPH, the angle of attack of the booster and cap before separation in degrees; DYNPR, the dynamic pressure before separation in lb/ft^2 ; GAMMA, the flight path angle before separation in degrees; TH1D, the initial rate of change of attitude in degrees/sec; and DV, the separation velocity increment in ft/sec.

The next line of data is WT, the weight of the cap in lb; CGP, the location of the center of gravity of the cap in percent of body length; XCG, the X coordinate of the center of gravity of the cap, in body fixed coordinates (usually zero); ZCG, the Z coordinate of center of gravity of the cap in body fixed coordinates (usually zero); and AREA, the reference area of the cap in ft².

The last line of input is XCONE, the distance from the cap CG to the base of the cap in feet; and ZCONE, the distance in feet from the center line of the nose cap to a point on the base of the cap. XCONE and ZCONE establish the points P and Q which are tracked in the trajectory printout (Fig. 1). This completes the data file.

Besides printing the trajectory of nose cap CG, and points P and Q as functions of time, the computer program has a subroutine called DIST which tracks an extreme point on the nose cap (usually the corner of the thruster post) and determines the distance up the side of the drogue pack where this point intersects the drogue pack envelope (Fig. 2). This distance is printed between time steps where the crossing of the pack envelope occurs. This subroutine contains constants that could be changed if a different cap configuration is studied. These constants are illustrated in Figure 2. Note that the angle PP is used in the subroutine in radians.

The integration time step may be adjusted if a different cap configuration is studied (for instance if wind tunnel tests are simulated). The time step DELTA is specified on line 130 of the main routine. Also, the value of DELTA is used in line 289. These values should always be equal. The value, 2^{-8} , has been found appropriate for simulating motion of the full scale SRB nose cap. For simulation of wind tunnel tests where the scale factor is 1/8, for example, the integration time step should be scaled by a factor $\sqrt{1/8}$.

The time point at which to stop the computation is given at line 87 as TSTOP. At present, the value TSTOP = 0.16 is used.

C. Output

The input data file is printed out in the first block of output. The printout then proceeds with trajectory parameters at regular time intervals. A list of the mnemonics and the parameters they represent is given in Table 3.

IV. CONCLUSION

Completion of the sled test presented an opportunity to compare the nose cap separation simulation with test results. Motion picture film of the test was analyzed and a graphic representation of the nose cap motion was drawn. A simulation was then made using the test conditions and a similar graph was overlaid on the test results. This is shown in Figure 3. The coordinates used are those of the film analysis. The abscissa is along the base of the nose cap before separation. The origin is at the leading edge of the nose cap before separation. Positions of the nose cap are shown for both test results (solid line) and simulation (broken line) at various times. The times do not coincide exactly, in general, because the simulation time step was 2^{-8} sec and the film speed was 0.0125 sec per frame. Nevertheless, the simulated motion is very similar to the observed motion.

The test condition was the design limit condition of 80 deg angle of attack and dynamic pressure 200 lb/ft^2 . The data file shown in Table 1 is the one used for this simulation and all of the test conditions are included there. This particular simulation serves as a sample of the program function. It is identified as run 0464 and is kept in the files of the Dynamics and Trajectory Analysis Branch.

The good agreement between the test and simulated data has established the validity of use of the simulation to analyze the separation motion.

Figure 1. Coordinate systems and preload parameters.

Figure 2. Parameters used in DIST subroutine.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 3. Comparison of motion of base of nose cap as simulated and observed in sled test.

TABLE 1. LISTING OF DCAP

```
1.000 0.0,5.0,10.0,15.0,20.0,25.0,

2.000 30.0,35.0,40.0,45.0,50.0,300.0,

3.000 0.,0.,0.,0.,0.,

4.000 0.,0.,0.,0.,0.,

5.000 32.2,002,75.,

6.000 .667,68.03

7.000 52.,80.,200.,0.,0.,76.,

8.000 300.,.66,0.,0.,25.24,

9.000 2.125,2.83333,
```

*

.

• •

OF POOR QUALITY

1.000 C NOSE CAP SEPARATION STUDIES 2.000 REAL M.M1 3.000 DIMENSION CNT1(13), XCMT1(13), CAT1(13), CNT5(13), CNT6(13), A L(13)4.000 DIMENSION CNT2(13), XCMT2(13), CAT2(13) 5.000 DIMENSION CNT3(13).XCMT3(13).CAT3(13) ORIGINAL PAGE IS DIMENSION CNT4(13), XCMT4(13), CAT4(13) 6.000 7.000 DIMENSION A01(12), DPR(12) 8.000 COMMON/SECD/TH1DD, DUMO(59) 9.000 COMMON/FUNT/Y(3).DUM1(57) 10.000 COMMON/FIRT/F(3), DUM2(57) 11.000 COMMON/LAB/U1P, TH1P, REFD 12.000 COMMON XCONE, ZCONE 13.000 EQUIVALENCE (TH1D,F(1)),(U1D,F(2)),(U1D,F(3))14.000 EQUIVALENCE (TH1.Y(1)).(U1.Y(2)) (U1.Y(3))DATA (CAT1(I), I=1, 13)/.4,.42,.38,.25,.1,.02,.22,-.18,-.8, 15.000 -1.3. 16.000 *-1.38.-1.38.-1.4/ 17.000 DATA (CAT2(I), I=1,13)/.4,.42,.3,.18,0.,-.06,.16,-.19,-.9. -1.3. 18.000 *-1.38.-1.38.-1.4/ 19.000 DATA (CAT3(I), I=1,13)/.4..42..28..1.-.02.-.16..04.-.2.-1. .-1.3. 20.000 *-1.38.-1.38.-1.4/ 21.000 DATA (CAT4(I), I=1,13)/.4..42..21..06.-.1.-.18.0..-.21.-1. 1,-1.3. 22.000 *-1.38.-1.38.-1.4/ 23.000 DATA (XCMT1(I), I=1,13)/0...02..03..02.-.02.-.05.-.1.-.1.0 ...04. 24.000 *.05..04.0./ 25.000 DATA (XCMT2(I), I=1,13)/0...02..03.0..-.03.-.07.-.13.-.12. -.02. *.04..05..04.0./ 26.000 27.000 DATA (XCMT3(I), I=1,13)/0...61..02.-.02.-.04.-.09.-.15.-.1 З, 28.000 *-.03..03..04..04.0./ X

TABLE 2. (Continued)

é.

.

29.000	DATA (XCMT4(I),I=1,13)/0.,.01,.01,04 ,08,:	12,18,
14,06,		
30.000	*.01,.03,.04,0./	
31.000	DATA (AL(I), I=1,13)/0.,15.,30.,45.,60.,75.,90.,	105.,120.,
135.,		
32.000	*150.,165.,180./	
33.000	DATA (CNT1(I), I=1,13)/0.,.38,.8,.82,.8,.7,.55,	44,.33,.12
,		
34.000	*02,1,0.	
35.000	DATA (CNT2(I), I=1,13)/0.,.39,.82,.9,.86,.76,.57	,.45,.34,.
13,		
36.000	*02,1,0. /	
37.000	DATA (CNT3(I), I=1,13)/0.,.4,.84,.98,.96,.81,.61	,.46,.35,.
14,		
38.000	*02,1,0./	
39.000	DATA (CNT4(I), I=1,13)/0.,.41,.9,1.01,1.02,.9,.6	5,.49,.36,
.15,		
40.000	*~.02,1,0./	
41.000	DATA (CNT5(I),I=1,13)/0.,.42,.97,1.13,1.16,1.05	,.72,.51,.
37,.16,		
42.000	*02,1,0./	•
43.000	DATA (CNT6(I), I=1, 13)/0.,.43,1.12,1.35,1.46,1.4	,.8?,.53,.
39,.17,		•
44.000	*02,1,0./	00
45.000	25 READ (5,92),(A01)	פת
46.000	READ (5,92),(DPR)	0 ž
47.000	WRITE (6,92),(A01)	OR AL
48.000	WRITE (6,92),(DPR)	съ
49.000	READ (5,2),(G,RHO,XLENG)	
50.000	READ (5,2), (CPP, REFD)	គឺក្
51.000	READ (5,92),(XI,ALPH,DYNPR,GAMMA,TH1D,DV)	22
52.000	READ (5.2).(WT.CGP.X1.21.AREA)	
53.000	READ (5.2). (XCONE, ZCONE)	
54.000	XLEN-XLENG	
55.000	ANGLEA = ATAN(XLENG/(REFD#.5))	
56.000	SIDEL = XLENGZ N(ANGLEA)	
*		
T		

57.000		SIDEL=SIDEL/12.	
58.000		U1P = DV	
59.000		TH1P = ALPH+GAMMA	
60.000		WRITE(6.92),(G.RHO.XLENG)	
61.000		WRITE(6,92),(CPP,REFD)	
62.000		WRITE(6.92) .(XI.ALPH.DYNPR.GAMMA.TH1D.DV)	
63.000		WRITE(6.92).(WT.CGP.X1.Z1.AREA)	
64.000		WRITE(6.92), (XCONE, ZCONE)	
65.000	92	FORMAT(GE15.6)	— –
66.000		C=57.29578	우였
67.000		ALPH=ALPH/C	20
68.000		GAMMA = GAMMA/C	N K S
69.000		TH1=ALPH+GAMMA	구도
70.000		UUV=SGRT(2.0*DYNPR/RHO)	PA
71.000		U1I=VVV#COS(GAMMA)	₽ Â
72.000		W1I=-VVV#SIN(GAMMA)	37
73.000		U1B=U1I	~ 02
74.000		W1B=W1I	
75.000		TH1DD=0.	
76.000		PSI=ATAN2(ZCONE,XCONE)	
77.000		TH1D = TH1D/C	
78.000		TH11=TH1	
79.000		THETA = TH1	
80.000		$U1 = U1I \times COS(TH1) - U1I \times SIN(TH1) + DV$	
81.000		$W1 = U1I \times SIN(TH1) + W1I \times COS(TH1)$	
82.000	C	THE ABOVE EQUATIONS PUT UI AND WI IN THE BODY AXIS SYST	ſEM
83.000		I I I = 0	
84.000		K = 0	
85.000		L=12	
86.000		N=13	
87.000		TSTOP=0.16	
88.000		XM=WT/G	
89.000		THA=PSI-TH1	
90.000		R=8.*0.46/12.	

. -

13

≭

91.000	TLEN=(2.56*8.)/12.
92.000	FLEN=(8.1*8)/12.
93.000	THI =TH1
94.000	XA=X1-XCONE*COS(THI)-ZCONE*SIN(THI)+R*SIN(THI)
95.000	ZA=Z1-XCONE*SIN(THI)+ZCONE*COS(THI)-R*COS(THI)
96.000	G1=108./57.3-THI
97.000	G2=(72./57.3)+TH1-(90./57.3)
98.000	M=TAN(G2) ···
99.000	B=ZA-M*XA
100.000	XB=X1-XCONE*COS(THI)+ZCONE*SIN(THI)-R*SIN(THI)
101.000	ZB=Z1-XCONE*SIN(THI)-ZCONE*COS(THI)+R*COS(THI)
102.000	AC1=M*M+1.
103.000	BC1=-2.*XA-2.*M*ZA+2.*B*M
104.000	CC1=XA*XA+ZA*ZA-2.*B*ZA+B*B-FLEN*FLEN
105.000	XA1=(-BC1+SQRT(BC1*BC1-4.*AC1*CC1))/(2.*AC1)
106.000	ZA1= (M*XA1+B)
107.000	M1 = (ZB - ZA) / (XB - XA)
108.000	B2=ZA1-M1*XA1
109.000	AC2=M1*M1+1.
110.000	BC2=-2.*XA1+2.*M1*B2-2.*M1*ZA1
111.000	CC2=XA1*XA1+B2*B2-2.*ZA1*B2+ZA1*ZA1-TLEN*TLEN
112.000	XB1=(-BC2+SQRT(BC2*BC2-4.*AC2*CC2))/(2.*AC2)
113.000	$2B1 = (M1 \times XB1 + B2)$
114.000	M=TAN(G1)
115.000	XTP = XA
116.000	ZTP=ZA
117.000	WRITE(3),XTP,ZTP
118.000	XTP=XB
119.000	ZTP=ZB
120.000	WRITE(3),XTP,ZTP
121.000	XTP=XB1
122.000	ZTP=ZB1
123.000	WRITE(3),XTP,ZTP
124.000	XTP=XA1

original page is of poor quality •

*

125.000			ZTP=ZA1
126.000			WRITE(3), XTP.ZTP
127.000			XTP=XA
128.000			2TP=7A
129.000			WRITE(3), XTP. ZTP
130.000			DELT = . 00390625
131.000			TIME=0.0
132.000			PRTIM = 0.
133.000			PLTSAU = 0.
134.000			I = 1
135.000		2	FORMAT (5E15.6)
136.000		200	IND=1
137.000		500	CONTINUE
138.000			ALPHA=XTAN2(U1,U1)
139.000			IF(ALPHA)501,502,502
140.000		501	ALPHA=360.0+ALPHA
141.000		502	CONTINUE
142.000			XCHK=X1/(REFD/12.)
143.000	С		
144.000	С		
145.000	С		THIS IS ONLY USED FOR THE SLED TEST EVALUATIONS
146.000	С		XCHK=1.0
147.000	C		
148.000	C		
149.000			IF(XCHK.GE.1.) GO TO 900
150.000	С		THIS IS FOR XCHK=0.3
151.000		901	CALL TBL(AL,CNT2,ALPHA,N,CN2)
152.000			XCHK1=0.3
153.000			CNC1=CN2
154.000			IF(XCHK.GE.0.3) GO TO 900
155.000	С		THIS IS FOR XCHK=0.2
156.000		902	CALL TBL(AL,CNT3,ALPHA,N,CN3)
157.000			IF(XCHK.GE.0.2) GO TO 802
158.000			XCHK1=0.2
*			

ORIGINAL PAGE IS

2

.

١s

159.000		CNC1=CN3
160.000		GO TO 903
161.000	802	XCHK2=0.2
162.000		CNC2=CN3
163.000		GO TO 909
164.000	с	THIS IS FOR XCHK=0.1
165.000	903	CALL TBL(AL, CNT4, ALPHA, N, CN4)
166.000		IF (XCHK.GE.0.1) GO TO 803
167.000		XCHK1=0.1
168.000		CNC1=CN4
169.000		GO TO 904
170.000	803	XCHK2=0.1
171.000		CNC2=CN4
172.000		GO TO 909
173.000	C	THIS IS FOR XCHK=0.05
174.000	904	CALL TBL(AL, CNT5, ALPHA, N, CN5)
175.000		IF(XCHK.GE.0.05) GO TO 804
176.000		XCHK1=0.05
177.000		CNC1=CN5
178.000		GO TO 905
179.000	804	XCHK2=0.05
180.000		CNCS+CN5
181.000		GO TO 909
182.000	C	THIS IS FOR XCHK=0.0
183.000	905	CALL TBL(AL,CNT6,ALPHA,N,CN6)
184.000		IF(XCHK.GE.0.0) GO TO 805
185.000		CN=CN6
186.000		GO TO 911
187.000	805	XCHK2=0.0
188.000		CNC2=CN6
189.000		GO TO 909
190.000	C	THIS IS FOR XCHK=1.0
191.000	900	CALL TBL(AL,CNT1,ALPHA,N,CN1)
192.000		XCHK2=1.0
*		

ORIGINAL PAGE IS OF POOR QUALITY

193.000		CNC2=CN1
194.000		IF(XCHK.GE.1.0) GO TO 910
195.000	909	CN=((XCHK-XCHK1)/(XCHK1-XCHK2))*(CNC1-CNC2)+CNC1
196.000		GO TO 911
197.000	910	CN=CN1
198.000	911	CONTINUE
199.000		IF(XCHK.GE.1.) GO TO 700
200.000 C		THIS IS FOR; XCHK+0.2
201.000	701	CALL TBL(AL, XCMT2, ALPHA, N, XCM2)
202.000		CALL TBL(AL,CAT2,ALPHA,N,CA2)
203.000		XCHK1=0.2
204.000		XCM1=XCM2
205.000		CA1=CA2
206.000		IF(XCHK.GE.0.2) GO TO 700
207.000 C		THIS IS FOR XCHK=0.05
208.000	202	CALL TBL(AL,XCMT3,ALPHA,N,XCM3)
209.000		CALL TBL(AL,CAT2,ALPHA,N,CA3)
210.000		IF(XCHK.GE.0.05) GO TO 601
211.000		XCHK1=0.05
212.000		XCM1=XCM3
213.000		CA1=CA3
214.000		GO TO 703
215.000	601	XCHK2=0.05
216.000		XCM5=XCM3
217.000		CA2=CA3
218.000		GO TO 709
219.000 C		THIS IS FOR XCHK=0.0
220.000	703	CALL TBL(AL,XCMT4,ALPHA,N,XCM4)
221.000		CALL TBL(AL,CAT4,ALPHA,N,CA4)
222.000		IF(XCHK.GE.0.0) GO TO 605
223.000		XCM=XCM4
224.000		CA=CA4
225.000		GO TO 711
226.000	605	XCHK5=0.0
*		

ORIGINAL PAGE IS

.

227.000		XCM2=XCM4
228.000		CA2=CA4
229.000		GO TO 709
230.000	с	THIS IS FOR XCHK=1.0
231.000	700	CALL TBL(AL.XCMT1.ALPHA.N.XCM6)
232.000		CALL TBL(AL,CAT1,ALPHA,N,CA6)
233.000		XCHK2-1.0
234.000		XCM2=XCM6
235.000		CA2=CA6
236.000		IF(XCHK.GE.1.) GO TO 710
237.000	709	XCM+((XCHK-XCHK1)/(XCHK1-XCHK2))*(XCM1-XCM2)+XCM1
238.000		CA=((XCHK-XCHK1)/(XCHK1-XCHK2))*(CA1-CA2)+CA1
239.000		GO TO 711
240.000	710	XCM=XCM6
241.000		CA-CA6
242.000	711	CONTINUE
243.000		AA= 0.5*RHO*(U1*U1+W1*W1)*AREA
244.000		XM1=AA*XCM*(REFD/12.0)
245.000		C1P=-(XLEN/12.0)*(CGP-CPP)
246.000		FA =-AA*CA
247.000		$FN = -AA \pm CN$
248.000		XMOMEN=TH1DD*XI
249.000		TH1DD=((C1P#FN)+XM1)/X1
250.000		WID=(1.0/XM)*(XM*U1*TH1D+XM*G*COS(TH1)+FN)
251.000		UID=(1.0/XMJX(-XMXWIXTHID-XMXGXSIN(THIJ+FA+FP)
252.000		IF(11ME-0.0)600,600,41
253.000	41	CUNTINDE
254.000		THD_THD:4
255,000		INU=1NU+1 IF(IND_4)F00_F00_C00
256.000	C A A	1F(1NU=4)500,500,600
257.000	600	
258.000		UII = UIAGUSUIHIJ +WIASINUTHIJ 111
539.000 300 000		WII = "UIASINUIHIJ + WIAGUSUIHIJ EDA - ATAND/HAT HATNWA
200.000		ггн = нінид(U11,U11)XC
*		

OF POOR QUALITY

*

.

.

261.000		U1I = U1I - U1B	
262.000		U1I = U1I - U1B	
263.000		VEL=SQRT(U1I*U1I+W1I*W1I)	
264.000		WRITE(6,39),TIME	
		1	
265.000		WRITE(6,3),(ALPHA)	
		t	
266.000		WRITE(6,1001),(FN,FA)	
267.000		WRITE(6,4),(XMOMEN)	ରୁ ପ୍ଲ
		:	20
268.000		WRITE(6,1002),(U1I,W1I,F(1)),FPA	ŚŻ
		:	Э́Р
269.000		WRITE(6,2222),(VEL)	22
		t	AG
270.000		WRITE(6,8),XCM	
		1	~ 0
271.000	8	FORMAT (1X,4HXCM=,E15.6)	
		t	
272.000		URITE(6,7), AA,XM1,C1P,U1,U1,CN	
	_	‡	
273.000	7	FORMAT (1X,4H AA=, E15.6,4HXM1=,E15.6,4HC1P=,E15.6,4H	U1=
E15.6,			
274.000		¥4H W1=,E15.6,4H CN=,E15.6)	
225 000			
275.000		H1D5=F(1)	
275.000		1HI5=Y(1)	
277.000		1H151=1H15#C	
270 000		W15=Y(2)	
280 000		UIS=Y(3) E(1)=0.0	
201 000		F (1) = 114 T	
202 000		F (G)=011 F(3)=014 T	
202 000		F(J)-0 0	
201.000 201 000		Y (1) = 0 . 0 V (3) = 74	
204.000		Y (G) = 61 U (D) = 94	
_C02.000		1X=(E)¥	
本			

286.000		IND=1
287.000		IF(TIME-0.0)800,800,300
288.000	300	CONTINUE
289.000		TIME-TIME00390625
290.000	400	CONTINUE
291.000		CALL RUNGE(IND, TIME, DELT, 3,0)
292.000		IND=IND+1
293.000		IF(IND-4)400,400,800
294.000	800	TH1=TH1S
295.000		Z1=Y(2)
296.000		X1=Y(3)
297.000		X11=(X1*COS(TH11)-Z1*SIN(TH11))*12.
298.000		CALL TBL(A01,DPR,X11,L,DPRE)
299.000		FP=-DPRE*AREA*144.
300.000		WRITE(6,1003),(Y(3),Y(2),TH151,FP)
301.000		THA=PSI-TH1
302.000		TH3=TH1
303.000		XP = X1 - XCONE COS(-TH3) + ZCONE SIN(-TH3)
304.000		$ZP = 21 - XCONE \times SIN(-TH3) - ZCONE \times COS(-TH3)$
305.000		XQ = X1 - XCONE COS(-TH3) - ZCONE SIN(-TH3)
306.000		$ZQ = Z1 - XCONE \times SIN(-TH3) + ZCONE \times COS(-TH3)$
307.000		lF(TIME08)401,402,402
308.000	401	CONTINUE
309.000		
310.000		212×20
311.000		WRITE(1), XTP, ZTP
312.000		
313.000		218#28 Notes(4) ump amp
314.000	400	WRITE(1), XTP, ZTP
315.000	402	CONTINUE
316.000		QKTIF(P))(X0)20) C
317.000		WRITE(6,5),(XP,2P)
318.000		WRITE(6,1013),W1B,DELT
319.000		F(1)=TH1DS
*		

ORIGINAL PAGE IS

•

```
Y(1) = TH1S
 320.000
 321.000
                Y(2) = U1S
 322.000
                Y(3) = 015
 323.000
                I = I + 1
                                                                         OF POOR
 324.000
           490
                CONTINUE
 325.000
                IF(TIME .LE. 0.0195313) GO TO 201
 326.000
                CALL DIST(TH11.TH1S.X1.Z1.K)
 327.000
            201 CONTINUE
                                                                         2 QUALITY
 328.000
                XS1 = X1
 329.000
                ZS1 • Z1
 330.000
                THS = TH1
 331.000
                IF(TIME-0.0)41.41.49
 332.000
             49 CONTINUE
 333.000
                 IF(TIME-TSTOP)24.251.251
 334.000
             24 CONTINUE
 335.000
                GO TO 200
 336.000
           251 CONTINUE
 337.000
                GO TO 25
           1001 FORMAT (1H, 2HFN, 3X, E15.6, 2X, 2HFA, 3X, E15.6)
 338.000
           1002 FORMAT (1H, 2HU , 3X, E15.6, 2X, 2HW , 3X, E15.6, 2X, 3HTHD, 3X, E15
 339.000
.6,10X,
 346.000
               *20HFLIGHT PATH ANGLE = .E15.6)
           1003 FORMAT (1H, 3HXCG, 2X, E15.6, 2X, 3HZCG, 2X, E15.6, 2X, 3HTH1, 3X, E
 341.090
15.6.
 342.000
               *2X,2HFP,3X,E15.6)
 343.000
              3 FORMAT (1H, 5HALPHA, 3X, E15.6)
 344.000
              4 FORMAT (1H, 6HMOMENT. 3X. E15.6)
 345.000
              5 FORMAT (1H, 2HXP, 3X, E15.6, 2X, 2HZP, 3X, E15.6)
 346.000
              6 FORMAT (1H, 2HXQ, 3X, E15.6, 2X, 2HZQ, 3X, E15.6)
           2222 FORMAT (1H, 3HVEL, 3X, E15.6)
 347.000
 348.000
             39 FORMAT (1H,//1X,4HTIME,3X,E15.6)
 349.000
           1013 FORMAT(1X,5HU1B= ,E15.8.10X,5HDELT=.E15.8)
 350.000
                END
*
```

```
SUBROUTINE RUNGE (KUTTA, TIME, DT, NVAR, NDVAR)
351.000
352.000 C
             KUTTA IS A CONTROL INTEGER
             TIME IS TIME OF INTEGRATION
353.000 C
             DT IS THE TIME INCREMENT
354.000 C
355.000 C
             NUAR - NUMBER OF VARIABLES TO BE INTEGRATED ONCE
             NDVAR - NUMBER OF VARIABLES TO BE INTEGRATED TWICE
356.000 C
                DIMENSION C1( 60),C2( 60),C3( 60),C4( 60),CD1( 60),CD2( 6
357.000
0),
               1 CD3( 60), CD4( 60), SX( 60), SXD( 60)
 358.000
 359.000
                COMMON/FUNT/ X( 60)
                COMMON/FIRT/ XD( 60)
360.000
                COMMON/SECD/XDD(30)
 361.000
 362.000
                GO TO (1.2.3.4).KUTTA
363.090
              1 DO 10 I=1.NVAR
                SX(I) = X(I)
364.000
                                                                                original page is
of poor quality
365.000
                C1(I) = XD(I)*DT
             10 X(I) = SX(I) + 0.5 \times C1(I)
366.000
367.000
                IF(NDVAR.EQ.0)GO TO 50
368.000
                DO 100 I-1, NDVAR
369.000
                SXD(I) = XD(I)
370.000
                CD1(I) = XDD(I)*DT
371.000
            100 \text{ XD}(I) = SXD(I) + 0.5 \times CD1(I)
372.000
                CONTINUE
          50
373.000
                TIME = TIME + 0.5 \times DT
374.000
                RETURN
              2 DO 20 I-1, NVAR
375.000
376.000
                C2(I) = XD(I)*DT
377.000
             20 \times (I) = SX(I) + 0.5 \times C2(I)
378.000
                IF(NDVAR.EQ.0)GO TO 51
379.000
                DO 200 I-1.NDVAR
380.000
                CD2(I) = XDD(I)*DT
381.000
            200 \times D(I) = S \times D(I) + 0.5 \times C D Z(I)
382.000
                CONTINUE
          51
                RETURN
383.000
384.000
              3 DO 30 I-1.NVAR
```

*

```
C3(I) = XD(I)*DT
385.000
            30 \times (I) = SX(I) + C3(I)
386.000
               IF(NDVAR.EQ.0)GO TO 52
387.000
               DO 300 I=1,NDVAR
388.000
               CD3(I) = XDD(I)*DT
389.000
           300 \times D(I) = S \times D(I) + C D (I)
390.000
391.000
          52
                CONTINUE
               TIME = TIME+0.5*DT
392.000
                RETURN
393.000
             4 DO 40 I=1.NUAR
394.000
395.000
                C4(I) = XD(I)*DT
            40 X(I) = SX(I)+(C1(I)+C4(I)+2.*(C2(I)+C3(I)))/6.0
396.000
                IF(NDVAR.EQ.0)GO TO 53
397.000
                DO 400 I-1, NDVAR
398.000
399.000
                CD4(I) = XDD(I)*DT
           400 \times D(I) = SXD(I) + (CD1(I) + CD4(I) + 2.0 \times (CD2(I) + CD3(I)))/6.0
400.000
                CONTINUE
401.000
          53
402.000
               RETURN
403.000
                END
```

ORIGINAL PAGE IS

*

```
SUBROUTINE TBL(X,Y,X1,N,Y1)
404.000
405.000 C
               THE DATA MUST BE IN ASCENDING ORDER
406.000
               DIMENSION X(1), Y(1)
               DO 93 I*1,N
407.000
               IF(X(I)-X1)93,95,91
408.000
            91 DX \cdot X1 - X(I-1)
409.000
410.000
               DX1 = X(I) - X(I-1)
411.000
               DY=Y(I)-Y(I-1)
412.000
               Y1=Y(I-1)+D/*(DX/DX1)
413.000
               GO TO 94
414.000
            95 Y1 = Y(I)
415,000
               GO TO 94
                           ~
416.000
            93 CONTINUE
417.000
            94 CONTINUE
418.000
               RETURN
419.000
               END
```

*

OF POOR QUALITY

420.000		FUNCTION XTAN2(A,B)
421.000		IF(B .EQ. 0.0) GO TO 100
422.000		XTAN2=ATAN2(A,B)*57.3
423.000		RETURN
424.000	100	IF(A)10,16,15
425.000	10	XTAN2=-90.0
426.000		RETURN
427.000	16	XTAN2=0.0
428.000		RETURN
429.000	15	XTAN2=90.0
430.000		RETURN
431.000		END
t		

*

OF POOR QUALITY

422 000		
432.000		SUBROUTINE DIST(TH11, TH15, X1, Z1, K)
433.000		IF(K .EQ. 1) GO TO 330
434.000		K=0
435.000		XX1=-2.552083
436.000		221=2.528367
437.000		XX2=-2.125
438.000		222=2.516667
439.000		PP=.3131086
440.000		50=SIN(TH11)
441.000		C0=COS(TH11)
442.000		XX3=XX2*C0+ZZ2*S0
443.000		ZZ3=ZZ2*C0-XX2*S0
444.000		S=SIN(TH1S)
445.000		C=COS(TH1S)
446.000		XX5=X1+XX1*C+ZZ1*S
447.000		ZZ5=Z1+ZZ1*C-XX1*S
448.000		XX6=XX5-XX3
449.000		ZZ6=ZZ5-ZZ3
450.000		PP0=-TH11-PP
451.000		S1=SIN(PP0)
452.000		C1=COS(PP0)
453.000		XX7=XX6*C1+ZZ6*S1
454.000		ZZ7=ZZ6*C1~XX6*S1
455.000		IF(2Z7 .LT. 0.) GO TO 340
456.000		XX8×XX7
457.000		ZZ8=ZZ7
458.000	330	RETURN
459.000	340	XXX=(XX7-((227*(XX8-XX7))/(228-227)))*12.
460.000		WRITE(6,360),(XXX)
461.000	360	FORMAT(///,7H DISTIN,3X,E15.6,///)
462.000		K = 1
463.000		RETURN
464.000		END
*		

ORIGINAL PAGE IS

•

•

.

TABLE 3. OUTPUT PARAMETERS

•

Mnemonic	Definition and Units
TIME	Time (sec)
ALPHA	Angle of attack (deg)
FN	Normal force (lb)
FA	Axial force (lb)
MOMENT	Product of angular acceleration and moment of inertia (lb/ft)
U	Velocity relative to booster component in X direction (ft/sec)
W	Velocity relative to booster component in Z direction (ft/sec)
THD	Angular rate, $\dot{\theta}$, (deg/sec)
FLIGHT PATH ANGLE	Flight path angle, γ , (deg)
VEL	Velocity of nose cap relative to booster (ft/sec)
XCM	Aerodynamic moment coefficient
AA	Product of reference area times dynamic pressure (lb)
XM1	Aerodynamic moment (lb/ft)
C1P	Difference between location of CG and center of pressure (ft)
UI	Body fixed velocity component in X1 direction (ft/sec)
W1	Body fixed velocity component in Z1 direction (ft/sec)
CN	Normal force coefficient
XCG	X coordinate of CG (ft)
ZCG	Z coordinate of CG (ft)
TH1	Attitude angle (deg)
FP	Force due to pressure difference (lb)
XQ	X coordinate of point Q
ZQ	Z coordinate of point Q
XP	X coordinate of point P
ZP	Z coordinate of point P
W1B	Velocity component of booster in Z11 direction (ft/sec)
DELT	Integration time step (sec)

REFERENCES

- 1. ED15-81-7, "Revised Requirements for Velocity to Separate the SRB Nose Cap," January 22, 1981.
- 2. ED31-75-1, "SRB Nose Cap Internal Pressure Variation During Ejection," May 1, 1975.
- 3. ED31-76-59, "Revised Aerodynamic Characteristics of the SRB Nose Cap," December 10, 1976.
- 4. ED32-77-9, "Analysis of SRB Nose Cap Ejection Wind Tunnel Test SA38F," January 18, 1977.

APPROVAL

DESCRIPTION OF A MATHEMATICAL MODEL AND COMPUTER SIMULATION OF SEPARATION OF THE NOSE CAP FROM THE SOLID ROCKET BOOSTER

By Arthur J. Schwaniger, Jr. and Hughlen I. Murphree

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

GEORGE F. McDONOUGH Director, Systems Dynamics Laboratory