N83 22302 D13

MODELING CORRELATION WITH FLIGHT DATA

H. K. F. Ehlers Johnson Space Center

ORIGINAL PAGE IS OF POOR QUALITY

SHUTTLE ENVIRONMENT WORKSHOP

MODELING CORRELATION WITH FLIGHT DATA

H. K. F. EHLERS

MOLECULAR (CONTAMINATION) FLOW MODELING (SPACE 2 PROGRAM)

- PURPOSE OF THE MODEL
 - PREDICT THE INDUCED ENVIRONMENT OF THE SPACE SHUTTLE ORBITER/PAYLOAD ON-ORBIT
 - MODEL OUTPUT PARAMETERS
 - DENSITY
 - COLUMN DENSITY
 - RETURN FLUX
 - PREDICT THE INDUCED GAS FLOW BETWEEN ORBITER/PAYLOAD SURFACES
 - MODEL OUTPUT PARAMETERS
 - DIRECT SOURCE TO RECEIVER GAS FLOW
 - REFLECTED SOURCE TO RECEIVER GAS FLOW

MOLECULAR (CONTAMINATION) FLOW MODELING (SPACE 2 PROGRAM)

ORIGINAL PAGE IS OF POOR QUALITY

MODEL DESCRIPTION

THE MODEL IS A COMPUTER PROGRAM RELATING CERTAIN INPUT PARAMETERS TO THE REQUIRED OUTPUT PARAMETERS. THE INPUT PARAMETERS CHARACTERIZE THE TIME DEPENDENT STATUS OF THE ORBITER/PAYLOAD

- INPUT PARAMETERS
 - BODY GEOMETRY
 - MATERIALS GAS EMISSION/REFLECTION/ABSORPTION CHARACTERISTICS
 - ENGINE/VENT CHARACTERISTICS
 - AMBIENT/EMITTED GAS INTERACTION
 - TEMPERATURES
 - TIME DEPENDENCE
- PROGRAM
 - MOLECULAR TRANSPORT MECHANISMS

MODEL APPLICATION: ORBITER FLIGHT TESTS

- INDUCED GAS ENVIRONMENT OF ORBITER/PAYLOAD SYSTEM
 - STS-1
 - STS-2
 - STS-3
- INDUCED DIRECT GAS FLOW FROM ORBITER/PAYLOADS TO SENSITIVE AREAS (IN BAY)
 - . IECM INSTRUMENTS
- RETURN FLUX TO SENSITIVE AREAS
 - IECM INSTRUMENTS
- INDUCED DIRECT GAS FLOW FROM ORBITER/PAYLOADS TO UNBERTHED PAYLOAD/SENSITIVE INSTRUMENTS
 - IECM ON RMS

MODELING CORRELATION WITH FLIGHT DATA

DIRECT FLOW OF OUTGASSING MOLECULES FROM BAY SURFACES TO TOCM'S ON THE IECM

(IN 10-12 G/CM2 SEC) (STS-2/IECM IN ZLV ATTITUDE)

SPACE 2 PREDICTIONS	LOCATIONS	MEASUREMENTS
8.3	RIGHT	06.3
10.4	FWD	6.315.4
7.3	AFT	26.5
19.8	LEFT	04.0

ORIGINAL PAGE IS OF POOR QUALITY

MODELING CORRELATION WITH FLIGHT DATA

 DIRECT FLOW OF OUTGASSING MOLEDULES FROM BAY SURFACES TO TOCM'S ON THE IECM

(IN 10-12, G/CM2 SEC) (STS-3/TAIL TO THE SUN ATTITUDE)

SPACE 2 PREDICTIONS	LOCATIONS	MEASUREMENTS
2.7	RIGHT	227
3.8	FWD	1747
2,.1	AFT	518
2.2	LEFT	725
0.07	ТОР	515

MODELING CORRELATION WITH FLIGHT DATA

 RETURN FLUX OF WATER MOLECULES FROM THE FLASH EVAPORATORS TO THE MASS SPECTROMETER ON THE IECM (IN COUNTS PER SEC) (STS-2/IECM IN ZLV ATTITUDE)

SPACE 2 PREDICTIONS LOCATION MEASUREMENT
1000 TOP 250...750

MASS SPECTROMETER MEASUREMENT OF RETURN FLUX (IN COUNTS/2 SEC, NEAR RAM ATTITUDE)

ORIGINAL PAGE IS OF POOR QUALITY

MISSION AMU18 AMU 28 AMU 32 AMU 44 STS-2 4E+5...4E+3 (9...7)E+5 1E+4* (7...1.5)E+4

STS-3 (1...5)E+6 1.5E+2...5E+4 ≈500

 $*1E+4 = 1.10^4$

SPACE 2 PREDICTIONS OF RETURN FLUX
(IN MASS SPECTROMETER COUNTS/2 SEC, RAM ATTITUDE)

 MISSION
 SOURCE
 OUTG**
 H₂O
 N₂
 CO₂
 O₂

 STS-2
 OUTGASSING/ DESORPTION*
 106
 83
 66
 48
 22

 STS-2
 CABIN LEAKAGE
 136
 14000
 166
 3800

MODELING CORRELATION WITH FLIGHT DATA

RETURN FLUX

PREDICTED STS-2 CONTRIBUTIONS FROM MOLECULAR SOURCES TO MEASURED VALUES

MOLECULAR AMU SOURCE*	18	28	<u>32</u>	44
DESORPTION	NORMAL: MINOR TILES: MAJOR	MINOR	MINOR	MINOR
CABIN LEAKAGE	MINOR	MINOR	MODERATE	MINOR
AMBIENT N2	-	MAJOR	-	•
AMBIENT O		-	MODERATE	-
OTHER	-	TO BE ANALYZED	MINOR	TO BE ANALYZED

^{*}OUTGASSING - NO SIGNIFICANT AMOUNTS OF HEAVY MOLECULAR SPECIES HAVE BEEN OBSERVED ABOVE PREDICTED LEVELS

^{*}AT 20 HOURS MISSION ELAPSED TIME **MODELED AMU:100

ORIGINAL PAGE IS OF POOR QUALITY

RETURN FLUX MEASUREMENT ERROR ANALYSIS

MAJOR CONTRIBUTORS TO ERRORS IN THE DATA ANALYSIS ARE:

- MOLECULAR COLLISION PROCESS
- MASS SPECTROMETER CALIBRATION FACTOR, DEPENDING ON SYSTEM PUMPING SPEED
- MASS SPECTROMETER SYSTEM CHARACTERISTICS (H_20, CH_4)
- AMBIENT CONTRIBUTIONS

SPACE 2 PREDICTIONS OF MOLECULAR COLUMN DENSITIES (IN MOLECULES/CM2 SEC)

MISSION	SOURCE	OUTG	н ₂ 0	N ₂	co ²	02
STS-2	OUTGASSING/ DESORPTION***	0.6E+10**	0.2E+11	0.1E+11	0.7E+10	0.4E+10
STS-3	OUTGASSING/ DESORPTION****	0.4E+11	0.1E+12	0.6E+11	0.4E+11	0.2E+11
STS-2/3	CABIN LEAKAGE	_	0.1E+12	0.6E+13	0.7E+11	0.2E+13
STS-2	FLASH EVAPORATORS	•••	1.4E+13	-		-
GOALS		1.0E+10*	1.0E+11	1.0E+13	1.0E+11	1.0E+13

^{*} PER SPECIES

** 0.6E+10 = 0.6·10¹⁰

*** AT 20 HOURS MISSION ELAPSED TIME, ZLV ATTITUDE

**** AT 20 HOURS MISSION ELAPSED TIME, TOP SUN ATTITUDE

MODELING CORRELATION WITH FLIGHT DATA

SUMMARY

- GOOD CORRELATION FOR DIRECT FLOW (TQCM)
- GOOD CORRELATION FOR RETURN FLUX, STS-2/H20
- CORRELATION FOR RETURN FLUX FROM OTHER MOLECULAR SOURCES/SPECIES APPEARS TO BE WITHIN EXPECTATIONS. MORE ANALYSIS 1S REQUIRED
- SPACE 2 MODEL SEEMS TO BE AN ADEQUATE PREDICTIVE TOOL

ORIGINAL PAGE IS OF POOR QUALITY.