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ABSTRACT 

This paper outlines a number of finite element methods for the analysis of 
nonlinear problems in rubber elasticity. Several different finite element schemes 
are discussed. These include the augmented Lagrangian method, continuation or 
incremental loading methods, and associated'Riks-type methods which have the capa- 
bility of incorporating limit point behavior and bifurcations. Algorithms for the 
analysis of limit point behavior and bifurcations are described and the results of 
several numerical experiments are presented. In addition, a brief survey of some 
recent work on modelling contact and friction in elasticity problems is given. 
These results pertain to the use of new nonlocal and nonlinear friction laws. 
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PRJZLIMINARIES AND NOTATIONS 

KINEMATICS 

The usual notation in finite elasticity is employed: g is the displacement 
vector, ,X is the position of a particle in the current configuration whose posi- 
tion was g in the reference configuration, E is the deformation gradient. 
These quantities are illustrated in the figure below. 

” = DISPLACEMENT VECTOR 

=x-x - s 

F = DEFORMATION GRADIENT 

, 
= V(X + u) ; Fti = $-a (XL + &) w .., 
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HOMOGENEOUS, ISOTROPIC 

HYPERRLASTIC MATERIAL 

We begin with a study of equilibrium problems in finite elasticity. It is 
assumed that the materials involved are hyperelastic, isotropic, and homogeneous. 
Therefore, they are characterized by a strain energy function W which is given 
as a function of invariants of the deformation tensor E . These problems are 
complicated by the fact that nonconvex constraints must-be enforced. For compres- 
sible materials the constraint manifests itself in the condition that J(u) = det 
F>O while for incompressible materials J(y) = 1. 

W = i (I,+J) = STRAIN ENERGY PER UNIT VOLUME 

I, = TRACE C z 

I2 = i (TRACE C,)* - $ TRACEC* " 

J= C =FTF 
" ," 

COMPRESSIBLE MATERIALS 

J(u) = det F > 0 
” 

INCOMPRESSIBLE MATERIALS 

J(u) = 1 

41 



SOME CONDITIONS ON THE FORM OF w 

Some conditions on the form of the energy W are presented below. In addi- 
tion to the fact that the energy must be form invariant under changes of the 
spatial frame of reference, other conditions must be enforced if one expects a 
well-behaved solution. Three of these are listed below: 

1, COERCIVITY: 

W(y) = w”(I, ($,12(y) ,J(u_)) 

2, SINGULAR BEHAVIOR: 

as det F + 0 
+ 

1; 

3, QUASICONVEXITY: 

a2w(u) 
f aFiolaj- 

x.x.jJ u > 0 
LJciB- 
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INCOMPRESSIBLE AN-B NEARLY INCOMPRESSIBLE'MATERIALS 
l 

Two basic classes.of methods are employed here to handle compressible and 
nearly incompressible materials: Lagrange-multiplier methods (mixed methods), in 
which the incompressibility constraint h(J) = 0 is accounted for using Lagrange 
multipliers and penalty methods in which the total potential energy func- 
tional II is penalized by the addition of a positive semi-definite, generally 
convex penalty functional. 

INCOMPRESSIBILITY CONSTRAINT 

h(J) = 0 

h(J) = J - 1 , J* - 1 , (J - l)*, -1nJ , etc. 

W = i(Il,12) - p h(J) 

p = Lagrange Mult. "Hydrostatic Pressure 

PENALTY TERMS 

II(u) = W(u)dX - f(u,v) 
n - - - 

+E -1 
I 

dJh))dX 
n - 

g(J) 2 0 g(J) = 0 f-f J = 1 
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EQUILIBRIUM CONDITIONS 

The finite elements employed are baaed on various alternative statements of 
equilibrium conditions for elastic bodies: 

1) ENERGY FORMUL4TIOti 

2) AUGUMENTED LAGRANGE 

L(u,F.A) = n(t) + 5 Jnjvy - cl*dx - i 2 

+ j,; : (Vy - c)dX 

L: V x (G: det G = 1) x (..I' 

The augmented Lagrange method combines features of both penalty and 
Lagrange-multiplier schemes. The incompressibility constraint can be satisfied 
a priori in a straightforward manner for Mooney-Rivlin materials, with the 
result that the method is extremely fast and efficient when used in conjunction 
with, e.g., Uzawa's method (ref 1). (See equation.) 

3. VIRTUAL WORK I 

= f1u.v) for a11 " in " - _ - _ 

Jgh(J($)dx = 0 for all q in Q 

4. VIRTUAL WORK II 

= f(y,.X) for all v in V - _ 

I p, = - c -1 Js(J(u,)) 
--CL I 
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FINITE ELEMENT METHODS 

SOME ELEMENT FAMILIES 

The figure below illustrates some of the standard finite element methods 
employed. Unfortunately, not all of these methods are numerically stable since some 
may not satisfy the generalized LBB condition of Oden and LeTallec (refs. 2 and 3). 
This condition is given in the equation on the following page, where Q is the space 
of Lagrange multipliers, 
placement 

vh is the space of finite element approximations of dis- 
h 

norm on y' . 
p,, is the hydrostatic pressure and 1 lVvhl lo,p is an appropriate energy 

the 
The existence of a Bh > 0 independent-of mesh size h is necessary for 

atability of the mixed and penalty methods, particularly for pressure approxima- 
Mans. 
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THE GENERALIZED LBB CONDITIOh! 

(REFS, 2 ma 3) 

Bh(u) > 0' such that 

Bh lb 11 Q/ker V J(t) 5 max I iI ,aJ(y)v! dX 
aui,a LycL 

"h IIV_vhllo p 3 

for all p in Q 

The numerical stability of mixed- and penalty finite element 
methods depends upon this condition, and particularly on the behavior 
of the parameter 'h with the mesh size h. 
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STABILITY RESULTS 

Oden and Jacquotte (ref, 4) have recently completed a mathematical analysis of 
the LBB condition for incompressible viscous flows. Some of these results appear to 
be directly applicable to the finite elasticity problem. The following table summar- 
izes the behavior of certain finite element methods for these constrained problems. 
The results generally fall into three categories: the stability parameter f3h is 
independent of h and the method is stable, Bh is dependent on h and the method 
is unstable having spurious pressure modes, or the element is "locked", meaning that 
the penalty parameter E depends on the mesh size and that the displacements 
approach 0 as E tends to zero for a fixed mesh size h . 
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ALGORITHMS 

Several different algorithms are employed for the analysis of finite elasti- 
city problems. These include the augumented Lagrange/Uzawa methods, continuation 
(incremental loading) methods, and homotopy methods. In the present paper, augmented 
Lagrange methods are discussed briefly, but the focus is on the continuation-type 
methods of, for example, Riks (ref. 5);Keller (ref. 6), Crisfield (ref. 7), and 
Padovan (ref. 8). 

1, .AUGUMENTED LAGRANGE/UZAWA 

1, EXTREMELY SIMPLE & FAST 

2, FOLLOWS STABLE BRANCHES 

3, NOT EASILY ADAPTED TO GENERAL MAT'LS 

2, CONTINUATION (INCREMENTAL LD'G> 

1, RIKS CHEF, 51, WEMPNER (REF, 9 

2, KELLER (REF, 61, RHEINBOLT (REF, 10) 
3, CRISFIELD (REF, 71, PADOVAN (REF, 8) 

3, HOMOTOPY METHODS 

fb,P) = 0 s - 

af(x(s>,Pw> af(xw;P(s>) 
;+ - i, = 0 

ax ap 

N(i(s)$(s)) = 0 ." 

+ ODE SOLVER 
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AUGUMENTED LAGRANGE METHOD 

The augumented Lagrange is a super-fast method. 

AUGUMENTED LAGRANGE -BLOCK RELAXATION 

1. xn+1 = A” - p (vu” - !“I 

2. L(llF , Fk+, 9 x") L L($ 9 5 9 5") 

ISOLVED EXPLICITLY, N + 2,3/ 

f 

3. a"L(u"k+, ' FL+, ' _ X") -x=0 

CONTINUATION METHODS 

fbJ(s) 3 P(S)) = cl 

i(s) . i(s) + r;'(s) = lc- N&b) = 0 
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NUMERICAL EXAMPLES 

Consider the inflation of a thick rubber spherical shell subjected to external 
loading. The shell is pressurized until it snaps through. Pressure continues to 
increase until the shell inflates. The material is assumed to be an incompressible 

Mooney-Rivlin material. The numerically stable QZ/Pl element is employed. Good 
results are obtained using the Riks-Crisfield method (refs. 5 and 7) with Newton- 
Raphson correction. Geometry of the shell is shown below and this is followed by 
several figures which illustrate numerical results. It is noted that the stiffness 
of the shell is strongly dependent on the material properties. In particular, for 
a fixed value of the Mooney-Rivlin constant Cl, if c2 is chosen sufficiently small, 
a limit point type behavior occurs in the inflated shell. This represents the phe- 
nomenon of a large decrease in pressure in an inflated balloon with a large increase 
in strain at the crown. This limit point behavior disappears for larger values of 
c2- (See ref. 11.) 

Element 
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U [Inch] 

[lb/i, 
Pa 0. 

PI 1.031 

P= 1.591 

P=34.763 

P=42.734 

P=42.373 

P=41.880 

pa.749 

P.41.764 
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CALCULATION OF BIFURCATION PATHS 

The Riks method (ref. 5) makes it possible to calculate bifurcation paths as 
well. A second example involves the buckling of a thick rubber plate under end thrust. 
This problem was analyzed by Sawyers and Rivlin (ref. 12), and provides a good example 
to test the bifurcation capabilities of the code. For low initial aspect ratios, a 
barreling mode of bifurcation is obtained, whereas for thinner slabs a flexural mode 
is obtained. The. following figures show computed numerical results for these ele- 
ments. Bifurcation branches were calculated for this problem as‘well. The fol- 
lowing figures show the results of these calculations. After checking the energy 
of the system on each branch, the branch of lower energy is then calculated. In 
the first figure, branch one has lowest energy and branch two indicates a second- 
ary btf urcation. The lower branches in each of the subsequent figures also rep- 
resent lower energy equ;tlibrium states. (See ref. 13.) 

PLATE UNDER END THRUST 
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FIRST TJ3REE BUCKLING MODES FOR A PLATE UNDER END '!L%RUST 

x = 0.892 
X 

x = 0.762 
X 
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LOAD-DEFLECTION CURVE FOR A PLATE 
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COMPUTATIONAL PROBLEMS DURING HIGH COMPRESSION 

The augumented Lagrange method failed for problems with high compression as 
indicated in the figure below. An oscillatory mode was obtained at compressions of 
30%. Here the 91 /PO element was employed. In view of this, the continuation tech- 
niques with QZ/Pl elements were attempted in the following examples. 

30% COMPRESSION 

59 



FIXED END CYLINDER 

Arc* shovn In 
deformation plots 

- 1.0 ________d 

Physical problem 

I I I I I I Illll 
50-element mesh 

t 
-N 

78-element mesh 
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DISPLACED CONFIGURATION OF FIXRD END CYLINDER: EIGHT-NODE ELEMENTS 

N 
Q8DP. 78-element model, w. = 0.1 

c 
QSD. 50-element model, w. = 0.1 

DISPLACED CONFIGURATION OF FIXED END CYLINDER: NINE-NODE ELEMENTS 

Q9DP, 50-element model, w,, = 0.1 

Q9DP. 78-element model, w. = 0.1 

Q9CP, 50-element model, w. = 0.1 

Q9CP, 78-element model. w. = 0.1 
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COMPRESSION OF A RUBBER BLOCK 

Here a rubber block of revolution is one-quarter of the cross section of a 
block of revolution is shown. The block is subject to compression by uniformed dis- 
placement of the edges. A strong singuiarity is developed in thefree edge leading 
to a cusp as indicated in the calculated deformed configurations. Ultimately, contact 
of these surrounding regions occurs. This is a very difficult class of elastostatic 
problems and contact conditions must be incorporated in the analysis procedure to 
handle these problems. 

PLANE STRAIN BLOCK 

H = 2.90 
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I 

SYMMETRIC MODEL OF PLANE STRAIN BLOCK 

DEFORMATION BEFORE LIMIT POINT 

AH/H = 0.1175 

AH/H = 0.1564 

AH/H = 0.1743 
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DEFORMATION AFTER THE LIMIT POINT 

AH/H = 0.164 

AH/H = 0.151 

AH/H = 0.104 
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ENLARGED VIEW OF DEFORMED CONFIGURATION 

At limit point 

After limit point After limit point 

Element boundary,overlap at the cusp 
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NEW FRICTION MODELS 

It is now the generally held view that the classical Mohr-Coloumb law of friction 
is inadequate on both physical and mathematical grounds when modelling friction 
effects in real materials. For this reason, a preliminary study of several new non- 
classical friction laws have been undertaken. These friction laws include nonlocal 
effects to approximate deformed asperities, adhesion effects, and elastic junction 
effects, and ultimately will include fracture and damage models of the junctions.on 
the contact surface. The general formof these contact laws is given below, where 
a'T is the tangential frictional StreSS, V is the coefficient of friction, which 
may depend upon the number of loading cycles and the stress state on the contact sur- 
face, gradients of deformation, etc., S, is a smoothing operator with p represent- 
ing a characteristic dimension of deformed asperities on the contact surface, on 
is the normal contact pressure, and OS represents a compliance function which models 
the elasticity and elastoplasticity of interface junctions. This compliance reaction 
is given as an anti-symmetric function of the value of the tangential velocity vec- 
tor in on the contact surface. An algorithm has been developed for implementing this 
new friction law. Some preliminary results are indicated in the final two figures 
of this paper. (See also refs. 14 through 16.) I 

4. NEW FRICTION MODELS \ 

i 
4 

“ 

EFFECTS 

EFFECTS 
f 

ELASTIC JUNCTION EFFECTS 6 

L FRACTURE/DAMAGE MODEL OF JUNCTIONS 

+) = v@,t) SpbN(y)) +E,(I lETI 1) 

/Y’ i ----=-- 
CYCLIC/DAMAGE NONLOCAL JUNCTION ELASTICITY & PLASTICITY 
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NEW FRICTION MODEL APPLICATIONS 
An example of the indentation of a rigid cylindrical stamp into an elastic 

slab is considered. 
& = 10-4, E 

A non-classical friction law is used, with p = 
= 1000, 1-1 = 0.6. -0.1, 

Nine-node bi-quadratic elements were used. 
shape and stresses on the contact surface are shown. Deformed 

Applied 
Force 
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