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Many advanced technology applications have a general requirement that the power to 
transmission weight be increased. Engineers, as a result of those requirements, attempt to design gear 
systems to maximum load capacity. For this purpose the ability to accurately calculate the dynamic 
loads becomes essential for advanced transmission design. Most of the previously proposed methods 
(refs. 1 to 8) are limited to the normal contact ratio (NCR) gearing and are based on a number of 
simplifications, which can be generalized as follows: 

(a) Gear-tooth errors have negligible or no effect on mesh stiffness. This implies that, for a 
given load, a gear with errors will have equal mesh stiffness as the same gear without errors. 

(b) Contact is assumed to occur only on the line of action. 
(c) The contact ratio (CR) and/or mesh stiffness are not affected by transmitted load or 

premature or delayed engagement. 
(d) Dynamic simulations use uninterrupted periodic rectangular stiffness functions and error 

displacement strips. 
The high-contact-ratio (HCR) gearing is also considered for many applications. However, the 

number of available methods for analyzing the HCR gearing is very limited. A parametric static 
analysis of HCR gearing was published by Staph (ref. 9) in 1975. A Richardson-type cam model was 
extended by Cornel1 and Westervelt in 1977 (ref. 10). In 1980 Kasuba and Evans presented an 
extended digitized model for determining the gear-mesh stiffness and dynamic loads for any 
operational contact ratio (ref. 11). This method removes the previously listed simplifications 
mentioned in the previous paragraph. In this case the variable gear-mesh stiffness is determined by 
solving the statically indeterminate problems of multipair contact gear-tooth error effects on 
contacting point locations and gear-tooth and gear-hub deflections. Importantly, this method does 
not rely on the commonly used assumption that a gear pair with errors has the same gear-mesh 
stiffness as an identical pair without errors. Such an assumption would be completely unacceptable in 
analysis of HCR gearing. Gear-tooth errors can cause interruptions of gear-mesh stiffness and, thus, 
affect the dynamic loads in gearing. Identical gear-tooth errors in the NCR and HCR spur gearing 
affect the mesh stiffness and dynamic loads to different degrees. This paper discusses the mesh 
stiffness and dynamic load characteristics for several cases of the NCR and HCR gearing. The 
considered contact ratios were grouped in the general range of 1.7, 2.0, and 2.3. 

In this study the HCR gearing is defined by contact ratios equal to or greater than 2.0. The HCR 
gearing in this study is represented by a group of small pressure angle, fine pitch, and long addendum 
gearing. 

Nomenclature 
BGM backlash 
C center distance 
CB bearing damping 
CS shaft damping 
CR loaded contact ratio 
CRT theoretical contact ratio 
DF dynamic load factor 
'This paper is based in part on work supported by NASA Lewis Research Center and the U.S. Army Aviation Research and 
Technology Laboratories under NASA contract NAS3-18547. 
tFenn College of Engineering, Cleveland State University. 
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E 
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G 
GP 
HSF 
J 

K 
KG 
KP 
M 
PH 
PE 
PM 
PSITP 
PV 

FH 

JG 

Q 
Qr 
QD 
QDt 
RA 
RABOT 
RAPP 
RATIP 
RBC 
RCCP 
RCP 

RRC 
TR 
V 
P 
6 
4 
4s 
J. 
3. 

RHf 

Young’s modulus 
gear face width 
hub face width 
torsional modulus 
gear-tooth pair 
hub torsional stiffness factor 
mass moment of inertia 

shaft stiffness 
gear-mesh stiffness, N/m 
gear pair stiffness, N/m 
mass 
Hertz stress 
profile error 
profile modification 
static angular position 
P H X  C, N/m sec 
static GP load, normal 
total mesh static load, normal 
dynamic GP load, normal 
total mesh dynamic load, normal 
roll angle 
RA at bottom of involute 
RA at pitch point 
RA at tip of involute 
radius of base circle 
radius of curvature 
radius to contacting point 
hub fixity radius 
radius of root circle 
transmission ratio 
sliding velocity 
Poisson’s ratio 
deflection 
critical damping ratio, gear mesh 
critical damping ratio, shafts 
dynamic displacement, rad 
dynamic velocity, radlsec 

!h MG/(RBC)~ 

Subscripts : 
D driving element 
G gear 
HRC high contact ratio gearing 
i mesh arc position 
k kth gear-tooth pair 
L load element 
NCR normal contact ratio gearing 
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S shafting 
1 gear 1 
2 gear 2 
I instantaneous 

Definition of Spur Gear Tooth 
Profiles and Coordinates 

The variable gear-mesh stiffness is a function of load, errors, position of contact, gear and hub 
geometry, and respective deflections. For this purpose the actual gear-tooth profiles must be used. 

By employing the involute chart approach (figs. 1 to 3), a number of gear-tooth profiles can be 

Tip and Root Modifications 
(Straight line or Parabolic) 

m 

PE Single Cycle Sinusoidal Profile Error 

Single Cycle Sinusoidal Profile Error 

Tip I Root 
RAPP 

Figure 1. - Sample simulated gear tooth profile charts. - TIP WODIPICATIONS 
PITCH CIRCLE 

Figure 2. - Involute chart - profile relationship. 
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Figure 3. - Gear tooth profiles. 



defined. The profile modifications (PM) and profile errors (PE) can be expressed as 

AM= 6P(RA) 

where 

L U ~  deviation from the line of action 
RA roll angle limited to active profile 
6P profile variation (error or amount of modification) as a function of RA 

A true involute profile is defined by 

AM= 6P(RA) = 0 

(straight line in involute chart). 
For example, the simulated profile chart can accommodate the parabolic and straight-line 

modifications of the tip and root zones (fig. l(a)). The profile errors can be approximated by 
sinusoidal representation. By varying the number of cycles and phase angle, the sinusoidal profile 
errors (figs. l(b) to (d)) could describe a large number of practical and theoretical cases. A simulated 
surface pitting damage is shown in figure l(e). The defined surface faults and their respective involute 
charts are then numerically transferred to the previously digitized true involute profile. This is 
accomplished by subtracting or adding the specified amounts of material perpendicularly to the true 
involute profile, as shown in figures 2 and 3. 

The digitized profile points and the subsequent deflections were analyzed in a rotating gear pair 
coordinate system. The position of contacting points, number of contacting tooth pairs, operational 
contact ratio, and variable gear-mesh stiffness were established by iterative procedures under fully 
loaded and deflected conditions. Five gear-tooth pairs are analyzed in search of potential contacting 
points. Figure 4 illustrates the general gear and gear-tooth coordinate system. For establishing the 
points of contact, load transfers, and deflections within the mesh arc, three coordinate systems are 
used: 

(1) U, V-Fixed global coordinate system for the pinion and gear-tooth profiles, gears 1 and 2, 
respectively. The U, V coordinate system is used to determine the number of contacting pairs and 
position of contacting points. 

(2) X, Y-Local coordinate system fixed at the root of individual teeth for the pinion and gear, 
respectively. The Y-axes coincide with the tooth centerlines. The X, Y coordinate system is used in 
digitizing the profiles and for determining the appropriate deflections of the teeth. 

(3) W,Z-Intermediate coordinate system rotating with the pinion and gear, respectively. The 
origins of the W,Z coordinate systems for each gear are at the respective gear centers. The Z-axes 
coincide with the tooth centerlines. 
The transformations between the coordinate systems for each considered gear pair (k= 1,n) are 

w 1  =x1 ;  W2=X2(2) 
Z1 =Y1 +RROl; Z2=Y2+RR02 
U1= W1 sin PSIlTP(k) + Z1 cos PSIlTP(k) 

V1= - W1 cos PSIlTP(k) + Z1 sin PSIlTP(k) 
U2 = - W2 cos (PSI2TP(k) - 1.5 T )  + 22 sin PSI2TP(k) - 1.5 T )  

V2 = C - [W2 sin (PSI2TP(k) - 1.5 T )  + 22 cos (PSI2TP(k) - 1.5 a)] 

Determination of Gear Tooth Deflections and Gear Mesh Stiffness 
The digitized profile points describe each gear tooth in space and include the profile errors and 

modifications. In the iteration process the digitized points also incorporate the appropriate 
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F i g u r e  4. - Gear too th  coordinate system. 

deformations to simulate the noninvolute action caused by gear-tooth deflections. 
The contacting points on the gear teeth and the number of contacting gear-tooth pairs are 

determined by using a three-step process. First, the gears are preloaded by a unit load and rotated by 
incrementing the PSIlTP(k) and PSI2TP(k) angles and examining the potential contact between the 
calculated (Ul(k), V2(k)) profile points for five gear-tooth pairs. The beginning and the end of the 
meshing arc are established by tracking gear pair 3 (GP3) through its complete meshing arc. After the 
limiting points of mesh arc are determined, the mesh arc is divided into 50 segments. Next, the gears 
are fully loaded for further analysis. The actual load sharing and deflections are calculated for 50 arc 
segments by tracking the movement of fuIly loaded gears through the established mesh arc. 

The gear-tooth pair deflection (k)i can be expressed in the following form: 

where 

Sl(k)i deflection of the kth tooth of gear 1 at mesh arc position i 
S2(k)i deflection of the kth tooth of gear 2 at mesh arc position i 
6&)i localized Hertz deformation at the point of contact 

For the contacting pairs the gear-tooth deflections 
constituent deflections: 

and 62(k)i incorporate a number of 

and similarly for gear 2. In equation (4) 
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6, 
6, 
6s 
8,  
6~ 

gear-tooth deflection due to bending 
gear-tooth deflection due to normal force 
gear-tooth deflection due to shear force 
gear-tooth deflection due to deformation of surrounding hub area (rocking action) 
gear-tooth deflection due to gross torsion of the rim or hub 

The general gear-tooth deflection model is shown in figure 5 .  Numerical integration of digitized gear- 
tooth slices was used to obtain the S,, s ~ ,  and 6sdeflections. The circumferential deformation of the 
gear hub and deformation of the adjacent part of the gear body were reflected to the contacting point 
as ( 6 ~ )  and (6,) deflections, respectively. 

The methods for calculating the 6, and the localized Hertzian deflection SHare amply described 
in references 13 to 15. The 6~ deflections cannot be easily defined. Following the method of reference 
14, these deflections can be approximated by employing equation (5).  For gear 1 

where 

Q(k)i load along instantaneous line of action at contact point, kth pair 
RCPI(k) radius to the contacting point (gear 1) kth pair (fig. 6) 
FH1 hub face (gear 1) 
RHl,  outside hubhim radius (gear 1) 
RHlf effective radius of circumferential hub fixity (gear 1) 
G1 torsional modulus of elasticity (gear 1) 

Y 

m A 

RRO 

. 
RRC 

7 
Figure 5. - Gear tooth deflection model. 
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A similar expression can be given for gear 2, 6~2(k)i. 
The gear-tooth deflections can be considered as equivalent positive profile errors for the pinion 

and gears causing premature engagement and delayed disengagement (ref. 12). The presence of 
positive manufactured profile errors (material addition) will increase the total equivalent positive 
error at the point of contact. Thus, the point of contact will occur farther away from the theoretical 
line of contact and cause an earlier engagement. The negative profile errors or material removal at 
the tips will reduce the equivalent positive errors. 

In the third step the 61(k)i and 62(k)i and apportioned 6H(k)i deflections were returned to 
equations (2)  and added perpendicularly to the respective digitized profiles in order to simulate the 
above gear behavior. Now, the iterative search and calculation process is repeated under the "loaded 
and deflected" conditions. In this step the contacting points and the mesh are determined under full 
load. These events are illustrated in figure 6, where the limiting points of meshing arc occur at points 
A' and B', as compared with the theoretical true involute mesh arc A-B under no load. As a result, 
the contact arc, and therefore the contact ratio of the gears, is increased. In the same procedural step 
the final number of pairs in contact, locations of contacting points, gear-tooth deflections, load 
shearing, stiffness, etc., are computed as the loaded gear-tooth pairs move through the mesh arc 

If the geometrical variations in surfaces do not permit contact in steps 1 and 2, then the 
noncontacting gear teeth are still subjected to SR deflections. For example, if GPl and GP3 are in 
contact, then for GP2 

A'-B'. 

These deflections are due to torque transmission at GP1 and GP3 and the resulting 
circumferential hub deformations at GP2. If the 61(2)i and S2(2)i deflections are sufficiently large to 
overcome the geometrical gap (errors) between the approaching teeth profiles of gears 1 and 2 at the 

V 

I 

. u  
0 

Figure 6. - Instantaneous contact  po in t  f o r  incoming gear too th  pa i r .  
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angular position i, then the contact will be established for GP2. In this case the final load sharing and 
deflections will be recalculated on the basis of three contacting pairs (step 3). These calculation 
methods can handle both the involute and nonvolute gear actions, HCR gearing, etc. 

The individual gear-tooth pair stiffness can be expressed as 

If the effective errors prevent contact, KP(k)i=O. The sum of gear-tooth pair stiffnesses for all pairs 
in contact at position i represents the variable mesh stiffness (KG), 

The load carried by each of the pairs moving through the mesh arc in the static mode can be 
determined as 

where Qt is the total normal static load carried by the gears at any mesh position i in the static mode. 
For any mesh arc position i, the calculated Kth gear-tooth pair stiffness KP(k)i, mesh stiffness KG, 
and load sharing incorporate the effects due to manufactured profile errors, profile modifications, 
and deflections by means of the iterated numerical solutions of equations (3) to (9). 

Deflections and profile faults will cause gears to contact away from the theoretical line of action. 
For the instances when the contact points are not on the theoretical lines of action (nonconjugate 

action), we must refer to instantaneous pressure angles, instantaneous lines of action, and 
transmission ratios. The need for instantaneous lines of action was indicated in references 11 and 12. 
Figure 6 is used to define the instantaneous parameters (designated by ’) for the contact point A‘ 
(defined by UCP(k), VCP(k) in the U, V coordinate system). For example, the distance to the 
instantaneous pitch point PP ’ is 

RBC 1 PPD’ = ~ 

cos a’ 

where a’ is the instantaneous pressure angle 

where 

CYA~ = arcsin (UCP(k)/RCPl) 
a g l =  arctan (RCCP 1 /RBCl) 

Again, using figure 6, the instantaneous transmission ratio is 

C - PPD’ 
PPD ’ TR’ = 

The involute (theoretical) transmission ratio is 
RPC2 
RPCI TR= - 

The instantaneous base circle (gear 2) is 

RBC2 ’ = RBCl x TR ’ 
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The equivalent instantaneous radius of curvature (gear 1) is 

RCCPl ’ = d(RCP1)2 - (RBC1)2 (1 5 )  

And the equivalent instantaneous radius of curvature (gear 2) is 

RCCP2’ = -\/(RCP2)2 - (RBC2’)2 (16) 

The same procedure is used for determining the instantaneous parameters as the above gear pair k 
traverses the mesh arc and, similarly, for other gear pairs. The instantaneous transmission ratio TR’ 
is influenced by the deformations in the contact zone and tooth profile errors. It is important to note 
that for no-load and no-surface fault conditions TR’ = TR, and similar analogy exists for other 
parameters. 

Discussion of Gear Mesh Parameters 
The performed analyses have indicated that the gear-hub flexibility can have a significant effect 

on the operational gear-mesh stiffness, KG. The hub stiffness factor (HSF) will be used to indicate a 
degree of influence of the hub flexibility on the overall gear-mesh stiffness. 

where 

KG,, 
KG;, 

maximum attainable gear mesh stiffness with designated hubs 
maximum gear-mesh stiffness with torsionally rigid max hubs, circumferential fixity at 
the gear root circle 

The torsionally rigid hubs can be theoretically obtained when the radius of Circumferential or 
torsional fixity will coincide with the root circle. The opposite case can be visualized with the thin 
hubs being fixed to small shafts. A combination of rigid hubs for both gears is identified by 
HSF = 1 .O. 

Tables 1 and 2 indicate substantial changes in the contact ratio with increasing loads and/or 
gear-hub flexibilities. By increasing the hub torsional flexibility (lower HSF), the contact ratio 
increases, the variation of the instantaneous transmission ratio (TR ’) increases, and the sensitivity to 
gear-tooth errors decreases. The opposite occurs by decreasing the hub flexibility. The gear-tooth 
contacts due to deflections and errors may occur off the theoretical line of action, thus affecting the 
transmission ratio. The ATR can be viewed as a percent change in the output torque. The 
approximate variation (cycling) of TR’ is illustrated in figure 7. The maximum variation in TR’ is 
defined as ATR ’ . 

Various profile errors, pitting, and the previously discussed hub flexibility can affect the mesh 
stiffness characteristics to varying degrees. A case where only one of the meshing gears has surface 

TABLE 1. - EFFECTS OF GEAR FLEXIBILITY ON MESH STIFFNESS, 
TRANSMISSION RATIO, AND CONTACT RATIO 

[ A l l  gears w i t h o u t  e r r o r s  o r  m o d i f i c a t i o n s  RHl f ,  RH2f = 
t o r s i o n a l  f i x i t y  rad ius ;  gears 1, 2.1 

10.0 14.5 3 . 0 7 ~ 1 0 ~  1 . 2 1 ~ 1 0 ~  0.476 2.4 2.47 
12.7 18.3 3.80 1.50 .591 1.9 2.42 
12.7 38.1 5.08 2 .oo .794 1.6 2.36 
38.1 114.3 6.36 2.50 .992 1.0 2.32 
47.2 148.8 6.45 2.54 1 .o 1.0 2.32 
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TABLE 2. - LOAD EFFECTS ON TRANSMISSION RATIO 
AND CONTACT RATIO GEARS 

[32 and 96T; 8DP; 14.5' PA; CRT = 2.14;HSF = 0.992.1 

Load, TR , CR 
N l m m  percent 
88 0.8 
17 5 1.0 
350 1 .o 2.38 
5 25 1.8 2.43 
700 2.2 2.45 

I S  I \ 

Gears: 32-961. BDP. 14.5' PA 
F-25.4nm. HSF = 1.0 
Load = 175 N l m  

Loss of Stiffness 
Due to Errors 

Profile Error 
PE = .013 m 
Figure lb 

Surface Pit, Gear 1 
. 5  nm wide 
.25 nm deep 
Figure Id :;rT~, 

-- - 

-.-.- 

@le of Qntatim. ' 1  

Figure 7. - Effects of profile faul ts  on gear mesh s t i f fness .  

imperfections will be considered first. For example, with torsionally flexible hubs (HSF = OS), the 
sinusoidal errors of 0.013 mm (0.0005 in.) and narrow surface pits 0.5 mm wide (0.02 in.) were 
absorbed by the mesh flexibility consequently producing the errorless mesh stiffness characteristics. 
On the other hand, when the hubs were torsionally rigid (HSF = 1) the mesh flexibility was not able to 
absorb the errors of above magnitudes. Unabsorbed errors can cause loss of stiffness thus causing 
significant changes in the gear-mesh stiffness characteristics (dashed lines in fig. 7). With increasing 
hub flexibility there was a gradual return to normal mesh stiffness characteristics, that is, the 
flexibilities in the mesh were able to narrow or bridge the noncontact zones. For example, a 32- and 
96-tooth gear pair mesh with HSF=0.6 was able to absorb a portion of the sinusoidal error'by 
eliminating about 50 percent of the mesh stiffness interruption shown in figure 7. Unabsorbed errors 
in the NCR gearing will cause a complete momentary loss of gear mesh stiffness. 

The developed method can also be used to investigate other error combinations acting on both 
gears. For example, errors shown in figure l(b) with PEl and PE2 of 0.013 mm are nearly self- 
compensating in terms of developed stiffness characteristics. Oth'er profile combinations, especially 
of large error magnitudes, could lead theoretically to nonoperational contact ratios or to 
unacceptable interruptions of the mesh stiffness function. The sinusoidal profile errors of 
approximately one cycle (fig. l(b)) and 0.013 mm in magnitude are probably the maximum tolerable 
profile errors in accurate spur gearing applications. 

It can be also noted that by selecting an appropriate combination of transmitted loads and gear- 
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hub flexibilities some of the NCR gear pairs can be theoretically made to operate in the HCR regime. 

Dynamic Model 
The gear train shown in figure 8 was used in dynamic simulations. This model is assumed to 

represent one of the practical cases in gearing. The dynamic model is based on the same coordinates 
as the static model. The developed gear-mesh stiffness characteristics and other parameters were then 
automatically transferred to the dynamic simulation of the system. 

The equations of motion for this model along the instantaneous (noninvolute) line of action can 
be given in the following form: 

+ KGXRBC 1 $1 - RBC2 ’ $JRBC 1 = 0 (19) 

+ KGi(RBC2 ’ $2 - RBC 1 $1)RBC2 ’ = 0 (20) 

In equations (19) and (20) KGi represents the variable gear pair mesh stiffness and is a function 
of gear-tooth profile errors and modifications, deflections of gear teeth, load sharing, and height of 
engagement for any angular position i of engagement. The mesh stiffness cycle is also illustrated in 
figure 7. The basic sources of excitation for a rotating pair of gears are the variation and 
interruptions of mesh stiffness and the changes in the transmission ratio caused by noninvolute 
action. The input torque TIN is assumed to be constant while the output of load torque TL is a 
function of the instantaneous transmission ratio shown as the TL(TR’). In this study it is assumed 
that the instantaneous transmission ratio is dominated by the incoming tooth pair as it moves 
through one gear-mesh stiffness cycle. 

Operational situations, which may involve momentary disengagement of gears in mesh, will 
impose the following conditions on the dynamic gear-mesh forces in equations (3) and (4); if 
RBC2’$2 <RBCl$I, then 

KG, CG, Sr BGM 

I 

PH2 *- SGP! = Backlash 
CB = Searing Damping 
C, = Shaft Damping 
3 Load TL 

F, lemen t E = Damping ratio 
J = Moment of inertia 
Y = Dynamic disglaceient 
i = Dinarnic velocity 

Figure 8. - Gear t ra in  dynamics model. 
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(QDt)i=CG,{RBC13/1 - RBC2'4) +KGt{RBC1$l - RBC2'$2) 

if RBC2 ' rc/2 > RBCl$1 and (RBC2 ' $2 - RBCl$2) < BGM, then 

if RBC2'$2>RBCl$l and (RBC2'$2-RBCl$l)>BGM, then 

(QDf),=CGl{RBC1rc/1 - RBC2'$2) +KG,{RBC1$1 -RBC2'&) -BGM) 

Also, when KGi= 0, (QDJi = 0. 

The equivalent damping in gear mesh CGi was related to KGi by means of a critical damping 
coefficient 4.  

A fourth-order Runge-Kutta integration scheme was used to integrate the indicated differential 
equations of motion. The initial displacements $l(O), $2(0), $do), and $ ~ ( 0 )  were determined by 
statically twisting the entire system with the prescribed TIN and TL torques. For the initial velocities 
&(O), &(O), $do), and &(O), the anticipated steady-state involute action velocities were selected. 

The numerical integration of the equations of motion (eqs. (18) to (21)) is carried out for a length 
of time equivalent to the time required for the startup transient to decay. This time is assumed to be 
equal to five times the longest system natural period. The integration time step was taken either as 
one tenth of the shortest system natural period or 1 percent of the mesh stiffness period with CR <2 
(2 percent for CR>2), whichever is smaller. 

For illustration purposes two computer outputs for the static and dynamic loads are shown in 
figures 9 and 10. The static and dynamic load distributions are shown aIong the gear-tooth profiles as 
the gear tooth traverses the meshing arc. The dynamic load can be also plotted as a function of time. 

I I. ** I I I I 
I **I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 

I e .  * I  I I 
I I * I  * *  I I 
I I I .. I 
I I I I 
I I I I I 
I I I I I 
I I 1 I I 

I I I .. . 1 I 
I I I 
I I I 
I I I 

I I I I I I I 
I I I I I I I 
I I I I I I I 
I I I I I I I 
I I I I I I I 

I I I 
I I I S t a t i c  Load on Tooth P a i r ,  Gear 1 I 

I I I bJithout p r o f i l e  f a u l t s  o r  modi f ica t ions  I 
I I i ITormal load  = 44503, 175IL'/mm, CR = 2.12 

5.99324E+02 .......................... 32 & 9 6 ~ ,  8DF, 20" FA, Std.  Form, HSF=O. 5:  
I I 

I I 

I I 
I I I I I I I I I I I 
I I I I I I I I I I I 
I I I I I I I I I I I 
I I I I I I I I I I I 
+---------+---------+--------*-----------+---------+---------+---------+---------+---------+---------+ 

1.02E+00 2 .33E+00 2.85E*00 3 . 3 6 E i 0 0  3 .87E+00  4 .39E*00 4.90E+00 5.42E*00 5.93E+00 6.45E+00 6.96E*00 

Y C l  LOAO I S  THE FORCE I N  N A C T I N G  BETWEEN THE CONTACTING 7001H P A I R .  
YCl I S  THE LOCATION OF THE CONTACT P O I N T  ALONG THE TOOTH P R O F I L E  OF GEAR 1; MM. 

Figure 9. - Typical static load distribution. 

0.0 
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, 

Figure 10. - Typical dynamic load distribution. 

The dynamic load QD(k) for a contacting gear-tooth pair kin the mesh position i was established 
as 

QD(k)j= - KP(kh (QDt), 
KG j 

In this study the dynamic load factors were defined as 

and 

where DF1 can be interpreted as the dynamic load factor for the mesh or as the dynamic load factor 
for the gear pair, adjacent shafts, and bearings and where DF2 is the dynamic load factor for an 
individual gear-tooth pair traversing the mesh arc. The DF2 is of main significance when the strength 
of the gear teeth is of primary importance. The larger of the two dynamic load factors will be defined 
as the dynamic load factor for design, DF. 

Dynamic Analysis 
The dynamic loads are influenced by a large number of variables such as the mass moments of 

inertia of all elements, shaft stiffnesses, transmitted loads, gear-mesh stiffness characteristics, 
damping in the system, amount of backlash and speed. The mesh stiffness characteristics are affected 
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by various error-caused interruptions. Figure 7 suggests considerable variations of the harmonic 
contents. Consequently, the harmonic contents of the mesh stiffness characteristics can excite a 
number of natural frequencies. 

Because of the large number of variables, only four sets of HCR and NCR gearing (table 3) 
loaded with a normal load of 4450 N or 175 N/mm (IO00 Ib/in) will be discussed. 

The developed method has the capability for analyzing the distribution of the dynamic loads, 
dynamic factors, load sharing, contact-Hertz stress (PH), and the contact stress-sliding velocity 
product (PV) for the entire meshing zone. 

Figure 11 illustrates the dynamic characteristics in terms of (DF) for a gear drive (fig. 8) with 
errorless HCR gearsets. The trends indicate that various gear drive systems could be designated for 
best performance in terms of acceptable dynamic loads by proper selection of masses, gears, gear- 
mesh and shafting flexibilities, and damping. The primary excitation for errorless gears with 
CR 22.0 is the inherent variation in mesh stiffness. An interestingly new response characteristic is 
exhibited by several gearsets having CR = 2.0 (almost flat gear-mesh stiffness). The main excitation 
for CR=2.0 is due to variation in the transmission ratio (ATR) caused by noninvolute action. 
However, CR = 2.0 could be obtained only for some specific load and geometrical conditions. 

The HCR gearing with CR = 2.0 showed reasonably good tolerance to several types of surface 
faults. In general, the dynamic loads can be reduced by introducing higher damping, higher applied 
loads, and lower HSF's. 

1. 

2. 

3. 

4. 

TAKE 3 NC? ar.? FJF Gearing C r o - . 1 1 2  

Inherent  E 3  gearing with s m a l l  p ressure  angle  and f i n e  p i t c h  represec ted  
by 32 & 96T, g L 3 ,  111.5 PA,  CRT = 2.14. 

Long a23c.-.J&T ECF gearing represented by: 
32 and 96l, 8GF, 20' PA, 1.1 x std. addendm, CF, = 2.15, CR = 2.L2, 
HSF = 0.5, and HSF = 1.0 
32 & 96T. 8 ~ ' ,  25' PA, 1.1 x s t d .  a d d e c i T x ,  CFT = 1.89, 139 = 2.i6, YSF=.5 

HCR g e a r k g  w i t h  CF = 2.0 represented by a n-nt.er o f  2:' FA gear s e t a ,  
HSF, and loa2s.  
CE = 2.0, E8F = .73 

0 

L 

For e x m p l e ,  32 5 96T, $2F, 20' PA, i?T = 1.76,  

NCF gear icg r e p r e s e n t e i  by: 
20 & 20T, hDF, 20°0FA, CR, = 1.56; CP = 1.67, ESF = .7  
32 & 96T, 8LF, 22 F>., C? = 1.53, C3 = 1.72, ESF = 1.9 
40 & bo?, 82F, 20 FA, CIITT= 1.51, CR = 1.68, ESF = 1.0 

Curves: a. Gears .I, HSF = . 6 5 .  
Gears A: 32696T. ~ D P .  14.5' PA CR-2.4, shaft.; A .  

Gears B: 32696T. BDP. zoo PA CR-2.32. shafts B 

Gears C: 32696T'. ~ D P .  ?So PA CR-2.41, shafts 9 

Shafts A: KDS= 8400, KLS = CR-2.16. shafts B 

Std. Addendum 
CR-2.0. shafts L 

Std. Addendum b. Gears A, HSF = 1.0 

1.1 x Std. Addendum c. Gears E. HSF = 3.5 

1.1 x Std. Addendum d. Gears C. XSF = 0.5 

36.400 N.m/rad. e. Gears B. ISF - 0.73, 
Shafts B' KDS~~S'102,00'1 F.a/rad. 

3.0 

LL 2.5 

2 2 . 0  
m 

0 c. 
S1.s 

E 0 . S  

:Lo 

0 

Figure 11. - Damping and system flexibility effects on dynamic factors for 
errorless HCR gear sets. 
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Reference 17 indicated a 300 percent increase in dynamic amplitudes caused by a zero stiffness 
zone due to a single tooth pit. In this study surface imperfections were assigned to all teeth for a given 
gear. 

The analyses tend to suggest that the main sources of excitation are the variable mesh stiffness 
function and its interruptions. 

The effects of unabsorbed profile surface imperfections (sinusoidal and pitting) are illustrated in 
figures 12 and 13 for the HCR and NCR gearing. In the presented cases momentary gear separation 
can occur when DF>2. The resonant peaks are the average dynamic load factors based on the 
backlash between zero and 0.25 mm. 

The unabsorbed errors in the NCR situations considered caused a momentary loss of mesh 

1.0 

0.5 
E > 

Curves: a .  PEL = . 0 1 3  m (1 c y c l e )  
Gears A ,  HSF = 1. 
shafts  9. CX= 2.32 

b .  P i t  on gear 1 .  0 . 5  rml 
wide. 0.25 nun deep 
Gears A ,  HSF - 1 ,  
s h a f t s  B 

E .  Errorless 
Gears A ,  shaf ts  B 

KcS' 102,000 K,..' 102.000 N'm/rad 
1 1 

3 .0  

LL 2.5 

2 2.0  

,4 1 . 5  

E 1 . 0  

0.5 

0 

n 

0 + U 

U 

4 - > 

SPEED OF DRIVING ELEMENT, RPM 

Gears 7. 20 6 20T, 4DP. ZOOPA 
Std. Addendum C?=1 6 3  

Curves 
a .  P E l = . O l 3 a r m  (1  cycle)  

Gears D, !'SF-l,shafts e 
c = 0.15 

b .  P i t  on Gear 1 ,  0 . 5 m  wide 
0.25-  d e e p ,  Gears D. HSF-1 
c = 0 . 1 5  

c .  Errorless ,  Gears 3. HSF.1, 
E = 0.15 

d .  ?rrOKlesS. Gears D. HzF=1. 
f - 0.05 

F i g u r e  13. - Influence of p r o f i l e  f a u l t s  on dynamic f ac to r s  f o r  a 
c h a r a c t e r i s t i c  NCR gear pair .  
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stiffness, resulting in high dynamic loads and gear separation over a wide region of considered 
speeds. In the slow speed range there is a large zone of high dynamic load factors affected by a 
number of the mesh stiffness function harmonics and separation of gears. The same unabsorbed 
errors in the HCR gearing cause only a partial loss of stiffness and, thus, indicate lower error-caused 
dynamic loads than in the NCR gearing. The ATR quantity which represents variation of load torque 
due to noninvolute action appears to be of secondary importance as a source of excitation. 
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