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Chapter 1.	 INTRODUCTION

Rising energy prices over the last decade have made

large wind energy conversion machines an attractive option

for electric utilities. Still, such machines must be

carefully designed to compete with the cost of energy from

other resources. The capital cost, longevity, and

maintenance costs of the machine determine the cost of wind

energy produced, and these factors in turn are strongly

influenced by the dynamic loads and vibrations of the

structure. Thus, knowledge of the aeroelastic behavior of

these machines is essential to reducing the cost of the

energy they produce.

This thesis examines certain aspects of the aeroelastic

modeling and behavior of the horizontal axis wind turbine,

or HAWT. Some problems of HAWT aeroelasticity are simply

new applications of rotary-wing aeroelasticity, while others

are uniquely inherent to these systems. wind turbines

operate efficiently at relatively large thrust coefficients

and high inflow angles, and gravity loads are important in

some analyses. The rotor is subject to a sheared airflow

due to tr y earth's boundary layer and the blades must pass

through the tower wake if the rotor is downwind.



The first modern generation of large wind turbines is

typified by the 100 kW NASA MOD-0 series [ll. The MOD-0 is

characterized by:

1) Relatively stiff, cantilevered blades.

2) Rotor downwind of the tower.

3) Root pitch change mechanism and highly
twisted blades.

4) Yaw drive and brake system to align the
machine axis with the wind direction.

This configuration was also characterized initially by large

dynamic overstresses, but subsequent measures taken reduced

this problem substantially [2].

The 2.5 MW NASA MOD-2 wind turbine [31 embodies various

advanced features intended among other things to reduce the

cyclic loading of the blades:

1) More flexible blades with a teetering hub.

2) Rotor upwind of tower.

3) Tip pith control and less severe blade twist.

In this machine, the upwind teetering rotor reduces the

dynamic loads, but the MOD-2 has not been without dynamic

problems.

A teetered, tip-controlled rotor has also been fitted

to a MOD-0 wind turbine for evaluation of these proposals

[4, 51. This rotor was tested both upwind and downwind of

the tower, and further tests with a more flexible tower are

being conducted. Statistical data on blade bending moments,

teeter response, and yaw moments are presented in these



references. Further proposals for advanced HAVT* include

free yaw, more flexible tower, and soft drive train to

isolate the rotor from the generator (6).

Although HAWT aeroelasticity is a relatively new field

of study, a considerable body of literature exists. Brief

reviews of the literature and methods of HAWT aeroelasticity

are presented at appropriate junctures in this thesis. A

good critical review has been presented by Friedmann (7).

See also his survey of rotary-wing aeroelasticity (8).

Literature in the related field of helicopter aeroelasticity

has been extensively catalogued in a book by Johnson (9).

See also his study of proprotor aircraft dynamics (141.

Wind turbine aeroelasticity is conveniently divided

into two areas of concern: stability and response. The

designer's first task is to assure that the machine is free

of aeroelastic and mechanical instabilities throughout the

operating envelope. Nonlinear effects are important for the

stability problem, and the equations of motion must be

derived consistent with thin fact. Generally, the equations

of motion are then linearized about some equilibrium state

of the system.

The designer's second task is to assure that the

machine is structurally sound and will be long lived. The

response of the wind turbine to the various unsteady inputs



such as gravity forcing, wind gusts, tower shadow, and wind

shear must be calculated. Nonlinear effects are generally

less important for the response problem.

The equations of motion and external load expressions

of wind turbine systems are extremely complex. 	 As the

derivation of these equations progresses, it becomes

apparent that some method must be used to sort out and keep

only the most significant terms. Following the practice of

rotary-wing aeroolasticity, an assumed ordering scheme for
i

the various parameters and coordinates	 is	 usually

established. This ordering scheme is based on typical wind
E

turbine parameters and is therefore different from its

rotary wing counterpart.
t

Many aspects of HAWT aeroelastic behavior can be

studied by modeling an isolated blade with fixed hub. This

implies that interactions with the tower motion or between

blades are negligible, an acceptable assumption for the

MOD-0 configuration. The isolated blade has important

degrees of freedom in flapping out of the plane of rotation,

lagging in the plane of rotation, and pitching about the
f

blade axis.

Much less research has been done in modeling the
i

rotor-tower system. The tower may have side-to-side and

for* -and-Lit banding, twisting about its vertical axis, yaw

drive flexibility, and generator drive system degrees of

freedom. The rotor may have a teeter or gimbal degree of
1
}



freedom. Each blade has flapping and lagging, but blade

torsion has usually been neglected in examining rotor-tower

interaction.

Both MOD-0 and MOD-2, and most other large wind

turbines have two blades, a configuration forced by the

economic considerations alluded to earlier. As a result,

the equations of motion for the coupled rotor-tower system

involve	 periodic coefficients	 which demand	 proper

mathematical treatment.

There is a temptation to utilize the digital computer

and numerical methods to construct an all-encompassing model

of the HAWT system. In this way the issues of nonlinear

terms, ordering schemes, and periodic coefficients may be

sidestepped. Indeed, the equations of motion and external

loads need not be derived explicitly. while this approach

is useful in the final stages of design, it is unwieldy and

expensive for initial design or basic research. The

essential physics of a phenomenon may be overshadowed by

lesser details of the model, and the source of a phenomenon

may be untraceable.

An example of this approach is the MOSTAS computer code

for wind turbines 111, 12, 131. This is a very complete

package which has roots in various helicopter codes. MOSTAS

has been built up over the years to model most aspects of

HAwT aeroelasticity and many different machine

configurations.

a;
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A general review of MOSTAS has been made by Dugundji

and Wendell (14). Based on that study, eight specific

recommendations were made. Four were suggestions to improve

the MOSTAS package; four others were recommendations for
I

further basic research. These four are summarized here with

the original numbers in parentheses:

1) Develop simpler models to investigate the
main origins of aeroelastic phenomena (1).

2) Examine aeroelastic and mechanical
instabilities more closely, especially for
the proposed more flexible systems (3).

3) Study teetering effects and propellor
whirl type instabilities (4).

4) Look in detail 3t generator drive train
interaction with other system components (7).

The two parts of this thesis address each of these four

recommendations to a certain degree. The contents are

summarized below.

Part i concerns modeling the isolated wind turbine

blade of a MOD-0 type wind turbine. Modeling techniques are

reviewed briefly, followed by a detailed development of a

simple three degree of freedom equivalent hinge model of an

isolated rotor blade for aeroelastic stability. This

derivation introduces parameters, coordinate systems, and

concepts of modeling such as linearization of nonlinear

equations, ordering schemes, and unsteady aerodynamics, all

of which are common to many of the modeling techniques. 	 A

6
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stability study which identifies the important parameters

and phenomena is presented.	 Finally, the equivalent hinge

model is compared to a simple modal model.	 i.
1

Thus, Part I addresses recommendation one, and, to some

degree, recommendation two cited above. One criticism of

the computer codes has been their inability to calculate

stability boundaries 171. This part of the thesis addresses

that need with an extensive stability study.

Part II concerns modeling the coupled rotor-tower

system of a MOD-2 type wind turbine. Models in the

literature are reviewed, followed by the development of two

building blocks for modeling the rotor-tower system. The

first of these is the derivation of equations of motion and

external load expressions for a two-bladed, teetering rotor

on a flexible support. Blade bending modes in flap and lag

are included, and hub degrees of freedom are used for

generality. The final equations are in eleven degrees of

freedom. The second building block is a general harmonic

balance method to solve systems of second order ordinary

differential equations with periodic coefficients.

Stability, steady-state response, and transient response are

included.

A simple three degree of freedom model with nacelle

yaw, nacelle pitch, and rotor teeter demonstrates the use of

these building blocks. Whirl flutter and divergence are



examined, and the effect of teeter, preconing, and support

stiffness is studied. Transient and forced response are

calculated for several cases.

Thus, Part II addresses mainly recommendations one and

three cited above. Some aspects of recommendation two are

studied , and tools are developed for recommendation four.

Thresher, Dugundji, Hohenemser, and Walton have reviewed the

state of the art of HAWT structural dynamics analysis tools

(151. They reiterate the need for simple models and

experimental measurements to validate the complex computer

codes and to foresee dynamics problems. They also cite the

need to study the effects of teetering and of more flexible

systems. Dynamics problems encountered in full scale tests

confirm these recommendations 112, 4, 5; see also 61.

In summary, this thesis aims to contribute to two

general areas of HAWT aeroelasticity: mode Mng methodology

and the understanding of structural dynamics problems.



Chapter 2.	 MODELING TECHNIQUES
FOR THE ISOLATED BLADE

The HAWT blade is essentially a rotating beam vhich is

twisted and tapered. Usually, it does not have coincident

center of gravity, shear center, or tension center, and it

may have dicontinuities in various properties. In addition,

the blade may be preconed end its root may be offset from

the hub. Thus, there are complex structural and inertial

couplings between torsion, bending in the plane of rotation,

and bending out of the plane of rotation.

Houbolt and Brooks derived the linear differential

equations of such a beam without precone [161. In

rotary-wing and HAWT aeroelasticity, it has been recognized

that some nonlinear effects are important, and several

researchers have derived related equations which include

ordered nonlinear terms as well as precone [17, 18, 19, 201.

The most important nonlinear effects have been identified,

although there	 is a	 current controversy	 about

torsion-stretching coupling (21, 22).

The solution method of choice in these studies has been

the Galerkin modal approach. Hodges and Ormiston developed

the associated aerodynamic loads for stability of a uniform

helicopter blade in hover [231. They solved the equations

using coupled rotating modes. Wendell developed aerodynamic



loads appropriate to wind turbine blades and used uncoupled,

nonrotating modes to examine aeroelastic stability 1201.

Kottapalli, et al., studied both stability and response of a

wind turbine blade using uncoupled rotating modes (241. Of

special interest is their assertion that the equations for

stability should be linearized about a time-dependent

steady-state response of the wind turbine blade rather than

a time-averaged steady position.

An alternate, mixed displacement and stress formulation

of the equations of motion for a helicopter blade in hover

has been advanced by Stephens, et al. (251. They solved

the nonlinear steady-state equations using a collocation

method, and the linearized stability equations were solved

by numerical integration techniques.

The finite element method has also been used to

formulate the problem. Hodges has developed a method based

on the Ritz approach (261, and Friedmann has developed a

method based on the Galerkin approach (271. Sivaneri and

Chopra have presented an application of the method to a

helicopter blade in hover (281. The nonlinear steady-state

equations were solved by iteration directly from the finite

element analysis; the vibration modes were then calculated

based on this steady-state deflection, and used for the

stability analysis. Kamoulakos has applied a similar

technique to HAWT rotor blades (291.

10



A simple model of a rotor blade which may be proposed

is to replace the flexible, cantilevered blade with an

equivalent articulated blade with springs at the root to

represent the structural stiffness. This *equivalent hinge*

model has been used extensively to study helicopter rotor

blades (e .g. 30, 31, 32, 91.

Miller, et al., used an equivalent hinge model to study

the aeroelastic stability of a wind turbine blade 1331.

However, no ordering scheme was used to consistently retain

nonlinear and higher-order terms. Chopra and Dugundji

developed a nonlinear equivalent hinge model to study blade

response and stability (34, 351. This model was

consistently derived, but ignores center of gravity and

aerodynamic center offsets, and the feathering axis was

assumed to be in the plane of rotation. Liebst used a

derivative of this model	 to evaluate active control

strategies for dynamic load alleviation (361.

The chapters that follow present a complete derivation

of the equations of motion and aerodynamic loads, an

aeroelastic stability study, and a comparison of	 the

equivalent hinge and modal models. Nonlinear and

higher-order terms are consistently derived, cross-sectional

offsets are included, and the important distinction between

blade preconing and feathering axis coning is maintained.

Gravity, wind shear, and tower shadow effects are ignored

for this simple stability study.



Chapter 3.
	

EQUATIONS OF NOTION --
EQUIVALENT HINGE MODEL

The equivalent hinge model is proposed as a simple

approach to studying the aeroelastic stability of 	 an

isolated wind turbine blade. 	 The model is useful for

} parameter studies and preliminary design. This chapter

presents a derivation of the equations of motion without

aerodynamic loads, which are derived in the next chapter.

Some nonlinear effects must be retained, but the gozl

is to create a simple model and to avoid over dressing the

simple mechanism proposed. F=rst, the nonlinear equations

of motion are derived. Second, the equations are linearized

in perturbations of the blade motion about a steady-state,

deflected blade position. Finally, the equations of motion

are simplified by applying an assumed ordering scheme for

the parameters and the steady-state coordinates. An energy

approach is followed in the derivation.

3.1	 KINETIC ENERGY OF A GENERAL ROTOR BLADE

Two coordinate systems are used to describe the

deformed position of the HAWT blade, as shown by Sketch 3.1.

The X Y Z system is fixed in space. Tide blade is located in

the x y z system which is rotating at a constant rate Q so

12
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that p n At. The blade root is offset eH from the hub axis

and has a built-in precone angle	 p out of the plane of

rotation. i

Sketch 3 . 1	 Inertial and Blade Coordinates

The unit vectors associated with the inertial system

X T Z are I J X respectively, and those associated with the
A A n

blade system x y z are i j k.	 The transformation between

these unit vectors is
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blade position components in the inertial system are then

g x 
COO  

cos? - y sin? - z sinB p cos?

+ e  (.os?

Y = x cosqP sing + y cos? - z sinO sin?

+ 0. sin?

Z = x si n 'sP + z coSOP

The corresponding absolute velocity components are

X tx coq  - z sinop - Oy) cosw

(y + fIx c o s RP - C)z s i n flP + i?eH ) sin?

Y tx 
COO  - 

x sinoP - ny) sin?

(y + Ax C OOP - Oz sinflP + C.-%) cos?

Z	 x sin,$p + i c0SOp

where C) = d/dt.

(3.2)

(3.3)



T	 1 { ht(j)2 + (y) 2 +
blade

+ (yi - yz) sing  +

+ y2 + z2 sin20
P

+ 2eHx cosgp - 2eHx

W 2] + ()[(Xi - iy ) COS 
top

e01 + 4n21X2  c032,8P

2xz sinpP cos,*p

sin 's + e2 ] } dm	 (3.5)

of	 QUAUTY

The kinetic energy of the rotor blade is given by

integral over the blade of the kinetic energy of

particle din

T	 S 4I t7t) 2 + IY) 2 . {^) 2 ] dm
	

(3.4)
blade

In terms of the blade coordinates this becomes

This expression is valid for any coordinate scheme used

to describe the deformation of the blade within the blade

coordinate frame x y z, for example normal modes and

generalized coordinates or equivalent hinge rotations.

3.2	 NONLINEAR EQUATIONS OF MOTION

In the equivalent hinge model shown by Sketch 3.2,

three degrees of freedom, and three hinge axes, are used to

represent the HAWT blade: blade pitch 8 about the pitch

control aais,• flapping .0 roughl y perpendicular to the plane

of rotation; and lagging f roughly in the plane of rotation.

Furthermore, the rotations are assumed to be in this same

order. Spring moments about each axis represent the blade

stiffnesses.

15
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Sketch 3.2	 The Equivalent Hinge Model

The deformed blade coordinate system E q t deflects

with the blade. The transformation between the deformed

blade unit vectors	 y R and the undeformed blade unit
A A A

vector  i j k is

	Ii j kl s I^ y R]IT2 1	 (3.6)

where IT2^

	

cost sint 0	 cos.4 0 sing 1	 0	 0

	

-sint cost 0	 0	 1	 0	 0	 cos® sin8

0	 0	 1 -sinf9 0 cosh 0 -sin8 cosO

Finally, the blade position components in terms of the

deformed blade coordinates are



(3.1)

1 dm=Mb
blade

E2 dm

blade

5 C dm - Mbe
blade

jif 2 dm	 I
blade

Of

x = ecos,9cost - Rcospsin! - Csin's

y - f (sintcose - sin/Tcostsine)

+ 9 (costcose + sinesinfsine)

- Ccosflsine

z - f(sintsine + sigcosocose)

+ N (cos¢sine - sinesintcose)

- CcosQsine

The associated velocity components are omitted for the sake

of brevity.

To simplify the model, the blade is considered to be

thin and untwisted, that is, approximately in the 1 9 plane.

Then, C - 0 and the following definitions can be made

Furthermore, it is convenient to

blade moments of inertia and products

the following definitions

fq dm = Mb e7
blade

f evdm =I^^
blade

(3.8)

lump together the

of inertia and make



I 1 • I^Cos 2  + I^ sin 20 - 1 sin g f

i 2 
• I fi sin 20 + I^ cos 20 + I 	

i
I 12	 (IY - I

I
) sin2t + I cos2f	 (3.9)

e l = e^cosf - e^sint

e 2 = ei sinf + e^Cos#

These can be recognized as the corresponding inertial

properties of the blade about a set of axes rotated an angle

about the C axis. Note the useful properties:

dI 1/d! 	 -2I 12	 dI2/dp = 2I 12	 dI12/do - I 1 - I2

I 1 +I 2 =IA +I^	 de1 /do =-e 2	 del/do = el

(3.10)

The blade position components (3.7) are substituted into the

general kinetic energy expression (3.5), and the above

definitions are applied to yield



T	 hi J 2 + (i 1 + 12);2 + k(I 2 + I 1sin j)82

+ I12cos^ '88 - (I 1 
+ I 2 )ain^ f8

• ti,B(Ijsin j*cos8cosj + cospsin.8p)

- I 1sinfcos,#P - Mba1eHcos^sin8]

• nt[(i l + I 2 )(cosPcos8cosOP - sinpsin/P}

+ %e 1eHcose + Mbe2eHsingsin8]

• nki 1 (sin 2 8sinflp - lisin2ftosOcosop)

+ I 2 
sine P -  i`cospsinftosap

- Mbe 1eHsinecos8 - Mbe2eHsine]

• 4A2 [ 1 1 (Cos 2acos 2flP + sin 2pC os 2 8sin 2^9p

+ sin 2 Ssin 20 - 4sin2,8cos8sin2Sp)

+ 1 2 (Cos 2 8 + sin 28sin2lop

1 12 (sin ,8sin28cos 2 BP + cospsinesin2pp)

- 2Mbe2eHSin8sinflp

+ 2Mbe IeH ( cosfcosflp - sinpcos8sinop )] (3.11)

As previously stated, spring moments are used to ,nodel

the structural stiffnesses. The strain energy of the

deflected springs is

V - h(kf (g - 'S ) 2 + k 0 (f - !S )2 + k 8(8 - 8S ) 2 ] (3.12)

where kp , k,, and k8 are the flap, lag, and pitch

equivalent stiffnesses respectively, and the built-in angles

fls  
fS, and 8S allow for blade "droop", "trail", and "pitch

19
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setting". To clarify, a is the built-in precone angle of

the pitch axis, and ^g is the built-in droop angle of the

blade in relation to the pitch axis.

The equations of motion are obtained by substituting

the kinetic energy (3.11) and strain energy (3.12) into

Lagrange's equations

	

d-^C
dT	 IT + bV = 4

	

7) - a,8 a,8	 Is

	

daT 	 aT + av =

	

dt a¢	 a t	 a^	 4f 	 (3.13)

d  Vaffl) 48 a8 8

where the Q n s are applied moments about the three axes

arising from external loads, generally functions of blade

position and velocity. The 8 equation is

	

I 1 + I12COSA 8 - ^I l sin2,B 8 2- 2I 12 	 + 2I lcosO 08

+ QE2I 1(sinBcos8cosAP + cosOsin,8P ) + 2I 12 sinecoseP ] f

- Q(I 1 (cos8coSA + sin2, sing - cos2Acos8cosA

+ 2I 12sinAsin8cos,8 1 6

+ ^Q 2 (I 1 (sin2Acos 2ecos 2 18 - sin2Asin 2 ,BP + cos2.Ocos8sin2A

+ I
12 (cosAsin28cos 2 jB - sin,Bsin8sin2,8 )

P	 P
+ 2Mbe1eH ( sinBcos^

P 
+ cos,8cos8sin,# P )] + k^B

= kp s + Qa	 (3.14)

The f equation is

20
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(i l+i 2)! - (i 1+i 2) s"O 8 + 112i2 - I 12cos 2^! 8 2 - 21 cost .08

- C)[2i 1(sintcos8cosa + coOsinop) + 2i12sin8cos-Ap^

	

- 0(21 2cosisin0cosoP + 2i 12 ( cos 2osinpp + 4sin2^ftos8cosop ) ] 8	 {

+ ^n2'(11712) (sintsin28cos 20P + cosAsin8sin2'Ip)

- 2I12 (COS 2#sin 2.0p + sin 2 *COS 28cos2.8P - sin 2 *sin 2Ap

+ hsin2,#cos6sin20P)+ 2MbeleHsin8sinAp

+ 2M be 2eH (cos,Bcos0P - sin jJcos6sin j8P ) + k*t

= lo t s + Q^	 (3.15)

The 8 equation is

(I 1sin 2^B + I 2 )8 + I 12cosfl A - (I 1+I 2 )sinfl t

I 12sin je j 2' + (I 1-I 2 )cos,8	 + 2I 12 COS 2a f8

• Q[I 1 (cos8cosflP + sin2flsinflP - cos2flcos8cosflP}

+ 2i 
12

sinflsin8cos.8P I A

• 0[2I 2cosflsin8cosflP + 2i 12 ( COS 2psinflP + ^sin2flcosBcosaP )^ f

+ o [- I 1 (sin 2 ,fsin28cos 2 f9P + 4sin2flsin8sin2flP)

+ I 2sin28cos2f9 + I 12 (2sinflcos28cos2 flP + cosPcos8sin2,8P)

-2Mbe 1eHsinflsin8sin^ P + 2Mbe2 eHcos8sinfP ) + ks8

= k 
0 8 s + Qo	 (3.16)

Equations (3.14-16)	 are	 the complete nonlinear

equations for large deflections and vibrations. The

solution of these equations with all time derivatives set to

zero is the steady state position of the rotating loaded

blade, which will be designated f
0 0 0
f 8 .
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3.3	 LINEARIZED EQUATI©NS

For investigating small vibrations, the equations of

motion are generally linearized in perturbations # f 8 about

the steady position go to 80. The aeroelastic stability is

very sensitive to the steady position due to the relatively

large centrifugal effects (331. Each equation takes the

form

F(	 t, 8, l., it 8, to, t , 8)	 Q	 (3.17)

k

Here, F represents the left hand side of the equation of

motion, and Q the right hand. This form can be expanded in
1

linear Taylor ' s series as follows

F0 + OF/3/#) 0^ +	 + (Wa j) o t + ... + (3F/39)08

= Q0 + Q	 (3.18)

where the subscript ( ) o 	denotes evaluation at	 the

steady-state position: 8 _ flo, f = 00 , 8 = 80 . Note that

the applied moment is expressed as a sum of a steady load Q0

which is generally a function of the steady-state

displacements and a perturbation load Q which is generally a

function of	 the	 perturbations.	 By	 definition,	 the

steady-state equation is

F0 ( '80 , 0 0 , 80 ) - Q0 (fto , ¢o , 80 )	 (3.19)

Therefore the associated aerturbation equation is

_^	 22



The perturbation equations are further simplified by

comparing and discarding higher order terms according to an

ordering scheme which is reasonable for HAWTs. First define

I = I /Iy	 ! Tf

S. = Mbe., L/I,j 	 e^	 Mbey L/I,y	 eH = eH/L

^2 = kis /n2I!	
V2	 k^ /a2 I^	 r2 = ks /r? Ij

(3.21)

where L is the blade length defined by Sketch 3.2. 	 Then

assume orders of magnitude

e
p
	 0(fo )

flo, Is
S , PP, 801 9 s 	 0(e4)

eH	 O(el)

P o ll PS, T , ey	 00 )

I^
	

0(,2)

These relative orders of magnitude are based on typical HAWT

parameters. The steady -state deflections depend on the

other parameters, and their order is determined by examining

the steady equations (Section 5.1). From another

perspective, the assumed orders of magnitude define the

range of validity for the model.

23



The terms in each coefficient of the equations of

motion are compared to one another, and terms which are

smaller by one or more powers of a are discarded to simplify

the equations. Finally, the ordered perturbation equations

are divided through by A 2I . In these equations (•) = d/dy

_ (1/f))d/dt. The ^ equation is

+ (IP
, 

+ 00 )g + 2( (P 0 +fl P ) + 8 03f - 2flo(,80+PP)8

+[ A + 1 + "e e'H - 2(#o+^P ) 2J^' + 800 + [I „+0o - ( 2^?o P)8^J8

= Q f /02 I,	 (3.22)

The	 equation is

t• - B0B - 2 E (,BO+ ,BP ) + BO J,B - 2 ( IA7 +f 0 ) (,B0
+,8P )e

+ 8 0	 ,,^ + [# + ieH - (B0 P ) 2 Jf + (fl O +,P)B

= Q^ /o2 I^	 (3.23)

The B equation is

	

A.	 2	 2
+f0) - Ho f + [ Ip 

+ 80 
+ 2I^ 7 f0 + t J8

+ 2^('+^) ^ + 2(

	

0 0 P	 Y)  y +t0)
	

P ) f
+[ I^,1 

+00 - ( 
2po+^P )8 0 J/9 + ('8O +'S.P

+ [ I^ (''2+1) - e OH - 'BO ('Bo
+QP)JB

= Qa /(!2 I,	 (3.24) r

These are the important inertial terms for the equivalent

hinge model of a HAWT blade.
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Chapter 4.	 AERODYNAMIC LOADS --
EQUIVALENT HINGE MODEL

	
i

Applied moments about the equivalent hinge axes which

arise from aerodynamic forces are derived in this chapter,

based upon unsteady aerodynamics and strip theory. The

development of linearized aerodynamic loads is similar to

the development of equations of motion in Chapter 3. First,

expressions for the aerodynamic moments are derived which

are nonlinear in the blade deflections. These expressions

are then linearized in perturbations about the steady

position, and simplified by using an assumed ordering

scheme. Furthermore, the final linearized moments given

assume quasisteady aerodynamics, a uniform inflow of air,

an3 a uniform, untwisted blade.

Theodorsen first developed an unsteady aerodynamic

theory for a pitching, plunging airfoil in s uniform flow

(371.	 His theory used a lift deficiency function to

represent the integrated influence of the shed wake. A

rotary wing has a much more 'complex wake structure, but

Loewy showed that its effect could be included by using a

modified lift deficiency function (381. These theories are

not strictly applicable to a rotor which has chordwise

motion of the blades, although they have been utilized.



Greenberg developed an unsteady aerodynamic theory for

a pitching, plunging airfoil in a pulsating flow, thus

extending Theodorsen's theory to helicopter rotors 	 in

forward flight (391. Hodges and Ormiston adapted

Greenberg's theory to study the flap-lag-torsion stability

of a hovering rotor by using the pulsation to represent the

lag motion [231.

Friedmann and Yuan modified several strip theories for

use with rotary wings, including Theodorsen's and

Greenberg's [401. They compared the various theories with

and without modification, and studied the	 quasisteady

assumption.	 Recently, Johnson	 suggested a	 convenient

grouping of terms	 in the lift	 and pitching	 moment

expressions, which is used here [41, see also 421.

Pertinent velocity components of the blade axis

relative to the inflowing air U,, and U^, and the pitch rate

d , are shown in Sketch 4.1a. Expressions for these are

derived later. U is the total velocity as shown. Also note

definitions for the angle of attack a, the blade chord c,

and the aerodynamic center offset e A from the elastic axis.



(a)

'0,'^Y

It

n

(C)
d

^a
.^

l'	 Aero. Center
'A•

Elastic Axis

^,a

In	 c
(b)

Sketch 4.1
	

Aerodynamic Nomenclature

The noncirculatory lift tnc , the circulatory lift lc,

the drag d, and the pitching moment mea are defined by

Sketch 4.1b. in terms of the present nomenclature, these

distributed loads are

lnc ac 2 tU^ - (4c-eA)r^ 1

tc = zpacCtU^ - ( 2c-*A) f̂ lv
d 2PC  doU 	 ( 4.1 }

ea = 2pac {1c{ - {$c_eA)U  + jc&; U + ( 12c 2-eeA+eA )6^ }
+ s ACIUt - (f -e 1U)

where p is the air density, a is the lift curve slope

ac,/as, C is some lift deficiency function, and Cdo is the
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profile drag coeffic

of Sketch 4.1c are

4 •

P

P

	

lent.	 The resultant distributed loads

-0
ea

,t sins - d cos y 	(4.2)
C

-t	 - t cosy - d sine

	

nc	 G

1

All other components are zero.	 Since sine = U^ /U and

Cosa = U! /U,

Q	 1pac( lc ((lc-e )6 - ;cam U - ( ,I c 2-lce +e2 ); ]
2	 4	 4	 A	 4	 32	 2 A A

+ eAC(-U^, + (Zc -eA ) WO ]U)

PP
	 2pac (C(U^ - (2c-eA)^^U^ ] - DU U)	 (4.3)

P = 2pac( C(-U^U^ + ( 2c-eA{ U; ]

where D = Cdo/a. For small angles of attack a, U may be

replaced by U7 whereever it appears here.

4.1	 r'*LATIVE VELOCITY OF A GENERAL ROTOR BLADE

The relative velocity of the blade is the difference

between the blade absolute velocity X Y i and the inflow

velocity of air at the turbine disk uin , which is assumed to

be in the -Z direction. That is,

	

UX	B

	

UY	 =	 Y	 (4.4)

	

UZ 	 Z+uin
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The absolute velocity components were expressed in terms of

blade coordinates by equation (3.3). These are substituted

into equation (4.4) and equation (3.1) is used to transform

the relative velocities into the blade coordinate system.

U x - z - fly cos#P ♦ u in sin lop

Uy n y*OxcosPP - Oz sinpP +noH 	(4.5)

UZ z + Qy sinpP * uincosPP

These relative velocity components, like the kinetic energy

of a general rotor blade (3.5), are valid for any

coordinates used to describe blade deformation within the

x y z	 coordinate system.

4.2	 EQUIVALENT HINGE AERODYNAMIC MOMENTS

For the equivalent hinge model the position of the

blade elastic axis is given by equation (3.7) with 4 - 0 and

C - 0.

x - f COSA cost

y - 1(sinfcos8 -sin^costsin8)	 (4.6)

z - 1(sintsin$ t sinfcosocos8)

These are substituted into equation (4.5), and equation

(3.6) is used to transform the relative velocities into the

deformed blade coordinate system. The pertinent components

are

29
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i

Ufi f	 - Esin, 6 + 011-sinfl sinfl + cosApcosflco5Oj

+ n)e H(costcose + sinflsintsine]

F 6	 + u in[-sinflPcosflsint + cos.B p ( costsine - sin,8sintcose) ]

	

(4.?)
	

4

f

U _ (cost	 + Ecosflsint 9 - OeHcosflsine

+ C)f(sinfl pcospsint - cosep(costsine - sin,sintcose)]

+ uin(-sinBpsin ,8 + cos,8Dcosflcosel

I^sina

Sketch 4.2 Resolution of Flap Angular Velocity

Four angular velocities contribute

velocity of the blade: f is about the

down into components about the y and

Sketch 4.2; 9 is about the x axis; a

axis. These angular velocities are

deformed blade axis system using the

equations (3.1) and (3.6), and they are

to the total angular

C axis; ^ is broken

z axes as shown by

nd n is about the Z

transformed to the

transformations of

added to give
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w^	 0	 8	 0

w^	 =	 0	 + 
IT2

1
	

-cos8	 + IT1 ^ 0	 (4.8)

w^	 t	 -sin8	 n

The only component required is

w = 0(sinflpcosflcost + cos,Bp ( sintsin8 + sin,Bcostcos8) ]

- sint ^ + cos,# 8	 (4.9)

The work of the external forces can be expressed both

in terms of the equivalent hinge rotations, and in terms of

blade motion as follows

aw Of 44 + 04 E t + 0038

L

	

_ j {qA3a  + pf 
44 ea + p^ area) df	 (4.10)

where Vea and tea are the motions of the blade elastic

axis in the I and r directions, and a,^ is the rotation of

the blade about the elastic axis f. These two families of

variations are related in the same way as their

corresponding velocities. First, set 0 = 0 and uin = 0 in

equations (4.7) and (4.9).

Ut = f f - isin,8 9

	

U^ _ (cost	 + cos, cost 9	 ( 4.11)

	

W _ 

-sint	 cospcost 8

Then notice that



3,8 =	 at	 as	 _ ^^ at

60 _	 at	 and	 a'ed = U at	 I',

68 = B at	 ACed = U^ at	 )

Substitute these into equation ( 4.11) and write

41ye2i = 1 4 0 - fsin,B 38

aCea = fcost a,8 + Ecosflsinf 38	 (4.12)

t.	 _ -sint a^ + cos,8cost 58

These expressions are substituted into the work expression

(4.10) and coefficients of each variation are separately

equated to give

L
Q^	

0 [ 
fcos f p^ - sint q ] df

L
Q' = J E p' dE	 (4.13)

0

L
Q^	 o Ncoosint p^ - (sins p^ + cos^cost q ] dE

Finally, the distributed loads (4.3) are substituted into

equation (4.13).

L	 .
Q^	 2j pac[-4c[fcos! + ( 4c-eA )sinflU^

0

+ is [ ( 4c-eA ) ICOS O + ( I C 2 -ZceA + eA) sin# ];

+ [C( Zc-eA ) fcoso + ( 16c 2-ZCceA + Ce 2 )sinflo U,

[ (C+W icost - CeAsint lut UP ) di	 (4.14)

i
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Q^ 21-Pac{ -G(11c-eA )E,W) U; + C 1 - DEUy} df	 (4.15)

Q	 J lPac( ic[-ecososint	 }vs 0	 1C A

+ 4c [ t 4c-eA ) fcospsint - ( 32c2-}ceA+eA)cos'jcost}:►̂
+ [C(l -eA)Ecosps3n! - t c 2-ZCceA +Cea)cos pcos!}WI vt

+ [Ct Zc-eA)fsin ,8 } '̂S U? - [CEsin/4}U * [Dfsinp}U^

- [(C+D)EcosPsinp + CeAcostcosl]Ur U^} df	 (4.16)

Equations (4.14-16) are the nonlinear aerodynamic

moments for large blade deflections (although the angle of

attack has been assumed small), given in terms of the

velocities, pitch rate, and their derivatives. 	 with all

time derivatives set to zero, they are the steady

aerodynamic moments, which will be designated 
Qfo Q^b Qao'

These steady moments are required to solve the steadyL part

of equations ( 3.14-16) for the steady blade position

.40
 fo Bo . It is of interest that some effects of unsteady

aerodynamics remain in these steady moments due to the

steady pitch rate A[sinAp ...] in equation (4.9). The

resulting "apparent camber". terms are important for a

preconed rotor.

', f
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LINEARIZED MOMENTS

The aerodynamic moments are expanded in perturbations

about the steady blade position in the same manner as the

equations of motion.

4 = 40 + 4 = 40 + (aQ/a^) op +...+ ( a4/a e)o8	 (4.17)

Because of the multiplicity of aerodynamic terms, it is wise

to establish the ordering scheme for aerodynamic parameters

now, and apply it to eliminate terms as this expansion of

aerodynamic moments proceeds.

The quasisteady assumption will be made, C = 1, and the

blade will be approximated as being uniform along the span,

with uniform inflow velocity. Actually, only an ideally

twisted blade would have uniform inflow. A flat blade would

not, but if 8 S is taken as the twist at x/L = 0.75, the

aerodynamic coefficients are practically identical. 	 Now,

define

a=uin/AL	 c - c/L

y s pacL 4/I^	 eA n eA/L	 (4.18)

Note that here the inflow angle a and the lock number y are

defined in terms of the hinged length of the blade L. Then,

assume orders of magnitude as before (Section 3.3)
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The velocities (4.7), the	 pitch rate (4.9),	 and their

derivatives are substituted into equations ( 4.14-16), which

are then expanded and ordered, and divided by 0 2 I^ to give

the linearized aerodynamic moments

QP/f 1 _ - 177- By ,B - 
24y(4X-38o)t

+ 1.1ft (4X-38 o ) - 87to + 24yc + 
67(2^ -eA)]B

24 0
+ 14x(81► -38 o Ma +gyp ) 

+ 6y
{2Z -eA ) - 8yt0]i - gyop)t

+ Ely + 3 yeH - 16 y p - 16y('8o+'Sp)2 +

- 12y(3A 2-8X6'+382 )]8	 (4.19)

.

Q̂ /02I J = 12 y(4X-390 )/9	 4 7D t

+ E12yt0(4X-380)	 12 y(2
c -g MX-282)]8

	

+ t - 6yX(fa+Pp )(3X- 282 ) 	
12

y(2c-6A)(3X-28o)]/r

+ 12	 2y(4a-38)(,a	 )^ - 12	
2

	

y(4X-38)9	 (4.20)
P

Qs/O2i'1 _
	 12 r^o { 4X - 380 ) alto 'L%A]^

+ E' 
1 yt (4X-38 ) - 1 y "e (3X -28 )]t
24 0	 0	 12 A	 o

+	
3 yc

2 + 16 yceA - 4yi2 + 1 ycfo(3 X-282)]9
- 24 	 0y(6X 2 -8X8 	 ,+380)	- 24y(4X-382)%

	

+ (lye + 1 7 t + 1 y^ (4X-38 )]e	 (4.21)
6 A 8 0 12 0	 0

s

- ---	 - —



These are the important aerodynamic moment. terms for the
A

equivalent hinge model of a HAWT blade.
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Chapter S. THE COMPLETE EQUIVALENT HINGE MODEL

This chapter summarizes the results of the preceding

two, and presents the steady-state equations. When the

linearized aerodynamic moments (4.19-21) are substituted

into the linearized equations of motion (3.22-24) and

subtracted from both sides, the complete 	 perturbation

equations take the form:

ff
	 I

[M] T	 + [C]	 + [K]	 (0)	 (5.1)

The coefficient matrices of equation (5.1) are given on the

following pages.
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5.1	 STEADY EQUATIONS

The steady blade position 00 to 00 is the solution of

the equa-ions of motion (3.14-16) including the applied

aerodynamic moments (4.14-16), with all time derivatives

zeroed. In their present form the equations of motion are

quite complex and the steady aerodynamic moments more so.

However, the trigonometric functions can be expanded and the

ordering scheme applied to keep the most important terms.

Furthermore, the B o equation need not be considered.

This is because 90 will be prescribed for the desired power

setting, which is related to a and B o as well as r, c, and

Cdo/a. The power coefficient is not constant if any of

these parameters is varied without adjusting the others.

Also, r and c are not independent.

i
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After some algebra, the ordered equation for , 0	is

found to be quadratic, but uncoupled with to.

E2, - 48y(8X-380

(yt2 + 1 + e^e j, -2^PP - 80 - 4y ( 8X -38o ) /^P - 6r (Zc'-eA)vo

+ 1' 2 ^$ - (1+e^ eH 80)flP - I!, 80	 1
k r(47► -380 )(1-0p) +

12y(3X-46
0 )e H + 6r(26 - 1A)^p - `.OA-280)X801

• 0	 (5.5)

The ordered equation for t o is linear and dependent on ^o.

E	 - (A0+Ap)2100 .

( y t s + Ì 7 (,O
O
+AP ) 2 - ( 

^o
+^9p ) 80 -e„ eH	 g rcdo/a +

+ 24 r(6X
2-8X80+38X) - f2 Y(,80

+fp ) 2 (3a-28o )X +

+ 2 Y A 2 (4X-3Bo )8o - 12 r(Zc-eA )-(A0 4- p̂ }-(3-k-28 ) +

- 6 y(3X-28o )8oeH 1	 (5.6)

In practice, 8o is prescribed, and these equations are

solved sequentially '.cc r po and to . After calculating the

blade steady position, the stability of the blade is

examined by extracting the eigenvalues of equation (5.1).

These occur as complex conjugate pairs, aj t .iv	 or as real

roots a j . Both the damping a^ and the frequency vj are

expressed as ratios per revolution because nondimensional

time t - nt is used.
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Chapter 6.	 AEROELASTIC STABILITY
OF THE EQUIVALENT HINGE MODEL

No complete parametric study is attempted due to the

number of parameters, and the fact that any spcific blade

design can be easily studied as necessary. Rather, a

standard case similar to the NASA MOD-0 wind turbine is used

(1). Two subcases are studied: a rotor preconed downwind

and a rotor without precone. Table 6.1 lists the

parameters. (Tables and Figures appear together at the end

of this thesis for convenient comparison to one another.)

The effects of key parameters are examined in relation to

the standard case by holding all parameters at their

standard value except the parameters being plotted.

For the purposes of this section, the blade is assumed

to be uniform. If I o is the pitching moment of inertia

about the center of gravity and el is the distance the

cross-section center of gravity is forward of the elastic

axis, it can be shown that

where

	

Io Io/I^	 I o/3M L2	^I eI/L

These definitions allow direct comparision of 	 to eA and

to other studies.
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Two representations of stability which appear often in

the literature (e.g. 30, 91 are stability boundaries

(9 3 = 0) on the plane of re versus ! I and on the plane of

V0 versus y,,. Their advantage is that they show the

interaction of two parameters and much information is

conveyed by comparing two such plots with one other

parameter changed.	 However, a shortcoming is that the

strength of the instability is not indicated. Such

information would be needed to assess a faulty blade design.

Thus, plots of the damping ratio versus the parameter of

interest, and root locus plots, are both useful as well.

Some general	 statements serve to introduce the

discussion of aeroelastic stability trends and phenomena.

1) The flap damping is relatively large.

2) The lag damping is relatively small.

3) The pitch damping can approach zero
under certain circumstances.

4) Lift couples flap to pitch in a strongly
unsymmetric manner.

The resulting behavior divides the following discussion into

two parts. First, classical flutter with frequency near v

or classical divergence may occur. Second, a weak

instability with frequency near Y+ may occur. The flap

degree of freedom always remains well damped.

0
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6.1	 CLASSICAL FLUTTER AND DIVERGENCE

Stability boundaries of the first type on the plane of

ys versus e I , and on planes of Y. versus related

parameters 'eA and / s , are adequate for the discussion of

classical pitch-flap flutter and torsional divergence. For

wind turbines the flexibility of the pitch change mechanism

reduces the blade torsion natural frequency. The combined

frequency ratio Ye is important because of its connection

with the cost of a wind turbine system.

Figure 6.1 defines the minimum rs	 requir.ed	 for

stability of the preconed blade, which increases as the

center of gravity is moved aft of the elastic axis. Figure

6.2 is the corresponding plot for the flat rotor. The I
(e I ) coupling of pitch and flap in the mass matrix and the

stiffness matrix can give rise to flutter or divergence

respectively, although the divergence is not prominent here.

The motivating force is the large unsymmetric lift term (-gr

in K 13) which couples flap to pitch but not pitch to flap.

Note that the independent lag instability is insensitive to

e I and completely enclosed within the flutter boundary for

these cases.

Flutter also occurs when the elastic axis is moved back

from the aerodynamic center as shown by Figure 6.3.

Comparing Figures 6.1 and 6.3 shows that for T  > -.005 or
e A < 0.005 their	 effects are similar.	 This	 again

1. .
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demonstrates that what is important-As the total distance

that the center of gravity is aft of the aerodynamic center,

at least for eA - eI < c/4. when eA approaches c/6, the

pitch damping approaches zero. This gives the apparent

asymptote of Figure 6,3 at eA 0.0066. However, cases

such as this do stretch the quasisteady assumption.

inspection of the coefficients of the perturbation

equations (5.1) shows the split personality of t o which is

proportional to fs and moves both the aerodynamic center

and the center of gravity forward of the pitch axis. Figure

6.4 shows that, like a fixed wing, sweep forward gives

divergence while sweep back gives flutter, at least if o

is low enough.

In all of these cases the flutter boundary encloses the

boundary of the independent lag instability which proceeds

at the lag frequency ratio y,,. This suggests the idea of

separating the three degree of freedom model into several

two degree of freedom submodels. These would retain the

steady blade position terms. Their advantage is that the

new fourth order characteristic equation can be solved by

hand calculation. The r8 versus eI stability boundaries

of Figure 6.1 were reproduced in Figure 6.5 by this

technique with the pitch-flap and lag-pitch submodels. 	 As

could be expected, the flap-pitch flutter boundary compares

i
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quite well. The lag-pitch instability boundary is not as

good an approximation since the system is deprived of the

flap damping.

6.2	 LAG INSTABILITIES

Stability boundaries of the second type on the plane of

v# versus vp show the extent of unstable regions and how

they are expanded by the various parameters, but must be

supplemented by root locus plots showing the	 subtle

interaction of the roots and the severity of the

instabilities. The pitch frequency ^ e is still a key

parameter, but so are fl  and fls , a and Bo.

Figure 6.6 clearly shows three regions of instability

for the preconed rotor. The familiar pitch-flap flutter and

divergence is due to the increase in 0o as r0 is reduced

(see Figure 6.4). , here is a region of flap-lag instability

associated with the matched stiffness case y¢ - rf which

may occur when all three frequency ratios are reduced as in

the case of an overspeeding rotor. The third region, near

the YO	 ordinate, is of most interest. 	 This	 "stiff

in-plane" region is very sensitive to the 	 parameters

mentioned above.

47



ONONAL PAN
OF 

poolt QUALM

The couplings are much more subtle than those of the

flutter region:

1) fo couples t and 8 in the mass matrix.

2) (fl +fl ) couples t and 8 in the stiffness matrix.

3) Coriolis terms couple fl and t.

4) There are unsymmetric damping terms due
to a and 8 .p

5) There is unsymmetric stiffness coupling
of t and 8 due to a and 80.

The last of these is associated with the torque component of

the lift which is the prime mover of the lag-pitch

instability.

The three degree of freedom character of these

instabilities is emphasized by another look at the two

degree of freedom submodels. In Figure 6.7 as before, the

flutter boundary so calculated compares well with that of

Figure 6.6.	 But while the flap- lag region is poorly

represented, the lag-pitch submodel predicts no boundary at

all.
Figure 6.8 corresponds to Figure 6.6 for the flat rotor

with ^p = 0. Especially noteworthy is that the lag-pitch

and flap-lag regions have merged. They are related in

proceeding at the frequency v#.

Figure 6.9 shows the effect of increasing the inflow

angle a, which greatly enlarges the lag-pitch instability

region. In this particular plot, the power coefficient is

48



0,

not the save as that of Figure 6.6. A case such as this

represents a situation where an increased inflow is not yet

compensated by the pitch setting. This is the only type of

variation presented in which the power is not held constant.

Halving the pitch frequency ratio r. also enlarges

this region as shown by Figure 6.10. This plot should again

be compared to Figure 6.6.

Changing ps can have a drastic effect on these

stability boundaries, as Figure 6.11 demonstrates. Here the

rotor blade has been drooped downwind on the preconed rotor.

This built-in flap angle has a direct influence on the

steady flap angle Po. Part of the effects of sp and of a

and 80 also come through the steady flap equation (5.5).

The leading terms are

180'%^ [V IBS fp - 24 r(0-380 )]/(1 + - 2 )	 (6.2)

The couplings of t and 8 are all influenced by 00 which

also increases the Coriolis coupling between t and ^.

The resulting complicated effect of fl, through flo is

shown in Figure 6.12, a plot of the damping of the lag-pitch

mode a versus the built-in flap angle S s . Had Ps been

picked as -.15 or -.05, the lag-pitch instability region in

Figure 6.11 would not have extended to the standard MOD-0

point at v,^ a 2.5 and Y. = 3.6. The range of 8s which is

unstable is small for negative ^$ and the instability is a

weak one, while positive 88 is generally destabilizing.
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The complex interaction of parameters through the steady

equations thwarts a more specific general statement about

the lag-pitch instability.

To examine this instability more closely, root locus

plots on the .LY versus a plane are useful. Only the upper

half plane will be shown, since the a axis is a line of

symmetry. The three branches will be labeled conventionally

as 8, t, and 6 with respect for their origins, even though

this may	 not always	 represent	 the nature	 of	 the
t

corresponding eigenvector.

The preconed case of Figure 6.12 for the j^	 variationJ

is replotted in this manner in Figure 6.13. The

corresponding root locus for the flat rotor is presented in

Figure 6.14. These plots show the f branch crossing and

recrossing the a 0 line in a relatively weak fashion.

They clearly show the sympathetic participation of the ^6

degree of freedom while the eigenvalue of the 0 mode is

dominated by f and 8.

The migration of the roots as ye is reduced is plotted

for both the preconed and flat rotor in Figures 6.15 and

6.16. In both cases, the 8 branch (flutter) precedes the /

branch into the right half plane, though only slightly for

the flat rotor. The 8 branch also finishes near the lag

frequency 
Yt 

while the 0 branch continues to retreat as Y

is reduced.	 it is the frequency of this branch which

coallesces with that of the 8 branch. in fact both the t

50
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and 8 eigenvalues are dominated by the 8 degree of freedom.

The 0 instability also can no longer be characterized as

weak.

The similar root locus of Figure 6.17 for the preconed

rotor but * with of • ry s 2.5 shows the weak nature of the

flap-lag instability. 

7

The stability boundary is just less

than ys s 5, confirming Figure 6.10.



Chapter 7.	 COMPARISON OF EQUIVALENT HINGE
AND MODAL MODELS

of pf^R Q•!ALITY

To conclude the discussion of the equivalent hinge

model, it is illuminating to compare and contrast it with a

simple modal model derived by this author 1203. 	 For

convenience, this model is reviewed in Appendix A. The

equations of motion of an isolated HAWT blade were reduced

to a three degree of freedom modal model using Galerkin's

method. One mode each was used for out-of-plane bending

(w), inplane bending (v), and torsion (8). Many details of

the blade were modeled, including built-in twist, taper, and

blade cross-section properties all varyina along the span.

All of these entered the equations as averages weighted by

the mode shape functions.

The modal model	 is a three degree of	 freedom

mathematical model of	 the blade.	 In contrast,	 the

equivalent hinge model is a three degree of freedom

mechanical analog of the blade, and the equations of motion

derived here are those of this analog. Comparison of the

two sets of equations reveals many differences, which this

chapter will discuss. Their sources are:

1) The deflection shapes.

2) The coordinates.

3) Structural couplings.
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Also, the modal model is less general, with a narrower

ordering scheme. In particular, squares and products of the

steady deflections such as Ao and Ao*o appear in the

equivalent hinge equations, but their counterparts do not

appear in the modal equations.

in the modal model, the deflection of the elastic axis

in the z and y directions, and the torsional deflection,

respectively, are

W n rw(x) qw(t)

V • r V (x) qV (t)	 (7.1)

8 = rjO (x) qs(t)

where y  is the mode shape and q  is the generalized

coordinate. Whereas the deflection shapes for the modal

model were taken as the nonrotating natural mode shapes, for

the equivalent hinge model the deflection shapes are

x/L	 0 < x < L

r ^ r sW	 V	 0	 elsewhere
(7.2)

1	 0 < x < L

r4 	 0	 elsewhere

That is, the blade is a straight line and all of the torsion

is at the root. Many small differences between these models

arise because the equivalent hinge deflection shapes weight

spanwise averages of cross -section properties differently.
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Modeling the blade with all torsion lumped at the root

is justified for the common case where the root torsion

predominates. in other cases a model with the pitch

equivalent hinge outboard, such as one developed by Chopra

may be more satisfactory [34].

The modal generalized coordinates were expressed as

sums of steady deflections and perturbations in the same

manner as the equivalent hinge coordinates. When the above

deflection shapes oere utilized, there is a straightforward

relationship between the two coordinate sets. For the

purposes of this chapter, this relationship can be expressed

as

qwo = Bo

q
vo 

= t
0	 0 0

- 	 8	 (7.3)

q O = 90

and

q 
w	 + 8 o t+ 00 8

qv	 - 9ofl - floe	 (7.4)
N	 ~
q g = B

Many apparent discrepancies between the equations dissolve

when the deflection shapes ( 7 .2) are substituted into the

modal equations and these transformations are applied.

Structural couplings which arise in the modal model

because of built-in twist and nonuniform cross-section

stiffness properties do not arise in the equiva
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model; Their mechanisms are not present. The most

important structural coupling is between flap and lag

bending. The form of the terms in the modal equations

suggests that an average structural coupling angle 8 b can

be used which is introduced into the equivalent hinge

stiffness matrix (5.4) as follows

KII	 2 
COS 

2 8
b

+ ^^ sin 2 8b ^ 1 + ...

Kj^ _ (
"

2_ , )sinBbcosBb + B0 + ...

K¢^ _ ( V 2_ )sinBbcosBb + g0 + ...	 (7.5)

K _ V^cos 2 9 b + ^^sin 20 + e eH + „'

This form was also used in reference ( 331. The structural

coupling angle 0 b can be approximated by the blade twist at

one third span (291. Similarly, the twist angle at three

quarters span is generally taken as an approximate blade

pitch setting 80.

in principle, this comparision could be carried one

step further by using it to relate the integrals of the

modal model to the parameters of the equivalent hinge model.

This would perhaps better define these parameters, but if

such detailed information about the blade is known, it would

probably be better to use the modal model.

The two models exhibit good numerical agreement, even

though overall or typical section parameters are used to

calculate equivalent hinge parameters. Both models have

been applied to the MOD-0 wind turbine blade to demonscrate

I
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this point. The modal model results are taken from

reference 1201. Figure 7.1 shows the effect of reducing the

torsional stiffness of the control system, thus reducing Y .

The two models predict the same minimum v	 required, but

give divergent results when the pitch frequency approaches

the lag and flap frequencies. Figure 7.2 shows the effect

of increasing the inflow angle a, again without holding the

power constant. Figure 7.3 shows the effect of changing the

precone angle 0 .
P

The real usefulness of the equivalent hinge model is in

understanding the effects of the various parameters and in

simplifying the complex physics of the HAWT blade. This

model can be used to test concepts, to begin .t!,"gn before

details of a proposed blade are known, or to check the

results of more complicated analyses. 	 In short,

equivalent hinge model is a rotary-wing counterpart to

"typical section" of fixed-wing aeroelasticity.



Cuapter 8.	 MODELING TECHNIQUES
FOR THE ROTOR-TOWER SYSTEM

The HAWT system is liable to various aeroelastic and

mechanical instabilities and resonances which involve

couplings between the main dynamic elements: the flexible

tower, the yaw drive, the generator drive train, and the

rotor consisting of several elastic blades and a hub of some

configuration. Much less research has been presented for

the rotor-tower system than for the isolated blade.

Several studies of mechanical instability and the

effect of static imbalance without aerodynamics have been 	
i

made. Dugundji developed such a model for a two-bladed

rotor in connection with an experimental study (431. He

used an equivalent hinge representation with flap and lag

for each blade, and two generalized coordinates for tower

side-to-side and fore-to-aft motion. Sheu used a similar

but more restricted model with blade lagging and tower

side-to-side motion only [441. 	 He investigated ground

resonance type instabilities for both two and three blades.

Several studies of aeroelastic stability and response

have also been presented. Warmbrodt and Friedmann derived

nonlinear equations of motion and loads for the rotor-tower

system (451. Galerkin's method was applied to study a MOD-0

type wind turbine with two blades. They used one lag and
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one flap mode per blade, and one mode each for tower

torsion, side-to-side bending, and fore-to-aft bending.

Hultgren and Dugundji developed a similar linear model for

the three-bladed case (461. They studied mechanical

stability and forced vibrations due to imbalance, gravity,

and wind shear. Thresher, et al., examined the response of

a three-bladed rigid	 rotor on a	 flexible tower	 to

atmospheric turbulence (471. Bousmann and Hodges presented

an excellent experimental study of the 	 aeromechanical

stability of a three bladed hingeless rotor on a flexible

pylon [481.	 Bundas and Dugundji have conducted some

experiments on the yaw behaviour 	 a model wind turbine

with two blades [491.

Recently, Janetzke and Kaza presented an analytic

rotor-tower model with a two-bladed teetering rotor

applicable to the MOD-2 [501. They used a teetering rotor,

one flap mode for each blade, and a kind of equivalent pivot

model of the tower nacelle with yaw and pitch degrees of

freedom. Whirl flutter was investigated by numerically

integrating the equations in time. This is quite similar to

an approach usLJ by Hall to study whirl flutter of a

teetering proprotor [511.

Finally, it should be noted that various computer codes

have been applied to the rotor-tower problem (e.g. 2, 121.

However, documentation of the theory used is generally poor,

and very few parameter variations are given.
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In the chapters that follow, a linear aeroelastic

modeling methodology is developed for the MOD-2 type wind

turbine. Equations of motion and loads are derived in

closed form for a two-bladed teetering rotor with elastic

blades on a flexible support. One lag and one flap mode are

used for each blade, and six general hub degrees of freedom

are assumed. A solution method for the resulting periodic

coefficient equations is presented which is applicable to

stability, steady-state response, and transient response

calculations.

The methodology developed is demonstrated with a simple

yaw, pitch and teeter model similar to that of Kaza and

Janetzke. A limited study of the effect of imbalance is

made. whirl flutter and divergence, as well as other

instabilities are examined, and the effect of teeter,

precone, and support stiffness are discussed. Some

steady-state and transient response results are presented.

Thus, while Part I mostly concerns the MOD-0 type wind

turbine with cantilever blades, Part II mostly concerns the

MOD-2 type with a teetering rotor. ?utter, divergence, and

lag instabilities li'-e those discussed in Part I are

possible for the teetered rotor as well, but are modified by

the interaction of the blades. For the helicopter case,

Shamie and Friedmann have analyzed the flap-lag-torsion

stability of a teetering rotor on a rigid support [52].

This problem is not addressed by this thesis.
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Chapter 9.	 EQUATIONS OF MOTION --
ROTOR-TOWER MODEL

A mathematical model of a teetering rotor on a flexible

support, once derived, is a valuable building block for

investigating HAWT aeroelasticity. The development

presented here allows flap and lag modes for each blade,

teetering motion of the rotor, and six general hub degrees

of freedom -- eleven degrees of freedom in all. Thus, the

new information given by this deri:•ation is essentially a

description of the interaction between rotor modes and hub

motion. The hub degrees of freedom can then be used to

match the rotor to any kind of tower or support model, from

simple to complex. This approach is taken by other analyses

as well (10, 11).

The equations of motion are derived in this chapter

with gravity loads but without aerodynamic loads. The

latter are developed in the following chapter. An energy

approach similar to that of Part I is followed, but only

linear terms will be obtained for the rotor-tower model.

9.1	 COORDINATE SYSTEMS

Three coordinate systems are used to describe the

deflected position of a rotor blade as shown by Sketches 9.1

and 9.2. The inertial coordinate system % Y Z is fixed in
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System XS T s z s (I S Js Ks) 	 defines the deflected position

of the shaft axis and hub, but does not rotate. 	 Finally,
A 

4Athe blade coordinate system x y z (i j k) locates the

rotating, teetering blade with x is the unbent position of

the elastic axis. Elastic motion of the blade is described

within this blade coordinate system.

Displaced Hub

Deflected Axis

w
Z

#X

	 s

Sketch 9.1	 Inertial and Shaft Coordinates
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Sketch 9.2

(front)

Shaft and Blade Coordinates
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	Originally, the hub is at the X Y Z origin, and the
	

I

shaft axis is at the Z axis. The displaced hub is located

by three Cartesian deflections q X , q X , and q Z , as shown by

Sketch 9.1.	 The shaft axis Z S 	is deflected in three

rotations f X, f Y , and 
fZ	

about X, Y, and Z, respectively.

Also, the rotor spins about Z S	 at a constant rate f). This

is not	 a restriction	 on the	 model however,	 since

perturbations in rotation speed can be included in oz.
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Blade one is arbitrarily chosen as the reference blade

in Sketch 9.2. The azimuth angle of blade one is Ot.

It should be oted that equations of motion and loads need

be derived only for blade one. The results apply to blade

two as well, but with r = Ot + . and -jt2 ` -,Stl

contributions from both blades are then summed as a final

step in the derivation. The subscripts 1 and 2 are dropped

from this point except where required for clarity.

The blades have an instantaneous teeter angle Jt in

opposite directions, and a built-in precone angle p p in the

same direction as shown by Sketch 9.2. Bothat and ^p are

positive in the upwind direction for blade one.

As previously mentioned, elastic motion of the blade

occurs in the x y z coordinate system: Flap bending w is in

the z direction and lag bending v is in the y direction.

The blade is also foreshortened by the bending, which gives

rise to a deflection u in the x direction (not shown for

	

clarity). Torsion and blade stretching are ignored in this 	 {

analysis, because they are generally modes of much higher

frequency for HAWTs.

To simplify Sketch 9.2, a• small offset was omitted. A

preconed rotor as shown is not balanced in teeter and flops

forward under its own weight. Practical preconed rotors

might counteract this by using a small undersling a as shown

in Sketch 9.3.	 Thus, the teetering axis is actually

situated in blade coordinates at (e sing , 0, a COSA ).
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Sketch 9.3	 Rotor Undersling

To summarize, the displacements and rotations in going

from the inertial system to the blade system are, in order

of appearance:

Three Cartesian deflections (I X 9Y CIZ•

Three rotations 
tX fY tZ.

Shaft rotation fir.

Precone Pp and teetering ^Bt.

Undersling e.

Elastic blade deflections u v w.

The rotations are taken in the order fy , then OX , then

O Z and fir, then ^p and ^t . Thus, the transformation

between blade unit vectors and inertial unit vectors is

.
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(i j k3 = ( I J K3[T a 3 	(9.1)

where [TaI n ( T Y J [ T X 3 (T1,3 [TB3 n

cosil y 0 sinty1	 0	 0	 os* -sin* 0 osa 0 -sines

0	 1	 0	 0 cost X -sinf X sin* cos*0 0	 1	 0

sino y 0 cost Y 	sinfX cost X 0	 0	 1 ainB 0 cosH

here, V _ f + tz and B = flt + fl 	 for convenience.

9.2	 KINETIC ENERGY

With all this information, the radius vector in the
i

inertial coordinate system can be written for a point x on

the rotating, deflected blade. For blade one, it is

R

R	 [I J K] Y

z

qX 	u+x-esin,$P

[I J K] qY 	+ (i j K3	 v	 (9.2)

w - e cos,#9 z	P

And, by substituting equation (9.1) in, this becomes

E	 qX	 u+x -e sinpP

R	 [I J K3	 qY	 + ET 14 v 	(9.3)

w - e cosP
q z 	 P
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The corresponding velocity vector is

q X	u+x-esiOp	 u

V	 (I J K	 qY + ( Ta ]	 v	 +(T 
a

1 v	 (9.4)

q Z	w - ecos^	 w

Recall that blade torsion is neglected in this

analysis. Torsional moments are also assumed to have little

effect on the blade bending or the other degrees of freedom,

particularly when contributions from both blades are added.

Specifically, torsional moments which arise from inertial

sources are neglected by assuming that the blade is a long,

slender beam with all its mass m(x) concentrated along the

elastic axis x. The kinetic energy of the blade is then

66



R

0' FOR pAQE 13
4`^4Lr1Y

L
T - kj mO-V dx

0

- w ix) 2+(iy) 2+(i z ) 2 IS mdx + 4 J E(6)2 +(4) 
2 
+ 0) 2 Imdx

T
q	 u+x-esinpp	 u

+ I qY , [TaJI	 v	 mdx + (Ta I f v mdx

q	 tw - ecosfp 	M

T
u+x -esin,eP 	u+x-esinflp

+ 	 v	 (TaJT(Ta] A	 v	 mdx

w - ecos /?p 	w - ecosop

T
u+x-esin,	 u

+ ^'	 v	 (TaJT(TaI v mdx	 (9.5)

w - ecos^	 w

Equation (9.5) must be expanded by substituting the

coordinate transformation (9.1) into it. Kinetic energy

terms which are quadratic in the displacements produce terms

which are linear in the final equations of motion. Elements

in the transformation matrix,-its time derivative, and their

products must be kept to adequate order to retain all

quadratic terms, but need not be kept beyond that. 	 These

matrices are relegated to Appendix B.

A simple modal model is assumed for inextensional

bending of the blade, as follows
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where

W = 7W(x)gw(t)

V = rv(X)gv(t)

u = - k a vgv —kawgw

x	 I.	 x	 i
a V = S (y;,) dx	 and	 aw - 5 (yw) dx

(9.6)

This form of elastic deformation and the various

matrices are substituted into equation (9.5). with all

quadratic terns, the kinetic energy of blade one is

T	
^Mb[(4X)2+(4y)2+(4Z)2 I + ^Ci v (gv ) 2+ I"(dw)21

- S b (g X (h tcosr - jy) + qy(' sinr - ^X)j

• S bcos^ p [ g t + j xsinr - jycosr)gZ

• QS * [4 sinr - gycoar ) e t - t2S bCOS -8p Ejx si nr - gycosr)

• AS bcos^e p ( r Xcosr + Oy sinr ]cI Z

- AS v(g Xcosr + gysinr)gv + i2Swsinpp (gXsinr - gycosr)gw

- S w (sin,8 p (4 Xcosr + gysinr) - gZcosoplgw

+ U b * ((,B t ) 2 + 2^ j Xsinr - 2^tjycos r +(;,)2+(;Y)23

+ 41 b Cos 2 a[ (h t ) 2 + 2h tjXsinr - 
2ht

jycosr +(jX ) 2 sin 2 r +

- 20x ^^ xsinrcosr +(jy)2cos2?I

- S v (Q Xsine - gycosr]gv + QIb * (tXcosr + jysinrj^t

- Al b Cos 2 'sp [ ( l Xcosr + jysinr),8 t + ty/X]

+ 01 * (i + jXsinr — jycosr]qv
- AI **cosfp (t XCOsr + jy sinr) + 1St)2 I b cOS 2 ,8p [1 - ,c ] +
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+ 01 * wsinp p (tXcosr + fYsinplgw + 4(1'1 ** F;

-01 xw Cos 2 pp (%Xcosy + ;Ysinplgw - 
n2 lbeospp pt

2	 2 	 2	 2 *
+ ^n I v gv + V)

2 1 wsin pp qw + C)
2
 1 * sinpp ptgw

- 02 I xwsinppcospp qw - Ixv lfxcosr + ;ysinplti,

+ I*0 + t Xsinp - %YCos^rlgw - ^Cas2pp (Hvg2v+ H, q2 ]

xW
+ M xvcospp 9v - nI xv ptgv + ni vwsinpp tgvgw - Qvgw 1

as COSpp (q COs? + ' sin^rlo z - 2nIbcospp tZpc

S bCospp 1 4xsinr - 4ycospl;, + 4IbCOS2pp(;Z)2

+ nIbcospp (f XSin^r - ;YCOSr'f Z + nIbcos2pp 
tZ

I bcospp (fXcosy + ^ Y sin?] , + Ixvcospp fzgv

2nlxwsinppcospp 
tzgw

t9.?)

In this equation, the following definitions are used:

L
Mb • O mdx

S 
	 • J rvmdx

I v • 1 rvmdx

I xv • S yvxmdx

J a vmdx	 R  •

Ja vxmdx	 IN •

S  • ! rw mdx

I w • S y2 mdx

Ixw • S rwxmdx

lawmdx

lawxmdx	 t9.8)

S b • xmdx

I 
	 • Sxxmdx

I
vw 

• J Y V 
y 
w 

mdx

R •
v

H •
v

and

Sb • S bsin.$ - Mbe	 Ib • i b sinpp - Sb e
*

I*• 
I xvsinpp - Sve	 Ixw • I xwsinpp - Swe

xv	

Ib* - Ibsinpp-Sbe	 (9.9)



CUAL P
w " OF

These latter d6:initions reduce to zero for the ca

neither precone nor undersling.

9.3	 GRAVITY POTENTIAL ENERGY

In this analysis gravity is assumed to act in the

negative X direction. The effect of built-in rotor axis

tilt is not included. The potential energy of the blade is

L
V • g^ Xmdx	 (9.10)

From equation ( 9.2) and equation (9.1), the height of a

point x on the blade is given as

X a q  + [ covo*Xc®sBcosW + sinifY ain#XcZ-ae in* +

+ cosoxsinB](u +x-esinflp)

• [ -coso y sin* + sinoysinox1v

• [-coso y sinBcos* - sino y sin y inBsint +

+ sinpycosoXcosB)(w-esin /
P )
	 (9.11)

As with the kinetic energy, the potential energy is expanded

in terms up to quadratic in the displacements and

velocities. Thus, the potential energy of blade one is

V - gMbq + gSbcos
'*p (coop - t Zsinlr -4!Y cosp + a ty )

-4gcos,pc^)sr [ Rvgv + Rwgw) - gSv [sing + tZCOSy)gv

+ gSw [cos^p ( oy + ^t coo,) - sinep (coa r - #Zsinr)gw

+ gS* Eoy - pt cosp + flt f Z sin^l	 (9.12)

i
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The spanwise integrals in this equation are defined as

before (9.8-9).

9.4	 SHIN ENERGY

The elastic model ur the blade is taken directly from

reference (201 and is reviewed in Appendix A. However, only

linear lag bending and flap bending are used; torsion and

all nonlinear terms are ignored. A teeter spring is

included, .:nd structural coupling due to built-in twist of

the blade 6 b (x) is allowed. Sketch 9.4 shows the principal

axes defined by 8b.

Sketch 9.4	 Built-In Twist and Principal Axeq

The strain energy of the blade-is

U = ^iKvgv ♦ KV W -Vqw + "Kwgw 
+ kKt t	 (9.13)

Here, Kt is one half of thL teeter sprin g rate, and the

stiffness coefficients are defined as follows
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L

K 	 = S (EI 2 Cos 2 8 b + EI I sin28b)(7v)2dx
0

L
Kvw = S (EI 2 - EI 1 )sin* bcos8 b ( yv"yw)dx

0

L
Kw = s (El 2 sin 2 8 b + El l Cos 28b)(rw)2dx

0

where

ti

(9.14)

EI 2 =	 J	 E V 2d j1dt	 and	 EI1 =	 /	 EC2djrdt
x-sect	 x-sect

9.5	 EQUATIONS OF MOTION

With the kinetic energy (9.7), gravity potential energy

(9.12), and internal strain energy (9.13) of the blade in

hand, Lagrange ' s Equations are used to develop the equations

of motion

dt T 1	 aT
aq 	 a9

+ aV _ au	
Qn	 (9.14)dt`^/ -	 a9

n	 n	 n	 n

where the qn	
are the generalized coordinates qx , qy,...,

g
w 	 n

and the Q are corresponding generalized loads.

Lagrange ' s equations are applio3 first to blade one

with 
qv qvl' 

and q  - q
wl 

in T, V and U. Then they are

applied to blade two with qv = 
qv2' qw w qw2' 18: _ -f

t , and

y = ? + w. The contributions from both blades are added to

give the equations of motion in eleven degrees of freedom:
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s-ix hub deflections and rotations, teeter, lag bending of

each blade, and flap bending of each blade. No

contributions from the tower or other system components are

yet included.

Some simplification is wrought by utilizing elastic

modes for the complete rotor instead of separate modes for

each blade. Consider the transformation

qws = h [Qwl + gw21

(9.15)

Qwa = ^[ qwl - qw2^

Then q
ws	

indicates

centerline and qwa

definitions must be

symmetric ( "C" shaped

usual sense.

motion symmetric about the	 rotor

indicates antisymmetric. Opposite

used to give lag modes which are

and antisymmetric ("S" shaped) in the

g	 a h[q	 + gv l
va	 °1	 2

(9.16)
qVs s h[gvl - qv2^

These sets of equations 'are multiblade coordinate

transformations of a kind for two-bladed rotors. Their

implications are made clear in Chapter 11.



q"s

q" s

q
`° a

P
vs

P
as

P
`° a

The vector of gei

corresponding general

q 

q 

q 

tX

tY

(q) _	 f Z

fl 

q"a

ieralized coordinates a

!zed loads are defined

I

nd t2

as

.PX

PY

PZ

QX

QY

QZ

Qt

P
I va

ie vector of

t	 (9.17)

3

I

The equations of motion in these variables take the standard

form

[MIN) + [C]€q} + [K]€q} _ €Q}	 (9.18)

The periodic-coefficient matrices of these equations are

given on the following pages. For convenience in comparing

them to the aerodynamic derivatives of Chapter 10, they are

also given in individual coefficient form. These equations

are left dimensional until the tower contributions can be

added.
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0

- 2gSb

0	 (9.22)

2gSbcos)G

0

2gSvsin)k

- 2II2 I sing COS AP
P

2gS w sin ^p Cos t
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2Mb

M IS = 2S 

M17 = -2S boos?

M19 
= -2Svsinf

M 1, 11 = -
2Swsinftpcosp

M12 
= M13 = M14 = M 16	 M18 = M1,10• 0

M22 = 2M 
*

M24 = -2Sb
*

M27 = - 2S bsinp

M29 
= 2Svcosr

M2,11 
-2Swsin^psinlr

M	 = M	 M	 M
21	 23	 25	 26 = M2 8 = M2 ,10

M	 = 2M
33	 b

M	 = 2S cos j?
3,10	 w	 p

M	 = M	 = M	 = M	 = 0
31	 32	 34	 35

M	 M	 M	 M	 M	 0
36	 37	 38	 39	 3,11

M	 M
42	 24

M	 = I c082 ,8 (1-cose) +2I * *
44	 b	 p	 b

M	 = -I cos2 g sin2f
45	 b	 p

M	 = 2(1 cos2 ,8 +I**)sing
47	 b	 p b

M	 = -21 * cosh►
49	 xv

M	 = 2(I cos 2 p +I * sin ,$ )sing
4,11	 xv	 p xw	 p

M41 
= M4 3 = M4 6 0 M4 

8 
0 M4 , 10 = 0
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M 54 = M45

M 55 = I bCos 2 8 ( 1 +Cos2^r) +2Ib

M 57 = -2 ( I b Cos 2 , +Ib *)Cosr
*

M59 = -2I Xvsinr

m 5,11	 xw- -2(1  Cos 2fl P +I xwsin, P )Cosr

M52 = M53 = M 5 = M58	 M5,10= 0

M66 = 2I
b Cos 2ap

M68 = 2I XvCOS,8P

M61	
M62	 M63	 M64	 0

m 6
	

M67	
M69	 M6,10= M6,11= 0

M 71	 M17

M 72	 M27

M74 m 4

M 75	 M57

M77 = 21 

M7 
11= 

2I Xw cos 2 8 +2IXwsin,8
P	 P

M 73	 M76	 M78 = M79	 M7,10='0

= M8 4 = 0

= M	 M	 = 0
8,10	 8,11
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M 91 ` M19

M92 = M29

M94 ` M49

M95 ` M59

M99 
n 

21V

M93 ` M96	 M97 = M98 n M9.10n M9,11 = 0

M 10, 3 ` M 3, 10

M10,10` 2Iw

M IO,I	 M 10,2	 M10,4 = M 10,5 = 0

M 10, 6 = M 10, 7	 M 10, 8	 M 10, 9 ` M 10, 11 ` 0

M 11,1	 M1,11

M	 M

	

11,2 =	 2,11

M	 M

	

11,4	 4,11

M	 M

	

11,5	 5,11

M11,7	 M7,11

M11,11= 21w

M 11,3	 M11,6 = M11,8 n M11,9 n M11,10 = 0

(9.19)

C17 n 4RSbsinr

C19 - -4QSvcosy

C1, 11 0 40SWsin^psinp

C11 = C12 n C13 n C14 n C 1 n C16 n C18 n C1, 10 
i 0

If
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C27 = -4oSbcosr

C29 =.=40Svsin^r

C2, 11= -40Swsin^pcoSr

C21 = C22 = C23 = C24 
= C25	

C26 • C28 • C2,10 0 0

C 31	 = C 32	 C33	 = C 34	 n C35 0

C 36	 = C 37	 = C 38	 - C 39	 - C 3,10 - 03,11 = 	0

C44	 = 20I bcos2^psin2r

C45	
= 20I b Cos 2Bp(1-cos2r)

C47	
= 401  cosr

C49	
= 40Ixvsinr

0 4, 11=
40IXwsin^6 cosh

C41	
=

C42	
= C43	 = C46	 =

C48	
= C4 , 10 - = 	 0

C_	 _
.)4

- 20I cos 2 ^ (1+cos2f)
b

C55	
=

p

- 20Ibccs2^0sin2f

C57	 = 40Ib*sinr

C	 =
59

-40i * cosyr
xv

05,11
40IXw sin^ sing

C5: C52	 C 5
	 C56 C58	 = C5,10 :	 0

C6, 10 =
4041xwsin^pc054

C61	
= C62	 C63 	 C64

C65	
• 0

C66 C67	 = C68	 = C69	 = C6, 11 0

^t



C 74 • 4AI boos 2^BpCos?

C 75 • 4AI bcos 2Opsin p

C79 • 4AI xv

071	 C72 • C 73	 C76 n C77 = C 78	 C7^10n C 7 ^ 11 n 0

C
8, 10e -40I xvsin,8p

081 • C82	
C83 • C84 = Cgs n 0

086 = C
87 • Cgg 	 C89	

C8,11= 0

097 = -C79

09,10• -401xwsin^l

091 a C
92 	 C93 a C94 e 0

095	
C96 . C 98	 C99 s 09,11 - 0

0 10,6 • -C6,10

0 10.8 • -C8,10

0.0,1 • 010,2 = C10,3 a C1 0,4	
0

0 10,5 • 0 10,7 = 010,9 = C 10,10 - G 10,11 = 0

0 11,4  = 
401 xwcos2 Apcosr

0 11, 5 = 401xwcos2,8psiny

s
11,9	

-C
 9,11

011,1	 C11,2 = C
11,3 

= 011,6 
'n 0

011,7	 0 11,8	 011,10 011,11= 0

(9.20)
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b 

	K
59	

20 
2 

1 
xv
* sinf

K
S , 1 0

 - 2gS 
w 
coV 

p
K
5,11 - 

-202 (1 
xw 

cos2,o - I 
*

xw
sinp )cost

p 	 p

	

K 51
	

K53
	 K.	 K	 0

	

51	 52	 53	 54	 55	 56	 58

	

K
67	

29S 
*b 
sinf

	

K69
	

-2gS 
v 
cosr

K.6, 11  2gS w
sin^ sinf
 p

	K 
61	

K 
62	

K 
63	

K 
64	

K 
65	

Y, 
66	

K 
68	

x
6,10
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K 76 = x67

K 77	 2K t+ 2A2I b Cos 
2# 

-2a2Ib:

K 7, 10= -2g5wcosppcoslr
t

K7,11= 202 I xwcos 2pp-2i3 I xwsinJp

K71 = K72 = K73 = K74 = K75 = K 78	 K79 = 0

K88 = 2Kw+2A2Hvc0520p-202Iv

K89	
-2gRwcosapcosp

K8,10= 2Kvw

K81 = K82	 K83	 K84	 K85 = K86	 K87	 x8,11= 0

K 96	 x69

K98 = K89

K99	 x88

K9,11 2Kvw

K91 = K 92	 K93	 K94	
K95	

K97	 K9,10= 0

K 10,5 = K5,10

K 10,7	 K7,10

K10,8	 K8,10

K 10, 10 = 2Kw +202 Hwcos 2 flp - 202I
w 

sin  fl 

K10,11 -
2gRwcosflpcosr

K 10,1	 K 10,2 = x10,3 = K10,4	 K 10,6	 K10,9	
0

K 11,6 = K6,11

K11,7	 7,11

K 11,9	 9,11

K11,10 = K10,11

C ^^



QY n 0

QY a -29Sb

Q Z n 0

Qt - 2SS cosy

P	 0
va

Pv s 29SV sinf

Pw	 -2021xwsinepcos,Pp

Pwa ^ 2gSwsinApCos?

(9.22)
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Chapter 10.	 AERODYNAMIC LOADS --
ROTOR-TOWER SYSTEM i

Applied forces and moments which arise from aerodynamic

forces on the blades are derived in this chapter in parallel

fashion to Chapter 4. As with the rotor-tower equations of

motion, torsion and torsional moments are neglected. This

assumes that the aerodynamic center is at the elastic axis.

The quasisteady assumption is made and apparent mass effects

are ignored. However, preconing, blade twist and taper,

wind shear, and crossflow over the rotor are included here.

As in Chapter 9, the contribution of one blade is derived

first. Then, loads from both blades are summed and the

symmetric and antisymmetric coordinates are used.

A cross-section of the deflected blade is shown in

Sketch 10.1a which defines the deformed blade coordinate

system f q C. The corresponding unit vectors are 1 y R.
The blade has a built-in pretwist 0b (x), followed by

deflections v and w as before.
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(a)

(b)
	

(c)

Sketch 10.1
	

Aerodynamic Nomenclature

Pertinent velocity components	 of the blade axis

relative to the inflowing air ra Y and U; , and the pitch rate

are reviewed in Sketch 10.1b. The distributed loads of

interest here, p^ and p x as shown in Sketch 10.1c, are

distilled from equations (4.3) with the simplifications

outlined above. They are



px

Y

p - 3apac (C (U 2 - c-v, U, - DUB }

p - ^pac (C (-VA + cwt U, l - DUB Ud	 (10. 1)

where p is the air density, a is the lift curve slope, c is

the blade chord at station x. C is some lift deficiency

function, and D - C do/a.

It is actually more convenient to work with velocity

and distributed load components in the x y z system for this

development. These are shown in Sketch 10.2a and b,

respectively. Note that the pitch rate r, is retained in

the deformed system; its transformation produces no

simplification.

x

Sketch 10.2
	

Components in the x y z System
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The transformation between the deformed blade unit

vectors 1 r R and the undeformed blade unit vectors i j k is

taken from reference 1201. it is

[^ r R] _ [i j k][Tb ]	 (10.2)

where [Tb]

1	 -v'	 -w'

	

v'cose - w 1 sin8	 cos@	 -sine

	

b	 b	 b

	

v'sine + w'cos8	 sin e 	 Cosa

	

b	 b	 b

When this transformation is used for the velocities and

distributed loads in equations (10.1), the distributed loads

become

pX	hpac{ [- ( C+D)sin8 bCosa b w' - (Csin28b-Dsin2 @b)v']U2

+ (C+D)[cos28 b w' + sin28 b v'}UYUZ

+ [(C+D)sin8 bcos8 b w' - (Ccos28b-Dsin28b)v']U2

- ^cC[sin8 b v' + cos8 b w 9 10f Uy

+ ^cC[coso b v' - sine  w'}vZ }	 (10.3)

pY = ^pac{ 2[(Csin 2 8 b+D)v' - Dsine bcos@ b w']UXUy

2[Csine bcos@ b v' + ( C+Dsin2 8 b ) w , 1U UZ

- Dcose U2 - (C+D)stn8 b U U + Ccose U2
Y	 Y 

s

+cC[sin8 b v' +cos@ b w']V't Ux -kcC & UZ }	 ( 10.4)



(10.5)

pZ	 ^p;;c{ 2(-Csinf bcosf b v + (C+Dcos 2 8 b ) w' ]UXUy

+ 21(Ccos 2 8 b+D)v' + Dsin*bcosob Wluxux

+ Csin8 b U  - ( C+D)cos8 b UyU Z - Dsin0 b U.,

- 'cC[cos8 b v' + sin* b w' }GPUx + '=Cal# Uy }

Thus, the velocity components U. U  U s , and the pitch

rate 
IW
A are required to formulate the distributed loads.

For this purpose terms need be kept only up to linear in the

displacements.

10.1	 RELATIVE VELOCITY OF THE BLADE

The relative velocity of the blade U is the difference

between the absolute velocity of the blade V and the

velocity of the air at the turbine disk. An inflow velocity

uin in the - 2 direction and a crossflow velocity ucr in

the -Y direction are assumed. The absolute velocity of the

blade V is given in inertial coordinates by equation (9.4).

The relative velocity in inertial coordinates is then
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0

A A A

U	 V + (I J K] u cr

vin

q X	u+x-esinpp	 u

_ [I J K	 qY +ucr + [T a ]	 v	 + [Ta ] v

qz+uin	 w - ecos^ p 	w
 If

(10.6)

This is transformed by equation (9.1) to give the

velocity in blade coordinates

U
X

U	 [i j k] U 

U t

qX	 u+x-esiO,	 u 1

[i j k] [ Ta
]T4Y+ucr + [T a ] T [ Ta ]	 v	 +

	

qz+uin	
w - ecos,8p	 w

(10.7)

Elements in the transformation matrix and in the

product of the transformation matrix and its time derivative

must be kept to adequate order to produce quadratic terms in

equation ( 10.7), but only those quadratic terms which

involve time derivatives of displacements. 	 While only

distributed
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expressions, these particular quadratic terms are required

for the work expression in Section 10.3. The matrices are

relegated to Appendix B. The required velocity components

are the!

U 	 uipsin ,*P +ucrcosp Psin? + Cos,#PCost g X + cosppSint qY

+ sins qZ + ecoss sin? t%

ecosp Pcos? ;Y + ecooP 
it	

(10.8)

U  = nxcos j P + U in [t Xcosr + t ysin ? l + u er(cos? - tZSin?l

- n(xsino -e)A t - nsin ,B P w - [sing + tZsinf]q*

+ [cosy - •„sin?lgY + [0 Xcos? + f sin?lgz

- [(xsinfl -e)(cos?- t Zsin?) + A xcoss cos f + WCOSS con?ltX

- [Using -e)(sin? + 0cos?) + ^ xcosp sin? + wcospsin?l;P	 Z	 P	 Y

+ [xcos'lp - (xsin^#P -Op t - wsinp P lt Z + v	 (10.9)

Uz - - ucr(sin ,BP sin? + (O X + t Zcos? ) sinflP + OtcosfPsin?)

+ Vin
tcosflP - (O xsin? - O.cos? + #t)sintPI

+ nsinfl
P	 P
v - [ sinf cos? - f z sinoP sil? + PtcosgPcos?lix

[iinAPsin? + ( O
X + t Zcos?)sinflP + ,9tcosflPsin?liy

+ [cospP - ( O xsin? - Oycos? + /lt,sin,#Pl4Z

+ [(x-*sin,#P)(sin? + t ZCOs?) - vcos,fPcosVltx

- [ ( x -esin,#P ) (cos? - t'Z sin lr) + vcosflPsin?loy

vsinAP tZ + (x-esinsp )k + w	 (10.10)

These expressions contain all necessary terms for the

distributed loads ( 10.3-5) and for the work expression

t
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10.2	 PITCH RATE OF THE SLADE	 }

	

various angular velocities as detailed in Chapter 9	 s

contribute to the pitch rate .^^ .	 jy is about the X axis

; X is about the X axis following the 0Y rotation, !Z	 and

0 are about the Z	 axis, and v' is about the z axis, all in

the righthand sense. Finally, ^t and w' are about the y

axis it the opposite sense.	 Equation ( 9.1) is used to

transform each of the angular velocities as required. The

total angular velocity of a point on the blade elastic axis

in the deformed coordinate system is

rf 	0 	 ;X	 0	 0
ss

erg • (Tb JT ( TS JT [T^,J^ ( TX JT !^ + 0	 +	 0
s

w^	 0	 0	 f)+#	 v'

(10.11)

Linear terms are adequate in the expansion of the angular

velocity. The only component required is

Osi nflp + Ocosflp t,c + sinev ' + cosec we J

+ cos'Bp (cosp !X + sing jY J + sinpp *	 ( 10.12)

10.3	 WORK OF EXTERNAL FORCES

The variation of work done by the aerodynamic forces

can be expressed both in terms of blade deflections, and in

terms of the generalized coordinates. Va terms of

variations of the blade elastic axis deflections it is
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a r^oN

aW • j	 (pxaxa& 
+ .pyby *& + p saz e&)dx	 (10.13)

blade
span

where 
x ea' y ea, 

and zee 
are deflections of the elastic axis

in the respective directions. in terms of variations of the

generalized cotirdirates this is

aW • PX3gX + Py &Qy + PzagZ

• 
QXJOX 

+ QYatY + QZatZ

• 
QJot + Pvagv + Pwagw 	 (10.14)

where the Pa and Qn are the generalized loads of equation

(9.14). Recall that v a yvgv and w 
a y wgw ; if more bending

modes are required, more generalized loads would be used at

this pint.

Now, if the two sets of coordinate variations can be

related, the generalized loads can be calculated.	 The

variations are related through 	 the velocities as	 in

Chapter 4. Define the operator

A a aqX (a/aqX )+Agy (a/aqy )+... +agw ( a/aqw )	 (10.15)

Then the relationship between the two sets is given by

ix a& a A(Ux)

Sys& a AN y ) 	 (10.16)

&Z asa 
A(UZ)

Equation (10.15) is applied to the velocity components

95



( 1 0.8-10), and the result is substituted into the first work

expression (10.13). Then, coefficients of each variation in

the two work expressions are separately equated. The

generalized loads which result are

P  -	 ^Ip xcos/4 Pcost - pY (Sin t + t zcosy] - p Z tsin^f Pcost +
- f Z sinflPSint + tcosflPcosr])dx	 (10.17)

P  - JIp x cos /e P sinr + py [cos t - yint) - p Z [sinflPSint +

+ sinf
P (t x + 

t ycost) + jj tcos jjPsin f• ])dx	 (10.18)

P  - ^Ip x sin^ P + pY lo x cost + t y sinr] + pz [cosAP +
- sin^P ( t xsinr - t ycosy +Pt )])dx	 ( 10.19)

QX - f1 pY ecos.8 P sinf - pY [ tx-esinfl ) ( cost - t Zsin?) +

+ p t xcos 'O p cost + wcosf p COS?] - pZ tvcosflPcost +

- (x-esinf9P ) (sing + t Zcosr) ])dx	 (10.20)

Q 
	 - !{-pxecos^Pcost - pY [(xsinAP -e)(sing + t Zcost) +

+ p t xcos^a sinf + wcox,8- pZ [vcosAP sinrp sinr] +

+ (x-esin.8 ) (cost - t Zsinr) ] )dx (10.21)
P

-Q
Z J [p	 [xcos'O - jo 

t 
(xsin^ -e)	 +

Y P	 P
- wsinA ] - p vsinj )dx (10.22)

P	 x	 P

Qt ` S(px ecosA + pZ (x-esinfP ))dx (10.23)
P

P 
	 - j1 p y V )dxY

(10.24)

P 
	 - j(pZrw ) dx (10.25)

1

l
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iA note is in order at this point. Almost all of the

fxpressions in this chapter are given in terms of v and w,

W order to facilitate their expansion to inclu-de more

bending mods. The last two equations are given in terms of

?v and yw , and give generalized loads for these particular

moe:es; entirely analogous expressions could be written for

any additional modes. Then, each occurence of v or w would

be expanded in the appropriate modes. Here, a simple one

mode model is used for each.

10.4	 GENERALIZED LOADS

To recap, at this point the aerodynamic loads

(10.17-25) are expressed in terms of the distributed loads

(10.3-5). The distributed loads in turn are ;expressed in

torus of the velocity components (10.8-10) and the pitch

rate (10=12). This substitution process is too complex to

be reported in detail here. Only an outline of the algebra

and the results are given.

First, a simple form is assumed for the infloti and

crossflow as follows

via * IM + roxcoOPcosr

uc r n AL	 (10.26)

where I is the average inflow ratio, r is a linear wind
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shear coefficient, and p is the crossflow ratio. The use of

mode shapes y  and y w , and the definitions of X, r, and

facilitate the integration of the generalised loads.

For a yaw alignment angle t off the rind, sonewtum

theory gives

I _ ( 2Vcos+ - 16oa)

+ I( 2Vcos# - 1ea) + 1 ffae	 (10.27)

and

p	 Vsin+	 (10.28)

where V = V^ /QL (at hub height), w is the solidity (rotor

planform area/ disk area), and 9 0 is the reference pitch

setting. If the reference chord length is c
0 , 

then the Lock

number may be defined as y = pac0L4/Ib.

Chopra has given a simple formula for the wind shear in

terms of a power law exponent p (35]. Rearranged, this is

s = p(a + Soa)L/H	 (10.29)

where H is the hub height and p is between 0.15 and 0.4

depending on the terrain.

Unlike the derivation of the equations of motion, this

development of the aerodynamic loads requires an ordering

scheme. Reasonaile orders of magnitude for HAWTs are

i



cW p0 pa^
0x/L, yv , yw , y" , ?W' y/8	 O( E )

i t ®b	 0(E1)

1
c/L. e/L, ,dp , r, p	 00 )

where E is of the order of qv/L. In any coefficient, only

the largest terms and those one half order smaller are

retained. Coe&'ficients of like harmonics are also compared,

and those more than one half order smaller are discarded.

Also, all r 2 , rp, and p2 terms are ignored, effectively

eliminating higher harmonics of the airloads.

The contribution to the aerodynamic loads made by blade

one is calculated by setting qv = qvl and qw = qwi . Then,

the contribution to the aerodynamic loads made by blade two

is calculated by setting qv = 
qv2' qw s qw2' Jot 

s 
-.0t	

and

! - r + •. The contributions from both blades are added to

give the eleven generalized loads.	 Here again,	 the

multiblade coordinates	 (9.15,16)	 for	 symmetric	 and

antisymmetric elastic rotor modes are used.

Finally, the generalized loads are substituted into the

equations of motion (9.18). Many terms in the loads involve

generalized coordinates or their time derivatives. These

are subtracted from both sides of the equations and thus

augment the C and R matrices. The remainder are added to

the forcing vector Q.

I



4	 ,

These aerodynamic coefficients are given below with the

degrees of freedom in the same order as in equation (9.18).

In these coefficients, various aerodynamic integrals are

used, L n and D.. These are defined in Appendix C. To aid

in understanding the aerodynamic coefficients, they are

arranged so that they are all equal to one for an idealized

blade % flat, untwisted, uniform, and with yv - r x - x/L.

C 11	 - Qi br ( 2L8a80( 1 -cos2r]-4(2L^a+L68o)APsin2r )/L2

C 12	 - Qi b r(-4(6 L^a- 3Lb8 o ) '8 
P
-2L8A8osin2 r+

+4(2L7a+L680 ) APcos2r)/L2

C 13	 - Qibr(!(LSr-L8p80 ) sin2r)/L2

C14	
- M

b
1 10L

50L
S a-L^8 0 ) ( 1-cos2r] - 6L3 * sin2r)/L

C 15	 - Qi b y0L 3 # l l+cos2r] - 1 (3L 5 -L40 )sin2r)/L

C 16	 - Qi b r(- I L 3rSEl+cos2r] - !L4

C17	
= QI b p (3( 3L S a -L 8 0 )sin^r- 3L39 COSO /L

C18	
- Qiby(-6L12 r^P ( 1 +cos2^r]-h6 13 r8osin2p)/L2

C 19	 - M (-2L1s X8 0 sinr- a-41380)COSr)/L26( 3L l ^	 L

C	 -
1,10

QI
b
y(-1 (4L

12
r-31,	 p8	 ) sin2r)/L2

22	 25	 0

C 1,11 - Qiby(3( 3L2^X-
L2380 )

sinf -
L23

	 Cosr) /L2

i

C21 - M (
6( 6L 7 a- 3L6 8o ) 1E l+cos2r]-ZL8a8osin2r) /L2

C22 - Qibr(2L8180( 1+cos2r ]+4(2L^A+L68o)APsin2r)/L2

C23 - Qiby( -2(LS r-L8p8o)(1 +cos2r])/L2

C24 - Qi b y(- 6L39P ( 1-cos2r]-6( 3LS a-L4 0 )sin2r)/L

C25
- Qi b r(6( 3LS a-L4 8o )(l+cos2r]+ I L 3^ sin2r)/L

C26 - Qi b r( 6L4 r8o ( l+cos2r] - 6L3 T^ s in2r) /L

r
	

1
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C27 • nIbr{-3L3jpsinf-S(3LSX-L4do)c ost) /L

Cgs • ni b r ( BL ll rsa tl+cos2p)-'L 12 Fsin2y)/L2

C	 n n1 by 	 k-4L ♦ ) sin + 1 L & 0 Cos )/L2
29	 br 6	 14	 13 0	 ^ f 1S o

C2.10• niby{-12(4L22r-3L23pfo ) tl+cos2y])/L2

C2 11• ni b r{ - 1 L32 ^psinp- I Olo i-L23 )cost► } /L2

C 31	 n nibr{-^(LSr-4LSp*o)sin2^t)/L2

C32	 n ni
b
r ('(LS r-4L8 pao )tl+cos2r) )/L2	 i

C 33	 • t'libr ( ZLS)/L2

C34	 • nibr{ $LSrsin2p)/L

C3S	
•nibr ( -

&LSrtl
+cos2pl)/L

C36	 n alb r (6 (3LSX-4L68o))/L

C37	 • nibr {2LSpcosy)/L

C36	 n ni b r 1 1 01, 4 a-41,	 0 ))/L215 0

C39	 n nibr(2(L12r - 3L lsr8a)cosr)/L2

. 10 •C3. 10 
a nibr{3L22 )/L2

C3. t 1 n nibr(2L24pcoslr)/L2

C	 • nir{- 1 (3L a-4L ® )tl -cos2y)-1 L	 sin2p)/L41	 b	 12	 S	 4 0	 6 3 p

C42 • nIb r{-L3AP 
{1-cos2r ) + 12 (3LS a-4L4 8o )sin2^r)/L

C43 • ni b r{4 LSrsin2y} /L

C44 n nib r {8 L1 ( 1-cos2p I)
C4 	 •nibr{ -g Ll sin2p )

C46 
n nib 11

2Z (3L1 r-8L4 rto )sin2p)

C47 n nib r(ILI sing)

C46 n nib r{l ( 3t, r • 8L13 r8o ) sin2p)/L
10
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a

E

{. y	 ar,^,
c 49 a QI by( 1(2L12X-3L118o)sin^r)/L

c
4
 10n M b y { 6L22psin2f l/L

c 4 11 = QI by ( 4L20sin)r }/L

c51 = QIby{6L3pP[l+cos2yl +12(3LSa-4L48o)sin2^r}/L

cS2 = Ql b y{ - 12 (3L S a-4L 4 8 o )[l+cos21rl + 6Lj^8 sin2y}/L

cS3 = QIby{-4L5p[l+cos2r] }/L

c54 = QIbr(- 8L1sin2^r)

c55 = Qibr(8L1[ l+cos2yl)

c56 = Qibr[ - 24(3L1 r-8L^p8o)[1+cos2rl)

c57 = Qibr{-4L1cosr}

c58 = QIby{-24(3L10r-8L13pBo)[l+cos2^rl}/L

cS9 = Qiby{-6(2L12a-3L118o) cos^r}/L

c5,10 = QIby{ -6L22p[ l+cos2^r]}/L

c	 a01 y { - 1L cosy}/L
5,11	 b	 v 20

c61	 = QI b y { ! L3 B [ 1 +cos2r]-!L4

c62 QIbr{ IL4r8o[1 +cos2y] +3L3 rB sin2f]/L

cb3	 = Qiby{-3(3L5A-L48o)}/L

c64	 = QI b r (-12 M r-L4

c65	 =
Qibr

(12(3Llr-2L4p8o)[l+cos2yl}

c66	 = Qiby{3L4ABo
+2Dlcdo/a}

c6	 = QI b y {-6 (3 L 1 r-2L4 p8o )COS?)

c68	 =
Qity{3L1318o1

/L

c69	 = QIhy {4Liir8ocosf}/L

c6,10=
QIbr{-112

(SL 22a-3L218o)}/L

c	 =
6,11

QI
b 

r {- 1 ( 3L	 r-2L	 p8	 )cos^r}/L
6	 20	 23	 o



C 71 = tllby (-6( 3L3a-2L4®o)sinr-3L3^Bpcosr) /L

C72 = AI by ( -3L3 0 sinr+6(3LSx-2L48o)cosr)/L

C73	
tlIby(2LSpcosr )/L

C74	 ilIby(ZLlsinlr)

C75 = 01by(-4Llcosr)

C76 = 0176

C77 = AIby(4L1)

C18	 C)iby { i2(3L10r -8L13POo)COSrI/L

C79	 f1l by' b( 2L12a-3L118o))/L

C7,14= QIby{3L22rcosr)/L

C7,11- QIby(4L20)/L

C81 - 01by( 3L12r,p(1 +cos2lr)-6L13To0sin2fl/L2

C82 = M y ( 6L13rooll +cos2rl +3L12rOpsin2j)/L2

C83 - AIby (-3(3L14a-L138o))/L2

C84 - Ol y(- 12(3L 10 r-2L 11# 8 	 ) sin2r)/L

C
85

- DI	 y ( 12(3L10r-2L13p8o)tl +cos2rl) /L

C86 = M	
y(3L1318a1 /L

C87 - Al b y{-6( 3L10 Lr- 2 13 pe )cost)/L

CS8 = AI by (3L53leo +ZD3Cdo/a)/L2

C89 = Aiby(4L51reocosr) /L2

C8110 = Al b y(- 12(8L62 X-3L61 0 ))/L2

C8,11 = QIby(-6( 3L60r-2L63ofo ) COSr)/L2

C	 - AI y (-1L )18 sinr+1( 3L a -L 0 )p COS?) /L2
91	 b	 2 15 o	 3	 14	 13 o p

C92 = (III b y (3(3 L
i4 1-

L13 0 ) fl p sinr+2L15 X f COS?) /L2

C93 - Ai b y(-6( 4L12 r- 31, peo)COSr) /L2
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C 94	 - AI r{-12(8L12a-3L118o ) sinr }/L

C 95	 - Ai b
y { 12(8L 12 a-3L 11 6 )cos'r }/L

C 96	 - Aibr{lL11r80cosr)/L

C 97	 = AI br {-12(8L12X-3L118o))/L

C 98	 - Aibr(4L51'80cos?)/L2

C 99	 - AI
br{3L53XBo+2D3Cdo /a}/L2

0 9,10 = Aibr{-6( 3L60r-2L63p8o)coSf }/L2

C 9 ^ 11 - Aibr{-12(8L62a-3L6180))/L2

C 10,1 - Aibr{-6(L22r -3L2Sp8o ) sin2fl/L2

010,2 - 
Aibr{6(L22r-3L25p8o)[1+cos2^r}}/L2

010,3 - Aibr{3L22)/L2

	

c10,4	
Aibr(6L22usin2^r)/L

010,5 - Aibr{-6L22#(l +cos2fl) /L

010,6 - AIbr{6(2L22a-3L218o))/L

C10,7 - 0Iby(3L22pcose)/L

C	 - Ai r{1(2L a-3L 8 ))/L2

	

10,8	 b 6	 62	 61 0

010,9 - Aibr {
12(3L60^r-4L63p80 ) coSf)/L2

C lo,lO -  Aibr{IL70)/L2

C1o,li- 01br{3L72mcospl/L2

	

C11,1	 AI b r { -6 (3L24 J► -4L23 e)SIn^r -3L22epcosy }/L2

C11,2 = Ai b r{-3L22
0

pcosp+6(3 L24 a-4L23 0 )sing}/L2

C11 3 = Aibr{2L24MCOS^r )/L2

C11 4 - AIbr ; 4L20sin^r}/L

0 11,5 - Aibr(-!L20cos^r)/L

011,6 - AIbr{12 M2 0r-SL23p8o ) cos?) /L

i

4	 1
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c 11,7 - 0I by{4L20)/L2

c 11,8 = Qiby{12(3L60r-8L63p80)cos^r) /L2

c11,9 - QIby {6 ( 2L62X -3L6180)}/L2

cll,10 = QIby { 3L72mco2r)/L2

c 11,11 = Qlby(IL10)/L
2

(10.30)

K 14	 = Q2Iby(- 4(2L7X-L6B0) X^P [3-cos 2^r ) -2L8X280sin2r)/L

K 15	 = 02iby{ - 2L8 X280 [ 1-cos2^r ) +4( 2L7X-L6B0)X,BPsin2r)/L

K 16 Q2Iby{[ 4(2L7X-L68^)r-L8Xp80) [ 1+cos2r]+

+LaXp80 +4LSr^Psin2^r)/L

K 17	 = Q2Iby (-6(3L5X-2L480)cospr) /L

K 18	 =
Q2Iby {L37pB2+[2(L35X-L368o)r+L39XMI9	 111 +cos2lr)+

+[ 3( L 12 /9P +L 34 a 2 ) r+L38 Xp) si n2^r) /L2

K 19 Q2Iby ( 3(3L14X-L1380),e sing+
P

+3 (3L38 X2_ 3L36Xeo+L34 80 )cos p l/L2

K 1,10 = Q2Iby( -4L44r-2(L47X-2L46X-2L458o)NJ[1+cos2^r])/L2

K 1,11 = 02Iby{ -6( 3L44X-2L4280)cosy)/L2

K11 = K 12	 K13 = 0

K24 = Q2iby{ -
6
(3LSX-2L480)+2L8X280 [ i+cos2^r]+

+4 (2L7 X -L6 8o )sin2p) /L

K25 n Q2 I b y ( -4( 2L7 X -L6 80 )X (3+cos2^r) 1L8 X2 0 sin2^► )/L

K26 = Q2 I b y{-4LS 0 tl+cos2lr ) +[4( 2L7X-L680 ) r-L8Xp80 ] sin2y)/L

K27 = 02 I b y{ -I MLS X-2L4 0 )sing)/L

i
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K 28	 Q ` Iby{'I3(L121fp +L348o)r+L38ap](1 +cos2r]+

+I2(L351-L3680)r+L39ap80]sin2f)/L2

K29 = A2Iby {3(3L38a2-3L361Fo+L348o)sinr+

-3{3L14X L1380),8 cost)/L2

K 2,10= A2 i b y{ - 1L44 r- (L41a -2L4ba-2L478o)p]sin2,r)/L2

K 2 , 1 1 = i?2 i b y {-! OL 44 a - 2L 42 8 o ) sing)/L2

	

K 21	 K22	 K23	 0

K34 = 02 I b y{-2L 5^pO +I 12(3L 6-4L 4 )r8o_ h X.r8o)(1+cos2r]+

- 12(3L5 +2L3)rfpsin2r)/L

	

35	
n2iby{12(3L5+2L3)rf (1+cos2r]+

P

+[
12(3L6-4L4 ) r8o-IL8Xp8o]sin2r)/L

K 37 = f22Iby{-ZLSusin f)/L

K38 = C)2I y{ 3L12^p 11, c80)/L2
K39 = A2Iby{-(2L38X-L368o) Nsinr+ 6(4L33r8o +3L14p /̂ p)cosr)/L2

K 3 ^ 10 = A2 I b y {-6 I( 6L44 +6L43 + 3L24 ) a- (2L42 +L23 ) 8 o Ifl -4L87^)
/L2

K3,11= 
02iby{ -L43psinr-3L41rcosr)/L2

	

K 31	 K32	 K33 = K36 = 0

K44 = Q22by{-6L3).fp(1-cos2r] + l2(3L5a-4L48o ) asin2r)

	

K45	 02Iby { 12(3LSa -4L48o)X[l-cos2r ] +6L3X^ sin2r)

K	 = Q2 i y(1L r+(1L r+1 (3L a-4L 8 )p]cos2r)

	

46	 b 6 3	 6 3 12	 5'	 4 o
K47 = 02Iby {-6( 2(2L3^p -LSe)X-3 ( L2^Tp-L4e)8o+L80c]sinr+

+6(3L5a-2L48o)acosr)

K48 = f)2 I y {-(IL r+1 (3L a-2L 8 ) p[l+cos2r]+
b	 3 12 6	 14	 13 0

-6 0L35 a -2L33 80 )rIl-cos2r3+4L30r80sin2r)/L

K49 = 02iby{4L10fpsinr-12(4L12a-3L118o)cosr)/L
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K 4,100 02 1 
by'- ! ( 	+L r8 o )	 4 40( 1-Cost 1 k6	 23	

rsin2 )/L

K4,11 a Q2iby{ - (6( 4L411 +2L22a-3L218o),p+lL87C+

+6 (3L44 a -2L42 8 o )elsiny+ 6 (3L24 a-2L23 0 )xcosp)/L

K41 - K42 - K 4 - 0

9 S4 - Q2 i by { - 12(3L 51-4L48o ) 1► [1+cos2^r] +6L3a/Spsin2 r)
K55 - Q2Iby{-6L31 ►^p[l+cos2r ]-12(3LSa-4L48o)asin2lr)

K 56	 021by{[6L3r+12(3L5a-4L48o)plsin2lr}

K57 - 0 lby{6(3LSa-2L48o)asinr+

+g[2(2L3-Bp-L5e)a-3(L2 flp -L4e)Bo+L80cicoslr)

K58 = Q2lbyl-4L30rBo(l+cos2r] -[3L12r+6(3L14a-2L138o)p+

-6(3L35a-2L338o)plsin2r}/L

KS9 - Q2 1b y{-12( 4L 12X - 3L118o ) sinf-4L10^pCOSIr}/L

K5,10 0 Q2Iby{4L40r[l+cos2p] +6(2L41p -
L23r8o)sin2r )/L

K S ^ 11 = Q2Iby{6 ( 3L24a- 2L23Bo ) asinp+(6(4L41X+2L2Ma-3L218o)pp+

+6 (3L44 X -2L4 2 8
0 ) e

+4
!L87 C I COSr } /L

K51 - K5 2 s KS 3	 0

K64 - Q2iby {3L4ar8o[1+COs2rl)

Kb5 - Q2iby [IL4ar%sin2p)

K67 - Q2 I b y{3( 3LS a-L4 8o )psiny► +6L80c cos^r)

K68 - Q2 I b y (-2 (2 L
12 X-L11  )gyp 4L8ScX8o )/L

K69 = Q2Iby (3(3L36a- 2L348o) Moosiny+

-6 ( ( 2L12 +3L10 ) I +3L31 82 ] rcos^r) /L

K6 ^ 10 n Q2 I y (b E(6L43 +3L24 ) 1-2L23 o],p+4L81ck)/L
K6,11 - Q2 Ib y{L43 apsin?+6L86crcosr}/L

K61 -K62 - K63 -K66 -0
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K74 n n 2Iby{- 3L 3 a Jj psinr+b(3L 5a- 4L 49 0 } acts }

K 75 = () 2 I b y{ 6 ( 3L S a-4L 40 ) a sin^+3L 3X.4 Cos?}

K 75 n 
(?21by{ -6(3L5a-4L490) psinr -3L3p^pcosr}

K 77 n n2Iby {-6[2(2L3op-LS* ) I-3(L2ltlp-L4W — L80C)

R78	
R2Iby{-

3(
3L3Sa-2L3390)psinr+[3L12pftp+3L 30rB0Icosr }jL

K 79 = ^2i b y{ 4 L ! lo
^p 

6L84peo }/L

K7,10 = 
C)I by{ -3L41psinr-

2L40rcosr}/L

K 7.11 = iZ2lby{-6[(4L41 + 2L22)a-3L210aLBp '6L86c }/L

K 71	 K72 = K 73	 0

K84 = n2I y{3L13are l l +cos2r} }/L

K85	
n2I y{3L13are0sin2r}/L

K87	
(l2lby{3(3L14x-L13a )psinr+6L81crcosr}/L

K	 . 02I y[-.! (8L -3L a )^ +1L cX9 }/L2
88	 b	 12	 52	 51 0 p 4 90	 0

K89 = C)2I by { 3(2L56a +( 3LS6a-2L5580 ) 80}psinr+

2(L50ft +L5492
)rcosr }/L2

P
K8,10 n a2I b y( 3 (3L69 X'L

63 8 o )X ^ +4L93cx)/L2
K8,11 = A2Iby {L69apsiny +6L92crcosr)/L2

K	 = K	 = K	 = K	 0
81	 82	 83	 86

K94 n A2iby {3(3T.a4x-L1380 ) Xo sinr+k x2 0 cosr }/L

K95 = 02Iby { 2L15x280sinr-3(3L14x -L130 )ajpsinr }/L

R96	 (?2iby{-?L15ape0sinr}/L

K97 = (?2 i b y{L14 a2 ^p -3(2L13 0 -L 15 e)X6 +^L82ca}/L

R98	 ch y {3[ 2LS2X+ ( 3LS6a-2Lggao ) Jpsinr+

2 (LSO f +LS4 8o )rcosr}/L2

K99 = (i I y{-12 (SL S2 - 3L51 0 ) fp+4L90cX80)/L2
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K91 X92 K93	
n 0

K10,4 C)2 I b y{ 1 (4L221-3L218o )r-6(2y+3LiSa9o)p-8r^psin2p+

+E12(4L22a
-3L210 ) r-1LISXpBo]cos2r)/L

K10,5 
n A2 i b r{8rf p El+cos2r ] +( —L (4L 22 a-3L21 0 )r+12

-IL

K10,7 n f?2I by {-3L22psin?}/L

K 10,8 ` X21 :) tL60-4p 6L91ceo)/L2

K10,9 = C)2iby{-3(3L67a-2L668o)psinr+

+(2L64r8o
+ IL62pfp)cosr}/L2

K10,10` 0
2 I b y{ 6(4L 74 1+2L 7 ^1 - 3L 71 0 )if I

L94C)/L2

K10, 11` tl
2 i b y( 3L74psinjr-2 L73rcosr}/L2

0
K10,1 ` K10,2 = K10,3 ` K10,6 `

K11,4 
n Q

2 I b y{-3L22 a ?̂p sinf+6( 3L24 a-4L23 8 )acosr}/L

K11,5	 A2 I b y{6(3L24 a-4L23 0 ) asinr-2L221Bpcosr)/L

K11,6 
n n2i by{ -6(3L24a-4L230 ) psin?-2L22p^pcosr}/L

K11,7 n cl2Iby {-6{ 2(2L22.p-L24 e)X-3(L21Ap -L23e ) 8o]-6L83c)/L

K11,8 = 
riiby { -3(3L671 -2L669o)psinr+

+(iL64reo+3L62 ppp )cos?)/L2

K11,9 ` r i b y(4L6O flp 6 L91c®o)/L2

Kii, lo' Cl iby(-?L74psin?-2L73rcosr)/L2

11,11  ' ri Ib y{-6 ( 4L74 1+2L72 1-3L71 ®o )^p-6L94c)/L2

K11,1 ` K11,2 n K11,3 n 
0

(10.31)
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P X n C) 2 i b7 { L S Te ( 1+cos2fl-( 4M x-L 6 - LEAp9olsinlp)/L

PY • C)2I b7([ 1 ( 2L 5 a-L b 0 o ) s-ZL 8 ap9 o l(1 +cos2^rl + ' rf sin2p)/L

PZ • C)2ibr {-g ( 3L5X-2L400))/L

Q	 • C) 2I {-( 1L r+ 
1 

(3L J► 4L 9 ) pJsin2p)
X	 b7	 b 13 12	 S	 4 8 i

Qy a C)2 i b r{( bL t3 r+ 2(3LSa-4L400)pl(1+cos2rl)

QZ a C)
2lbr{6

( 3L5 A-2L49o)X-4DiCdo/a)
5

Q t	 C)2ibr{-13L3r+'OL5a-4L490)plcosF)
Pv n C)2ibr {6(3L14.^.-L13iro )A-D2Cdo/a)/L

Pv = C)2 1 " 7{13(3L 14 a -L 13 e 0 ) r 2LlS1#Bo ) cosr)/L

Pw n 
C)2 l b r{ 12(4L22a-3L219o)}/L

Pw 	 Cl2ib7{-13L22r+6(3	 X-4L230 )plcos^r)/L
24

3
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Chapter 11.	 HARMONIC BALANCE SOLUTION OF
EQUATIONS WITH PERIODIC COEFFICIENTS

The equations of motion and aerodynamic loads derived

in the preceding chapters form a second order system of

ordinary linear differential equations with periodic

coefficients. A solution may be pursued using any of a

number of techniques presented in the literature. Several

of these are introduced briefly, followed by a detailed

development of a general harmonic balance method useful for

stability, steady-state response, and transient response

calculations.

Perhaps the most straightforward approach is direct

numerical integration of the equations beginning at some

chosen initial conditions. Stability is determined by

inspecting the result for growth or decay. In a stable

case, the steady-state response is found if the calculation

is carried far enough, or if the correct initial conditions

happen to be chosen. This method ignores Floquet-Lispunov

Theory 153, 54, 551 which reverals the mathematical form the

solution must take. Floquet theory has spawned three

general families of solutior techniques:



1) Per"urbation methods.

2) Calculation of the Floquet transition
matrix by numerical integration.

3) Harmonic balance methods.

t

The perturbation method was first developed by Hsu

(56). These methods are limited to cases where the

periodicity of coefficients can be expressed in terms of a

small parameter. Inspection shows that this is not the case

for the equations in question.

Calculation of the Floquet transition matrix can be

accomplished by a number of numerical schemes (57, 58, 59,

601. In general, integration proceeds over only one period

in thesr methods. They come highly recommended for systems

with many degrees of freedom.

Hill's method of infinite determinants is a classic

harmonic balance method (55, 611. Bolotin applied this

method to problems of mechanical stability, but without the

aid of the digital computer he sought only limited

approximate solutions to the unwieldy determinants (551.

Recently, Takahashi has updated the harmonic balance method

for the stability problem (621. The method to be developed

in this chapter is clisely related to Takahashi's method and

to a similar method used by Sheu (441. Peters and Ormiston

have derived a general harmonic balance operator for the

steady-state response problem (631. 	 See also reference

(641.

112



ORRUNAL PPM IS
OF POOR QUAUIY

11.1	 THE HARMONIC BALANCE TRANSFORM

The equations of motion and aerodynamic forces are in

the general form

(N(Vr)l(9) + EC(r)1(4) + []K(r))(q) _ (Q(f))	 (11.1)

where nc;w F - At and (•) - d/d jr. The periodic coefficient

matrices may be written as

N
MW : M	 + I (Xs sin nor + MC cos ny) (11.2)

° n=1 n n

N
C(f) = C	 + E (C sin nor + Cc cos nor) (11.3')

° n=1 sn n

N
Me) - R	 + I (R sin nor + R cos nor) (11.4)

o n a l S C 

N
QW = Q	 +

°
E (Q s

sin nor + Q cos nor) (11.5)
n =1 n cn

Floquet theory gives the form of the solution as (551

W

q n exp(p?) (hbo + mI1 [am sin mfr + bm cos mp]) (11.6)

Here, the vectors br am and a are independent of time.

A more general solution form is [see 441



a s ^a (?) +	 Iq (p)sin m? + q (?)cos m?]	 (11.7)
°	 m=1	 s	 cM	 m

and q^	 are
M

Now, as indicated, the vectors q	 q
o	 sa

functions of time so that

m
q	 !^q + E I (q -mq ) sin m?

° m=1	 S  cm

+ (q +mq )cos m?]
cm sm

and

(11.8)

q = ISq + E [(q -2mq -m q )sin m?
°	 m-1	 sm	 cm	 sm

	+ (q +2mq -m q )cos m?]	 (11.9)
cm	 sm	 cm

Equations ( 11.2-5) and (11 . 7-9) are substituted into

equation (11.1) and simplified using the following

trigonometric identities.

sin m fr sin n? - ^Icos (m-n)r - cos(m+n)?]

	

sin m fr cos n? _ ^Isin(m-n)? + sin(m+n) ? ]	 (11.10)

cos mfr cos n? _ ^Icos(m-n)? + cos(m+n)?]

The resulting double series equation is rearranged to expose

the sum over harmonics, and the series are truncated at some

harmonic, P. Because this equation in harmonic series must

be satisfied for all time ?, the coefficients of each

harmonic must	 balance independently.	 Thus,	 separate
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equations can be written for constant terms (Zeroth

harmonic), for sin y and cos ! terms (first harmonic), and

so on, up to the Pth harmonic. Generally, it will not be

possible to balance some terms of harmonic greater than P

which occur in the sums; such terms are discarded.

This process transforms the periodic-coefficient system

(11.1) into an approximate constant-coefficient system which

is 2P + 1 times larger. A new vector of coordinates is

defined by stacking the harmonic coefficients,

qo

asl

{^}	 qCl	 (11.11)

Qc P

Then, the transformed equations are given in the form

[M]Iq} + (e](q) +	 (11.12)

Each of the barred matrices is a matrix of smaller matrices.

For periodic coefficients up to'second harmonic (N = 2) and

truncation at P = 3, these constant-coefficient barred

matrices are given on the following pages. A pattern

emerges which may be used to extend these n,-trices for

P > 3.
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These equations aftst Wi uihq standard techniques

for constant coefficient 	 equations, and the 	 periodic

solution is reconstructed using equation (11.7). The

equivalence of the two forms (11.6 and 11.7) may be seer by

realizing that the solution must be in the form

(9) - W exp(pr)
	

(11.17)

where a is a vector of amplitudes. Thus, the stability of

the periodic-coefficient system is approximately determined

by examining the stability of the transformed equations.

For a stable system, the steady-state response is simply

(Q)	 - ERI
-1

(0)	 (11.18)

The steady-state periodic response is then determined from

equation (11.7). It should be noted that it may be possible

to calculate a steady response for unstable cases as well.

The steady portion of the present method is analogous to the

method of reference (631.

:,

20
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11.2	 INITIAL CONDITIONS AND TRANSIENT RESPONSE

Application ^.f the harmonic balance method to the

transient response problem is somewhat more complicated.

The initial conditions on q and q are not sufficient to

determine initial conditions on q and q because there are

2P + 1 times as many. However, assuming that they can be

established, standard techniques again apply and the

response can be reconstructed using equation (11.7).

To review, the constant -coefficient equations can be

recast in state vector form as

{X} -	 (11.19)

where

4
	

0	 1	 0

{x} _
-R R -R C	 M Q

The eigenvalues of the system pi , and the corresponding
eigenvectors V 	 are easily computed using standard
eigenvalue routines.	 The general solution of equation

(11.19) is a superposition of these solutions,

{x}	 (vi vz ...6j ... 1{ci exp(pj y)}	 (11.20)

where the c 	 are arbitrary constants which may be

determined from the initial conditions i(0),

{cj } . (vi v2 ...vj ...1-1 {x(0) ) 	 (11.21)
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Note that the second half of each eigenvector, which

corresponds to the velocities, is no longer required once

the initial conditions have been applied. The eigenvectors

are partitioned in the same manner as q, that is

V
0

v
51

v
{v{	 Cl
	 (11.22)

v^
cp

Eigenvalues p j occur as either complex conjugate root

pairs or as real roots, and the corresponding eigenvectors

likewise. Since the initial conditions are real numbers, it

can be shown that the constants cj also follow the same

1

pattern. As a result, it is convenient to combine the

contributions from conjugate pairs when reconstructing the

periodic response. Consider a set of conjugate pairs:
4

Eigenvalue	 a + iv	 a - iv

Eigenvector	 u + .i.M	 G - in

Constant	 a +• ,lb	 a - 4b

The combined contribution of such a generic conjugate pair

to the response is
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eq n exp(sp) ((au, -bwo )cos ry - (bum+awo )sin ry

P
+ E ((-au +bw -bu-aw )sin (v-n)y

na l	 2  an `n `n

+(au -bw -bu -aw )sin (v+n)^r9  an C  C 

+tau -bw -bu -aw )cos (v-n)pC  
C  8  sn

+(au 
cn 

-bw 
cn 

+bu s
n 
+awsn )cos (v+n)yl) (11.23)

Here, the imaginary part of the exponential in the

solution has been expanded and combined with the harmonics

in the solution. The contribution of a generic real root is

simply

P
eq - a exp(of) (hu + E Lu sin nor + u cos n f l)	 (11.24)

° n-1 s n	 cn

The question of initial conditions is answered by

considering the implications of applying initial conditions

to various harmonic coefficients. An initial condition

applied to a zeroth harmonic coefficient (qo and qo)

implies an initial displacement or disturbance. But any

non-zero initial condition applied to a first or higher

harmonic coefficient implies an on-going poriodic motion,

which would have to satisfy t%* equations of motion.

Indeed, such is the case for a transient response which
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begins at one steady-state condition and equilibrates again

at a second. Except for this type of problem, the initial

conditions are applied to q o and qo as follows

qo (0)	 2q(0)
q 0 (0)	 2q(0)	 V".25)

q
sl 

n q 
cl 

n ... n q cp q sl =... n q
cp a  

(11.25)

Several notes are in order at this point. In some

cases, the constant-coefficient system (equation 11.11) may

uncouple into several smaller subsystems. A rotor with two

identical blades, as presented in the preceding chapters,

has two such subsystems:

1) Even harmonics of support motion and of
symmetric rotor modes with odd harmonics
of antisymmetric rotor modes.

2) Odd harmonics of support motion and of
symmetric rotor modes with even harmonics
of antisymmetric rotor modes.

When elastic modes of the blades are included in the

equations, these two sets are possible only if the

multiblade coordinates are used (9.1ti and 9.16).

For stability and transient response problems, it can

be shown that the two sets become equivalent as the number

of harmonics P goes to infinity. One form of the solution

is included within the other, and it is tempting to drop one

or the other of them. However, the two subsystems are not

equivalent when the series are truncated at some finite P.

The subsystems will generally have different orders and

E
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different distributions of harmonics to the various degrees

of freedom. The system may be partitioned and each

subsystem studied separately, but each subsystem must be

studied sid the results must be combined. These points are

illuminated in the application of the method in the

following chapters.
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Chapter 12. THE YAW-PITCH-TEETER MODEL
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A simple rotor -tower model which may be proposed for a

MOD-2 type wind turbine involves only yawing and pitching of

the nacelle and	 teetering of the	 rotor.	 In this	 chapter,

the model equations of motion are extracted from the	 eleven

degree of freedom expressions derived in Chapters 9 and 	 10,

and	 tower	 contributions	 are	 added.	 The	 equations	 are	 I

arranged	 to	 mAke	 use	 of	 the	 harmonic	 balance	 method

described	 in	 Chapter	 11.	 Also,	 the	 response	 of	 the

raw-pitch- teeter model to imbalance is calculated in	 closed
s

form for	 a	 restricted	 case.	 In	 the	 next	 chapter,	 an

aeroelastic stability study 	 is presented	 for the	 complete

yaw-pitch-teeter model.

Thus, the	 yaw-pitch-teeter	 model	 is	 developed	 with

several aims.	 First	 of all,	 the development 	 demonstrates

the transformation or 	 reduction of the	 six hub degrees	 of

freedom to those chosen 	 for the tower	 portion of a	 model.

The same	 process would	 be used	 to extract	 other	 models,

simple or complex, from the eleven degree of freedom parent.

Secondly,	 the	 yaw-pitch-teeter	 model	 is	 used	 to	 give

rudimentary results for aeroelastic stability and 	 response.

These will	 help explain	 the aeroelastic	 behavior of	 wind

turbines with teetering rotors.
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Sketch 12.1	 The Yaw-Pitch-Teeter Model

Sketch 12.1 gives a schematic of the proposed model.

The elastic motions of the tower, yaw drive, and nacelle are

represented by an equivalent pivot of the nacelle located a

distance L downstream from the hub point. The nacelle has
n
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degrees of freedom in yaw 0  and•ih•pitch !p which are
constrained by springs k  and k p , and by dampers c  and c 

as shown.	 It also has moments of inertia I yn	 and Ipn

about the respective axes.

The rotor has only the teeter degree of freedom pt

which is constrained by a spring 2k t , and a damper 2c t . It

spins at a constant rate 0 and otherwise has all the

attributes introduced in Chapters 9 and 10. Tip pitch

control is a desirable feature, and it may be included

through the aerodynamic integrals of Appendix C.

12.1	 REDUCTION OF HUB COORDINATES

The first step in formulating the yaw-pitch-teeter

model is to recognize the relationship between the six hub

deflections and the tower deflections chosen, here ty	 and

f 
P

. This relationship is then used to transform the

equations of motion and aerodynamic loads. Quadratic terms

are required to transform the Q matrix, since this will

produce terms which are moved to the R matrix.
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X 
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y

Y	 0P
t L 0 0h

(12.1)

'00^Y	 Z

Sketch 12.2	 Hub and Tower Deflections

Both hub and tower deflections are shown in Sketch

12.2. These two sets are easily related by using the

transformations of Chapter 9. The rotations are taken in

the same order, that is f	 then 0 
Y	

and then f = Qt.	 In
P 

this case t
Y	 P

and t are analogous to 0  and Oy.

The vector from the pivot to the hub is given in

inertial coordinates as (see equation 9.1)



Note that t
Y

also

ORfQMW PAGE 1

Q

0	 tn cost Ysino	 n

to - CT Y JETY1 0	 -tnsino	 (12.2)

to	 tnCOSO cosoP

and tP are substituted here. This vector is

qX

to 	qY (12.3)

to ♦ qZ

Equations (12.2) and (12.3) are compared to give

qX	tncoso sint p	 tn0P

q 
	 tnsint

Y	
-tnoY	 (12.4

q	 -t (1 - cost cost ) "= 0
Z	 n	 Y	 P

	The hub deflections qX,..., tZ	 are now all expressed in

	

terms of the tower deflections t	 and t	 The approximate
Y	 P

expressions given last in equations (12.4) are adequate only

to relate the coordinates.

The corresponding generalized loads can be related

through the variation of the work done by them.

130



OF POOR QUALfri

Q 
y y	 p p	 X X	 Y Y	 Z Z
at + Q at • P aq *+ P aq +...+ Q at 	 (12.5)

but

3q  = tnafp	
at x 

aty

aq Y s -
^nAty	 at  = 60 	

(12.6)

aq Z = -Ln (t yat y + tpatp)	 30  = 0

These are substituted into equation (12.5) and coefficients

of 
At 	

and 
if 	

are separately equated to give

Q 	 Q 	
4 

n 
P 
Y tntyPZ

Q  s Q  + 
t 

n 
P 
X tntpPZ

These results could perhaps be written by inspection from

Sketch 9.2, but the preceeding method would be valuable for

more complex models.

One way to use equations (12.1) and (12.4), and

equation (12.7) is to set up transformations between the

deflections and between the loads. Only the first seven of

the eleven degrees of freedom are used in this model,

qx ...,# . These are related to ty , tp , and ^t by using

(12.1) and ;12.4).



(12.8)

oy

^p

Ac

0 .L 0
n

—L 0 0
n

0 0 0

1 0 0

0 1 0

0 0 0

0 0 1

QX

qY

qZ

0x . _

tY

tZ

let

The corresponding loads are related by using (12.7).

P 

'

P Y

	

Q 
	 0	 -Ln 

-LntY 1
	 0	 0	 0 P 

	

Q	 Ln	 0	 -1	 0	 1	 0	 0 Qx 	(12.9)
P	 P

	

Q	 0	 0	 0	 0	 0	 0	 1

	

t 	 QY

QZ

Qt

Equation 12.8 is substituted into the equations of motion

and aerodynamic terms, which are then premultiplied by the

transformation of equation ( 12.9). This reduces the seven

by seven equations to three by'three. The terms -t noand

-ln o P need not be used when K, C, and K are premultiplied,

but they produce linear terms when Q is premultiplied.

These are subsequently moved into K.
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HAWTs

This is a convenient place to note an addition to

ordering scheme. A reasonable order of magnitude for

is

t A	 00) .

Terms of differing magnitude are combined when the equations

are reduced, and the ordering scheme must be applied to the

aerodynamic terms as before in Section 10.1.

12.2	 EQUATIONS OF MOTION

All that remains after reducing the hub degrees of

freedom is to add the tower contributions to the equations

of motion. These are very simple diagonal mass, damping,

and stiffness terms. Without the rotor, the nacelle

equations of motion are

I 
y n

f
y	 y y+ c t + k y ! v • 0

I 
Pn tP + c P Pf + k P !P	 n= gS	 (12.10)

All loads on the nacelle are ignored except for its mass

imbalance S
n . 

It is assumed that the system is statically

balanced so that Sn ♦ 2Hb Ln 	 0 and Sb a 0.

It is convenient to define total moments of inertia

about the yaw and pitch axes which include the rotor mass

I y ` Iyn + 2Mb 4n	 IP • IPn + 2Mben	 (12.11)

Further, the following nondimensional parameters are defined
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M M L 2 /I 5	 S L/Ib	 b	 b
f

b b	 b
I I	 /2I

b
I	 I	 /2I b

Y

V 2
y
k /02 1

P	 P

t c2^	 /k I

V2 k /n2 i t	 ec/k I (12.12)
P

v^

P	 P

= kt/n2lb
P	 P	 P P

tt =	 ct/ktlb

t L/L c	 c /L
n n

The reduced
_

equations of motion with aerodynamic terms
I

and tower contributions are made nondimensional by 	 dividing

through by 202 I b , and all of the preceeding definitions are

applied.	 The equations are in the familiar form

t !	 t
Y Y

JO
Y

(M] t +	 [C] +	 [K] _	 {Q} (12.13)
P P P

^t ^t ^t

where now (^)	 d/der. The coefficient matrices are given on

the following pages in a form compatible with Chapter 11.
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t^sl	 I

Iy +^cos 2 /!P +(1-^bj^b )sin 2 pp	 0	 0

0	 j  .4cos2Ap +(1- b` --b )sin
2

Ap 	Q

0	 0	 1

0 0 b/^ )sin2OP

+ 0 0 0 sing

1- ( 2 /Ab ) s i n2 Sp 0 0

0	 0 0

+ 0	 0 -1+(,2 - ) sin 2 op cos?

0	 _,+(§2b/Ab)sin2OP 0

0 -kcos2 '8
P

0

+ -kcos2 0
P

 0 0 in2y

0 0 0

-S Cost Op 0 0

+ 0 C082 0 cos2y (12.14)

0 0• 0
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16yL1+2ryIyvy	 Cos2^p	 0

-Cos 2 ,Bp 	16yLl + 2CpIpvp	 0

0	 0	 iyLl+2ttvt

0	 0	 iyL1 }

	

+	 0	 0	 2(1-Sb/Mb)sin2f^p sing	 ir

	

8yL1	
2cos2^p	 0	

I	 _-	 44

_	 3

	

0	 0	 2(1-52/M
b b 

)sin2p
p

	+ 	 0	 0	 -8yL1	 cosr

12cos 2 J^p 	 -8 1	 0

	

cr s2pp	
16yL1	

0

	

+ - 1 yL	 -cos2a	 0 sin2r
16	 1	 p

0	 0	 0

-.1

	

6yL1
	 -Cos 2 ^p	 0

+

	

-Cos 2,B	 i6yL1	 0 cos2lr	 (12.15)
p

0	 '0	 0
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{j Y r Y 12 yL 3 Xpp 	 2 y(3L5k-
4L40 )k	 0

12y(3L
5
a -2L4 0 )ln)

i y(3LS a- 4L4 0 )a	 tipr1-12yL3app	 0

- i2 r (3L5 k-2L$ 0o )Z'n )

{ r b	 p+COS2A+(Sb /f4b )sine

	

0	 012y[LSOC+3(L3a-L20 )^P

-(Sb /Rb ) ( 2L 
5 

)-3L 4 0 
0  

)ip

{COS2,Bp +(fib/ *b )sin2Ap

0	 0	 +i2y[(3LSa-2L^Bo) l+

-L80c+3 ( L3 a-L2 90 )'1+
_	 P

- ( Sb /Rb M L5 a - 3L4 8o ) gyp ) }

+	 0	 0	 112 y (3LS a-4L4 8
0 

)k	 sing

	

1 VL3 X p	 i2 Y ('LS 
a-4L4 Bo ) a	 0

0	 0

+I	 0	 0

r-2 y( 3L5 a- 4L4 8o ) X

{ •cos2pp -(Sb/Mb )sin20p
'12 Y[(3L5 ^- 2L4 90 ) a+

-L80C+3(L3 X-L
2

8o )#p+

• (Sb /Mb )(2L5 X-3L4 00 )1p )}

1 Y (3L a-4L 0 )a	 IYL V	 0
12	 5	 4 0	 6 3 p
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24y(3L5'-4L48o)a

♦ 	 12rL3'^p

0

12rL,X^p

+ -214r(3L5X-4L48o)a

0

	

12 3^'^p	 0

-2 OL^x-4L^0 )a	 0 sin2yI

0	 0

-
24r(3L S a-4L 4 8 o )X	 0

	

-112yL3'Pp	 0 cos2y

0	 0

(12.16)

i

{Q) s

0	 01 	 ( 1	 0

112 
IM 3  t+(3L 5 a-4L4 80 ) /J 	 0 cosy - 0 ^sin2 1r + 1 cos2y

10 , 	2	 0)	 0

(12.17)

1
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12.3	 AN APPROXIMATE SOLUTION FOR IMBALANCE

This section is a digression from the main development.

The response of the paw-pitch-teeter model to a small rotor

imbalance is calculated in an approximate fashion. while

the closed form solution presented is possible only for a

restricted case, it is nonetheless c' some interest. In

this section only, the rotor is assumed to have no precone,

no teeter spring or damper, and no aerodynamic loads.	 The

in vacuo equations of motion are then

I Y 
+ 4 (1-cos2r )

-4sin2r

sing

-hsin2f

2 
P 

+ 4 (1+cos2e )

-cos*

sing t
Y

-cos? !p
to

1	 At

0 !Y

0
fP

0 ;t

2CYIYvY 
+ sin2r
	

1-cos2f

+	 -1°cos2r
	

2C p I p v p + sin2r

L	
2cosy
	

1sinr

t r 2	 0sin ► r tY y	 Y

+	 0	 iPrp	 -,os	 1p	 (0)	 (12.18)

0	 0	 1	 At

Imagine a small imbalance mass HI located on blade one

at la . Besides adding negligible increments to the mass and

moment of inertia terms, general imbalance terms are

introduced which augment X and Q. These terms are quoted

here without documentation. They can be derived from the

kineti: and potentij.'. energy expressions (9.7 and 9.12) by
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replacing M b with m, S b with mLm , and lb with m.t and

applying Lagrange's equations and the transformations of

this chapter. The resulting imbalance terms are
i

	

0	 0	 0

	

e[FQ _ (sg/0 L) 0	 -cosh► 	 1	 (12.19)

	

0	 1	 cosy►

and

-sin?
1

o{Qj	 iti	 cost	 (12.20)	 }n
f

0

where s = m—tm L/2I b .

These results demonstrate what occurs whenever the

blades are dissimilar. Compare equation ( 12.19) with K in

equation (12.18). The pattern of coupling between tower

degrees of freedom and teetering discussed in Chapter 11 has

broken down. However, the Mathieu type terms are very small

compared to the other stiffness terms. A small amount of

damping would eliminate any instability they may produce,

and they are neglected henceforth.

The periodic excitation introduced by equation ( 12.20)

is also small, but may produce resonances under some

circumstances. These imbalance terms excite the opposite

set of harmonics from those excited by the aerodynamic

forcing terms (12.17).
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An approximate solution to the in vacuo equations of

motion ( 12.18) with imbalance forcing (12.20) is possible.

First premultiply the equations by

1/I Y 	 0	 -sinl► jIY
[MI-	 0	 1/f P	 cosr/I P

-sing/fY 	 cos?/IP 	 1 + sin 2 F/fY + Cos 2y/IP
(12.21)

For the restricted case of this section, t  and t  
are

completely uncoupled and the equations become simply

t + 2C v	 + . 2 0 _ -W /fY)sinp
Y	 Y v Y	 Y Y

f + 2C v t + r 2 t = (sfn/I P )Cos r 	 (12.22)
P	 P P P	 P P

dat + '8t	 Ilsfn [ (1/f v + 1/f 
P ) - 

(1/f Y -
 

1/r P )cos2r J

2cosr t - 2sinj► 	 + V 2 siny f - v2 cosr 0
Y	 P	 Y	 Y	 P	 P

These equations are easily solved in sequence for ty

and t	 then Q t . If Cy	 C P	0
P

f
Y 

= -a 
Y 

sing►

!= a Cos?

	

P	 P

	

^t	 [aP+ayJ + [a P -ay Jcos2f	 (12.23)

where

ay	 sfQ/[IY(ry-1)J

aP = -sfn /[ I y 2 	 J

This response demonstrates an interesting mode of the

i^
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system. As the hub follows the imbalance, it describes an

ellipse with radii ay tn and ap t-n . The nacelle rotations

are counteracted by the teetering in such a way that the tip

path plane remains always the same.

The results of this section apply only for the rotor

which has no airloads, is not preconed, and has no teeter

spring or damper. However, the rotor-tower system would

exhibit similar behavior if these attributes are not too

large.
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Chapter 13.	 AEROELASTIC BEHAVIOR
OF THE YAW-PITCH-TEETER MODEL

Various aeroelastic instabilities of the teetering

rotor-tower system are possible depending on the parameters

of the machine and its operating condition. Several kinds

of solutions of the yaw-pitch-teeter equations (12.13-17)

are presented in this chapter for a range of parameters.

First, transient response results are given for several

unstable cases in the manner of Janetzke and Kaza 1501. The

results of the present study are compared to theirs as a

means to verify the yaw-pitch-teeter model. Second, a

stability study is rresented which displays the effects of

some key parameters: support stiffness, damping, inflow

angle, and preconing. Finally, the steady response to wind

shear is briefly discussed.

In each solution, the NASA MOD-2 is used as a base

case, and one or two parameters are changed at a time. The

base case parameters are adapted from reference [50], and

are given in Table 13.1. (Tables and Figurea are placed at

the end of this thesis for ready comparison.)

13.1	 COMPARISON OF TWO MODELS

A more complete description of the model presented by

Janetzke and Kaza is in order here to point out similarities

0
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and differences (50].	 The present model is physically

similar to their model, although pitch is defined in the

opposite sense. They used a flap bending mode for each

blade in addition to the yaw, pitch, and teeter motions used

here. They did not include preconing, but they did include

a delta-three angle of the teetering axis. The present

analysis assumes that the teetering axis is perpendicular to

the blade axis.

The aerodynamics of reference [503 included nonlinear

expressions for the lift and drag coefficient, and so were

not given in explicit form. This was consistent with the

solution technique used there, which was a straightforward

numerical integration of the equations of motion. The

aerodynamic forces were apparently calculated numerically at

each time step.

The results presented by Janetzke and Kaza 	 were

transient response time histories, given an initial

disturbance of the system. Stability was determined by

examining these time histories for growth or decay, and the

nature of the behavior was shown as well. The standard

MOD-2 case was examined with and without damping; a case

with reduced yaw stiffness, (Yy - 2) was examined without

damping; and a case with both yaw and pitch stiffness

reduced 
(yY - 

Y  - 2) was examined with and without damping.

i
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The stability of these same standard cases may be

examined by applying the techniques of Chapter 11 to the

yaw-pitch-teeter equations. The harmonic coefficient

matrices (12.14-16) are calculated and substituted into the

barred harmonic balance matrices (11.6-8). Then, the

eigenvalues of this transformed system are extracted and

examined. Roots are presented in Appendix D for all of the

cases of reference (501. The conclusions are the same for

the two analyses, except that the present analysis predicts

that the standard MOD-2 case without -damping is slightly

unstable (s - .0015). 	 Reference (501 had this case as

neutrally stable.

Appendix D gives the roots for the standard cases at

three different truncations of the harmonic series; P - 1,

P - 2, and P - 3. These results show the rapid convergence

of the harmonic balance method for the stability problem.

As P is increased, the real part of root converges and may

repeat with an imaginary part which is different by an

integer amount. The roots are also divided into the two

sets discussed in Section 11.2. As P is increased,. roots

jump from set to set, but no new roots arise at P - 3.

Transient response time histories such as those in

reference (501 can also be calculated using the techniques

of Chapter 11. The eigenvalues and eigenvectors of the

transformed system are	 calculated, and	 the	 initial
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conditions applied (11.21). Then, the contributions of all

conjugate pairs (11.23) and real roots (11.24) are added to

give the transient response.

	

The two reduced st-ifness cases without damping, both 	 4

unstarble, are arguably the most interesting and are used
i

here to compare the two models. Appendix E presents the

eigenvalues p
J

, the eigenvectors vi , and the combination

constants c  for the y y = 2 case without damping. Figure

13.1 presents the transient response results from the

present analysis for this case. The initial conditions and

all other parameters are the same as those used by Janetzke

	

and Kaza, whose results are given in Figure 13.2. These are 	 {

transformed to match the conventions used here, the bending

mode responses are omitted, and the scale is changed.

Figures 13.3 and 13.4 make the same comparison, but for

the v Y = v p = 2 case. Perhaps the most startling fact about

these plots is that only harmonics up to the second are used

(P - 2).

The initial conditions used in reference [501 are

apparently designed to excite the forward whirl flutter mode

of the system. The initial conditions used in the results

of Figures 13.1 and 13.3 are placed on the zeroeth harmonic,

based upon the guidelines of Chapter 11. If similar

whirling initial conditions are used but placed on the

second harmonic, an slightly different picture emerges.

Figure 13.5 shows this result for the Y = Y = 2 case.
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A number of unstable roots are given in Appendix D for

the v  = v  * 2 case. A root with s - 0.0104 is largely

responsible for the phenomena in Figure 13.3, and a root

with s s 0.0125 is culpable in Figure 13.5. This points

out a difficulty with using transient response histories to

examine stability, since the initial conditions must be

carefully chosen to assure excitation of the unstable modes

of interest. Thus, transient response time histories are

.used here only for comparison to reference [501, and are not

continued in the following stability study.

13.2	 AEROELASTIC STABILITY STUDY

Both stability maps and plots of damping versus a

parameter of interest are used in this section to give a

rudimentary understanding of the aeroelastic stability of

the model. Figure 13.6 shows the basic instability regions

for different combinations of support stiffnesses.	 The

locations of cases from the last section are shown.

Generally, reducing either stiffness too much, or having

them too close together can cause instability. This plot

does not show the strength of the instability, and although

the plot indicates that MOD-2 is unstable, a very small

amount of damping suppresses the whole matched stiffness

region.

Note also that a portion of the boundary was calculated

with both P = 2 and P a 3.	 This is another check of the
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convergence of the harmonic balance method. The periodic

coefficients contain harmonics up to second, and it appears

that P - 2 is adequate for these calculations.

The regions shown also must not be regarded necessarily

as being one particular mode. Rather, many different roots

(for P - 2 there are fifteen pairs) overlap to weave this

pattern. This fact is demonstrated by Figure 13.7 which

plots the real part a of various roots which are active as

the support stiffness is reduced along the line Y  - yp.

Here again, the branches are separated into the two sets

discussed in Section 11.2. This plot shows the weak nature

of the instability near the MOD-2 base case. Note also the

very strong instability near Y - v
P - 

1.
Y 

A less confused and more rewarding picture of the

instabilities involved is produced by decreasing the yaw

stiffness while maintaining the pitch stiffness, as shown by

Figure 13.8. Three general instability regions are shown:

one at matched stiffness krhich is weak at least for this Y ;

another beginning around Y 

Y - 
2 which involves yaw and

teeter as previously shown in Figure 13.1; and a divergence

near v Y - 1. Figure 13.8 will be used as a basis for

comparison in the following plots.

A reasonably small amount of damping applied equally to

yaw and pitch suppresses the flutter instabilities as shown

by Figure 13.9. Several of the roots from Figure 13.8 are

completely off scale.
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increasing the inflow through the rotor disk 	 is

destabilizing to both the matched stiffness and reduced

stiffness instabilities, as shown by Figure 13.10. 	 This

plot applies to the case of an increase in the inflow

without a corresponding change of the pitch setting. R

change in the inflow which is counteracted by the pitch

controller so that the power output is constant has only a

minor influence on the stability.

Finally, Figure 13.11 should be compared to Figure

13.8, which shows the effect of a practical amount of

downwind preconing on the stability. The matched stiffness

instability is hardly affected, while the reduced stiffness

instability is somewhat broader and more intense.

The divergence region is also broadened slightly by

precone. This last observation is perhaps a little

surprsing, and it hints at the different nature of the

freely teetering rotor. Precone would ordinarily stabilize

the wind turbine in yaw, but this divergence involves teeter

as well. in this regard, see reference ( 651. Stiffening

the teetering degree of freedom changes the aeroelastic

behavior of the machine appreciably, as shown by Figure

13.12, which should be compared to Figure 13.6. Here, a

large teetering spring has been applied, and the divergence

boundary is at a much lower yaw stiffness.
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To conclude this discussion of aeroelastic behavior,
s

Figure 13.13 is included. The steady response to wind shear
l

(r = .03) is indicated for two cases of support stiffness

with damping. The yaw and pitch response for the standard

MOD-2 case is actually too small to be seen on this scale.

The teeter response is the same for both the standard case

and the	 v	 2 case.
Y	 P
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Chapter 14.	 CONCLUSIONS

As outlined in the introduction, this thesis has

addressed four specific recommendations made in reference

[141. These same recommendations serve as an outline for

these thoughts and are therefore repeated here.

1) Develop simpler models to investigate the
main origins of aeroelastic phenomena (1).

2) Examine aeroelastic and mechanical
instabilities more closely, especiallyy for
the proposed more flexible systems (3).

3) Study teetering effects and propellor 	 j
whirl type instabilities (4).

a
4) Look in detail at generator drive train

interaction with other system components (7).

Two simple aeroelastic models have been developed in

accordance with 1) above.	 The first, a simple equivalent

hinge model of an isolated rotor blade, was intended to meet 	 3

some of the requirements of 2). The second, a simple

rotor-tower model with a teetering rotor, was intended to

fulfill some of the requirements of 3). In the process, a

framework was established which facilitates the development

of other simplified models: including possibly a model to

address 4).
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In Part I, an equivalent hinge model was proposed as a

kind of typical section approach for the isolated HAWT

blade. The blade was assumed to be rigid, but hinged near

the root and constrained by springs. Three degrees of

freedom were used: flapping out of the plane of rotation;

lagging in the plane of rotation; and torsion about the

pitch control axis. The model derived includes oi!sets of

the center of gravity and the aerodynamic cent ., radial

offset of the equivalent hinges from the hub, and both

precone and droop angles of the blade.

First, the complete nonlinear equations of motion were

derived, then they were linearized in perturbations about a

steady-state blade position. The linearized equations were

further simplified by applying an assumed ordering scheme

reasonable for HAWTs. In particular, the ordering scheme

allowed moderately large out of plane deflections, pitch

setting, and inflow angle.

Quasisteady aerodynamic loads were derived in a similar

process. Nonlinear aerodynamic loads were written assuming

only that the angle of attack was small. These too were

linearized and simplified as before. Finally, the nonlinear

steady-state equations were written. 	 The ordering scheme

was also applied to these equations, which reduce to

quadratic for flap deflection and linear for lag. The

steady-state torsion is assumed to be prescribed by the

power setting.

152



The resulting system of linearized equations and 	 their

associated steady-state	 equations	 were	 implemented	 on	 a

digital computer.	 An	 extensive	 parameter	 variation	 was i

conducted using the	 NASA MOD-0	 HAW'T as a	 base case.	 The

stability was	 also calculated	 for	 several two	 degree	 of

freedom submodels extracted from the three degree of freedom

system.	 These two degree of freedom models were 	 acceptable

for	 predicting	 flap-torsion	 flutter	 and	 flap-lag

instability,	 but	 stiff	 inplane	 instabilities	 were	 only

predicted by the	 three degree of	 freedom model.	 Finally,

the model showed	 good agreement with	 results from a	 modal

model previously derived by the author.

In Part II,	 several tools were	 first ae.•eloped	 which

have broad	 application	 to	 rotor-tower	 k, oh l.ems	 in	 HAWT

aeroelasticity.	 An eleven degree of freedom linear model of

a teetering rotor	 on a flexible	 support was derived	 using

six hub degrees of freedom:	 three Cartesian deflections and

three Euler rotations.	 The use of	 hub motions allows	 the

rotor model to be	 adapted to any	 tower model chosen,	 from

simple to complex.

Besides teetering, the rotor blades were modeled 	 using

symmetric and antisymmetric bending	 modes in both flat+	 and

lag bending; inextensional bending was assumed.	 Torsion	 of

the blades and all torsional moments were neglected	 because

of the	 high torsional	 stiffness which	 characterizes	 most
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HAWT blades. The rotor model derived includes preconing of

the blades as well as a small undersling of the rotor, and

the blades were assumed to be twisted and tapered.

The aerodynamics were again assumed to be quasisteady.

Whereas the in vacuo equations of motion were derived

without an assumed ordering scheme, the aerodyiiamic loads

could not have been derived conveniently without one.

Unlike some other analyses, the aerodynamic terms were

derived in explicit form as coefficients of the equations.

Next, a harmonic balance method was developed to solve

the equations of motion, which form a second order system

with periodic coefficients.	 The method as outlined is

useful for stability, transient response, and steady-state 	 4

response calculations. The form of the harmonic balance

method employed is quite convenient for small systems of

equations, and the convergence has proven to be rapid.

Thus, it would be useful as well for other problems with 	 #

similar equations.

The model of a teetering rotor on a flexible support

was intended to serve as a parent from which a number of

simpler models could be extracted. This was demonstrated by

developing a simple rotor-tower model which includes only

nacelle yawing, nacelle pitching, and rotor teetering. The

resulting equations of motion were solved using the harmonic
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balance technique. Solutions were implemented with several

computer programs for stability, transient response, and

steady state response.

Transient response time histories were calculated for

several cases taken from a study published by Janetzke and

Kaza (501. Their model included flap bending modes of the

blades, but did not include preconing, and they solved the

equations of motion by direct numerical integration using

finite time steps. The comparison between their model and

the simple rotor-tower model developed is very good, even

thouqh the harmonic balance was truncated at the second

harmonic of the rotation epee for the present analysis.

The simple yaw-pitch-t_eter model was used to examine

the effect of key parameters on the whirl stability and

divergence of a teetering HAWT. These included support

stiffness, support damping, inflow increase due to a gust,

and preconing. Finally, some implications of using a

teetering rotor were investigated by including a teeter

spring.

In s , immary, the thesis contributes to both the modeling

methodology and the understanding of aeroelastic behavior of

wind turbines. The general rotor model shows promise for

the development of other models which can contribute to

understanding new aeroelastic problems which may arise.
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Appendix A.	 MODAL MODEL SUMMARY

The modal equations of reference (201 are reviewed here

with some nomenclature changed to match that of Part I.

Coordinate systems are the same except that, because the

blade is twisted an angle 8 b (x), so are the principal axes

and C. The perturbation equations are

of Ii	 r

q 	 9w	 qw
of

IM]i qv	+ IC] q
V 	+ IKl Qv	 - ( 0)	 (A.1)

e.	 .

qB 	 qe	 q8

Only the inertia and stiffness terms in the coefficient

matrices of equation (A.1) are quoted below. Here, KR is

the torsional stiffness of the controlsystem, pb is the

blade materiel density, E is the Young's modulus, and G is

the shear modulus.

L
Mww - ( L 2 /I^) S my2 de

0

MWo - Mow - (L/I^) me I Cosa b70rwdf

Mvv - (L2/I^) M,2&

Mve - -(L/I^ ) S me I sine breyvdf

M 19 Mv8
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M	 M
wv	 vW	 0
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Cwv = 2(L 3/I )^ myvaWdf qW  + 219 p (L 2/I Y )f my w y vdf +

+ 2(L 2/I fi )f me I sine byw'yvdf
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Appendix H.	 MATRICES FOR PART II

This appendix contains the transformation matrix (9.1),

its time derivative matrix, and matrices which are products

of either or bosh. All are expressed to adequate order for

the expansion of the kinetic energy (9.5) and the blade

relative velocity (10.7). The latter task is generally more

demanding. A zero indicates that no terms significant to

this study exist in that position of the matrix.
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û

to^a ^^ ^^
} a.

u
`a

c Ga o 4
fA ^,r

N

^i a^

.^ p
1

OMMM 'AIK IN

OF PM QUALMY

r
IL

CL

ua oa as
u ^ u^I	 ^

atG •^y

u • u w

v cVI
°°a

^r u a

ea as
IS
	

ua
1

W C N C

^

IBC
•'w^	

}

tN N q 1 G ^

r«c+ + a u	 l a
se

°0 a

to
c

O
u

c 6
++	 u el^

a• 'a	 st se	 1

H
= C

O

tf^

^+

yV

7f

^}t

M o u
H u ^

u m	 ^C

'
CL

^

u Q

c

CL

^

as

c

c ^a
m u°

u m O + a
a

I}
sA

d^`
a

a

u

^°'
a

c

t
to

u o u O ago a•

E+ro

^N ^N

ca

^'►.

oa
o d

44

W c

0
'CO

^a

m

•^^

t GD
Omit 0

u
a

IL

•^^ 91
4.ae

z
+

u 
a

ti

u° ^°'

a

o ^°' o

a

• 
>.•.^N

+

a
u

•^N

u

1

^
u

a
m
O

}.
C• ^N

u
>+ o

>q
V C

168



ORWM PAGE 13
OF POOR QUALrry

^-

r ^ f

ti
..Ci >^ + C 1 Z

^C U ^^ O

i ^ +

e ^

^ n ^.
N G

c
uz u°

f

o
v
^

..i

y

1 uu ^ +G fu vim!
0 °i O ^ ^ O
y

v
+

c
U

R
C

v
1 J

'b:^ N
G.

^.+
7t

, awl y .. O

N

G
^ +

G
u +G

p
y 11 O U 1 r

U +

C

G :J

^G

1

C
O
^;

^
C
..r

•.r
;n

G
'^
N

y
O

''^
N

..•
C

N
`..,

•w

c
`k

.^
C u

—t

a

uô

^
a
y

a•
1

o
uvv

N ^. • dO
u o 0o t

II	
C

•^ aN M

E.	 o +^+ •'max u

ro
-E-4	

L	
^= + _ +



ORiQINAL PAGE M
OF POOR QUALITY
f'

^	 A

YL .!. ^. ^ ^L t° Y	 •i

N • 1 L\ •46 « r N Y	 _
• « i 5 « • + eY N	 O	 L w =«`N r\ /̂ Yi N̂	 • C N^ A 1• NAY ♦ 	 Y	 K	 ^►L N w ^	 N

« wO N Y ♦ N	 N	 •	 /^ M	 vL
N i • Y`	 } vf \ \ L	 Y `

+ 6 `N N NO vYr • wN♦ 11iN ^
y —C ♦ 	 Y	 ..

^	 ♦ 	 • Y	 Y

L 11̂
►

^ O	 i
\

Y
L\

N
•
O

C
w• N

C	 w	 Y N
1.	 ^.	 •	 \	 1•	 •	 •	 xw

•
•
Y

•
^x

N
N̂ ^ • N^` \° ^

V
V	 1.K 	N	 ° « r^	 ♦ 	 •i N	 N\f i 1 1	 • O • ^

ty, • ^ K ^ t K v w	 C	 „'	 N
..1	 YO	 C^ -

v	 L
1 O ^	 r	 ♦ 	 • w}	 i

Q .Y. t v 'N

i ♦

c %.

•s vci

Q ±

^°	 M Nw A

t 3	 •L1,^
^s \Y	 o	 °N`ê	
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Appendix C.	 AERODYNAMIC INTEGRALS

This appendix contains the integrals used in the

aerodynamic terms of Chapter 10. Ordinarily, both the

reference pitch setting 8 0 and the reference chord co

mould be chosen at x/L = 0.75.

L

L 1 = (4/C OL 4 ) C Ccx 3cos8 b dx

0
L2 - (4/c OL 4 )1 Ccx 3 (sin8 b /B o ) dx

L 3 -	 (3/c 0L 3 )S Ccx 2 Cos8 b dx

L 4 = O/C 0L 3 )f Ccx 2 ( sin6 b /8 o ) dx

L$ _ (2/c 0
L2 ) ^ Ccx cos8 b dx

L 6 = (2/c 0
L2 ) s Ccx(sin8 b /8o ) dx

L 7 _	 (1/c oL)j
r
Cc cos8b dx

L g = (1/c
0
L)^ Cc(sin8 b/8

0
) dx

L 10	 (4/c 0L 3 )f Ccy
v
x 2Cosa b dx

L 11	 (4/C0L 3 )s Cc, 
v
x 2 (sine b /8o) dx

L 12	 (3/c
0

L2 ) S Ccy
v
x cos8b cox

L 13 = (3/c 0L2 )s Ccy
v
x ( sin8 b/Bo ) dx

L 14	 (2/c0L)J Ccyv 
Cosa b 

dx

L 15 = (2/c0L) J Ccyv
 (sine b /8o ) dx
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L 20 = (4/c0L3) S cc, wx 2cos8 b dx

L 21 = (4/c 0 L 3 ) S Ccy wx 2 (sine b/8 o ) dx

L 22 - (3/c o L 2 ) Ccy wx cos8 b dx

L 23 - (3/c0L2) S Ccy wx(sin8 b/8 o ) dx

L24 - (2/c 0L)l Ccy wcos8 b dx

L25 - (2/c 0L)S Ccy w (sine b/8 o ) dx

L 30 - ( 4/c 0 L 3 )SCcyvx 3 (sin8 bcos8 b/8 o ) dx

L 31 = (4/c 0L 3 )S Ccyvx 3 (sin 2 8 b/8o) dx

L32 - (3/c o L 2 )sCcy,x 2 Cos 2 0b dx

L 33 = ( 3/c 0 L2 )S Ccyvx 2 (sin8 bcos8 b/8o ) dx

L34 - (3/c o 	,L 2 ) Ccy,x 2 (sin 2 8 b /8a) dx

L 35 = (2/c 0 L) f Cc" xcos 2 8 b dx

L 36 = (2/c
0
L) ^ Ccyvx (sin8 b cos# b /Bo ) dx

L37 - (2/c 0
L) Ccy'x(sin 2 8 b /8a) dx

L38 - ( 1 /c 0 ) j Cc y'cos 2 8b dx

L39 = ( 1 /c a ) S Ccy'(sin8 b cos8 b /Bo ) dx

L4 0 = ( 4 /C 0 0) S Cc yw x3 dx

L41 = (3/c0L2) S Ccywx 2 dx

L42 = (3/c
0

L2 ) S Ccywx2 (sin28b /28
0
 ) dx

L43 = (2/c0 L) 5 Cc yW x dx

L44 = (2/c0 L) S Ccylx cos28b dx

L45 - (2/c0 L) S Ccy'x( sin28^ /28^ ) dx

L4 6 - (1/co ) Cc yw dx

L4 7 0 (1/co ) Cc ywl cos28b dx
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L50 = (4/c 0L 2 ) ^Cc '2x CosB b dx

L51 = (4 /c 0L 20 Ccy 2 x ( sin8 b/8 o ) dx

L 52 = ( 3/c 0L) S Cc y 2 Cosa b dx

L 5 = ( 3/c 0L)S Ccy 2 (sine b/8 o ) dx

L54 = ( 4'/c 0L2 ) S Cc yvyvx 2 ( sin 2 8 b/8o) dx

L55	 ( 3/C oL)j Cc yvy vxt sin 2 8 b/8o)  dx

L, 5 = ( 2/c o )S Ccyvy v
 
( sine bCosa b/8 b ) dx

L60 = (4/c 0L2 )1 CC, v7wx CosB b dx

L61 = (4/c 0
L2 ) S CC, T ywx(sine b/8 o ) dx

L62 = (3/c0L) S Ccyv yv Cosa b dx

L
63 

= (3/c 
o	 v w	 b o
L)j Ccy y ( sine /B ) dx

L64 = (4/c 0
L2 ), Ccyvyw x 2 (sine bcose b /B o ) dx

L65 = (3/coL) S Ccy'y w x COS2 e b dx

L66	 (3/c 0L)I Ccy^yw x ( sinebcosa b/Bo ) dx

r" 
67

_ ( 2/c o ) S Cc yV ywcos2 0  dx

L68	 (3/c0L) Ccyv ywx dx

L69	 (2/c0 	 Cc yv yw dx

L 70 = ( 4 /C0 L2 ) CGyw x c oseb dx

L 71	 J= (4/c oL') Ccy2 x ( sine b /8o ) dx

L 72	 (3/c0 L) f Ccy 2 Cosa b dx

L^ 3	 ( 4/c L2 ) S Cc y' y x2 dx
o	 w w

L74 = (3/c L) f Ccy' y x dx
o	 w w

L80 = (3/c 0  L3 ) S Cc2 x2 dx

L81 = (3/c 0  L2 )  Cc2 y  x dx

_ 1
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L 82	 (2/C2L) Scc 2 7v  dx

L 83	 (3/coL2) SCc 2 7 w x dx

L 84	 (3/coL2) S Cc 2 7 , x 2 (sine b /B o ) dx

L85	 (2/c2L) ^Cc 2 7vx( sin8b /8o ) dx

Lsb	 (3/coL2) SCc 2 7Wx 2 Cosab dx	 I

L
87
	 (2/c2L)
	

^Cc 2 7wx CosBb dx

L90 = ( 2/c2) S Cc ` y v y v (sinB b /Bo ) dx

L 91 = (3/1 L) Cc 2 7' 7w x(sinO /0 ) dx

L92 = (3 
/c2 

L) S Cc  7v 7w x CosB b dx

L93 = (2/co)j cc 2 7 v 7wCOSB b dx

L94 = ( 3 
/C2 L)

S CC 2 7w 7 wx COSB b dx

D1 = (4/c
0
L4 )j cx 3Cosa dx

D2 = (4/C L3c7vx2 Cosa b dx

D3 = (4/c
0
L 2 )j C7 2 x CosB b dx

_ =tom
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Appendix D.	 EIGENVALUES FOR MOD-2 CASES

This appendix presents the eigenvalues calculated for

the five MOD-2 standard cases of reference (501.

Eigenvalues from the first set discussed in Chapter 11 are

given in the first column, and those from the second set are

given in the second. The convergence of the harmonic

balance method is demonstrated for each of these cases by

giving the roots for truncation of the harmonic series at

P=1, P= 2, and P= 3.

1
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STANDARD MOD-2 WITHOUT DAMPING

v 
Y 

= 7.77, v 
P 

= 7.41, r 
Y	 P

= j	 0

P	 1

	

-0.00001 *- 7.75776 i 	 -0.00=78 ._ 8.53409 i

	

-0.00000 ± 7.40553 i	 -0.27690 ± 0.95124 i
	-0.27673 ± 1.95111 i	 -0.16108 = 2.62089 i

	

-0.27709 . 0.04890 i 	 0.00098 ± 6.51995 1
-0.22098 t 6.00436 i

P = 2

-0.00208 t 9.52309 i
-0.00001 ± 7.75776 i
-0.00000 ± 7.40553 i
-0.22221 ± 6.97674 i
0.00146 t 5.52122 i

-0.27691 t 1.95124 i
-0.27690 ± 0.04875 i
-0.16103 ± 1.59245 i

-0.00001 ± 8.89649 i
-0.00000 ± 8.34185 i
-0.00001 ± 6.87721	 i
-0.00000 ± 6.33560 i
-0.27673 ± 2.95111	 i
-0.27691	 ± 0.95123 i
-0.27709 i 1.04891	 i

P = 3

-0.00001 9.75776 i
-0.00000 9.40553	 i
-0.00001 7.75776	 i
-0.00000 7.40553	 i
-0.00001 5.75775 i
-0.00000 ± 5.40553	 i

0.27691 ± 0.04876 i
-0.27673 ± 3.95111 i
-0.27691 ± 1.95124 i
-0.27709 ± 2.04890 i

	

-0.00208	 10.52309 i

	

-0.00001	 8.89649 i

	

-0.00000	 8.34185 i

	

-0.00001	 6.87721 i

	

-0.00000	 6.33560 i

	

-0.22221	 7.97674 i
0.00146 ± 4.521.22 i

-0.27691 ± 2.95124 1
-0.27691 ± 0.95123 i
-0.27690 ± 1.04875 i
-0.16103 ± 0.59245 i
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STANDARD MOD-2 WITH DAMPING
v =

y	
7.77, r p = 7.41, C y = C p

	
0.01

P = 1

	-0.07768	 7.75737 i	 -0.07788	 8.53374 i

	

-0.07410 t 7,40516 i 	 -0.27690 t 0.95124 i
	0.27673 ± 1.95111 i	 -0.18084	 2.61980 i
	-0.27709	 0.04890 i	 -0.07416 s 6.51962 i

-0.24842	 6.00322 i-

P = 2

-0.07730 ± 9.52272 i
-0.07768 ± 7.75737 i
-0.07410 ± 7.40516 i
-0.24952 ± 6.97564 i
-0.07377 ± 5.52084 i
• `.27691 ± 1.95124	 i
-0.27690 ± 0.04875 i
-0.18071 ± 1.59136 i

-0.07764 ± 8.89611 i
-0.07414 ± 8.34148 i
-0.07765 ± 6.87683 i
-0.07413 ± 6.33523 i
-0.27673 ± 2.95110 i
-0.27691 ± 0.95123 i
-0.27709 ± 1.04891 i

P = 3

-0.07768 ± 9.75737	 i
-0.07410 ± 9.40516	 i
-0.07768 ± 7.75737	 i
-0.07410 7.40516 i
-0.07768 ± 5.75737	 i
-0.07410 ± 5.40516 i
-0.27691 ± 0.04876 i
-0.27673 3.95111 i
-0.27691 ± 1.95124	 i
-0.27709 ± 2.04890 i

-0 07730 ± 10.52272
-0.07764 ± 8.89611
- 0.07414 ± 8.34148
-0.07765 ± 6.87683
-0.07413 ± 6.33523
-0.24952 ± 7.97564
-0.07377 ± 4.52084
-0.27691	 2.95124
-0.27691 ± 0.95123
-0.27690 4 1.04875
-0.18071 ± 0.59136
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YAW STIFFNESS ► J. FAUGED WITHOUT DAMPING

Y	 P	 Y
- 2.0, y - 7.41, t - t 

P
- 	 0

-0.00000 ± 7.40552 i
0.00596 * 1.95806 i
-0.28103 ± 1.95780 i
-0.27876 *- 0.04758 i

-0.03208 ± 7.64394 i
-0.01272 t 5.49133 i
-0.2333	 t 3.23414 i
-0.27835 *- 0.95216 i
0.12322 *- 0.00000 i

-0.03390 j 8.67816 i
-0.00000 ± 7.40552 i
-0.01321 ± 4.52008 i
-0.24415 ± 3.97586 i
0.00594 ± 1.95805 i
-0.28256 t 1.95953 i
-0.27915 ± 0.04774 i
-0.09065 ± 1.25030 i

-0.00000 *- 8.34673 i
-0.00000*- 6.34439 i
-0.00045 ± 3.46171 i
-0.27534 2.95392 i
-0.00067 1.26217 i
-0.27605 ± 0.95513 i
-0.27822 ± 1.04742 i

-0.00000 ± 9.40552	 i
-0.00000 ± 7.40553	 i
-0.00000 5.40552	 i
0.00596 3.95808	 i

-0.28103 3.95780	 i
0.00594 1.95807	 i

-0.28286 1.95919 i
-0.27876 2.04758	 i
-0.28285 0.04081	 i
3.00594 0.04194	 i

-0.00000 ± 8.34673
-0.03390 = 9.67815
-0.00000 ± 6.34439
-0.24415 ± 4.97586
-0.00045 ± 3.46166
-0.01321 ± 3.52008
-0.27690 ± 2.95573
-0.00068 t 1.26217
-0.27605 ± 0.95513
-0.27860 1.04758
-0.09065 ± 2.25026
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YAW AND PITCH STIFFNESSES REDUCED WITHOUT DAMPING
r y n 2.0, v  = 2.0, C y = C  = 0

P	 1

	-0.27950 = 0.04702 i	 -0.16625 `- 3.26713 i

	

-0.28272 = 1.96065 i	 -0.12678 t 2.82080 i

	

0.01037	 1.96065 i	 -0.28603 *- 0.95799 i

	

-0.00198	 1.97835 i	 0.01005 `- 0.85183 i
-0.09175 *- 0.32810 i

P = 2

-0.00568 *- 3.97709 i -0.00048 *- 3.51848	 i
-0.29435 - 3.97982 i -0.27856 *- 2.95428 i
-0.28517 . 1.96263 i 0.00421 *- 2.71537	 i
0.01035 *- 1.96065 i -0.00024 1.28150	 i

-0.00199 . 1.97838 i 0.00349 ± 0.53595 i
-0.08900 ± 1.40584 i -0.28016 ± 0.95583	 i
-0.28434 ± 0.03866 i -0.27901 - 1.04660	 i
0.01250 ± 0.02982 i

P	 3

-0.28272 = 3.96065 i -0.00568 4.97709	 i
-0.00200 t 3.97838 i -0.29435 4.97982	 i
0.01039 - 3.96067 i -0.00048 3.51841	 i
0.01035 1.96065 i -0.28101 2.95639	 i

-0.00200 1.97838 i 0.00417 ± 2.71531	 i
-0.28527 = 1.96253 i -0.08900 ± 2.40583	 i
-0.27950 2.04702 i -0.00021 1.28147	 i
-0.28527 : 0.03747 i 0.00350 ± 0.53599	 i
0.01034 ± 0.03936 i -0.28016 * 0.95583 i

-0.00198 ± 0.02165 i 0.00350 ± 0.53599 i
0.01250 ± 1.02982 i
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YAW AND PITCH STIFFNESSES REDUCED WITH DAMPING
v  - 2.0 1 v  = 2.0, C y - C  • 0.04

P	 1

	

-0.27953 * 0.04700 i 	 -0.21808 ± 3.27699 i

	

-0.28523 ± 1.96393 i	 -0.19259 *- 2.80653 i

	

-0.06641 ; 1.95587 i 	 -0.28890 '- 0.95825 i
-0.08266	 1.97653 i	 -0.06583 '- 0.84968 i

-0.10447 ± 0.33195 i

P - 2

-0.08572 ± 3.97545	 i
-0.33236 t 3.97705	 i
-0.28769 *_ 1.96583	 i
-0.06647 ± 1.95598	 i
- 0.08265 ± 1.97656	 i
-0.10007 ± 1.40859	 i
-0.28634 ± 0.03569	 i
-0.06548 t 0.03441	 i

-0.08082 ± 3.51725	 i
-0.27890 ; 2.95369	 i
-0.07509 t 2.71404	 i
-0.08079 ± 1.27986 i
-0.07640 ± 0.53372	 i
-0.27958 0.95552	 i
-0.27917 1.04652	 i

P - 3

-0.28523 t 3.96393	 i
-0.08267 ± 3.97656	 i
-0.06640 ± 3.95588	 i
-0.28780 ± 1.96573	 i
-0.06647 ± 1.95598	 i
-0.08265 ± 1.97656	 i
-0.27953 ± 2.04700	 i
-0.28779 ± 0.03427	 i
-0.06648 ± 0.04404	 i
-0.08264 0.02347	 i

-0.08572 ± 4.97545	 1
-0.33236 ± 4.97705
-0.08081 _ 3.51718	 1
-0.28136 ± 2.95584	 1
-0.07515 ± 2.71396	 1
-0.10007 ± 2.40858	 1
-0.07640 ± 0.53377	 1
-0.08075 ± 1.27982	 1
-0.27953 ± 0.95551	 1
-0.28601 ± 1.03525	 3
-0.06548 ± 1.03440	 1

4
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Appendix E.	 EIGENVTCTORS FOR A MOD-2 CASE

This appendix contains the eigenvalues pi , eigenvectors

vj , and combination constants c  calculated for the P  a 2

case of Figure 13.1. Only one half of each conjugate set is

given. The eigenvalue is given first, followed by the

associated eigenvector which is broken into harmonic parts.

Finally, the combination constant is given at the bottom of

the column. These constants were calculated wE h initial

conditions placed on the zeroth harmonic coefficient as

follows ( in radians)

f	 0.068

^: a -.136

All other initial conditions were zero.

ti
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p
----------------

-0.03390
--------------

8.67815 i
--

0.00081 -0.00IC4 i
0 -0.00171 -0.00128 i

0.00000 0.00000 i

0.00000 -0.00000 i
sl 0.00000 0.00000 i

-0.00744 -0.77072 i

0.00000 -0.00000 i
cl 0.00000 0.00000 i

0.77039 -0.00767 i

-0.54368 0.02864 i
s2 -0.00000 -1.00000 i

-0.00000 0.00000	 i

-0.02864 -0.54368 i
c2 1.00000 0.00000 i

0.00000 -0.00000 i

c -0.00001 0.00001	 i

p
--------------------------------

-0.00000 7.40552	 i

0.00074 -0.00000 i
0 1.00000 0.00000	 i

-0.00000 -0.00000 i

0.00000 -0.00000 i
sl -0.00000 0.00000 i

-0.00583 -0.00072 i

0.00000 -0.00000 i
cl 0.00000 0.00000 i

0.50002 -0.00179 i

0.00018 0.00018 i
s2 -0.00025 -0.00056 3

-0.00000 0.00000 i

0.00ti37 -0.00012 i
c2 0.00026 -0.00051	 '.

0.00000 -0.00000 i

c 0.03401 0.00000 i

i

t
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p
---- -------

-0.00000
------ ---------

8.34673 i
------

-0.00000 -0.00000 i
0 0.00000 -0.00000 i

-0.01692 0.94607 i

0.00954 0.00024 i
sl 1.00000 -0.00000 i

-0.00000 -0.00000 i

0.00033 0 .33706 i
cl 0.00053 0.94741 i

0.00000 -0.00000 i

0.00000 -0.00000 i
92 0.00000 0.00000 i

0.5G007 -0.02524 i

-0.00000 -0.00000 i
c2 -0.00000 0.00000 i

0.01188 0.47400 i

c
--------------------------------

0.00000 -0.00000 i

p
-------

-0.00000
-------------------------

6.34439 i

-0.00000 0.00000 i
0 0.00000 0.00000 i

0.99866 0 .01303 i

0.00094 -0.02614 i
sl -0.00073 0.93285 i

-0.00000 -0.00000 i

0.07845 0.00103 i
cl 1.00000 -0.00000 i

-0.00000 0.00000 i

0.00000 -0.00000 i
s2 -0.00000 0.00000 i

-0.04402 0.46616 i

-0.00000 0.00000 i
c2 -0.00000 0.00000 i

0.49923 -^.U0985 i

c
--------------------------------

-0.00000 -0.00000 i



p
--------------------------------

-0.01321 4.52008 i

0.00410 0.00473 i
0 0.00106 -0.00090 i

-0.00000 -0.00000 i

-0.00000 0.00000 i
sl -0.00000 -0.00000 i

0.02073 0.84350 i

-0.00000 -0.00000 i
cl -0.00000 0.00000 i

0.84629 -0.02336 i

-0.68990 0.01434 i
s2 -0.00000 1.00000 i

0.00000 0.00000 i

0.01438 0.68993 i
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r^ = 2.5	 ro = 3.6
	

rB = 10

y	 12
	

X = 0.1
	

BO = 0

c	 0.04
	

e  = 0
	

D	 .002
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^ y 	 7.76

t y	 0

y = 4.777

c = 0.047

7	 v  = 7.41	 vt n 0

C  = 0

X = 0.129

T = 0.03

tt=0

AC 	 -.0524

P = 0

L 1 = 0.9275	 Bo L2 = 0.0951 + 0.63128C

L3 = 0.4787	 8oL4 = 0.1059 + 0.55298C

LS = 1.0248	 L80 = 1.0139

Here, 0C is the tip pitch control setting.
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