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ABSTRACT

This paper presents a model which can be used to predict the response , .
of wind turbines to atmospheric turbulence. The model was developed :
using linearized aerodynamics for a three~bladed rotor and accounts

for three turbulent velocity components as well as velocity gradients
across the rotor disk. Typical response power spectral densities are
shown. The system response depends critically on three wind and turbu-
lence parameters, and models are presented to predict desired response
statistics. An equation error method, which can be used to estimate the
required parameaters from field data, is also presented.

WIND TURBINE SYSTEM MODEL

Before embarking on a discussion of the detii ed characteristics of
atmospheric turbulence parameters, it is necessary to present the model-
ing framework in which the parameters will 2 used to predict system
resronses. The primary purpose of the model is to provide a tool by
which designers can estimate the effects of fluctuating turbulence
inputs on the wind turbine, structural and power system responses. ]

For an n degree of freedom system, the basic principles of Newtonian
mechanics [1] give equations of motion of the form

n: "y A4 .
o + =
"y (M1{z} + [c1{z} + (K 1{z} = {f} (1)
;w .
R ? where {2z} = the nxl vector of generalized displacement coordinates.
o [M] = the nxn inertia matrix. {
ot [Cs] = the nxn gyroscopic and structural and power train damp- i

ing matrix.
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[K ] = the nxn structural and power train stiffness matrix.
(fs} = tha nxl vector of aerodynamic forces and moments gener-
ataed by the turbine rotox.

The aerodynamic forcing term of Eq. (1) depends upon the motion of the
turbine rotor with respect to the ground as well as the motion of the
alr. If the aerodynamic forces and moments are linearized about a
steady operating condition, the following equation results

{g,} = (£} + [Fl{u} - [c }{z} - K ]{z} (2)

where {fn} the nxl vector of steady, nominal aerodynamic forces

and moments.

{u} = the mxl vector of fluctuating turbulence inputs.

[F] = the nxm matrix of aerodynamic influence coefficients.
[Ca] = the nxn aerodynamic damping matrix.

[Ka] = the nxn aerodynamic stiffness matrix.

In this particular model, the turbulence input vector {u} consists of
three velocity components which are uniform over the turbine rotor disk
and six additional gradient terms which account for variations in tur-
bulent velocity over the rotor disk. Table 1 gives a verbal description
of the nine turbulence input terms appropriate for a rigid, three-bladed
wind turbine rotor.

TABLE 1, DESCRIPTION OF TURBULENCE INPUT TERMS

Component Description
Vx uniform lateral or side component (in rotor plane)
Vy uniform longitudinal component along steady wind
direction
Vz uniform vertical component (in plane)
Vy x lateral gradient of longitudinal velocity
’
Vy 2 vertical gradient of longitudinal velocity
’
Yz swirl about steady wind axis (in plane)
r shear strain rates (in plane) expressed in a refer-
; ence frame rotating at three times the rotor rate
r
€ in-plane dilation
X2z
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Aasuming that the atmospheric turbulonce in adoquatoly desaribod by the
homogoneous, inotropie Von Karman modal [2], the turbulence input voectov
can be approximitod by tho following sot of atochastic difforential

equations (3]

{ul - I Mul + n, 1w} (3)

"

s an mxl vector of white noise oxcitations with tlat

whoroe {w}
2]
power spectral density, 8 = o“L/V&.

[Awl = the mxm dynamics matrix F3r the turbulence inputs.
[Bw] = the mxm distribution matrix for the white noise oxci-

tations,

The matrices [A,] and [B,] are diagonal, except for two of £ diagonal
terms in [A,), which account for the three rotations per rotor rovola-
tion offect in the ¢, and Yy, torms caused by the three blades moving
through the in-plane turbulence gradionts.

The motion Bqs. (1), the acrodynamic force Fgs. (2), and the wind turbu-

lonce inputs Bgs. (3) can be combined into a scot of systoew cquations
of the form

{x} = [Al{x} + [B]{w}

(d4)
{yl = [Clix} + {yn}
whore Sz
{x} = S the Nxl systom state vector (N = In+m)
u
{w} = the mxl white noise turbulence oxcitation vector.
lyl! = the ix1 voctor of systom roesponsoe variables,
{yn} - the (x1 vector of stoeady nominal systom responses.
Q T Q
ay - M (K 4K ) M 4c) M7y « the NXN systom
N of @ A matrix
w
0
1] : 0 ~ the Nxm white noise excitation distribution
B matrix.
w
O the ¢xN response distribution matrvis.

L]

Note that &z and & are deviations trom the steady, veneratised dis-
placement. and velocity component s, The outputs {y} and the corvespond-
ing matrix [C1 depend upon the particutar set of displacoments, veloci-
tios or load response variables ot intorest to the desianer,

The systoem cdquat ions of motion given by . ¢ oarve dot ived assuming o
rigid, three-bladed turbine rogor.  1tois possible to doerive systom
oquat fons tor two-bladed rotors similar to these equat fons, oxcopt
that severat of the terms in the (A} matrix will have periadic toerms
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instead of being constant as in Eq. (4).

At this point, wa will describe briefly how the wind parameters cnter

the various coefficlents of the ovarall systom model. First, the
o f steady wind speed, Vy,, affects the nominal aerodynamic forces and tho
SRR linearized aerodynamic coefficients in the matrices [C,)l, [Ka] and [F].

f: Second, both the stecady wind speed, Vy+ and tho turbulence integral

. scale, L, affect the matrices [Ay] and [B,]. Finally, the turbulence
Y component variance, 02, as well as V,, and L, affect the power spectral
density, 8,, for cach of the white noise excitation components. Thus,
three atmospheric turbulence parameters, Vy,, ¢, and L, must be known
in order to utilize the model given by Eq. (4).

Once the appropriate turbulence parameters are specified, the response,
power spectral densities can be computed using the model. given by

Eg. (4). 8Since the white noise inputs are uncorrelated, the following
equation results

{sy(w)} [T(w)]{SW} (5)

I

where {s_(w)} the 2xl1 vector of response power spectral densities,
{Sz} = the mxl vector of white noise excitation power

spectral densities.

the 2xm matrix of squared, complex magnitudes of

the system frequency response matrix elements.

]

[T(w)]

w = the radian frequency.
1f Tjk(w) is one element of [T(w)], then
T, (W) = |H (iw)|2 (6)
ik ik ]
where ij(iw) = the corresponding element of the complex frequency
response matrix.
i = -lu

Assuming the eigenvalues of the system dynamics matrix [A] are distinct,
the complex frequency response matrix is given by

e H(iw)] = [C] M) [iwlT1] - [A]T" (M7 (B] (7)

where [M]}

]

complex modal matrix consisting of columns of eigen=-
vectors of [A].

[A] = diagonal complex matrix of eigenvalues of [A].

[I] = identity matrix. ]

————
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TYPICAL, WIND TURBINE RESPONSE CHARACTERISTICS

A simplificd five~dagree~of~froadom model for a three~hladed, horizontal~-

axis wind turbino was devoloped by Thresher, ot al. [4].
genorxalized displaccment degrees of froedom are given by

T
{2} = (U,V, ¢, X,
where u =
v =
¢ = yaw angle.
X = pitch angle.
w =

Figure 1 shows the coordinate system used for this model.

rotor angular displacement about spin axis.

The five

(8)

lateral displacement of the nacelle in x direction.
fore-aft displacement of the nacelle in y direction.

The configu-

ration shown in the figure is appropriate for a down-wind rotoxr design.

Thresher and Holley [5) utilized the model for two typical wind turbines
of widely differing size. The first, designated the Mod-M, is an 8 kW
The second, the Mod-G, is a

free yaw system with a down-wind rotor.
large 2.5 MW machine with a fixed yaw, up-wind rotor.

The system

characteristics for these two machines are given in Tables 2 and 3.

TABLE 2. MOD=-i CHARACTERISTICS

Rotor Characteristics:

Rotor Radius

Hub Height

Blade Chord (constant)
Coning Angle

Blade Twist

Pitch Setting (to 2LL)

Steady Operating Conditions:

Rotor Speed, §
Wind speed, Vi
Approximate Output

Aerodynamic Properties:

Lift Curve Slope
Drag Coefficient CDO

Turbulence Parameters:

standard Deviation, o
Integral Length Scale, L

system Frequencics (Tower Motion):

1st Bending (fore-aft)

2nd Bending (fore-aft)

1st Bending (side-to-side)
1st Torsion

5.081l m
16.8 m
457 m
.06l rad
0 rad
.,052 rad

7.681 rad/s

7.434 m/s
6 kw
5.7
.02
.619 m/s
91.44 m
15.1 rad/s
53.1 rad/s
15.9 rad/s
0.0 rad/s

(16.67 ft)
(55 ft)
(1.5 f£t)
( 3.5°)
( 0.0°)
( 3.0°)

(73.35 RPM)
(16.63 MPH)

{ 2.03 £t/8)
(300 ft )

(2.0 Q)
(7.0 Q)
(2.1 Q)
(Free Yaw)

by
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o Figure 1. Coordinatc Definitions for the Wind Turbine Model.
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TABLE 3., MOD-G CHARACTERISTICS

Rotox Characterintics:

Rotor Radius 45,7 m (150 £t)
Hub Hoight 61.0 m (200 f£t)
Blade Chord (linecar tapor) 2,36 m ( 7.74 £t
to .96 m to 3.15 f¢)
Coning Anglo .070 rad ( 4.0°)
Blade Twist (lincar) .140 rad ( 8.09)
Pitch Setting at Tip (to ZLL) .108 rad ( -6.2°)
Steady Operating Conditions:
Rotor Speed, 2 1,833 rad/s { 17.5 RPM)
Wind Speed, V, 8.940 m/s ( 20.0 MPH)
Approximate Output 1.1 MW
Aerodynamic Properties:
Lift Curve Slope 5.73
Drag Coefficient, CDo .008
Turbulence Parameters: )
standard Deviation, ¢ . 744 m/s ( 2.44 ft/s)
Integral Length Scale, L 152,.4 m (500 £t )
System Frequencies (Tower Motion): i
1st Bending (fore-aft) 2,75 rad/s ( 1.5 ) i
2nd Bending (fore-aft) 12.8 rad/s ( 7.0 Q)
1st Bending (side~to-side) 2.9 rad/s ( 1.6 Q)
lst Torsion 9.5 rad/s ( 5.2 Q)

Two aerodynamic wake models were used for each system to compute the
coefficients in the aerodynamic system matrices [Cal, [Kyl, and [F].
In the first, the steady conditions are used with standard momentum
theory to compute the steady distribution of induced velocity across
the rotor disk. This induced velocity is then assumed constant for
the given conditions. This model is called the "Frozen wWake." In the
second model, the induced velocity which results from a slowly varying
velocity field is computed using a quasi-steady momentum balance. In
this model, the turbine thrust is always in equilibrium with the driving
turbulent velocity, and is called the "Equilibrium Wake." Aerodynamic
stall is not modeled in either ca.e.

Figures 2 and 3 show the power spectral densities of the thrust load
and the yaw angle for the Mod~M machine. In the low frequency portion
of Figure 2, the thrust load response closely follows the power spec-
trum of the V. turbulence input. At higher frequencies the resonance
effects of the tower bending modes are obscrved. In Figure 3, the yaw
responge is dominated by the Vy g turbulence input. This turbulence
input term can be interpreted as the rate of change of the direction
in the horizontal turbulent velocity component. A smaller additional
offect is duc to the uniform side velocity, Vx' turbulence term.
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10°F
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Figure 2. Thrust Load, Fy' for Mod-M.
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“,uu Figure 3. Yaw Response, ¢, for Mod-M.
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Figures 4 and 5 show similar rasultas for the Mod~G machine except that
tha tower torsion load ims shown ilnstead of the yaw anglo for this fixed
yaw machine, The Mod-G machine shows a greator senaltivity to the 3f
affects of tha cr and Yr turbulenga torma,

METHODOLOGY ['OR COMPUTATION OF RESPONSE S8TATISTICS

This soctioen givos a briof discunsion of tho toehniquon by whieh tho
modol givon by Eq. (4) can bo uscod to computo donirod rogpenso statio-
tics., Assuming that tho fluctuating compenonto of tho atmesphorie
turbulonco are adequatoly described by Gauwooilan otatioties [6,7], tho
model will give tho conditional probability donsity function of tho
response given the steady wind speed Vy,, and tho turbulonco paramotors
¢ and L, Thus, considering only a singlc, scalar rosponso variable

2
1 1/2(y-uy/oy)

)
o /2r

where “y = yn(vw) = the steady response for given vw

p(YlvwlUlL) = (9)

oy = oy(vw,o,L) = the rms response for given Vw, ¢, and L.

This function can be recognized as the standard Gaussian denslty func-
tion. The conditional mean, u,, is a nonlinear function of V,,, and
the conditional rms response, Oy depends nonlinearly on Vi, and L and
is proportional to o. The rms response, o,, can be computed from the
response power spectral density by the relation

2_ -]
oy = i Sy(w)dw (10)

3|

The response variance 02 can also be calculated directly using the re-
lation [8) Y

o; = e ter ) Ty T (11)

where [C] = th: row matrix relating the response to the system
gstate vector,
(M] = modal matrix with column eigenvectors.
* = complex conjugate of the matrix.

The Hermitian matrix, [P), satiusfies the linear relation

2
* -1 -
e + ernt s T (G = o (12)
vw
where [Al = the diagonal matrix of complex eigenvalues.

[B] = the white noige input distribution matrix.
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Figure 4. Thrust Load, Fy' for Mod-G.
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Figure 5. Tower Torsion lLoad, Mz, for Mod-G.
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Note Lhat the matvdeen (1), M1, and [A] dopond nonld nearly on the
parametory Vw and T,

Now, suppone it L dosbrod to compute the probability that y oxcoeds a
vortain eritical valuwe Y. The conditional probability is given by

refy Y(,lvw,u,l'...} v f p(y]Vw,u,lJ)dy (13)
Y.,

O

substituting Bq. (9) into Bg. (13) yields

Y, H
priy =y |V ,0,ul = Lo ore- (14)
¢low - \
A R
whore ort(s) = ==— [ o ¥ /% Qy = the error function.
VAT

The total probability is thus given by

[3\] o K\ y "n‘l
pely ~y ) =/f f G- ere=)pw ,0,0)av dods (15)
- e 2 o w w
QO Q (&)
whore p(vw,o,L) = the joint probability density function of the

positive wind and turbulence paraneters.

For computational purposes, the intograls can be approximated by dis-
cretoe summations, so that

Y .M
.l e
pely Sy )oY (5= ef ey
ket o Y

'0"LQ) (16)

ik

where the subscripts denote discrote values of the parameters associated
with "counting bing."  The probability required is the joint probability
that Vw is in bin j, o is in bin k, and L is in bin ¢,

intortunately, complete data for dotoermining the joint density function
for the wind and turbulence parametors is gonerally lacking.  However,
geveral simplifying assumpt ions make an approximate model possible,

in an atmospheric boundary layer with noutral buoyant stability the
logaritimic protite has been tound to adequately model the variation
ot Vw with heiaht (91, This model is ot the form

u z'.-'.'.‘ i

Y

Vv e . Qn(.,_.“....«..“. 17

W 0.4 e ) (7
(%)

where u, friction velovity,
W © height above the ground,
;:“ nominal height where Vw O (otten zoero),
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Frost, et al. [10] recommend the Weibull probability distribution for
the steady wind speed at the reference height of 10 m. Thus solving
Eq. (17) for u, when z = z, = 10 m yields

2~-2 +2
n

wn( 2 2)
Vw = vr . (zr-z +2 ) (18)
n
zO
where Vr = Vw at the reference height.

2. = reference height.

Since V, and v, are linearly related, V,, also satisfies the Weibull
distribution which can be differentiated to give the density function
of the form

k
v -(V. /V)
k w, k-1 w o
p(Vw) v (v ) e (19)
o o
where k = a site parameter (= 2).
vw
vV =
O ra+d
Vw = annual ‘mean wind speed at the desired height.

ar ]
~
.
~
fl

gamma function.

The annual mean wind speed at the desired height can be found from the
value at the reference height by the use of Eq. (18).

The rms, turbulent component velocity, o, is found to be highly corre-
lated with the steady wind speed. Panofsky, et al. [11] give the re-
lation

g =2.3u, (20)

so that when Eq. (17) is used for u,,

_ 0.92
o= 2=z +2 vw (21)
£n(-;r———ﬁ
(o]

The turbulence intcgrél scale, L, is much less understood. Most cvi~
dence indicates that it is independent from the steady wind speed, V.,
and the variance, 02. Several authors [12,13,14] recommend diffecrent
power laws for the variation of integral scale with height. However,

these relations are inconsistent and the cxperimental data exhibit
wide scatter. It is highly recommended that an experimental program be
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undertaken to determine an appropriate height scaling law and to account
statistically for the variation observed at a given height. 1In the
interim, we will assume the integral scale is deterministic and satisfies
the height relation

o /E e

2
b4

where Lr = a site parameter (= 65 m).

z, = reference height = 10 m.

Using these simplifying approximations for the parameter models, the
statistical procedure given by Egq. (15) reduces to

px{y >y } =/ & - ers(S—y)p(v)av (23)
c 2 o] wow
o y
where p(Vw) is given by Eq. (19).

The quantities u, and ¢ will be complicated functions of Vy given by
the model of the” turbiné response, with Egs. (21) and (22) used for the
parameters ¢ and L. Obviously, numerical procedures would be used to
perform this computation.

ESTIMATION OF MODEL PARAMETERS FROM FIELD DATA

Since the steady wind and turbulence parameters, Vy, o, and L, criti-~
cally affect the statistics of the response, it is highly desirable to
have a reliable method for extracting the parameters from real field
data. One such method is the equation error method [15). Basically,
the method determines a set of parameter values which minimize the
difference between the data and predicted values based on the model
equations. The resulting parameters will then serve to characterize the
turbulence sample observed. A whole collection of such parameter values
will then give the required statistical information discussed in the
previous section.

Before proceeding to give the detailed procedure for estimating the mean
wind and turbulence parameters, a brief description of the equation
error method will be given. Suppose we have an accurate, noise-free
measurement of a random process, u, modeled by the stochastic differen-
tial equation.

ﬁ = au + bw (24)
where w = white noise with flat PSD = S .
w
a,b = model parameters.
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The measurements will be a set of N values, u(i) taken at discrete
times with a constant time interval, T, between measurements. The
continuous time model can be converted to the discrete time form

u(i+l) = T u(i) + £(1) (25)
where £(i) = a random sequence of uncorrelated values.
The variance 02 of £(i) is found by matching the stationary variance of
u(i) and u(t). Thus, from Eq. (25)

Elu?(i+1)] = 22T Eu?(1)] + EIE2(1)] (26)

which when solved yields

24 .2 2at, 2
o TELET(W)] = -e aT)cu (27)
From Eq. (24) (assuming a < 0),
2a0° + bS = 0 (28)
u w

Using Eq. (28) in Eq. (27) yields

2

2at b
£ (L - e ) (- 2 SW) (29)

2
(¢}

Now, since u(i+l) and u(i) are linearly related and the noise term is
sequentially uncorrelated, standard regression methods [16] can be
used to estimate edT and o¢ from the data sequence. Thus, we choose
the parameter, a, to minimize the estimated variance

. N-1
2=t 5 (u(i+l) - 2TuEn? (30)
=

The product, bzsw. is determined from Eq. (29)

~2
2 _ -2a ©
bs, = 2at (31)
l-¢€

It is impossible to estimate b and Sw separately.

with the mathematical preliminaries out of the way, let us return to
the turbulence parameter estimation problem. Suppose wc have two
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propeller type anemometers set up to measure orthogonal horizontal
components of the wind. Let vy(i) and vy (i) be sequences of measure-~
ments taken from the anemometers. The first step in the procedure is to
find the steady wind speed and direction. Thus, determine

1 N
v,> == I wv_ (i)
N o
(32)

2

v, > = L L v (1)
N , 2
i=1

Now,

2 2
= y< >
v V/v1> + <v,

<v_>
2

<y, >
1

(33)

¢ = tan'.l

The lateral and longitudinal turbulence components are thus determined
from

Vx(i) v2(i) cos¢ - vl(i) sing

(34)

Vy(i) vl(i) cos¢ + vz(i) sin¢ - Vw

The next step is to determine the parameter, L, using the equation error
regression procedure. According to the model developed by Holley [171,
the lateral and longitudinal components of the turbulence satisfy the
stochastic differential equations

v, = - EXE-V + Ezz'w
X L X L 1
9 (35)
é = - ZE-V + /E.Vw w
Yy L Y L 2

where w; and w, are independent white noise processes with equal power
spectral densities, sw = OZL/Vz.

Applying the equation error regression technique of Eq. (30) and normal-
izing each of the equation errors by the variance gives the variance
estimate

:2 ;2
2 1 1 2
=5 vt T on (36)
w
l-e l-e
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-~ N"'l ~2V T/IJ
where et 3 ot -e Y v un?
1l N~1 X x
i=1
~ N"l -V T/I-l
2 -k w i) me Y (1)) 2
i=1 Yy b4

The value of L is chosen to minimize 02 and o is the resulting o after
the minimization.

The parameter values determined by this method will characterize the
particular turbulence sample observed during a given sampling period.
It is expected that the values will be different for different days and
times at which the data is taken. This collection of parameter values
can then be used to estimate the statistics discussed in the previous
section.

CONCLUSIONS

The paper has presented a modeling technique which can be used to esti-
mate wind turbine response statistics due to atmospheric turbulence.
Up to this point all of the modeling results have been theoretical.
Before these techniques can be put to use by designers, it is required
that they be verified using atmospheric and wind turbine field data.
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