ATMOSPHERIC TURBULENCE PARAMETERS FOR MODELING WIND TURBINE DYNAMICS

W.E. Holley, Associate Professor
R.W. Thresher, Professor
Department of Mechanical Engineering
Oregon State University
Corvallis, Oregon 97331

Abstract

This paper presents a model which can be used to predict the response of wind turbines to atmospheric turbulence. The model was developed using linearized aerodynamics for a three-bladed rotor and accounts for three turbulent velocity components as well as velocity gradients across the rotor disk. Typical response power spectral densities are shown. The system response depends critically on three wind and turbulence parameters, and models are presented to predict desired response statistics. An equation error method, which can be used to estimate the required parameters from field data, is also presented.

WIND TURBINE SYSTEM MODEL

Before embarking on a discussion of the detil ed characteristics of atmospheric turbulence parameters, it is necessary to present the modeling framework in which the parameters will he used to predict system responses. The primary purpose of the model is to provide a tool by which designers can estimate the effects of fluctuating turbulence inputs on the wind turbine, structural and power system responses.

For an n degree of freedom system, the basic principles of Newtonian mechanies [1] give equations of motion of the form

$$
\begin{equation*}
[M]\{\ddot{z}\}+\left[C_{s}\right]\{\dot{z}\}+\left[K_{s}\right]\{z\}=\left\{f_{a}\right\} \tag{1}
\end{equation*}
$$

where $\{z\}=$ the $n x l$ vector of generalized displacement coordinates.
$[M]=$ the $n \times n$ inertia matrix.
$\left[C_{s}\right]=$ the $n \times n$ gyroscopic and structural and power train damping matrix.

ORIGINAL PAGE IS OF POOR QUALITY

$\left[K_{a}\right]=$ the nxn structural and power train stiffness matrix.
$\left\{f_{a}^{s}\right\}=$ the nxl vector of aerodynamic forces and moments gener-
ated by the turbine rotox.

The aerodynamic forcing term of Eq. (1) depends upon the motion of the turbine rotor with respect to the ground as well as the motion of the air. If the aerodynamic forces and moments are linearized about a steady operating condition, the following equation results

$$
\begin{equation*}
\left\{f_{a}\right\}=\left\{f_{n}\right\}+[F]\{u\}-\left[C_{a}\right]\{\dot{z}\}-\left[K_{a}\right]\{z\} \tag{2}
\end{equation*}
$$

where $\quad\left\{f_{n}\right\}=$ the $n x l$ vector of steady, nominal aerodynamic forces and moments.
$\{u\}=$ the $m \times l$ vector of fluctuating turbulence inputs.
$[F]=$ the nxm matrix of aerodynamic influence coefficients.
$\left[C_{a}\right]=$ the $n \times n$ aerodynamic damping matrix. $\left[K_{a}^{a}\right]=$ the nxn aerodynamic stiffness matrix.

In this particular model, the turbulence input vector \{u\} consists of three velocity components which are uniform over the turbine rotor disk and six additional gradient terms which account for variations in turbulent velocity over the rotor disk. Table 1 gives a verbal description of the nine turbulence input terms appropriate for a rigid, three-bladed wind turbine rotor.

TABLE 1. DESCRIPTION OF TURBULENCE INPUT TERMS

Component	Description
V_{x}	uniform lateral or side component (in rotor plane)
v^{\prime}	uniform longitudinal component along steady wind direction
V_{z}	uniform vertical component (in plane)
$v_{y, x}$	lateral gradient of longitudinal velocity
$v_{y, z}$	vertical gradient of longitudinal velocity
$\gamma_{x z}$	swirl about steady wind axis (in plane)
$\left.\begin{array}{l} \varepsilon_{r} \\ \bar{\gamma}_{r} \end{array}\right\}$	shear strain rates (in plane) expressed in a reference frame rotating at three times the rotor rate
$\bar{\varepsilon}_{X Z}$	in-plane dilation

ORIGINAL PAGE IS OF POOR QUALITY

 homogomoua, latotsopic Von Karman modol [?], tho turbuloneo input voctor: can be apmoxtmated by tho followim mot of atoolmatide deferontial equations [3]

$$
\begin{equation*}
\{\dot{u}\} \cdots\left\{\Lambda_{w}\right\}\{u\}+\left\{n_{w}\right\}\{w\} \tag{3}
\end{equation*}
$$

whore $\quad\{w\}=a n m$ vector of whito noise oxeitations with fhat nower spectral donsity, $s_{w}=\theta^{2} \cdot \mathrm{I}_{\mathrm{L}} / \mathrm{V}_{\mathrm{w}}^{3}$.
 $\left[B_{W}^{W}\right]=$ the mam distribution matrix for the white nojse exeitations.

The matrices $\left[\Lambda_{W}\right]$ and $\left[B_{W}\right]$ are diagonal, execpt for two off diagonal terms in $\left[A_{W}\right]$, which account for the three rotations per rotor revolation effect in the ε_{r} and $\bar{\gamma}_{r}$ terms caused by the theoe blakes moving through the in-plane turbuloned gradients.

The motion Eqs. (1), the acrodynamic foree bas. (i), and the wind turbuloneo inputs Egs. (3) can bo combinod into a sot of system eguations of the form

$$
\begin{align*}
& \{\dot{x}\}=[A]\{x\}+[B]\{w\} \tag{4}\\
& \{y\}=[C]\{x\}+\left\{y_{n}^{\prime}\right\}
\end{align*}
$$

where
$(x)=\left\{\begin{array}{l}s q \\ s: 0 \\ u\end{array}\right\}$
the NXl : 3 ystom state veotor $(N=2 n+m)$
(w) - the mal white notse furbulenco excitation vector.
$\{y \mid=$ the exl vector of system responso variablos.
$\left\{y_{n}\right\}$.. the $i x l$ voctor: of steady nominal system rosponsos.

1131 . $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=$ the Nom white noise excitation distribut ion matrix.
|c| the exN remponse distribut ion matrix.

 that sevorat of the torms in the $|A|$ matrix will how periodie terme:
instoad of being constant as in Eq. (4).
At this point, wo will describe briofly how tho wind parameters ontor tho various coefficients of the overall systom model. First, the steady wind speed, V_{W}, affects the nominal aerodynamic forces and the linoarizod aerodynamic coofficients in the matrices [C_{a}], [$\left.K_{a}\right]$ and $[F]$. Second, both the stoady wind speed, V_{w}, and tho turbulenco integral scalc, L, affect the matrices [$\left.A_{W}\right]$ and [$\left.B_{W}\right]$. Finally, the turbulence component variance, σ^{2}, as well as V_{w} and L, affect the power spectral density, S_{w}, for each of the white noise excitation components. Thus, three atmospheric turbulence parameters, V_{W}, σ, and L, must be known in order to utilize the model given by Eq. (4).

Once the appropriate turbulence parameters are specified, the response, power spectral densities can be computed using the model. given by Eq. (4). Since the white noise inputs are uncorrelated, the following equation results

$$
\begin{equation*}
\left\{s_{y}(\omega)\right\}=[T(\omega)]\left\{s_{w}\right\} \tag{5}
\end{equation*}
$$

where

$\left\{S_{y}(\omega)\right\}=$	the $\ell \times 1$ vector of response power spectral densities.
$\left\{S_{W}^{y}\right\}$	$=$ the $m \times l$ vector of white noise excitation power
	spectral densities.
$[T(\omega)]=$	the lxm matrix of squared, complex magnitudes of
	the system frequency response matrix elements.
$=$	the radian frequency.

If $T_{j k}(\omega)$ is one element of $[T(\omega)]$, then

$$
\begin{equation*}
T_{j k}(\omega)=\left|H_{j k}(i \omega)\right|^{2} \tag{6}
\end{equation*}
$$

where $\quad H_{j k}(i \omega)=$ the corresponding element of the complex frequency response matrix.
$1=\sqrt{-1}$.
Assuming the eigenvalues of the system dynamics matrix [A] are distinct, the complex frequency response matrix is given by

$$
\begin{equation*}
[H(i \omega)]=[C][M][i \omega[I]-[\Lambda]]^{-1}[M]^{-1}[B] \tag{7}
\end{equation*}
$$

where $[M]=$ complex modal matrix consisting of columns of eigenvectors of [A].
$[\Lambda]=$ diagonal complex matrix of eigenvalues of $[A]$.
$[I]=$ identity matrix.

TYPICAL WIND TURBINE RESPONSE CHARACTERISTICS
A simplifiod fivemdegreemof-froodom modol for a three-bladed, horizontalaxis wind turbino was dovoloped by Thresher, ot al. [4]. Tho five genoralized displacoment degrees of froedom are given by

$$
\begin{equation*}
\{z\}^{T}=(u, v, \phi, x, \psi) \tag{8}
\end{equation*}
$$

where $U \quad$ a lateral displacement of the nacelle in x direction.
$v=$ fore-aft displacement of the nacelle in y direction.
$\phi \quad=$ yaw angle.
$X=$ pitch angle.
$\begin{aligned} & X \\ & \psi\end{aligned}=$ pitch angle. \quad rotor angular displacement about spin axis.
Figure 1 shows the coordinate system used for this model. The configuration shown in the figure is appropriate for a down-wind rotor design.

Thresher and Holley [5] utilized the model for two typical wind turbines of widely differing size. The first, designated the Mod-M, is an 8 kW free yaw system with a down-wind rotor. The second, the Mod-G, is a large 2.5 MW machine with a fixed yaw, up-wind rotor. The system characteristics for these two machines are given in Tables 2 and 3.

TABLE 2. MOD-i4 CHARACTERISTICS
Rotor Characteristics:
Rotor Radius
Hub Height
Blade Chord (constant)
Coning Angle
Blade Twist
Pitch Setting (to ZLL)

Steady Operating Conditions:

Rotor Speed, Ω	$7.681 \mathrm{rad} / \mathrm{s}$
Wind Speed, V_{W}	$7.434 \mathrm{~m} / \mathrm{s}$
Approximate Output	$6 \quad \mathrm{~kW}$

Aerodynamic Properties:

Lift Curve Slope	5.7
Drag Coefficient. $C_{D_{0}}$.02

Turbulence Parameters:
Standard Deviation, σ
Integral Length Scale, L

System Frequencios (Tower Motion):

1st Bending (fore-aft)	15.1	$\mathrm{rad} / \mathrm{s}$	(2.0Ω)
2nd Bending (fore-aft)	53.1	$\mathrm{rad} / \mathrm{s}$	(7.0Ω)
lst Bending (side-to-side)	15.9	$\mathrm{rad} / \mathrm{s}$	(2.1Ω)
1st Torsion	0.0	$\mathrm{rad} / \mathrm{s}$	(Free Yaw)

Figure 1. Coordinate Definitions for the wind Turbine Model.

TABLE 3. MOD-G CHARACTERTSTTCS

Rotor Charactoriatica:
Rotor Radius
Hub Holght
Blade Chord (IInoar tapor)
Coning Angle
Blade Iwist (linoar)
Pitch Setting at Tip (to zLL)
Operating Conditions:

Rotor speed, Ω Wind speed, V_{w} Approximate Output
Aerodynamic Properties:
Lift Curve slope
Drag Coefficient, $C_{D_{0}}$
Turbulence Parameters:
Standard Deviation, σ
Integral Length Scale, L
System Frequencies (Iower Motion):
lst Bending (fore-aft)
2nd Bending (fore-aft)
lst Bending (side-to-side)
1st Torsion

45.7 m	$(1.50$
$61.0 \mathrm{ft})$	
2.36 m	$(200 \mathrm{ft})$
to	$(7.74 \mathrm{ft}$
.96 m	to 3.15 ft$)$
.140 rad	$\left(4.0^{\circ}\right)$
.108 rad	$\left(8.0^{\circ}\right)$
	$\left(-6.2^{\circ}\right)$
$1.833 \mathrm{rad} / \mathrm{s}$	
$8.940 \mathrm{~m} / \mathrm{s}$	$(17.5 \mathrm{RPM})$
1.1 MW	$(20.0$

$$
152.4 \quad \mathfrak{m}
$$

$$
\left.\begin{array}{l}
(2.44 \\
\mathrm{ft} / \mathrm{s}) \\
(500 \\
\mathrm{ft}
\end{array}\right)
$$

2.75	rad/s		1.5	8)
12.8	rad/s	$($	7.0	ת)
2.9	rad/s	$($	1.6	ת)
9.5	rad/s	$($	5.2	ת)

Two aerodynamic wake models were used for each system to compute the coefficients in the aerodynamic system matrices $\left[C_{a}\right]$, $\left[K_{a}\right]$, and $[F]$. In the first, the steady conditions are used with standard momentum theory to compute the steady distribution of induced velocity across the rotor disk. This induced velocity is then assumed constant for the given conditions. This model is called the "Frozen Wake." In the second model, the induced velocity which results from a slowly varying velocity field is computed using a quasi-steady momentum balance. In this model, the turbine thrust is always in equilibrium with the driving turbulent velocity, and is called the "Equilibrium Wake." Aerodynamic stall is not modeled in either caue.

Figures 2 and 3 show the power spectral densities of the thrust load and the yaw angle for the Mod-M machine. In the low frequency portion of Figure 2, the thrust load response closely follows the power spectrum of the V_{Y} turbulence input. At higher frequencies the resonance effects of the tower bending modes are observed. In Figure 3, the yaw response is dominated by the $V_{Y, x}$ turbulence input. This turbulence input torm can be interpreted as the rate of change of the direction in the horizontal turbulent velocity component. A smaller additional offect is duc to the uniform side volocity, $v_{x^{\prime}}$ turbulence term.

ORIGINAL PARILILIS OF POOR QUALITY

Figure 2. Thrust Load, F_{Y}, for Mod-M.

ORIGINAL PAGR PA OF POOR QUALITY

Figure 3. Yaw Response, ϕ, for Mod-M.

ORIGINAL PAGE IS
 OF POOR QUALTTY

Figuren A and 5 show similar reaulta for the Modng machine oxoept that the town torston load in ahown Ingtead of the yaw anglo for this fixad yaw machine. Thn Moderg machine ahows a groator fonndtivity to the 3Ω offogte of tho E_{F} and γ_{r} turbuhenon torme.

METHODOLOGY FOR COMPUTATTON OF RESPONSE STMTTSTTCS

rhis soction givor a bridet dinoungion of tho tochniquon by which tho modol givon by Eq. (4) ean bo uood to computo dondrod ropponoo ntation thes. Assuming that tho fluctuating compononto of tho atmoophoric turbulonco aro adoquatoly deseribed by Gauosian atatiotiae [6,7], tho model will give tho conditional probability donoity function of tho rosponse given the steady wind speed V_{w}, and the turbulonce parametore σ and L. Thus, considering only a singlo, scalar rosponoo variable

$$
\begin{equation*}
p\left(y \mid v_{w}, \sigma, L\right)=\frac{1}{\sigma_{Y} \sqrt{2 \pi}} e^{-1 / 2\left(y-\mu_{y} / \sigma_{y}\right)^{2}} \tag{9}
\end{equation*}
$$

where $\quad \mu_{y}=Y_{n}\left(V_{w}\right)=$ the steady response for given V_{w}

$$
\sigma_{y}=\sigma_{y}\left(V_{w}^{\prime}, \sigma, L\right)=\text { the rms response for given } V_{w^{\prime}} \sigma, \text { and } L .
$$

This function can be recognized as the standard Gaussian denslty function. The conditional mean, $\mu_{Y^{\prime}}$ is a nonlinear function of $V_{w \prime}$ and the conditional rms response, σ_{y}, depends nonlinearly on V_{W} and L and is proportional to σ. The rms response, σ_{y}, can be computed from the response power spectral density by the relation

$$
\begin{equation*}
\sigma_{y}^{2}=\frac{1}{\pi} \int_{0}^{\infty} s_{y}(\omega) d \omega \tag{10}
\end{equation*}
$$

The response variance σ_{y}^{2} can also be calculated directly using the re-
lation $[8]$

$$
\begin{equation*}
\sigma_{Y}^{2}=[C][M][P][M]^{* T}[C]^{T} \tag{11}
\end{equation*}
$$

where $[C]=$ the row matrix relating the response to the system state vector.
$[M]=$ modal matrix with column eigenvectors.

* $=$ complex conjugate of the matrix.

The Hermitian matrix, [P], satijfies the linear relation
$[\Lambda][P]+[P][\Lambda]^{*}+[M]^{-1}[B][B]^{T}[M]^{-* T}\left(\frac{\sigma^{2} L}{V_{w}^{3}}\right)=0$
where $[\Lambda]=$ the diagonal matrix of complex eigenvalues.
$[B]=$ the white noise input distribution matrix.

ORIIINAL PAGE IS OF POOR QUALITY

Figure 4. Thrust Load, F_{y}, for Mod-G.

ORIGINAL PAgE is
OF POOR QUALITY

Figure 5. Tower Torsion Load, M_{z}, for Mod-G.
 batimetarn V_{w} and 1 .

$$
\begin{equation*}
\operatorname{rr}\left\{y \cdot y_{i} \mid V_{w}^{\prime\left(1, L_{1}\right\}}: \int_{y_{c}}^{\prime \prime} r\left(y \mid v_{w}^{\prime}(0, \mu) d y\right.\right. \tag{1.3}
\end{equation*}
$$

subutitutimy Ba. (1) into Bu. (13) plolda
where $\quad \operatorname{arf}^{\prime}(\cdot)=\frac{1}{\sqrt{2 n}} \int_{0}^{(\cdot)} e^{-y^{2 / 2}}$ dy $=$ the orror function.

The total probability is thus given by
where $\quad r\left(V_{w}, 0,1\right)=$ the foint probability density function of the positive wind and turbulonee parameters.

For computational phrposes, the integrals can be approximated by discrote summations, so that

$$
\begin{equation*}
\text { rrity } \left.=y_{c}\right)=\sum_{1, k, 0}\left(\frac{1}{2}-\operatorname{orf}\left(\frac{y_{0}^{-\mu} y_{y}}{\theta_{y}}\right) \mathrm{H}^{\prime}\left(\mathrm{V}_{w . j}, o_{k}, L_{e}\right)\right. \tag{16}
\end{equation*}
$$

where the subseripts denote disoreto values of the parameters assodiated with "،ounting bins." 'the probohility required is the joint probability that V_{w} is in bin $l, 0$ is inhin k, and h is in bin ℓ.

Unfortunatoly, complete data for dotermining the foint density function for the wind and turbulemed farametors is generatly lacking. However,

In an atmostheria bemadary layor with mentaal buoyant atability the Iomotithice protite has heron tomad to adeguately model the variation of v_{w} wilh hoight |h|. Jhit: model is: of the form

$$
\begin{equation*}
v_{w} \quad \frac{u_{*}}{\# .4} \ln \left(\frac{:-: n_{n}+n_{u}}{a_{n}}\right) \tag{17}
\end{equation*}
$$

where $\|_{*}$ itiction volodity.

Frost, et al. [10] recommend the waibull probability distribution for the steady wind speed at the reference height of 10 m . Thus solving Eq. (17) for u_{*} when $z=z_{r}=10 \mathrm{~m}$ yields

$$
\begin{equation*}
v_{w}=v_{r} \frac{\ln \left(\frac{z-z_{n}+z_{o}}{z_{o}}\right)}{\ln \left(\frac{z_{r}^{-z_{n}+z_{o}}}{z_{0}}\right)} \tag{18}
\end{equation*}
$$

where $\quad V_{r}=V_{w}$ at the reference height.

$$
z_{r}=\text { reference height. }
$$

Since V_{W} and V_{r} are linearly related, V_{W} also satisfies the Weibull distribution which can be differentiated to give the density function of the form

$$
\begin{equation*}
p\left(v_{w}\right)=\frac{k}{V_{0}}\left(\frac{v_{w}}{v_{o}}\right)^{k-1} e^{-\left(V_{w} / V_{o}\right)^{k}} \tag{19}
\end{equation*}
$$

where $k=a$ site parameter ($\quad=2$).

$$
\begin{aligned}
& \begin{array}{l}
k=\text { a site parameter }(\simeq 2) . \\
\mathrm{v}_{0}=\frac{\overline{\mathrm{V}}_{\mathrm{w}}}{\Gamma\left(1+\frac{1}{\mathrm{k}}\right)}
\end{array} \\
& \overline{\mathrm{V}}_{\mathrm{w}}=\text { annual mean wind speed at the desired height. } \\
& \Gamma(\cdot)=\text { gamma function. }
\end{aligned}
$$

The annual mean wind speed at the desired height can be found from the value at the reference height by the use of Eq. (18).

The rms, turbulent component velocity, σ, is found to be highly correlated with the steady wind speed. Panofsky, et al. [11] give the relation

$$
\begin{equation*}
\sigma=2.3 u_{*} \tag{20}
\end{equation*}
$$

so that when Eq. (17) is used for u_{*},

$$
\begin{equation*}
\sigma=\frac{0.92}{\ln \left(\frac{z-z_{r}+z_{o}}{z_{o}}\right)} v_{w} \tag{21}
\end{equation*}
$$

The turbulence integral scale, $L_{\text {, }}$ is much less understood. Most evidence indicates that it is independent from the steady wind speed, V_{w}, and the variance, σ^{2}. Several authors $[12,13,14]$ recomend different power laws for the variation of integral scale with height. However, these relations are inconsistent and the experimental data exhibit wide scattor. It is highly recommended that an experimontal program be
undertaken to determine an appropriate height scaling law and to account statistically for the variation observed at a given height. In the interim, we will assume the integral scale is deterministic and satisfies the height relation

$$
\begin{equation*}
L=L_{r} \sqrt{\frac{z}{z_{r}}} \tag{22}
\end{equation*}
$$

where $L_{r}=$ a site parameter ($\simeq 65 \mathrm{~m}$).
$z_{r}=$ reference height $=10 \mathrm{~m}$.
Using these simplifying approximations for the parameter models, the statistical procedure given by Eq. (15) reduces to

$$
\begin{equation*}
\operatorname{Pr}\left\{y \geq y_{c}\right\}=\int_{0}^{\infty}\left(\frac{1}{2}-\operatorname{erf}\left(\frac{y_{c}^{-\mu} y_{y}}{\sigma_{y}}\right)\right) p\left(v_{w}\right) d v_{w} \tag{23}
\end{equation*}
$$

where $p\left(V_{w}\right)$ is given by Eq. (19).

The quantities μ_{y} and σ_{y} will be complicated functions of V_{w} given by the model of the turbine response, with Eqs. (21) and (22) used for the parameters σ and L. Obviously, numerical procedures would be used to perform this computation.

ESTIMATION OF MODEL PARAMETERS FROM FIELD DATA

Since the steady wind and turbulence parameters, $V_{w,} \sigma$, and L, critically affect the statistics of the response, it is highly desirable to have a reliable method for extracting the parameters from real field data. One such method is the equation error method [15]. Basically, the method determines a set of parameter values which minimize the difference between the data and predicted values based on the model equations. The resulting parameters will then serve to characterize the turbulence sample observed. A whole collection of such parameter values will then give the required statistical information discussed in the previous section.

Before proceeding to give the detailed procedure for estimating the mean wind and turbulence parameters, a brief description of the equation error method will be given. Suppose we have an accurate, noise-free measurement of a random process, u, modeled by the stochastic differential equation.

$$
\begin{equation*}
\dot{u}=a u+b w \tag{24}
\end{equation*}
$$

where $w=$ white noise with flat $\operatorname{PSD}=S_{w}$.
$a, b=$ model parameters.

ORIGINAL PAGE IS OF POOR QUALITY

The measurements will be a set of N values, $u(i)$ taken at discrete times with a constant time interval, τ, between measurements. The continuous time model can be converted to the discrete time form

$$
\begin{equation*}
u(i+1)=e^{a \tau} u(i)+\xi(i) \tag{25}
\end{equation*}
$$

where $\quad \xi(i)=a$ random sequence of uncorrelated values.
The variance σ_{ξ}^{2} of $\xi(i)$ is found by matching the stationary variance of $u(i)$ and $u(t)$. Thus, from Eq. (25)

$$
\begin{equation*}
E\left[u^{2}(i+1)\right]=e^{2 a \tau} E\left[u^{2}(i)\right]+E\left[\xi^{2}(i)\right] \tag{26}
\end{equation*}
$$

which when solved yields

$$
\begin{equation*}
\sigma_{\xi}^{2} \triangleq E\left[\xi^{2}(i)\right]=\left(1-e^{2 a \tau}\right) \sigma_{u}^{2} \tag{27}
\end{equation*}
$$

From Eq. (24) (assuming $a<0$),

$$
\begin{equation*}
2 a \sigma_{u}^{2}+b^{2} S_{w}=0 \tag{28}
\end{equation*}
$$

Using Eq. (28) in Eq. (27) yields

$$
\begin{equation*}
\sigma_{\xi}^{2}=\left(1-e^{2 a \tau}\right)\left(-\frac{b^{2}}{2 a} S_{w}\right) \tag{29}
\end{equation*}
$$

Now, since $u(i+1)$ and $u(i)$ are linearly related and the noise term is sequentially uncorrelated, standard regression methods [16] can be used to estimate eat and σ_{ξ}^{2} from the data sequence. Thus, we choose the parameter, a, to minimize the estimated variance

$$
\begin{equation*}
\hat{\sigma}_{\xi}^{2}=\frac{1}{N-1} \sum_{i=1}^{N-1}\left(u(i+1)-e^{a \tau} u(i)\right)^{2} \tag{30}
\end{equation*}
$$

The product, $b^{2} S_{w}$, is determined from Eq. (29)

$$
\begin{equation*}
b^{2} S_{w}=\frac{-2 a \hat{\sigma}_{\xi}^{2}}{1-e^{2 a \tau}} \tag{31}
\end{equation*}
$$

It is impossible to estimate b and S_{w} separately.
With the mathematical preliminaries out of the way, let us return to the turbulence parameter estimation problem. Suppose wo have two

ORIGINAL PAGE IS OF POOR QUALITY

propeller type anemometers set up to measure orthogonal horizontal components of the wind. Let $v_{1}(i)$ and $v_{2}(i)$ be sequences of measurements taken from the anemometers. The first step in the procedure is to find the steady wind speed and direction. Thus, determine

$$
\begin{align*}
& \left\langle v_{1}\right\rangle=\frac{1}{N} \sum_{i=1}^{N} v_{1}(i) \tag{32}\\
& \left\langle v_{2}\right\rangle=\frac{1}{N} \sum_{i=1}^{N} v_{2}(i)
\end{align*}
$$

Now,

$$
\begin{align*}
& v_{w}=\sqrt{\left\langle v_{1}\right\rangle^{2}+\left\langle v_{2}\right\rangle^{2}} \tag{33}\\
& \phi=\tan ^{-1} \frac{\left\langle v_{2}\right\rangle}{\left\langle v_{1}\right\rangle}
\end{align*}
$$

The lateral and longitudinal turbulence components are thus determined from

$$
\begin{align*}
& v_{x}(i)=v_{2}(i) \cos \phi-v_{1}(i) \sin \phi \tag{34}\\
& v_{y}(i)=v_{1}(i) \cos \phi+v_{2}(i) \sin \phi-v_{w}
\end{align*}
$$

The next step is to determine the parameter, L, using the equation error regression procedure. According to the model developed by Holley [17], the lateral and longitudinal components of the turbulence satisfy the stochastic differential equations

$$
\begin{align*}
& \dot{V}_{x}=-\frac{2 V_{w}}{L} V_{x}+\frac{2 V_{w}^{2}}{L} w_{1} \\
& \dot{V}_{y}=-\frac{V_{w}}{L} V_{y}+\frac{\sqrt{2} V_{w}^{2}}{L} w_{2} \tag{35}
\end{align*}
$$

where w_{1} and w_{2} are independent white noise processes with equal power spectral densities, $S_{w}=\sigma^{2} L / V_{w}^{3}$.
Applying the equation error regression technique of Eq. (30) and normalizing each of the equation crrors by the variance gives the variance estimate

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{1}{2}\left(\frac{\hat{\sigma}_{1}^{2}}{1-e^{-4 V_{w} T / L}}+\frac{\hat{\sigma}_{2}^{2}}{1-e^{-2 V_{w}^{T / L}}}\right) \tag{36}
\end{equation*}
$$

where

$$
\begin{aligned}
& \hat{\sigma}_{1}^{2}=\frac{1}{N-1} \sum_{i=1}^{N-1}\left(V_{x}(i+1)-e^{-2 V_{w}^{T / L}} V_{x}(i)\right)^{2} \\
& \hat{\sigma}_{2}^{2}=\frac{1}{N-1} \sum_{i=1}^{N-1}\left(V_{y}(i+1)-e^{-V_{w}^{T / L}} V_{y}(i)\right)^{2}
\end{aligned}
$$

The value of L is chosen to minimize $\hat{\sigma}^{2}$ and σ is the resulting $\hat{\sigma}$ after the minimization.

The parameter values determined by this method will characterize the particular turbulence sample observed during a given sampling period. It is expected that the values will be different for different days and times at which the data is taken. This collection of parameter values can then be used to estimate the statistics discussed in the previous section.

CONCLUEIONS

The paper has presented a modeling technique which can be used to estimate wind turbine response statistics due to atmospheric turbulence. Up to this point all of the modeling results have been theoretical. Before these techniques can be put to use by designers, it is required that they be verified using atmospheric and wind turbine field data.

ACKNOWLEDGEMENTS

This research was supported by the Department of Energy through Battelle, Pacific Northwest Laboratory, under Contract DE-AT06-79ET23144. The authors would particularly like to thank Dr. J.R. Connell, the technical monitor, for his enthusiastic support, and the many valuable suggestions made by the PNL staff. The responsibility for the results and opinions expressed rests with the authors and not the United States Government or Oregon State University.

REFERENCES

[1] Thresher, R.W., et al., Modeling the Response of wind Turbines to Atmospheric Turbulence, Dept. of Mechanical Engineering, Oregon State University, Report RLO/2227-81/2 (1981).
[2] Von Karman, T., "Sur la Theorie Statistique de la Turbulence," Comptes Rendus des Seanics de 1'Academie des Sciences, v. 226 (1948), pp. 2108=2111.
[3] Holley, W.E., Thresher, R.W., and Lin, S-R., "Wind Turbulence Inputs for Horizontal Axis Wind Turbines," Proc. Second DOE/NASA Wind Turbine Dynamics Workshop, Cleveland, Ohio, Feb. 24-26, 1981.
[4] Thresher, et al. (1981), op. cit.
[5] Throsher, R.W. and Holloy, W.E. , The Response Sensitivity of Wind Turbines to Ntmospheric Turbulence, Dopt. of Mochanical Engineering, Orogon Stata University, Roport RLO/2227-81/1 (1981).
[6] Connell, J.R. and Powell, D.C., Dofinition of Gust Model Concepts and Review of Gust Models, Battello Pacific Northwest Laboratory, Report PNL-3138 (1980), pp. 6-8.
[7] Etkin, B., Dynamics of Atmospheric Flight, Wiley (1972), p. 532.
[8] Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, Wiley (1972), pp. 103-104.
[9] Lumley, J.L. and Panofsky, H., The Structure of Atmospheric Turbulence, John Wiley \& Sons (1964), p. 103.
[10] Frost, W., Long, B.H., and Turner, R.E., Engineering Handbook on the Atmospheric Environmental Guidelines for Use in Wind Turbine Generator Development, NASA TP 1359 (1978), p. 2.48.
[11] Panofsky, H.A., et al., "The Characteristics of Turbulent Velocity Components in the Surface Layer Under Convective Conditions," Boundary-Layer Meteorology, v. 11 (1977), p. 357.
[12] Counihan, J., "Adiabatic Atmospheric Boundary Layers: A Review and Analysis of Data from the Period 1880-1972," Atmospheric Environment, v. 9 (1975), p. 888.
[13] Etkin, B. (1972), op. cit., p. 542.
[14] Frost, W., et al. (1978), op. cit., p. 4.18.
[15] Eykhoff, P., System Identification, wiley (1974), pp. 228-277.
[16] Goodwin, G.C. and Payne, R.L., Dynamic System Identification, Academic Press (1977), pp. 22-41.
[17] Holley, et al. (1981), loc. cit.

