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As the result of recent interest in the possible weight saving obtained by using high contact ratio 
gear (HCRG) meshes, a computer program was developed using a time history, interactive, closed 
form solution for the dynamic tooth loads for both low and high contact ratio spur gears (ref. 1). 
Because the magnitude and variation of the tooth pair compliance with load position can affect the 
dynamics and loading significantly, and because the tooth root stressing per load varies significantly 
with load position, it was desirable to include in the dynamic gear program preprocessors and 
postprocessors, respectively, for calculating these two important factors. Since the tooth forms for 
HCRG deviate appreciably from the tooth forms for conventional low contact ratio gears (LCRG), 
improved and simplified methods were developed for calculating the compliance and stress sensitivity 
for three involute tooth forms as a function of load position-a standard LCRG tooth with no 
undercut and two HCRG teeth with different forms of undercut (see fig. 1). 

The method developed for calculating the compliance of spur gear teeth follows to a great extent 
that developed by Weber (ref. 2) and includes three factors: (1) the basic deflection of the tooth as a 
beam, (2) the deflection of the tooth caused by the fillet and foundation flexibility (ref. 3), and (3) the 
local deflection caused by the contact between the two teeth. The principal improvement in the 
compliance analysis was for the fillet/foundation deflection, which was found to be defined by 
different fillet angles for various load positions; whereas previous studies assume a given fillet angle 
of about 75 O .  The resulting compliance analysis was evaluated by applying it to available test, finite- 
element, and analytic-transformation results and was found to give compliance results which agreed 
well with measurement and “exact” analyses. 

The method developed for calculating the stress sensitivity is an improved and simplified version 
of the Heywood analysis (ref. 4). Because the tooth forms for HCRG deviate appreciably from 
conventional LCRG tooth forms, the stress sensitivity analysis had to include most of the factors 
affecting the stressing. The improved analysis does not assume the peak stress occurs at 30” from the 
base of the fillet, as the Heywood analysis does, but allows it to be a function of load position. The 
sensitivity analysis was found to give results which agreed well with the Heywood (ref. 4) and Kelly 
and Pederson methods (ref. 13), which, in turn, have been found to correlate well with test results. 
Evaluation of the modified Heywood stress sensitivity analysis showed that its results compared very 
well with available test, finite element, and analytic transformation results. The differences between 
the improved Heywood type stress sensitivity analysis and the conventional Lewis and AGMA 
analyses were found to be significant for low and high contact ratio gears, being about 25 percent 
higher for the LCRG and about 15 percent higher for the HCRG. 

Gear Tooth Compliance 
Derivation of Compliance Formula. 

The determination of the compliance of gear teeth is considerably more difficult than 
determining the stress sensitivity because it is an integral function of the entire loaded tooth, rather 
than just a function of the section properties at the peak stress point and the load location. In 
addition, because of the stubbiness of the teeth, the foundation and shear effects are important. The 
method developed herein parallels to a great extent Weber’s work (ref. 2) but using O’Donnell’s 
foundation factors (refs. 3 and 5). The total compliance or flexibility of a gear tooth at the point of 

‘Work done under NASA contract NAS3-22138. 
?Previously published in J. Mech. Des., vol. 103, no. 2, Apr. 1981. 
$Hamilton Standard Division of United Technologies Corp. 

383 



Line Tangent 
To Involute 

(a) Standard Tooth - S 

Width - w 

Contact 

Undercut Tooth - A 
(HCRG) 

Tangent Cam 
Width - w 

(e) Undercut Tooth - B 
Parallel (HCRGI 

Width - w 
8.- Paraltd Case 

Ideal 
Contact 

F i g u r e  1. - Gear t o o t h  geometries. 

t-jO-4 

F i g u r e  2. - Beam compliance o f  gear too th .  

load, y n  is made up of three deflections: (1) the basic tooth as a cantilever beam, ye; (2) the fillet and 
foundation, y ~ ;  and (3) the local contact and compression, y ~ .  The compliance, C, of a gear tooth 
pair, 1 and 2, is their combined deflection per unit of load at the contact position or 

where L is the applied load and the deflections y are in the direction of the load. The derivation of the 
three factors in equation (1) follows. 

In order to determine the beam compliance of a gear tooth its geometry must be defined over its 
entire load length. Three different involute tooth forms are considered in this study, which depend on 
the contact ratio, number of teeth and pitch, and manufacturing process. The three involute tooth 
forms are depicted in figure 1, form S being for standard LCRG teeth with no necking and forms A 
and B being for HCRG and small radium LCRG teeth. For tooth form S the tangency of the fillet 
radius with the involute form occurs outboard of the base circle. For forms A and B the tangency 
with the tooth form occurs inboard of the base circle. The tooth form inboard of the base circle is 
machined along a line tangent to the involute surface at the base circle for form A, whereas it is 
plunged ground along a line parallel to the fillet radius centerline for form B. The appendix gives the 
expressions for defining the tooth geometry for three forms of teeth. The applicable tooth geometry, 
form S ,  A, or B in figure 1, is determined by the expressions 

Form S: (Rf + 2r R , )  2 R j  
Form A or B: (Rf + 2r R , )  < R j  

'LI2 

Whether form A or B applies is defined by the manufacturing process used, that is, fillet region made 
tangent or plunge ground, respectively. Having analytically defined the geometry of the gear tooth, 
the compliance of the tooth can be determined. 

The deflection and, therefore, compliance of a gear tooth over its beam portion is easily 
obtained using elementary strength of materials. Referring to figure 2(a), the total bending and shear 
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deflection in the direction of and at the applied tooth load, L ,  which is at radius RL or position S 
along the line of action, can be expressed in integral form as 

where l i s  the section modulus of the tooth as a function of < =x or n = z; n = (i- 4)  = z = (r-x) and is 
the distance along the centerline of the tooth from the load position; a value of 1.2 has been assumed 
for the shear factor based on a rectangular tooth; G = E/2(1+ p); and A is the cross-sectional area as 
a function of x or z. The deflection of the basic tooth can also be defined in a summation expression 
rather than integral form (see fig. 2(b)), which would be more applicable for a hand calculation or a 
programmable calculator. In this case the tooth beam deflection at and in the direction of the load is 

Y e =  c0s24L E 24 
I =  I 

1 

3 12.411 + d + T a n 2 &  ) 
(- (I' -I1b1 + - 6') 

(4) 

where l/&=(l/Ii+ l/li+ 1)/2 and (l/Ai+ 1/Ai+ ,)/2. Using these inverse forms for the values of & 
and improves the accuracy for a small number of elements. In equation (4) Ii=(?-xi) and 
6i= (xi+ 1 -xi)(see the appendix). Both approaches for beam flexibility assume a narrow tooth width, 
W. For wide teeth where W/hp>5, the flexibility is decreased by the anticlastic effect, so that the 
values of I in equations (3) and (4) should be divided by (1 -$). 

Because of the fillet and the flexibility of the material to which the tooth is attached, additional 
deflection will occur at the load (refs. 2, 3, and 5). This fillet and foundation deflection in the 
direction of the load, y ~ ,  is a function of the fillet geometry and the load position and direction and is 
determined by the effective fillet length or angle  for which the maximum deflection or work occurs 
at the load. In other references this effective fillet angle has been assumed constant at about 70 (ref. 
3) or neglected (ref. 2). 

Based on figure 3, O'Donnell (refs. 3 and 5 )  shows that the deflection at and in the direction of 
the tooth load due to the foundation effects, YFF, for plane stress is 

YFF= 

+2(1- p) (5) + 1.534 (1 
TanZ& 

+ 2.4(1 --)I +a)  

Figure 3. - Fillet and foundation compliance of a 
gear tooth. 
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For wide teeth the expression for plane strain is used or 

YFF= 

) (k ) + 1.534 (1 + ~ 

2.4(1+ p )  

The O'Donnell coefficients in equations ( 5 )  and (6) differ slightly from those given by Weber (ref. 2). 
The first term in the brackets is the deflection at L due to the rotation caused by the moment at hF. 
The second term is the sum of the deflections at L due to the displacement at hF caused by the 
moment at hFand the rotation at hFcaused by the shear force at hF. The first part of the third term is 
the displacement at L due to the shear force at hF, based on the assumption that the effective depth 
for determining this deflection is 2% times the tooth thickness (ref. 2). The second part of the third 
term is the deflection at L due to the normal component of the load assuming the same relationship 
holds as indicated by the beam deflection equation (see eqs. (3) and (4)). The question now follows: 
What values of IF and hF should be used in equations ( 5 )  and (6),  that is, what is the effective fillet 
length or angle y ~ ?  

Referring to figure 3, the deflection at and in the direction of the load due to the flexibility of the 
fillet and foundation, YF, the shaded region, is obtained from the summation of the fillet beam 
deflection, YFB, using equations (3) and (4), and the foundation deflection YFF, using equation ( 5 )  or 
(6),  that is, 

YF =YFF +YFB (7) 

where IF= F+ r(Sin Y F -  Sin r), hF= h + 2r(Cos 7 -Cos y~), li = T+ r(Sin yi- Sin r),  and hi= h 
+ 2r(Cos - Cos yJ. The value of Y F  is the one that maximizes the value of y~ or y ~ ,  which can be 
easily done as one integrates or sums up the deflection of the tooth starting at the beginning of the 
fillet or at the load position. 

The significance of maximizing the deflection due to fillet effects can best be realized by 
expressing in nondimensional form the deflection at the load due to the fillet and foundation 
flexibility. If this is done, it is found that the effective fillet angle, YF, is a function of four quantities 
-ph, r /h ,  r ,  and +i. Figure 4 shows the effect of r / h  and ,/h on y ~ f o r  typical values of +i=20" 
and 7 = 0. Apparent from these curves is that assuming a value of 75" for (ref. 3) applies only for 
small values of r/h and r /h  and that a more universal value would be 55" to 60". The effects of r and 
6; on y~ were studied and found to be small. Figure 5 presents the corresponding fillet and 
foundation flexibility results. Apparent from these curves is that assuming a value of 75" for */F 
results in progressively greater error as r/h and r /h  increase (HCRG). However, for typical values of 
r/h and r/h,  particularly for LCRG, the likely difference will be less than 10 percent from that given 
by solving for YF. 

The local compliance, yL, consists of the Hertz or line contact deflection plus the compression of 
each tooth between the point of contact and the tooth centerline. Figure 6 gives the nomenclature for 
the parameters that determine the local deformation. Three viable approaches were reviewed with 
regard to calculating the local compliance: (1) an approximate Hertzian and compression approach 
originally used at Hamilton Standard, (2) a semi-empirical approach developed by Palmgren (ref. 6) ,  
and (3) a closed form approach developed by Weber (ref. 2). 

The approximate approach assumes that the true Hertz contact deformation, YH,  must be 
doubled to account for the cupping action discussed in reference 7, that is, 

Y"2.- P (;+A)= . I  *w 41 (y + -) 1 -e? 
2 r  E2 

The local compression of each tooth between the contact point and tooth centerline is approximated 
by assuming the load spreads at a 45 " angle, that is from 2b on the top to 2(b + h) at the bottom over 
a length h. Assuming the compression deflection is given by the average width, we find 
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Figure 4. - F i l l e t  angle fo r  maximum f l ex ib i l i t y  
versus load point f rom f i l l e t .  

Figure 5.  - Flexibi l i ty  of f i l l e t  and foundation 
versus load position from f i l l e t .  
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where 

Assuming h l / b  and h2/b are both greater than 1, the local compression of the two teeth reduces to 

so that the overall local compression of the two teeth is 

4 L  1-p: 1 -rt 
YL =YH +YC = *w [ (F ) + (7 )] [1+ $ 3  
which for El =E2 and p1 = p2 reduces to the simple expression 

(12) 

Although equations (12) and (13) show yL increases linearly with L /  W, in actuality it increases at a 
slightly lower rate because the effect of the contact width was neglected. This nonlinear effect can be 
included if desired. 

Reference 6 presents an expression for the local deformation based on the semi-empircal 
equation developed by Palmgren for contacting cylinders in roller bearings. Because only half a tooth 
thickness is being compressed instead of the entire roller, the local tooth deflection was assumed to be 
half that for the roller bearing or 

where 1 /E12 = (1 /El + 1 /E2)/2. Weber in reference 2 developed an expression specifically for the 
local deformation of two gear teeth. In order to obtain a closed form solution, he assumed small 
deformations so that just the first two terms of the binomial expansion of the deformation needed to 
be used, that is, 

where b is given by equation (10). If El =E2 and pi=p2, equation (15) reduces to 

All of the expressions for the local deformation are nonlinear with load because of the Hertz half 
contact width b. For simplicity the nonlinearity can be circumvented by assuming a value of b based 
on the maximum nominal value of tooth load during the mesh, that is, T/CR,i,Cos 4Pp, or 
assuming a maximum value of Hertz stress. This latter option should be used after the initial dynamic 
gear tooth analysis is run and a first approximation of the maximum Hertz stress is obtained 
including dynamic effects. 

In order to decide which of the three local compliance methods should be adopted, they were 
evaluated for several cases. The first case was for a pair of steel, standard 2-in. pitch radius, 8 pitch, 
0.375-in. wide, 20" pressure angle gears in contact at the pitch radius (h = 0.0998 in.) under load 
levels of L / W =  1279 and 2875 lb/in (q= 140 OOO and 210 OOO psi), respectively. The second case is 
from reference 2 and was for the meshing of an 18 tooth, steel gear with a rack under three loading 
conditions, where hl=0.80 m, h2=0.84 m, rl = 3.1 m, and r2= 03. Here, m is the tooth module-pitch 
diameter in millimeters divided by the number of teeth. The local deflections predicted by the three 
methods for these two cases are summarized in table 1. For the first case, the empirical method gives 
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1 TrMc 1 Comparison of Methods for Calculating Locd Tooth Complirnce: Approximrtc; Empirical (Prlmgnn); 
Closed Form (Weber) 
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L/W 

q 

b 

1131 
191 

I141 
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- 

results about 80 percent of those by Weber’s method, probably because it includes a width effect, 
whereas the approximate method gives 10 to 20 percent high values, particularly for the higher Hertz 
stressing. For the second case there is considerable difference in the local deflections predicted by the 
three methods for these relatively low Hertz stress cases. Weber’s expression gives values about 20 to 
25 percent greater than the other two. Because the empirical method is width dependent and appears 
to give values somewhat low and because the approximate method does not appear to include the 
nonlinear effects properly, it was decided to use the closed form expression of Weber’s equation (15), 
for the local compliance. 

The overall compliance, C, of the tooth pair is obtained by adding the local gear tooth 
compliance defined by equation (15) with the gross tooth compliances for the two gear teeth 
Q B + ~ F ) / L  given by equations (3) or (4) and (7). (See eq. (l) .)  In order to obtain the necessary 
compliance information for the dynamic gear analysis of reference 1, the tooth pair compliance must 
be determined for at least five different load contact positions, S, along the line of action, so that the 
compliance can be expressed in the required five term power series 

c= c, 11 + A (%So 

Here, So is the reference distance along the line of action corresponding to the tip radius of the gear, 
Co is the tooth pair compliance for a load at the pitch radius, and A, B, C, and D are curve fitting 
coefficients. 

Evaluation of Compliance Formula 

The cantilever beam test and finite elements results of reference 8 provided a means for checking 
the basic fillet and foundation formulation, because of the three deflection measurements along the 
beam, the simplicity of the beam itself, and the three different fillet sizes and beam thicknesses. (See 
fig. 7.) A summary of the comparison of the finite element, O’Donnell, and formulas (4) and (7) 
theoretical results with test is given in table 2. Although the latter formulas are based on O’Donnell’s 
foundation analysis, the effective fillet length is solved for based on maximum energy, resulting in a 
fillet length equivalent to an angle TFof about 32” to 34”, depending on the case. Table 2 shows that 
all three theoretical methods do quite well at predicting the load deflection; however, the O’Donnell 
approach appears to be inaccurate for small values of r/ho and lo/h0 and for load positions close to 
the support juncture or small x. The error for the formulas herein tends to be more uniform for the 
various tooth geometries as does the finite element results. Correcting the test results for the Poisson 
swelling (see ref. 8) makes the error variation with position xnearly uniform at about + 1 *3 percent 
for the results based on formulas (4) and (7). However, because of the large load moment arm, the 
concept of variable effective fillet length developed herein could not be fully confirmed. 
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Configuration 

Y F - ~  
R/H PIH Equation 7 

5 34 
0.50 8 34 

10 34 

5 32 
0.31 8 32 

10 32 
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Fillet Radius - R - In. Beam Thickness - H - In. 

R / H =  R I H =  R I H =  R / H =  R I H =  R I H =  
0.12 0.31 0.5 0.12 0.3 0.5 

5 0.188 0.500 0.812 1.60 1.60 1.60 
8 0.125 0.313 0.500 1.00 1.00 1.00 
10 0.094 0.250 0.375 0.80 0.80 0.80 
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+5 -3 0 0 -4 0 +4 +1 0 
+3 -3 -2 +7 +4 0 +4 +2 -4 

-5 -4 1 -3 -3 -1 0 0 3 
-3 +1 -4 +2 +4 +4 -2 -1 -2 
-4 0 -3 -2 0 4 +1 +2 +1 

-1 1 -6 +3 -6 -3 +5 0 +1 +3 
-8 -3 0 -5 -2 +3 
-7 -2 -2 -4 -2 -1 +1 +3 0 

+1 0 +2 

-3*8 -325 0 . 6 * 3  0 . 5 * 6  -1 *5 0.854 +1 *3 0.5*3 1 2 3  

Figure 7.  - Geometry o f  cantilever t e s t  specimen 
( r e f .  8 ) .  

In order to evaluate the compliance method herein for predicting the effects of axial 
compression, partial fillet, and beam stiffness present in actual spur gear teeth, it was applied to a 
number of the tooth configurations analyzed by complex, analytic transformation (refs. 9 and 10) 
and by finite element analysis (ref. 11). Reference 9 analyzed the beam deflection of the tooth 
centerline at various load locations for standard 20" pressure angle, full depth gears with 20 to 80 
teeth and compared the results to those predicted by Weber (ref. 2). The results, which are for plane 
strain, are reproduced in figure 8 along with the plane strain results predicted by the beam 
compliance method herein. The shape of the curves with load position along the line of contact, S/P,  
and the relative effect of number of teeth are similar for all three methods; however, there is quite a 
difference in their normalized compliance, yE W/L. In general, the transformation compliances (ref. 
9) are about 50 percent of those by Weber and about 60 percent of those predicted by formulas (4) 
and (7). 

Very important to the accuracy of the transformation method is the reference point used to 
define the deflection. If this is chosen close to the base of the tooth, low relative deflections will 
result. Reference 9 does not define the deflection location. The importance of the reference location 
is illustrated by the finite element results of reference 11 for 17 and 45 tooth gears, which are plotted 
in figure 8. A review of the investigatory results in reference 11 shows that by restricting the length of 
the foundation of the finite element model to that between the fillet centerlines, the tooth deflection 
at the tip was decreased at least 10 percent. If the results of reference 11 are corrected accordingly, the 
finite element compliance results for the 45 and 17 tooth gears would be about 85 and 95 percent, 
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respectively, of those predicted by the method herein. Also, the shapes of the compliance curves are 
more consistent with the other results, for the added correlation increases as SIP becomes more 
negative. Figure 9 gives the derived values of effective fillet angle, YF, for the various load positions 
and gear teeth which will result in the maximum deflection or work done by the applied load. For 
load positions inboard of the pitch circle, the assumed value of 75" by O'Donnell is a good 
approximation; however, for load positions towards the tooth tip, particularly for HCRG, the 
effective angle should be considerably less resulting in greater flexibility. 

As a further check on the accuracy of the beam and fillet compliance formulas (4) and (7), they 
were used to  predict some of the tooth pair beam stiffnesses presented in reference 10, which used the 
same analytic transformation method as reference 9. Because the results included the local effects 
based on Weber (ref. 2), they were corrected for this effect. Table 3 summarizes the results and the 
corresponding results from reference 9 and formulas (4) and (7). Apparent is the very good 
correlation of the results of this work and reference 10, whereas those of reference 9 (fig. 8) appear 
low. The differences between the results of references 9 and 10 are strange because they are based on 
the same transformation equations; however, the reference points for defining the tooth deformation 
might be different. In general, the results using the compliance beam formulas herein and those of 
reference 10 agree within 20 percent, and for the tooth pair they agree within 1 percent. 

Reference 12 presents the measured stiffness of a pair of standard form, steel gear teeth with the 
load at the pitch radius. The 20" pressure angle gears were %-in. wide and had a diametral pitch of 3, 
one with 27 teeth and the other with 18 teeth. The measured stiffnesses at 1275 and 1492 lb tooth 
loads were 1.28 x 106 and 1.49 x 106 lb/in, respectively. The theoretical method herein gives tooth 
stiffnesses of 1.37 and 1.38 x 106 lb/in, respectively. The local flexibility represented about 25 percent 
of the overall flexibility. These results compare very favorably with the measured values, being only 
about 1 percent greater than their average value. This, coupled with the good correlation with the 
tooth pair results of reference 10 (see table 3) indicates the compliance method presented herein is 
probably as accurate as any available. 

Teeth 

-3 -2 -1 0 1 2 3 
TIP SIP ROOT 

1 I I I I 

-3 -2 -1 0 1 2 3 

Tip SIP Root 
Distance Along Line of Action/Pitch 

Distance Along Line of ActionIPitch 

Figure 8. - Normalized beam displacement a t  load. 
I$ 

pfane s t ra in  ( refs .  9 an3 10) .  
= 20°; A = l.O/P; D = 1.25/P; r + 0.38/p; Figure 9. - Deflection effect ive f i l l e t  angle versus 

load position and gear teeth. 
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Table 3 Comparison of Tooth Beam Compliances: Full Depth, P = 4 Teeth; 9 = 20’. A = l.O/P, D = l.ZS/P,r = 
.38/P; references [9 and la] 

WI. 

Tooth Lomi 
Combination Position 
GurlPinion SIP 

30130 0 

’ 50150 0 

Deflection Under loo0 Lbs - lo6  In. 

Chakraborty and Hunoshikatti (9) 

Normalized 

Chakraborty 

(VTl + Y T ~ J  vLocal (vel + V F ~  + + VF?J + v ’ F ~ )  Hunoshikatti 

431 139 292 146 4.37 

380 102 278 139 4.16 

& 

mmplianca - VT EWlL 

Remilhot 

70/70 0 

30130 2.5 

I 

405 96 309 154 4.61 2.70 4.50 

(Pair) (Pair) (Pair) 
182 7 3 . 0  18.0 741 135 606 - 

2.90 I 4.85 I 

Gear Tooth Stress Sensitivity 
Derivation of Stress Formula. 

For incorporation in the High Contact Ratio Dynamic Gear Program (ref. 1) a gear tooth stress 
sensitivity or stress per load expression was needed that would be applicable for both LCRG and 
HCRG. After a review of various methods, it was decided that the Heywood formula (ref. 4) was the 
most viable; however, it was modified so that it could be more easily applied and yet give 
approximately the same stress sensitivities as the Kelley/Pederson and Heywood methods. 
References 13 and 4 had shown that these latter two methods correlate well with experimental and 
finite element analyses of standard gear teeth. 

The modified Heywood formula for tooth stress sensitivity is 

h .’ -- OW -[1+.26(<) ][% 
L cosfjJ; h.’ 

where v z % per Heywood (ref. 4) and the rest of the nomenclature is defined in figure 10. The values 
of h,, I;, and I, are obtained from the gear tooth geometry, the load position, and the point of peak 
stress in the fillet defined by angle 7,. This formula is based on simple stress analysis and uses 
parameters that are easier to define than those used in the Heywood (ref. 4) and Kelley/Pederson 

Equation (18) consists of five factors, in order, 0 stress concentration of the 
bending stress, @ bending load proximity stress, @ axial load proximity 

stress, and @ axial stress. The formula logically makes the proximity effects die out as the bending 
and axial load get further from the fillet and closer to the neutral axis. 

In contrast to the Heywood and Kelley/Pederson methods, for the modified Heywood method 
the position of the maximum stress in the fillet, which is defined by 7, and determines the values of 
h,, I;, and l,, is determined by maximizing the stress neglecting the proximity terms in equation 
(18)-terms @ and @. This is done by taking the derivative of equation (18) without the proximity 
terms, setting it equal to zero, and solving for 7,. The resulting transcendental equation is 

- (113 + .016Ai.’)Ai Tan+;] (19) 

where Ai=ho/r+2(1 -Cos 7,i) and Bi=Io/r+ Sin 7,i. (See fig. 10.) Equation (19) can be easily 
solved by iteration in the given form by assuming a value for 7,i in the expressions for Ai and Bi and 
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Figure 10. - Nomenclature for modified Heywood 
formu 1 a. 

+o 

Figure 11. - Fi l l e t  angle fo r  maximum st ress  versus 
geometry parameters X/ho and rho .  

solving for "/si+ 1. Usually only two or three iterations are needed to obtain -ys to within 0.1 '. Some 
additional refinement of equation (19) should be done because it gives ys=O for very large values of 
lo/r, whereas it should be about 20". For short beams, such as gear teeth, this deficiency is probably 
minor. 

Formula (19) was solved for the simple cantilever beam case with no axial load, that is, 4i = 0. 
The position of the maximum stress as defined by angle T~ is given in figure 11 as a function of fillet 
radius, d h 0 ,  and load position, uho.  The results show that for typical LCRG values of r/ho and uho,  
the angle of about 30" or so assumed by Heywood is a fairly reasonable average value. However, for 
HCRG with greater r/ho values, the magnitude of vS for maximum tooth stress should be 
considerably lower than that used by Heywood. Figure 11 shows that the smaller the fillet the higher 
up the fillet the peak stress occurs, which is consistent with Jacobson's test results given in reference 
14 and Winter's test work in reference 18. In general, the point of peak stress varies significantly with 
load position and geometry and, therefore, should be included in the derivation of the stress 
sensitivity of gear teeth. 

Evaluation of Stress Formula. 

Various gear tooth designs were evaluated using the modified Heywood formulas (1 8) and (19) 
as well as those developed by Heywood (ref. 4) and Kelley/Pederson (ref. 13). Comparison of the 
results with photoelastic measurements is given in figure 12. This figure shows that all three methods 
do a good job in predicting the maximum tensile tooth stressing as a function of load position, 
geometry, and number of teeth. It appears that the modified Heywood method correlates slightly 
better than the other two in some instances. Because of this and its simplicity in defining the 
necessary parameters, its use is justified over the other methods. In general, the correlation with the 
photoelastic results are within about 5 percent, and slightly on the conservative side. 
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Model E 

0 0.2 0.4 0.6 0.8 

Radial Distance Wow Tooth Tip - in. 

Pitch Line Loading 
H, = O.O/P Can 

Model B 

Tip Loading 
H, = 1 .O/P 

I l l  
Podenon Photoelastic 

$p 

2 0 O  

25' 

Ji 0 0 0.2 0.4 0.6 0.8 

Stra 

Number Jt 

of "Exact" 
Teeth . 
20 0.328 
30 - 
40 0.407 
60 0.462 
80 0.473 

150 0.483 

20 0.451 
30 - 
40 0.494 
60 0.517 
80 0.532 

150 0.569 

12c 

01 I I I I I I 1 1 1  
0 0.2 0 A 0.6 0.8 

Radial Distance Below Tooth l i p  - lncha 

1 2d 
I 1 1 I I I Model 3 1 
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D -0.626'' 

--- Kelley & Ped.non 
0 
0 0.2 0.4 0.6 0.8 

Radial Distance Below Tooth Tim - lncha .. 
Radial Distance Wow Tooth Tip - in. 

Figure 12. - Improved modified Heywood results versus photoelastic tests, 
KelleylPederson and Heywood. 

, Factor Peak Stress 

- 1.17 - 0.221 
0.378 - 1.11 - 
0.397 1.16 1.11 0.254 
0.443 1.15 1.12 0.289 
0.459 1.15 1.12 0.291 
0.480 1.14 1.13 0.286 

- 1.24 - 0.307 
0.498 - 1.13 - 
0.531 1.19 1.13 0.315 
0.565 1.17 1.13 0.317 
0.586 1.17 1.14 0.323 
0.608 1.17 1.14 0.336 

+ at = 4 P/JtW; W - Width: P = Pitch; Lt - Tangent Load at Pitch Radius 

i Factor Peak Stress 

Heywood 

0.223 
0.238 
0.249 
0.252 
0.260 1.09 

0.254 1.19 
0.280 
0.290 1.15 
0.298 1.14 
0.304 1.14 
0.307 1.14 

- 
1.01 
1.01 
1.01 
1.01 
1 .oo 

1 .oo 
1 .oo 
0.99 
0.99 
0.99 
0.99 

Table 4 and figure 13 present the comparison of the stress sensitivities for a family of 20" and 
25" pressure angle, full depth involute gears using the modified Heywood and an "exact" 
transformation analysis (ref. 15). In general, the trends with number of teeth, load position, and 
pressure angle are predicted by the modified Heywood formulas. For the 20" pressure angle gears, 
the pitch circle loading results correlate very well, but the tip loading results are about 10 percent 
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Table 5 Finite Element, Modified Lcwis, and Modified Heywood Tooth Stressing: R, = 2.50", 6, = me, W = 
1.O";A = .2S". D = .289",r = .060", tp = .390" 

Paremotor 1 Finito Elommt I I 1 
S.. Figuro 10 81 Impulso Tnt  I Modifiod Lowis Modifid Hoywood 

Lwd Position 1 2 3 1 2 3 1 1 2 1  3 

RL -in. 

@ e L  --dq 

Pitch 
Circle I Loeding 

0.6 

7- 0.5 
I 

E 0.4 

c 0*3 Loeding 

L 

I? 

1 Tip 

,o 0.2 
1.) 

2.70 -2.55 -2.40 -2.70 -2.55 -2.40 2.70 2.55 2.40 

27.10 18.83 6.62 27.10 18.83 6.62 27.15 18.88 6.68 

- -- Wadhwa NO. 229.08 AGMA 
0.1 -Baronet & Tordron "Exact" 

---Modified Heywood Method 

0 20 40 60 80 100 120 140 160 
Number of Teeth 

F i g u r e  13. - Comparison o f  geometry f a c t o r s  f r o m  
v a r i o u s  fo rmu las  and "exac t "  ana lys i s .  
20° ;  P = 1; A = 1/P; D = 1.25/P; r = 0.38/P; Q = 

$ p  = 

LtP/JtW. 

I * 

high, whereas the reverse is true for the 25" pressure angle gears. The "exact" analysis indicates the 
peak stress occurs further up the fillet than the modified Heywood analysis results. (See table 4.) The 
accuracy of the analytical function in defining the fillet region could influence its results and the 
correlation with the modified Heywood results. 

Wallace and Seireg performed a finite element analysis of a gear tooth (ref. 16) and also 
conducted impulse strain gage tests of a standard, 4 pitch gear tooth. Comparison of their finite 
element results, those by the modified Lewis formula, and those by formulas (18) and (19) are 
summarized in table 5 .  This summary indicates that the modified Lewis results are a little low, 
particularly if the finite element results are corrected for the effect of element size. In contrast, the 
modified Heywood results are slightly higher, 10 to 20 percent, but this difference would be 
decreased if the effects of the coarse finite element mesh were taken into account. The locations of 
the peak stressing predicted by the modified Heywood method for the three tested tooth loading 
positions correlate well with those predicted by the modified Lewis method and the failure locations 
found during the impulse tests. Some of the discrepancy in the results between the two methods of 
analysis appears to be due to the definition of the tooth geometry. Although the distance from the 
load to peak stress, f,, is about the same for the two methods, their respective tooth thicknesses, h,, 
are about 5 percent different, which would account for about 10 percent of the differences in the 
stress sensitivies. 

hS -in. 

Rs -in. 

Ut/L -p*/lb 
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- - - 0.40 0.26 0.15 0.403 0.255 0.150 

16' 12.8' 10.6' 15.3 12.2 9.3 20.2 14.7 11.7 

I T S + T ' ) - d q  -10. -30. -45. - - - 23.0 32.5 47.1 



As a more fundamental check on the modified Heywood stress sensitivity analysis, it was used to 
calculate the maximum stress and its position for photoelastic models H and F tested by Dolan and 
Broghamer (ref. 17). The first model is a simple rectangular, cantilever beam loaded normally close 
to the fillet, I/h,=0.55, whereas the second model is similar to the first but the beam is tapered 15" 
on each side with the load normal so as to introduce an axial compressive load. The photoelastic 
results for the first model gave a tensile stress sensitivity of u W / L  = 6.20/in. and a maximum stress 
position at about 25" up the fillet. The modified Heywood method gives a stress sensitivity value of 
6.06/in., 2 percent low, at an angle of 24" up the fillet. The photoelastic results for the second model 
gave a tensile stress sensitivity of 4.46Iin. at about 35" up the fillet, whereas the modifed Heywood 
method predicts values of 4.37/in. and 33", respectively. The good correlation in magnitude and 
position of the maximum tensile stress shows that formulas (18) and (19) can handle accurately loads 
close to the fillet. 

The importance of having an accurate method for calculating the maximum stress in various 
gear teeth was illustrated in reference 1. A comparison was made of the calculated tooth stress 
sensitivity versus load position for both HCRG and LCRG using various conventional and Heywood 
type analyses. The results, reproduced in figure 14, show that the three Heywood type analyses agree 
quite well with each other, whereas the usual Lewis and AGMA analyses give lower and significantly 
different results. The relative differences between the modified Heywood and the Lewis and AGMA 
results at the load position for maximum likely peak stress are quite different for LCRG and HCRG, 
being about 20 to 28 percent higher for the LCRG and only about 10 to 18 percent higher for the 
HCRG, respectively. Such differences would have significant effect on the tooth bending fatigue life. 

Improvements in Dynamic Gear Program 
The High Contact Ratio Dynamic Gear Program developed and discussed in reference I already 

incorporated the stress sensitivity formula developed herein. However, the program since has been 
improved by including a preprocessor which defines the gear tooth structural and manufacturing 
parameters from a few simple input parameters and calculates the gear tooth pair compliance based 
on the equations developed herein. A postprocessor has been added which calculates the design 
outputs of PV, Hertz stress, flash temperature, load, and stressing for the two gears. In addition, the 
formulation of the basic program was expanded to include centerline error, which affects the 
pressure angle and length of engagement, and a three term definition of tooth profile relief, A, rather 
than a two term expression (see ref. l ) ,  for example, for engagement 

A, = C, (S, - S, ) [ 1 +  re (s, -se)l (20) 

in place of 

Ac = C, (S, -s,)' 

EffectOPeak Stress P o s l t l o n ~  
lomod Hey/oLewis =1 2 8 1  I 1 

EffectQPeak Stress Position 

--- ---I 40  - __ -- 
4 5oLod Hey/oLewis =1 10 I 

sod 
Position On Line Of Action 

30 

20 

10 
soe 0 sod 

Position On Line Of Action 
a: 8 Pitch132 Tooth LCRG b: 8 Pitch/32 Tooth HCRG 

F i g u r e  14. - Comparison o f  gear t o o t h  s t r e s s  
s e n s i t i v i t i e s  f o r  d i f f e r e n t  a n a l y s i s  methods. 

Equation 20 

Equation 20 

F i g u r e  15. - Tooth p r o f i l e  m o d i f i c a t i o n  shapes; 
en gageme n t  cam. 
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Figure 16. - Dynamic tooth loads and s t r e s s ing  f o r  HCRG-no tooth e r r o r  case: 
2.2 contact r a t i o ,  8 pitch,  20" pressure angle; 5000 i n - l b  torque; 44/52 
gear r a t i o ;  6- in.  center distance; r e f .  1 ana lys i s .  

Figure 17. - Dynamic tooth loads and s t r e s s ing  fo r  HCRG-tooth e r r o r  case: 2.2 
contac t  r a t i o ,  8 p i tch ,  20" pressure angle; 5000 in-lb torque; 44/52 gear 
r a t i o ;  6-in. center distance; r e f .  1 analysis.  

The effect of this additional parameter 7, on the allowable profile or cam shapes is shown in figure 
15. Figures 16 and 17 are examples of the plotted outputs for the improved program. The first figure 
depicts the results for an HCRG, 8 pitch, 44/52 tooth pair with a nominal 2.20 contact ratio, a 20" 
pressure angle, and no tooth error under 5000 in:lb. of torque. The second figure is for the same gear 
pair but with tooth spacing error and is for eight mesh cycles. 

Conclusions 
Formulas have been developed based on work done by Heywood (ref. 4), Weber (ref. 2) and 

O'Donnell (ref. 3) for the stress sensitivity and compliance of low and high contact ratio, involute, 
spur gear teeth. The parameters used in these formulas require the derivation of the effective fillet 
length or angle rather than assuming particular values as done by Heywood (ref. 4) and O'Donnell 
(ref. 3). The stress sensitivity formula is a modified version of the Heywood formula, using simple 
beam parameters. The compliance formula uses O'Donnell's foundation flexibility factors and 
Weber's local contact compliance. 

The modified Heywood gear tooth stress sensitivity formula was evaluated by comparing its 
predicted results with test, finite element, and analytic transformation results for gears with various 
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pressure angles, tooth proportions, number of teeth, and load contact position. In general, the 
formula predicts the maximum tensile fillet stress within about 5 percent and gives the proper trends 
with contact position, number of teeth, and tooth geometry. It also predicts fairly well the location of 
the peak stress in the fillet. Comparison with similar formulas by Kelley/Pederson and Heywood 
show good correlation, but with the proposed modified Heywood method giving slightly more 
consistent results as well as being easier to use. 

The beam and foundation portion of the gear tooth compliance formula was evaluated using 
available test, finite element, and analytic transformation results and found to correlate quite well. 
The inclusion of a derived, variable effective fillet length or angle appears to improve upon the results 
which assumed a given effective fillet length. In general, the combined beam and foundation 
deflection as a function of gear teeth and load contact position agreed well with other methods. The 
Weber method of calculating the local contact deflection is universally used and was found to give 
more consistent results than two other methods. The gear tooth pair compliance formula was found 
to predict the overall compliance (beam + foundation +local) consistent with the test results of 
Howland. 

In summary, although further evaluation of the gear tooth stress sensitivity and compliance 
formulas presented herein might be desirable, the evaluation results indicate that the formulas predict 
the spur gear tooth pair stress sensitivity and compliances quite well. 
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Appendix-Definition of Different Gear Tooth Forms 

General equations are given which define the involute tooth form based on pitch, P; pitch 
pressure angle c $ ~ ;  pitch radius, Rp; circular pitch tooth thickness tp; root radius, R,; fillet radius, r; 
and tooth width, W. The load position on the tooth can be defined in terms of the distance along the 
line of action from the pitch circle, S, or by the contact or load radius RL (fig. 2). Knowing these eight 
quantities, the basic tooth parameters common to all three tooth forms (fig. l), are 

number of teeth: N =  2PRp 

base radius: RB = Rp Cos cpP 

base radius included tooth angle: a g  = tp/2Rp + Tan 4p - 4p 

contact radius: RZ = S2 + 2Rp Sin +$ + R; 

contact pressure angle: Cos 4~ = RB/RL 

contact included tooth angle: ay~ = a g  - Tan 4~ + 4~ 

contact tooth thickness: hL = ~ R L  Sin a~ 

contact load angularity with L: +i = (4L - aL) 

Gear Tooth Form S; standard case: R;+ 2rR, I R ~  (jig. 2) 

@ = (R,  + r)2 - 2r.\/(R, + r)2 - R; + r2 

COS 3 = R B / R  

- 
a=aB-Tan 3 + 4  

h = 2 R ~ i n  (Y 

y = 4 ’ = (4 - a) 
- - -  

I ,  = [RL Cos CYL - (hL Tan 4i)/2 - (FCos (r + r Sin r)] (stress) 

h,  = 2RSin (r - 241 -Cos 7) = & - 2r ( l -  Cos 7) 
The term y, is iterated using equation (19). 

h,= h, + 2r ( l -  Cos y,) 

l i = l , + r  Sin ys 

I, = I,’+ (h Tan 4,3/2 

The term y ~ i s  iterated using equation (7) as in. 

X = R  COS a-RCos (Y 
- 
1 = RL Cos a~ - (hL Tan 4i)/2 - R Cos (Y (compliance) 
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The term RL is iterated until ( R t  Cos at - RCos (r) = 

h i  = 2Rt Sin ai 

Gear Tooth Form A; tangent Case: R;+ 2rR, < R i  gig. 18(a)) 

Sin a, = r/R, + r) 

h,  = 2(R, + r)Sin (ag + a,) - 2r 

f, = RL COS a~ - (hL Tan 4i ) /2  - (R, + r) COS (as + a,) 

hB = ~ R B  Sin ( - q) = ~ R B  Sin a g  

Between the tangency point of the fillet and base circle, for example, FsR ~ R B ,  

hB 
RE 

h = - [ ( R ,  + ,)/Cos a, + X/Cos y] 

R 
= h,--,whereX= (R- i?)Cosa ,  

RE 

a, is iterated using equation (19), and h,, f,', and, f, are the same as for form S 

'YF is iterated using equation (7), but including additional beam section (RB - @ Cos ag 

Gear Tooth form B, parallel case: R:+ 2rR,< R2, f ig .  18(b)) 

e= n/N or 180°/N 

~ = R B  Sin @ - ~ B ) - R  

A = RB COS (e- CYB) - (R, + r)  

fo = RL Cos a~ - RB Cos 'YB + A Cos e+ r Sin e- (hL Tan 4i) /2  

h,=hg-2 A Sin 8-2r(l -Cos e) 

Between the tangency point of fillet and base circle, for example, O < X < A  Cos e, 

ys is iterated using equation (19), and h,, f,', and f, are the same as for form S. 

TF is iterated using equation (17) but including beam section A Cos e 
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"A" - Tangent Undercut Form 

I - 
6 

"B'  - Parallel Undercut Form 

Figure 18. - Fillet regions for tooth forms A and 6. 
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