```
(NASA-TM-82511) rescripticn of A

\title{
NASA TECHNICAL MEMORANDUM
}

NASA TM-82511


DESCRIPTION OF A MATHEMATICAL MODEL AND COMPUTER SIMULATION OF SEPARATION OF THE NOSE CAP FROM THE SOLID ROCKET BOOSTER

By Arthur J. Schwaniger, Jr. and Hughlen I. Murphree Systems Dynamics Laboratory

December 1982

NASA

\section*{George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama}


\section*{TABLE OF CONTENTS}
Page
I. INTRODUCTION ..... 1
II. THE MATHEMATICAL MODEL ..... 1
A. Coordinate Systems. ..... 1
B. Equations of Motion and Integration ..... 2
C. Aerodynamics ..... 3
D. Data Form. ..... 4
III. USING THE COMPUTER PROGRAM ..... 4
A. General Information ..... 4
B. Input. ..... 4
C. Output ..... 5
IV. CONCLUSION ..... 6
REFERENCES ..... 28

\section*{L!ST OF ILLUSTFIATIONS}
Figure Title Page
1. Coordinate systems and preload parameters ..... 7
2. Parameters used in DIST subroutine ..... 8
3. Comparison of motion of base of nose cap as simulated and observed in sled test. ..... 9
EIST OF TABLES
Table Title ..... Page
1. Listing of DCAP ..... 10
2. Listing of NOSECAP ..... 11
3. Output Parameters ..... 27

\section*{TECHNICAL MEMORANDUM}

\section*{DESCRIPTION OF A IMATHEMATICAL MODEL AND COMPUTER SIMULATION OF SEPARATION OF THE NOSE CAP FROM. THE SOLID ROCKET BOOSTER}

\section*{I. INTRODUCTION}

The design of the decelerator subsystem for the Space Shuttle Solid Rocket Boosters includes a nose cap mounted at the forward end of the booster over the Drogue and Pilot parachute packs. The decelerator subsystem sequence of events begins with the ejection of the nose cap. In designing the system, it was necessary to determine what velocity increment had to be imparted to the nose cap so that it would separate without contacting the chute packs. Several different approaches were taken. A series of wind tunnel tests was conducted and a full scale test, using a rocket sled to propel a nose cap to high speed conditions, were run. In order to apply an analytic approach, a mathematical model was formulated. The equations of motion of the nose cap were derived by Steve Winder and Hughlen Murphree, both of the Systems Dynamics Laboratory, in 1974. The original computer program to implement the generation of nose cap trajectories was done by Hughlen Murphree. This report documents the model and computer program giving the system of equations, coordinate systems, and details of input and output data required to simulate a rose cap trajectory.

The aerodynamic characteristics of the nose cap depend on whether or not it is in close proximity to the booster. When the cap is close to the booster the aerodynamic characteristics are functions of both angle of attack and displacement from the booster. When the cap moves without a large afterbody, as it did in the rocket sled tests, the aerodynamic characteristics are functions of only angle of attack. (Mach number is essentially constant during the separation movement.) The program provides an option for simulation of either case.

Because of design features of the SRB and the nose cap, the internal pressure in the cap could be very low at the time of separation. Thus, the external pressure would act to retard the separation. Provisions are made to include this effect by incorporating the internal pressi.e during separation as a function of separation velocity and displacement.

The model incorporates two dimensions of translation and one of rotation. The British system of units is used throughout.

\section*{II. THE MATHEMATICAL MODEL}

\section*{A. Coordinate Systems}

The basic coordinate system used is an inertial system with origin fixed at the center of gravity of the nose cap at time zero. The \(\mathrm{X}_{1 I}\) axis is horizontal and the \(\mathrm{Z}_{1 I}\) axis is vertical with positive direction downward. Flight path angle, \(\gamma\), is measured positive upward from the \(\mathrm{X}_{1 I}\) axis to the velocity vector. Attitude angle, \(\theta\), is measured positive upward from the \(\mathrm{X}_{1 \mathrm{I}}\) axis to the long axis of the nose cap, and angle of attack, \(\alpha\), is measured from the velocity vector to the long axis of the nose cap. The velocity
components of the cap in this system, \(\dot{\mathrm{X}}_{1 \mathrm{I}}\) and \(\dot{\mathrm{Z}}_{1 \mathrm{I}}\) are called \(\mathrm{U}_{1 I}\) and \(\mathrm{W}_{1 \mathrm{I}}\), respectively. The velocity components of the booster are also given in this system and are called \(U_{1 B}\) and \(W_{1 B}\).

A body fixed coordinate system, with the origin fixed at the center of gravity of the nose cap, the \(\mathrm{X}_{1}\) axis fixed on the long axis of the cap with positive direction toward the nose, and \(\mathrm{Z}_{1}\) axis perpendicular to \(\mathrm{X}_{1}\), is used as the system in which the cap motion is described. The velocity in this system is denoted by \(U_{1}\) and \(W_{1}\). These systems are illustrated in Figure 1.

Finally, a coordinate system whose origin moves with the booster and whose axes are fixed parallel to \(\mathrm{X}_{1 \mathrm{I}}\) and \(\mathrm{Z}_{1 \mathrm{I}}\) is used to record the motion of points on the nose cap relative to the booster. These coordinates are denoted by X and Z with subscripts to identify the point being tracked. The velocity components of the cap in this system are called U and W .

\section*{B. Equations of Motion and Integration}

A flat earth with constant gravity magnitude and direction is assumed. The booster motion during the time of interest is assumed to be of constant velocity magnitude and direction and the atmospheric density is assumed constant. These assumptions are warranted by the fact that the nose cap separates from the booster and clears the drogue pack in less than 0.1 sec .

The velocity and attitude of the mated booster and nose cap are given as \(\mathrm{U}_{1 \mathrm{I}}, \mathrm{W}_{1 \mathrm{I}}\), and \(\theta\). The \(\Delta V\) of nose cap separation is given as \(D V\). The first step is to express the velocity of the cap in the body fixed system. This is done by the equations:
\[
\begin{aligned}
& \mathrm{U}_{1}=\mathrm{U}_{1 \mathrm{I}} \cos \theta-\mathrm{W}_{1 \mathrm{I}} \sin \theta+\mathrm{DV} \\
& \mathrm{~W}_{1}=\mathrm{U}_{1 \mathrm{I}} \sin \theta+\mathrm{W}_{1 \mathrm{I}} \cos \theta
\end{aligned}
\]

Next using \(X_{m}\) to represent nose cap mass and \(X_{I}\) for moment of inertia, the time derivatives of \(\mathrm{U}_{1}, \mathrm{~W}_{1}\), and \(\theta\) are given as:
\[
\begin{aligned}
& \dot{\mathrm{U}}_{1}=-\mathrm{W}_{1} \dot{\theta}-\mathrm{G} \sin \theta+\frac{\mathrm{F}_{\mathrm{A}}+\mathrm{F}_{\mathrm{P}}}{\mathrm{X}_{\mathrm{m}}} \\
& \dot{\mathrm{~W}}_{\mathrm{L}}=\mathrm{U}_{1} \dot{\theta}+\mathrm{G} \cos \theta+\frac{\mathrm{F}_{\mathrm{N}}}{\mathrm{X}_{\mathrm{m}}} \\
& \ddot{\theta}=\frac{-\mathrm{F}_{\mathrm{N}}(\mathrm{CG}-\mathrm{CP})+\mathrm{X}_{\mathrm{m} 1}}{\mathrm{X}_{\mathrm{I}}}
\end{aligned}
\]

ORIGINAL PAGE IS
OF POOR QUALITY
where
\(\mathrm{G}=\) acceleration due to gravity

\section*{ORIGINAL PAGE IS of POOR QUGEISY}
\(\mathrm{F}_{\mathrm{A}}=\) aerodynamic axial force
\(\mathrm{F}_{\mathrm{N}}=\) aerodynamic normal force
\(\mathrm{F}_{\mathrm{P}}=\) force due to difference between ambient pressure and nose cap internal pressure.
\(C G=\) cap center of gravity location
\(C P=\) cap center of aerodynamic pressure location
\(\mathrm{X}_{\mathrm{ml}}=\) pitch moment coefficient times reference diameter times \(\rho \mathrm{V}^{2} \mathrm{~A} / 2\).
These equations are numerically integrated by the Runge-Kutta method yielding \(U_{1}, W_{1}\), and \(\dot{\theta}, U_{1}\) and \(W_{1}\) are transformed to \(U\) and \(W\) as follows:
\[
\begin{aligned}
& \mathrm{U}_{1 \mathrm{I}}=\mathrm{U}_{1} \cos \theta+\mathrm{W}_{1} \sin \mathrm{I} \\
& \mathrm{~W}_{1 \mathrm{I}}=-\mathrm{U}_{1} \sin \theta+\mathrm{W}_{1} \cos \theta \\
& \mathrm{U}=\mathrm{U}_{1 \mathrm{I}}-\mathrm{U}_{1 \mathrm{~B}} \\
& \mathrm{~W}=\mathrm{W}_{1 \mathrm{I}}-\mathrm{W}_{1 \mathrm{~B}} .
\end{aligned}
\]

Finally, \(\mathrm{U}, \mathrm{W}\), and \(\dot{\theta}\) are integrated to produce \(\mathrm{X}, \mathrm{Z}\), and \(\theta\).

\section*{C. Aerodynamics}

The aerodynamics of the nose cap are given in Reference 1 as functions of angle of attack, \(\alpha\), with separation distance from the booster as a parameter. If motion of the cap from the vicinity of the booster is to be simulated, the aerodynamic coefficients are determined by linear interpolation among points in tables with both \(\alpha\) and separation distance as independent variables. If motion of the cap without an afterbody present, as with the rocket sled tests, is to be simulated, the coefficients are determined as functions of \(\alpha\) alone using the data for separation distance equal to one diameter or greater.

The differences between internal and external pressure are given as functions of separation distance for various cap separation velocities in Reference 2. This pressure difference applied over the base area of the cap is introduced in the equations of motion of the cap as a retarding force along the \(\mathrm{X}_{1}\) axis.

\section*{D. Data Form}

Most applications of the nose cap trajectory model are done in terms of the angle of attack, dynamic pressure, altitude, and flight path angle of the mated booster and nose cap at the instant of separation. These parameters do not appear explicitly in the model and were not used in the original computer program. The latest version of the program, however, has these parameters for input and incorporates the simple transformations that were originally done by hand each time a simulation was set up. One exception to this is altitude. The atmospheric density, \(\rho\), which appears in the aerodyramic force and moment, and the gravitational acceleration, \(G\), are functions of the altitude at which separation takes place. These must be calculated or determined from tabular data beforehand and must be input to the program.

\section*{III. USING THE COMPUTER PROGRA IM}

\section*{A. General Informat'on}

The source program is written in Fortran IV and is stored and functions on the Honeywell Sigma V computer. It is called NOSECAP. The data file is called DCAP. DCAP and NOSECAP are listed in Tables 1 and 2.

\section*{B. Input}

The computer program is set up specifically for the aerodynamic data as it is given in Reference 3. This reference gives axial force coefficient, normal force coefficient, and pitching moment coefficient as functions of angle of attack, \(\alpha\), with the parameter, separation distance divided by length, \(\Delta \mathrm{X} / \mathrm{D}\). Thirteen values of \(\alpha\) are chosen and listed as \(\mathrm{AL}(\mathrm{I})\). Axial force coefficients are specified as \(\mathrm{CAT1}(\mathrm{I})\) through CAT4(I) where the 1 signifies the value at separation distance, \(\Delta \mathrm{X} / \mathrm{D}\), equals 1 and 4 signifies separation distance equals 0 . XCMTI(I) through XCMT4(I) similarly represents pitch moment coefficient for separation distance 1 through 0 . CNT1(I) through CNT6(I) represents the normal force coefficient since the reference gives six curves for normal force coefficient instead of four. If the number of entries in these tables is changed, the dimension statements must be changed accordingly.

If the data are to be used to represent separation from the booster, the statement in line 146 of the program is used as part of the comment started in line 145 , that is the letter \(C\) remains in the first column. If the sled test is to be simulated, the letter \(C\) is removed from the beginning of line 146 and the program proceeds with the quantity \(\mathrm{XCHK}=1\).

The above data are part of the program and can crily be changed by modification of the program. The following data are located in the data file and are read by the program.

The difference between internal and ambient pressure is given in Reference 2 as a function of separation distance with nose cap velocity as a parameter. If the pressure difference is to be taken into account, the appropriate curve should be chosen and the data loaded as separation distance equals A01 and pressure differential equals DPR. This tatle is dimensioned for twelve points. If more or fewer points are to be loaded, the dimension statement should be changed accordingly. If pressure difference is to be neglected, DPR should be loaded as zero.

The next data loaded are G, the gravitational acceleration in \(\mathrm{ft} / \mathrm{sec}^{2}\); RHO, the atmospheric density in slugs \(/ \mathrm{ft}^{3}\); and XLENG, the length of the nose cap in inches.

The next line of data is CPP, the location of aerodynamic center of pressure in percent of body length, and REFD, the reference diameter in inches.

The next line of data is XI , the moment of inertia in slug \(\mathrm{ft}^{2}\); ALPH , the angle of attack of the booster and cap before separation in degrees; DYNPR, the dynamic pressure before separation in \(\mathrm{lb} / \mathrm{ft}^{2}\); GAMMA, the flight path angle before separation in degres; THID, the initial rate of change of attitude in degrees/sec; and DV, the separation velocity increment in \(\mathrm{ft} / \mathrm{sec}\).

The next line of data is WT, the weight of the cap in lb; CGP, the location of the center of gravity of the cap in percent of body length; XCG, the X coordinate of the center of gravity of the cap, in body fixed coordinates (usually zero); ZCG, the Z coordinate of center of gravity of the cap in body fixed coordinates (usually zero); and AREA, the reference area of the cap in \(\mathrm{ft}^{2}\).

The last line of input is XCONE, the distance from the cap CG to the base of the cap in feet; and ZCONE , the distance in feet from the center line of the nose cap to a point on the base of the cap. XCONE and ZCONE establish the points \(P\) and \(Q\) which are tracked in the trajectory printout (Fig. 1). This completes the data file.

Besides printing the trajectory of nose cap \(C G\), and points \(P\) and \(Q\) as functions of time, the computer program has a subroutine called DIST which tracks an extreme point on the nose cap (usually the comer of the thruster post) and determines the distance up the side of the drogue pack where this point intersects the drogue pack envelope (Fig. 2). This distance is printed between time steps where the crossing of the pack envelope occurs. This subroutine contains constants that could be changed if a different cap configuration is studied. These constants are illustrated in Figure 2. Note that the angle PP is used in the subroutine in radians. :

The integration time step may be adjusted if a different cap configuration is studied (for instance if wind tunnel tests are simulated). The time step DELTA is specified on line 130 of the main routine. Also, the value of DELTA is. used in line 289. These values should always be equal. The value, \(2^{-8}\), has been found appropriate for simulating motion of the full scale SRB nose cap. For simulation of wind tunnel tests where the scale factor is \(1 / 8\), for example, the integration time step should be scaled by a factor \(\sqrt{1 / 8}\).

The time point at which to stop the computation is given at line 87 as TSTOP. At present, the value TSTOP \(=0.16\) is used.

\section*{C. Output}

The input data file is printed out in the first block of output. The printout then proceeds with trajectory parameters at regular time intervals. A list of the mnemonics and the parameters they represent is given in Table 3.

\section*{IV. CONCLUSION}

Completion of the sled test presented an opportunity to compare the nose cap separation simulation with test results. Motion picture film of the test was analyzed and a graphic representation of the nose cap motion was drawn. A simulation was then made using the test conditions and a similar graph was overlaid on the test results. This is shown in Figure 3. The coordinates used are those of the film analysis. The abscissa is along the base of the nose cap before separation. The origin is at the leading edge of the nose cap before separation. Positions of the nose cap are shown for both test restilts (solid line) and simulation (broken line) at various times. The times do not coincide exactly, in genera, because the simulation time step was \(2^{-8} \mathrm{sec}\) and the film speed was 0.0125 sec per frame. Nevertheless, the simulated motion is very similar to the observed motion.

The test condition was the design limit condision of 80 deg angle of attack and dynamic pressure \(200 \mathrm{lb} / \mathrm{ft}^{2}\). The data file shown in Table 1 is the one used for this simulation and all of the test conditions are included there. This particular simulation serves as a sample of the program function. It is identified as run 0464 and is kept in the fiiles of the Dynamics and Trajectory Analysis Branch.

The good agreement between the test and simulated data has established the validity of use of the simulation to analyze the separation motion.


ANGLES MEASURED COUNTERCLOCKWISE ARE POSITIVE FLIGHT PATH ANGLE, \(\gamma\), IS NEGATIVE AS SHOWN

Figure 1. Coordinate systems and preload parameters.


Figure 2. Parametcrs used in DIST subroutine.
\[
-\frac{t(S E C)}{t(S E C)}-\text { SIMULATION }
\]

ORIGINAL PAGE IS OF POOR QUALITY


Figure 3. Comparison of motion of base of nose cap as simulated and observed in sled test.

\section*{TABLE 1. LISTING.OF DCAP}
\(1,0000,0,5,0,10,0,15,0,20,0,25.0\),
\(2.00030,0,35,0,40.0,45,0,50,0,300.0\),
3.000 0., 0..0..0., 0., 0..
4.000 0., 0., 0., 0., 0..0.,
5.000 32.2..0ひ릉.75.,
\(6.000 .667,68.03\)
\(7.00052 . .80 . .200 .0 .00 .76 .\),
\(8.000300 ., 66,0 ., 0 ., 25.24\).
9.000 2.125,2.83333.
```

OP'GINAL PAGE IS
OF POOR QUALITY

```
    1.000 C NOSE CAP SEPARATION STUDIES
    2.000 REAL M,M1
    3.000
    L(13)
        4.000
        5 . 0 0 0
        6.000
        7.000
        8.000
        S.000
    10.000
    11.000
    12.000
    13.000
    14.000
    15.000
    -1.3.
    16.000
    17.000
    -1.3.
    18.000
    19.000
    ,-1.3.
    20.000
    21.000
    1,-1.3.
    22.000
    23.000
    .,.04,
    24.000
    25.000
    -.02.
    26.000
    27.000
3.
28.000
*
```

```
    DIMENSION CNT1(13), XCMT1(13),CAT1(13),CNT5(13),CNTG(13),A
```

 DIMENSION CNT1(13), XCMT1(13),CAT1(13),CNT5(13),CNTG(13),A
 DIMENSION CNTC(13), XCMTZ(13),CATC(13)
 DIMENSION CNTC(13), XCMTZ(13),CATC(13)
 DIMENSION CNT3(13), XCMT3(13),CAT3(13)
 DIMENSION CNT3(13), XCMT3(13),CAT3(13)
 DIMENSION CNT4(13),XCMT4(13),CAT4(13)
 DIMENSION CNT4(13),XCMT4(13),CAT4(13)
 DIMENSION AO1(12),DPR(12)
 DIMENSION AO1(12),DPR(12)
 COMMON/SECD//THIDD,DUMO(59)
 COMMON/SECD//THIDD,DUMO(59)
 COMMON/FUNT/Y(3),DUM1(57)
 COMMON/FUNT/Y(3),DUM1(57)
 COMMON/FIRT/F(3),DUMC(57)
 COMMON/FIRT/F(3),DUMC(57)
 COMMON/LAB/UIP,TH1P,REFD
 COMMON/LAB/UIP,TH1P,REFD
 COMMON XCONE, ZCONE
 COMMON XCONE, ZCONE
 EQUIUALENCE (TH1D,F(1)),(W1D,F(2):,(U1D,F(3))
 EQUIUALENCE (TH1D,F(1)),(W1D,F(2):,(U1D,F(3))
 EQUIUALENCE (THi,Y(1)),(W1,Y(2)) (U1,Y(3))
 EQUIUALENCE (THi,Y(1)),(W1,Y(2)) (U1,Y(3))
 DATA (CAT1(I),I=1,13)/.4,.42,.38,.25,.1,.02,.22,-.18,-.8,
 DATA (CAT1(I),I=1,13)/.4,.42,.38,.25,.1,.02,.22,-.18,-.8,
 *-1.38,-1.38,-1.4/
*-1.38,-1.38,-1.4/
DATA (CAT2(I),I=1,13)/.4,.42,.3,.18,0.,-.06,.16,-.19,-.9,
DATA (CAT2(I),I=1,13)/.4,.42,.3,.18,0.,-.06,.16,-.19,-.9,
*-1.38,-1.38,-1.4/
*-1.38,-1.38,-1.4/
DATA (CAT3(I),I=1,13)/.4,.42,.28,.1.-.02,-.16,.04,-.2,.-1.
DATA (CAT3(I),I=1,13)/.4,.42,.28,.1.-.02,-.16,.04,-.2,.-1.
*-1.38,-1.38,-1.4/
*-1.38,-1.38,-1.4/
DATA (CAT4(I),I=1,13)/.4..42..21,.06,-.1,-.18,0.,-.21,-1.
DATA (CAT4(I),I=1,13)/.4..42..21,.06,-.1,-.18,0.,-.21,-1.
*-1.38,-1.38,-1.4/
*-1.38,-1.38,-1.4/
DATA (XCMT1(I),I=1,13)/0...02,.03,.02,-.02,-.05,-.1,-.1,0
DATA (XCMT1(I),I=1,13)/0...02,.03,.02,-.02,-.05,-.1,-.1,0
*.05,.04,0.1
*.05,.04,0.1
DATA (XCMT2(I),I=1,13)/0...02,.03,0.,-.03,-.07,-.13,-.12,
DATA (XCMT2(I),I=1,13)/0...02,.03,0.,-.03,-.07,-.13,-.12,
*,04,.05,.04,0./
*,04,.05,.04,0./
DATA (XCMT3(I),I=1,13)/0...61,.02,-.02,-.04,-.09,-.15,-.1
DATA (XCMT3(I),I=1,13)/0...61,.02,-.02,-.04,-.09,-.15,-.1
*-.03,.03,.04,.04,0.1

```
    *-.03,.03,.04,.04,0.1
```

```
    29.000
14,-.06,
    30.000
    31.000
135..
    32.000
    33.000
    34.000
    35.000
13.
    36.000
    37.000
14.
    38.000
    39.000
.15,
    40.000
    41.000
37..16.
    42.000
    43.000
39,.17.
    44.000
    45.000
    46.000
    47.000
    48.000
    49.000
    5 0 . 0 0 0
    51.000
    52.000
    53.000
    54.000
    55.000
    56.000
*
```

```
            DATA (XCMT4(I),I=1,13)/0...01,.01,-.04,-.08,-.12,-.18,-.
    *.01,.03..04,0.1
        DATA (AL.(I),I=1,13)/0.,15,.30.,45.,60.,75.,90.,105.,120..
    *150..165.,180./
        DATA (CNT1(I),I=1,13)/0... 38,.8,.82,.8,.7,.55,.44,.33,.12
    *-.02,-.1,0.%
        DATA (CNTC(I),I=1.13)/0...39,.82,.9,.86,.76,.57,.45,.34,.
    *-.02,-.8.0./
    DATA (CNT3(I),I*1,13)/0.,.4,.84,.98,.96,.81,.61,.46,.35,.
    #-.02,-.1,0.1
    DATA (CNT4(I),I=1,13)/0.,.41,.9,1.01,1.02,.9,.65,.49,.36,
    *-.02,-.1,0.1
        DATA (CNTS(I),I=1,13)/0...42,.97,1.13.1.16.1.05,.72,.51,.
    *-.02,-.1,0./
        DATA (CNTG(I),I=1,13)/0.,.43,1.12,1.35,1.46,1.4,.8?,.53,.
    *-.02.-.1.0.1
25 READ (5,92), (A01)
    READ (5,92).(DPR)
    URITE (6,92), (A01)
    URITE (6,92),(DPR)
    READ (5,2), (G,RHO,XLENG)
    READ (5,2), (CPP,REFD)
    READ (5,92),(XI,ALPH,DYNPR,GAMMA,TH1D,DU) ₹ < 
    READ (5,2),(WT,CGP,X1, 21,AREA)
    READ (5,2), (XCONE,ZCONE)
    XIEN= XLENG
    ANGLEA - ATAN(XLENG/(REFD*.5))
    SIDEL * XLENG/ N(ANGLEA)
```

 5%.000
 58.000
 59.000
 60.000
 61.000
 62.000
 6 3 . 0 0 0
 64.000
 6 5 . 0 0 0
 66.000
 6 7 . 0 0 0
 68.000
 69.000
 70.000
 71.000
 72.000
 73.000
 74.000
 75.000
 76.000
 77.000
 78.000
 79.000
 80.000
 81.000
 82.000 C
 83.000
 84.000
 85.000
 86.000
 87.000
 88.000
 89.000
 90.000
 *
 92 FORMAT(GE15.6)
SIDEL=SIDEL/12.
UIP= DV
TH1P=ALPH+GAMMA
WRITE(G,92), (G,RHO,XLENG)
WRITE(6,92),(CPP,REFD)
URITE(6,92),(XI,ALPH,DYNPR,GAMMA,TH1D,DU)
WRITE(6,92),(UT,CGP,X1, 21,AREA)
WRITE(6,92),(XCONE,ZCONE)
C-57.29578
ALPH=ALPH/C
GAMMA=GAMMA/C
TH1=ALPH+GAMMA
UUU = SORT (2.0*DYNPR/RHO)
U1I=UUU*COS(GAMMA)
W1I=-UUU*SIN(GAMMA)
U1B=U1I
W1B=U1I
TH1DD=0.
PSI=ATAN2(ZCONE, XCONE)
TH1D * TH1D/C
TH11=TH1
THETA = THI
U1 = UII*COS(THI) - WII*SIN(THI) + DU
W1=U1I*SIN(TH1) + WII*COS(TH1)
THE ABOUE EQUATIONS PUT UI AND UI IN THE BODY AXIS SYSTEM
III=0
K=0
L=12
N=13
TSTOP=0.16
XM=WT/G
THA=PSI-THI
R=8.*0.4.6/12.

```
```

 91.000
 92.000
 93.000
 94.000
 95.000
 96.000
 97.000
 98.000
 99.000
 100.000
101.000
132.000
103.000
104.000
105.000
106.000
107.000
108.000
109.000
110.000
111.000
112.000
113.000
114.000
115.000
116.000
117.000
118.000
119.000
120.000
121.000
122.000
123.000
124.000
*

```
```

TLEN=(2.56*8.)/12.
FLEN=(8.1*8)/12.
THI=-TH1
XA=X1-XCONE*COS(THI)-ZCONE*SIN(THI)+R*SIN(THI)
ZA=Z1-XCONE*SIN(THI)+ZCONE*COS(THI)-R*COS(THI)
G1-108./57.3-THI
GC=(72./57.3)+TH1-(90./57.3)
M=TAN(GZ)
B=ZA-M*XA
XB=X1-XCONE*COS(THI)+ZCONE*SIN(THI)-R*SIN(THI)
Z日-Z1-XCONE*SIN(THI)-2CONE*COS(THI)+R*COS(THI)
AC1=M*M+1.
BC1=-2.*XA-2.*M*ZA+2.*B*M
CC1=XA*XA+ZA*ZA-Z.*B*ZA+B*B-FLEN*FLEN
XA1=(-BC1+SORT(BC1*BC1-4.*AC1*CC1))/(2.*AC1)
ZA1= (M*XA1+B)
M1=(2B-ZA)/(XB-XA)
B2=2A1-M1*XA1
AC2=M1*M1+1.
BC2=-2.*XA1+2.*M1*B2-2.*M1*ZA1
CC2-XA1*XA1+BC*BC-2.*ZA1*BC2+ZA1*ZA1-TLEN*TLEN
XB1=(-BC2+SQRT(BC2*BC2-4.*ACE*CC2))/(2.*AC2)
ZB1=(M1*XB1+B2)
M=TAN(G1)
XTP=XA
ZTP=2A
WRITE(3), XTP,ZTP
XTP=XB
ZTP=2B
WRITE(3),XTP,ZTP
XTP=XB1
ZTP=2B1
URITE(3), XTP,ZTP
XTP=XA1
ORIGINAL PACE IS

```
```

 ll
 ORIGINAL PAGE IS
    ```
\begin{tabular}{|c|c|c|c|}
\hline 159.000 & & & CNC1-CN3 \\
\hline 160.000 & & & GO T0 903 \\
\hline 161.000 & & 802 & XCHK2-0.2 \\
\hline 162.000 & & & CNC2 = CN3 \\
\hline 163.000 & & & GO TO 909 \\
\hline 164.000 & C & & THIS IS FOR XCHK=0.1 \\
\hline 165.000 & & 903 & CALL TBL (AL, CNT4, ALPHA,N,CN4) \\
\hline 166.000 & & & IF (XCHK.GE.O.1) GO TO 803 \\
\hline 167.000 & & & \(X C H K 1=0.1\) \\
\hline 168.000 & & & CNC \(1=C N 4\) \\
\hline 169.000 & & & GO TO 904 \\
\hline 170.000 & & 803 & XCHK2=0.1 \\
\hline 171.000 & & & CNC2=CN4 \\
\hline 172.000 & & & GOTO 909 \\
\hline 173.000 & C & & THIS IS FOR XCHK=0.05 \\
\hline 174.000 & & 904 & CALL TBL(AL, CNTS, ALPHA,N,CN5) \\
\hline 175.000 & & & IF (XCHK.GE.0.05) GO TO 804 \\
\hline 176.000 & & & XCHK \(1=0.05\) \\
\hline 177.000 & & & CNC1 \(=\) CN5 \\
\hline 178.000 & & & GO TO 905 \\
\hline 179.000 & & 804 & XCHK2-0.05 \\
\hline 180.000 & & & CNC2=CN5 \\
\hline 181.000 & & & GO TO 909 \\
\hline 182.000 & C & & THIS IS FOR XCHK=0.0 \\
\hline 183.000 & & 905 & CALL TBL (AL, CNTG, ALPHA,N, CN6) \\
\hline 184.000 & & & IF (XCHK.GE.0.0) GO TO 805 \\
\hline 185.000 & & & \(C N=C N 6\) \\
\hline 186.000 & & & GO T0 911 \\
\hline 187.000 & & 805 & XCHK2-0.0 \\
\hline 188.000 & & & CNC2-CN6 \\
\hline 189.000 & & & GO TO 909 \\
\hline 190.000 & C & & THIS IS FOR XCHK=1.0 \\
\hline 191.000 & & 900 & CALL TBL (AL, CNT1, ALPHA, N, CN1) \\
\hline 192.000 & & & XCHK2=1.0 \\
\hline
\end{tabular}
```

```
    193.000
    194.000
        195.800
        196.000
        197.000
        198.000
        199.000
        200.000
        201.000
        202.000
        203.000
        204.000
        205.000
        206.000
        207.000 0
        208.000
        209.000
        210.000
        211.000
        212.000
        213.000
        214.000
        215.000
        216.000
        217.000
        218.000
        219.000
        220.000
        221.000
        222.000
        223.000
        224.000
        225.000
        226.000
\square
```

*

```
```

227.000

```
```

227.000
228.000
228.000
229.000
229.000
230.000
230.000
231.000
231.000
232.000
232.000
233.000
233.000
234.000
234.000
235.000
235.000
236.000
236.000
237.000
237.000
238.000
238.000
239.000
239.000
240.000
240.000
241.000
241.000
242.000
242.000
243.000
243.000
244.000
244.000
245.000
245.000
246.000
246.000
247.000
247.000
248.000
248.000
249.000
249.000
250.000
250.000
251.000
251.000
252.000
252.000
253.000
253.000
254.000
254.000
255.000
255.000
256.000
256.000
257.000
257.000
258.000
258.000
259.000
259.000
260.000

```
260.000
```

```
    XCM2=XCM4
```

 XCM2=XCM4
    ```
    XCM2=XCM4
```

 XCM2=XCM4
 CA2=CA4
 CA2=CA4
 CA2=CA4
 CA2=CA4
 GO TO 709
 GO TO 709
 GO TO 709
 GO TO 709
 THIS IS FOR XCHK=1.0
 THIS IS FOR XCHK=1.0
 THIS IS FOR XCHK=1.0
 THIS IS FOR XCHK=1.0
 700 CALL TBL(AL,XCMT1,ALPHA,N,XCMG)
 700 CALL TBL(AL,XCMT1,ALPHA,N,XCMG)
 700 CALL TBL(AL,XCMT1,ALPHA,N,XCMG)
 700 CALL TBL(AL,XCMT1,ALPHA,N,XCMG)
 CALL TBL(AL,CAT1,ALPHA,N,CA6)
 CALL TBL(AL,CAT1,ALPHA,N,CA6)
 CALL TBL(AL,CAT1,ALPHA,N,CA6)
 CALL TBL(AL,CAT1,ALPHA,N,CA6)
 XCHKZ=1.0
 XCHKZ=1.0
 XCHKZ=1.0
 XCHKZ=1.0
 XCM2-XCM6
 XCM2-XCM6
 XCM2-XCM6
 XCM2-XCM6
 CAZ=CAG
 CAZ=CAG
 CAZ=CAG
 CAZ=CAG
 IF(XCHK.GE.1.) GO TO 710
 IF(XCHK.GE.1.) GO TO 710
 IF(XCHK.GE.1.) GO TO 710
 IF(XCHK.GE.1.) GO TO 710
 709 XCM = ((XCHK - XCHK1)/(XCHK1-XCHK2))*(XCM1-XCM2)+XCM1
 CA=((XCHK-XCHK1)/(XCHK1-XCHKZ))*(CA1-CA2)+CA1
 CA=((XCHK-XCHK1)/(XCHK1-XCHKZ))*(CA1-CA2)+CA1
 CA=((XCHK-XCHK1)/(XCHK1-XCHKZ))*(CA1-CA2)+CA1
 CA=((XCHK-XCHK1)/(XCHK1-XCHKZ))*(CA1-CA2)+CA1
 GO TO 711
 GO TO 711
 GO TO 711
 GO TO 711
 710 XCM=XCM6
 710 XCM=XCM6
 710 XCM=XCM6
 710 XCM=XCM6
 CA=CA6
 CA=CA6
 CA=CA6
 CA=CA6
 711 CONTINUE
 711 CONTINUE
 711 CONTINUE
 711 CONTINUE
 AA=0.5*RHO*(U1*U1+W1*U1)*AREA
 AA=0.5*RHO*(U1*U1+W1*U1)*AREA
 AA=0.5*RHO*(U1*U1+W1*U1)*AREA
 AA=0.5*RHO*(U1*U1+W1*U1)*AREA
 XM1*AA*XCM*(REFD/12.0)
 XM1*AA*XCM*(REFD/12.0)
 XM1*AA*XCM*(REFD/12.0)
 XM1*AA*XCM*(REFD/12.0)
 C1P--(XIEN/12.0)*(CGP-CPP)
 C1P--(XIEN/12.0)*(CGP-CPP)
 C1P--(XIEN/12.0)*(CGP-CPP)
 C1P--(XIEN/12.0)*(CGP-CPP)
 FA=-AA*CA
 FA=-AA*CA
 FA=-AA*CA
 FA=-AA*CA
 FN=-AA*CN
 FN=-AA*CN
 FN=-AA*CN
 FN=-AA*CN
 ORIGINAL PAGE IS
 ORIGINAL PAGE IS
 XMOMEN=TH1DD*XI
 XMOMEN=TH1DD*XI
 XMOMEN=TH1DD*XI
 XMOMEN=TH1DD*XI
 TH1DD=((C1P*FN)+XM1);XI
 TH1DD=((C1P*FN)+XM1);XI
 TH1DD=((C1P*FN)+XM1);XI
 TH1DD=((C1P*FN)+XM1);XI
 W1D=(1.0/XM)*(XM*U1*TH1D+XM*G*COS(TH1)+FN)
 W1D=(1.0/XM)*(XM*U1*TH1D+XM*G*COS(TH1)+FN)
 W1D=(1.0/XM)*(XM*U1*TH1D+XM*G*COS(TH1)+FN)
 W1D=(1.0/XM)*(XM*U1*TH1D+XM*G*COS(TH1)+FN)
 U1D=(1.0/XM)*(-XM*U1*TH1D-XM*G*SIN(TH1)+FA+FP)
 U1D=(1.0/XM)*(-XM*U1*TH1D-XM*G*SIN(TH1)+FA+FP)
 U1D=(1.0/XM)*(-XM*U1*TH1D-XM*G*SIN(TH1)+FA+FP)
 U1D=(1.0/XM)*(-XM*U1*TH1D-XM*G*SIN(TH1)+FA+FP)
 IF(TIME-0.0)600,600,41
 IF(TIME-0.0)600,600,41
 IF(TIME-0.0)600,600,41
 IF(TIME-0.0)600,600,41
 41 CONTINUE
 41 CONTINUE
 41 CONTINUE
 41 CONTINUE
 CALL RUNGE(IND,TIME,DELT,3,1)
 CALL RUNGE(IND,TIME,DELT,3,1)
 CALL RUNGE(IND,TIME,DELT,3,1)
 CALL RUNGE(IND,TIME,DELT,3,1)
 IND = IND +1
 IND = IND +1
 IND = IND +1
 IND = IND +1
 IF(IND-4)500,500,600
 IF(IND-4)500,500,600
 IF(IND-4)500,500,600
 IF(IND-4)500,500,600
 6 0 0 ~ C O N T I N U E ~
6 0 0 ~ C O N T I N U E ~
6 0 0 ~ C O N T I N U E ~
6 0 0 ~ C O N T I N U E ~
U1I = Ui*COS(TH1) +Wi*SIN(THI)
U1I = Ui*COS(TH1) +Wi*SIN(THI)
U1I = Ui*COS(TH1) +Wi*SIN(THI)
U1I = Ui*COS(TH1) +Wi*SIN(THI)
WII = -U1*SIN(TH1) + U1*COS(TH1)
FPA = ATANC(UII,UII)*C

```
```

 FPA = ATANC(UII,UII)*C
    ```
```

 FPA = ATANC(UII,UII)*C
    ```
```

 FPA = ATANC(UII,UII)*C
    ```
```

```
    261.000
    262.000
    263.000
    264.000
    265.000
    266.000
    267.000
    268.000
    269.000
    270.000
271.000
272.000
273.000
E15.6.
274.000
275.000
276.000
277.000
278.000
279.000
280.000
281.000
282.000
283.000
284.000
285.000
\emptyset
*
```

```
    UII = UII - U1B
```

 UII = UII - U1B
 U1I = U1I - U1B
 U1I = U1I - U1B
 UEL=SQRT(U1I*U1I+W1I*WII)
 UEL=SQRT(U1I*U1I+W1I*WII)
 URITE(6,39),TIME
 URITE(6,39),TIME
 t
 t
 WRITE(6,3),(ALPHA)
 WRITE(6,3),(ALPHA)
 t
 t
 URITE(6,1001),(FN,FA)
 URITE(6,1001),(FN,FA)
 WRITE(6,4),(XMOMEN)
 WRITE(6,4),(XMOMEN)
 :
 :
 WRITE(6,1002),(U1I,W1I,F(1)),FPA
 WRITE(6,1002),(U1I,W1I,F(1)),FPA
 :
 :
 WRITE(6,2222),(UEL)
 WRITE(6,2222),(UEL)
 !
 !
 WRITE(6,8), XCM
 WRITE(6,8), XCM
 I
 I
 FORMAT (1X,4HXCM*,E15.6)
 FORMAT (1X,4HXCM*,E15.6)
 3
 3
 WRITE(6,7), AA,XM1,C1P,U1,W1,CN
 WRITE(6,7), AA,XM1,C1P,U1,W1,CN
 :
 :
 FORMAT (1X,4H AA=, E15,6,4HXM1=,E15,6,4HC1P=,E15,6,4H U1=
 FORMAT (1X,4H AA=, E15,6,4HXM1=,E15,6,4HC1P=,E15,6,4H U1=
 3
 3
 *4H W1=,E15.6.4H CN=.E15.6)
*4H W1=,E15.6.4H CN=.E15.6)
:
:
TH1DS=F(1)
TH1DS=F(1)
TH1S=Y(1)
TH1S=Y(1)
TH1S1=TH1S*C
TH1S1=TH1S*C
U1S=Y(2)
U1S=Y(2)
U1S:Y(3)
U1S:Y(3)
F(1)=0.0
F(1)=0.0
F(2)=W1I
F(2)=W1I
F(3)=U1I
F(3)=U1I
Y(1)=0.0
Y(1)=0.0
Y(2)=21
Y(2)=21
Y(3)=X1

```
    Y(3)=X1
```

286.000
287.000
288.000
289.000
290.000
291.000
292.000
293.000
294.000
295.000
296.000
297.000
298.000
299.000
300.000
301.000
302.000
303.000
304.000
305.000
306.000
307.000
308.000
309.000
310.000
311.000
312.000
313.000
314.000
315.000
316.000
317.000
318.000
319.000
$*$

```
    IND=1
    IF(TIME-0.0)800,800,300
300 CONTINUE
    TIME - TIME-.00390625
4 0 0 ~ C O N T I N U E ~
    CALL RUNGE(IND,TIME,DELT,3,0)
    IND=IND+1
    IF(IND-4)400,400,800
800 TH1=TH1S
    Z1=Y(2)
    X1=Y(3)
    X11=(X1*COS(TH11)-Z1*SIN(TH11))*12.
    CALL TBL(AO1,DPR,XII,L,DPRE)
    FP=-DPRE*AREA*144.
    WRITE(6,1003),(Y(3),Y(2),TH1S1,FP)
    THA=PSI-TH1
    TH3=TH1
    XP = X1 - XCONE*COS(-TH3) + ZCONE*SIN(-TH3)
    ZP=21 - XCONE*SIN(-TH3) - ZCONE*COS(-TH3)
    XG = X1 - XCONE*COS(-TH3) - ZCONE* SIN(-TH3)
    ZO-21 - XCONE*SIN(-TH3) + ZCONE*COS(-TH3)
    IF(TIME-.08)401,402,402
401 CONTINUE
    XTP=XQ
    ZTP=ZO
    URITE(1), XTP, ZTP
    XTP=XP
    ZTP=ZP
    URITE(1), XTP,ZTP
402 CONTINUE
    WRITE (6,6),(X0,Z0)
        C
    WRITE(6,5),(XP,ZP)
    WRITE(6,1013),U1B,DELT
    F(1)=TH1DS
```

320.000
321.000
322.000
323.000
324.000
325.000
326.000
327.000
328.000
329.000
330.000
331.000
332.000
333.000
334.000
335.000
336.000
337.000
338.000
339.000
6.10x,
340.000
341.090
15.6.
342.000
343.000
344.000
345.000
346.000
347.000
348.000
349.000
350.000
*

```
    Y(1)=TH1S
```

 Y(1)=TH1S
 Y(2)=W1S
 Y(2)=W1S
 Y(3)=U1S
 Y(3)=U1S
 I * I + I
 I * I + I
 490 CONTINUE
490 CONTINUE
IF(TIME .LE. 0.0195313) GO TO 201
IF(TIME .LE. 0.0195313) GO TO 201
CALL DIST(TH11,TH1S,X1,Z1,K)
CALL DIST(TH11,TH1S,X1,Z1,K)
201 CONTINUE
201 CONTINUE
XS1=X1
XS1=X1
Z51-21
Z51-21
THS=TH1
THS=TH1
IF(TIME-0.0)41.41.49
IF(TIME-0.0)41.41.49
ORIGINAL PAGE IS
ORIGINAL PAGE IS
4 9 ~ C O N T I N U E ~
4 9 ~ C O N T I N U E ~
IF(TIME-TSTOP)24,251,251
IF(TIME-TSTOP)24,251,251
24 CONTINUE
24 CONTINUE
GO TO 200
GO TO 200
251 CONTINUE
251 CONTINUE
GO TO 25
GO TO 25
1001 FORMAT (1H, 2HFN,3X,E15,6, 2X, 2HFA,3X,E15.6)
1001 FORMAT (1H, 2HFN,3X,E15,6, 2X, 2HFA,3X,E15.6)
1002 FORMAT (1H,2HU , 3X,E15,6,2X,2HW , 3X,E15,6,2X,3HTHD,3X,E15
1002 FORMAT (1H,2HU , 3X,E15,6,2X,2HW , 3X,E15,6,2X,3HTHD,3X,E15
*20HFLIGHT PATH ANGLE = ,E15.6J
*20HFLIGHT PATH ANGLE = ,E15.6J
1003 FORMAT (1H, ЗHXCG, 2X, E15.6,2X,3HZCG, 2X, E15.6,2X,3HTH1, 3X,E
1003 FORMAT (1H, ЗHXCG, 2X, E15.6,2X,3HZCG, 2X, E15.6,2X,3HTH1, 3X,E
*2X,2HFP,3X,E15.6)
*2X,2HFP,3X,E15.6)
3 FORMAT (1H,5HALPHA,3X,E15.6)
3 FORMAT (1H,5HALPHA,3X,E15.6)
4 FORMAT (1H,GHMOMENT,3X,E15.6)
4 FORMAT (1H,GHMOMENT,3X,E15.6)
5 FORMAT (1H, 2HXP, 3X, E15.6, 2X, LHZP, 3X, E15.6)
5 FORMAT (1H, 2HXP, 3X, E15.6, 2X, LHZP, 3X, E15.6)
6 FORMAT (1H, 2HXO,3X,E15.6,2X,2HZQ,3X,E15.6)
6 FORMAT (1H, 2HXO,3X,E15.6,2X,2HZQ,3X,E15.6)
2222 FORMAT (1H, ЗHUEL,3X,E15.6)
2222 FORMAT (1H, ЗHUEL,3X,E15.6)
39 FORMAT (1H,//1X,4HTIME, 3X,E15.6)
39 FORMAT (1H,//1X,4HTIME, 3X,E15.6)
1013 FORMAT(1X,5HW1B= , E15.8,10X,5HDELTT=,E15.8)
1013 FORMAT(1X,5HW1B= , E15.8,10X,5HDELTT=,E15.8)
END

```
    END
```

```
351.000
352.000 C KUTTA IS A CONTROL INTEGER
353.000 C TIME IS TIME OF INTEGRATION
354.000 C DT IS THE TIME INCREMENT
355.000 C NUAR = NUMBER OF UARIABLES TO BE INTEGRATED ONCE
356.000 C NDUAR= NUMBER OF UARIABLES TO BE INTEGRATED TUICE
357.000
0),
    358.000
    359.000
360.000
361.000
362.000
363.090
364.000
365.000
366.000
367.000
368.000
369.000
370.000
371.000
372.000
373.000
374.000
375.000
376.000
377.000
378.000
379.000
380.000
381.000
382.000
383.000
384.000
*
```

```
385.000
386.000
387.000
388.000
389.000
390.000
391.000
392.000
393.000
394.000
395.000
396.000
397.000
398.000
399.000
400.000
401.000
402.000
403.000
*
```

```
    C3(I) = XD(I)*DT
```

 C3(I) = XD(I)*DT
 30 X(I)=SX(I)+C3(I)
 30 X(I)=SX(I)+C3(I)
 IF(NDUAR.EQ.0)GO TO 52
 IF(NDUAR.EQ.0)GO TO 52
 DO 300 I=1,NDUAR
 DO 300 I=1,NDUAR
 CD3(I) = XDD(I)*DT
 CD3(I) = XDD(I)*DT
 300 XD(I)=SXD(I)+CD3(I)
 300 XD(I)=SXD(I)+CD3(I)
 52 CONTINUE
52 CONTINUE
TIME = TIME+0.5*DT
TIME = TIME+0.5*DT
RETURN
RETURN
4 DO 40 I=1,NUAR
4 DO 40 I=1,NUAR
C4(I) = XD(I)*DT
C4(I) = XD(I)*DT
40 X(I) = SX(I)+(CI(I)+C4(I)+2.*(C2(I)+C3(I)))/6.0
40 X(I) = SX(I)+(CI(I)+C4(I)+2.*(C2(I)+C3(I)))/6.0
IF(NDUAR.EQ.0)GO TO 53
IF(NDUAR.EQ.0)GO TO 53
DO 400 I=1,NDUAR
DO 400 I=1,NDUAR
CD4(I)= XDD(I)*DT
CD4(I)= XDD(I)*DT
400 XD(I) = SXD(I)+(CD1(I)+CD4(I)+2.0*(CD2(I)+CD3(I)))/6.0
400 XD(I) = SXD(I)+(CD1(I)+CD4(I)+2.0*(CD2(I)+CD3(I)))/6.0
53 CONTINUE
53 CONTINUE
RETURN
RETURN
END

```
    END
```

```
404.000 SUBROUTINE TBL(X,Y,XI,N,Y1)
405.000
406.000
407.000
408.000
409.000
410.000
4 1 1 . 0 0 0
412.000
413.000
414.000
415.000
416.000
4 1 7 . 0 0 0
418.000
419.000
*
SUBROUTINE TBL(X,Y,XI,N,Y1)
THE DATA MUST BE IN ASCENDING ORDER
DIMENSION X(I),Y(1)
DO 93 I. i.N
IF (X(I)-X1)93,95,91
\(91 \mathrm{DX}=\mathrm{XI}-\mathrm{X}(\mathrm{I}-1)\)
\(D \times 1=X(I)-X(I-1)\)
\(D Y=Y(I)-Y(I-1)\)
\(Y 1=Y(I-1)+D!*(D X / D X 1)\)
GO TO 94
95 Y1=Y(I)
GO TO 94
93 CONTINUE
94 CONTINUE
RETURN
END
```

```
    420.000
    421.000
    422.000
    423.000
    424.000
    425.000
    426.000
    427.000
    428.000
    429.000
    430.000
    431.000
*
    FUNCTION XTANZ(A,B)
    IF(B.EQ. 0.0) GO TO 100
        XTANC=ATAN2(A,B)*57.3
        RETURN
    100 IF(A)10,16,15
    10 XTAN2=-90.0
        RETURN
    16 XTAN2=0.0
        RETURN
    15 XTAN2=90.0
        RETURN
        END
```

 ORIGINAL PAGE IS
 OF. POOR QUALTTY.

```
432.000
433.000
434.000
435.000
436.000
437.000
438.000
439.000
440.000
441.000
442.000
443.000
444.000
445.000
446.000
447.000
448.000
449.000
450.000
451.000
452.000
453.000
454.000
455.000
456.000
457.000
458.000
459.000
460.000
461.000
462.000
463.000
464.000
*
```

```
    SUBROUTINE DIST(TH11,TH1S,X1,Z1,K)
    IF(K .EQ, 1) GO TO 330
    K=0
    Kx1=-2.552083
    2Z1-2.5%5367
    xx2=-2.125
    222-2.516667
    PP=.3131086
    SO-SIN(THII)
    Ce=COS(THIL)
    x\times3=xX2*C0+2Z2*S0
    ZZЭ=ZZ2*C0-XX2*S0
    S=SIN(TH1S)
    C= COS(TH1S)
    XX5= X1+XX1*C+ZZ1*S
    ZZ5=21+ZZ1*C-XX1*S
    x\times6=x\times5-x\times3
    226-225-223
    PPO=-TH11-PP
    ORIGINAL PAGE IR
    S1=SIN(PPO)
    C1=COS(PPO)
    x<7=x\6*C1+2Z6*S1
    227=226*C1-xX6*S1
    IF(ZZ7.LT. 0.) GO TO 340
    XX8= XX7
    ZZ8=2Z7
    330 RETURN
    340 XXX=(XX7-((227*(XX8-XX7))/(228-2273))*12.
        URITE(6,360), (XXX)
    360 FORMAT(///, TH DISTIN,3X,E15.6.///)
    K=1
    RETURN
    END
```

TABLE 3. OUTPUT PARAMETERS

| Mnemonic | Definition and Units |
| :---: | :---: |
| TIME | Time (sec) |
| ALPHA | Angle of attack (deg) |
| FN | Normal force (b) |
| FA | Axial force (lb) |
| MOMENT | Product of angular acceleration and moment of inertia (l / ft) |
| U | Velocity relative to booster component in X direction ($\mathrm{ft} / \mathrm{sec}$) |
| W | Velocity relative to booster component in Z direction ($\mathrm{ft} / \mathrm{sec}$) |
| THD | Angular rate, $\dot{\theta},(\mathrm{deg} / \mathrm{sec})$ |
| Flight Path angle | Flight path angle, γ, (deg) |
| VEL | Velocity of nose cap relative to booster ($\mathrm{ft} / \mathrm{sec}$) |
| XCM | Aerodynamic moment coefficient |
| AA | Product of reference area times dynamic pressure (lb) |
| XM1 | Aerodynamic moment ($\mathrm{lb} / \mathrm{ft}$) |
| C1P | Difference between location of CG and center of pressure (ft) |
| U1 | Body fixed velocity component in X 1 direction ($\mathrm{ft} / \mathrm{sec}$) |
| W1 | Body fixed velocity component in Z 1 direction ($\mathrm{ft} / \mathrm{sec}$) |
| CN | Normal force coefficient |
| XCG | X coordinate of CG (ft) |
| ZCG | Z coordinate of CG (ft) |
| TH1 | Attitude angle (deg) |
| FP | Force due to pressure difference (lb) |
| XQ | X coordinate of point Q |
| ZQ | Z coordinate of point Q |
| XP | X coordinate of point P |
| ZP | Z coordinate of point P |
| W1B | Velocity component of booster in Z 11 direction ($\mathrm{ft} / \mathrm{sec}$) |
| DELT | Integration time step (sec) |

REFERENCES

1. ED15-81-7, "Revised Requirements for Velocity to Separate the SRB Nose Cap," January 22, 1981.
2. ED31-75-1, "SRB Nose Cap Internal Pressure Variation During Ejection," May 1, 1975.
3. ED3 1-76-59, "Revised Aerodynamic Characteristics of the SRB Nose Cap," December 10, 1976.
4. ED32-77-9, "Analysis of SRB Nose Cap Ejection Wind Tunnel Test SA38F," January 18, 1977.

APPROVAL

DESCRIPTION OF A MATHEMATICAL MODEL AND COMPUTER SIMULATION OF SEPARATION OF THE NOSE CAP FROM THE SOLID ROCKET BOOSTER

By Arthur J. Schwaniger, Jr_{r} and Hughlen I. Murphree

The information in this report has been reviewed for technical content. Review of any information concerning Department of Dr fense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

GEGRGE F. MCDONOUGH
Dírector, Systems Dynamics Laboratory

