General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR-168120 D210-11944-1

LARGE ROTORCRAFT TRANSMISSION TECHNOLOGY DEVELOPMENT PROGRAM

by John C. Mack Boeing Vertol Company

prepared for

National Aeronautics and Space Administration

NASA Lewis Research Center Contract NAS 3-22143

(NASA-CR-168120) LAR^GE ROTORCRAFT N83~22188 TRANSMISSION TECHNOLOGY DEVELOPMENT PROGRAM Final Test Report (Boeing Vertol Co., Philadelphia, Pa.) 106 p HC A06/MF A01 Unclas CSCL 01C G3/05 03266

	8120	2. Government Access]	3. Recipient's Catalo	kg №0.				
	IE ORCRAFT TRANSMISS		VELOPMENT	5. Report Date March 1983					
PROGRAM				6. Performing Organ	ization Code				
7. Author(s) J. C. Mack				8. Performing Organization Report No. D210-11944-1					
			10. Work Unit No.						
Boeing Verto Boeing Cente	r			11. Contract or Gran	t No.				
P.O. Box 168 Philadelphia,			F	NAS 3-22143 13. Type of Report a	nd Period Covered				
	ncy Name and Address			Final Test Rep					
Lewis Resear Cleveland, O	•••••	F	14. Sponsoring Agenc	y Code					
15. Supplementary Project Mana	Notes ger, Nick E. Samanich, NA	SA Lewis Research C	enter, Cleveland, Ohio						
resolution of TR-77-38. O At the 100% more than tw methods wer this technolo	 Testing c[*] a U.S. Army XCH-62 HLH aft rotor transmission under NASA Contract NAS 3-22143 was successfully completed. This test establishes the feasibility of large, high power rotorcraft transmissions as well as demonstrating the resolution of deficiencies identified during the HLH advanced technology programs and reported by USAAMRDL-TR-77-38. Over 100 hours of testing was conducted. At the 100% design power rating of iQ.620 horsepower, the power transferred through a single spiral bevel gear mesh is more than twice that of current helicopter bevel gearing. In the original design of these gears, industry-wide design methods were employed and failures were experienced which identified problem areas unique to gear size. To remedy this technology shortfall, a program was developed to predict gear stresses using finite element analysis for complete and accurate representation of the gear tooth and supporting structure. To validate the finite element methodology gear strain data from the existing U.S. Army HLH aft transmission was acquired, and existing data from smaller gears were made available. 								
					ssion was				
					ssion was				
acquired, and	gested by Author(s)) nission elicopter				ssion was				

* For sale by the National Technical Information Service, Springfield, Virginia 22161

TABLE OF CONTENTS

,

1.0	SUMMARY	7
2.0	INTRODUCTION	8
3.0	TEST SPECIMEN	11
4.0	TEST STAND	23
5.0	STATIC STRAIN SURVEY	28
6.0	DYNAMIC STRAIN SURVEY	44
7.0	LOAD TEST	71
8.0	APPENDIX - LOAD RUN LOG	94

iii

٠

1.0 SUMMARY

Testing of a U.S. Army XCH-62 HLH aft rotor transmission under NASA Contract NAS3-22143 was successfully completed. This test establishes the feasibility of large, high power rotorcraft transmissions as well as demonstrating the resolution of deficiencies identified during the HLH advanced technology programs and reported by USAAMRDL-TR-77-38.

In all, over 100 hours of testing was conducted including:

- 50 hours at 100% design rated power
- 25 hours each at 80% and 90% design rated power, and
- 6 hours of dynamic strain testing at various power loadings up to 100%

At the 100% design power rating of 10,620 horsepower, the power transferred through a single spiral bevel gear mesh is more than twice that of current helicopter bevel gearing. In the original design of these gears, industry-wide design methods were employed and failures were experienced which identified problem areas unique to gear size. Experimental testing provided the basis for design modifications, but termination of the HLH program precluded verification testing. Verification has now been demonstrated, and the capacity of spiral bevel gearing has been extended in the testing just completed.

The NASA Lewis Research Center project manager for this contract was Mr. N. E. Samanich. The Boeing Vertol project manager was Mr. Gordon Fries. The Boeing Vertol project engineer was Mr. John Mack.

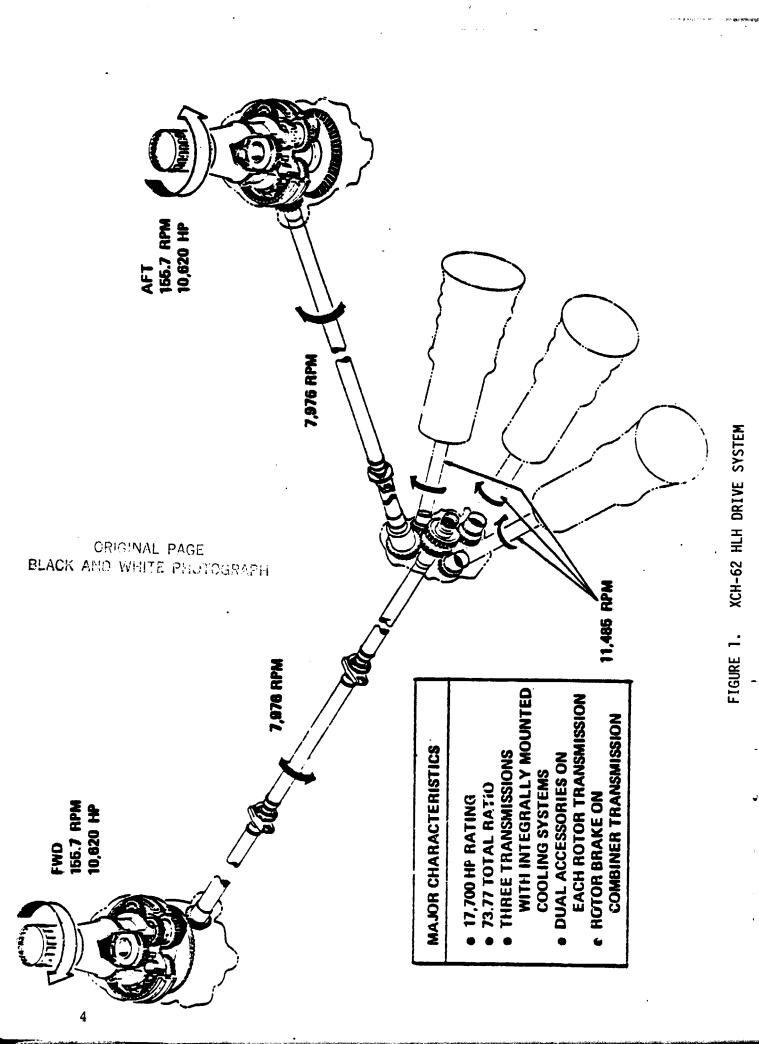
2.0 INTRODUCTION

The purpose of this effort is to develop the design technology for high speed, high power, lightweight gears of rotorcraft and V/STOL transmissions. Current analytical methods do not adequately predict stresses, and hence load carrying capacity, of spiral bevel gears. The limitations of these current methods are observed throughout the size range of gears encountered in helicopter and V/STOL operation. However, the problem is particularly acute in the largest sizes since these represent the greatest extrapolation from previous successful experience.

To remedy this technology shortfall, a program was sponsored by the Lewis Research Center of NASA. This program develops the analytical methodology to predict gear stresses using finite element analysis for complete and accurate respresentation of the gear tooth and supporting structure.

To validate the finite element methodology developed under this program, gear strain data from the existing U.S. Army HLH aft transmission have been acquired, and existing data from smaller gears have been made available. Additionally, an endurance test of the HLH aft transmission has been performed as a demonstration of the validity of previously developed gear steel stress allowables.

The HLH aft transmission was designed and built in the 1971-1975 time period as part of the U. S. Army Advanced Technology Component development program. It represents a major element of a complete aircraft drive system (Figure 1) designed to provide a significant increase in vertical lift capability. The design requirement for the rotor transmissions (.6 X 17,700 or 10,620 h.p., equivalent to 7,900 KW) exceeded the maximum power levels for any single flight


weight bevel gear mesh known at that time, or indeed, since that time. A limited test program identified problems in the initial pevel gear design. A redesign was prepared and fabricated but was never tested because of program termination. This redesign has now undergone a successful test program as described in this report.

The elements of this test program include:

- o Resonant frequency testing of the spiral bevel gear and pinion.
- o Static strain surveys of the transmission gears performed over a range of torque loadings up to 130% design torque. Bevel gear and pinion contact patterns were acquired at each torque level.
- o A 50 hour endurance test at full-power rated speed and torque.

Two additional test elements were added by the contractor at no direct cost to the program. These were:

- o Dynamic strain surveys of the bevel gear and pinion and first stage sun gear.
- o Preparatory testing consisting of 25 hours at 80% design torque and 25 hours at 90% design torque. Both were accomplished prior to the 50 hour endurance test.

3.0 TEST SPECIMEN

DESCRIPTION

The aft transmission, Boeing Vertol P/N 301-10400-2, is shown in Figure 2. The overall gear ratio is 51 to 1, from synchronizing shaft to rotor. The bevel gear accounts for 2.86 to 1 reduction, and the two-stage planetary for 17.88 to 1 reduction.

All main drive gearing is made from carburized BMS 7-223 (VASCO X-2) high hot hardness steel. Bevel gears are supported in tapered roller bearings modified and lubricated for high-velocity application. Planet gears are supported by spherical roller bearings, allowing a greater misalignment across the bearing than would normally be possible with cylindrical bearings.

The rotor shaft is a titanium forging (6 AL-4V), with surface treatments at the bearing journals and at the upper spline designed to protect the titanium from fretting and wear. The upper cover, which supports the rotor shaft and carries torque and hub loads to the airframe, is a 7075 T-73 aluminum forging. The attachment of the cover to the airframe through four bolts, any three of which can carry full load, follows failsafe criteria.

The lower case is a magnesium casting of ZE 41A material selected for improved properties in heavy sections typical of these large housings. Beneath the cast housing a glass reinforced epoxy sump closes the gearbox and provides pickup points for the main and auxiliary lubrication system. Glass fiber was selected for ballistic considerations, as its highstrength low-modulus properties allow it to absorb ballistic impact without large fracture areas. The oil cooler is integrated with the transmission to eliminate fluid connections and reduce vulnerable area. Two lube pumps are used, with the auxiliary pump drawing from a protected deep sump, to supply critical areas in emergency conditions. An electrified debris detector screen is provided in the sump intake of each lube pump.

Accessory drives are arranged around the periphery of the sump at the transmission base. Two separated drive trains, beginning with a dual face central gear, supply power to duplicated accessory arrangements.

TEST CONFIGURATION

The test specimen is an HLH aft transmission defined by drawing 301-10400-2 (Figure 3) with certain modifications made to suit the particular nature of this test series, or to incorporate design improvements recognized since the close of the HLH program.

Deviations from 301-10400-2 were as follows:

Upper Cover 301-65025-1 - Original design (301-10456-1) cover was used to match existing test stand interface. Original configuration carries same bearings as modified version. High-strength studs were fitted to the cover to eliminate a breakage problem that occurred in past testing.

Ring Gear 301-10412-3 - Original (301-10412-1) ring gear was used to match upper cover fastening size and location. Modified by instrumentation hole. Original ring gear has thinner section.

Planet Gears 301-10460-3 and 301-10414-3 - Modified by incorporation of a chamfer at the intersection of the spherical

bore and the side faces to eliminate a stress riser. Gear tooth tips radiused to improve lubricant film stability.

Spiral Bevel Pinion 301-10428-3 - Modified grind to improve tooth contact pattern and reduce bending stresses. Instrumentation holes added to pinion and sun-bevel 301-10419-3.

Tapered Roller Bearings (Pinion and Gear) 301-10424-4, -10420-4, -10443-4 and -10440-4 - Baked at 260°C for improved thermal stability and reinspected.

Main Housing 301-10402-1 - The -1 housing assembly was used since oil cooled generators were not required.

Accessories were not used in this test (with the exception of the oil cooler fan and main and auxiliary lube pumps). Consequently, hydraulic and alternator drive gears were removed from the transmission.

BEVEL GEAR CONTACT PATTERNS

The input gear and pinion were ground to a contact pattern (Figure 4) derived from earlier testing under the ATC program. No-load contact patterns were taken in conventional manner by applying marking compound to the tooth surfaces and rolling gear and pinion through mesh under a light braking load. This pattern, which represents the sixth development of this gear set since design inception, was deemed satisfactory and was maintained throughout the testing program. As confirmation that the bending stress distribution derived from this grind was satisfactory, a static strain survey was conducted and is described in this report.

HARDWARE REVIEW

Planet and bevel gears and planet carrier were inspected by magnetic particle and by visual examination. The lower

housing was given a dye-check examination in the region of the rib intersections with the center island and outer ring.

Planet gears were inspected by measuring over wires to determine uniformity of size and thus assure proper load-sharing. Inspection results are shown in Table 1.

LOAD HISTORY

Transmission load history is summarized in Tables 2, 3 and 4. With the exception of the main housing, no component has any significant load history as revealed by engineering records. The main housing underwent testing at 60% torque for 147 hours and at 70% torque for 25 hours.

CONDITION MONITORING DEVICES

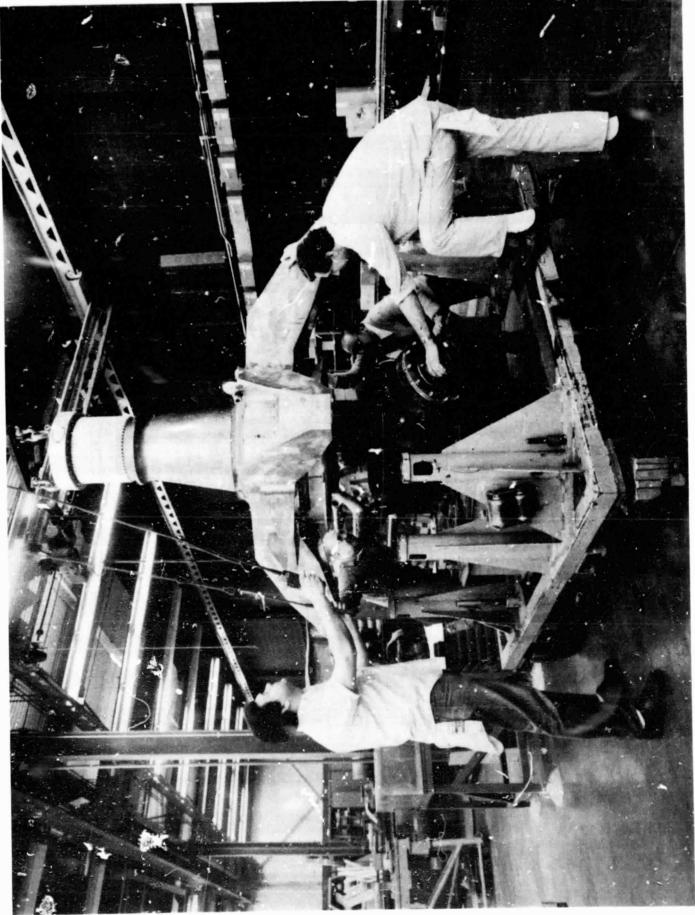
Debris and vibration monitoring was used to assess transmission condition during the load testing. Debris monitors were installed in four locations within the transmission. Indicating chip detectors were located at the bottom of the oil sump and in the bevel pinion drain area. The detectors were monitored by a QDM (quantitative debris monitor) supplied by the Technical Development Company. The purpose of this system is to discriminate between debris particle size as well as quantity, to provide a more useful interpretation of condition than is normally provided by a simple electrical chip detector which responds to any magnetic, conductive material.

Full-flow indicating screens were located at the suction side of both main and auxiliary lube oil pumps. These screens monitor the total flows, as compared to a sampling of the flow past one point, and are also responsive to any

conductive debris, not necessarily magnetic. Screen opening size is 1.5 mm x 1.5 mm. The screen is formed by an arrangement of positive and negative wires. Conductive material provides an electrical path which completes the debris indicating circuit.

In addition to the above debris monitors, particulate materials could be observed by oil filter checks. A pressure-drop indicator on the filter body signals an impending bypass caused by particle buildup on the filter element. The filter used a 20 micron (nominal) element of the pleated throw-away type.

Vibration was monitored by accelerometers mounted on the exterior of the transmission adjacent to the bevel pinion bearings, the planetary ring gear, and the rotor shaft bearings. Vibration readings were observed at intervals throughout the load tests. Vibration data was treated by the Incipient Failure Detection (IFD) approach, using high frequency as a carrier wave and resolving this by narrow band analysis to investigate specific and precalculated mechanical passage frequencies.

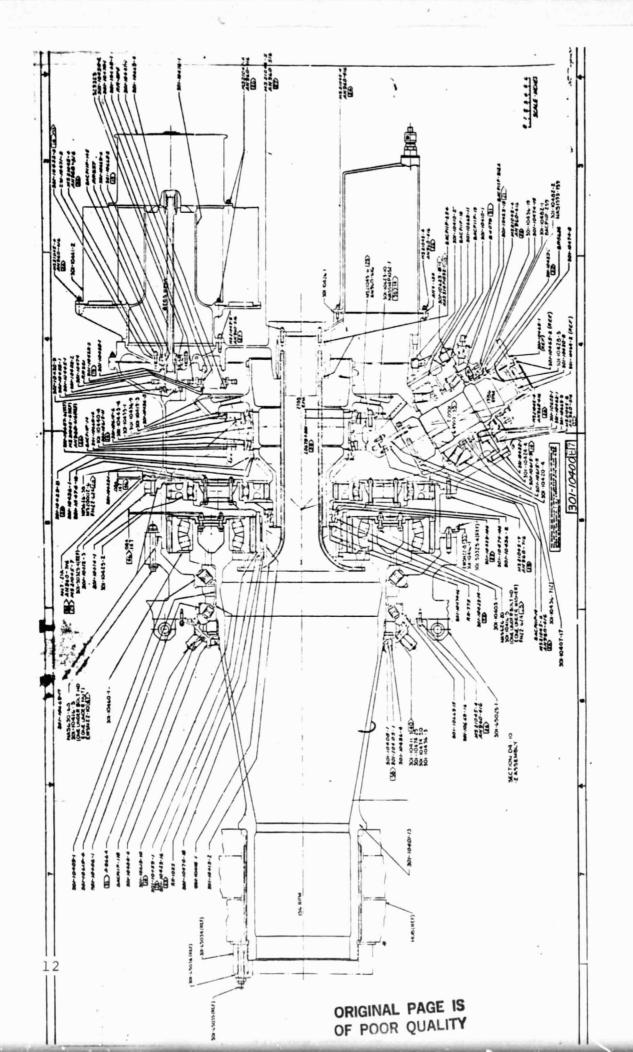

Other transmission monitoring consisted of lube oil pressure at the entrance to the main jet feeding gallery, and also lube oil temperature as monitored in the sump, before cooling. TABLE 1. PLANET GEAR MEASUREMENT OVER WIRES (MOW)

The following inspections were performed to verify planet gear size:

- Drawing Dimension:12.8542 - 12.8564 inches First Stage 301-10466-2 Gear (326.496 - 326.552 mm)(301-104.4-3 Gear Bearing Assembly) P125 - Assembled 12.85455 P128 - Assembled 12.85463 P137 - Spare 12.85228 (.0019 BLL) P148 - Assembled 12.85317 (.0010 BLL) P143 - Spare 12.85325 (.0010 BLL) P152 - Assembled 12.85454 Comment: Maximum deviation of this set is .00235 inches (.059 mm). Tolerance spread by drawing is .0022 inches (0.056 mm). Any of the above gears are satisfactory as a set. Spare P137 was substituted for P125 during the 100% load test. - Drawing Dimension:11.0819 - 11.0840 inches Second Stage 301-10468-2 Gear (281.480 - 281.534 mm)(301-10460-3 Gear Bearing Assembly) P115 - Assembled 11.08174 (.0002 BLL) P128 - Assembled 11.08184 (.0001 BLL) P134 - Spare* 11.08135 (.0006 BLL) P141 - Assembled 11.08179 (.0001 BLL) P142 - Assembled 11.08287 P146 - Assembled 11.08139 (.0005 BLL) P150 - Assembled 11.08070 (.0012 BLL) 11.08180 (.0001 BLL) P152 - Spare*

Comment: Maximum deviation within this set is .00217 inches (.055 mm) Drawing tolerance spread by drawing is .0021 inches (.054 mm). Any of the above gears are satisfactory as a set.

*Spares were found to have magnetic particle indications in the bearing inner races and were not available for use.



11

HLH AFT TRANSMISSION

FIGURE 2

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH ORIGINAL PAGE IS OF POOR QUALITY

BEVEL GEAR BENCH/DEFLECTION TEST PATTERN RECORD INI LIMALTIONI A9-100X TEMPERATURE DATI LOAD LEVL 301-10 400 - 914 ROOM H. L.H. SHIM PART PART PART PATTERN PART NUMBER B/L M.D. 301-10419-3 HING GE AR ,043 P/11 12.36: 10275 301-10428-3 .095 PINION GEAR P116 .012 18.687 .054 TO.056 ACKLASH ITOTAL CHALL N T PINION GEAR TAPES HING GEAR TAPES HOOT ROOT CONVEX CONCAVE ROOT ROOT CONVEX CONCAVE ROUT ROOT CONCAVE CONVEX RUOT HOOT CONVEX CONCAVE INSPECTOR . . . ANICISI 0081 1: -Shin Mr. 226.16.15 PINION AXIAL PLAY GLAR AXIAL PLAY - 2 ---- 1 - 151 ---//---IPLACE ADD TIONAL TAPES ON REVERSE SIDEN 13 FIGURE 4. BEVEL GEAR TOOTH CONTACT PATTERN ORIGINAL PAGE IS

IABLE 2

HLH AFT TRANSMISSION - LOAD RUN TEST CONFIGURATION

LOAD HISTORY - LOAD PATH COMPONENTS

LOAD HISTORY	NO LOAD HISTORY	STATIC DEFLECTION TEST 4D PINION AND DYNAMIC TESTING	STATIC DEFLECTION TEST	STATIC DEFLECTION TEST	NO LOAD HISTORY	NO LOAD HISTORY	NO LOAD HISTORY	
DATE		3/11/75	9/13/74	9/13/74				
TUR (301-)		344071-80 3/11/75	344071-24	344071-24				
S/N	P107	P104		VB 105S/P115	VR 1062/0128	VB 104S/P142	VB 9R/P146	
P/N (301-)	10401-13	10412-1		10460-3				
COMPONENT	ROTOR SHAFT	RING GEAR		2ND STAGE PLANETS				

ALC: NO

,

TABLE 3

HLH AFT TRANSMISSION - LOAD RUN TEST CONFIGURATION

LOAD HISTORY - LOAD PATH COMPONENTS

LOAD HISTORY	NO LOAD HISTORY	STATIC DEFLECTION TEST		NO LOAD HISTORY	NO LOAD HISTORY	NO LOAD HISTORY	NO LOAD HISTORY	NO LOAD HISTORY	NO LOAD HISTORY	
DATE		9/13/74	 							
TUR (301-)		344071-24								
S/N	VB 107S/P141	VB 16R/P150		P111	VB 19R/P128	VB 18R/P125	VB 105T/P152	VB 107/P148	V 108T/P137	
P/N (301-)				10459-1	10414-3					
COMPONENT				2ND STAGE SUN	1ST STAGE PLANETS				•.	15

v.

The second second

TABLE 4

HLH AFT TRANSMISSION - LOAD RUN TEST CONFIGURATION

LOAD HISTORY - LOAD PATH COMPONENTS

LOAD HISTORY	NO LOAD HISTORY	NO LOAD HISTORY	NO LOAD HISTORY	DSTR TESTING 25 HR. BENCH TEST	STATIC DEFLECTION TEST 4D PINION AND DYNAMIC TFSTING	
DATE				2/1/2	3/11/75	
TUR (301-)				7/1/75	344071-80 3/11/75	
S/N	P109	111	116	P105		
(-10£)	10413-2	10419-3	10428-3	10402-1	10403-1	
COMPONENT	CARRIER	SUN/BEVEL	BEVEL PINION	HOUSING ASSEMBLY	CARRIER BEARING	

'

.

Μ

4.0 TEST STAND

The HLH aft transmission test stand originally built under the U.S. Army HLH Program is a closed-loop (4-square) facility (Figure 5) in which the aft transmission forms one corner of the loop, with the other corners formed by industrial type gearboxes and shafting. The transmission is located on a steel mounting plate that is bolted to the test stand structure. The rotor shaft fits to a splined flexible coupling that is connected to the test stand upper gearbox. The input shaft is connected to the test stand lower gearbox through a length of aircraft type aluminum tube shafting with multi-plate flexible metal disc couplings at each end. The input shaft is used as the torquemeter, with torque bridges on the tube connecting to a telemetry signal system. The input shaft is calibrated to provide a total system accuracy (including indicator) of ±2%.

Other features of the test stand facility include:

- o Torquing device capable of static and dynamic loading.
- o 10% overspeed capability at maximum horsepower.
- o Exhaust ducting for integral lubrication system cooling.
- o Variable speed control at all torque levels.

Instrumentation requirements for this facility are defined in Table 5. Instrumentation is calibrated to specification MIL-C-45662A where applicable.

The existing facilities (Figure 6) utilized for this test program are located at the Boeing Vertol Company's complex in the suburbs of Philadelphia, Pennsylvania. The testing is performed in test cell number 2 in the test facility Building 3-31. The test cell has a floor area of approximately 6,000 square feet (550 m²) and is 50 feet (15m) high. The test cell houses the complete test stand assembly. The 6250 horsepower (4600 KW) prime mover and variable speed clutch is housed in a separate room.

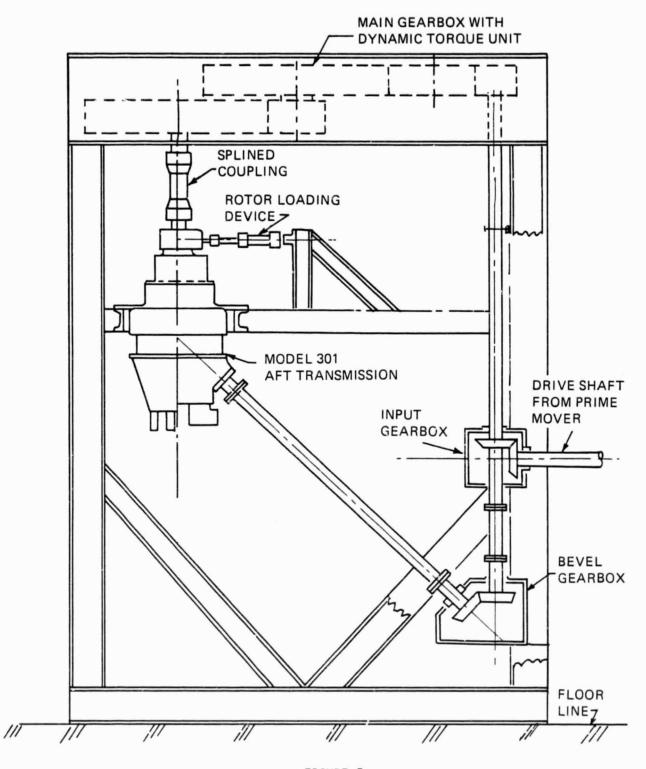


FIGURE 5. AFT TRANSMISSION TEST STAND SCHEMATIC

19

ORIGINAL PAGE IS OF POOR QUALITY

INSTRUMENTATION
1
MONITORING
TRANSMISSION MONITO
ي. م
ы Ц
TABL

	RECORD	М.Р.	M.P.	М.Р.		M.P.	М.Р.	M.P.		М.Р.	M.P.	5	· · · E	М.Р.	
SHUT	DOWN	۱	0.M.	0.M.	•	о.м.	0. M .	X		0.M.	о.м.	:	0.M.	о.м.	
	WARNING	I	1	1.0-Dress	Light	Lo-Press Light	chip Light		cnip Light	Chip Light	Chip	רוקתר	ı	ł	
	MONITOR	Indi.	Indi.		. 1011	Indi.	1		a	Counter	Counter		Indi.	Indi.	
	ACCURACY	±1° C	+1° C		15 PSI	15 PSI	I		I	ŧ	١		±2%	±50 RPM	
	RANGE	4° - 65°C	260 JEA07	l	0 - 200 PSIG	0 - 200 PSIG	on/off		on/off	Quantitative	Ouantitative	ł.	0-1.5 x 10 ⁵ In-Lb	0-10,000 RPM	
	S I GNAL SOURCE	Thermocouple		ardnocomJaul.	Pressure Transducer	Pressure Transducer	Conductive	SCLEEN	Conductive Screen	Magnet	Namat	inagire e	Torque Bridge	Magnet Pickup	
2.0	PARAMETER		Amblent Alf lemp	Sump Oil Temp	Main Oil Inlet Dressure	Auxiliary Oil	Main Oil	Indicating Screen	Auxiliary Oil Indicating Screen	Pinion Magnetic	Chip Detector	Sump Magnetic Chip Detector	Input Shaft Torque	Input Shaft Speed	

,

Operator Manual Indicator 0.M. = Indi. =

.

Manual Periodic 11 M.P.

-

FIGURE 6. AFT TRANSMISSION TEST STAND

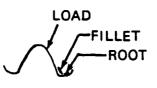
ORIGINAL PAGE

5.0 STATIC STRAIN SURVEY

The static strain survey was conducted by slowly rotating the transmission under load, with strain gages transmitting data through trailing wires.

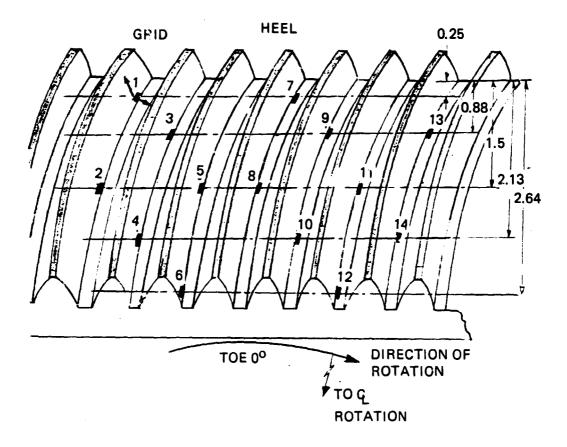
There were several tasks to be accomplished in the static survey. First, the contact pattern of the spiral bevel gears was to be evaluated and stresses measured along the pinion and gear face width. From this, a decision would be made to regrind to a different pattern or to run subsequent tests with the pattern as developed at the inception of this program. Secondly, the stresses of the planet gears would be measured. Because of their orbital motion around each planet carrier post, combined with their motion around the transmission centerline, it is impractical to measure stresses dynamically. They can be measured statically, using trailing wires.

<u>INSTRUMENTATION</u> - Strain gages were applied to the bevel pinion, gear, and to two planets from each stage as shown in Figures 7, 8, 9, and 10. Gages were located across the gear faces to determine load distribution, and on successive teeth to evaluate load sharing. Gages were applied in the root of the teeth to determine ring bending and at the fillet to determine gear tooth bending stresses. All gages had an active length of .031 inches. Gages used on the spiral bevel pinion, spiral bevel ring gear and 1st stage sun gear tooth roots were ED-DY-031EC-350. Gages used on the planetary tooth roots were EA-06-031EC-350. The gages used on the planetary land diameter were EA-06-031CE-350. All gages were manufactured by Micromeasurements, Vishay Intertechnology Incorporated.


The placement of gages was closely controlled by taking plastic casts of the tooth space and marking the desired gage position on the cast. Each gage was applied and inspected for conformity to the marked cast. A deviation of $\pm .010$ inch ($\pm .25$ mm) was allowed. Gage location was initially determined by reference to photoelastic test data.

<u>TEST PROCEDURE</u> - The instrumented gears were assembled into an HLH aft transmission and the transmission was installed in the load stand. The transmission was enclosed in an insulated box with heat lamps to raise the temperature to 230°F, $\pm 10^{\circ}$ F. (110°C \pm 5.5°C)

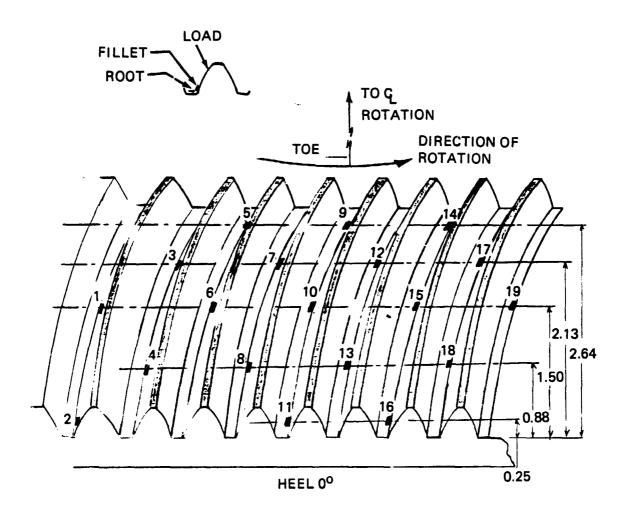
The transmission gear train was slowly rotated under torque, while the gaged eeth rolled through mesh. Approximately one revolution of the spiral bevel gear was obtained. Torque was varied from 50% to 130% of the design value (83,810 inch/lbs equivalent to 9463 Nm) in successive tests. In addition to the strain data, a visual determination of tooth contact pattern was obtained at each load level by coating the bevel tooth with marking compound.


Following the bevel gear tests at elevated temperature, the planet gears were tested at room temperature. Bevel gear load contact patterns, and hence, stresses, are dependent upon relative positions of gear and pinion. These, in turn, are influenced by thermal expansion of magnesium housings and bearings. In the planetary, thermal growth is more uniform because of design and material, and hence has less effect on gear stresses. The test procedure, except for temperature, was the same as used for the bevel gears.

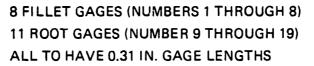
TEST RESULTS - Maximum measured stresses at 100% design torque are shown in Figure 11 and compared there to Boeing Vertol successful experience. The stress waveform of a driving gear rotated thru mesh is illustrated in Figure 12. There is a characteristic compressive stress engendered by the preceeding tooth bending under load, and then a tensile stress as the instrumented tooth picks up load. The data are presented in terms of maximum tensile stress and alternating stress. The mean of the alternating stress is mid-way between compressive and tensile peaks. Figure 11 illustrates mean steady stresses and alternating stresses in the form of a Goodman diagram. Figures 13 and 14 show gear root and fillet stress magnitudes as they are distributed across the face of the bevel pinion at full torque. On the basis of this distribution, and examination of the visual contact pattern, this grind was accepted for load running the gears. Figure 15 and 16 exemplify stress level increase with increasing torque. Gages are identified as toe, intermediate toe, mid, intermediate heel and heel as they progress in 5 stations from toe (small end of pinion) to heel. Figures 17 and 18 show bevel gear stress distributions across the face, corresponding to the pinion data shown previously. The disparity between apparently identical gages on opposite sides of the gear is greater than experienced in other surveys. The reason in this case is believed to be in gage placement, which is extremely critical in the high stress gradient region at the tooth base. Figure 19 shows first and second stage planet gear stresses as a function of torque, for various positions across the gear faces.

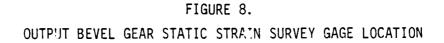
.

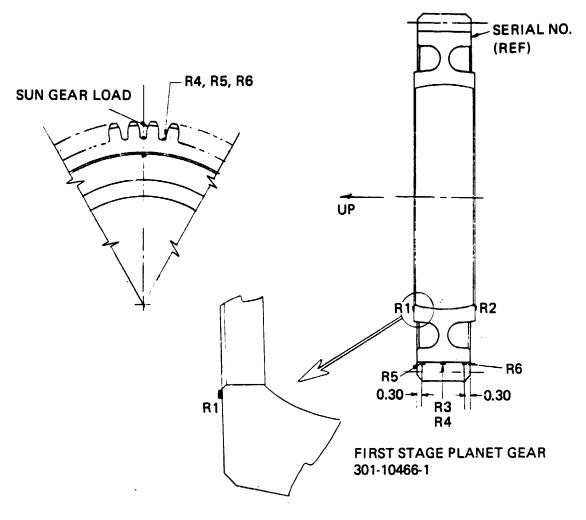
,



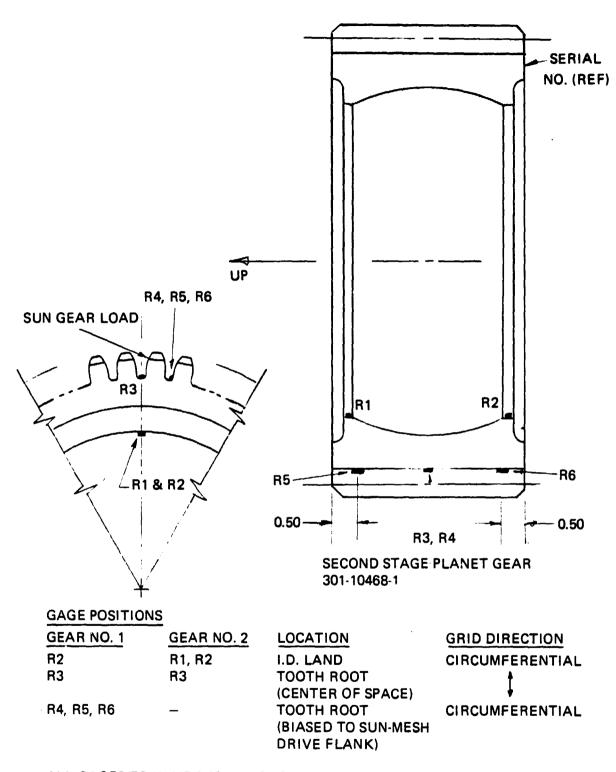
6 FILLET GAGES (NUMBERS 1 THROUGH 6) 8 ROOT GAGES (NUMBERS 7 THROUGH 14) ALL TO HAVE 0.031 IN. GAGE LENGTHS


FIGURE 7


INPUT BEVEL PINION STATIC STRAIN SURVEY GAGE LOCATION


ORIGINAL PAGE IS OF POOR QUALITY

1


GAGE POSITIONS

GEAR NO. 1	GEAR NO. 2	LOCATION	GRID DIRECTION
R2	R1, R2	I.D. LAND	CIRCUMFERENTIAL
R3	R3		t
R4, R5, R6	_	(CENTER OF SPACE) TOOTH ROOT	
114, 113, 110		(BIASED TO SUN-MESH	
		DRIVE FLANK)	

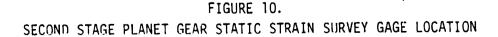
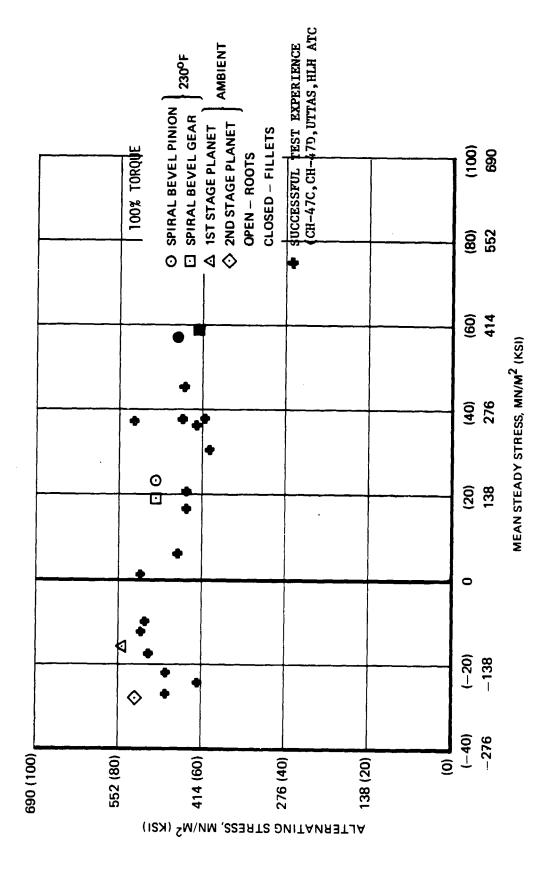
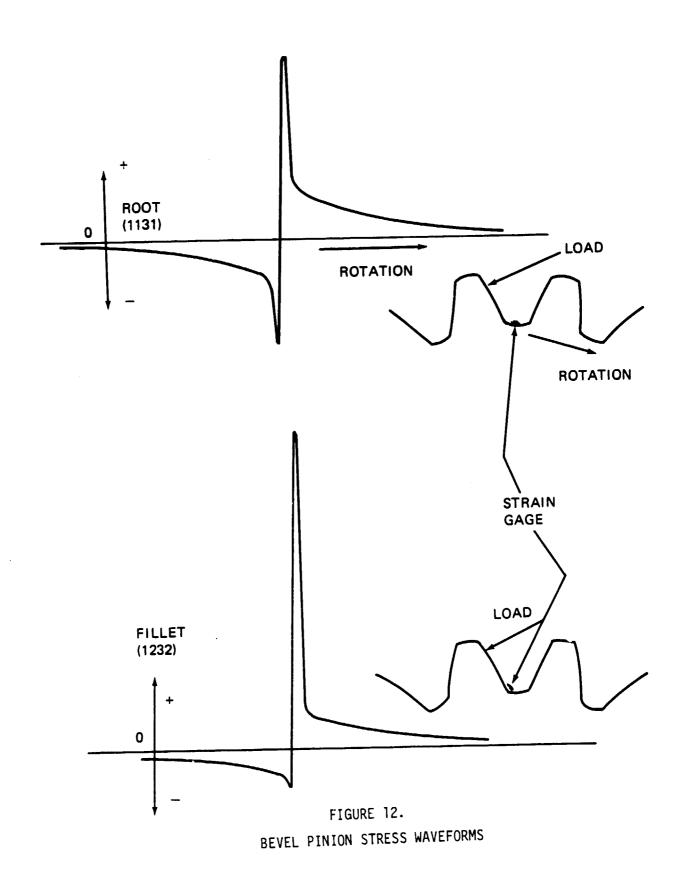

ALL GAGES TO HAVE 0.031 IN. GAGE LENGTH

Figure 9.

FIRST STAGE PLANET GEAR STATIC STRAIN SURVEY GAGE LOCATION

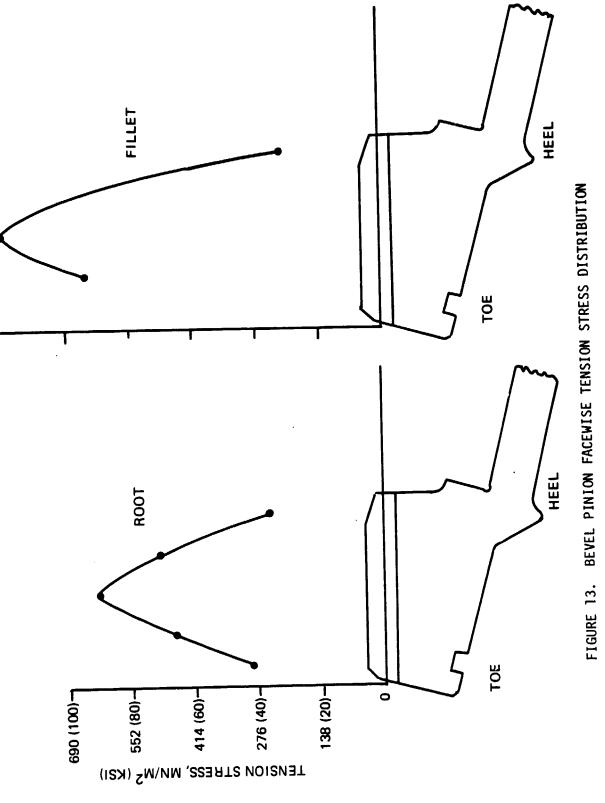
ALL GAGES TO HAVE 0.031 IN. GAGE LENGTH


28

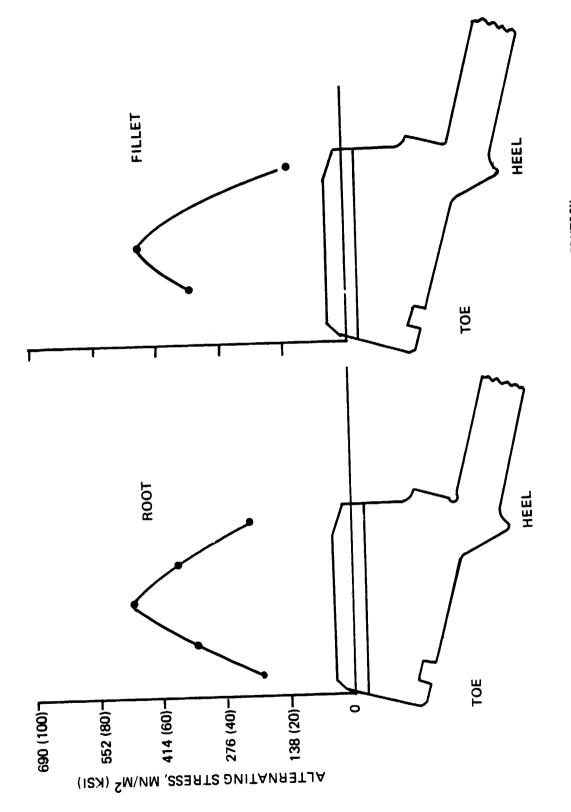

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

SUMMARY OF STATIC STRAIN SURVEY RESULTS



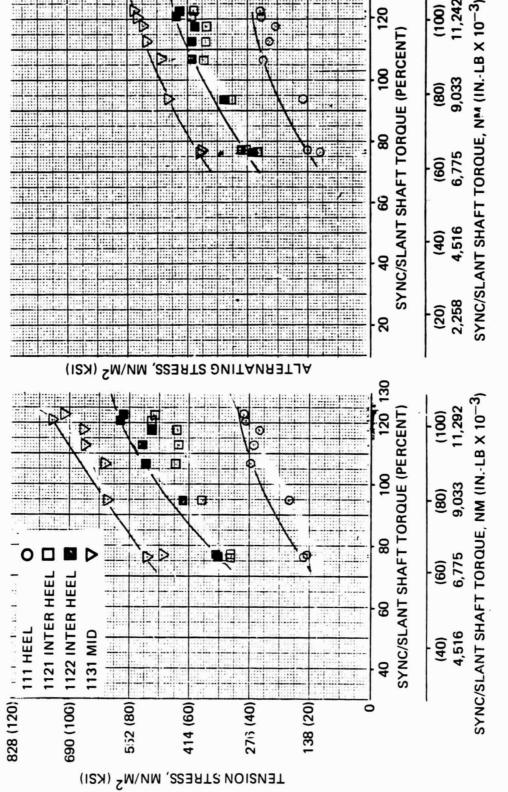
· .


,

ORIGINAL PAGE IS OF POOR QUALITY

,

ORIGINAL PAGE IS OF POOR QUALITY (100% TORQUE)


_.-

,

FIGURE 14. BEVEL PINION FACEWISE ALTERNATING STRESS DISTRIBUTION (100%)ORQUE)

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

С

i.li:

D

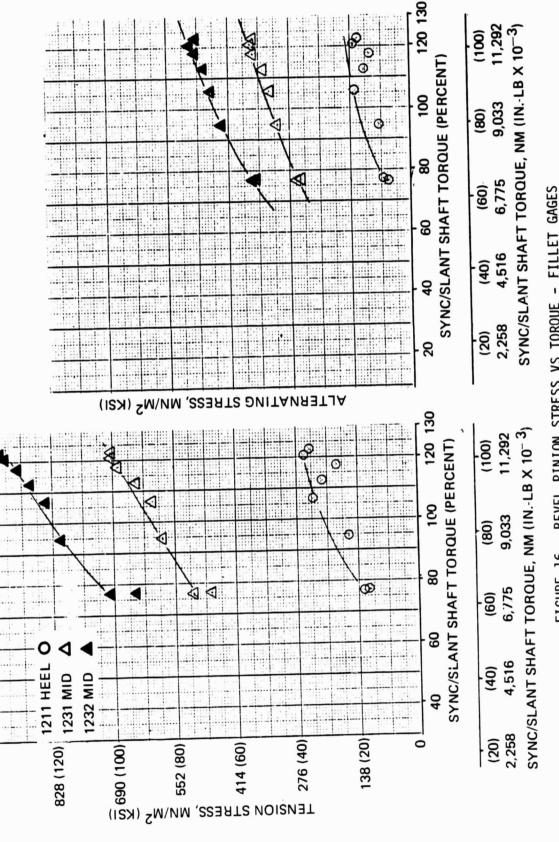
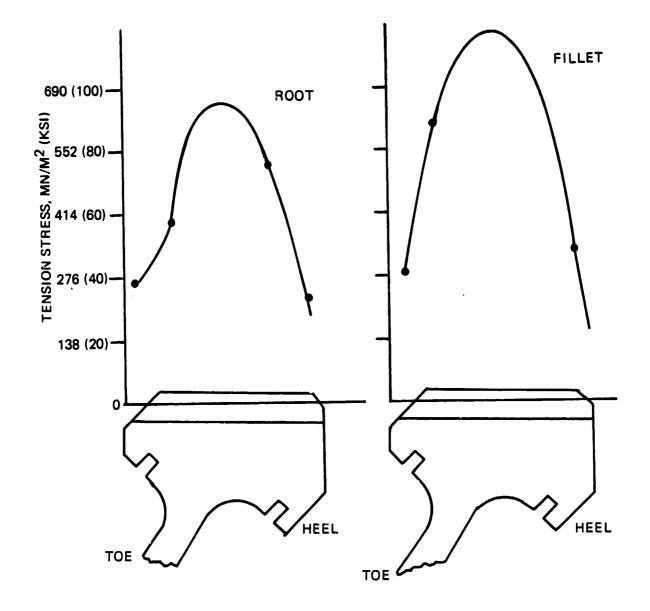

....

FIGURE 15. BEVEL PINION STRESS VS TORQUE - ROOT GAGES

120 130

8


(100)

BEVEL PINION STRESS VS TORQUE - FILLET GAGES FIGURE 16.

34

ORIGINAL PAGE IS OF POOR QUALITY

,

(IOO% TORQUE)

FIGURE 17.

BEVEL GEAR FACEWISE TENSION STRESS DISTRIBUTION

ORIGINAL PAGE IS OF POOR QUALITY

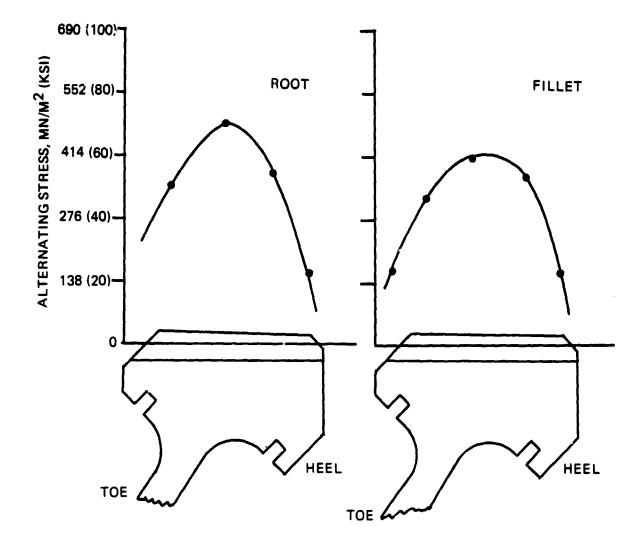
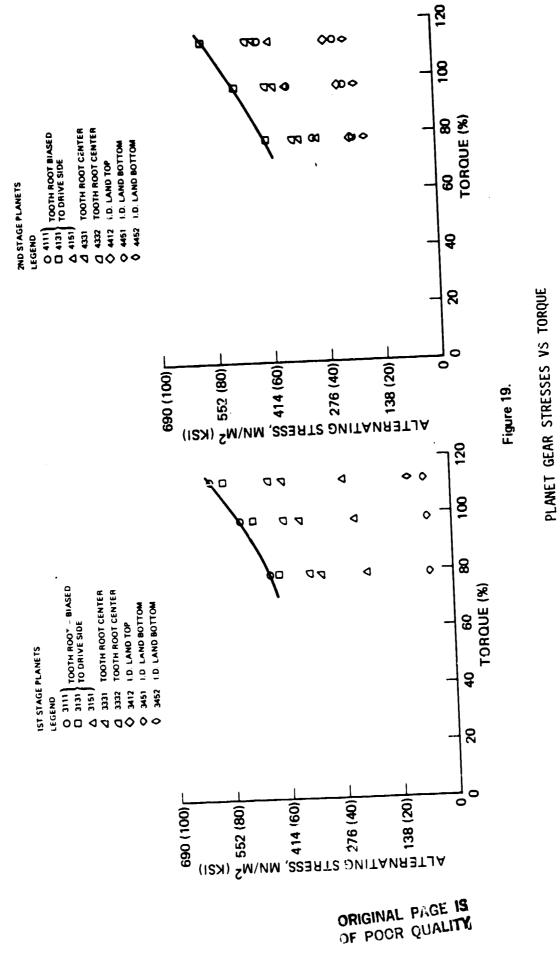



Figure 18. BEVEL GEAR FACEWISE ALTERNATING STRESS DISTRIBUTION

ORIGINAL PAGE IS OF POOR QUALITY

6.0 DYNAMIC STRAIN SURVEY

The purposes of the dynamic strain survey were to confirm that dynamic stresses are within the range of successful operation of Boeing Vertol helicopter transmissions as well as to verify stresses obtained during the static strain survey under actual thermal effects.

The conclusions of the dynamic strain survey were as follows:

- o Measured stress levels are within the range of successful operation of Boeing Vertol helicopter transmissions.
- o Maximum stresses at 100% torque were determined to be:
 - Spiral bevel pinion +21,000 \pm 74,000 psi (root) (+144.795 \pm 510.230 Mn/m²)
 - Spiral bevel gear +42,000 \pm 69,000 psi (fillet) (+289.590 \pm 475.755 Mn/m²)
 - First stage sun gear -1,000 ± 53,000 psi (center root) (-6.895 ± 365.435 Mn/m²)
- o No significant resonant induced stresses were observed.
- Comparison of dynamic to static data for spiral bevel members at 100% torque indicates:
 - Shift of peak stress distribution toward heel.
 - Generally good agreement between alternating stress levels.

- Less consistent agreement between temperature influenced maximum tension stress levels.

TEST APPROACH AND PREPARATION

Strain gages for the dynamic survey were applied to the bevel pinion, the bevel gear and the first stage sun gear as shown in Figures 20 and 21. The spacing of gages along the tooth face was designed to obtain a facewise stress distribution. Gages were placed in the tooth roots and fillets where they were primarily responsive to ring bending (roots) and tooth bending (fillets).

Strain data were transferred from the rotating shafts to the data collection system through telemetry units mounted on the input shaft and on the sun/bevel gear. In order to accommodate instrumentation lead wires and telemetry, both the pinion and the gear were modified internally. Figure 22 shows the sun-bevel gear dynamic strain survey gages and lead wire assembly. Figure 23 illustrates six gages laid in adjoining tooth spaces of the bevel gear. Gages have also been laid on the sun gear as Figure 24 shows. Also shown is the instrumentation access hole which allows the lead wires to enter the gear inside diameter. The sun and bevel gear leads are joined to the housing module (Figure 25). One of the transmitters is pointed out. The housing module fits within the circular recess at the bottom (left hand) end of the sunbevel (Figure 22). Figure 20 shows the stationary elements of the telemetry system attached to the existing lubrication standpipe assembly. The standpipe is coaxial with the sunbevel gear and is non-rotating. The power coil and antenna rings have been added to the standpipe. Figure 27 shows the modification to the bevel pinion designed to provide access for the instrumentation leads across the damping ring groove in the bore of the pinion. Also shown are the instrumentation leads, which originate at tooth strain gages, passing down

the pinion bore. At the other end of the pinion, these terminate in a rotating module similar to that shown in Figure 25.

The method of operation for the dynamic strain surveys was to allow the instrumented transmission to run long enough to stabilize oil temperature before taking data. The histogram of torque versus time is shown in Figure 28. Two types of runs were conducted - constant speed with various torque levels, and constant torque with speed excursions to search for resonant frequencies. Part II is the continuation of the dynamic survey following gaging of the bevel pinion made necessary by the progressive loss of gages during Part I.

DISCUSSION OF DATA

Figures 29 summarizes the dynamic strain data by displaying it on a Goodman diagram, allowing steady and alternating stresses to be plotted together. As already noted, the HLH maximum stresses are in the band of Boeing Vertol successful experience.

Figures 30 through 33 display data taken at various points along the face width, at various torque levels, and for both gear and pinion. The data are subdivided into the matrix:

		Fillet	Root
Maximum	Tension	х	х
Maximu.	Alternating	Х	Х

Figures 34 and 35 illustrate a sampling of stress versus torque taken from the three instrumented gears. The data are subdivided into tension and alternating stresses, and root and fillet stresses. Data points include all positions across the face. Generally the data display a linear rela tionship of stress and torque as would be expected.

Figures 36 and 37 illustrate face-wise data for the first stage sun gear. Figure 38 illustrates the stress distribution of the sun as it rotates through mesh. It will be noticed that the predominantly compressive stress seen before mesh, changes to a tension stress at the mesh point (0°) and then diminishes to essentially zero stress at 15° after the mesh.

TESTING FOR RESONANCE

Before the transmission was assembled for the strain surveys, the bevel pinion and bevel gear had individually been subjected to a resonant frequency test using a variable frequency excitation source. From this test, the resonant frequencies of the pinion (Figure 39) and the gear (Figure 40) are plotted. The pinion has no natural frequencies in the operating regimes of ground idle and 100% rotor rpm. The sun bevel gear has a number of frequencies close to 100% rotor rpm. These data are plotted for both the current test gear (-3) and an earlier (-2) gear which was used during the ATC program "iron-bird" testing, at reduced power, but for 140 hours. Because the -2 gear experienced no resonant frequency problems, it was judged that the similar but heavier wall -3 gear would not. This was confirmed during the dynamic strain survey, when speed excursion developed a maximum high-frequency measured stress level of ± 7470 psi (± 51.05 Mn/m²) (Figure 41). This is evidence that resonant energy is adequately dissipated through the damping rings fitted inside the bevel portion of the gear. Data taken at the sur-gear end of the bevel showed

a maximum of ± 6380 psi, (± 43.990 Mn/m²) while the pinion showed a maximum of ± 3810 psi (± 26.269 Mn/m²).

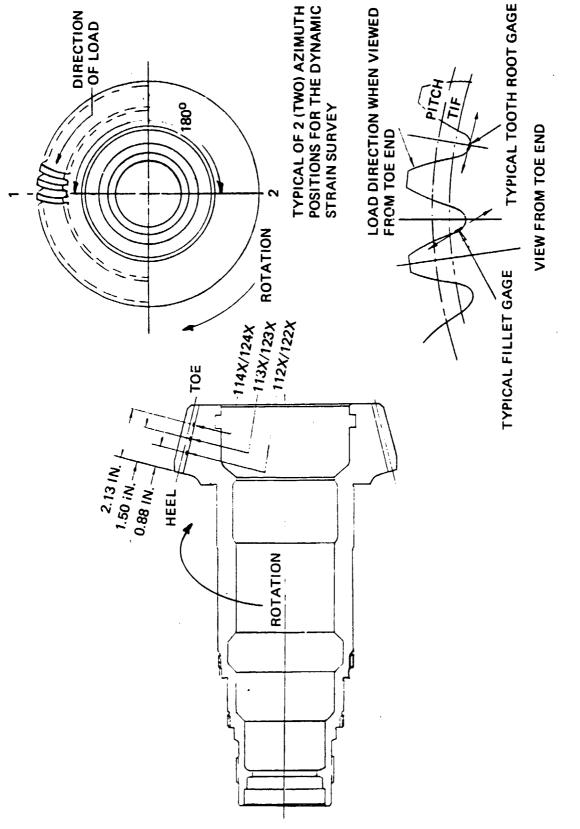
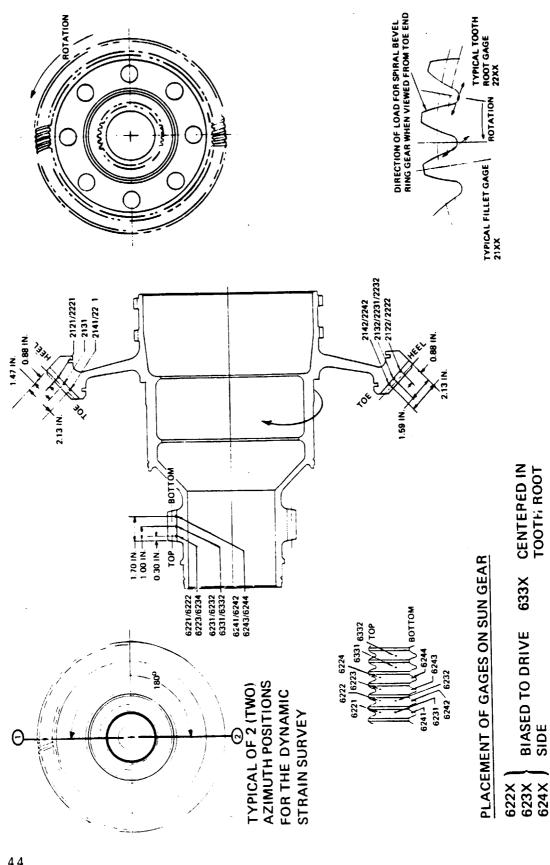



FIGURE 20. BEVEL PINION DYNAMIC STRAIN SURVEY GAGE LOCATIONS

ORIGINAL PAGE IS OF POOR QUALITY

1

BEVEL GEAP DYNAMIC STRAIN SURVEY GAGE LOCATIONS FIGURE 21.

ORIGINAL PAGE IS OF POOR QUALITY

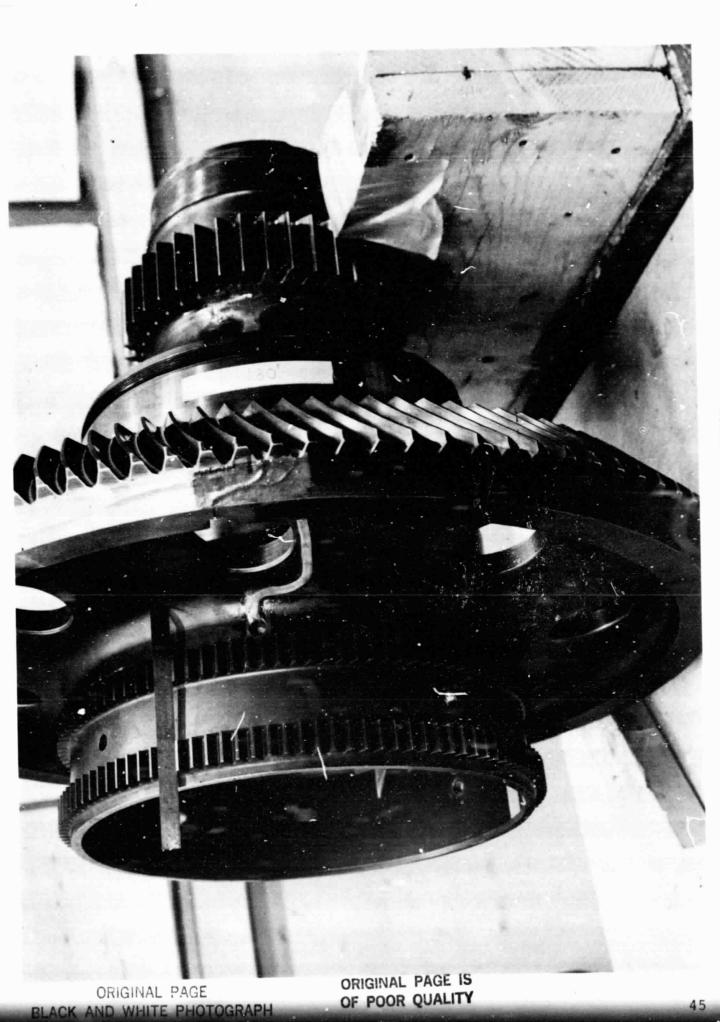
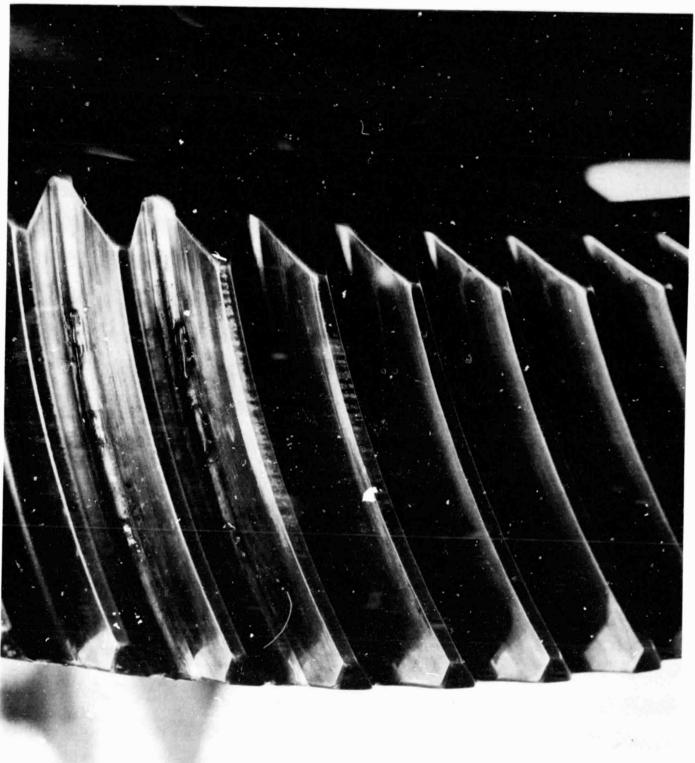



FIGURE 22 BEVEL GEAR INSTRUMENTATION

BEVEL GEAR GAGES IN BEVEL TOOTH ROOTS FIGURE 23

ORIGINAL PAGE IS OF POOR QUALITY BLACK AND WHITE PHOTOGRAPH

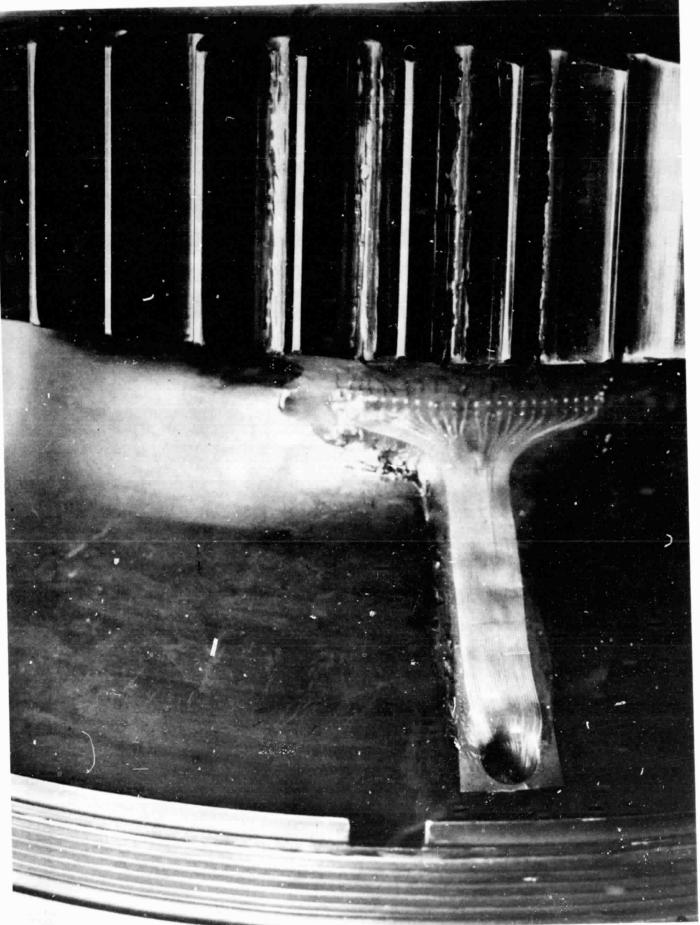


FIGURE 24 BEVEL GEAR GAGES IN SUN GEAR TOOTH ROOTS

ORIGINAL PAGE IS ORIGINAL PAGE

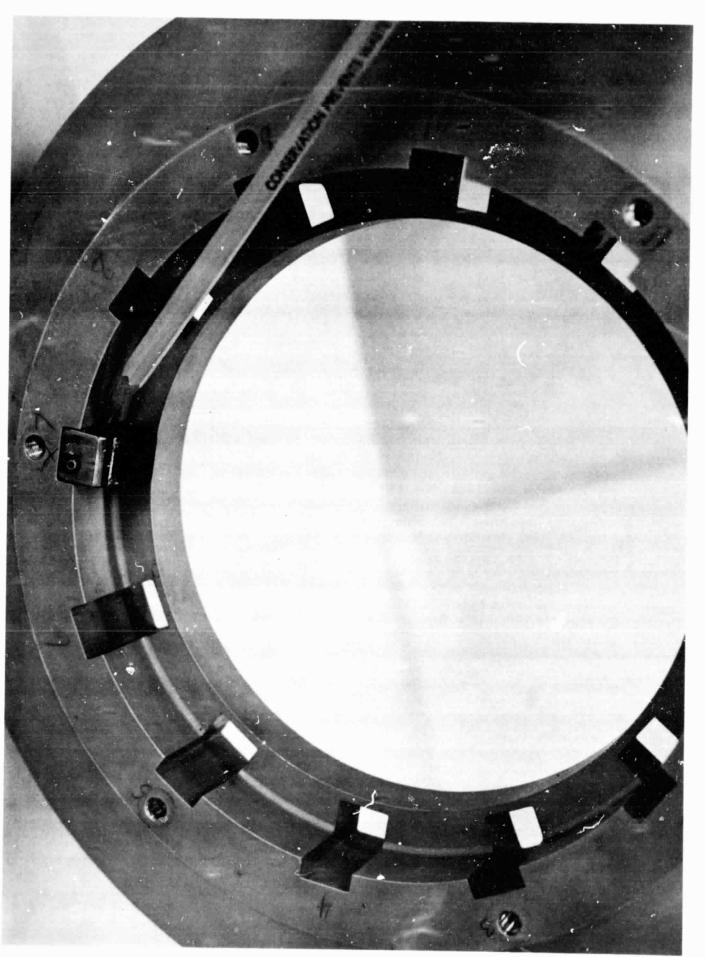
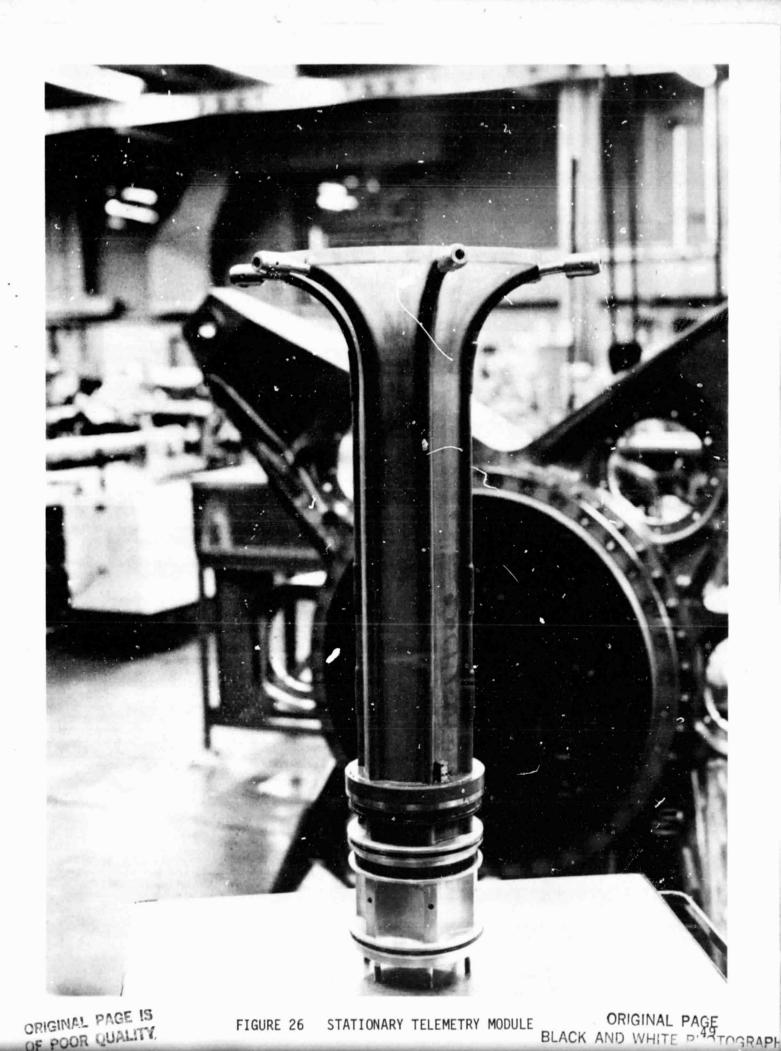
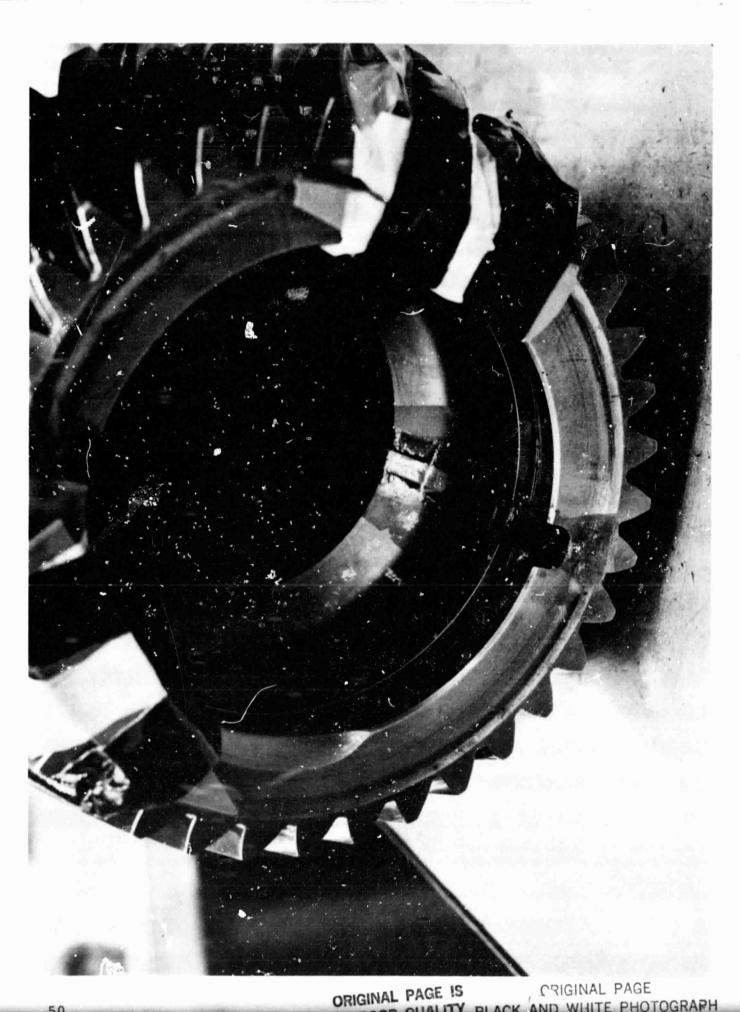
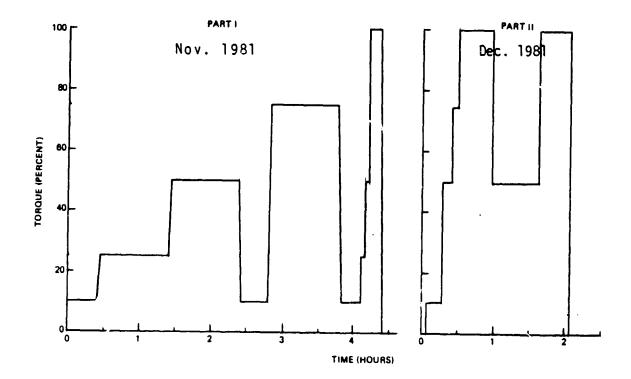
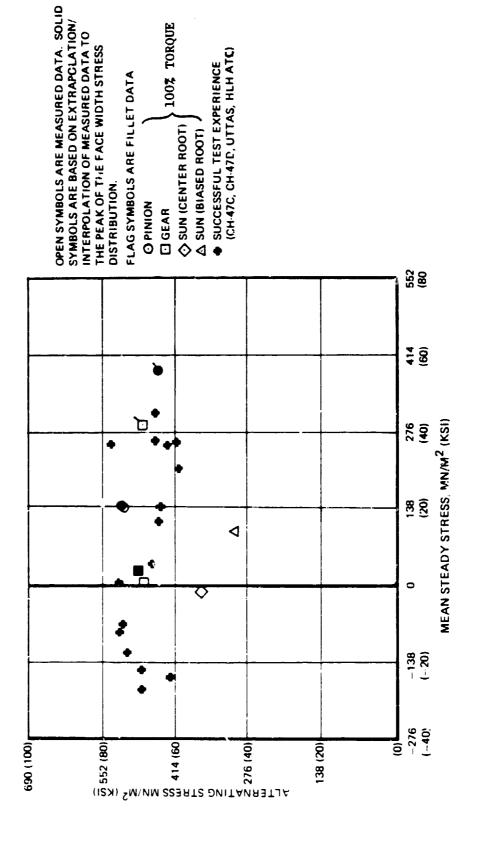
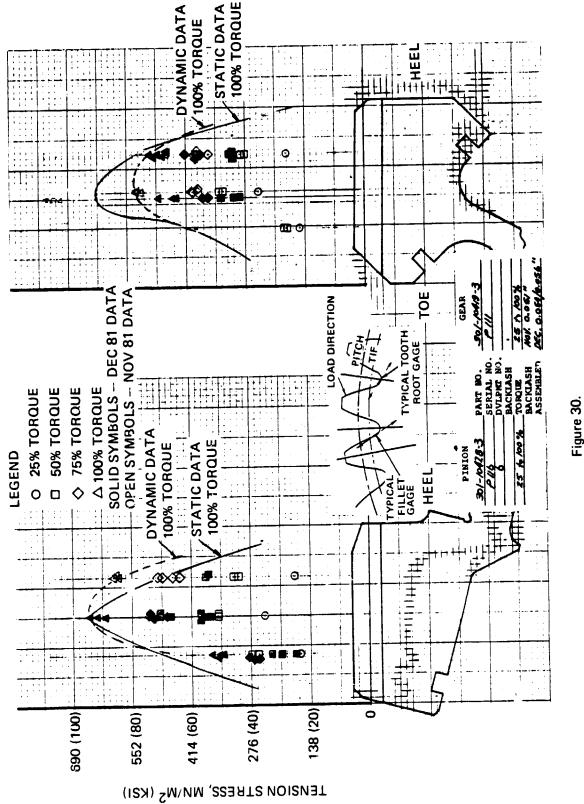





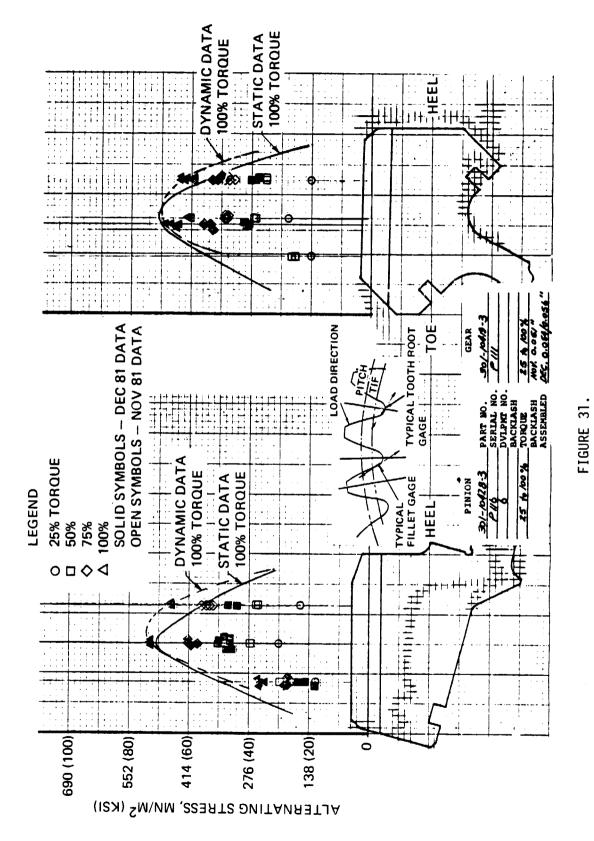
FIGURE 25 ROTATING TELEMETRY MODULE



,


FIGURE 28. DYNAMIC STRAIN SURVEY TORQUE - TIME HISTORY

ORIGINAL PAGE IS OF POOR QUALITY

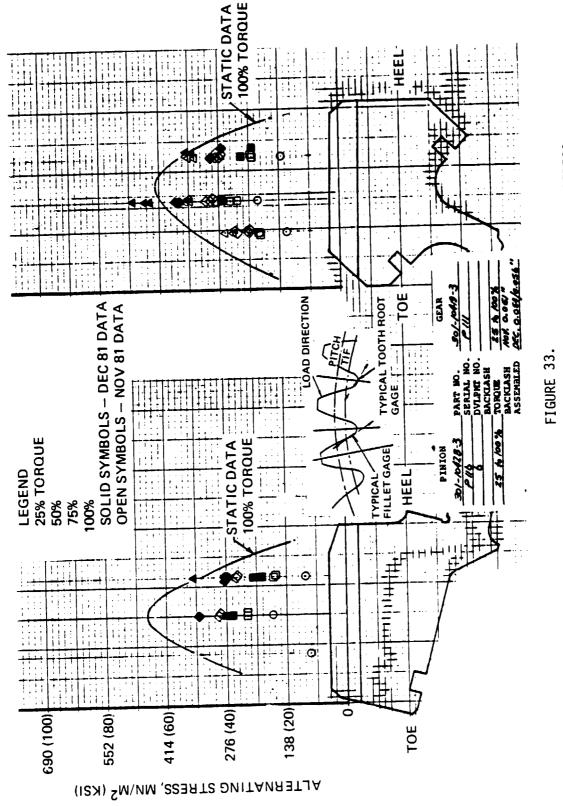


ORIGINAL PAGE IS

BEVEL PINION AND GEAR FACEWISE DISTRIBUTION - ROOT TENSION STRESS

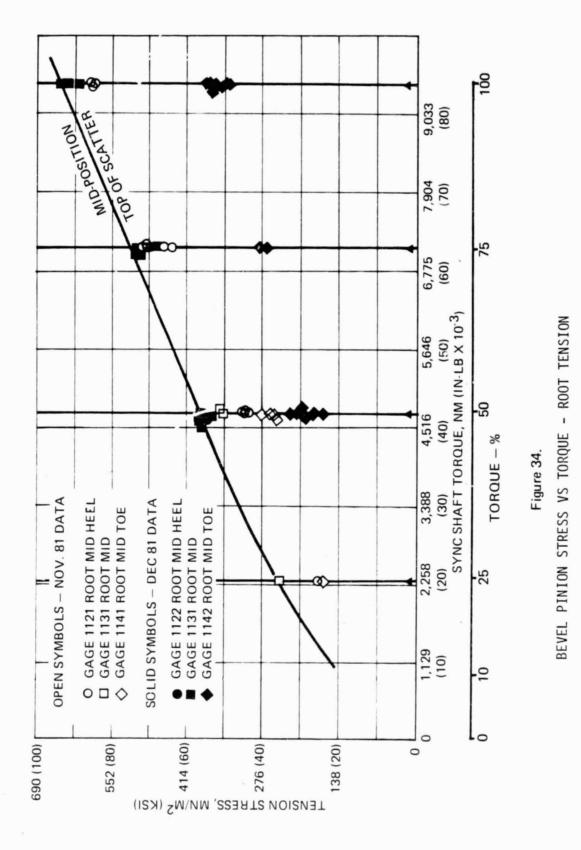
ORIGINAL PAGE IS OF POCR QUALITY

- 1


BEVEL PINION AND GEAR FACEWISE DISTRIBUTION - ROOT ALTERNATING STRESS

ORIGINAL PAGE IS OF POOR QUALITY

100% TORQUE STATIC DATA 1 ļi Ú ri il <u>j</u>Hf H 111+ 11 : | 1 111 B ●œs Ø :11 - FILLET TENSION STRESS ø -:11 1 <u>Nek 0.06//cest"</u> <u>046. 0.06//cest"</u> 1 :†: ::| 115 11 <u>25 A 100 X</u> -106-- Cya-1 GEAR 9.0 SOLID SYMBOLS – DEC 81 DATA OPEN SYMBOLS – NOV 81 DATA LOAD DIRECTION 2 TYPICAL TOOTH ROOT GAGE SERIAL NO. DVLPMT NO. BACKLASH TORQUE EACKLASH ASSEMALED PART NO. Figure 32. 1, **100% TORQUE** STATIC DATA K 00/ 4 52 25% TORQUE PINION FILLEGAGE LEGEND HEEL TYPICAL li 75% 50% **D** 100% Ħ ţ 0 🗆 Ŧ H ι. 96 θ 0 ₿ • • 1 -----0 Τi 111 1 Ļ 138 (20) 0 414 (60) 276 (40) 552 (80) 690 (100) TENSION STRESS, MN/M² (KSI)


BEVEL PINION AND GEAR FACEWISE DISTRIBUTION

ORIGINAL PAGE IS OF POOR QUALITY

BEVEL PINION AND GEAR FACEWISE DISTRIBUTION - FILLET ALTERNATING STRESS

ORIGINAL PAGE IS OF POOR QUALITY

į

ORIGINAL PAGE IS OF POOR QUALITY

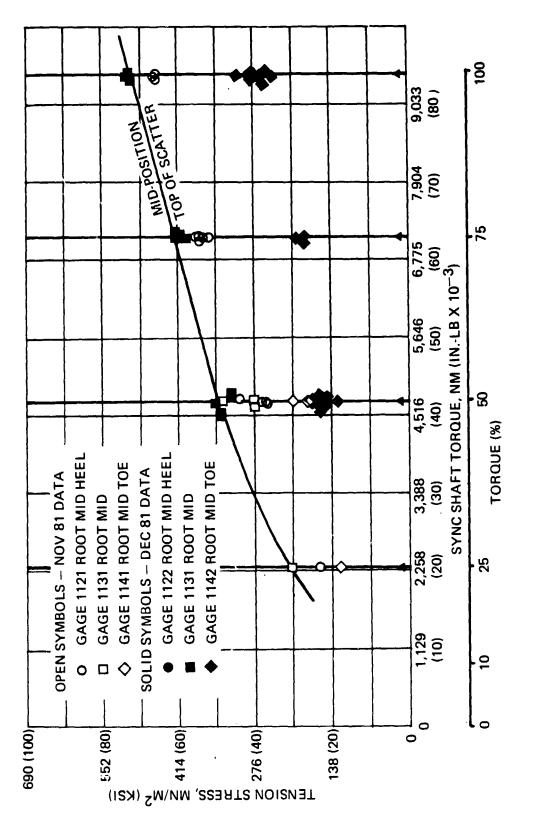
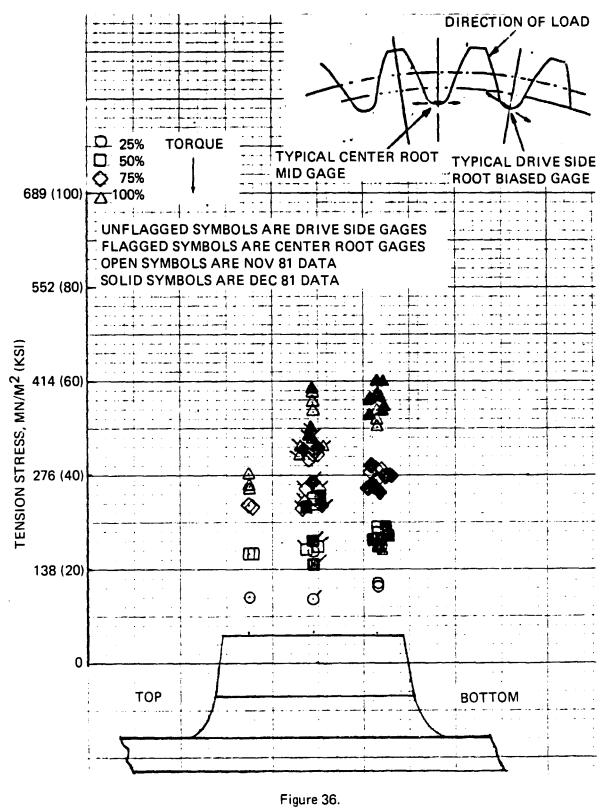



Figure 35. BEVEL PINION STRESS VS TOROUE - ROOT ALTERNATING

ORIGINAL PAGE IS OF POOR QUALITY

FIRST STAGE SUN GEAR FACEWISE DISTRIBUTION - ROOT & FILLET TENSION STRESS

ORIGINAL PAGE IS OF POOR QUALITY

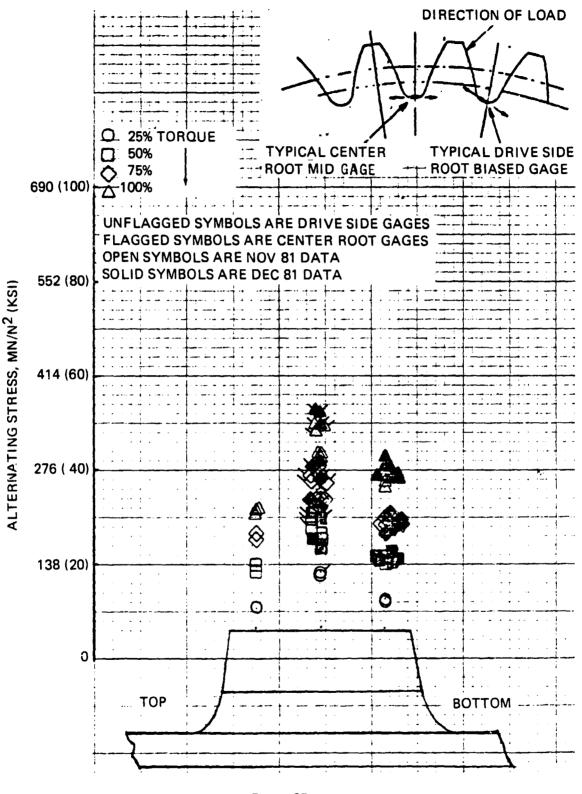
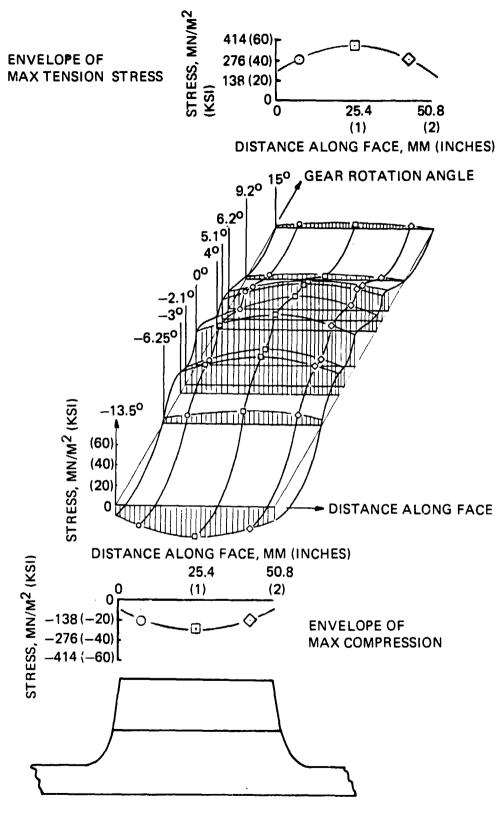



Figure 37. FIRST STAGE SUN GEAR FACEWISE DISTRIBUTION - ROOT & FILLET ALTERNATING STRESS

60

ORIGINAL FAGE IS OF POOR ON ANT

÷

ORIGINAL FAGE IS OF POOR QUALITY

FIGURE 38. FIRST STAGE SUN GEAR STRESS VS ROTATION TIME HISTORY

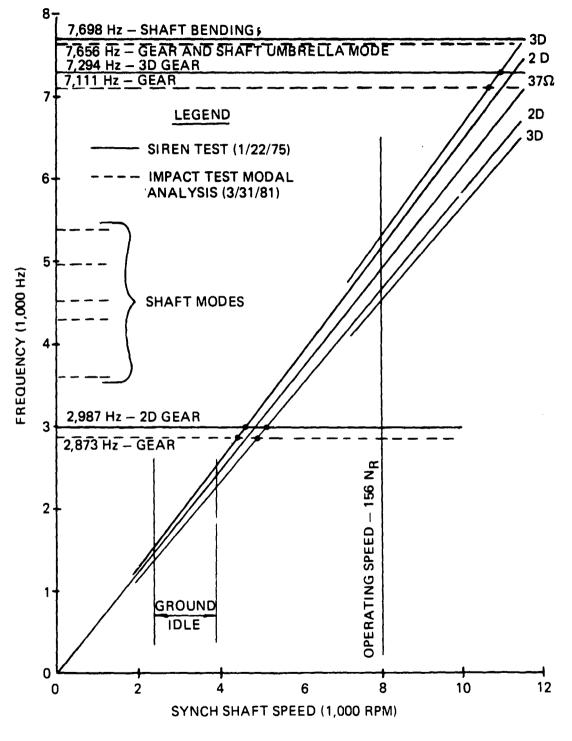
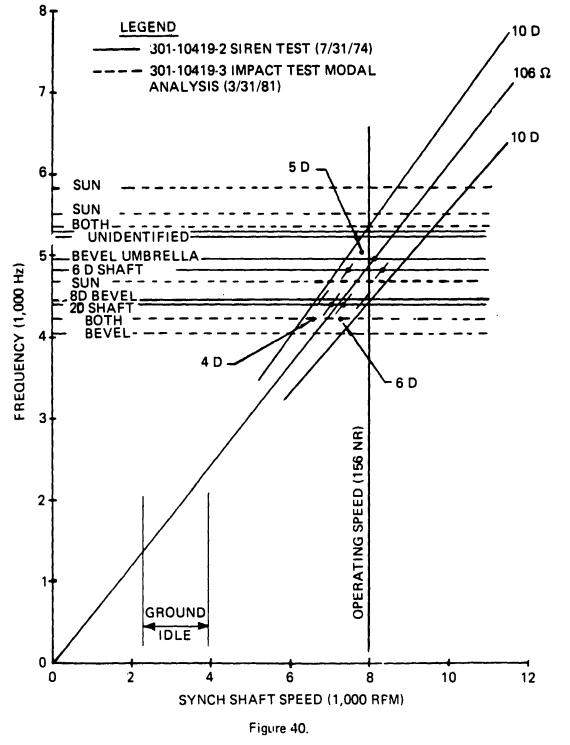
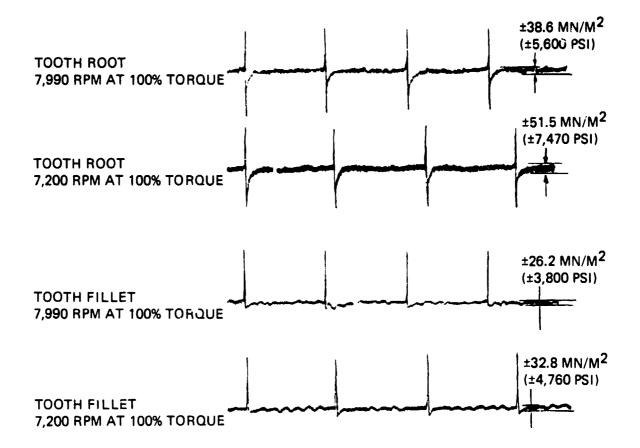
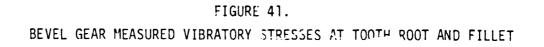



Figure 39.

BEVEL PINION CALCULATED MODAL FREQUENCIES


ORIGINAL PACE IS OF POUR ON COM


ľ

BEVEL GEAR CALCULATED MODAL FREQUENCIES

ORIGINAL PAGE IS OF POOR QUALITY 63

,

ORIGINAL PAGE IS OF POOR QUALITY

7.0 LCAD TEST

Load running of the cransmission began with 50 hours of load buildup testing at 80% and 90% design torque and concluded with 50 hours of testing at 100% design torque (83,810 inchpounds, equivalent to 9463 Nm torque at the input shaft). All load testing was conducted at 100% design input speed (7,986 rpm). The combination of 100% torque and rpm equates to 10,620 hp (7900 KW).

The load test program was conducted using a synthetic lubricating oil conforming generally to MIL-L-23699 but with superior load carrying ratings. This oil is Aeroshell 555, a product of Royal Lubricants, Hanover, N.J. The transmissionmounted air-oil cooler and mechanically driven blower was used throughout the test. Test oil temperature was the result of cooling capability and test cell air temperature. Oil at the cooler inlet varied from 80°C to 90°C, or about 60°C over ambient air temperature. This indicates an adequate margin for hot day (52°C) operation without exceeding red-line oil temperature of 140°C.

A record of test conditions and raw data is given in the appended Load Run Log.

The chronology of the 100 hours of testing is shown in Table 6. The incidents noted are further described as follows:

At 10:00 hours - Failure of the pressure switch occurred. This switch is mounted on the transmission housing and is subject to acceleration on the order of 50 G's. The switch body failed through a weld. Corrective action will include redesign and qualification. For this test series the component was replaced with a like part and running was resumed. At 10:55 hours - The indicating screen warning light flockered on. When the screen was removed for inspection, pieces of strain gage instrumentation material were found adhering to it forming a conductive path between positive and negative wires. The screen was cleaned and replaced.

At 52:00 hours - Debris was found in the drain of a test stand gearbox, unrelated to the aft transmission. Disassembly of the test stand gearbox disclosed a bearing failure which was repaired, causing a test delay. At the same time, a piece of debris approximately 2.5 mm square was discovered in the aft transmission sump. It was determined that this material came from a single castellation of an accessory gear bearing locknut. Since the locking system on this locknut is redundant, no replacement was deemed necessary.

At 73:35 hours - Testing was stopped briefly at 73:35 hours due to a main screen indication light. Inspection of the screen revealed nothing, but one small chip was found on the sump magnetic detector. Analysis showed the chip to be M50 steel. The decision was made to continue running.

Before start-up on 3/10/82, several more small flakes were found on the magnetic chip detector. Testing continued to 81 hours. Prior to shut down the main screen light came on at the console. On 3/11/82, inspection of the magnetic detector in the sump revealed one small flake. Inspection of the main screen revealed pieces of instrumentation wiring. Many spall type flakes were found in the main screen sump cavity and upon removal of the sump, additional spall flakes were found in the bottom of the sump.

The transmission was removed from the stand for disassembly. Disassembly inspection revealed the 301-10414-3 first stage planet P125 (bearing assembly S/N VB18R) to be spalled on the upper row of the inner race. This planet assembly was replaced by P137 (S/N VB108T).

Inspection also revealed that 301-10414-3 first stage planet assembly S/N VB105T had three teeth of the 301-10466-2 gear S/N P152 chipped on the ends due to case/core separation. The teeth were blended smooth for continued testing.

All other first stage planet teeth were magnetic particle inspected and no defects were found.

Visual inspection of the second stage planets and spiral bevel gears found them to be in excellent condition.

At 90:00 hours - An aluminum tube fitting connecting the main lube oil pressure transducer to the transmission housing failed in fatigue. A replacement steel tube fitting was substituted. Shortly after this the transducer failed to transmit a signal and was replaced with a like part.

At 100 hours, the test was completed with no further incident and the test transmission was removed from the test stand.

POST-TEST INSPECTIONS

All main drive gearing (bevel pinion, bevel gear, sun gear, planets) and first stage carrier were disassembled for magnetic particle inspection. No indications were found. The main housing was zvglo inspected in the intersections between center bearing webs and outer housing, and found free of indications.

Gear tooth surfaces were inspected and the following observations were made: Spiral bevel pinion - (Figure 42)

General condition of pinion was quite good, with no load related distress observed. A single mark which resembled a small frosted area approximately 1.5 mm x 1.5 mm in size was observed on the upper flank of every tooth at the heel end. This was caused by contact with a very small area of grind non-cleanup on two mating gear teeth. Since the ratio is hunting, each mark on the pinion was identical.

Grinding contact lines were plainly evident on the tooth surface (Figure 43) within the contact pattern but they remained unchanged during the entire run indicating the existence of a good lubricating condition.

Spiral bevel gear - (Figure 44)

Overall condition of teeth was excellent (Figure 45). Pattern was fully developed, free of hard lines, and no evidence of any distress was observed. Two teeth showed a small area of grinding non-cleanup which resulted in the pinion marking described above.

First Stage Sun Gear - (Figure 46)

Some light frosting was present in the dedendum area of the teeth only at the lower end of the face. The distress did not progress and appeared to have healed slightly. Thi condition indicates that additional profile modification would be desirable. Some slight debris damage was noted. Contact pattern was fully developed and free of any hard lines.

¥

First Stage Planets - (Figures 47, 48, 49 and 50)

Some very light frosting at the very tips of the teeth on the sun side was barely visable. Increased profile modification on the sun will eliminate this. Some debris damage was noted but it was slight on the sun side and somewhat more evident on the ring side. Figure 50 illustrates the blending of the tooth ends of planet gear P152 referred to previously.

Second Stage Sun Gear

The condition of this gear was excellent. Contact patterns on both flanks were fully developed and free of hard lines. Tooth surface still showed original grind marks indicating lubrication state to be good. Some very minor debris damage was noted.

Second Stage Planets - (Figures 51, 52 and 53)

The condition of these gears was the same as the sun. The debris damage on the ring side was somewhat more extensive than on the sun side, but no fatigue propagation was noted.

Internal Ring Gear

The overall condition of this part was quite good except that substantial debris damage (from the planet bearing failure) was noted. Contact patte as were good and no hard lines were noted. Bearing surfaces were inspected and the following observations were made:

Bevel Pinion Tapered Roller Bearings

Both bearings were in excellent condition. There was no evidence of roller skidding or any surface distress on critical operating surfaces. The inboard bearing (P/N 301-10420) did show heavy fretting on the bore and side faces while the outboard bearing (P/N 301-10424) showed only light fretting on the bore. No other discrepancies were noted. Figure 54 shows the roller paths, inner and outer of 301-10420 bearing.

Bevel Gear Tapered Roller Bearings

Both bearings on the bevel gear were also in excellent condition. Ine upper bearing (P/N 301-10443) showed evidence of heavy fretting on the bore while the lower bearing (P/N 301-10440) showed only light fretting on the bore. No other discrepancies were noted.

Planetary Bearings

Both the first and second stage bearing assemblies showed debris damage on all components. It appears that the second stage had more damage due to debris from the failed first stage planet bearing. The second stage also showed evidence of glazing on the inner ring raceway. The second stage planet bearing cage had debris embedded into it and several pockets showed heavy polishing of the silver plate. The first stage planet cages were in excellent condition. Figure 55 shows the spalled inner race of first-stage assembly VB18R replaced after 81 test hours. The rotor shaft bearings were not disassembled. No indications of any problems were observed in this area.

Accessory gears and bearings were examined visually. There were no discrepancies in this area except for the locknut castellation noted in the test record.

DISCUSSION OF LOAD TEST RESULTS

The aft transmission completed 100 hours of load running in generally excellent condition. The minor discrepancies noted in the post-test examination can be corrected by known procedures. For example, the case-core separation at the tooth tips has been corrected in recent designs (CH-47D) by chamfering the ends of the teeth and by increasing the end breaks. The frosting in the root of the first stage sun gear indicates a need for slightly more involute profile modification. The minor surface distress observed on the bevel pinion at the heel was caused by contact with non-cleanup areas on several teeth at the mating bevel gear. Further running of this gear set would be proceeded by a blending out of the non-cleanup areas.

Post test analysis of the spalled planetary bearing inner race was conducted by the bearing manufacturer. The conclusions of this analysis can be summarized as follows:

- Cage pockets exhibit an even wear pattern, indicating that the rollers were properly oriented during operation.
- There was little, if any, sliding of the roller on the roller path.
- Cage lands are in good condition.

71

- Metallurgical analysis of the inner ring showed it was in conformance with specification limits. Ring hardness was RC 60.5. No grinding damage was found.
- Dimensional checks of the roller path location and radii along with roller characteristics showed all dimensions within drawing limits on the spalled raceway.
- There appeared to be no lubrication problem, based on surface appearance.

The cause of the spall was thus not identified, since the fatigue origin was lost in the damaged area. The spall is considered to be a random occurrence, and no design changes are considered necessary.

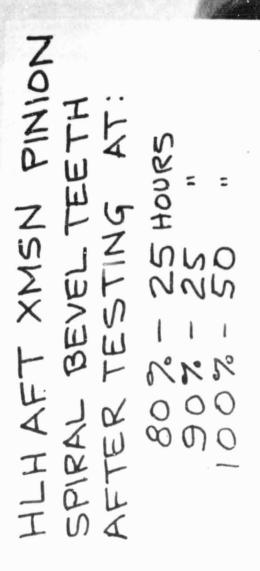
	TABLE 6 -		OF HLH AFT UN TESTING	TRANSMISSION
% LOAD	DATE	HOURS THIS DATE	HOURS CUM.	INCIDENTS/OBSERVATIONS
80%	01/13/82	10:00	10:00	Low oil pressure warning light switch failed & replaced.
80%	01/14/82	6:55	16:55	Strain gage debris found on indicating screen.
80%	01/15/82	5:05	22:00	None
80%	01/18/82	3:00	25:00	None
90%	01/18/82	4:00	29:00	None
90%	01/19/82	7:00	36:00	None
90%	01/20/82	8:00	44:00	None
90%	01/21/82	6:00	50:00	None
100%	01/21/82	2:00	52:00	Test stand gearbox failed. Found seg- ment of bearing locknut in sump.
100%	03/05/82	8:00	60:00	None
100%	03/08/82	8:00	68:00	None
100%	03/09/82	7:00	75:00	Main indicating screen light
100%	03/10/82	6:00	81:00	Bearing spall debris found on screen
100%	03/18/82	1:30	82:30	None
100%	03/19/82	7:30	90:00	Main pressure trans- Cucer connection failed and main pressure transducer failed.
100%	03/22/82	7:00	97:00	None
100%	03/23/82	3:00	100:00	None 73

•

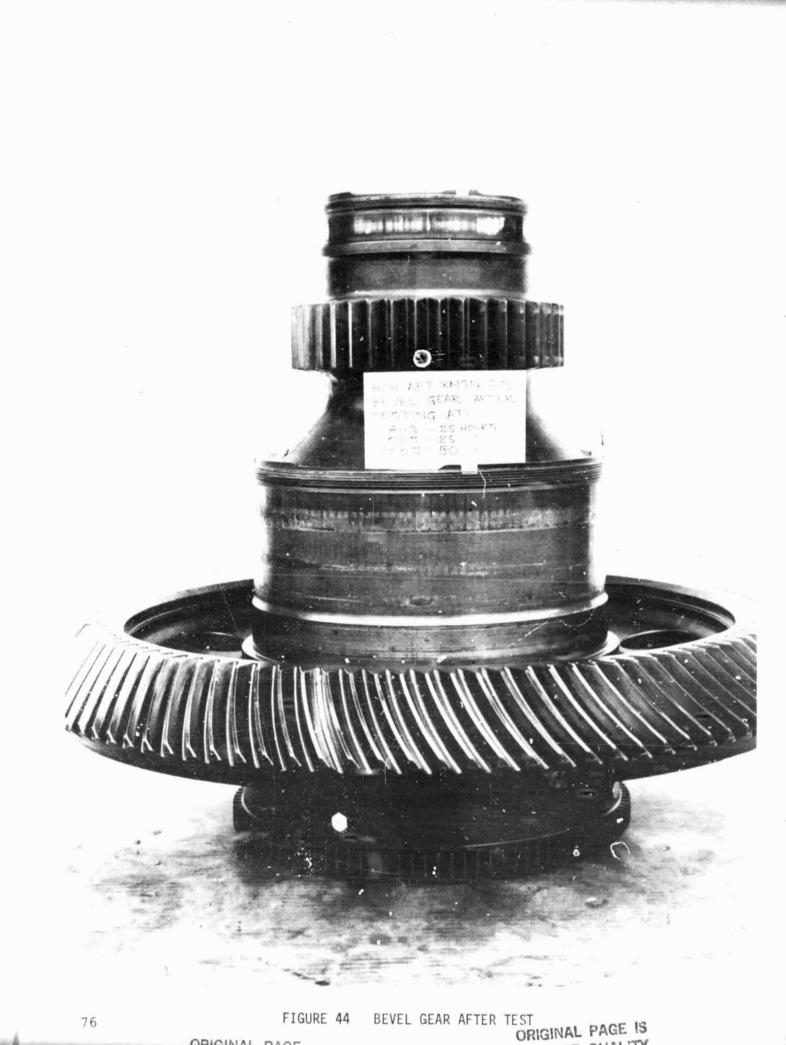
.

·· .

. .


•

.

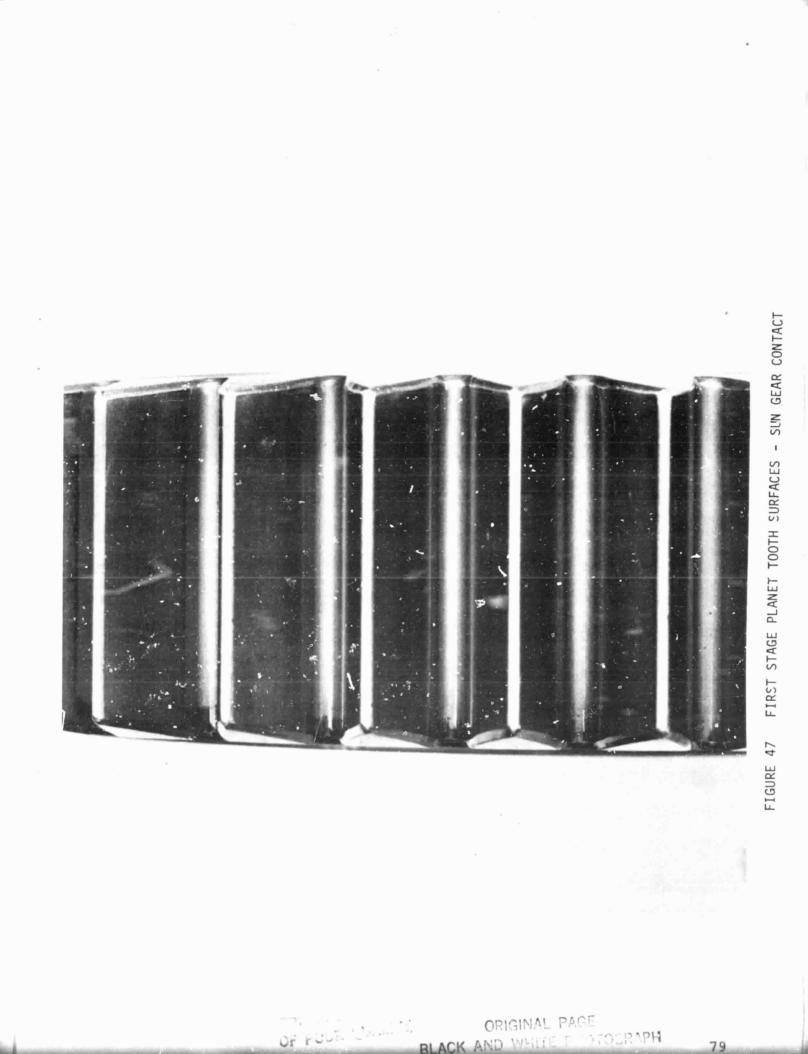


ORIGINAL PAGE IS

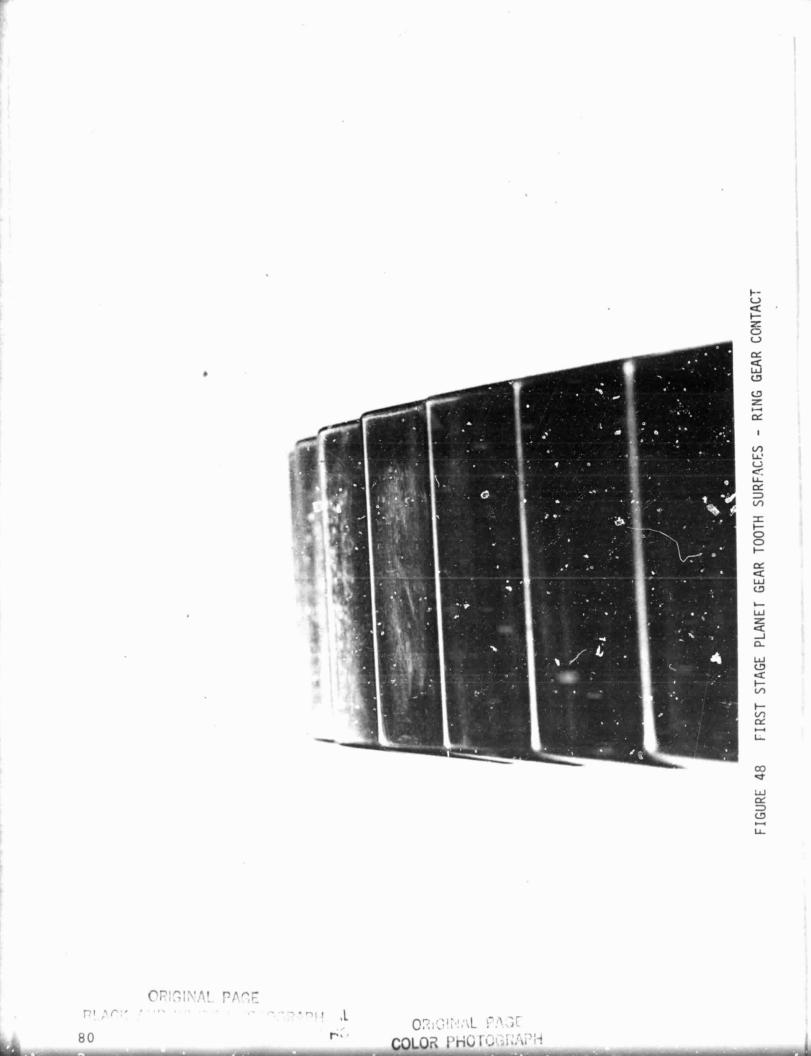
ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH FJGURE 42 BEVEL PINION AFTER TEST

ORIGINAL PAGE IS ORIGINAL PAGE OF POOR QUALITY BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE


OF POOR QUALITY

WHITE PHOTOGR


BEVEL GEAR TOOTH SURFACES FIGURE 45

HLH AFT XMSN 157 STAGE SUN GEAR TEETH AFTER TESTING 25 HOURS 25 == 50 8000 8000 8000 8000

OTOGRAPH AND WHITE ACK B

79

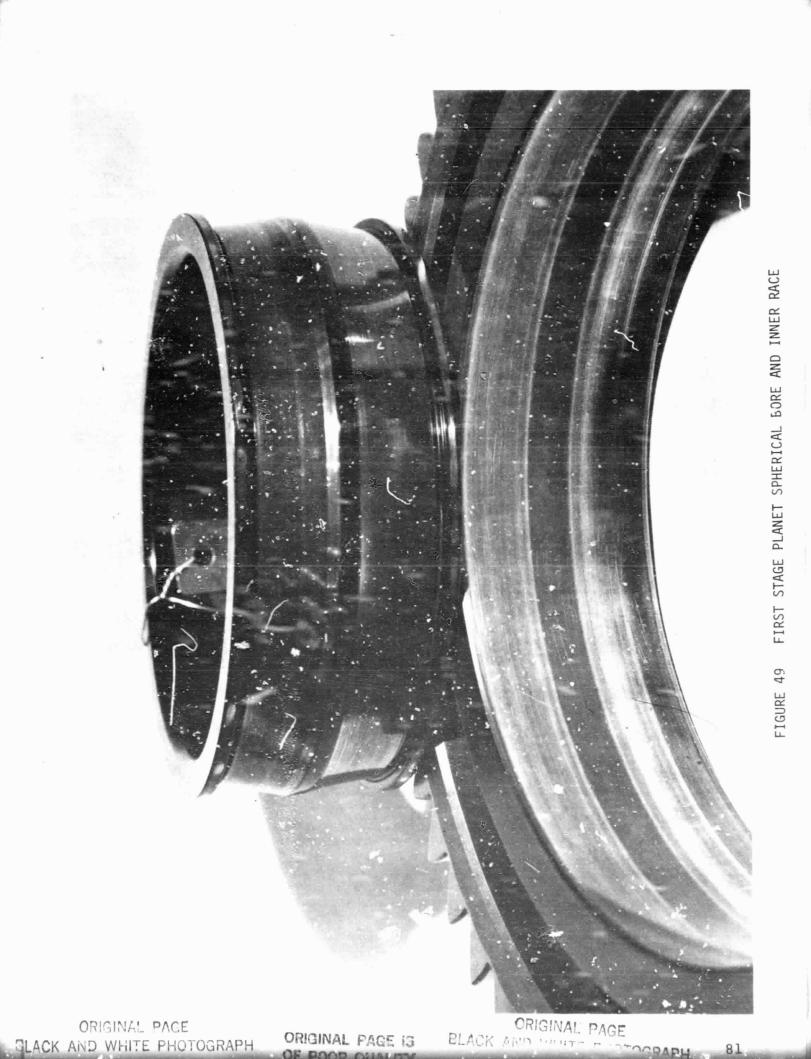
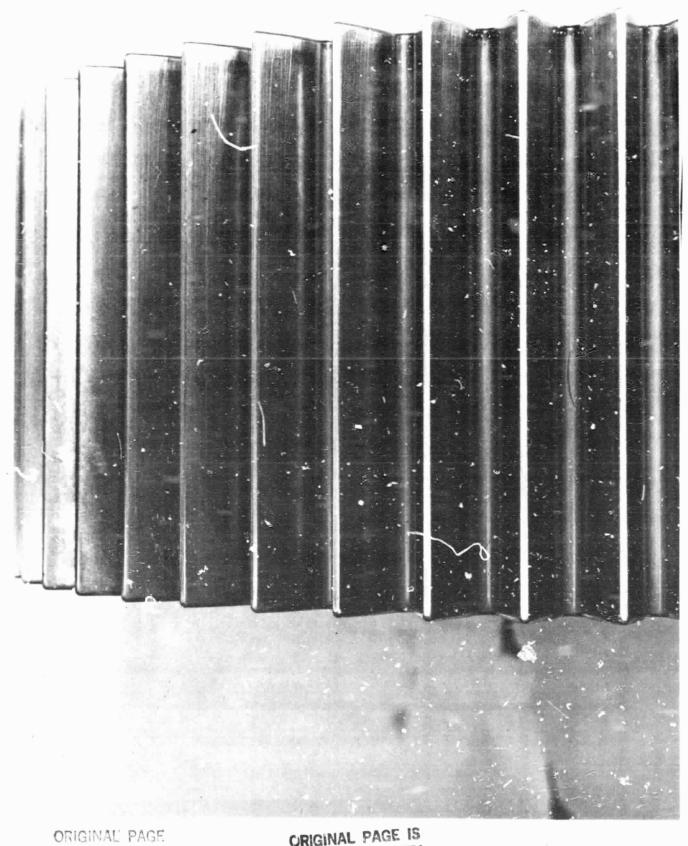



FIGURE 50 FIRST STAGE PLANET TOOTH END ROUND-OFF ORIGINAL PAGE IS ORIGINAL PAGE

82

ORIGINAL PAGE IS

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

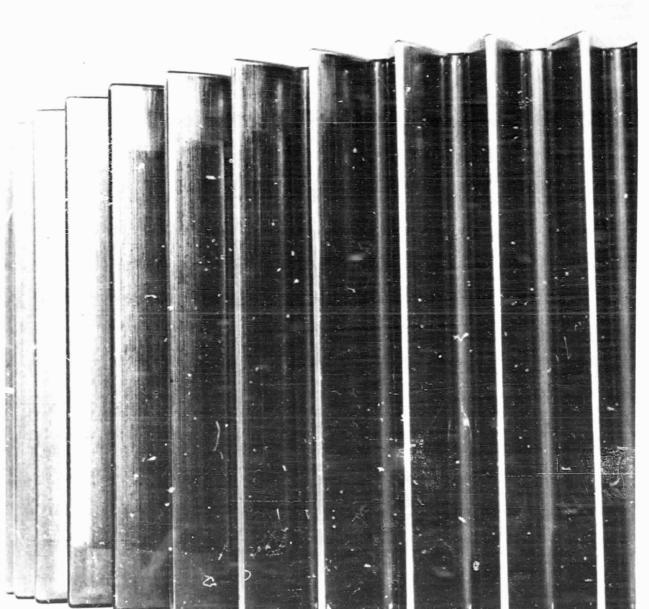


FIGURE 52 SECOND STAGE PLANET TOOTH SURFACES ~ RING GEAR CONTACT

ORIGINAL PAGE IS ORIGIN

ORIGINAL PAGE

-

84

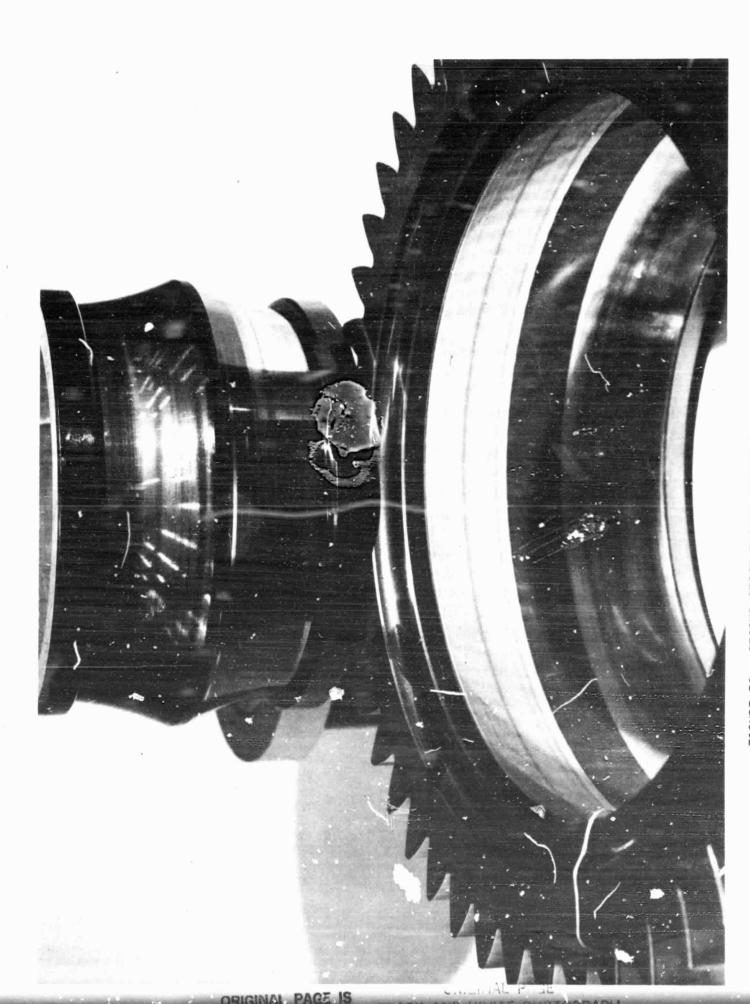
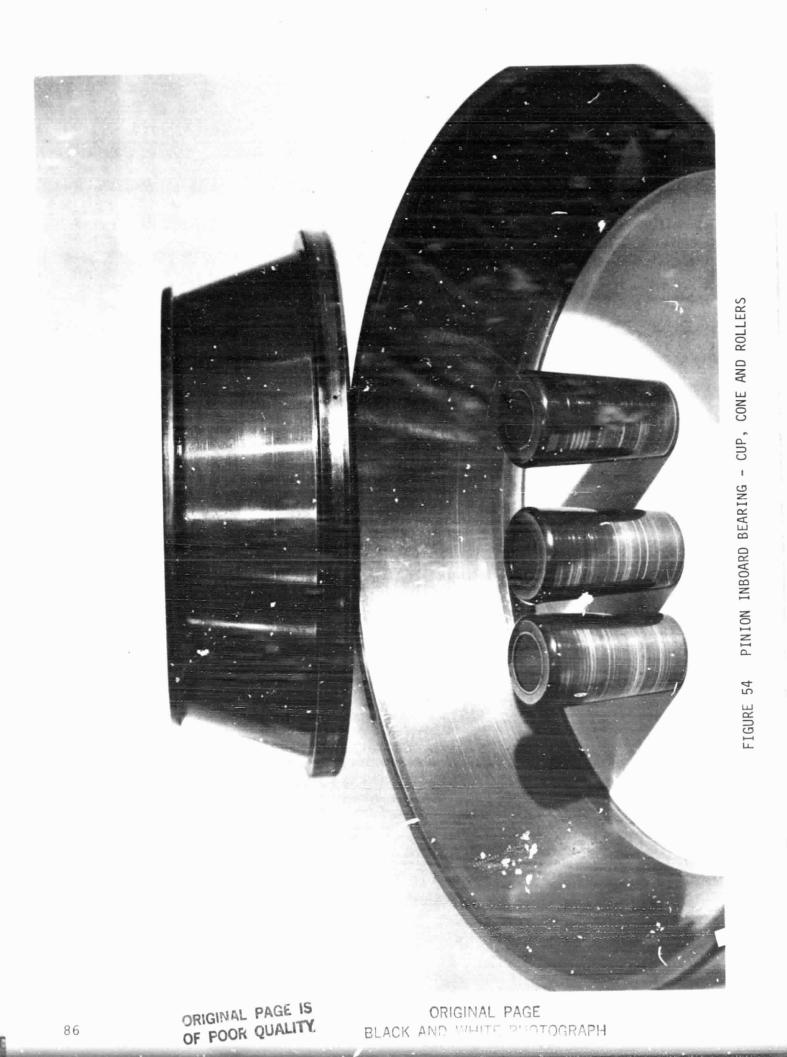
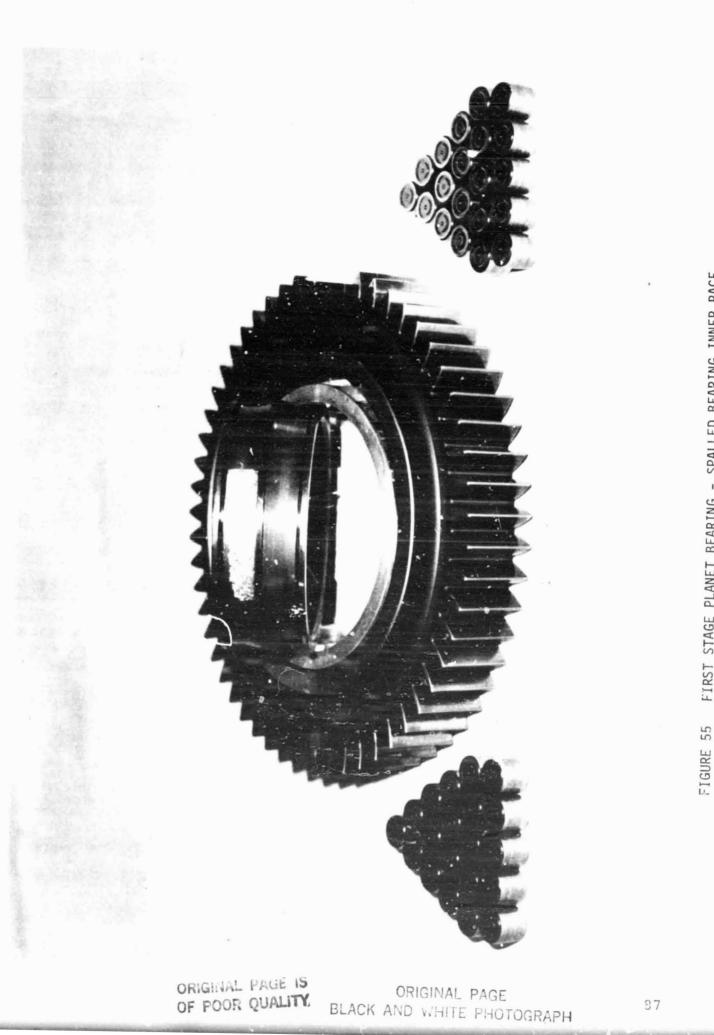




FIGURE 53 SECOND STAGE PLANET SPHERICAL BORE AND INNER RACE

FIRST STAGE PLANET BEARING - SPALLED BEARING INNER RACE

APPENDIX

٠.

LOAD RUN LOG

DYNAMATIC OUTPUT RPM 685 AT 7986 SYNC.

ſ

,

HLH AFT XNSN TEST DATA SHEET

~

- **1**

HR. ENDURANCE OB CON?	BUILDING	3-31 807. = 67048 "#	- 24	7986 RPM REMARKS	ADDED ALE GAL TO DYAMMOTIC	1.2 MEGAWATTS ON MOTOR							SULTDAUN DYUR ANUTO	•			ADDED IGAL TO DYNAMATIC	RESUME TEST	1.23 MECHARTS ON MOTOR					
So			COOLER INLET	OIL TEMP	2.09	70	30	80	82	88	28	58		2.2.2	40.	67		67	80	80	80	18	81	à
DESCRIPTION OF TEST	TEST CELL	NO. 2	PRESSURE	AUX PSI	104	001	<i>a</i> 0	95	25	95	95	38		13.274	104	100		100	98	98	97	16	97	- 6
DESCRIPT			OIL PR	MAIN PSI	106	104	100	001	001	001	66	100		11.74.1	108	104		104	(0 X	100	001	100	00/	001
		555		SPEED . RPM	9251	0666	7985	7986		7986	7984	7984	1	Dyesterne	886L	7989		2989	7983	2986	7982	8866	1986	7662
100	USED	AEROSHELL	SHAFT	UE PSI	134	131	200	695	610.	688	688	667	(rata	205	203	:	205	760	695	670	640	68.51	685
S/N A9-	110	AE	SVIIC	IN-LB	0006	4000	67000	61000	6 1 00 0	6/000	67 000	33223	1	10 1.W	10000	10000	• • • •	0000	6 7000	67000	67000	67000	67000	67000
+200-2 SI	INEER.	motor	AHBIENT	AIR TEMP . OF	J.S.	9	۲- ۱	- 7	-	% 2	ۍ و د			11 TIS 18 11. 161	69	11		1	74	77	78	80	18	رج م
X454 P/H 301-104200-2		P. Monenshic	TOTAL TEST	I I ME HRS : MI N	NIM 01	(unewor)		00:00		01;30	09:00		CA. TA	15 Saury 11 21		IC MIN		04.42	03:00	03:30	04:00	04-30	••	05:30
VI ISTA	DATE	78-8-1	JNII	DAY DA	<u> </u>		121	561		2440	1255		/ccl	1-11 82		0815 /	<u> </u>	 .		5010	0933	1003	1033	1103

A	1		• •	1	······································	1	• L.		•••••••••						•					•		 *	•	•	·····		
	NCE TEST	BUTLDING	3-31	1 \ \	7986 RPM Remarks			•	•	•	1 .		•	1.47 MEGAWATTS and Majar	what ou shired		•	RESOME TEST	• • •		λ.φ.			1.46 NECHWATTS	•	•	
	TEST ENDURANCE		÷.	COOLER~INLET	OIL TEMP	18	1.8	1.8	18	81	18	81	82	82	PERACED WITH MU	33	70	75-	80	8-0	80	B I	91	1.8	8	81	1.8
SHEET	1	TEST CELL	NC. 2	PRESSURE	AUX PSI	76	16	16	16	_72_	76	67	67	67	N GALD.	105	102	100	99	66.	99	96	98	86	38	98	58
DATA	DESCRIPTION OF			011 Pg		001	00/	00/ .	00/	100	100	00/	001	001	SS SUM	901	104	102	100	(•0	001	100	100	001	100	00/	1 00
XMSN TEST			555	•	SPEED RPM	799a	7985	7984	1366	7735	79 53	0366	1866	7984	NU OK PRESS	7586	7983	7988	7386	7977	0695	7988	7985	686L	オタイ	8866	7988
AFT	00	USED	AEROSHELL	SHAFT	TORIQUE LB PST	685	683	7.89	620	6.92.	673	6 80	683	690	「 ()	061	188	700	690	690	650	685	685	685	625	680	680
нгн	A9-10	011 0	AE	SYNC	IN-LB	67000	67000	67000	67000	6.2050	67000	67000	67000	67000	OF SHIFT	8 000	0006	67000	67000	67000	62000	67,000	67,000	67,000	67,000	67,000	67.000
	N/S 2-002	INEER	moke	AP4BIENT	AIROF	82	83	84	54	85	BS	9.6	86	8 0	DOWN END	77	75	75	78	18	İ			48			85
	XH:SH P/H 301-104200-2		2 A Monumber	TO		6;00	6:30	7:00	7:30	. . .	8:30	9:00	9:30	10:00	イット	10 MIN	angn-UP)	10:00	10:30	11:00	(1:30	20.21	12:30	13,00	13:30	14:00	14:30
	XN:SN P	DATE	1-13-82	31.1	OF DAY	10:33	12:03	12:33	13:03	5 32	14:03	14:33	50:51	15:33		0 200	01:80	01:00	08:40	01.60	01.40	10 10	10:40	01:11	2		13:40
0										0	RIC	١N	AL	YA	GE	19)										

ł

. 4

90

ORIGINAL PAGE n 600

					• •	3	7		•	•••			•	•		•	•	* • • •		-			•	••••	•
•	NCE TEST	BUILDING	3-31	802 = 67048. "	7986 RPM				A) ALL SURFER			•	- Analysenasce	•	•	RESUME PEST		RESOME TELT	-	I. 2 WEGAWATTS			. /	•	
•	TEST ENDURANCE				OIL TENP	18	51	B, I	13		62	71		70	11	78		75	80	20	80	KC CO	80	81	٩١
SHEET		TEST CELL	NO. 2	PDFSSIIDE	AUX PSI	95	92	35			102	100	-	102	100	001		102	66.	20	48	35	28	36	48
T DATA SHEET	DESCRIPTION OF	31		011 00		120	160	100	160		(04	60/	2	104	102	102		104	(00	00.	00	100	22/	100	100
XNSN TEST			55Ş		SPEED RPM	8.8 51.	-7289.	79.6%	7995		7990	7993	IT DOG	7998	7986	484	5	8662	1987	9841	70.17	7193	7995	7985	9999
НН АГТ Х	- 100	L USED	AEROSHELL	SHAFT	ALE PST	6.66	1.50	182	585. 582.		96	196	FS 1	144	-781	850	N C	640	634	634	607	1.20	633	635	638
Ŧ	A9	10	A	SYNC	TN-LB	67,600		1.7 M	6.20m	HFT	15,000	15,000	3N CITO	15,000	15,000	101	JX SCREE	67000	6.1,000	00079	6 4000	2.2.2.7	67.00	67,000	67,000
	N/S 2-002	INEER .	meken	AP:BIENT	AIR TENP	55	-2 53	57.5		S yo Qn	4	76	Sce	76		2	DOWN AU	76	200	1 C 2	23	(U)	05 ⁻		
	/ii 301-104200-2	TEST ENGINEER	2 Al Moren	TOTAL TEST	TIME HRS:MIN	15:00		10.20		U .	10 111	avacut. UP		10 Mrs	WAKWER	16:55	11:10 SHUT	17:10	00.11	10.00	19 19	19:30	20100	20:30	21:00
	XMSH P/H	DATE	1-14-82	2 IME	OF DAY	13:10	J. 51		~	1-15-82		cB:45	_	1	51:10		-+-	11.20		04.6	· · · ·	14.51	14:10	14-40	
uture i starta te tar a successione de la companya de la comp							•	OR UF	gin PO(AL DR	PA QU	GE	IS ITY	7						9	1				

T .

· --

ł

ł

ł

₹

ł

.

Ę

	ACE TEST	<u>811L01%</u>	3-31	20 2 = 6 7,048 ==	MOR ROW	REMARKS		Con David Park	•			•••	•	•	RESOME TEST			1 22 MEGAWATTS		•	-		1.68 MEGAWATTS		•	•		•	-
	ST ENDURANCE	6011	ė		COOLER' INLET)	8 1		22		- 0/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u></u>		20	• /	<u>k/</u>	61	80	Z P M				Σų v	\$5	23	~ -
SHEET	ON OF TEST	TEST CELL	KO. 2		PRESSURE	AUX PST	12	36	78-	101	+2	102	001	1001	001	001	99	44	48	900		70 87	20	00	0/		36	200	0/
DATA	DESCRIPTION	5	ž		DIL PRC	NIX.	Ē	001	001		00	104	101		10 %	103	10/	101	100	001	001				001	901	100	0.11	8
XMSH TEST			555			SPEED	КУЛ И	+36L	7982		0500	7983	4361	7986	7986	8866	2983	78.51	2982	7954	0666	0811		117 4	1980	8466	7990	1261	6861
	0	11 USED	AEROSHELL 5		TTAFT	ORINE	rs1	638	635		2	121	.330	456	458	665	655	655	640	640		644		511	812	218	-515-	720	715
HLN AFT	A9-100	011	AER		SYNC S	LOKON	IN-L3	00029	67,00		13000	13,000	38,000	41,000	45,00 0	67,000	67,000	67,000	67,000	00029	11,000	6.7,000	E 10 40	15.600	75,500	75, 500	m 3 1 51	75.500	75,500
	00-2 S/N	NEER	amaken		APATENT	AIR TENP	۲. ۲.	87	67		63	65	ć7	ćΧ	69	69	73	74	76	76	36	19	orat es	- 79	as	81	51	30	82
	XHS1 P/H 301-104200-2	TEST EAGINEER	Mere		TOT I TEST		HRS: MIN	21:30	22:00		Jom'n)	warmup	Children			22:00	22:30	23:00	23:30	•	Q4-:30	25:00	INCREN	25:00	25:30	36:00		2.7.20	27:30
	N.S.'I	DATE			-	10	DAY	15:40	16:10	3-31-1	08:10	08:80	08:30	05.35	08:40		<u> </u>	1_	01:01	10:40	01:11	11:40		11:40	12:10	13:40	01.1	3/3. S.	14:10
92				_					•			OR	IGI	NA	F	AG	E												

i

Γ

ł

ORIGINAL PAGE IS

•	NCE TEST	BUTLDING		017 THE 7-4 70 11#		79 86 REMARKS	PANALARA- LOW PRESS	2	(inclusion)		·····		KCOME 10201 Marshiller					RESOME TEST	•		1,18 MEGAWATTS	•		•	•	•		•
•	EST ENDURANCE				COOLER-INLET		52	82	82		ى	11	76	208		20	75	79	18	8/	1.8			5 a	82	83	6 3	۴3
SHEET	DESCRIPTION OF TEST	TEST CELL	NO. 2		PRESSURE	AUX PSI	96	36	98		104	101	001	85	MCO)	103	101	100	36	98	- 98		86	98	98	98		38
ST DATA	DESCRIP				011 91	N.K.M PSI	001	001	100		106	104	lua	100	(NAR	104	103	102	00/	100	00/	001	00/	/00	100	00/	100	100
XNSN TEST	 	•	555			RPM	17971	7994	899r		7994	1662	2262	788	LIGHT	7990	7997	0695	7983	7991	7978	1992	1987	798V	2866	6866	2296	7992
H AFT	0 V	L USED	EROSHELL		SHAFT		715	215	215	SHE	156	263	40	730	11	aia	418	727	725	720	715	- 912	716	712	712	712	1212	712
	-64 V	01	AE		SYNC	IN-LB	75.500	. 1	. 4	VD OV	10,000	31,000	75,500	75,530	LUBE S	000'L1	41,000	75,500	75,600	7515W	75,500	75,500	75,500	75.500	75,500	75,500	75.5ev	75,500
	N/S 2-002	INEER .	AM onema here		APBIENT APBIENT	AIK IER	لاع	83	60	1 U	70		3	~	VUN MAIN	73	\$-	74	17	78	79	80	8/	8	وع	83	2.2	83
. [/11 301-104200-2	TEST ENGINEER		2	TOTAL TEST	HRS:MIN	28:00	28:30	00:60	SHUT	(nmc)	w remup	39:00	J	SHUT DE	NINO	WARN UP	34:17	27:30	30:00		••[•	. 1	• • • •	34.30	33:00	33.30	34:00
	N/9 P2NX	DATE	ES-51-1.	1		DAY	14:40	-15	15:40			08:00		08:15		09:05	07:15	04:15	07.30	ap:01	10.30	11.00	00 -1 93	12:00	13.30	13:00		14:00

ORIGINAL PAGE IS 011 TY

		•		+ 674'SL					/			•		•		•	•	•			-				•	•	•	
	TEST				7982 RPM	REMARKS										:			• •			, ·			•			
	[]]]	BUTLDING	3-31	90% 79=	7981				•	•			•	21115							-		÷					
	ENDURANCE	108	÷.		COLER THLET		,	84	<u>75</u>	85	62		5	74	21	Z	84	22	83	<u>84</u>	778	- 20	75	28	65	<u> 55</u>	86	86
EET	N OF TEST	TEST CELL	NO. 2			AUX	1				98		103 -	101	100	22	36	86	38	98.	10	-16-	- 10-	36	56	96	20	86
XNSN TEST DATA SHEET	DESCRIPTION OF	IESI	M		OIL PRES	KAIN DC1	īc	100	00	100	/00		105	103	102	(00)	00/	00/	100	00/	00/	00/	00)	00/	001	100	001	100
SN TEST			555		-1	SPEED		L86L	1987	7993	299 R		7986	1991	788	712	8000	7990	7986	7986	1366	47.6	4000	2 602	2.2012	7001	0666	864
AFT	0	liseo	EROSHELL 5		HAFT	UIE	5	715 .	715	715	14	SHIFT	2	412	770	765	757	748	151	750	750	745	242	140		1	Ì.	142
нсн	1-6V	011	AER		SYNC S	i SI	IN-LB	75,500	75, 500	75.500	75,500	VD OF	2,000	35,000	75,500	76.500	75,500	75.500	75, 500	75, 500	75,500	75,500	75,500	75,500	20210	a strat	1000	75, 500
	N/S 2-00	REER	memoken		APRIENT	AIR TEMP	u.,	83	84	84		5		75	75	78	79	18	81	82	83	ઉપ	84	- 84		5	10	87
	1 301-104200-2	TEST ENGINEER	MUC		TOT 11 TECT		HRS:MIN	34:30	35:00		. • •	F	Í.	w Remor	36:00	36:30	37:00	37.30	38:00	38:30	39:00	39:30	40:00	40:30	41:00			43:00
	XNSR P/H	DATE	CL-81-1				LAY	14:30	1.7	'i - '	10:00	12	1)	07,20 10,200				02.60 IS		10:30	00:11	11:30	12:00	0: : 19/	/] : 00		a. D.	15:00

ORIGINAL PAGE IS OF POOR QUALITY

£

				5,429 ₩	evere	CVYK				•		F	•	•	•	-			•	•			•	•
-	NCE TEST	BUILDING	3-31	90% to: 75,429	Mrx 9862			•				KESUNE THE		• •					-	÷.	• •			
	ENDO	IIN	ň	60 11 60 Y MI 67	OIL TEMP	ŷ	67	87		56	78	79	82	810	90	24			500	BS	9 6	30	85	
EET	N OF TEST	TEST CELL	NO. 2		N AUX	PSI		38		103	100	96	86	> >		48	2 4		26.	98	98		36	
TEST DATA SHEET	DESCRIPTION	IESI	N		NAIN	PSI	001	100		105	102	101	100	00)	00/	00	001	0 0	007	001	.001	700	001	
SR TEST	G 		555	 	SPEED	RPM	989T	1989		2993	7980	7994	7994	979	M85	7992	7994	1486	1000	8666	9866	2.8.12	7975	80
AFT XNSR	0	USED	AEROSHELL 5		SHAFT Nie I	PSI	742	742	SHIP	325	600	758	758	755	750	746	746	743	743	140	745	2146	747	10-10
HLII AF	A9-100	CIL USE	AER		Sig	IN-LB	75,500	75,500	- END OF	15000					75,500	75,500	75,500	75,500	75,500	005101	75,500	79.500	75,500	the que-
	N/S 2-00		Moumeker		APBIENT AIR TEMP	50	87		HUT DOWN		Lİ –	5	80	2	81	82	. 83	+8	84	83	40	3 52	هحر	ed Sre
	1 301-104200	TEST ENGINCED	De l		TOTAL TEST		43:30		N		6	44:00	44:30	45:00	45:30	46:00	46:30	47:00	47:30	48:00	48.30	19 30	• •	g
	H/A NSWX	DATE	1-20-82		11%		15:30	00:)1	P		08:00			00:60	04:30	10:00	06:01	11:00	11:30	12:00	300	13:30	14:00	

X

(. •

i

HLH AFT XNSN TEST DATA SHEET

96

E

SHUT DWA END. OF SWET Cours Suint 100% TQ= 83,810 4 3 R. LOCK NUT REWOND FI ED FROM OL ALL ONE TANG FLAND Ċ. 0730 SLIVER REMOVED FROM Rebuild 100% KUN REMARKS 1.18 MEGAMITS 1986 RPM 0 INSPECTOU **TSST** 言語の Ŀ ENDURANCE BUTLDING 3-3] COOLER JULET OIL TEMP OC 80 90 20 14 80 90 90 Yay 20 72 86 TEST Removed TEST CELL 100 5 102 47 60 77 DESCRIPTION OF P31 98 PRESSURE NO. 2 G SUMP 593 MAIN PSI SUND SUND 5 00 99 00 99 40 00 99. 66 2.2 104 5 7996 97979 1533 a 8000 986 PINION PINION FIER 0664 1927 7983 SPEED 1260 1994 PEPT AEROSHELL 555 00% HS 895 643 831 815 248 820 818 BIS 35 466 OIL USED SYNC SHAFT 2 <u> A9-100</u> 222 TOROU 83,800 0 83,800 83,800 62000 03,800 03,800 4-82 5 END 41000 8000 **BJ-NI** Ś S/N 5 noval. SUS DOUN AMBIENT AIR_OTEMP OF 74 2 5 び 80 86 85 পু ß 98 BC XFST P/11 301-104200-2 meg DCMML TEST ENGINEER CHANGE ロッシュ REPAN SUME TES SHU UN-MAKU 52:00 52:00 TOTAL TEST 51:30 52:30 あれ 50:30 30 MIN 50:00 00: HRS: HIN TIME い -21-82 В В TIME OF 5:00 15:30 16:00 14:00 15:20 5:30 6 00 4:30 12:10 5:00 DATE PAGE 19 ORIGINAL POOR QUALITY

	NCE TEST	BUTLDING	3-31	100 % TQ = 83, 410	7986 RPM	REMARKS			Resume TEST		•			•	•	•			2020 6200		•••			ing ca	1537 Syline Toront	(sume the is present the first	•	
	ST ENDURANCE		č	COOLER' INLET	OIL TEMP	Ŋ	50	76	80	89	89	90	90	90	90	90	90.	91	90	90	91	91	91	92	-	- این + « «ایند.» د.».»» د.».»» د.».»» د.».		
SHEET	ION OF TE	TEST CELL	NO. 2	PRESSURE	AUX	ISd	001	100	001	94	98	86	98	-98	58	98	98	98	47	27	28.	26	97	-66				
DATA	DESCRIPTION OF TEST	Ë	-	011 PR	MAIN	PSI	102	101	001	99	66	99	99	49.	99	66	99	99	96	46	98	<u>98</u>	- 98	36				
XMSN TEST			555		SPEED	MGM	7989	7982	7782	9817.	1981	1995	7993	8662	8000	7983	2662	686L	0%21	2225	0000	336L	7662	7990	415			
AFT	00	USED	OSHELL	SHAFT	. <u></u>	PSI	230.	685	\$39	834	588	825		820	520	618	613	818	0'12	122	820	820	820	820	OFS			
ИЛИ	001-64 N	011	AER	JII	TORQU	IN-LP	16,000	66.000	83.800	83, 8 00	83,100	83, 800	83, 800	83,800	83, 800	83,800	Y3, 800	P3, YOU	63 64	25.300	83800	83,800	83,800	8,3, 800	DOWN END			
•	N/S 2-00:	INEER	Commeter	AMATENT	AIR TENP	Ч,	75	78	78'	82	84	86	87	ጽሄ	89	68	89	89	ΰĿ	2c	90	90	90	4/	SHUT DO			
	XKS4 P/H 301-104200-2	TEST ENGINEER	ABR	TOTAL TECT	TIME	HRS:MIN	10	WARMUP	52:30	53:00	53;30	54:00	54:30	55:00	55;30	56:00	56130	57:00	57:30	5.8.00	58:30	29:00	57:30	60:00			·	
	A NSWX	DATE	3-5-82		i		0130	0830	0830	0530	0920	0560	1020	1050	1120	1150	1220	1250	: 520	1350	1420	1450	011520					

.4

1

÷ (

ORIGINAL PAGE IS

97

• MAR PLUKS STUCK @ 3349 1002 TQ = 83,810 7986 RPM TEST Rum 23 5-35 6102 - d 223-20102 2 - 1 05 02 0200-1 SIDOL Jaras. したいい ENDURANCE BUILDING S 3-31 COOLER 'INLET 01L TEMP 96 90 97 2 ž 90 90 90 89 99 88 59 s's 00 90 8 30 86 DESCRIPTION OF TEST 7 001 ٩ 97 ۲ ه ſ ٢ 6 مر م 2.2 TEST CELL 3 PSI 66 DIL PRESSURE G đ G σ NO. 2 σ (T C Ċ đ HLH AFT XNSH TEST DATA SHEET đ γ 20120 28 PSI PSI 00 86 <u> 9</u>8 98 58 5 102 Z 98 25 96 98 00 C C 2862 958 986 988 797*S* 7974 7974 9960 1991 1996 2995 C1.62 286 p86 5 99 7992 SPEED 799 AEROSHELL 555 SHIE 8 15 820 698 Ś 830 817 8/6 812 813 3 912 815 815 812 617 840 830 2 231 ~ SYNC SHAFT TOROUE **PSI** 011 USED <u>A9-100</u> 83,800 OF 83800 83, 800 83, 800 83,800 83,800 83,800 83,800 83,800 83, 800 83, 800 U 2 2 12 1 93.800 83,800 83,800 83, 800 83,800 68,000 16,000 IN-LB **d**N S/N 2 DOWNS fer. AHBIENT AIR TENP OF 88 68 68 i B 20 88 88 87 2 8 5 28 k 83 84 S ۱J 2 て 301-104200-2 00 nesuo, ŗ TEST ENGINEER ? 8 SHUT :30 00 7:30 000 00 00: 00 30 00: 3:30 30 66:00 2:00 0 8 -30 00 TOTAL TEST WARKUP 60:00 とぼの ₹ K HRS: MIN : و TIME SUME 64. 62 67 60 ر بر 64 Ċ 3 ての 0 ھ لى 0 ھ N/4 P2MX 28-8-300 RE 1500 530 600 0630 1330 С ? С 400 1130 1200 1430 TIME OF 08/30 0400 000 030 0015 0080 0.720 DATE 0 200 3 PAGE IS ORIGINAL

e

98

OF POOR QUALITY

14.66		NCE TEST	BUILDING	3-31	100 % 720 = 83.810 **	WO JODE	REMARKS				Ŭ.,	•	••••		•		•	•	•••	• •	OFM = AIND	7000-10-10	Acto - day		SWIESS THE FIRE MAN			- SHUT DOWN END.	J OF SWIFT
<i>.</i>		T ENDURANCE		ń		COOLER INLET			<u>s</u>	75		80		85	85	96	AG	87	88	06	90	96	- SCREEN		81	89	90	20	40
	IEET	DN OF TEST	L CELL	NO. 2		PRESSURE	AUX	2	98	100		38		77	61	5	10	97	97	07	62	. 07	LGHT		197	47	96	96	96
	DATA SHEET	DESCRIPTION	<u>TEST</u>	Ž		OIL PRC	NAIN	īc	100	102		001	98	78-	20	200	a b	98	0 a b	0 B	30	20	- 11 m		98	96	67	47	47
	IN TEST			555			SPEED	RPM	8000	7958		7997	7997	1662	0001	0011	1971	1 771	7907	1000	2020	7071	(77.1		1842	2666	7980	7661	1861
	AFT XMSN	00	USED	3		HAFT		ISd	250.	675	5	835	831.	57.2	820	079	820		i	110	372	812-	212	2	824	4	820	-	820
	нгн	A9-10		AER		STRA	TORORIE	IN-LB	17.000		noral	83,800	83,800	83,800	83, 800	83,800	83, 800	83,800	83, 800	85,800	KJ BNO	BJ.ROC	97	NY - IV	R2 800	A 3 800	83, 800	83,800	B3 800
		0-2 S/N		reneker.	-	ALLD T C UT	IR TENP	- Jo		Ar.	601 - 100 %	74			78	78	79	91	82	82	87	202	and so the second second second second second second second second second second second second second second s	11.1001	1/2 - 1/2		0.82	A 7	88
,		301-104200-2					TIME - A		1 1 1 1 1 1	OU MOV	ESUALE 7	64:00	68:30	00;69	69:30	70:00	70:30	00:12	71:30	72:00	72:30	73:00	73/30	75:34	3	73:35	74:00	10.00	75:15
		11/0 1.2.11			20-1-0			DAY	0000		0630	0830	0060	0930	0001	1030	0011	0511	1200	1230	1300	1530	ИСС	1405	V 99		1515	1543	1630

ł

*

Į,

t

.

ORIGINAL PAGE IS

Υ α τα σε τ	NCE TEST	BUTLDING REMOVED NEW	3-31 TEDECO CHIPDET	100% 70=83,810 ##	7986 REMARKS	Publou Chie . Chief	(Letter)	Sump child	2	PRIOR TO START UN									•				SUMP CHIP FOR		FILTER BUTTON POLICE	PULL XM3N 3/1/82	EL INSARTOU
	TEST ENDURANCE	BUT	ń	COOLER JULET		63	78		80	83	86	88	89	89	68	89	<u>8</u> 3	99	89	90	90	FILTER ETC.	والمتعادين والمحاول المتعاولين والمتعادين والمتعادين	: .			
SHEET		TEST CELL	NO. 2	PRESSURE	AUX PSI	79	58		98	98	97	96	96	95	95	44	74-	45.	95	56.	95	Peus,			-		
DATA	DESCRIPTION OF	IES	ł	OIL PRE	NIN ISG	98	100		99	99	98	97_	75	96	96	95	95	96	96	95	95	MAG.		-			divity
XMSR TEST			555		SPEED RPM	8000	79.89		7995	7997.	79.85	1697	1471	2262.	2962	7975	77.61	7.962	9679	7988	7988	CHECK					SPREEN C
AFT	00	1.2ED	AEROSHELL !	SHAFT	IS4	250.	730		841	B44.	840	838	838	835	833	834	<u>(</u> 5.3.5 1	5.57	837	836	836	R		• •		•	S NIAM
нги	1-6Y	110	AEI	SYRC		16,000	70,000	racque	83,800	3.80	B3, 800	03,800	83,800	83,800	83,800	83,800	. د ۲ ورن	6. 3. 5 C	83,800	83,800	83,800	DF SHIFT					
5. *	N/S 2-00:	INEER	menedae	APPLENT	AIR TEKP	73	74	57-100%	75	78		81	82	83	84	84	B4	たら	85	85	ðS.	DOWN END				2	TAIN SEEEN
	11 301-104200-2	TEST ENGINEER	2 Replanence	TOTAL TEST	TIME HRS:MIN	10 MIN.	WARM-UP	RESUME TE	75:15	75:45	76:15	76:45	77:15	77:45	78:15	78:45	71:15	71.45	80:15	80:45	81:00	SHUT		1		•	2
.00	N/G 1.5.4X	DATE	3-10-82	71:45	0F DAY	9160	0520	ez.	0260	0950	1020		1120	1150			1320			1450	1505						

.

ſ

100

ORIGINAL PAGE IS

NUCE TEST	BUILDING REINSTALLED NEW 3-31 TEDECO CHIP DET.	100% TQ = 83, 810 "# 7986 RPM REMARKS		5.00 - L		ć	R.	•
TEST ENDURANCE		COOLER^IKLET 01L TEMP	50 80	81 90 16	50 80	90 90 53 XPUCRE FIL	85 90 91	91 91 Faired)
SHEET ION OF TI	TEST CELL NO. 2	ISSURE AUX PSI	107	100 100 100	106	6 102 4 100	66 001	99 99 XYUCER
F DATA SHEET DESCRIPTION OF	31	OIL PRESSURE MAIN AUX PSI PSI	108 102	101 101 101	106 106	101	102 102 102	102 102 (PRESS
XNSN TEST	555	SPEED RPM	1108	7980 7996 7996	8001	8001 7966	2002	7981 7982 2855
N AFT X	USED ROSHELL	SHAFT NIE PST	248. 641 945	835 821 820 819	3	831 825 Xwsv	820 813 813 810	810 810
A9-1	AE	SYNC TORQ IN-LB	0001/1 0001/1	83,800 83,800 83,800	6 2000 63 000 63 000	83,800 83,800	83,800 83,800 83,800 83,800	83, 800 83, 800 7 MAIN
N/S 2-002	INEER memeker	APBIENT AIR TERP OF	12 11 16ST - 1	78 82 85	1 1	80 83 5407 Do		89 89 Down Lo
XHSH P/H 301-104200-2	2 7 M Jones	TOTAL TEST TIME HRS:MIN	10 MIN WAEM-UP RESUME	81:00 81:30 82:00 82:30	SHUT PMIN WARMUP RESUME	82:30 83:00 83:30	1 . 1 . 1	85:30 86:00 SHUT
A IRSHX	<u>047E</u> 3 -18-8 2	TIME OF DAY	1430 1440.	1440 1510 1540 1610	0730 0730	; ; ; [0940 0940 1010 1040	1110 1140 1140

· • •

۰.

alaan disetter.

1

and a share an an a share and a share and a share and a share and a share and a share and a share and a share a

. •. *

.

•

.

i

€

(

	E TEST			100 2 770 - 83 840	7986 RPM	REMARKS	REPL XBUCER RESUME TEST		•		•		•		•	•							•	•	•	•	
	T ENDURANCE	BUILDING	3-31		<u>t.</u>		82 8	16	<u>- 41</u>	92	92	92	92	92			ડેસ	79	80	89	90	90	06	06	90	90	
133	N OF TEST	TEST CELL	. 2		PRESSURE	PSI	100	66	99	79	99	90	66	66			104	102	001	85 .	98		99	22	98	98	
TEST DATA SHEET	DESCRIPTION OF	TEST	70. 10.		OIL PRES	PSI	130	8	1.6	118	81	110	811	2			124	120	120	116	1.16	116	911	110	911	911	
				- - ,		SPEED RPM	Auec	- 10/ /	86.56	4666	7987	7983	9941	1 1 0 00	101		79.87	7904	9897	7994	7994	7966	7965	9191	1695	7982	
AFT XNSN			OIL USED			UE PSI	╉		610			N	218	813	816		122	201 L	644	825	812	812	518		812	a17	
11 N				. VEWO	ANG JUAN		+	╉			3, 800		B3,800	83,800	83,800	NU OF		16,000	62,000	83800	03 800	03800	83.800	83,800	83,800	83,800	na ca
	N/S C-0			moter	APIBIENT AIR _O TENP		-	81	89	10	26	90	90	90		1	100 % 10	76		12	a d	10	80	87	87	88	87
		4 001-101-100	TEST ENGINEER	Ap/ arm		10	HRS:MIN	R6:00	86:30	-	6 7 30 C		89:00	89:30	90:00	SHUT	DESUNE	10 MIN	WARMUP	90:00	90:30	91:00	41:30	シュ	1	93:30	94:00
		NYY PZYX	DATE	3-19-82		ų	DAY	1210	1240		1340	-1-	1210	1540			3-22-12	0845	0855	0855	0925	0455	1025	201	1155	1225	1255
1	02	_, - ¹			J					ORI	GIN		PA(ge All'	15 TY				•					•			•

•1

1

4

¢

OF POOR QUALITY

•		NCE TEST	BUTLDING	3-31		7586 REPARKS	Lober G.B. Five Purce order												•									
		TEST ENDURANCE	<u>108</u>	3	COOLER-INLET		90	90	61	16	16	16			SI	78	80	88	90	90	90	- 16	91					
	SHEET	Ρ	TEST CELL	NO. 2	PRESSURE	AUX PSI	98	98	96	98	98	98			102	201	100	98	98	98	98	98	98			İ		
•	DATA	DESCRIPTION	Ĕ	~	OIL PRI	KAIN PSI	116	116	116	116	911	10			122	122	120	118	116	10	= 0	. 116	10					
•	XMSN TEST			555	•	SPEED RPM	79:43	7786	2862	7996	1981	1986			7965	7984	7995	7987	7984	7986	7975	7985	799B					, ,
	ILH AFT XS	100	011 USED	AEROSHELL	SHAFT	ORQUE	= 113	811	811	811	811	812	۲ 	ġ	275	638	825	820	819	811	911	8	811					
 •	- HLF	-6A	011	AE	SYIIC	TN-LB	EBIERO	83,800	83,800	83,800	83,800	83,800	OF SHIP	100%	21,000	62,000	83,800	83,800	83,800	83,800	83,800	83,800	83,800	5T				
	•	N/S 2-0C	· 833#1	umaker.	ArBIENT	AIR TENP	1.3				89		DUN - END	de rest+	75	·	77	92		βS		86		OF TE				
		P/H 301-1042.00	TEST ENGINEER	2 7 Moune	TOTAL TEST	TIME HRS:MIN	94;30	95:00	95:30	96:00	96:30	00:16	SHUTD	B3 RESU	10 MIN	WARM-UP	97:00	97:30	98:00	98:30		99:30	100:00	END				
		XNSN P	<u>DÅTE</u>	3-22-82	TIME	OF DAY	1325	1355	1425	1455	1425	1455		3-23-4	0725	0735	0735	2080	0835	2060	0935	1005	1035					

0

ſ

ORIGINAL PAGE IS