ADHESION TESTING OF AIRCRAFT TIRES

Stephen N. Bobo
U.S. Department of Transportation
Transportation System Center

In December 1979 the FAA issued a new Technical Standard Order TSO-C62c to all users and manufacturers of aircraft tires. It was designed to upgrade the testing required to meet minimum airworthiness standards.

These changes to the testing requirements for new tires necessitated similar improved standards for retreads used in the national air carrier fleet.

Accordingly, an advisory circular (ref. 1) was prepared for comment which upgraded the testing standards for retreads to reflect the changes made in testing new tires under TSO-C62c. The advisory circular recommending the new dynamometer testing requirements called for testing every retread level of every tire size in an effort to accumulate sufficient tests and data to provide confidence that the retreading process including casing selection contained procedures which would provide for the continued airworthiness of the tires in service.

However, the number of tires to be tested to accumulate confidence would have presented an unacceptable and unrealistic cost to retreaders and their customers and an alternative approach was necessary.

For many years tire manufacturers and retreaders have been using laboratory adhesion tests as means for determining the effectiveness of the vulcanizing process in adhering the various tire components to one another. Adhesion testing appeared to offer a less burdensome alternative to replace some of the dynamometer tests recommended in the AC. Accordingly, test results and data were requested from retreaders who had used adhesion testing.

All of the American retreaders of aircraft tires submitted data, as did Goodyear, which obtained additional data from European adhesion tests. For some tires the Navy has required adhesion tests as a part of their purchasing procedure and this data was also made available. Such data was collected from various sources for over 700 tires, both commercial and military.

In meetings with industry, the FAA was presented with the industry consensus regarding the use of ply and tread adhesion tests to qualify tire retreading process specifications. The FAA has accepted this means of testing as one which can be used in the qualification of a tire retreading process speciffication,

The adhesion testing procedure used by most retreaders was a modification of the Hascar-Reiger method (ref. 2) in which a 1 " strip of rubber is slit and introduced into a tensilometer. Variations of this method are described in references 1 and 3 to 6 .

Figure 1 gives an example of the output from an adhesion test. The data is subject to wide variations in interpretation because of the stress-tear-relaxation characteristic of the rubber sample. Several methods of reporting the data have been adopted, including averaging all maximum values, averaging all minimum values and taking the mean of the maximum and minimum average values. The reporting
sources usually list the method of recording and this is so noted in the data. Several other variations in method account for variations in test results, the three most important of which relate to sample preparation. Some laboratories attempt to cut the sample to the exact dimension, others correct for errors in size by normalizing the cut dimension to 25.4 mm (1 in .) width. Some laboratories cut the sample approximately 3.2 mm ($1 / 8 \mathrm{in}$.) oversize and using a razor blade slit the intended path of travel of the tear line around the edge of the sample.

Several individuals have reported high values of adhesion when excess sample rubber thickness is not cut away, however laboratories as a rule do nothing to alter the thickness of the sample.

The location of the tear region varies depending upon the agency requesting the testing, and when it is known this information has been included in the data. Most organizations have reported buffline adhesion data, although some have reported maximum rather than average results.

Some organizations have reported adhesion data from the outside of the outer ply while some have reported between the second and third ply. Since there was no statistically detectable difference between these reported values they were lumped in the data.

The data was tabulated and placed in a data base called BANK (ref. 7). The fields are described in a listing. Most of the data on buffline adhesion is taken from TAV although TMX contains some buffline data. These two fields were separated because of uncertainty about the method of reading the primary recorder traces.

PAV gives values of outer ply adhesion. Some readings of maximum and minimum adhesion averages were available and these were recorded as PMX and PMN. Tire size is structured so that mathematical transformations such as linear regression or rank order correlation can be performed on the size variable.

Other information, such as R level, durometer tensile, and elongation measurements, is included where a sufficient amount of data was obtained.

The BANK program provides an interesting first level statistic printout of the data in each field (Figures 2 through 13). These include mean, standard deviation, and maximum and minimum values, as well as a data histogram.

In order to use simplified procedures for establishing minimum adhesion thresholds and realistic test sample sizes it is important to confirm the character of the distribution of the data. This may be accomplished by analysis of the data in terms of the probability that it fits on a normal distribution curve (Figure 14).

Figure 15 is a scatter plot of the probability that any given sample will lie below a given value, against ordinal value. To the extent that this plot is a straight line the distribution is normal. If the plot deviates greatly from a straight line the data does not have normal distribution. It may be seen that the plot in Figure 15 is a relatively straight line. A surer test is to use the \log of probability and the \log of the order value (Figure 16). This is useful to test the values lying in the skirts of the distribution curve. Since there is always a small number of data points in the region of the lower adhesion values, the use of the log plot highlights any abnormality of these values.

Our analysis of these data have allowed us to conclude that the data is fairly normally distributed and can therefore be used to establish criteria for minimum threshold levels based on normal distribution. These criteria have been determined using an algorithm giving the probability that any number R of adhesion values will fall below the n lowest values.

For the FAA we selected a test sample size of 20 tires and used the three lowest readings as the threshold criteria. Using the algorithm, we determined that, using values of 30,33 , and 36 for buffline adhesion and 20,23 , and 26 for ply adhesion, the probability that a retreader having good tires would fail the test was about fifteen percent. The probability of failing a retest was about 2%. One the other hand the probability of detection of a sample of tires having a mean less than the threshold values increases very rapidly to 98% at a value of 1 standard deviation away from the threshold mean (Figure 17).

Tread and ply adhesion values are a very good measure of tire production uniformity and can therefore be used as a monitor of quality during production in statistical $Q C$ devices such as control charts. The threshold values given represent tires taken from a fleet in which a very small number of tire related incidents have occurred. They can therefore be considered as representing a safc population of tires.

REFERENCES

1. Inspection, Retread, Repair, and Alterations of Aircraft Tires. Federal Aviation Advisory Circular AC 145-4, FAA, Sept. 1982.
2. Harscar, F. G.: Determination of Tire Components Adhesion. Test Engineering, November 1970, pp. 10-11.
3. Clark, S. K. (ed.): Mechanics of Pneumatic Tires. National Highway Traffic Safety Administration, U.S. Dept. of Transportation, 1981.
4. Adhesion to Flexible Substrate. ASTM D-413-76, 1981 Annual Book of ASTM Standards, p. 357.
5. Rebuilt Tire Aircraft Laboratory Quality Assurance Requirements, Military Standard MS3377. Paragraph 4.6.8, MIL-R-7726, Dept. of Defense, June 1975.
6. Standards for Retreading Aircraft Tires. Appendix 6, Association of European Airlines, Jan. 5, 1977.
7. Houchard, Richard: BANK DATA Management Package. Computer Center Library Program 3.9.1, Westerm Michigan Univ., Kalamazoo, Mich., Oct. 1974.

Figure 1
VARIABLE: SIZE NUMBER: 2 DESCRIPTION: VARIABLE TYPE: FLOAT there were 706 ObSERVATIONS, which INCLUDED 0 CASES OF missing data Selected from a total of 706 observations SUM OF OBSERVATIONS $=23559.43$ SUA OF OBSERVATIONS SQQUARED $=838052.0$ NUMBER OF OBSERVATIONS MEAN $=33.37030$ MAXIMUM - 56.16000 STANDARD ERROR OF MEAN $=0.3228110$ MEDIAN $=29.50750$ MINIMMM $=20.20000$
STANDARD DEVIATION $=8.577303$
COEFFICIENT OF VARLATION $=25.70341$ MODE $=24.55000$ Standard ekror of man $=0.3228110$

VARIANCE $=73.57012$
KURTOSIS = 2.321392

Figure 2

VARIABLE: RL NUMBER: 3 DESCRIPTION: R LEVEL VARIABLE TYPE: FIXED THERE WERE 706 OBSERVATIONS, WHICH INCLUDED
SUM OF OBSERVATIONS $=269.00$
MEAN $=3.240964$
MAXTMUM $=12$
STANDARD ERROR OF MEAN $=0.2199233$
COEFFICIENT OF SKEWNESS $=1.395565$

623 CASES OF HISSING DATA SELECTED FROM A TOTAL 706 OBSERVATIONS SUM OF OBSERVATIONS SQUARED $=1201.000$ NUMBER OF OBSERVATIONS $=$ IEDDIAN $=3.000000$ MINIMIM $=1$ STANDARD DEVIATION $=2.003597$ COEFFICIENT OF VARIATIOI $=61.82101$

MODE $=24.55000$
RANGE $=35.96000$
VARIANCE $=73.57012$
KURTOSIS $=2.321392$

VALUE	FREQUENCY	PERCENTAGE	CUMULATIVE PERCENTAGE
1	19	22.892	22.892
2	13	15.663	38.554
3	17	20.482	59.036
4	16	19.277	78.313
5	11	13.253	91.566
6	3	3.614	95.181
7	1	1.205	96.386
8	1	1.205	97.590
9	1	1.205	98.795
12	-1	1.205	100.000

Figure 3
VARIABLE: NFG NUMBER: 4 DESCRIPTION: MANUFACTURER VARIABLE TYPE: ALPIA THERE NERE 706 OBSERVATIONS, WHICH INCLUDED 430 CASES OF MISSING DATA SELECTED FROM A TOTAL OF 706 OBSERVATIONS MAXIMGM $=$ TMS \quad MINIMUM $=\mathrm{AIR}$

			CUTULATIVE
VALUE	FREQUENCY	PERCENTAGE	PERCENTAGE
AIR	143	51.812	51.812
BFG	34	12.319	64.130
BRS	4	1.449	65.580
DLP	7	2.536	68.116
F	5	1.812	69.928
GYR	36	13.043	82.971
KC	6	2.174	35.145
TMS	41	14.855	100.000

15.0	30.0	45.0	60.0	75.0
+-------+	-	+	+	
LTXXXXXXXXXXXXYXXXXXXXXXXXXXXXXXXXXXX				
IXXXXXXXXX				
IX				
IXX				
IX				
ITXXXXXXXXXX				
IX				
IXXXXXXXXXXX				
+-----15	30.0	45.0	60.0	75.0

Figure 4

VARIABLE: TMX NUMBER: 5 DESCRIPTION: MAX TREAD ADHSN VARIABLE TYPE: FIXED THERE WERE 706 OBSERVATIONS, WHICH INCLUDED 563 CASES OF MISSING DATA SELECTED FROM A TOTAL OF 706 OBSERVATIONS SUM OF OBSERVATIONS $=12289.00 \quad$ SUM OF OBSERVATIONS SQUARED $=1114039 . \quad$ NUMBER OF OBSERVATIONS $=$
MEAN $=85.93706 \quad$ MEDIAN $=82.00000 \quad$ MODE $=80$

MAXIMUM $=143$
STANDARD ERROR OF MEAN = 1.689453
COEFFICIENT OF SKEWRESS $=0.5453779$

MEDIAN $=82.00000$
MINIMUR1 $=50$
STANDARD DEVIATION $=20.20292$
MODE $=80$
RANGE $=93$
VARIANCE $=408.1580$
KURTOSIS $=2.987374$

VALUE		FREQUENCY	PERCENTAGE	cumdlative PERCENTAGE
$50-$	53	5	3.497	3.497
54 -	57	3	2.098	5.594
58 -	61	6	4.196	9.790
62 -	65	7	4.895	14.685
66 -	69	12	8.392	23.077
$70-$	73	7	4.895	27.972
74 -	77	11	7.692	35.664
78 -	81	18	12.587	48.252
$82-$	85	10	6.993	55.245
86 -	89	11	7.692	62.937
$90-$	93	7	4.895	67.832
94 -	97	5	3.497	71.329
98 -	101.	10	6.993	78.322
102 -	105	9	6.294	34.615
106 -	109	5	3.497	88.112
$110-$	113	4	2.797	90.909
114 -	117	2	1.399	92.308
118 -	122	2	1.399	93.706
122 -	125	1	0.699	94.406
126 -	129	3	2.098	96.503
$130-$	133	1	0.699	97.203
134 -	137	3	2.098	99.301
138 -	141	0	0.000	99.301
142 -	145	1	0.699	100.000
		143		

$5.0 \quad 10.0$	15.0	20.0	25.0
IXXXXXXXX			
IXXXX			
IXXXXXXXXX			
IXXXXXXXXXXX			
L XXXXXXXXXXXXXXXXXX			
IXXXXXXXXXXX			
IXXXXXXXXXXXXXXXXX			
I IXXXXXXXXXXXXXXXXXXXXXXXXX			
IXXXXXXXXXXXXXXX			
IXXXXXXXXXXXXXVXX			
IXXXXXXXXXX			
IXXXXXXXX			
IXXXXXXXXXXXXXXXX			
IXXXXXXXXXXXXX			
IXXXXXXXX			
IXXXXXX			
IXXX			
IXX			
IX			
IXXXX			
IX			
IXXXX			
I			
IX			
	- +	--+	-+
$5.0 \quad 10.0$	15.0	20.0	25.0

Figure 5

VARLABLE: TAV NUYBER: 7 DESCRIPTION: AVERAGE TREAD ADHSN VARIABLE TYPE: FIXED THERE WERE 706 OBSERVATIONS, WHICH INCLUDED 213 CASES OF MISSING DATA SELECTED FROM A TOTAL OF SUM OF OBSERVATIONS $=41810.00 \quad$ SUM OF OBSERVATIONS SQUARED $=3771346 . \quad 706$ OBSERVATIONS MEAN $=84.80730$ MEDLAN $=85.00000$ MINIMUM $=20$ MAXIMUM = 149 STANDARD ERROR OF MEAN $=0.9643130$ COEFFICIENT OF SKEWNESS $=0.6466109 \mathrm{E}-01$

NUMBER OF OBSERVATIONS
MODE $=90$ RANGE $=129$ VARIANCE $=458.4405$ KURTOSIS $=2.747826$

value		FREQUENCY	Percentage	CUMOLATIVE
$20-$	25	2	0.406	0.406
26 -	31	0	0.000	0.406
32 -	37	0	0.000	0.406
38 -	43	7	1.420	1.326
44 -	49	8	1.623	3.448
$50-$	55	26	5.274	8.722
56 -	61	34	6.897	15.619
62 -	67	34	6.897	22.515
68 -	73	44	8.925	31.440
74 -	79	38	7.708	39.148
$80-$	85	60	12.170	51.318
86 -	91	52	10.548	61.866
92 -	97	50	10.142	72.008
98 -	103	38	7.708	79.716
104 -	109	35	7.099	86.815
110 -	115	29	5.882	92.698
116 -	121	19	3.854	96.552
122 -	127	3	0.609	97.160
128 -	133	7	1.420	98.580
134 -	139	4	0.811	99.391
140 -	145	2	0.406	99.797
146 -	151	1	0.203	100.000

$5.0 \quad 10.0$	15.0	20.0	25.0
IX			
I			
I			
IXXX			
IXXX			
IXXXXXXXXXXXX			
IXXXXXXXXXXXXXXX			
IXXXXXXXXXXXXXXX			
IXXXXXXXXXXXXXXXXXXXX			
IXXXXXXXXXXXXXXXX			
I XXXXXXXXXXXXXXXXXXXXXXXX			
LXXXXXXXXXXXXXXXXXXXXXX			
IXXXXXXXXXXXXXXXXXXXXX			
IXXXXXXXXXXXXXXX			
IXXXXXXXXXXXXXX			
IXXXXXXXXXXXXXX			
IXXXXXXXX			
IX			
IXXX			
IXX			
IX			
I			
	- +	-1	--+
5.010 .0	15.0	20.0	25.0

Figure 6

VARIABLE: PMX NUMBER: 8 DESCRIPTION: MAX PLY ADHSN VARIABLE TYPE: FIXED THERE WERE 706 OBSERVATIONS, WHICH INCLUDED 538 CASES OF MISSING DATA SELECTED FROM A TOTAL OF SUM OF OBSERVATIONS $=6691.000 \quad$ SUM OF OBSERVATIONS SQUARED $=280465.0 \quad 706$ OBSERVATIONS MEAN $=39.82738$ MAXIMUM $=73$
STANDARD ERROR OF MEAN $=0.7058958$ MEDIAN $=38.00000$
MINIMUM = 26
STANDARD DEVIATION $=9.149456$ COEFFICIENT OF VARIATION $=22.97278$ NUMBER OF OBSERVATIONS $=$ COEFFICIENT OF SKEWNESS $=1.399312$

VALUE		FREQUENCY	PERCENTAGE	CUUILLATIVE PERCENTAGE
26 -	27	5	2.976	2.976
28 -	29	6	3.571	6.548
30 -	31	12	7.143	13.690
32 -	33	15	8.929	22.619
34 -	35	20	11.905	34.524
36 -	37	20	11.905	46.429
38 -	39	23	13.690	60.119
40 -	41	13	7.738	67.857
42 -	43	14	8.333	76.190
44 -	45	9	5.357	81.548
46 -	47	8	4.762	86.310
48 -	49	3	1.786	88.095
$50-$	51	2	1.190	89.286
52 -	53	4	2.381	91.667
54 -	55	0	0.000	91.667
56 -	57	3	1.786	93.452
58 -	59	3	1.786	95.238
$60-$	61	1	0.595	95.833
62 -	63	1	0.595	96.429
64 -	65	1	0.595	97.024
66 -	67	1	0.595	97.619
68 -	69	1	0.595	98.214
70 -	71	2	1.190	99.405
72 -	73	1	0.595	100.000
		168		
		10.0	15.0	25.0

Figure 7

VALUE	FREQUENCY	PERCENTAGE	CUMULATIVE PERCENTAGE
14	1	4.000	4.000
19	1	4.000	8.000
20	3	12.000	20.000
22	2	8.000	28.000
24	2	8.000	36.000
25	1	4.000	40.000
26	2	8.000	48.000
27	2	8.000	56.000
29	1	4.000	60.000
30	2	8.000	68.000
31	1	4.000	72.000
36	1	4.000	76.000
37	1	4.000	80.000
38	2	8.000	88.000
40	1	4.000	92.000
42	1	4.000	96.000
44	1	4.000	100.000

Figure 8

VARIABLE: PAV NUMBER: 10 DESCRIPTION: AVERAGE PLY ADIISN VARIABLE TYPE: FIXED THERE WERE 706 OBSERVATIONS, WHICH INCLUDED 188 CASES OF MISSING DATA SELECTED FROM A TOTAL OF SUM OF OBSERVATIONS = $28109.00 \quad$ SUM OF OBSERVATIONS SQUARED $=1601885$. . 706 OBSERVATIONS

MEAN $=54.26448$
MAXIMUM $=114$
STANDARD ERROR OF MEAN $=0.5346928$
COEFFICIENT OF SKEINESS $=0.6843333$

MEDIAN $=54.00000$
MINIHUM $=17$
STANDARD DEVIATION $=12.16940$
COEFFICIENT OF VARIATION $=22.42609$

NUMBER OF OBSERVATIONS = MODE $=53$
RANGE = 97
VARIANCE $=148.0943$
KURTOSIS $=5.372330$

VALUE		FREQUENCY	PERCENTAGE	CUMULAT IVE PERCENTAGE	
17 -	20	1	0.193		
21 -	24	0	0.000		
25 -	28	3	0.579		
29 -	32	9	1.737		
33 -	36	19	3.668		
$37-$	40	37	7.143		
41 -	44	36	6.950		
45 -	48	41	7.915		
49 -	52	77	14.865		
53 -	56	92	17.761		
57 -	60	62	11.969		
61 -	64	52	10.039		
65 -	68	42	8.108		
69 -	72	23	4.440		
73 -	76	5	0.965		
77 -	80	5	0.965		
81 -	84	4	0.772		
85 -	88	3	0.579		
89 -	92	1	0.193		
93 -	96	2	0.386		
97 -	100	1	0.193		
101 -	104	0	0.000		
105 -	108	2	0.386		
109 -	112	0	0.000		
113 -	114	1	0.193		
	518				
		5.0	15.0	20.0	25.0
	I				
	I				
	IX				
	IXXX				
	IXXXXXXXX				
	IXXXXXXXXXXXXXXXX				
	IXXXXXXXXXXXXXXXX				
	IXXXXXXXXXXXXXXXXX				
		IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			
		IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			
		IXXXXXXXXXXXXXXXXXXXXXXXXX			
		IXXXXXXXXXXXXXXXXXXXXXX			
		IXXXXXXXXXXXXXXXXX			
		IXXXXXXXXX			
		IXX			
		IXX			
		IXX			
		IX			
		I			
		IX			
		I			
		I			
		IX			
		I			
		I			
		+-------	------+-	+	-+
		5.0 1	15.0	20.0	25.0

Figure 9

VARIABLE: TENS NUMBER: 10 DESCRIPTION: TENSILE . VARIABLE TYPE: FIXED
THERE WERE 706 OBSERVATIONS, WHICH INCLUDED 134 CASES OF MISSING DATA SELECTED FROM A TOTAL OF
SUM OF OBSERVATIONS $=1538885 . \quad$ SUM OF OBSERVATIONS SQUARED $=0.4200112 E+10$ 706 OBSERVATIONS
MEAN $=2690.358$
MAXIMUM $=3697$
STANDARD ERROR OF MEAN $=13.54925$
COEFFICIENT OF SKEWNESS = 0.3102679

SUM OF OBSERVATIONS SQUARED $=0.4200112 \mathrm{E}+10$
MEDIAN = 2661.000
MINIMUM = 1495
STANDARD DEVIATION $=324.0510$
COEFFICIENT OF VARIATION $=12.04490$

NUMBER OF OBSERVATIONS
MODE = 2660
RANGE $=2202$
VARIANCE $=105009.1$
KURTOSIS $=3.827942$

VALUE		FREQUENCY	PERCENTAGE		CUMULATIVE
:---:					
PERCENTAGE					

VARIABLE: ELONG NUMBER: 12 DESCRIPTION: ELONGATION VARIABLE TYPE: FIXED There were 706 ObSERVATIONS, WHICH INCLUDED 133 CASES OF missing data selected from a total of SUM OF OBSERVATIONS $=281707.0$ MEAN $=491.6353$
MAXIMUM $=670$
STANDARD ERROR OF MEAN $=2.767603$
COEFFICIENT OF SKEINNESS $=-0.1577621$

SUM OF OBSERVATIONS SQUARED $=0.1410076 \mathrm{E}+09$ MEDIAN $=497.0000$ MINIMUM $=274$ STANDARD DEVIATION $=66.24928$ COEFFICIENT OF VARIATION $=13.47529$

706 OBSERVATIONS

NUMBER OF OBSERVATIONS $=$ $\mathrm{MODE}=530$ RANGE $=396$ VARIANCE $=4388.966$ KURTOSIS $=2.601573$

Figure 11

VALUE	FREQUENCY	PERCENTAGE	CUMULATIVE PERCENTAGE
50.00000	2	0.465	0.465
54.00000	1	0.233	0.698
55.00000	9	2.093	2.791
56.00000	2	0.465	3.256
57.00000	13	3.023	6.279
58.00000	14	3.256	9.535
59.00000	28	6.512	16.047
60.00000	70	16.279	32.326
61.00000	96	22.326	54.651
62.00000	56	13.023	67.674
63.00000	63	14.651	82.326
64.00000	38	8.837	91.163
65.00000	24	5.581	96.744
66.00000	8	1.860	98.605
67.00000	2	0.465	99.070
68.00000	1	0.233	99.302
69.00000	3	0.698	100.000

IX
I
IXXXX
IX
IXXXXXXX
IXXXXXXX
IXXXXXXXXXXXXXX

IXXX
IXXXXXXXXXXXXXXXXXXXXXXXXXXXX
IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1XXXXXXXXXXXXNXXXXX
IXXXXXXXXXXX
IXXXX
IX
I
IX

Figure 12

VARIABLE: SG NUMBER: 18 DESCRIPTION: TREAD SPECIFIC GRAV 1.()() VARIABLE TYPE: FLOAT THERE WERE 706 OBSERVATIONS, WHICH INCLUDED 279 CASES OF MISSING DATA SELECTED FROM A TOTAL OF

SUM OF OBSERVATIONS $=5376.000$
MEAN $=12.59016$ MAXIMUM $=16.00000$ STANDARD ERROR OF MEAN $=0.5154423 \mathrm{E}-01$ COEFFICIENT OF SKEWNESS $=-0.2478130$

SUM OF OBSERVATIONS SQUARED $=68168.00$ MEDIAN $=13.00000$ MINIMUK $=8.000000$ STANDARD DEVIATION $=1.065109$ COEFFICIENT OF VARIATION $=\mathbf{8 . 4 5 9 8 5 0}$

VALUE	FREQUENCY	PERCENTAGE	CUMULATIVE PERCENTAGE
8.000000	1	0.234	0.234
9.000000	3	0.703	0.937
10.00000	7	1.639	2.576
11.00000	34	7.963	10.539
12.00000	161	37.705	48.244
13.00000	143	33.489	81.733
14.00000	65	15.222	96.956
15.00000	12	2.810	99.766
16.00000	-1	0.234	100.000

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

