STRUCTURAL DESIGN FOR DYNAMIC RESPONSE REDUCTION

Brantley R. Hanks NASA Langley Research Center Hampton, Virginia OBJECTIVE: STUDY STIFFNESS AUGMENTATION BY MATHEMATICAL DESIGN

APPROACH: APPLY LINEAR REGULATOR THEORY WITH PROPORTIONAL FEEDBACK

JUSTIFICATION: STIFFNESS IS READILY AVAILABLE TO DESIGNER AS PREDICTABLE PASSIVE CONTROL

TIME-INVARIANT LINEAR REGULATOR---GENERAL

SYSTEM:

$$\dot{x} = Ax + Bu + Dw$$

CONTROLLED VARIABLES:

$$y = Cx$$

OBJECTIVE:

$$\underset{\mathbf{u}}{\text{Min J where }} \mathbf{J} = \mathbf{x}_{\mathbf{f}}^{\mathsf{T}} \mathbf{S}_{\mathbf{f}} \mathbf{x}_{\mathbf{f}} + \begin{pmatrix} \mathbf{t}_{\mathbf{f}} \\ \mathbf{y}^{\mathsf{T}} \mathbf{Q} \mathbf{y} + \mathbf{u}^{\mathsf{T}} \mathbf{R} \mathbf{u} \end{pmatrix} d\mathbf{t}$$

OPTIMAL CONTROL (ASSUMING w IS RANDOM):

$$u = -R^{-1} B^{T} Px$$

WHERE P IS SOLUTION TO

$$\dot{P} = -PA - A^{T}P + PBR^{-1}B^{T}P - C^{T}QC$$
 $P(t_{f}) = S_{f}$

IF $t_f \longrightarrow \infty$, GET STEADY-STATE P (AND U) FROM

$$0 = -PA - A^{\mathsf{T}}P + PBR^{-1} B^{\mathsf{T}}P - C^{\mathsf{T}} QC$$

POSITIVE DEFINITE P EXISTS IF

- A IS DETECTABLE IN C, STABILIZABLE IN B
- RESPONSE WEIGHTING MATRIX, Q, IS POSITIVE SEMIDEFINITE
- CONTROL WEIGHTING MATRIX, R, IS POSITIVE DEFINITE

SYSTEM:

$$\left\{ \dot{x} \right\} = \begin{bmatrix} o & 1 \\ -M^{-1}K & -M^{-1}G \end{bmatrix} \left\{ \dot{x} \right\} + \left\{ \begin{matrix} o \\ M^{-1}B \end{matrix} \right\} u + \left\{ \begin{matrix} o \\ M^{-1}D \end{matrix} \right\} w \qquad w \sim N(0_1 \sigma^2)$$

OBJECTIVE FUNCTION:

$$J = \begin{cases} t_{f} & \left[\begin{pmatrix} x^{T} & \dot{x}^{T} \end{pmatrix} \begin{bmatrix} K & 0 \\ 0 & M \end{bmatrix} \begin{Bmatrix} x \\ \dot{x} \end{Bmatrix} + \begin{pmatrix} u^{T} \end{pmatrix} \begin{bmatrix} R \end{bmatrix} \begin{pmatrix} u \end{pmatrix} \right] dt$$

ASSUME:

- RANDOM INITIAL CONDITIONS
- COMPLETE STATE FEEDBACK WITH NO ROTATIONAL COUPLING
- $t_f \longrightarrow \infty$ (TIME-INVARIANT STRUCTURAL CHANGE)

CONTROL:

$$\begin{cases} 0 \\ M^{-1}B \end{cases} u = \begin{bmatrix} 0 & 0 \\ -M^{-1}BR^{-1}BT & M^{-1}T_{P_{21}} & -M^{-1}BR^{-1}BT & M^{-1}T_{P_{22}} \end{bmatrix} \begin{cases} x \\ \dot{x} \end{cases}$$

WHERE P₂₁ AND P₂₂ ARE SOLUTIONS TO

$$P_{21}^{\mathsf{T}} A_{21} + A_{21}^{\mathsf{T}} P_{21}^{\mathsf{T}} - P_{21}^{\mathsf{T}} M^{-1} BR^{-1}B^{\mathsf{T}} (M^{-1})^{\mathsf{T}} P_{21} + C_{1}^{\mathsf{T}} Q_{1}^{\mathsf{C}} C_{1} = 0$$
 (1)

AND

$$P_{22}^{A}_{22} + A_{22}^{T}P_{22} - P_{22}^{M}^{-1}BR^{-1}BR^{-1}B^{T}(M^{-1})^{T}P_{22} + (P_{21} + P_{21}^{T} + C_{2}Q_{2}C_{2}) = 0$$
 (2)

IN THESE EQUATIONS $A_{21} = M^{-1} K$ AND $A_{22} = M^{-1} G$

NOTE THAT (1) IS NOT SYMMETRIC; ALSO THAT (1) IS INDEPENDENT OF (2).

Q WEIGHTING MATRIX CONSIDERATIONS

$$\begin{aligned} & \underset{\mathbf{u}}{\text{Min J where }} & J = \int_{0}^{\infty} \left[\mathbf{y}^{T} \mathbf{Q} \mathbf{y} + \mathbf{u}^{T} \mathbf{R} \mathbf{u} \right] d\mathbf{t} \\ & \mathbf{y}^{T} \mathbf{Q} \mathbf{y} = \left(\mathbf{x}^{T} \ \dot{\mathbf{x}}^{T} \right) \left[\begin{matrix} \mathbf{c}_{11}^{T} & \mathbf{c}_{21}^{T} \\ \mathbf{c}_{12}^{T} & \mathbf{c}_{22} \end{matrix} \right] \left[\begin{matrix} \mathbf{Q}_{11} & \mathbf{Q}_{12} \\ \mathbf{Q}_{21} & \mathbf{Q}_{22} \end{matrix} \right] \left[\begin{matrix} \mathbf{c}_{11} & \mathbf{c}_{12} \\ \mathbf{c}_{21} & \mathbf{c}_{22} \end{matrix} \right] \left\{ \dot{\mathbf{x}} \right\} \end{aligned}$$

ullet If rate and displacement considered independently and Q chosen so as not to couple x and \dot{x}

$$\mathbf{y}^{\mathrm{T}}\mathbf{Q}\mathbf{y} = \begin{pmatrix} \mathbf{x}^{\mathrm{T}} \ \dot{\mathbf{x}}^{\mathrm{T}} \end{pmatrix} \begin{bmatrix} \mathbf{c}_{11}^{\mathrm{T}} \ \mathbf{c}_{11} & \mathbf{c}_{11} & \mathbf{0} \\ & & & \\ & \mathbf{0} & \mathbf{c}_{22}^{\mathrm{T}} \ \mathbf{c}_{22} & \mathbf{c}_{22} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \dot{\mathbf{x}} \end{pmatrix}$$

- For design, selection of C is governed by desired minimum response points.
 Hence, C and Q may be assigned similar functions.
- Diagonal C and Q minimizes weighted square response at selected coordinates.
- Choice of $Q_n = K$ and $Q_{22} = M$ minimizes sum of strain and kinetic energy at locations determined and (optionally) weighted by C.

REGULATOR FOR STRUCTURES--MODAL COORDINATES

TRANSFORMATION $x = \phi q$ WHERE $q = q_k e^{(\sigma_i + j\omega_i)t}$

WHERE ϕ IS NORMALIZED $\phi^{\mathsf{T}} M \phi = I$

AND $\sigma_{\mathbf{i}}$ IS ASSUMED PROPORTIONAL TO $\omega_{\mathbf{i}}$ (I.E., $\sigma_{\mathbf{i}} = -2\xi_{\mathbf{i}}\omega_{\mathbf{i}}$ OR $\phi^{\mathsf{T}}G\phi = \begin{bmatrix} -2\xi_{\mathbf{i}}\omega_{\mathbf{i}} \end{bmatrix}$)

OBJECTIVE FUNCTION BECOMES

$$J = \int_{0}^{t} \left[\begin{pmatrix} q^{\mathsf{T}} \dot{q}^{\mathsf{T}} \end{pmatrix} \begin{bmatrix} \phi^{\mathsf{T}} K \phi & 0 \\ 0 & \phi^{\mathsf{T}} M \phi \end{bmatrix} \begin{Bmatrix} q \\ \dot{q} \end{Bmatrix} + \begin{pmatrix} u^{\mathsf{T}} R u \end{pmatrix} \right] dt$$

NOTE THAT

$$\phi^{\mathsf{T}} K \phi = \left[\begin{array}{c} \omega_{\mathbf{1}}^2 \\ \end{array}\right] = \left[\begin{array}{c} \Omega^2 \\ \end{array}\right]$$
 HENCE, WEIGHTING MATRIX $Q = \left[\begin{array}{c} \Omega^2 \\ 0 \end{array}\right]$

RICCATI EQUATIONS BECOME

$$P_{21}^{\mathsf{T}} \Omega^2 + \Omega^2 P_{21} + P_{21}^{\mathsf{T}} B R^{-1} B^{\mathsf{T}} P_{21} - C_1^{\mathsf{T}} \Omega^2 C_1 = 0$$
 (3)

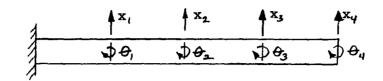
AND

$$P_{22} \left[2\xi\Omega \right] + \left[2\xi\Omega \right] P_{22} + P_{22}BR^{-1}B^{\mathsf{T}}P_{22} - \left(P_{21} + P_{21}^{\mathsf{T}} + C_{2}^{\mathsf{T}}C_{2} \right) = 0 \quad (4)$$

WHERE P, B, R, AND C ARE MODAL EQUIVALENTS OF P, B, R, AND C.

BY CHOOSING P, B, R, AND C DIAGONAL, WE DECOUPLE THE SOLUTION AND GET PURE "MODAL CONTROL."

CANTILEVER BEAM MODEL

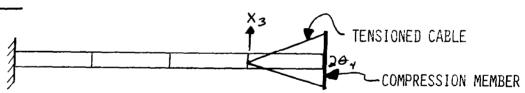


ASSUMED:

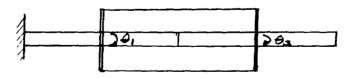
- CONSISTENT MASS FINITE ELEMENTS
- UNIFORM INITIAL STIFFNESS & MASS DISTRIBUTION
- FIRST NATURAL FREQUENCY = .047 Hz (.297 RAD/SEC)

PHYSICAL IMPLEMENTATION OF STIFFNESS CONTROL

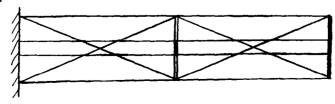
X3, 04 COUPLING



O, ,O, COUPLING



PRACTICAL OPTIMUM?



CONTROL WEIGHTING EFFECTS ON DESIGN
UNDAMPED NATURAL FREQUENCIES

	INITIAL FREQ., RAD	FINAL FREQUENCY, RAD/SEC					
MODE		R = 10I	R = I	R = .1 I	R = .01 I		
1	.297	.359	.557	.972	1.725		
2	1.867	1.880	1.989	2.619	4.538		
3	5.262	5.267	5.309	5.684	7.711		
4	10.382	10.384	10.406	10.615	12.233		

DAMPING RATIOS

MODE	INITIAL DAMPING	FINAL DAMPING, % C/C _{CR}						
	% C/C _R	R = 10I	R = I	R = .1 I	R = .01 I			
1	2	59.3	108	176	298			
2	2	12.0	35.0	78.1	131			
3	2	4.7	13.4	38.6	82.9			
4	2	2.9	7.1	21.0	55.4			

^{*}NOTE: SOLUTIONS OBTAINED SEPARATELY FOR STIFFNESS AND DAMPING COMPARED EXACTLY TO FULL ORDER CONTROLLER SOLUTION

STIFFNESS MATRIX COMPARISON (ASSUMED CONSTANT MASS)

ORIGINAL K									
	X ₁	θ_1	x_2	θ_2	X ₃	θ_3	X ₄	$\theta_{m{4}}$	
	125	-1250	-125	-1250	0	0	0	0]	x_1
		16667	1250	8333	_ 0 _	0	0	0	θ_1
			250	0	-125	-1250	0	0	x_2
				33333	1250	8333	0_	_ 0	θ_2
					250	0	-125	-1250	X ₃
		ω	=.297	rad		33333	1250	8333	θ_3
							250	0	X ₄
	_							33333	θ ₄

FINAL K FOR R = .1 I

R WEIGHTING EFFECT ON STIFFNESS MATRIX (FIRST ROW ONLY SHOWN)

Orig. K ij 125		-1250	-125	-1250	0	0	0	0_
R = 10 I	125.1	-1250	- 125	-1250	008	009	002	005
R = I	125.7	-1252	-125.1	-1249	21	27	06	13
R = .1 I	129.7	-1261	-127.8	-1241	-1.74	-3.83	-17	71
R = .01 I	150.8	-1310	-150.3	-1220	-3.19	-24.0	-1.8	-2.9

RELATED SPONSORED RESEARCH

- KAMAN AEROSPACE CORPORATION AUTOMATED MATH MODEL IMPROVED FOR MATCHING EXPERIMENTAL DATA.
- INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING - IDENTIFICATION OF EQUIVALENT PDE SYSTEMS TO MATCH MEASURED DATA.

SUMMARY

- COMPUTER PROGRAM FOR REDESIGNING STRUCTURAL MODES TO REDUCE RESPONSE HAS BEEN INITIATED.
- LINEAR REGULATOR APPROACH IN MODAL COORDINATES HAS BEEN IMPLEMENTED. TRANSFORMATION OF SOLUTION TO PHYSICAL STRUCTURE IS A MAJOR PROBLEM.
- SOLUTION OF STIFFNESS EQUATIONS AND DAMPING EQUATIONS CAN BE DONE SEPARATELY AS NXN SET OF (MATRIX RICCATI) EQUATIONS.

PLANNED EFFORT FOR '82

- INCLUDE MASS OF CONTROL
- STUDY WEIGHTING TO MINIMIZE OR SELECT CROSS-TERMS
- IMPLEMENT PHYSICAL COORDINATE SOLUTION
- STUDY POTENTIAL FOR "BENEFICIAL" CROSS TERMS