PARTITIONING OF LARGE SPACE STRUCTURES VIBRATION CONTROL COMPUTATIONS

J. Kernan Charles Stark Draper Laboratory, Inc. Cambridge, Massachusetts

LQG SIZING

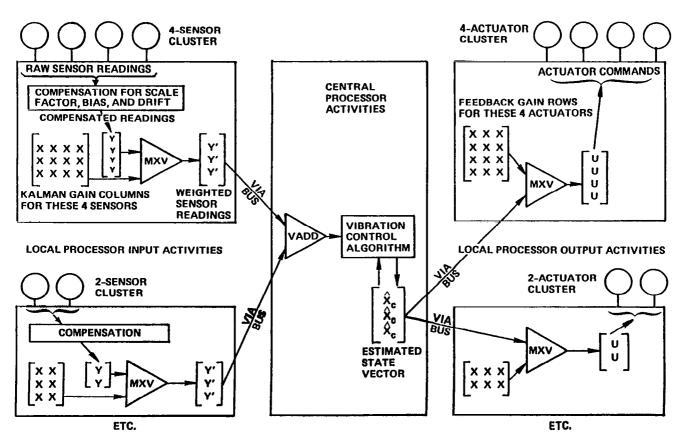
	BEAM	ANTENNA
SENSOR/ACTUATOR PAIRS (m)	6	36
CONTROL STATES (n _C)	20	20
FLOP PER CYCLE*	1420	4420
VARIABLES**	<i>7</i> 52	2312
I/O PER CYCLE	12	72

HAC/LAC SIZING

	BEAM	<u>antenna</u>
SENSOR/ACTUATOR PAIRS (m)	6	36
CONTROL STATES (n _C)	12	12
FLOP PER CYCLE*	633	4608
VARIABLES**	570	3060
1/0	12	72

^{**}INCLUDES SENSOR COMPENSATION FLOP (120 FOR BEAM, 720 FOR ANTENNA)

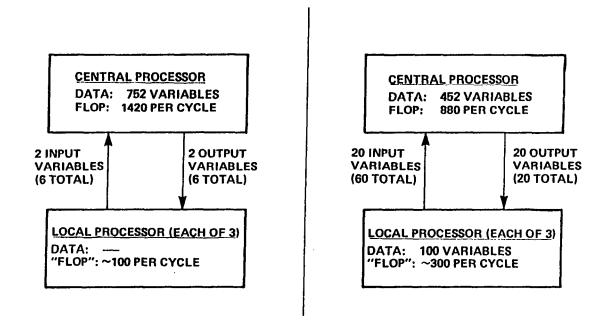
***INCLUDES SENSOR COMPENSATION VARIABLES (60 FOR BEAM, 360 FOR ANTENNA)


^{*}INCLUDES SENSOR COMPENSATION FLOP (120 FOR BEAM, 720 FOR ANTENNA)

**INCLUDES SENSOR COMPENSATION VARIABLES (60 FOR BEAM, 360 FOR ANTENNA)

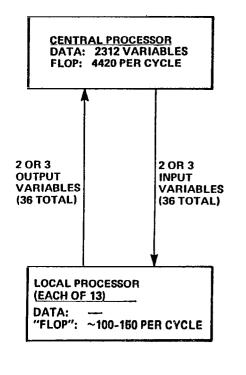
DISTRIBUTION OF VIBRATION CONTROL AND SENSOR COMPENSATION COMPUTATIONS

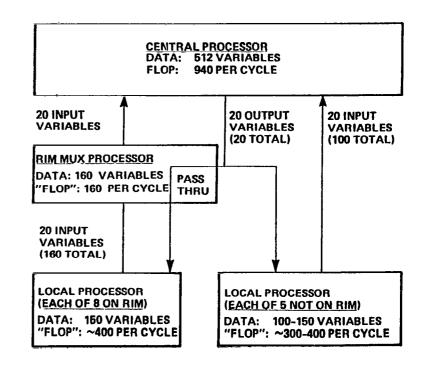
- A RANGE OF CHOICES BETWEEN THE TWO FOLLOWING EXTREMES WAS INVESTIGATED:
 - CENTRAL COMPUTATION OF BOTH CONTROL
 AND SENSOR COMPENSATION
 - CONTROL COMPUTATIONS DISTRIBUTED AMONG
 CENTRAL AND LOCAL PROCESSORS; LOCAL
 PROCESSORS ALSO PERFORM SENSOR COMPENSATION
 - PORTIONS OF THE CONTROL COMPUTATIONS CAN
 BE DISTRIBUTED BECAUSE THE ROWS OR COLUMNS
 OF THE MATRICES INVOLVED CORRESPOND TO
 INDIVIDUAL SENSORS OR ACTUATORS
 - DISTRIBUTION IS SUPPORTED BY THE FACT THAT
 THE MATRICES INVOLVED ARE EITHER CONSTANT
 OR INFREQUENTLY CHANGED


LSSC COMPUTATION DISTRIBUTED AMONG CENTRAL AND LOCAL PROCESSORS

RECOMMENDATIONS FOR CENTRAL/LOCAL PROCESSOR PARTITIONING

- LQG COMPUTATIONS THAT SHOULD BE DISTRIBUTED TO LOCAL PROCESSORS,
 IN ORDER OF DECREASING PREFERENCE
 - . COMPENSATING SENSOR READINGS FOR SCALE FACTOR, BIAS, AND DRIFT
 - . APPLYING FEEDBACK GAIN TO ACTUATOR COMMANDS
 - APPLYING KALMAN GAIN TO COMPENSATED SENSOR READINGS
- HAC/LAC COMPUTATIONS THAT SHOULD BE DISTRIBUTED TO LOCAL PROCESSORS, IN ORDER OF DECREASING PREFERENCE
 - . COMPENSATING SENSOR READINGS FOR SCALE FACTOR, BIAS, AND DRIFT
 - . APPLYING LOW-AUTHORITY GAIN TO ACTUATOR COMMANDS
 - . APPLYING HAC FEEDBACK & FILTER GAINS TO ACTUATOR COMMANDS
 - . APPLYING KALMAN GAIN TO COMPENSATED SENSOR READINGS
- FREQUENCY SHAPING FILTER COMPUTATION (HAC/LAC) SHOULD STAY IN CENTRAL PROCESSOR

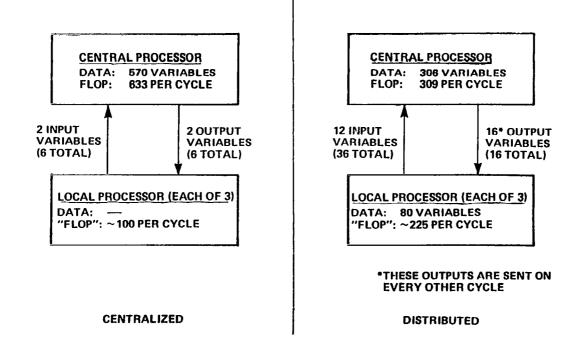

LQG ALGORITHM (n_c = 20) FOR BEAM

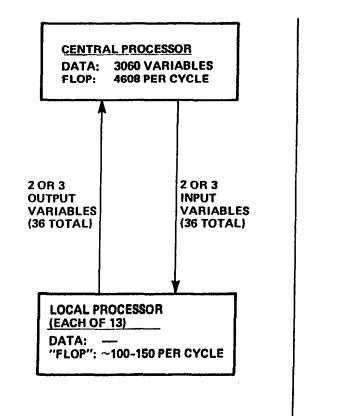


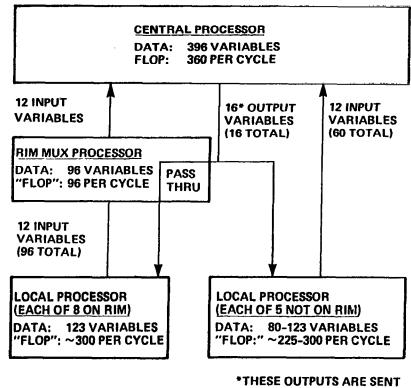
CENTRALIZED

DISTRIBUTED

LOG ALGORITHM (n_e = 20) FOR ANTENNA




CENTRALIZED


DISTRIBUTED

HAC/LAC ALGORITHM (n_c = 12) FOR BEAM

HAC/LAC ALGORITHM ($n_c = 12$) FOR ANTENNA

CENTRALIZED

DISTRIBUTED

ON EVERY OTHER CYCLE

CONCLUSION

- VIBRATION CONTROL OF LARGE SPACE STRUCTURES
 IS COMPUTATIONALLY DEMANDING DRIVEN BY
 - NUMBER OF VIBRATION MODES CONTROLLED
 - NUMBER OF SENSOR/ACTUATORS PAIRS
 - CONTROL BANDWIDTH
- DISTRIBUTION OF THE VIBRATION CONTROL COMPUTATIONS
 AMONG CENTRAL AND LOCAL PROCESSORS CAN SIGNIFICANTLY
 REDUCE THE THROUGHPUT REQUIRED FROM THE CENTRAL
 PROCESSOR AND MAY ALSO RESULT IN IMPROVED PERFORMANCE
 DUE TO REDUCED TRANSPORT LAG