ROBUST PRECISION POINTING CONTROL OF LARGE SPACE PLATFORM PAYLOADS

S. M. Joshi Old Dominion University Research Foundation Norfolk, Virginia

LSS CONTROLLER DESIGN STRATEGY

- INHERENT DAMPING PLAYS A VERY IMPORTANT ROLE IN STABILITY.
 THEREFORE IT IS HIGHLY DESIRABLE TO ENHANCE INHERENT DAMPING USING A SECONDARY CONTROLLER.
- DESIGN PRIMARY CONTROLLER FOR CONTROLLING RIGID-BODY MODES
 AND POSSIBLY SOME SELECTED STRUCTURAL MODES.

SECONDARY CONTROLLER - VELOCITY FEEDBACK

FLEXIBLE PART OF DYNAMICS:

$$\ddot{q} + D\dot{q} + \Lambda q = \Phi^{T} f$$

$$n_{q \times 1} \qquad \qquad n_{q \times n_{f}}$$

$$D = D^{T} \ge 0 \quad , \quad \Lambda = diag(\omega_{1}^{2}, \omega_{2}^{2}, \dots, \omega_{n_{q}}^{2})$$

• SENSOR OUTPUT:

$$Y_r = \vec{\Phi}\vec{q}$$

CONTROL LAW:

$$f = -K_r Y_r = -K_r \Phi \dot{q}$$

WITH PERFECT (LINEAR, INSTANTANEOUS) ACTUATORS/SENSORS:

- ASYMPTOTICALLY STABLE (AS) IF

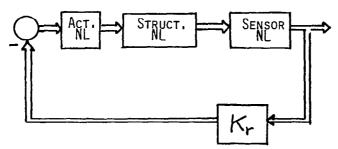
$$K_r > 0$$
 AND (Λ, Φ) CONTROLLABLE

• WHAT IS THE EFFECT OF

NONLINEARITIES

ACTUATOR/SENSOR DYNAMICS

EFFECT OF SENSOR/ACTUATOR NONLINEARITIES:

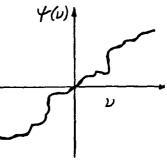


ACTUATOR NONLINEARITIES: LET $\frac{1}{4}(0) = 0$ $\left[\frac{1}{4}(a) = ACTUATOR\right]$

- a) ORIGIN STABLE IF $\nu^T K_r^{-1} \psi_a(\nu) \geq 0$
- b) ORIGIN ASIL* IF UTKr 4(U) >0 for V≠0

and (Λ, Φ^{τ}) controllable

(FOR DIAGONAL Kr, V; Ya; (V;) >0)



NONLINEARITIES IN ACTUATORS AND SENSORS:

LET K. BE DIAGONAL

- a) ORIGIN STABLE IF $\sigma \psi(\sigma) \ge 0$ FOR EACH ACTUATOR AND SENSOR
- b) ORIGIN ASIL* IF $\sigma \psi(\sigma) > 0$ "

 AND (Λ, Φ^r) IS CONTROLLABLE

CONSIDER ACTUATOR/SENSOR DYNAMICS GIVEN BY

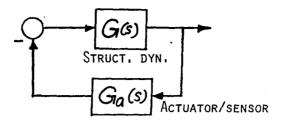
WHERE M > 0, SMALL; A_A STRICTLY HURWITZ

• IF THE CLOSED-LOOP SYSTEM WITH <u>PERFECT</u> ACTUATORS/SENSORS
IS AS, THEN THE TRAJECTORY WITH FINITE-BANDWIDTH ACTUATORS/
SENSORS IS O(M) CLOSE TO TRAJECTORY WITH PERFECT ACTUATORS/
SENSORS (REF. 1).

HOW TO DETERMINE M THAT WILL GUARANTEE STABILITY?

^{*}ASYMPTOTICALLY STABLE IN THE LARGE

CONSIDER THE SINGLE-INPUT SINGLE-OUTPUT CASE (SISO)



ASSUME SIMPLE STRUCTURAL MODE FREQUENCIES, NO DAMPING, AND NO POLE-ZERO CANCELLATIONS (I.E. CONTROLLABILITY)

• THEOREM THE CLOSED-LOOP SYSTEM IS AS FOR SUFFICIENTLY SMALL $K_r > 0$ IF

$$-90^{\circ} < \phi_{a}(\omega) < 90^{\circ}$$
AT $\omega = \omega_{i} \quad (i = 1, 2, \dots, n_{q})$
WHERE $\phi_{a}(\omega) = \boxed{G_{a}(j\omega)}$

- ALWAYS STABLE FOR 1ST ORDER $G_a(s)$
- WHEN ACTUATOR/SENSOR HAVE \mathcal{N}_a REAL POLES

 AT $S=-\sigma_a$ AND NO ZEROS. THE SYSTEM IS AS FOR SMALL $K_r>0$ IF

$$\sigma_a > \frac{\omega_{\text{MAX}}}{\tan(TT/2n_a)}$$

GIVES SOME INSIGHT INTO ACTUATOR/SENSOR BANDWIDTH REQUIREMENTS. ADDITIONAL INVESTIGATION NEEDED FOR OBTAINING MORE USEFUL RESULTS.

n_a	Ja/WMAX	(MIN.	REQD.)
1	0		
2	1		
3	1.73		
4	2.48		
5	3.09		
6	3.76		
7	4.4		
8	5.07		

CONTROL OF PPS/LSS

- ATTITUDE AND VIBRATION CONTROL OF LSS
- POINTING CONTROL OF EACH PPS
- SINCE THE MASS OF EACH PPS MAY BE OF THE SAME ORDER AS THAT OF LSS, INSTABILITY IS POSSIBLE
 IF CONTROL SYSTEMS ARE DESIGNED INDEPENDENTLY.

SECONDARY CONTROLLER USING ANNULAR MOMENTUM CONTROL DEVICES (AMCD'S)

ASSUMPTIONS

- AMCD RIMS ARE RIGID
 - RIM DIA ≈ 2 M (SMALL COMPARED TO LSS)
- ACTUATORS AND SENSORS PERFECT
 - ELECTROMAGNETIC ACTUATORS AND POSITION SENSORS
 ARE ALMOST PERFECTLY LINEAR IN THE OPERATING
 RANGE. BANDWIDTH IS SEVERAL HUNDRED HZ.
- ACTUATORS/SENSORS COLLOCATED
 - INHERENT DESIGN CHARACTERISTIC OF AMCD
 - CONTROL LAW:

$$f = K_p \delta + K_r \dot{\delta}$$

where δ is the actuator centering error vector

• STABLE IF $K_p > 0$, $K_r \ge 0$ ASYMPTOTICALLY STABLE (AS) IF

- b) LSS STRUCTURAL MODEL STABILIZABLE
- c) NO UNDAMPED LSS MODES AT $2j\Omega_i$ (Ω_i = SPIN FREQ.)
- a) $\sum_{i}^{\infty} H_i \neq 0$

PRIMARY ATTITUDE CONTROLLER (PAC)

- USING TORQUE ACTUATORS
 - COLLOCATED ACTUATORS/SENSORS
 - NONCOLLOCATED ACTUATORS/SENSORS
- using AMCD'S

PAC USING TORQUE ACTUATORS

- SEVERAL TORQUE ACTUATORS AT VARIOUS POINTS OF LSS
 - COLLOCATED ACTUATORS/SENSORS:
 - EQUATIONS OF MOTION:

$$A_s \ddot{\times}_s + B_s \dot{\times}_s + C_s \times_s = \Gamma T$$

$$\times_s = (\phi_s, \theta_s, q^T)^T$$

COLLOCATED ACTUATORS/SENSORS

MEASUREMENTS CONSIST OF:

- ATTITUDE VECTOR: $\alpha = \Gamma^T X_s$

control law:
$$T = -(G_p \propto + G_r \stackrel{?}{\sim})$$

- STABLE IF $G_p > 0$, $G_r \ge 0$ • AS IF $G_p > 0$, $G_r > 0$, (C_s, Γ^T) CONTROLLABLE
- CONTROL LAW MINIMIZES

$$J = \int_{0}^{\infty} (x_{s}^{T}, \dot{x}_{s}^{T}, \tau^{r}) \begin{bmatrix} Q_{1} & 0 & S \\ 0 & Q_{2} & 0 \\ S^{T} & 0 & R \end{bmatrix} \begin{pmatrix} x_{s} \\ \dot{x}_{s} \\ \tau \end{pmatrix} dt$$

EFFECT OF ACTUATOR/SENSOR DYNAMICS

SISO CASE, NO REPEATED FREQS., CONTROLLABLE

Let
$$\phi_a(\omega) = \angle G_a(j\omega)$$
, $\phi_a(o) = 0$
 $G_p = kg_p$, $G_r = kg_r$

• AS FOR SMALL k >0 IF

$$-\phi_{z_i} < \phi_a(\omega_i) < 180^{\circ} - \phi_{z_i}$$

WHERE ϕ_{z_i} is a function

OF ω , AND POSITION RATE GAINS

- ADDITIONAL INVESTIGATION IS NEEDED
- IF TORQUE ACTUATORS AND ATTITUDE/RATE SENSORS ARE
 NOT COLLOCATED
 - STABILITY NOT GUARANTEED
 - MUST USE LQG-BASED APPROACHES INVESTIGATED EARLIER
 - KNOWLEDGE OF FREQUENCIES AND MODE-SHAPES REQUIRED
 - ▲ TRUNCATION: "RESIDUAL" MODES IGNORED

 IN THE DESIGN PROCESS

▲ MODEL ERROR SENSITIVITY SUPPRESSION (REF. 2),
"SPILLOVER" IS INCLUDED IN THE QUADRATIC
PERFORMANCE FUNCTION:

$$\dot{x}_{e} = A_{c} \times_{c} + B_{e} u$$

$$\dot{x}_{r} = A_{r} \times_{r} + B_{r} u$$

$$J = \int_{0}^{\infty} \left\{ x_{e}^{T} Q \times_{c} + u^{T} R u + (B_{r} u)^{T} Q_{r} (B_{r} u) \right\} dt$$

- IT CAN BE SHOWN THAT THE SAME AMCD'S CAN BE USED FOR PRIMARY CONTROL
- ATTITUDE AND RATE SENSORS LOCATED ON LSS AT MIDPOINTS
 OF AMCD ACTUATORS
- APPROXIMATES TORQUE ACTUATORS AND COLLOCATED SENSORS
 PROVEN TO BE STABLE
- CLOSED-LOOP RIGID-BODY BANDWIDTH DEPENDS ON TOTAL
 MOMENTUM, ALLOWABLE GAPS, ETC.

PRELIMINARY MATH MODEL OF LSS/MPPS

- ASSUME LUMPED POINT-MASSES AT POINTS OF ATTACHMENT OF PPS'S (FOR LSS MODEL)
- ALL PPS RIGID
- EACH PPS consists of gimbals and torquers (only x-axis gimbal assumed in preliminary study).

MATH MODEL GIVEN BY:

$$A \ddot{x} + B \dot{x} + C \dot{x} = \Gamma f$$

$$x = (p_s, \theta_s, p_1, p_2, \dots, p_b, q^T)^T$$

$$n_{q \times 1}$$

$$A = \begin{bmatrix} A_{11} & 0 \\ 0 & T_{n_q} \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} \quad C = \begin{bmatrix} 0 & 0 \\ 0 & \Lambda \end{bmatrix}$$

$$\Lambda = diag(\omega_1^2, \omega_2^2, \dots, \omega_{n_q}^2)$$

$$f = (T, T, T_2^T, \dots, T_m^T, T_{g_1}, T_{g_2}, \dots, T_{g_p})^T$$

$$T_i = (T_{xi}, T_{yi})^T$$

OBSERVATIONS

- INERTIAL ATTITUDE AND RATE SENSORS ON EACH PPS PAYLOAD
- INERTIAL ATTITUDE AND RATE SENSORS ON LSS
 (COLLOCATED WITH LSS TORQUE ACTUATORS)
- SENSORS FOR MEASURING RELATIVE ANGLE BETWEEN EACH GIMBAL AND LSS

CONTROL OF MULTIPLE PRECISION - POINTED STRUCTURES (MPPS) MOUNTED ON LSS

MPPS used for communications, astronomy, earth resources,
 AND WEATHER PAYLOADS

ADVANTAGES:

- LESS ORBITAL SLOT SPACE AT GEO
- SAVINGS IN POWER, CYROGENICS, GROUND DATA LINKS, AND SMALLER GROUND TERMINALS

CONTROL LAWS

- CONTROL LAW I: DECENTRALIZED CONTROL OF LSS/PPS:
 - USE LSS ATTITUDE AND RATE SIGNALS AND DESIGN LSS CONTROL LAW (COLLOCATED ACTUATORS/SENSORS)
 - USE PPS ATTITUDE AND RATE SIGNALS AND DESIGN
 CONTROL LAW (TO GENERATE DESIRED GIMBAL TORQUER TORQUES)
 - THE RESULTING CLOSED-LOOP SYSTEM CAN BE UNSTABLE
- CONTROL LAW II: ROBUST COMPOSITE CONTROL
 - USE INERTIAL PPS AND LSS SENSORS, AND ALSO GIMBAL-ANGLE SENSORS AND COMBINE THE SIGNALS TO OBTAIN

$$y = \Gamma^T x$$

CONTROL LAW:

$$f = -K_p y - K_r \dot{y}$$

- closed-loop system Lyapunov-stable if Kp >0, Kr 20
- ASYMPTOTICALLY STABLE (AS) IF $K_p, K_r > 0$, AND LSS STRUCTURAL MODEL STABILIZABLE, REGARDLESS OF NUMBER OF MODES AND NUMBER OF PPS. THEREFORE, CONTROLLER IS ROBUST.

NUMERICAL RESULTS

- 100' x 100' x 0.1" COMPLETELY FREE ALUMINUM PLATE
- TWO PPS EACH WITH MASS ≃ LSS MASS
- THREE LSS TORQUE ACTUATORS WITH COLLOCATED ATTITUDE AND RATE SENSORS
- CONTROL LAW I: DECENTRALIZED CONTROL
 - LSS BW = 0.05 rad/sec
 - PPS BW INCREASED GRADUALLY A STRUCTURAL MODE WAS
 DRIVEN UNSTABLE FOR PPS BW > 0.1 rad/sec
- CONTROL LAW II: COMPOSITE CONTROL
 - LSS BW $\simeq 0.05 \text{ rad/sec}$
 - PPS BW of 1 rad/sec (P= 0.7)
 WAS EASILY OBTAINED WITHOUT SIGNIFICANT
 EFFECT ON CLOSED-LOOP LSS STRUCTURAL MODES

CONCLUDING REMARKS

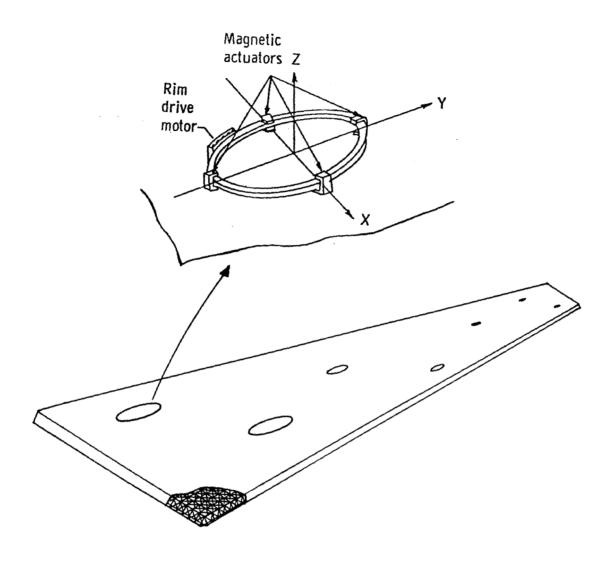
- TWO-LEVEL LSS CONTROL IS STABLE AND ROBUST AND OFFERS PROMISE
- FURTHER INVESTIGATION NEEDED ON EFFECTS OF ACTUATOR/SENSOR BANDWIDTH
- COMPOSITE LSS/MPPS CONTROLLER IS STABLE AND ROBUST

PLANS FOR CONTINUED RESEARCH

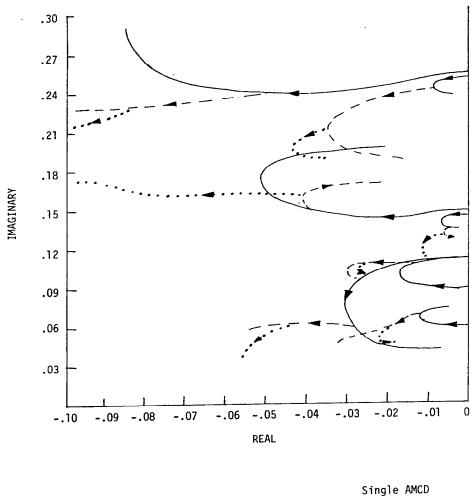
- COMPLETE INVESTIGATION OF LSS/MPPS COMPOSITE CONTROL,
 INCLUDING PERFORMANCE EVALUATION
- INVESTIGATE ANNULAR SUSPENSION AND POINTING SYSTEM (ASPS)
 FOR PPS CONTROL ACTUATION
- START INVESTIGATION OF HOOP-COLUMN ANTENNA CONTROL

REFERENCES

- 1. Chow, J. H.; and Kotovic, P. V.: A Decomposition of Near Optimum Regulators for Systems With Slow and Fast Modes. IEEE Transactions on Automatic Control, vol. 21, no. 5, 1976, pp. 701-705.
- 2. SESAK, J. R.; LIKENS, P. W.; AND CORADETTI, T.: FLEXIBLE SPACECRAFT CONTROL BY MODEL ERROR SENSITIVITY SUPPRESSION (MESS). J. ASTRONAUT. Sci., vol. 27, No. 2, pp. 131-156.



AMCD/LSS CONFIGURATION



Single AMCD
Second AMCD Added
Third AMCD Added

SECONDARY CONTROLLER ROOT LOCI