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TECHNICAL CONTENT STATEMENT

This report was prepared as an account of work sponsored by the

United States Government. Neither the United States nor the United

dates Department of Energy, nor any of their employees, nor any of

their contractors, subcontractors, or their employees, makes any

warranty, express or implied, or assumes any legal liability  or

responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or pru,.ss disclosed, or represents

that its use would not infringe privately owned rights.
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SECTION 1

A BSTRA CT

Statistically significant quantitative structural imperfection measure-

ments were made on samples from Ubiquitous Crystalline )Process

( UCP ) Ingot 5848 - 13C.	 Important correlation was obtained

between defect densities , cell efficiency and diffusion length.

Crain boundary substructure displayed a strong influence on the

conversion efficiency of solar cells from Semix material.

Quantitative microscopy measurements gave statistically significant

information compared to other micro - analytical techniques.	 A

surface preparation technique to obtain proper contrast of structural

defects suitable for QTM analysis was perfected and is now being

used routinely.

A studs was made to determine the relationships between hole mobility

and grain boundary density.	 Mobility waa measured using the van

der Pauw technique, and grain boundary density was measured using

quantitative microscopy technique. 	 Mobility was found to decrease

with increasing grain boundary density.

9
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SECTION 7

QUANTITATIVE ANALYSIS OF DEFECTS

F

Z. 1 INTRODUCTION

The objective of this work is to gain fundamental understanding of the role

of structural imperfections and chemical impurities on solar cell performance.

The type, density, distribution, and electrical activity of such defects have signi-

ficant effects on solar cell performance. Most of the processes designed

to produce silicon crystals at low cost introduce a high density of defects in

crystals, which have a distinct effect on solar cell efficiency.

The types of defects present in many of the low - cost silicon it sheets",

produced by a var,ety of methodology, run the gamut from point defects

to dislocations, planar defects such as twins and stacking faults, high

and low angle grain boundaries, and second phase inclusions. 	 The

types of imperfections present and their density are a function of the

specific method used for producing the silicon sheets.

In general, rapidly grown ribbon - type crystals produced by techniques

such as the EFG process, the Web Dendritic method, etc. , typically

contain a relatively high population of dislocations usually arrayed along

linear boundaries, a high density of twins, and chemical impurities in the

form of precipitates. Sheets forvied by slicing of cast crystals, such as

SEMIX material, are generally polycrystalline in nature with grain dia-

meters from a fraction of a millimeter to several .millimeters, and twin

boundaries oriented in different direction within many of the grains.

10
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Quantitative analysis of surface defects was performed by using a Quantimet

Quantitative Image Analyzer (QTM 720). The results were double checked

by manually countin,4 all the defects. The QTM 720 can differentiate and

count 64 shades of grey levels between black and white contrasts. In

addition,it can characterise structural defects by measuring their length,

perimeter, area, density, spatial distribution, frequency distribution (jr

any preselected direction), and is programmable in these measurements.

However, the QTM 7ZO is extremely sensitive to optical contrasts of various

defects. Therefore,to obtain reproducible results, the contrasts produced

by various defects must be similar and uniform for each defect types along

the entire surface area of samples to be analyzed. To achieve this contrast

uniformity, a chemical cleaning and polishing procedure was developed and

perfected for the SEMIX samples described in this report. The cleaning and

polishing procedure produced a very clean and even surface. Statistically

significant quantitative data was measured and their significance is discussed.

2. 1. 1 ADVANTAGES OF QUANTITATIVE MICROSCOPY TECHNIQ UE

There is significant advantage in using quantitative microscopy technique

as described herein to analyze structural defects. Techniques such as

transmission electron microscopy (TEM), scanning electron microscopy

(SEM), while providing useful information,are usually performed at h.;b..er

magnifications. For exaniple, TEM analysis is usually carried out in the

magnification range 10, OOOX to 300, 000X. Because of the high magni-

fication employed, the area of the field of view is very very small

11
1



compared to the total surface area of the starting sample, such as a 2cm by

2 cm sample. Hence, the information obtained,although impressive Arquy

not be statistically !ignificant. However, in our quantitative microscopy

technique as used in this report, the magnifications used are very low

such as 100X to 1000X. In addition, a total of 62 fields was analyzed

from a 2 crr. : I z cm sample. For grain boundary and twin boundary

measurement, the total area analyzed was 1.49 cm 2 for a 2 cm by 2 cm

sample i. e. , a whopping In of total surface area was actually measured.

For precipitate particles, the total area analyzed was 0. 09 cm 2 i, e. , 2. 30/6

of the total surface area was measured. For dislocation pits, the total

z^Mea measured was03756 of the total sample area. By way of comparision,

if we were to analyze 62 fields from a 2 cm by 2 cm sample by TEM technique

at 100, 000X, the total area for 62 fields will be only 0. 00000147 cm 2 which

is 0. 00003716 of the sample surface area.

Therefore, the results obtained by quantitative microscopy technique as

described in this report are statistically more significant and reliable

than any other technique such as TEM, SEM, etc.

^r

•

E
C
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SECTION 2.2

EXPERIMENTA L PROCEDURE

2.2.1 CHEMICAL POLISHING AND ETCHING

Fifteen (15) samples from SEMIX's Ubiquitous Crystalline Process

( UCP) Ingot 5848 - 13C were received by Materials Research,

Inc. , ( MRI ) from JPL for characterization, of structural defects.

These samples measured 2 cm by 2. cm and were designated by

JPL as 1-4-13 (or A - 13)	 2-10-2 (or B - 2 ), 3-10-12

( or C - 12 ),	 4-10-8 ( or D - 8 ),	 1-2-13 ( or E - 13) , 2-9-2

( or F - 2 ),	 3-9-12 ( or G - 12 ), 4-9-8 ( or H - 8 ),	 1-10-13

( or T)	 1-12-14 ( or U ),	 2-5-1 ( or V),
t

3-4.-12 ( or W ), 3-4-16 ( or X ), 4-2-4 ( or Y)	 and 4-2-8

{ or Z ).	 We notice that each sample is defined by three numbers.

The first number refers to the section, the second number refers

to the wafer number, and the third number refers to the cell number.

Thus, sample A is located in section 1, wafer number 4, and cell

number 13.	 The location of the samples is shown clearly in Figure 1

with respect to the center line of the casting Ct - CL	From

Figure 1A.,it is cle etr that Ingot 5848 - 13 C is one- quarter ( 1/4 )

of the total casting;.	 This quarter ingot was cut into four ( 4 )

13
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orw,tici ►► a,	 Fat'lt ►► ertictn Wat► fu.r.ti er ork1ic>ned itttct twelve

( 12 ) Wafer",	 and nixteett ( 16 ) ('ells.

Samples `1', U	 V, W, X, V, and V, were Mh ,, rc.rived

"a ► t ples	 They were ttot subjected to any llrcic`empittg.

,somisle ►t V, V, ci, & I  wet{r fa.l)rWated inlet PtO* r c^elkm without

get Ieriltg..	 Soniplem A, 11, C, and Il were Kettered at

147tA , ► C yell° 1 iZ lloor and thee, l>roi4emved it*tti Motor Cella.

The Q'1`M 7,10 aP(.tar-Aws it► extre ► tcely aettaitive to c`ctnt.raeta

pre (likee i by various et.rurtural	 terv g ill,	 It gall	 tiiatinAuidlt.

(,	 mhad ea of grey l evels	 between	 10AtA,, and white,	 lty

remembering the exact "bade, Ilse QTM Vo is 011ie , to c`urrec`Ily

00uttl ea0w cle,frO typem.	 Therefore, to obtflin accura a Awl

reprcxl ►tAble re, sultm ? it is very importattt that each ttt:ruetu.ral

de(vol type be etched to identieal eotntratet„ 	 .MR), Itoa now

per'e0ed a %Atemi. `aI 	 c'leanklig, pol.ialling, And etching proc rture

to product, 	a ► tc:Z! a, cir ► ttaltciillA t^ryui.lR e ►^trnt. itt tl^e^+e

,semiN watt p!ee,	 All c lcriaaic4ale used were, -I,ow Sodium M.OS,

1+xlec`t ru ►tic` t i rade,	 `Vile t'c UoNvittt{ procrdurett were used;

1
1,4



OF POOR QUALi i r

11	 .:reaxp _ Duet and . : ^,-h p r Aurfac p C.-%ntaminatinn Rt+mnval
time

a,	 Sample immersed in trichloroethylene 3

b.	 Sample,	 rinsed	 in acetone 3

C.	 Sample rinsed	 in 2- Propanol 3

d.	 Compressed N 2 gas to blow off 2 - Propanol 0.5
to	 prevent	 stain marks

2) Protective Coating Application

a. Using a fine paint brush, Apiezon Wax dissolved in tri-

chioreethylene was applied to one surface of the silicon

sample.

b. The wafer was then heated on a hot plate to about 120 0 C to

accelerate evaporation of trichloroethylene.	 ` he Apiezon

Wax melted and spread uniformly covering the entire surface.

All of the trichloroethylene evaporated leaving behind a thin

coating of the acid - resistant Apiezon Wax covering the surface.

3) Silicon Oxide Layer Removal

time
(min. )

a. Sample was immersed in concentrated HF 	 4

b. It was then rinsed in distilled water 	 4

C. It was then rinsed in 2-propanol	 4

d. NL gas to blow off excess 2-propanol	 0.5 r

d

15



61-1

ORIGM1," 1
OF POOR QUALITY

The protective coating application is done for two reasons: i) to prevent

attack and dissolution of samples from two surfaces. By using a wax

coating, the coated surface is prevented friim chemical attack during

polishing and etching procedure, ii) the protective coating may be

dissolved later in trichloroethyl.ene and JPL may in future build a solar

cell on that surface. Thus a direct correlation between cell efficiency

and defect densities for each sample may be obtained.

4) Chemical Polishing Procedure

The chemical polishing solution is a mixture by volume of 1 part

nitric	 acid ( HNO3 ) : 2 parts	 hydrofluoric acid	 ( HF)	 .	 3	 parts

acetic	 acid ( CH3 000H ).	 The following procedure was used t

time
(min.)

a. The wafer was immersed at	 50 ±	 3 o C	 in 0. 1-0.75
polishing	 solution

b. It was then rinsed in deionized distilled	 water 4

C. It was then rinsed	 in 2 - propanol 4

d. N 2 gas blown to dry sample surface 0.5

e. Sample was observed under micrscope and polishing 0.1-0.75
was continued until a smooth flat surface was observed

5) Chemical Etching Procedure

The chemical etching solution consists of 2.5 gm. of chromium

trioxide ( Cr0„) dissolved in 15 ml. deionized distilled water

16
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and 15 ml. concentrated hydrofluoric acid ( HF ). 	 The fo

procedure was used-.

time
(min. )

a.	 Sample was immersed in the chemical etching 0.1-0.3
solution

b.	 It was then rinsed in deionized distilled water 4

C.	 It was then ,rinsed in	 2 - propanol 4

d.	 N2 gas	 blown to dry sample surface 0.5

e.	 Sample was observed under microscope and etching
procedure was	 continued until dislocation pits are
visibly	 observed

The etching times for the	 Semix samples were as follows.

Sample No. Etching Time
( Sec.	 )

A-13 67

B-2 60

C-12 48

D-8 37

E-13 77

F-2 82

G-12 61

H-8 48

Average 60

17
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RESULTS AND DISCUSSION

MEASUREMENT OF GRAIN BOUNDARIES, TWIN BOUND-

ARIES, PRECIPITATE PARTICLES, AND DISLOCATION

PITS

Using an Olympus Inverted Optical Metallurgical Microscope,

Model PME	 approximately 62 fields on each sample were

analyzed for structural defects. Figure lB shows the relative

positions of the 62 fields that were observed on each sample. 	 The

feature under investigation is counted in each field and averaged over

the 62 fields for a statistical average of the overall sample. 	 The

field of view of the microscope is a necessary quantity to know so that

some dimensions can be given to the defect feature.	 Using a

0.01 cm - 0.001 crn calibrated standard microscope slide, the

diameter of the field of view was measured at different magnifica-

tions.	 From this data, the circumference and the area of the field

of view was determined.	 This data is tabulated in Table 1. Table 1

shows that as the magnification approximately doubles for successive

objective setting, the diameter of field of view decreases by about half.

The defect measurements were done in three ( 3 ) separate steps.

First, the grain boundary and twin boundary intersections were

18
k
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The circumference and the field of view on the Olympus Inverted

PME Microscope

Eye- Object- Magnifi- Diameter Circum- A rea , of
piece ive cation of field of ference field of
Lens Lens view (cm) of field view,

of view (cm	 )
(cm)

lox 5X 50X 0.36 1.13 0.102

lox lox 100X 0.175 0.55 0.0241

lox 20X 200X 0.089 0.28 0.00622

lox 40X 4t?0X 0.0435 0.137 0.00149

lox 100X 1000X 0.0174 0.055 0.000238

Sample Calculation:

Circumference at 50X = '1TD = ( 7T) ( 0.36 em) = 1. 13 em

TT D2	IT (0.36 )2
Area of field of view at 50X = -- 	 = 0. 102 cm2

4	 4

19
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measured for all the 62 fields using a magnification of 100X in

the polished condition. 	 Next, the precipitate particles were

measured for all the 62 fields using a magnification of 400X in

the polished condition.	 Next, the sample was etched in the etching

solution and immediately measurements were made for dislocation

pits for all the 62 fields at a magnification of 1000X.

All of these measurements were made manually. 	 Attempts were

made to use the Quantitative Image Analyzer ( Quantimet QTM 720 ).

However, this was not successful since the contrast on the CRT was

poor for the fine precipitates at 1000X.	 These manual measure-

ments were done very carefully, the measurements were repeated,

and found to be reproducible. All measured data is listed in Appendix.

2.3.1 Measurement of Grain Boundary and Twin Boundary Length

Per Unit Area

Since grain boundaries can be location of efficient carrier recombi-

nation centers and act as sinks for impurities which can be detri-

mental to the efficiency of the solar cell, 
1-4 
	 the grain boundary

length per unit area is an important quantity to know. 	 Using a

statistical method of counting the intersections of the grams boundaries

and twin boundaries with a test line, the length per unit area can be

calculated using the following relationship 56:

20
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LA	( 7C /2 ) . PL , where

LA = line length of grain boundaries or twin boundaries
per unit a r ea ( cm /cm2 )

P L = number of point intersections of grain boundaries
or twin boundaries per unit length of test lines.

Figures 2, 6, 7, 8, 9, 12, 14, 16, and 17 show typical structures

of twin boundaries and/or grain boundaries in the Semix samples.

The Appendix Tables 1, 4, 7, 10, 13, 16, 19, and 22 contain a

listing of the raw measured data for grain boundaries and twin

boundaries.	 The information in the above tables has been summar-

ized in Table II, along with calculated values for arithmetic mean

and standard deviation.

Several tentative graphs are shown in order to determine any apparent

relationship in the measured data.	 These graphs are preliminary

and subject to revision as more and more samples are examined and

better information about sample history is obtained from other sources

( such as Semix Corporation, JPL, OCLI, etc. , ). 	 Figure 20

shows a plot of twin boundary length as a function of the distance of the

wafer from top of the ingot. 	 Figure 20 shows that, as a first approx-

imation, twin boundary density ( expressed as length/unit area )

decreases as the distance from top of ingot increases. 	 Samples A

and E located at top of the ingot have	 higher densities.and lower

21



TA BLE II

Grain Boundary and Twin Boundary Length Per Unit Area for the

Semix Samples

SEMIX Grain	 Boundary Twin Boundary
Sample Length per unit Length per unit
Number area area

(cm /cm2 ) (CM /cm.2 )

8.2 99. 0
A - 13 x	 =	 2. 9 x	 =	 34.6

cr	 =	 2.0 cr	 =	 56. 5

4.5 15,8
B-2 x	 =	 1.6 x.	 5.6

a-	 =	 2.2 Q-	 =	 9.3

13.4 31.9
C - 12 x	 =	 4,7 rc	 =	 11,2

a-	 =	 2.7 cr	 =	 11.1

13.8 44.5
D - 8 x	 =	 4.8 1	 =	 15.6

a-	 =	 3. 2 cr	 =	 17. 1

7, 1 68.5
E - 13 x	 =	 2.5 x	 --	 24

d'	 =	 2.1 e"	 =	 38

5.4 12.2
F - 2 x	 =	 1.9 R	 =	 4.3

a- =	 z. 6 c	 =	 6.8

12, 1 40.7
G - 12 x	 =	 4.2 x	 =	 14,3

a- =	 2.6 (r	 =	 15.5

9.4 35. 9
H- 8 x	 =	 3.3 31	 =	 12.6

d' =	 1. 9 t'	 =	 13. 3

Average 9.2 43.6

2 features in all fields
x̀ = arithmetic mean =

Total nurnber of fields

1	 n	 "'A 1 /2

2d = standard deviation =	 ( x. ., x )
n- l	 i, = 1

22
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solar cell efficiencies.	 To explain this phenomenon, data

on crystal growth conditions are required, which is currently not

available.	 Figure 24 is a plot of the data listed in Table Il .

As a first approximation, Figure 24 shows that as the grain

boundary length/unit area increases, the twin boundary length/unit

area increases rapidly at first then levels off and decreases.

Assuming that nucleation of twin boundaries occur at grain

boundaries, one would expect the twin boundary density to increase

with decreasing grain size i. e. , increasing grain boundary

area.	 However , there are many interrelated unknown factors

( regarding crystal growth couditions ), which may make any

possible definite relation between grain size and twin boundary

density difficult to determine.	 The purpose of plotting twin

boundary length versus grain boundary length is simply to

pictorially depict obs^srved relationship.	 Figure 24 does

not imply that twin boundary area must depend upon grain

boundary area.	 A ;further study will be required to see if

there is any definite relationship between these variables.

2.3.2 Measurement of Precipitate Particles

The polished samples were observed at a magnification of

400 X. and the number of precipitate particles were counted in

23
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each f eUk-	 'There appeared to be two fairly distinct sizes

of what was counted as precipitate particles. 	 The large-

sized defects were clearly recognized to be precipitate par-

tic leis.	 However, there were smaller features, that could
it	

not be resolved clearly, which looked like prec ipitate particles.

The only other possibilities were that these features are small

stain marks or etch pits.	 Since there is some questions

as to the identity of these features, observation of these "amples

at a higher magnification using a Scanning Electron Micro-

scope ( SEM ) is recninmended.	 However, for the time being.

these features will be regarded as small precipitates, subject

to correction later.	 The Appendix Tables 2, 5, 8, 11, 14,

17, ZO and Z3 contain a listing of the raw measured data

for precipitate particles in these Set-nix samples . 	 The

information contained in the above tablets have been summarized

in Table 111 , along with	 values for arithmetic mean

and standard deviation.	 Small and large: precipitate particle

densities are listed separately in Table 111.

F

I
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Precipitate Particle and Dislocation Pit Density for Semix Sampl

SEMIX	 Precipitate	 Particle	 Density Dislocation
Sample	 ( particles /cm2 ) Pit Density
Number (pits cm )

small large total
4. 9 x	 10422 x 10 745 23 x 10

A-13 T= 33 x =	 1.1 x =	 1,2
d' =	 36.5 Q =	 1.5 tf =	 21

19.5x103 444 20x103 9.5x 'to 4
B - 2 'x	 =	 29.1 11 =	 0.66 x = 23

d =	 18.1 d =	 0.95 O = 45

6.2x103 65 6.3x103 37x104
G - 12 x = 9.2 x =	 0.1 x = 89

W = 7.7 d = 0.4 d = 62

2.5x103 152 2.7x103 10x104
D - 8 'x = 3.8 $ =	 0.23 x = 24

6 = 4.0 ef =	 0.46 Cr =	 51

9.1x103 400 9.5x103 37xI
E - 13 x =	 13.5 It	 =	 0.6 Tc = 89

cr =	 10.6 d =	 0.7 d = 96

4.8x103 740 5.6x103 17x104
F- 2 x= 7.2 x=	 1. 1 x	 40

d =	 10.5 if =	 2.1 R =	 111

6.4 x 103 140 6.6 xr 103 45 x 104
G - 12 x = 9.6 Yc =	 0.21 x = i08

d = 8.0 d =	 0.41 d =	 161

9. 5 x 103 250 9. 7 x 103 S6 x 104

H - 8 x =	 14. 1 x = 0.4 '2 =	 204
Cr =	 10.9 d =	 0.8 d = 235

Avg. 10. 0 x 10 3 367 10 x 10 3 31 x 104

For precipitate particle density, 2. 316 of the total area was measured.

For dislocation	 density, 0. 3710 of the total area was measured.
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A sample calculation for small precipitate density

Table III is shown below:

Magnification = 400X

Area of fi( ld	 = 0. 00149 cm2

_	 447
X for small precipitate = —

62
7.2 (see Appendix

Table 17 )

No. of small precipitates 	 (total no. of small precipitates counted)

unit area	 (total no. of fields) (area of a field)

(447	 2 (see Appendix_	 . 00	 cm )	 gable 17)

= 4. 8 x 10 3 precipitates AM 

Figures 3, 4, 5, 13, and 15 show precipitate particles on

some of the Semix samples. 	 The large precipitate diameter is of the

order of magnitude •r 15 x 10 —4 cm, while the small precipitate diameter

is of the order of magnitude w 3 x 10 `—'4 cm,.

2.3.3 Dislocation Deosity Measurement

After etching each of the Semix wafers, the dislocation density

was determined by counting the number of dislocation etch pits at

1000X in each field of view for approximately 57 fields per sample.

The number of fields mer,.sured was slightly lower due to mechanical

interference of the longer objective lens with the microscope stage. The

Appendix Tables 3, 6, 9, 12, 15, 18, 21, and 24 list the raw measured data

26
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for dislocation number density. The information in the above tables have

i been summarized in Table III, along with calculated valuer, for arithmetic

C mean and standard deviation. A sample calculation for wafer F-2 in

Table III is as follows:

Magnification	 =	 1000X

Total nwnber of dislocation pits counted	 -	 2334 from 59 fields

Area of Field	 =	 0. 000238 cm 

(total no. of dislocation pits counted)
Dislocation Pit density	 -

(total no. of fields) (Area of field)

( 2334 )
(see Appendix Table 18)

(59) (0, 000238 cm2)

1. 7 x 10 5 dislocation pits /cm2

Figures 10, 11, 18, and 19 show dislocation arrangements in some

of the Semix samples.

Figure 21 shows a plot of dislocation density versus lz:ge precipitate

e,.Ansity from the data listed in Table III ( data for small precipitate was

not used in Figure 21 since the identity of small precipitate was not

positively established). Figure 21 shows that as the large precipitate

density increased from sample to sample, the corresponding dislocation

density decreased. This trend is quite clear even though some anomalies

are present in Figure 21. This observation may be explained on the be sis

OF POOR QU;=11 9 ' C'f
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that dislocation lines constitute tuber of fast diffusion, with a diffusion

coefficient close to the coefficient of self diffusion along grain boundaries.

The rates of diffusion along such short-circuit paths are significantly

higher than for volume diffusion, since the associated activation

energies are much lower than for volume diffusion s. As dislocation density

increases, larger number of short-circuit paths are now available

for impurity atoms to migrate. This may result in a decrease in

precipitate density. While the intr naic properties of individual disloca-

tions, dislocation networks, and grain boundaries are governed by the

presence of space charge cylinders around defects, the typical electrical

response of these structural defects is determined by the presence of

impurities in association with the defects. The interaction energy

between common impurities such as Fe, Ni, Cu and a dislocation are

fairly high, so that impurity atmospheres and impurity precipitates can

form at dislocations y . When defect intersections occur in crystals, the

resulting electrical effects are more pronouncedl0, 11, presence of

impurities at or near crystallographic defects make them electrically

active. When P is diffused into the crystals, the impurities from the

defects are "gettered" due to reactions between P and impurities decora-

ting the defects. As a result, the defects are no longer electrically active.

However, the defects are stillresent within a diffusion length of beam-P	 B

generated charge carriers. Hence, predominant electrical effects in

silicon devices are caused by defect-impurity association see Fig. 10, 11, &19).
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Z. 3. 4 Cell Efficiency Versus Twin Boundary Density

Table IV lists the defect densities in these Semix samples all obtained

by MRI along witi ► the (Aata for cell efficiency and diffusion length as

obtained by OCLI 7	The~ data for cell efficiency was plotted as a

function of the observed 6ata for different types of structural defects.

Figure 22 shows a plot of cell efficiency versus twin boundary density.

All approximate inverse relationship is observed. Plotting cell efficiency

versus grain boundary density did not show any clear trend . The

significance of 'Figure 22 is that the grain boundary substructure may

influence cell, efficiency in Semix material. In other words, the defect

structure within grains may influence the cell efficiency more than the

grain boundary itself.	 Furtliertriore, as nientioned in page 25, inter-

actions of these substructures with one another and wit?, impurity atmo-

spheres may cause viiore pronouncod electrical effects.

2. 3. 5 Diffusion Length Versus Dislocation Density

The nunierical data for diffusion length was plotted iii several ways

using the various observed data for different types of structural defects

listed in Table IV. Figure 23 shows a graphical plot of diffusion length

versus observed dislocation density in the eight samples. The figure shows

an iiiiportant, trend. An it verse relationship is observed between diffusion

lee &t i and dislocation ., deTsity. Since the average grain size in these samples

is expected to ',' e larger than the diffusion length in a single crystal Semix

of the same doping level (data not currently available), the effective lifetime

and diffusion length in the polycrystalline Setnix samples is expected to be

I
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reduced by substructures within grains (such as t+:.An__ boundary dF

dislocation density, and precipitate particle density along with ct

segregation around these substructures).

. 3. 6 Cell EGiciency Versus Area of All Defects

In an attempt to correlate the cell efficiency with various struc:tu

imperfections, it was tentatively assumed that the effectiveness

r

r!

redtwing the cull efficiency ) of various defect types was same. With

this assumption, the total. area of all structural defects was determined

and sunurved.

The actual cneasurernent on plane of polish of silicon wafers yields

information in terms of length per unit area of structural features

(listed in Table IV'). However, these features are truly three-dimensional.

anti, therefore, quantitative stereological relations can be used to convert

these ieasured quantities to area per unit volume. For example, dislo-

cation density measured in number /cm z is the same quantity as length /em.
3

of dislocations a. In order to determine the effect of various defects, the

data in Table IV have been converted on a unit volume basis and is listed

in Table V. The effectolde,fects on charge carriers will be in the immediate

vicinity of the defects. Therefore , surface area of defects per unit volume

is the tnost logical pavan, Teter to correlate efficiency with defect densities.

The precipitate matrix,-interface area per unit volume ( i. e. ,"area of influence"

.fo,r, precipitates ) was calculated as follows ;

2	 "2

SV(p) 	 dl 1 } n `l 2 V2
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Where d  and d2 are the diameters of the large and small precipitates,

and `1 and e2 are respective densities (number/cm3 ). The precipitates

exhibited binodal distribution. Smaller precipitates were on the average

about 3 ,pm in diameter, while the larger precipitates were on the average

about 15 fm in diameter. With this information, the surface area for small

and large precipitates may be calculated and these are listed in Table V.

With regards to dislocations, it was assumed that a cylindrical area

around a dislocation is the effective area in reducing cell efficiency. The

radius of this cylindrical area was assumed to be 20A? . The reasoning

for this assumption is that electrically active impurities will likely be

located within 5 b from the core of the dislocation ( where b is the Burgers

Vector). Thus, the "area of influence " due to the dislocations is given by:

Sv(d) - 2 n R (-

Where r = dislocation density (cm/cm 3 )

and R = effective radius ;Z 2010

In Table V, the respective areas of influence for these defects ( per unit

volume) are listed along with cell efficiency. It ic y interesting to note that the
qv 4.

effective areas of the precipitate particles and dislocations is insignificant 	 --

compared with the twin boundary area. It is further observed that at the

defect densities observed, there is vi:tuall no correlation between the cell

efficiency and either the precipitate surface area or the dislocation surface

area. This aspect is graphically demonstrated in Figures 25 and 26.

Examination of Table V also shows that the grain boundary area, although

not insignificant, is considerably smaller in these samples than the

32
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corresponding twin boundary area. Once again there appears to be no

definite correlation between grain boundary area and cell efficiency.

Finally, upon examination of twin boundary area, it is seen that cell

efficiency decreases with increasing twin boundary area ( see Figure 22).

Also shown in Figure 27 is a plot of cell efficiency versus total defect

areas. Since twin boundary area is the predominant term, the overall

behavior is similar to Figure 22.

2.3.7 Cell Efficiency Versus Location of Wafers

An important and definite correlation has been found between cell efficiency

and location of the wafers with respect to the center line of ingot ( Figure IA)

and in relation to the top center of the ingot. Figure 28 is a plan view of the

top of the ingot, which is shown in three dimension in Figure 1A. The

center line C. in Figure IA originates atO in Figure 28, and is perpen-

dicular to the plane of paper.	 Figure 28 shows the distance of the center

of a wafer from origin O. Thus, the center of cells A and E are located

1 cm along X-axis and 1 cm along Y - axis from O. Therefore, their

center iP located at	 12 + 1 2 = „rte = 1. 414 cm from the center

line of ingot .	 The distance from ingot axis for the remaining cells were

calculated.	 Figure 29 shows a definite relationship between twin boundary

density and distance from ingot axis for the various cells. It is clear from

Figure 29 that the twin boundary density decreases as the distance of the

cells from ingot axis increases. Figure 30 shows important correlation

between cell efficiency and distance from ingot axis. As the distance

from the ingot axis increases, the cell effieciency also increases,

Specifically, the cell efficiency increases with increasing distance from
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the center of the ingot towards its outer surface. 	 For example, note

that cells A - 13 and E - 13 have lower efficiency , while cells B - 2,

F - 2, D - 8, H - 8 have much higher efficiencies. 	 Furthermore,

a definite relation also evolves with reference the location of the ingot.

For example, note that the cells E - 13 and A - 13 were fabricated from

wafers very close to the top center of the ingot. Cell E-13 came from a

wafer which was just above cell A -13 ( Figure IA ) Correspondingly, cell

E-13 has lower efficiency ( 6. 216) compared to A-13 (7.. 216). Even though

these wafers are from adjacent location, the difference of 116 in cell effici-

encies is significant.	 Similarly, cell F-2 is just above cell B-2 and

correspondingly, cell efficiency for F-2 is smaller than that for B-2 (9. 616

vs. 10. 016 i. e. , the differences is 0. 416 ). Note that these cells, which

are considerably below cells E and A, have much higher efficiencies.

Similarly cells C-12 and C-12 have efficiencies of 9. 516 vs. 9. 716

( difference is 0.2% ) where C is above C.	 Cells H-8 and D-8

have efficiencies of 10. 716 and 10. 816 ( difference 0. 116 ) where H

is above D. Cells H and D came from the lowest section ( 4th section )

of the ingot.	 These results are very remarkable in that they show a

definite pattern of cell efficiency in relation to location in the ingot .

A plausible explanation for this behavior is as follows;

It is assumed that this polycrystalline silicon ingot was fabricated by

melting silicon in a refractory mold. Upon cooling, it is assumed that

the material in contact with the mold is the first to solidify. Consequently,

a
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the topmost center part of the mold will be the last to solidify. 	 Thus,

any impunities which have higher solubilities in molten silicon will be

rejected into the liquid upon freezing. Thus, the impurity concentration

will be highest in the topmost center part of the ingot, while lowest ,_i the

bottom outermost part of the ingot. A schematic of the proposed impurity

distribution in solidified ingot is shown in Figure 31, The region around

A-B will have higher impurities then C ( Figure 31 ) It is well known

that certain impurities, which tend to segregate at various defects, render

these defects electrically active. Thus, cells made from topmost center part

of the ingot will have highest concentration of impurities and loweitt cell

efficiencies. This is also the region where highest concentration of twin

boundary exists. If these impurities are associated with defects, the

defects may become electrically active and reduce the cell efficiency

drastically. The measured cell efficiencies clearly show this tr, ,id.

Furthermore, as the variation of impurity concentration varies exponen-

tially alone with distance in a zone melted or zone - refined body, the

relaive variation in cell efficiency will incrase from bottom to the top of the

ingot. The obervations clearly corroborate this hypothesis in that the

adjacent cells at D and H vary only slightly in efficiency ( 0. 1%n ) while

cells A and E which are from the top of the ingot exhibit large variation

( 1.016 ) in efficiency.

The present work, therefore, suggests avenues for further research in order

to fully understand the role of defects on cell effieciency. For example, the
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precipitates and dislocations, at the densities observed, have no noticeable

effect on cell efficiency. Among the defects ctiAracterizable by microscopy

twin boundaries and grain boundaries seem to have the largest influence.

Clearly then, the manufacturer should make process modifications in an

attempt to reduce twin boundary densities.

A significant parameter may yet be related to trace impurities in the ingot.

An pointed out above, the distribution of impurities in an ingot is most

likely dependent upon the mode of solidification.	 However, the present

analysis suggests that the impurity concentration will be 	 highest

in the topmost center part of the ingot. ( The region of highest impurity

concentration will be the region that solidified last. This region will be

somewhat below the top center of the ingot ). The future work therefore

must focus on a thorough chemical analysis ( with reference to trace

elemente ) cf wafers as a function or location in the ingot. 	 Furthermore,

detrimental impurities and their concentrations must be identified.

2.3.8 Unprocessed Wafers

Table VI lists the defect densities obtained on unprocessed wafers from

UCP Ingot 5848 - 13C. 	 Figures 32 thru 36 show the distribution of

various defect types as a function depth for unprocessed, gettered, and

non-gettered samples. 	 The idea was to determine what effect, if any,

gettering and processing may have on the distributions of defects. However,

the data in the table and figures are not conclusive. The variation of defect
a

densities in the unprocessed samples is considerable, requiring further study.
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TABLE VI

Defect Densities in Unprocessed Wafers

Semix Small Large Dislocation Grain Twin
sample precipitate precipitate density boundary boundary
number density density (cm-2) length length

(cm- 2 ) (cm"Z) pe r unit per unit
area

l )(cm`
area

I)(cm-

1-10-13	 (`L`) 44200 2035 6.o 7.88 19.2

1-12-14 (U) 29970 1705 1.1 3.14 29.2

2-5-1	 (V) 26250 812 20.6 32 36.3

3-4-12	 (W) 40370 2092 10.9 16.9 40

3-4-)6	 (X) 39050 2405 15.2 28.8 27.0

4-2-4	 (Y) 23879 1916 37.2 16.9 34.8

4-2-8	 (Z) 11430 693 16.9 13.9 51.2
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2.3.9 Numerical Significance of Measured Data

The measured data for the Semix samples are listed in Appendix Tables

1 thru 24, and the information in these tables are summarized in Tables

II, III, and IV. The defect structure characterization was done using

a statistical sampling of each sample over a TV raster and from this an

average value for each defect type in each sample was obtained 12-22,

Among these eight samples, the large precipitate density varied from

65 to 745 per cm2 , while the total ( large and small ) precipitate density

varied from 2.7 X 103 to 23 X 10 3 per cm2.

G rain boundary length per unit area varied from 4. 5 to 13.8 cm /cm2,

whereas the twin boundary length per unit area varied from 12.2 to 99. 0

cm /cm 2 . Samples .A-13 and E-13 had the higher twin boundary length

per unit area, while the grain boundary length per unit area for these

samples were in the middle range. Samples C-12, D-B, and G-12

had the higher numerical values for grain boundary length, but in the

middle range for twin boundary length. Samples B-2 and F-2 had lower

values for both grain boundary and twin boundary length. Figure 24 shows

that as the grain boundary lengthAinit area increases, the twin boundary

length/unit area also increases at first rapidly, but at higher values for

grain boundary length/unit area,it levels off and gradually decreases.

Dislocation density in these samples varied from 4. 9 X 104 to 86 X 104/cm2.
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Sample A-13 had the lowest dislocation density but highest lar

it t

r

density ( see Table IV ). Samples C-12, G-12, and H - 8 had lower

precipitate density but had higher dislocation density. Therefore, to

approximate inverse relationship was observed between dislocation density

and precipitate density as shown in Figure 21.

Sample A-13 had the highest twin boundary length per unit area as well

as the highest large precipitate density. Figures 2 and 3 show some regions

in this sample that illustrate this observation.

Figures 4 and 5 show some precipitate particles in fields free of twin

boundaries and grain boundaries in sample B-2 . This sample had lower

twin boundary and grain boundary lengths per unit area but precipitate

density wMs in the medium numerical value. Figures 6 and 7 show some

twin boundary and grain boundary regions in sample C-12. Sample C-12

had higher grain boundary density. Sample D--8 had the highest grain

boundary length per unit area and also a relatively high twin boundary

density as illustrated in Figures 8 and 9. Figure 10 shows an area

in sample D - 8 where dislocations have piled up between twin boundaries

Figure 11 shows another type of interaction between dislocations and a

twin boundary. Such a boundary may be electrically active as discussed

in page 21.

Figures 12 and 13 show a higher twin boundary density region, which is

typical of sample E-13. Sample F-2 has a lower grain boundary and

40
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tw
i
n boundary length per unit area, but a high precipitate density.Figure

14 shows interaction between twin boundary anti grain boundary, and

Figure 15 shows a region of higher precipitate density in sample F-2.

Figures 16 and 17 show sample regions in sample G-12, .vith typical grain

boundary and twin boundary structures. Sample 1-4-8 has the highest dislo-

cation density and typical areas are illustrated in Figures 18 and 19. In

Figure 18, the dislocations form simple networks. Figure 19 shows linear

arrays of dislocations interacting with twin boundaries on vither side

The standard deviation from the wean for all of the defect types is of the

same order of roagnitude as the mean itself. 'this shows that there is a

large variation in the diSt,ribUtiOD of defects from one field to another

in the same sample.

OF, POOR Q'
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SECTION 3

EFFECT OF GRAIN BOUNr A ? `Y DENSITY ON CARRIER M,

3. 1 INTRODUCTION

The ohjective of this work is to determine the relationship

between carrier mobility and grain boundary density, that is

grain boundary length per unit area, in cast polycrystalline

silicon.

A polycrystalline wafer sliced from a cast mold will have

many defects ranging from vacancies to precipitates, twins,

dislocations, and grain boundaries. When considering the effect

on carrier mobility, grain boundaries are thought to ha-e the

greatest influence. 23

There are several reasons that grain boundaries are con-

sidered the limiting factor in mobilities. The most obvious is

the high concentration of other defects at a boundary. Since

there is a lattice mismatch at a boundary there is bound to be

a high vacancy density. These vacancies act as a sink for

dopant atoms, thus resulting in an ionized impurity concentra-

tion near the boundary that is higher than the rest of the

crystal matrix. Since ionized impurities act as scattering

centers for charge carriers, mobilities will necessarily be

lowered.

Another feature of a grain boundary is band bending. That

is to say the conduction and valence bonds, at the drain

boundary, are bent up and down respectively thus presenting an

e;_ rgy barrier for electrons and holes., This, too, should

decrease mobility.
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Carrier mobility was measured via the Hall effect 
24,-31 

using a four-point-

probe configuration.	 Important parameters such as resistivith, , carrier

type, ar W'' carrier concentration were also measured. Grain boundary density

was measured by quantitative optical microscopy 32,

SECTION 3.2

EXPERIMENTAL PROCEDURE

Equipment List
tKeithley Instruments model 225 current source

Hewlett Packard 412 A vacuum tube voltmeter
Keithley Instruments model 600 B electrometer
Harvey Wells model 1050A magnet power supply
Magnion ?" electromagnet
Power Logicon model 5C ultrasonic wire bonder
Nikmk Optiphot optical microscope
Olympus OSM optical microscope
Hewlett Packard 3465 A Multi meter

Eight (8) SEMIX samples from UCP Ingot 5848-13 C were used in this study.

These samples were designated by JPL as A-13, B-2, C-12, D-8, E-13, F-2,

G-12, and H-8. The samples were first characterized for structural defects

as described in an earlier report 32 . The specimens for Hall mobility mea-

surements were obtained from each of the above 8 s y rnples by scribing a line

parallel to one of the edges,and then cleaving the sample along the scribed line.

The cleaved piece was then broken into three smaller pieces. Therefore,

initially there were 24 irregular specimens of ,iizes ranging from 2mm by

5mm to 5mm by 5mm. Due to breakage and handling problems only 20

specimens were eventually characterized. Thickness was measured by placing
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samples on edge and measuring them with a filar eyepiece at a

magnification of about X100 with the Olympus microscope.

Electrical connections were made by mounting the sample on

a NC board with four copper strips then, using an ultrasonic

wire bonder, 18µm aluminum wire was bonded to the silicon

surface and then to the copper strip (Fig. 1). This technique

was used so that the contact area would be as small as possible

and be bonded as close to the edge of silicon sample as

possible so as to reduce the influence of the contacts on the

measurements. The power and time settings for the silicon and

copper bonds were 2 and 1.6, and 2.4 and 2 respectively.

Resistivity measurements were made using the configurations

in Fig. 2. Current wwas passed through the contacts depicted in

the figure and the corresponding potential induced at the other

contacts was measured. This procedure was repeated in both

configurations, with the current flowing in the forward and

reverse directions and at e.1 and 1mA to insure ohmic behavior

in that region. The ammeter insures that the desired current is

indeed what is flowing between the points in question.

Mall voltages were measured with the electrical connections

in the configurations shown in Fig. 3. Current ww, passed

through the contacts shown in each configuration and the poten-

tial across the other contacts was measured. The magnetic

field, which is perpendicular to the face of the sample, was

then applied. The voltage was then measured again. The dif-

ference between the two readings is the hall voltage. The

procedure -was repeated in both configurations with the current

flowing in the forward and reverse directions. The sample was

!r

4
1
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then turned around 180 degrees with respect to the magnetic

field and the procedure was carried out again. This procedure

negates the effects of any physical assymmetries in the experi-

mental setup. Most of the samples were measured with a current

of 1ma and an 8KG magnetic field. Some samples were run at

different le%els of current and magnetic field to facilitate

more accurate voltage readings.

Grain boundary density was determined by examining the

samples at 40OX with the Nikon microscope. The diameter of the

field of vision was determined with a calibrated microscope

slide. The number of grain boundaries that intersected the

circumference of the field of vision were then counted. Due to

the irregular shapes and sizes of the samples the number of

fields of vision per sample varied greatly. To preserve some

statistical validity a grid was used to determine where to

locate the center of a given field. See Fin. 4 for a portion of

the grid. Each dot represents the center of a field of vision

and there is 0.5mm between dots on a horizontal row.
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SECTION 3.3	 ^^

RESULTS AND SAMPLE CALCULATIONS
r

3.3.1 THICKNESS

C

The calibration of the filar eyepiece on the Olympus

microscope when using the 1OX objective is 0.9909Nm/div .

Data taken for the three pieces from sample G-12 is shown

in Table 1. Final results for all eight samples is shown

in Table 2.

TABLE VII

i	 THICKNESS MEASUREMENTS ON SAMPLE G-12

INITIAL READING	 FINAL READING	 d(div)	 d(pm)

1 276 564 288 285

2 361 653 292 289

3 208 526 318 315

ci = 296Nm	 max. % deviation = f,.4%

TABLE VIII

THICKNESS DATA FOR ALL SAMPLFS

sample	 d( m)	 max.% deviation

A - 13 266 2.4
B -	 2 315 3.1
C - 12 304 1.2
D -	 8 277 5.5
E - 13 305 3.5
F	 -	 1? 290 0.8
G - 12 296 6.4
H -	 8 285 1.7
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3.3.2	 RESISTIVITY

Using	 the	 configurations	 (1)	 and	 (2) in	 Fig.	 2,	 the

resistances RABCD and RBCDA'	 respectively, can
be measured where

t RABCD -
Potential across LAC

AB
VCC

Current through IAB
and

RBCDA
Potential across DA

-
VDA

Current through BC IBC

i
It was	 shown by Van der Pauw33 that the following relation

holds:

exp C- nRABCrJ(p)] + exp[-"RDCBA ( p )) = 1+	 equati on (1)

where d is the sample thickness and p is the resistivity of the

sample. Since the resistances and thickness of a given sample

are known, p can be determined by use of equation (1).

A calculation of p for the first of the C-12 samples,

C-12-1, follows:

C-12-1

I = 1mA	 R	 = 
•00145 + .0015 _ 1.47 0

ABCD	 21

L

	

R	 =	 .045 + .045	 = 45 Q

	

BCDA	 2I

`	 I = 100NA R	 = 
•00015 + .00015 - i.5

	

ABCD	 21

.0045 + .0046

	

R BCDA	 2I	
= 45.5 n

RABCD = 1.485 ohm, R
BCDA = 45.25 ohm; using these values and

d = 304Nm, equation (1) gives p = 1.812-cm.
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3. 3. 3 Hall Cont., Mobility, Carrier Conc. , Carrier Type
t	 '

The, Hall cons*., mobility, carrier conc., and

were determined using the configurations shown in

taken for sample G-12-2 is shown in Table 3. 'Thi

by sample calculations.

`	 Sample;G-12-2

L	 I = 1mA, B = BKG, d	 296Nm, P= 2.1A-cm

TABLE IX

MEASURED VOLTAGES ON SAMPLE G-12-

Configuration 1	 Configuration Z

C
V 1 (B=0) V2(B#0)

v 

+1	 +B .05 .0515 .0015
-1	 +B .056 .057 .001
+1	 -B .056 .055 .001
-1	 -B .051 .05 .001

V1(B=0) V2(W)
v 

.056 .055 .001

.052 .051 .001

.052 .053 .001

.056 .057 .001

1 , i

14--

V 1 -V2 = v  = .0011V

	Hall const. = R = VHd	 (•OO11V)(296 x 1G cm) = 393cm3/coulH	 B1	 10-3amps 8.5x10-5w/cm2

Hall mobilityN H = PH _ 291 = 187cm2/v-sec

	

Carrier conc. = P = 1 =	 1	 = 1.58 x 10 16' cm- 3

	

RHq	 393(1.6 x 10-i9cout)

where q = charge of an electron.
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Carrier type is determined by the following example:

if V is >0 when B = 0, there Is
an ekcess of negative charge near
the contact D (ref. Fig. 5), when
B ^ 0 and V > V the charge car-
rier is a Moleince it travels
in the direction of conventional
current and is deflected by a
force, q(d x 11) thereby in-
creasing the positive potential
between B and D.

3. 3. 4 NORMALIZED MOBILITIES
t

34
Bole mobility may be given by the relations

P	 Nmax	 Nmin
N	 Nmin +	 p -GL

1 (
Pred

where	 'min	 47.7 cm`iv-sec

t

	

	
Nmax 495 cm2/v-sec

Pref - 6.3 X 1016 cm-3

and

[	 ' _ .76

'rhe hole mobility normalized to a carrier cone. of P :=

10 16cm-3 , u * , is given by

N * = N 1^-H C P )w
16

where NH is the hall mobility,and N t0	 = 406 cm2/v-sec.

r
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3.3.5 GRAIN BOUNDARY DENSITY

'I'ho grain boundary density, G.B., is calculated by using the

following relation from Brandon 35 :

P
G. B. _ ( 2 ) ( N ) cm/cm2

total number of intersections of
where PD grain boundaries with the test line

unit length of the test line

and N = No. of fields of vision.

At 40OX the diameter of the field of vision is .043 cm so the

circumference, length of the test line, is (n)(.043) cm.

A calculation of G.B. for sample D-6-1 follows:

D-8-1

PL = 50	 N = 59

G.B. = ( 2 ) n(.05 0 5 -g-	 9.85 cm/cm2

.A summary of results is listed in Table 4.	 This table lists data for

resistivity, Hall mobility, carrier concentration, hole mobility, normalized

hole mobility, and grain boundary density for all 20 specimens.
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SWLE 0-cm) N 11 (cm"/v- .'w0 Nx 10 16 (Cm-^) N F (Cm` /v-$00
16

^ 1^	 C>	 _ N ;cm2 /v-s
t

C.B.{cm/cmZ)
P

N

A-1• 1.65 201 1.80 370 1.10 221 4.42

B-1 2.45 176 1.44 385 1.05 185 9.06

B-2 3.00 213 .97 408 1.00 213 16.97

B-3 1.85 212 1.58 379 1.07 227 12.41

C-1 1.80 337 1.02 405 1.00 337 2.12

C-2 1.69 198 1.86 368 1.10 218 15.17
C-3 2.20 187 1.51 382 1.06 198 11.86

D-1 2.20 178 1.59 378 1.07 190 9.85

D-2 2.15 177 1.64 376 1.08 191 6.43

D-3 3.10 85 2.36 351 1.16 99 16.16

E-1 1.86 274 1.26 393 1.03 262 0

E-2 1.75 226 1.58 379 1.07 242 .32

-1 2.30 199 1.36 388 1.05 209 15.23

F-2 2.60 104 2.30 353 1.15 120 20.46

F-3 2.15 242 1.15 399 1.02 247 15.61

G-1

L

F

2.05 240 1.26 393 1.03 247 10.00

G-2 2.10. 187 1.58 379 1.07 200 12.79

11-1 1.50 380 1.09 402 1.01 384 2.52

H-2 1.55 124 2.00 363 1.12 139 13.25

H-3 1.58 202 1.90 366 1.10 224 18.45

L

l

i

L

OF 1'ta
TABLE X

Resistivity, Hall Mobility, Carrier Concentration, Hole Mobility, Normalized

Hole Mobility, and Grain Boundary Density for All 20 Specimens

C^

IL
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DISCUSSIONS

When	 hole	 mobility	 is	 plotted	 as	 a	 function	 of	 grain

boundary	 density	 a	 trend develops.	 That	 is,	 mobility decreased

as a	 function of grain boundary density. 	 This result,	 based on

the	 electronic	 features of grain boundaries,	 is expected.	 But,

it must be noted that while there is a clear trend,	 there is no

clearly defined fundamental relationship evident.

It	 is	 noted	 that	 for	 grain	 boundary	 densities	 above	 all

but	 the	 lowest	 values,	 the	 great	 majority	 of	 samples	 have

mobility values centered near 200 cm2/v-sec	 for	 raw data	 (Fig.

b)	 and	 215	 cm2 /v-sec	 for	 the	 normalized	 data	 ( Fig.	 7).	 It	 is

also	 noted	 that	 within	 this	 region	 there	 is	 no	 defined	 trend

between	 mobility	 and	 grain boundary density.	 Several	 explana-

tions may be offered to explain this behavior.

It	 may	 be * 	proposed	 that	 the	 range	 of	 grain	 boundary

density is too small to allow conclusions to be drawn concerning

a	 cause	 and effect	 relationship.	 Perhaps grain boundary densi-

ties spanning several orders of magnitude should be examined to

determine if a fundamental relationship can be observed.

a It may be	 reasoned that — 200 cm2/v-sec	 is the "character-

istic"	 mobility	 for all but the most defect free samples. Those

samples	 with	 much	 lower	 values	 are	 vastly	 different	 in	 the

nature	 of	 their	 defect	 structure.	 One	 such	 difference	 may	 be

the precipitate density. 	 A precipitate will act as a scattering

center	 and	 so	 it	 stands	 to	 reason	 that	 a	 sample	 with	 an

extremely	 large	 precipitate	 density would have	 lower mobility

52
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values than would be expected based on grain boundary density

alone.

Another factor that is likely to affect the mobility as a

function of grain boundary density is the grain size distribu-

tion and they geometric distributi"qn of grain boundarie.`; on the

samples themselves. Distances between grain boundaries ranged

from '"100Nm to more than a millimeter. There is no clearly

defined relationship between mobility and grain sizes nor is

there enough sample area available to get a statistically valid

idea of the grain size distribution.

Geometric considerations rust also be examined. That is to

say, what is the actual distribution of grain boundaries on the

sample. Grain boundary density does not take into account the

uniformity of boundary distribution. It is reasonable to assume
A

that two samples, one with grain boundaries uniformly dis-

tributed and the other with nearly all its boundaries concen-

trated in one portion of the sample, will have different

mobility characteristics even if the grain boundary density is

the same for both. Since there is no quantitative method to

analyze and relate the "boundary distribution" to boundary

density, ambiguous results are likely if' boundary density is

considered the only independent parameter.

F
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SECTION 4

CONCLUSIONS

4. 1 Quantitative Analysis of Defects

This work has resulted in a breakthrough in correlating the efficiency of

solar cells from UCP Ingot 5848-13C with impurities and imperfections.

Of the four types of structural imperfections measured, twin boundary

density showed a remarkable effect on cell efficiency (Figures 22 and 27,

Table V ). It was clearly established that cell efficiency increases with

decreasing twin boundary density.

A definite correlation was found between cell efficiency, and locatio^L of

wafers (Figure 30). As the distance from ingot axis increases, the cell

efficiency also increases. At the top cents-r of the ingot where higher

concentration of impurities and twin densities exist, the cell efficiencies

were found to be the lowest. Therefore, it appears that impurities

interacting with twin boundaries in this region creates electrically active

scattering surfaces which drastically reduce the cell effieciency. This may

explain why the cell efficiency increases from a low of b. 2% in the top center

of the ingot to a high of 10. 716 towards the outer surfaces of the ingot.

Therefore, a modification of UCP casting technique to reduce or eliminate

twin boundary surfaces and detrimental impurities will result in a significant

increase in cell efficiency.

54
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4.2 Effect of Grain Boundary Density on Carrier Mobility

Mobility measurements were made on twenty SEMIX samples using

the van der Pauw technique. Grain boundary density was mea-

sured using quantitative microscopy technique . The mobility was

found to decrease with increasing grain boundary density ( Figures

42 and 43 ) .

1
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POSITION OF WAFERS FROM
U C P INGOT
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RELATIVE POSITIONS
OF THE MEASURED FIELDS

ON THE SEM I X WAFERS

--39mix
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Figure 1 B
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Fig. 2 Regius; Showing High Twin Densio in Semix A -13(50X)

Fig. 3 Region Showing a Large Number of Precipitates in Semix
A-13( 50X )
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Fig.4 Large and Small Precipitates in Semix B-2 (1330X)

40

Fig.5 Precipitates in Semix B-2 (530X)
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Fig. 6 Many Grains and Grain Boundaries in Semix C- 12 (50X)

Fit. 7 Twin and Grain Boundaries in Semix C-12 (50X)
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Fig.8 Large Number of Small Twin Boundaries in Semix D-8.
These are not Typical Regions ( 66X ). Region marked "U"

Fig. 9 Many Twin and Grain Boundary Region in Semix D-8 (66X)
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Fig. 10 Dislocations Piled up Between Twins due to Localized Strain
in Semix D-8 ( 60OX )

Fig. 11 Dislocations	 Interacting; with a Twin Buundary in Semix
D-8 ( 150OX )
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Fig. 12 High 'Twin Density in Semi  E-13 ( 5 O )

Fig. 13 Large Precipitate Particle Between Twins in Semix E-13 (530X)
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Fig. 14	 'Twill and (,ra; , t,	 tar\ Strksctiiro , in Semix F-2 ( 5OX )
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Fig. 1.5	 SmaII Preci;)Itatl • Pa "tides in S( n—,i% F-2 (ZOOX )
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Fig. 16 Twins and Grain Boundaries in Serrnix (;-12 ( 5OX )

Fig. 17 Region of High 'Twin Density in Semix G- 12 ( l OOX )
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Fig. 18 Dislocation pile-ups
	 in Semix H-8 ( 1330X )

Fig. 19 High Dislocation	 Density Between Twins in Semix D-8 (1330X)
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TWIN BOUNDARY LENGTH PER UNIT AREA
Twi N	 VS.
WUNDAR7	 RELATIVE POSITION OF THE WAFER
PER UNIT	 IN THE INGOT FROM THE TOP OF THE
I ",s i	 SOLIDIFIED INGOT
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TABLE 1. Grain Boundary and Twin Boundary Density
SAMPLE	 SEMIX A-13.Sample in polished condition. Magnification 100X .
Field area = 0. 0241 cm . Circumference of test circle = R. D = 0. 55 cm.
A denotes No. of grain boundary intersections with circumference of test circle.
B denotes No. of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.

FIELD A No. of
twins

B FIE LD
I

A No. of
twins

B

Y No. I X Y	 I No. X
12 1 33 7 _33_ 24 10 40 41
12 _2 35 7 28 37 10 41 38 2 l iz
12 3 37 2 137 2 01 10 42 35
12 4 39 4^ 12 23 8 43 3 4 5 33 42
12

_1....6
12
12	 18

5

7 _,

41 2 113 119 8 44 36 2 2

43..2
45
47

_.9..
_ 1 ^

1.4._.._„
 Q_. _	 8—_,

144-
2 _,

6 26 31 8 47 42 2 20 .9

12 9 49 10 0 0 8 48 44 2 0 0
12 10 51 0 _0	 _ 8 4 4 0 15 3
14 11_

r
_5U _ 0__ .0___...... __ ^Q 4$ 29^

14 12 47 2 12 12 _£i 51 50 2 7 11
14 —13'--'-44- 0 2 4 6 52 49 4 29 33

14 14 41 2 14 196 6 53 46 0 13 23
14 15 3 P:_. 2 _ i4. _... 3 3.^ _ _	 ,.. -54 -4 2
14 16 35 7 40 47 6 1 55 40 4 20 24

16 17 34-- 0 0 0 6 56 37 4 38 62

16 18 36 3 2? 28 ~ 4 57 37 6 117 148
16 19 38 3 12 15 4 58 39 2 100 160

16 20 40 5
_

50 47 4 59 41 3 42 37
16
16
16
16
16

21
2 2
23
24
2 5

42
44
46
48
50

2
24___

0
2

1 2 4 60 43 2 3 4
8	 __...,,,_-.-

0
0

., 8 __..^
8
0
0

4	 61	 4 5 	0	 0	 0
4	 62	 47	 0	 2	 4

Total for 62	 179	 1688	 2145
fields,

'RLA for grain boundary= Z.PL=

L., for twin boundary=--• IT- ^-
A	 (Z)(Cs) f•;s)

X for grain boundary= 2. 9
dfor grain boundary= 2. 0

X for twin boundary = 3 4. 6
d'for twin boundary =	 56. 5

18 26 49 2"Q
18 27 46 -_ 144 _

18 2 8 43 2^ _4
40 4 6

30 37 6 8
31 37 4 3 19
32 3 2 1 0 8

r20_,

29

33 41 3 3 3
34 43

_
2 2 2

35 45 0 1 2
36 47 2 0 0

0 37 50 8 32 3
10 38 50 5 24 25
10 39 44 2 9 9

2 d62K G • ti5 -
p .ou` cc b4 c ^N ^

i	 93



1

TABLE 2	 Precipitate Particle Density
SAMPLE SEMIX A-13 Sample in polished condition. Magnification 40OX
Field area = 0. 00149 cm2
A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

FIE LD A B FIE LD A B

Y No. X Y No. X
12 1 33 1 15 8 40 37 0
12 2 34 1 7 8 41 38 2 22
12 3 35 0 67 B 42 j.2-
12 4 36 0 42 8 43 40 0 124
12 5 37 2 1 32 8 44 41 0 6

r12
12^

6 38 ?,_,.. _8_ 23

12 8 40 0 18 8 47 44 0 1
12 9 41 0 19 8 48 45 1 3
12 10 42 0 19 8

2 11  r_.
12 12 44 0 26 8 51 48 0 13

12 13^ 45 1 9 8 52 4 3 3

12 14 46 0 118 & 53 50 3 7

12 15 47 1_ 187
12 16 48 7 98 4 55 38 1 32

12 1 7 49 2 1 36 4 56 40 0 21

12
12
16

18
19
20

50
51
34

2
0
2

28
40
35

4
4
4

57
58
59

42
44
46

0
1
2

_
25
40
14

16 21 35 _0_ _ 3 0__ 2_0 60 38 0 11
16 22 36 1

_ _
11 20 61 40 0 46

16^
16
16

23
24
25

^37
38
39

5 r
0
1

_
3 --
20
24

_ - 20	 6^	 42	 1	 6

Total for 64	 71	 2107
fields:
Area of 64 fields	 =	 0.09536	 cin2
No. of large ppt. =	 71/0. 01.536

=	 745/ cm
X for large ppt.	 =	 1. 1
trfor large ppt.	 =	 1.5
No. of small ppt. =	 2107 /0.0536
_	 = 22095 / cm
X for small ppt.	 =	 33.0
o-for small ppt.	 =	 36.5

0R,i^	 N d

OF PGCI;"	 .. ,

16 26 40 46
16
16

27 4, ^
2i 21

16 2 1 1	 1	 i

16 30 AA 3 2A
16
15

31 45 1 32
32 4Lo

16! 33 47 1 102
16^ 34 48 1 Z3
tb 35 49 4 17
16 36 50 6

37 51 14
38 35: 27

L

3 36

Z

44

4d
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TABLE 3	 DISLOCATION DENSITY
SAMPLE	 SEMIX A-13. Sample in etched condition
Magnification 1000X, Area of field = 0. 000238 cm
X and Y denote the location of microscope stage ( field of view )I
data measured.

FIELD No. of Dislocation
Pits

FIELD No. of Dislocation
Pits

Y No. X --- + Y No. X 47
12 1 34 455 110 40 41 1

12 2 35 !4 10 41 38 75
12 3 37 10 42 z
12 4 39 5
12 5_5- 41 8 44 36 4
12 6 43

4 5
,

--8
-45— --3jL 1;

4 6 _4a- 8

12 8 47 5 8 47 42 1
12 "9 _1_ 1- 49 8 8 48 44 5
12 10

0

50 8 49 -46 2
14
14

11

a -
4747 6

8
8

50
51

_AIL
49 0

14 - 4444 4 6 52 49 -- 1

14 14 41 104 6 53 46 4

14 15 38 43

14 16 35 26 6 55 40 7

16 17 35 14 6 56 37 6

16 IF —36- 5
16 9 38 1 5 58

i

3 9 2

16 20 40 22 5 59 4) 4

16 21 4 5 60 43
[

3

16
16
16

22
23--
Z 4

46
48

3 5	 61	 4	 4

Total for 58	 681
fields:

Dislocatlion density

=	 681 t"(58)(O,,000238) pits/cm2
=	 4. 9	 x	 104 Pita /crn 2

x =	 12
ef	 =	 23

- 3
2

-16 25 49 19
18 26 47

18_,
18
18

1827
-

28—

30

46
3L

37

5

5

I
19

3i--
33

39
41 6

19
19

34 43
35 -i5 3

19 36 47 8
10_ 37 0_j— 3
10 1 1 3

L

38

100

1 39 L!LL.
95
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TABLE 4 G rain Boundary and 'twin Louneary Density
SA 1API.,E	 SEN 1X B-2 2 Sample in polished condition. Magnification 100X
Field area = 0.0241, cm	 Circumference of test circle = n•D = 0.55 cm.
A denotes No, of grain boundary intersections with circumference of test circle.
B denotes No, of twin boundary intersectio..j with circumference of test circle.
X and Y denotes field lo"Aion of the data measured.

t

FIE Ll) A No, of
twins

B FIE LD A No. of
twins

B

Y No. X Y No. X
12 1 33 7

3
0
0
0

15 10 40 41 2
12 "2

3
4
5

35
37
39

41

25
0
4

10 41 38 2
12
12

10
8

42 35
43 34 7 16

12 2 8 44 36 6 25

12 8
y

47
49

0
0

0 8 47 42 0 0
12 0 8 48 44 0 0
12 _.

f 4
14

10 w..

12
13

l4

..
16

17..._._..-_
18

F 51

47
44

41 -

35
34–"-
36

6

4n
.0_
0
0

-
!)

0_._	 ..
6
8
3

_	 ..	 ,.
2 4µ wp
0 	 _
0
0

8 4 4

8
^,.$..,...,510...._..4fl

_
n —17

51 50 3
6 52 4 0

14,.
1 4.a.
14

16_,_
16

6 53 46 0
0..._.._.
1 6

.	 ..,_.^4_. 4.3..11__
55 40

3"
5 3

^...	 _,.... 3...
6

4

6 56 2 0^- ---
4 57

3-7-
37 5 10

16 19 3$ 2 4 58 39 4 6
16 20 40 0 0  4 59 41 2 ?
16

16

16

16?
21

23

24

26^-
2 7
28
2 y ..
30W.j1 ..

33
34
3. 5 ._
36

42

46

4.8

4 9

44...0_..,....

^._.
0

0 ......,.....

0	 i

0 

_r ._ n_._.._
P

.	 .....-	 .i.,m

_

0
`1
)

SIv.

w U

_
4

__—
60 43 0 0_.

l
4.,....6._1.

_
45 0 1

62 4? 0 2
mod.

Total for 62	 98	 347
 fields;

n	 n x9^
rain bounda rL,	 bye —xP

A 
for	

2	
E.^

rrx 34+1-1A.for twin boundary=	
2.

X for grain boundary= 1.6
 c"for grain boundary=	 2.2

X for twin boundary = 	 5.6
Q'for twin boundary =	 9.3

18

^.._	 1.8
18
L 818_

20

20
20
20
20

_
46 „
4:3

4 0.._.
37._.2_.37

9._.
41
43 q
45
47

0
0

2

........	 .	 .. ...7._....^

. 4
3

2 8
1
0
0

_,. 	 ._ Q._
0

1, 37 —50 -0 6 — ___
10 38 47 0 _..__ 
10 39 44 0 0

96
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U1- m-^,  .	 A1 rry
`CABLE 5	 Precipitate Particle Density
SAMPLE SEMIX B-2, Sample in polished condition. Magnification 400X.
F—I eld a rea	 0. 00149 cni 2

A cic,iuotes No. of large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

F'IE LD A B FIE LD A B

Y No. X Y No. X
12 1 33 2 14 10 4 41

12 2 35 0 24 10 41 38 1 22

12 3 37 0 18 !0 42 3 0 31

12 4~ 3 9 1 18 8 43 34 0 19
12 5 41 0 25 8 44 36 1 17

12
12T

6
7

^4 3
45

Q_ _...
1

_ --- --^ ^$ 45	 1 39 0 22

11

12 8 1	 47 0

_

71 8 47 42 0 33

12 9 414 0 31 8 48 44 1 _ 1

12 1 0 5 1 0 27 8 49 1 ti J
-

66

14 11 ^50 _._ 0 5
14 12 47^ 3 86 8 51 50 0 59

14 13 44 2 23 6 52 4 0 27

14 14- 41 1 32 6 53 46 0 22

14 15 38 0 _	 _._ 44:.
38

_	 _ 0 18

14 l6 35^ 0 6 55 40 1 14

16 17 34 1 13 6 56 37 1 15

16 18 36 0 14 4 5737 0 5

16 19 38 0 35 4 58 39 9
16 ,. 20

40- 1
2^ 13 4 59 41 0 36

16 21 42 0 23 4 60 43 1 64

16 22 44 -0 17 4 61 45 0 0
16

16
23

24
46

48

_
0

0
38	

_

15

_
4	 62	 47	 0	 29

Total for 62	 41	 1802
fields:

tArea of 62 fields	 =	 0. 09238	 tin
No. of large Eqpt.	 =	 41 /0.09238
_	 =	 444/ cm
X for large ppt.	 = 0 .66

a for large ppt.	 = 0.95
No. of small ppt. =	 1802 /0.0 238

= 19506 / cm
X for small ppt.	 = 29. 1
a-for small, ppt.	 =	 18. 1

r...	 ^w	 Y

16 25 50 1 36
18 26 49 3 13
18 „

-18
27
28

46
43

3 _	 __

18__ .4_9__40_40 0
18 30 37 2 27
Z0

4
31 37 4 34

_32 _ 3 0 ,t^^

20-- 33 41 0 20
_20

20
34-
35

43 1 3
^,',5

20 3-6— 4 . 7 1 13
10 37 5, 0 1
10 38 47_, 1
10 39 44 0 17

'y1frJM

I^ c
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TA b LE 6	 DISLOCATION DENSITY
SAMPLE	 SEMIX B-2. Sample in etched cordition
Magnification 1000X, Area of fi^sld = 0.000238 cm,
X and Y denote tb ,,, location of microscope stage ( field of view )for the
data measured.

FIELD No. of Dislocation FIE LD No. of Dislocation
Pits

Y Nol X Y No. X

12 1 34 -A-Q 10 40 41

12 2-- 3i7- -7 — 10 41 38 — 1 I
12 37 30

-
10 42 3j__

12	 14 39 10 8 43 35
12 5 41 7 8 44 36 3

12 7
43
45

8
a

45 34
46 ALL 183

12 8 4-7 8 8 47 42 13

12 9 1 49 69 8 48 44 25

12 10 50 61 8 49 46
14 1 . 49.- .-- 47 8 AIL JA
14 - 12 -- 47-- 48 8 5,1 -,-49

14 13 44 10 6 52 49 2

14 14 1_ 41 6 6 53 46 5

rl 4 15 38 54
1
1 ,
4 16 35 1 6 1 55 40 3

16 5 1 56 37 5

16
1 ^

i6 0 5 57 38

16-- 19 38 28 5 58 39 7

16 20 40 , 2 5 59 41 6

16 21 42
44
46
48

16 5 60 43 14

16
16
16

22 7
16
6

5 61 45 12

23
24

5	 62	 47	 15
---- 

Total fi;r 56	 1260"

fields:

Dislocation density
1266 /(56) (0 000238) yits /cm

5
0. 95	 x	 10	 pits /cM

X = 23
Cr	 =	 45

16 25 49 13
8 26 47rl

18 28
__46 24
43

18 29 40 5

18 30 37
37

1-9 33 41 9

19

3-4
35 45 20

19 T6 -
1 
47

10 37 50 291

10 38 47 5
10 39 44 _4

98



ORIGINAL PALL

'„'ABLE 7 - Grain Boundary and Twin Boundary Density 	 OF POOR QUALITY
SAMPLE	 SEMIX C- I J.Sample in polished condition. Magnification 100X .

f	 Field area = 04 0241 cm . Circumference of test circle = r•D = 0. 55 cm.4

`	 A denote,3 No. of grain boundary intersections with circumference of test circle.
1

	

	 B denotes No. of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.

F  F,'LD A No. of
twins

B FIE LD
I

A No. of
twins

B

Y No. X Y No. X
12 1 33 8 17^ it to 40 41 4 45 57

12
12^
12

Z
3
4

35
37

^q

1u0 20 24 10 41 38 10 9 8
3_ 14 10 42 35 2 19 22

24 30 8 43 34 7 17 15

I2

12

5

7

41^

45

4

8 _.._._

32
_

8 44 36 0 13 26 

l_ _ _,.

2
1

_45._ 38 6

_
19 22

_^16 8 15 12

12

1L
8

y
47

4q
0 0 0 8 47 42 0 8 9

4 5 5 8 48 44 4 28 15

12

14
14

10

l	 1..-
12

51
50

47

6 9 8 8 A_9 46 4 6 3

..1 Q __
7

2-9__.-, ,
11 4

_
68 51 50 2  3

14 13 _44 5
6_v _ 5

6 52 49 5 9 1?..
14

14
15
1.6

41

38

35

2 9._- _. 1 0
6 53 46 7 12 7

14

14

5

9

11

22

18

6
54.^

55
4.3-

37

0 22 25

3 38 43

16
16

1'r µ

18
34
36

3
_3

2
7

2
6

6 56 0 8
3	 ^'6

10
4 57 37 0

16
16^

19
20

38
40

7
$

6	 ~-
8	 ^-

. 6--- {
b	 1

_
T 4

4
58
59

39
41

3
8

11
59

14
29

16
16

16
16

21
22
23
24

4?
4 „ 4
46
48

4
2
3
Y

3
2

_ 1
5

6
4
1
4

_4 60 43 3 22 22

~4 61 45 4 11 4

4	 62	 47	 4	 3	 2

Total for 62	 290	 723	 693
fields;

L,	 for grain bour.uary=W •P 	 =M
A	 2	 L 2 rig

IT x 693L for twin boundary =-► _--.--A	 Z x^^x oss

X ;for grain boundary= 4. 7
d'for grain boundary=	 2. 7

X for twin boundary = 11.2
d'for twin boundary = 11. 1

16 2E
-Z6 --
27
28
29

50 4 28 25
_18

^ 18
18^-..1$

18

,. 4 9

46
43-4-

-9r..,	 _
^___1

_--^ -
._. 1
  ----I

,_2_
I

40 3 _ 2
11

1
30 37 3 10

20 31 37 7 3_  3--Z0- -	 2_.,
3! ,- *, 3^ 3 _ 6_ 6

20 33 41 5 0 0
20
2 0

34_-5 , -
35

X43----
45

5
-^--
7

2	
-

0
4 -

0
20 - 3b 47 5 1 1^
10_ 3 7 50 2 5 4

10 ~ 38 47
_

4 6 5

10 39 44 7
_

5 5

i_
- 1'3,3G

Koss 	 c^.'i ,

3i • 97 r—”
CwY

r

1.
	 99

,



TABLE 8	 Preci state Particle Densityp '	 Y	 OF POOR QUALITY
SAMPLE SEMIX C-12 Sample in polished condition. Magnification 400X.
Field area - 0. 00149 cm
A denotes No. of Large precipitates observed in field of view.

(	 B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

;r

FIELD A B FIELD	 A B

Y No. X Y No. X
12 1 33 4 0 10 40 41 1

12 2 351 11 C 10 41 38 .0

12 3 37 8 0 1	 1!! 42 -3&,
12 4 1	 39

_
7 0 8 43 34 6 0

12 5 41 7 0 8 44 36
12
12 ~

6
7

42
45

12 0: —8 _45_
3

12 8 47 4
_—

0 8 47 42 0 _ 0

12 9 49 10 0 8 48 44 5 0

12 10 51 14 0 8 40

5U
6

14 11 50 8

14 12 -- 47 10
_ _

0 8 51 50 7 0

14 13 44 15 0 6 52 4 20 0

14 14^ 41 5 0 6 53 46 117 1
14 15_ 3 8 14  0	 _ _._6 43 5
14 16 35 12 !0 6 55 40 12 2
16 17 34

36
38

15
4
6

._.

0

6
4
4

56
57
58

37
37
39

8
18
16

0
0
0

16
16

18
19

16 20 40 0 0 4 59 41 26 0

16 21 _4_2 2 0 4 60 43 5

16 22 44
^46^
48

0 ^^ ~_ 0 6_1 45 22

16
16

23
24

17 y
27

0

0
4	 62	 47	 35

Total for 62	 572	 6
fields:

2Area of 6 'L fields	 =	 0. 09238	 cin
No.,af large ppt. - 	 6 /0.02238

-	 65 / cm

X fcr large ppt. 	 0. 1
0-for large ppt.	 =	 0.4
No. of small ppt.	 57Z /0. 09238

= 6192 / cm
X for small ppt.	 =	 9.2
crfor small ppt.	 =	 7.7

16 25 50 10 , 0
18 _26 49 _

w18 28 43 7 0
18 2 9 40 2
18 30 37 0
20 31 37 4
2O 32 _39
20 33 41 3
20

34
43

_

20^ 35 45
20 36 47

10 37 50

10 138 1 47

10 1 39 44 1	
2 0

1

100
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at

It

a

1t

I(I

FIELD No, of Dislocation
Pit s

FIELD

!

No, of Dislocation
Pits

Y No. I X 'jr No. X

12 1 34 10 40 41

12 2 _35 187 1 10 41 3 8 149

12 3 37 114 10 42

12- 4 39 58 8 43 35 89
12 5 41 8 44 36 170

12 -1
12

6 . _.....
7

43 _
45 59

12 8 47 101 8 47 42 75

12 9 49 15 8 48 44 99

12 10 50 11 8 4 q 46 143

14 11 35

14 12 47 162 8 51 49 83

14 13	 1 44 11 6 52 149

14 14 41 20 6 53 46 81

14 15 38 185 121
14 16 35

_
253 6 55 40 108

16 17 35 13 6 56 37 1

16 18 36 82
_ —

5

'

57 38 66

16 19 38 0 5 58 39 96

16 20 40 37 5 59 41 152

16 21-- 42 52 5 1 60 43 73

16 22 44
_ _

_ 52 _ _ -_ _ _ 5 61 45 45
16
16
16

23	 1
24
25

46
48
49

^-„
47
44
177 1

5	 62	 47
Total for 56	 4989
fields:

-- -	 -
Dislocation density
=	 4989 /(56) ^0. 000238	 its /cm2
_	 3. 7	 x	 10	 pits /Cm2

X = 89
6 =	 6?.

18 26 47 7119
18 27_ . _ 46

_18 28 43 0
18 2 40 -^
18 30 ^ 37
19 31 37
1 32 3 q_
19 33 41

_19 34 43 8
19 351 5

19 36 1 47

10 37 50 1165

10 38 47 82
10 39 44 48

101	
)CI

^^ 2
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ORIGINAL PAGE I;V

TABLE 9	 DISLOCATION DENSITY OF POOR QUALITY

SAMPLE	 SEMIX C-12, Sample in etched condition
Magnification 1000X, Area of field = 0.000238 cm
X and Y denote the location of microscope stage ( field of view )for the
data measured.



OF POOU Q,

TABLE 10 Grain Boundary and Twin Boundary Density
SAMPLE	 SEMI:?: D-8. Sample in polished condition. Magnification 100X .
Field area = 0. 0241 cm 2 , Circumference of test circle = 71•D = 0. 55 cm.
A denotes No, of grain boundary intersections with circumference of test circle.
B denotes No, of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.

1

kt

102

}l} 4

k

ir

FIELD A No. of
twins

B FIELD A No. of
twins

B

Y No, X Y No. X
12 1 33 10 10 40 41 6 22 10
12 2~ 35 3 3_ 6 10 41 38 6 0 0
12 3 3? 4 ^9 8 10 42 35 5 24 1
12 4 39 4 2 1  8 43 34 8 58 37
12 5 41 4 8 8 8 44 36 11 38 37

12 7 45 12

12 8 47 0 0 0 8 47 42 6 1'1 15
12 9 49 4 ?2 24 8 48 44 10 92 75

12
14

10
11

12

51
50

47

3
1

2

 0 
6

1

0 _
6

1

_-8--_ 4 4^. 2 47 61

14 8 51 50 2 10 10

14 _ 1_3 4 4^
4_a 5 6

6 52 49 5 2 2

14 14 41 . 11 5 3 6 53 46 8 52 40
14
14

15
16 35

4:
j 6

_ 13
9

13
11

^..._
6

54 6 0 0
55 40 7 17 14

16 1 7 34 6 24 19_1..2.—.° 6 56 37 4 127 35

16 1V
_36_-._2 11	 —..

4 57 37 5 29 25
16 19 38 3 7	 ^ ^7 4 58 39 4 13 1

16 1 20 40 7 23 29 4 59 41 3 4 5

16
16
16 —
16
16

21
2 ^^

24
25

23—...4b_._2

42._4.4

4$
50

5_.2_.

2
5

48 0
0._^^

1R
16

21
0....

. .
0	

_._..

1
15

4 60 43 0 0 0
4 6 1-- 4 15 4 33 11.4	 62	 47	 4	 12	 10

Total for 62	 299	 1295	 967
fields;

L	 for grain boundary=—.P =---A	 2	 L	 t'ccl

Tr OVLl,^for twin bound;3ry=_.,-..e_ -_
2 xG^yo s+t

X for grain boundary= 4.8
C"for grain boundary=	 3. 2

X for twin boundary = 15. 6
Tfor twin boundary = 17. 1

18 26^ 49 4T 1 1

--
1 8
18

28
29

4 3 r 4 urt v . 0
40 8 57

1$ 30 37 7 16^ 16
20 31 37 31 G
20 32 34_ .	 26._
20 _33 41 6 68 51

_20
20

34 43 2 -
3 5

._
_45 2 _

20^ 36 47 0 0 0
10 37 50 2 6 q
10 38 47 2 3
10 39 44 i 4 24 10

Cb.0

44.54 c^	 t

^q.

i
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TABLE 11	 Precipitate Pa rticle Density	 OF POOR QUALITY
SA MP IX SEMIX D-8. Sample in polished condition. Magnification 400X.
Field area •-. 0. 00119 cm
A denotes No. of '"arge, precipitates observed in field of view.
1:3 denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

FIELD A B FIELD A B

Y No. X Y No. X
12 1 33 0 9 10 40 41 0 0

12
2

35 0 10, 10	 1 41 38 1 0
12 3 37 0 2 10 42 35 0 1

12 4 39 0 5 8 43 34 0 4
12 5 41 1 0 8 44 36 0 1 

12 ? 45
-,o -- -- ^- _ .-8 _45

12 8 47 0 3 8 47 42 0 0
12 1	 9 49 0 4 r 8 48 44 1 0
ilj 10 51 2 6 8 4 0 2
14 11 50 _ g

5014 12 47 0

^..a
3 8 51 0 1

14 13 44 0 1 6 52 4 0 8

14 14 41 1 2 6 53 46 0 2
14 15_ 38 0 _ 0	 _ w^.^ 0 0
14 1 6 35 0 9 6 55 40 0 0
16 7 34 1 1 6 56 37 0 7

lb+11S 36 0 0 4 57 37 0 1

16 19 38 0 4 4 58 39 0

16 20 40 1 3 4 59 41 0 2

16
f-6--6
l b
16

21
2 2
2 3
24

42
-4, ^ ._..-1

46
48

0 __._ _	 _ 7 _4 60 43 0 4
4 61 45 0 ^ 1

0
0

^~ y 5..r~
7

_..__4	
62	 47	 0	 3

Total for bL	 14	 235 
fields: 

2Area of 62 fields	 =	 0.09238	 cin
No. of large ppt.	 =	 14/0. 01,238 

-	 15?; cm

X for large ppt.	 = 0.23
for large ppt.	 =	 0.46	 '

No. of small ppt. =	 235/0. 042.38
2

= 2544 / cms
X for small ppt.	 =	 3.8
o-for small ppt.	 = 4.0

16 2 5 50 0 g

18 _26 49 1 2

_1.8._
18

27
28

46
_43

Qr.. 1
_

18 2^ 40 — -

18 30 37 0 3
20 31 37 0 6
20- 32 _39 0 3
20 33 41 0 3

_2_0 34 43
20 35 45 1 2
20 36 47 1 7

10 37 50 0

0

1

10 38 47 0

10 39 44 0

i
s

103
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FIELD No. of Dislocation
Pits

FIELD No. of Dislocation
Pits

Y No. X Y 1 No. X
12 1 34 7 10 40  41 12

12 2 35 5 10 41 38 7

12 3 37 0 10 42 35 5

12 4 39 9 8 43 35 2
17 5 41 64 8 44 36 2

12 7 45
12 8 47 8 8 47 42 304 1

12 9 49 3 8 48 44

12 10 50
I !L 11 14 50 AIL

14 12 47 6 8 51 4
14 13a 44

_
6 52 49 5

14 14 41 6 53 46 34

14 15 3 8 2 _ _ _ .
54

3
14 16 35

_
4 6 55 40 48

16-17 35 6 56 1 37 2

16 18 36 29

_
5, 57 38

16 19 38 5 58 39 95

16 20 40 10 5 59 41 6

1 6 21 42 z 5 60 43 5

16 22 44 9 __ 5 61 45 l' 4

6
16
16

23
24
25

46
48
49

_ 

^- -- 5

7
6

_„_

5	 62	 47	 89
Total for 57	 1377
fields;

—_-...	 _.
Dislocation density

2=	 1377 /(57) (0. 000238) pits /cm

=	 1. 0	 x	 i0 5	pits /em2

X = 24

Q =	 51

18 26 4?
18

_18

27
28 43 142

18 2 40 4.^._

19 3 0 37
1 32 1

119 33 41 20

19 34 43

19 35 1 45
19 36 47
10 37 50
10 38 47 1
10 39 44 15

__and__:	 _

OF POOR QUALrW

TABLE 12	 DISLOCATION DENSITY
SAMPLE	 SEMIY D-F,, Sample in etched condition

r Magnification 1000X, Area of field 	 0.000238 cm
4 X and Y denote the location of microscope stage ( field of view )for the

data measured.



FIELD A No. of
twins

B FIELD A No. of
twins

B

Y No. X Y No. X
12 1 33 4 7 7 10 40 41 2 1
12
12

'2
3

35
3?

2 5 7 10 41 38 5 2
0 4 6 10 42 35 3

12 4 39 0 1 2 8 43 34 5 0 0
12

12
12

5

6
7

41 2 ^38 35 8 -44- 36 7 12 8

43...0
45 ^_

4,,.
^

,.	 __ 8 Y43—

12 8 47 0 0 0 8 47 42 2 8 1
12 9 49 0 0 0 8 48 44 2
12 10 51 0 0 0 8 4 2-
14 1 1

^5 0 0^  0 -^ 0 8 50 4 86 94
14 12 47 ~ 0

1 _....__... ,.1.__.._..
8 51 50 3 102

14 13
..^ ¢

0— 0 U 6 52 4 2
14 14 41- 0 0 0_ 6 53 46 4 92 5
14 15^..

16

38

35
_.._.,......2

0

13_._	 —...
4

13.._...._._
? 614 55 40 4 26 38

16
16

17^
18

34
36

0
4

-0
6

0
3

6
4

56 37 2 _ 0 	_ 0
57 37

_
3 2 2

16 19 38 0
0

0 4 58 39 3 2
16 20 40 2 15^ 15

_	
4 59 41 3 33 45

16

16

16
16
16

21

22

23
24
25

42

_44

46_

48
50

7

6
.1

6
6

18 10 4 60 43 3 24 138
20 5 i

33
53

17-
51 

_.

39
74

4	 _61	 45	 _4,"._'' 
62	 47^ 4	 26^	 42

Total for 62	 153	 1223	 1488
fields;

'R	 +r	 ^!LA for grain boundary= ?. P L = —L

LA fo r twin boundary=_. tTy ^ 48p 	-
2.

X for grain boundary= 2. 5
a•for grain boundary=	 2, 1

X for twin boundary =	 24
twin boundary =	 37.7

18 26^ - 49 3 69 5
1 . 8 .

_18 28
..27......46.__

43
Z 1^_ _
0_ 0

18 29 40 0 0
18^ 30 ^ 37 2

20 31 37 0 0 0_20µ.
32 9̂_ - -_

20
_20
20.

33
34

41 0  0 0
43 0_._

1

Q' for

0 0
35

....__45 _...2 1 1

20- 3366 47 2 8	
_

7
10 3? 50 3 21 1?

10 38 47 2 4 4
10	 1 39 44 3 4 3

105
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TABLE 13 Grain Boundary and Twin Boundary Density OF POOR QUAL','YY

SAMPLE	 SEM1X E-1I.Sample in polished condition. Magnification 100X .
Field area = 0.0241 cm . Cicumference of test circle 	 W•D = 0.55 cm.
A denotes No. of grain boundary intersections with circumference of test circle.
B denotes No. of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.
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TABLE 14	 Precipitate Particle Density	 OF POOR QUALITY
SAMPLE SEMIX E-13. Sample in polished condition. Magnification 400X.
Field area = 0. 00149 cm2
A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

FIELD A B FIE LD A B

Y No. X
.

Y No. X
12 1 33 1 22 10 40 1 .0 5
12

_
2 35 10 41 38 0 10

12 3 37 Z_ 10 42 35 0

12 4 39 0 1 8 43 34 0 8

12 5 41 8 44 36 0 13

12_
12

6 ..
7

.4
45

2.-._.. _., _1.2—,. __
_

12 8 47 1 4 8 47 42 0 0

12 9 49 1 8 48 44 5

12 10 51 8

14 11 50

14 i2_ 47 2 2 8 51 50 3

14 13 44 6 52 4

14
14
14

1,42
15
16	 1

41 10
38
35^

_^
1

1 2
12.__
16

6
__^_

6

53

55

46
43

40

n

1 16

16 17 34 0 8	

1

6 56 37 0 8

16 18 36 0 5 4 57 37 0 5

16 19 38 1 13 4 158 39 10 5

16 20 40 0 8 4 59 41 0 7

16 21 42 1 9 4 60 43 0 10

16 22 44 1
^

?_ _4 61 45 0 r 7
16

16

23

25

46

50

0

0

-	
_

-1 ^^

15

4	 62	 47	 1	 17

Total `or 62	 37	 840
fields:

Area of 62 fields	 =	 0. 09238	 cm
No. of large ppt.	 =	 37/0.0 238

400
X for large ppt.	 =	 0.6
o'for large ppt.	 =	 0.7
No. of small ppt. =	 840/0- 09238  

=	 9090 / cm
X for small ppt.	 =	 13.5
o'for small ppt.	 =	 10.6

18 26 49

18 27 46
_18 28 43

_
n 17

18 2 40 1 11
18 30 37 0
20 31 37
zo 32
20 33 41

_20_ 34 43
20 35 A 45
20 36 47
10 37 50
10 38 47
10 39 44 2, 3

._._	 106
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TABLE 15	 DISLOCATION DENSITY	 OF POOR QUALITY
SAMPLE	 SEMIX E-13. Sample in etched condition
Magnification 1000X, Area of field	 0.4002'38 cm 9
X and Y denote the location of microscope stage ( field of view )for the
data measured.

f`

FIELD No. of Dislocation
Pits

FIELD No. of Dislocation
Pits

Y No. X Y No. X
12 1 34 t 10 4 1 242

12 2 35 10 41 3 _ 93

12 3 37 _ 1 4 68
12 4 39 8 43 3 295

12 . 5 41 8 44 36 7

12
12

6
?

43
45

^... 1 	 _
4

w..8.. 5_'

12 8 47 ..0 8 47 2 235
12 9 49 1s1 8 48 44
12 10 50 285
1 11 _ so -AIL

14 1247 106 8 51 4 102

14 13 44 6 6 52 4

14 14 41 19 6 53 46 70

14 15 3 8 9 _ _ _,___ji_
14 16 35 14 6 55 40 78
16 17 35 2 6 56 37 62----- -
16

_.
18 36 4

_ . _
5 5 7 3 8

16 19 1	 38

_
24 5 58 3 22

16 20 40 2 5 59 41 22
16 21 42 32

_
5 160 43 _L___ 35

16 22 44 6 5 61 45 38

16
16

23
24

46
48

38
21

5	 62	 4?

Total for 56	 4996
fields;

- -
Dislocation density

Ln	 4996 /(56)(0. 000238) pits /Cm

3.7	 x	 10 5 pits /cm 2

X = 89
6 = 96

Ii6 25 49
18 26 47
18

_18 28 43
14

18 2 40 2
18 30 ^37 11

3 1 37

Fliftq 32 3
33 41 11

_

19
 34 43 5`
35 45

19 361 47
10 37 50
10 38 47
10 39 44 250

107	 _ ...rte



TABLE 16 Grain Boundary and Twin Boundary Density OF POOR QUALITY,

SAMPLE SEMIX F-2,2 Sample in polished condition. Magnification 100X .
Field area = 0. 0241 cm . Circumference of test circle = W. D = 0. 55 ern.
A denotes No, . of grain boundary intersections with circumference of test circle.
B denotes No. of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.

twinetwins
Y	 No.	 X	 Y	 No.	 X
12	 1	 33	 0	 _6	 9	 10	 0	 41	 0	 0 

FIELD	 A	 No. of B	 FIELD	 A	 No. of JB

12	 2^	 35	 0	 4	 7	 10	 41	 38	 0	 0 
12	 3	 37	 0	 0	 0	 10	 2	 3
12	 4	 39	 0	 0	 0	 8	 43	 34	 0	 0
12	 5	 41	 2	 0	 0	 8	 44	 36	 0	 0 
12	 6	 43
12	 7	 45 

..,	 . 	o.,. _.	 r o.	 U.......,.^	 .._.^_	 . _^$.._	 X4.5	 _ 0	 10

12	 8	 47	 0	 0	 0	 8	 47	 42	 0	 0	 0
12	 9	 49	 0	 2	 4~	 8	 48	 44	 0	 0	 0
12	 10	 51	 3	 3	 2	 8
14	 11	 50	 2:	 _ls^ . 	 28 _

14	 12	 47	 0	 0	 0	 8	 51	 50	 0	 0	 0
14	 13	 44	 0	 0	 0	 6	 52	 4	 0	 1	 2
14	 14 	 41	 5	 0	 0	 6	 53	 46	 0	 0	 0
1.4 _	 15	 38	 5	 ^_.	 0	 0	 _._	 _^,_
14	 16	 35-	3	 ^28	 12	 6	 55	 40	 2	 6	 6
16	 17	 34	 2	 30	 27 _	 6	 56	 37	 0	 0	 0
16	 18	 36	 2	 26 	 24	 4	 57	 37	 0	 0	 0

16	 24	 48	 12	 10
5

16	 19	 38	 2	 3	 3	 _ 4	 '58	 39	 4	 5	 5
16	 20	 40	 4	 10^	 12	 4	 59	 41	 5	 19	 13
16	 21	 42	 2	 5	 5	 4	 60	 43	 0	 0^ 0
16	 22	 44	 0	 0	 0	 4	 61	 45	 0	 0	 0
16	 2.3	 46	 3	 _1_	 2	 4	 62	 47	 0	 0	 0

16	 25 	 50	
5	

11	 16	 Total for 62	 119	 287	 264

 30	 37	 tT xscq

 31	 37	 3	 3	 5	
LAfor twin boundary =....—.....^• -

_._	 a. x^1r o•s3 
_

33	 41	 9 	 10	 8	 X for grain boundary=	 1. 9

18	 26	 49	 5	 3	 3	
fields:

18	 27	
-
46 . _	 _-_	 _	 _ 

 2 q	 _40

[-2

^ 28^	 LA for grain boundary= i•PL

 32	 3	 6	 6	 2

^2	
,..

0	 3 5 	.-45	
.7	 ._2 ..^	

8
20^ 34	 43	 ?.__,	 5	

_	
4	

a-for grain boundary=	 2.6

20^ 36	 47	 11	 3	 1
10	 37	 50	 0	 0	 0	

X for twin boundary = 4. 3

10	 38	 47	 0	 2	 4	 d,for twin boundary = 6.8

i0	 39	 44	 0	 0	 0

r
r— ! S^k4 C-
7to'$	 Cw1-

11 . 1 °'.—"	 ^

108
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'I'Al3LE 17	 Precipitate Particle Density	
OF Pou4

SAMPLE SF'MIX F-2. Sample in polished condition. Magnification 400X.
Field areaea = 0. 00149 cm2
A denotcss No. of ,Large precipitates observed in field of view.
* denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

FIELD I3 A FIELD 13 A

Y No. X Y No. X
12 1 33 10 40 41 42
12 2 35 4 10 41 3
12 3 37

3 9

n 10 42
12 4 43 2 8 43 34 3 5
12 5 _41 8 44 36 7
12
12^

6 , .
7

4 3
45

b ,...	 , _..	 _ -13 .^ _ 39 17

12 8 1	 47 26 3 8 47 42 2
12 9 49 6 1 8 48 44 0

12 10 51 34 8 5
14 1 1! 50
14 12 47 3 0 8 51 50 5 1
14 13

-
44 3 1 6 52 49 0

4 14 4 1 6 1 6 S3 46 4
14 15 38 8   __. 0

0
 _.^_

6

54 43 2
14 16 35 0 55 40 6
16 17 34 6 0 6 56 37 3
16 18 6 1 3 4 57 37 6 2
16 19 1	 38 1 5 0 4 53 39 J2

16 20 40 1 1 1 4 59 41 3

16 21 42 2 0 4 60 43 2

16 22 44 f 4_
_ _

1 - 4 61 45 6
16
16

23
_

24
46
48

5

0

_
0

0

_
4	 62	 47	 0

Total for 62	 447	 S
fields:

Area of 62 fields	 =	 0.00238	 cm
No. of la rge ppt. = 	 68 /0. 0238

736/ cni
X for large ppt.	 _ 1, 1
o- fo r large ppt.	 = Z. 1
No. of small ppt. =	 447/0-09238

= 4840 / cn12
X for small ppt. 	 = 7.2
C for small ppt.	 = 10.5

16 2 5 50 1 2
18 26 49 0 1
18

_18
27
28

46 0
43

— -
0

18 2^^ 40 1 2
18 ---30— ^37 1 0
20 31 37 3
20 32 _ 39_ 2
20 33 41
20 34 _43
20^ 35 45
20 36 47

10 37 50

10 38 47

10 39 44 1
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FIELD No. of Dislocation
Pits

FIELD No.. of Dislocation
Pits

Y No. X Y No. X
12 1 34 7 10 40 41 41
12 2 35 0 _ 10 41 38
12 3 37 15 10 42 35

4 , 39 12 14 8 43 3 22
12 5 41 16 8 44 36

7 45 ^. AIL 7
12 8 47 8 47 42 127

12

r14
1Z

9 49 - 8 48 44 58
12 10 50
14 11

12 47 2 8 51 49 22

14 13 44 4 6 52 4 16

14 14 41 5 6 53 46 29

14 15 3 8 _ 5 M 68

14 16 35 12 6 55 40 16

16 17 35 8 6 56 37 20

16 1V 36 _ 3 5 57 38 21

16 1 ^}' 38 3
5 58 39 19

16 20 40 13 5 5q 41 45

16 21 42 7 _ 5 60 43 14

16 22 44 5
__

5_ _ 61 45 26
16^
16

23
24

46
48

_
110
1

_
5	 62	 47	 20

Total for 59	 2334
fields;

Dislocation density
2

=	 ?,334 /(59) (0. 000238 	 pits /cm

=	 1. 7	 x	 10 5	pits / cm2
_
X = 40
Cr	 =	 Ill

16 25 49 3
18
18
18

26
27
28

47
46
43 9

1 B _40
18 30 37
19 31 37
LL 3 2 l
19
19
19

33
34
35

41
43
45

44

19 36 47
10 37 50 23

10 38 47 36
10 39 44 31

t

i

i

i

I

1.10 .

1	 ')F P } J41
TABLE 18	 DISLOCATION DENSITY
SAMPLE	 SEMIX F-2. Sample in etched condition
Magnification 1000X. Area of field = 0. 000238 cm

t	 X and Y denote the location of microscope stage ( field of view )for the
R	 data measured.



TABLE' 12 Grain Boundary anti Twin Boundary DensioOF POOR QUAJ1Y
SAMPLE	 SYMIX G-112. Sample in polished condition. Magnification 10031 .
Field area	 0.0241 cm	 Circumference of test circle = wiD = 0. 55 cm.
A denotes No. of grain boundary intersections with circumference of teat c,',rcle.
1.3 denotes No. of twin boundary inte► rsectiona with circumference of teat circle.
X and Y denotes field location of the data measured.

A No. of B F''IE LD A No. of B
twins twine

X Y No. X
A33 ...	 ... ..	 ....	 ..	 , .^.._	 ,w 10 40 41 9

10 41 38 3 2 2

F26
35 5 2... w	 ,..,.

4L 357
8 43 34 3 6 63d 5

1316

44 36 2 22 2241 2 4 3 8

0 , 4^..43 ^ 30 38
4D.,45 , ,8,	 _	 ,.., .,7,4	 ..	 ... 14	 , .. 8.,. ^4b_

8 47 42 3 14 1812 8 47 4 52 38
12 y =1,9 4 44 9 8 48 44 6 .19 26

42	 ,. 8 4 3 _.l0 51 6 7q , .14 11 -
h 0 2 Z 5 16 13 ., . ,.	 Q. 48 _, ^. f'

50 0 5 1014 12 47 3 7 7 8 51
52 4 0 ? 5l4 13 4=l 5 0 0 6

46 2 1 24I4 14 41 10 5 2 6 53

., .,.5,4. ..4,x..8 _ 7i 4Q1 4 ! 
t) .

... 38 2 2
40 7 24 18l4 16 35 0 0 0 6 55

56 37 2 0 016 17 34 2 0 0 6

16 18 36 5 6 3 4 57 37 8 13 6
58 3 2 3 4

_.
166 l ;311 4 W, 3 4-4

5 9 4 l E^ 161°G
,.

20 jltl fi !0 5
4 60 43 4 38 2016 21 •12 10 H 3
4,* .,	 ,, . 15 5 1	 33 22t6„. 22 44 4 1

2
_

19 2016 Z :3 46 6 69 15 4 62 47
2 l(a i

I

^N

L4
Z5

26 l	
w

3 50 16
Total for 62	 262	 1157	 884
fields:

- l 8
1H

2 7
^8

iE)̀
li

4
Q,	 .,

19
U.,.,.

15 .
0.

for	 rain boundary•° 2.Y1 s _11A	 g
...	

t ^ 2. t1 ^ 0 5 1<^	 ,...ci. ., ^.,

-.18.
2(i

3U„
31

3?,, ,^.., „..152	 .,^ fit. 1a	 for twin bt^undary^...._...'_ y._ =
 3.KGzYo•s^

zo 34
20
L0
2 0

33
34
35

 4 1
43
4 5

3

Q a.

1	 .....
lfi
L	 ...v,.

.IO
8-•...-

_,3	 _

X for grain boundary .	4.2
a-for grain boundary-	 `L.6

20
l Cl^

3fi
7

47
a() ^

2	 µ. 6
1$	 .-„-s

32

X for twin boundary -	 14.3
d"fu r twin boundary -

1.0 :39 `
. 44 . 4

24

Ill

4

s
-- sla e7n

4p,'/2 9c	 ^
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TABLE LO	 Precipitate Particle Density OF PON ° UAL 1 Y

SAMPLE ST,,'MIX G- 12. Sample in polished condition. Magnification 400X.
Field area = 0. 00 149 cm2
A denoteP No. of ,Large pro–ipitates obGervead in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

r

1

FIELD A B FIELD A B

Y No. X Y No X
12 1 1	 33 0 16 1
12 2 35 0 10 41

12 3 37 1
12 4 39 0 2 6 43	 1 34 0 3
1:: 5 41 1 8 44	 1 36
U 6

7
43 .,- R

12 45
12 8 47 0 2 8 47 42
12 9 49 0 7 8 48 44
12 10 51 0 4^
14 11 0,–5 -U— 1 1,.......
14 12 47 0 27 8 51 50 0 14

14 13 4,4 0 8 6 52 4 0 3
14 14 41 0 26 6 53 46 0 10

14 15 38 1 5 11

14 16 35 0 8 6 55 40 0 2

16 17 34 0 36 6 56 37

16 18 36 0 40 4 57 37
16 19 3,8 0 12 4 58 39 0

16 20 40 1 21 4 5 41 0 11

16 21 42 0 9 4 60 43 0 1
16 22 44 1 2 4 61 45 0 11

16
16
18
18

16--i-3
24
25
26

27

46

48
50
49

46

1

0
0
0

0

12

1
3

4	 62	 47	 0

Total for	 2	 13	 593
fields:

Area of b2 fields	 0. 09238kn2
No. of large ppt. =	 13 /0. 01238

= 140 / cm
X for large ppt.	 =	 0. 21
cvfor large ppt.	 =	 0.41
No. of small ppt. =	 593/0. 0238

=	 6420/ cm
X for small ppt.	 =	 9.6
o-for small ppt.	 8.0

18 '28+ 43
_

1
18 29 40
18 30 37
20 31 37
20 32
20 33 41
20 34 43
20 35 45
20 36 47

ji10 37 50
10 38 47 —
10 39 44 9

^,	 a l 2
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OF POUW

TABLE 21	 DISLOCATION' DENSITY
SAMPLE	 SEMIX G-12. Sample in etched coedition
Magnification 1000X, Area of field = 0. 000238 cm

	

r	 X and Y denote the location of microscope stage ( field of view )for the

	

E	 data measured.

FIELD

Flz

vp

No. of Dislocation
Pits

FIELD No. of Dislocation

Pits

Y No. X Y No. X

1 34 10 40 41

12 2 35
_
1 10 41 38

12 3 37 2 10 42 3

12 4 39 25 8 43 3

12 5 :1 0 8 44 36 0
12 .

12

6 I .
7

43 _

45
._....... _ .2Z.__. _._ 38 59

127

12 8 47 106 8 t47 42 112

12 9 49 187 8 44 78

12 10 1 50 182 8 49 46 135

14 11 1 4.2- .— 125 50 AfL 15

14 12 47 158 8 51 49

14 13 44 163 6 52 49 72

14 14 41 6 6 53 46 63

14 15 38 _ 92  _^ 54 43 15

14 16 1	 35 23 6 55 40 2

16 17 35 21 6 56 1 37 10

16 18 36 1	 49 5 57 138

16 19 38 89 5 58 39

16 20 40 3 5 59 41 41

16 21 42 10  5 60 43 70

16 22 44_
_

_480 _	 5 61 45 47

16
16
16

23
24
25

46
48
49

310
1000
92

_
5	 62	 47

Total for 55	 5932
fields:

Dislocation density
=	 5932 /(55)(0. 000238)	 pits /crx^2

5	 ,
=	 4. 5	 x	 10	 pits /cm2
_..

X =	 108

6 =	 161

18 26 47
18 27 46 _ _12
18 28 43

^18 2 40
18 -30— 37 74

19 31 37
T 3--2-

19 33 41 230

19 _2 ,!_ 43 450

19~ 35 45 20

19 36 47
10 ' 37 50
10 38 47 2

10 39 44 16
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FFI A No. of
twins

B FIELD A No. ci
twins

B

. X Y No. X
33 8 44 19 10 40 41 3 15

12 2M
3
4

35
37

-3
9

3 4 5 10 41 38 2 2 2
12
12

4
2 

_ 9 -4 8 1,0 42 35 5 15 13^w
3- 8 43 34 7 20 24

12
i2

12

5_

7

-- 41^ .5
_

6` 6
_

8 44 36 6 17 17

45 2 1
3 __ .,._4_.__

Q.
12 8

9

47
49

2 ^_ 1 8 47 42 2 17 5
12 5 13~ 12^ 8 48 44 5 54 3
12
14

10
11 _

51
50

3 3_ 8 4 144_
—2^Q—

M
12	 .. _.. ^ ^Q ^B

14 12 47 2 2 2 _ 8 51 50 0 7
14 13 4^! 2 4 4 6 52 _12_ 4 11 1
14 14 41 `2 4	 — 2 6 53 46 4 21 34
14
14

15 3 8..
35

5 _- .._..
3

_15.,__..._
12

.:1.0._..__ ....-^..._ -4
1 6 15 6 55 40 7 8 11

16
16

17
18

34
- 36

62_- ._ 1 9
- 12	

__. 18
17 -

6 56 37 4 113 28
4 57 37 6 50 31

16 19 3 8 - 2_ --2_--^- 2-- -- 4 T_ 58 39 2 7 13
16 20 40 6 17T^ 24 4 59 41 3 _ 3 3
16
16

16
16

21
22
23
24

42
44
46

48

6
0
3
3^

39
1
2
2

34
2 _-
2
2

4 60 - 43 0 0 0
4 6 1 45
4	 62	 47	 4	 4	 4

Total for 62	 205	 931	 779
fields:

LA for grain boundary=?•PL= s
Ir x' 77LAfor twin boundary=— -.------ -
Z, rc 6^-1^ c sr

X for grain boundary= 3. 3
a-for grain boundary=	 1.9

X for twin boundary =	 12.6
crfor twin boundary =	 13.3

16 25 50 6 1 2
18 26 -49 ..

18

18
7

28 -43
0___... 6------ -0

18 30 37 3 1
20^ 3 1 3? 5 12
20

_
32 34 4 _22

20
20

^20

33
34
3 5 '

41 5 48 44
43
45

2
2__

_ 54 _ J
13-- -

68
13

20 3.6 4? 0 0 0
10 3? 50 2 4 5
10 38 47 0 0 0

10 39 44 3 13 6

If t

35•iP c...	 ^

M
r

Il OF POOR QUk*L^ly
TABLE 22 Grain Boundary and Twin Boundary Density
SAMPLE	 SEM1X H-8 Z Sample in polished condition. Magnification 100X .
Field area = 0. 0241 cm Circumference of test circle = n. D = 0. 55 cm.
A denotes No. of grain boundary intersections with circumference of test circle.
B denotes No. of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.

^f
	 114
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TABLE 23	 Precipitate Particle Density	 (11it.^Ei^k»
^F Pao AQUAUTSAMPLE SEMlX 1-1-8. Sample in polished con It ion. agnification 400X.

Field area	 0.00149 cni2
A denotes No. of Large precipitates observed in field of view.

t	
13 denotes No. of Small precipitates observed in field of view.

i	 X and Y denotes location of microscope stage for the data measured.

I

i'*

FIELD A B FIELD A B

Y No. X Y No. X
12 1 33 2 48 100 40 41
12 2 35 2 3 10 41 3 8 14 lin

12 3 37 0 13 10 42 3 5 10 AR

12 4 39 0 7 8 43 34 0
12 5 41 0 9 8 44 36

12
12^

b
7

 43
45

l.r ...,.. ---.^ 1 4 -- —

12 8 47 0 5 8 47 42 1 7

12 9	 1 49 1 6 8 48 44 0 11

12 10 51 1 8
14 11 50 Q^ _
14 12 47 0 9 8 51 50 0 18

14 13^ 44 1 14 6 52 4 0 1

14 14 41 0 6 53 46 0 34

14 15 3 $_ , O _ __. .1.1 	 _ ^_
14 16 35 0 28 6 55 X10 0

16 17 34 1 14 6 56 37 0 9

16 18 36 0 5 4 57 37 1 13

16 19 38 0 3 4 58 39 0

16 20 40 0 4 4 59 41 0

16 21 42 0 11 4 60 43 0 16

16 22 44 0 1^   4 61 45 0
16
16

_
23
24

_
46
48

0
0

5

7

_
4	 b2	 4r7	 0	 15

Total for 62	 23	 875
fields:
Area of 62 field s 	 =	 0.09238	 ci-n^
No. of large ppt. =	 23 /0. 09238

-	 250/ cm
X
_

 for large ppt.	 = 0.4
crfor large ppt.	 =	 0.8
No. of small ppt. =	 875 /0.0 11238

=	 9470 / cm .
X for small ppt. 	 = 14.1
o-for small ppt.	 = 10.9

16 25 50 0 8
18

2
18

^18 '
27

~ 28
46_
434

^18 2.9 40 0
18 30 37_ ,Q 14

20 31 37 0
20 32 3
20 33

_
41 0

20 34 43 22
20 35 45 1
20 36 47 0
10 37 50

10 38 47

10 39 44 1 15
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ORIGOOR 
QUAL'TY

+	 OF PO

TABLE 24	 DISLOCATION DENSITY
SAMPLE	 SEMIX H -8. Sample in etched condition
Magnification 1000X, A rea of field = 0. 000238 cm

r

	

	 X and Y denote the location of microscope stage ( field of view )for the
data measured.

'	 as
^x

FIELD No. of Dislocation
Pits

FIELD No. of Dislocation
Pits

Y No. X Y

1

No, X
12 1 34 13R 10 40 41

12 2 35 InA 10 41 38 960

12 3 37 4 10 42 3S 72

12 4 39 ?1 8 43

12 5 41 197 8 44 36

12
12

6 ..
7

43
45.

_ .,,. _ _2 15 . ._ „$

12 8 47 222 8 47 42 725

12 9 49 172 8 48 44 11

12 10 50 155
14 I t 19 50 4R 213

14 12 47 3 8 51 4

14 13 44 78 6 52 49 255

14 14 41 6 6 53 46 32

14 15 38 69 _ __ S4	 1 43 83
14 16 35 1	 125 6 55 40 1030

1 7 35 6_ 56 37 3
16

_
18 36 320 5 57 38

16

P1

16

19 38 24 5 58 3

6 20 40 248 5 59 41 184

16 21 42 127 5 60 43

16 22 44 17 M ^ 5 61 45 70
16
16

16

23

24

25

46

48
49

_
16

2
2

_
5	 62	 47

Total for 56	 11428
fields-

Dislocation density

11428 /(56) (0. 000238) pits /cm2

=	 8.6	 x	 10 5 pits /cm2

X = 204
Q=	 235

18 26 47
18
18

27 46 _, _189
28 43

18 _2 40
18 30 37

19 31 37 111
1 32

19 33 41
19 . 34 43
19 35 45
19 36 47
10 37 50
10 38 47
10 39 44 226
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OF POOR QUALITY,

TABLE 25 Grain Boundary and Twin Boundary Density
SA MPLE ; Semix 1-10-13^*ample in polished condition. Magnification 100X .
Field area = 0. 0241 cm Circumference of test circle = R-D = 0. 55 cm.
A denotes No. of grain boundary intersections with circumference of test circle.
B denotes No. of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.

FIELD A No. of
twins

B FIELD A No. of
twins

B

YY No. X G B Twin Y No. X
12 1 33 0 9 10 40 41 2 37

12 `2 _35

^37

39u.._.l 	.

43
45

2 3 10 41 38 6 78

12 3
_

5
4

38 10 42 3 4 7

12 4 67 8 43 34 3 30

12̂...
1 `L
12

5n	 ....
6
7

0

3
0

0- 8 44 36 2 29
17
40

_8 _ 2

12 8 47 2 35 8 47 42 3 2112 9
49- 'i

., _	 a 1^0
8 48 44 2 62

1.2

14W
10

11
51 2 13 8 4 2 3

0^'
_

 _ 3__^ -4fl

14 12 47 0
_

^6 8 51 50 3 59

14
3...

44 2. 1 6 52 4 8 61

14 14 ^41 0 0 6 53 46 2 24

14-
t4 _

15
_16 ,.

38
35

W —,. _... 3, .- _^.., 5 25
µy2 	

- ,
5 6 55 40 4 34

16

16
_1.7
18'

34
36

3 12 6 56 37 8 7,3_
4 57 37 10

16 19 38 2 - 10 4 58 39 7 8
16 20 40 5 b 4 59 41 4 43

16
16
16

21
22
23

42
44
46

3
2
0

_
9 4 60 43 1 0 50

2
8

4	 61	 45	 3	 71

4	 62	 47	 5	 76

 Total for 62	 171	 1720
fields;

LA for grain boundary= . PL= s

L for twin boundary=^ TrA

X for grain boundary= 2. 76
4rfor grain boundary=	 2. 28

X for twin boundary =	 27. 7
Q'for twin boundary =	 25. 3

16
16

24
25

48
50

0	 1
U

1
0

8--
26 -49 4

i
36

181.8._ 2?
.28

46 4_ _..  33

4 3
._4

3
-	 18 2 ,t_40 _4

18 30 37 0
20 31 3.7 0
20_ _32

`_^
4

20^

_:2 0
20

20 ...
33

34.
3.5.

41 0 15

43 0.,._
4 5

,. .
2 _ 2 6 

36 47 5 80
10 37 50 2 84

10 - 38 ., 47 5 70

1--i0
39 44

-7j :7.88
cm /cm2

79. 2
ccn /cm2

117
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FIELD A B FIE LD A B

Y No. X La r mall Y No. X
12 1 33 10 40 1 12

12 2 35 10 41 3 6

12 3 37 8 10 42 1
12 4 39 1 24 - - 8 43 34 11 2
12 5 41 3 36 8 44 36 3
12 6 43 _ 4^ _ _ in .-,—S 45

7 45 An 0
12 8 1 47 60 8 47 42 1 7

2 9 49 137 8 48 44 4 128

2 10 51 15 1

4 11 50 1 6 4 13

4 12 47 U 13 8 51 50 1 20

4

11,

13 44 1 10 6 52 4 33

4 14 41 3 6 53 46 8 54
4 15. :J8 5 83 5
4 16 35 3 39 6 55 40 1 12

6 17 34 6 56 37 2 92

16 18 36 3

_
39 4 57 37 4 43

16 19 3.8 4 195 4 58 39 48

16 20 40 5 241 4 59 41 11 140

16 21 42 4 56 4 60 43 90

16 22 44 3 S0 4 61 45 51

16

16
16
18

8

23

24
25
26

27_

46

48
50
49

_46

1 _.

0
4
1

1

19

5
161

4	 62	 47	 5	 35

Total for 62	 188	 4083
fields:

2Area of 62 fields	 =	 0.09238	 cm
No. of large ppt. =	 188/0. oV38

=2035 / cm

X for large ppt.	 =	 3. 0
a•for large ppt.	 = 2.6
No. of small ppt. =4083	 /0. 09238

=44200 / cm2
X for small ppt.	 = 66
(rfor small ppt.	 = 67

8 28 43
S 2 40 3

8 30 37 0
0rZ-'O

31 37 1 48
32 1

0 33 41 2 700 34 43 3
20 35 45 1 5
20 36 47 4 114

10 37 50 2 61

10 38 47 2 11

10 39 44 1 2

I

p ¢	
,p	 q}

	 1

UlsA1^^S tl#'^^w ^^^ 1^^ ^^

of- POOR QUALITY
TABLE 26	 Precipitate Particle Density
SAMPLE: Semixl-10-13 ( TI Sample in polished condition. Magnification 400X.
Field area = 0. 00149 cm
A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.
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OF POOR QUALITY

TABLE 26	 Precipitate Particle Density
SAMPLE: Semixl-10 -13 (TI Sample in polished condition. Magnifica ton 400X.
Field area = 0. 00149 cm
A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

FIELD A B FIELD A B

Y No. X 1,4a r Small Y No. X

12 1 33 10 40 41 12

12 2 35 2, 94 10 _Al_ 38 6

12 3 37 g 2nR 10 42 35 1

12 4 39 1 24 8 43 34 11 2
12 5 41 8 44 36 3
12 6

^- 
43 _ ..4 .__. , _ . _._

12 7 _~ 45 0
12 8 47 1 0 8 47 42 1 7

12 9 49 137 8 48 44 12

12 10 51 15 1

14 11 50 1 6 4 13

14 12 47 0 13 8 51 50 1 20

14 13 44 1 10 6 52 4l 33

14 14 41 3 6 6 53 46 8 54
14 IS, 38 5 3_ 43 5
14 16 35 3 39 6 55 40 1 12

16 17 34 4 30 6. 56 37 2 92
16 18 36 3 39 4 57 3? 4 43
16 19 38 4 1 195 4 58 39 2 48

16 20 40 5 241 4 59 41 11 140
16 21 42 4 56 4 160 43 90
16 22 44 3 80 4 61 45 51

16
16
16
18
18

23
24
25
2 6
27_

46
48
50
49

_46

1
0
4
1
I

19

5
161

4	 62	 47	 5	 35

 Total for 62	 188	 4083
fields:

Area of 62 fields	 =	 0.09238	 Cm

No.. of la r g e ppt. =	 188/0, 09238
=2035 / cm

X for large ppt.	 =	 3. 0
irfor large ppt.	 = 2.6
No. of small ppt. =4083	 /0. 09238

=44200 / cm2

X for small ppt.	 = 66
o-for smal), ppt.	 = 67

18 28 43 2 7 1

18 2 40 3
18 30 37 0
20 31 37 1 48
20 32 1
20
20
20

33
34
35

41
43
45

2
3
1

70

20 36 47 4 114
10 37 50 2 61
10 38 47 2 11
10 39 44 1 2



C
	 OF POOR QUALITY

TABLE 27	 DISLOCATION DENSITY
SAMPLE; Semix 1-10-13 (T) 	 Sample in etched condition
Magnification 1000X, Area of field	 0 . 000238 cm

t'	 X and Y denote the location of microscope stage ^ field of view )for the
data measured.

2

FIELD No, of Dislocation
Pits

FIELD No. of Dislocation
Pits

Y No. X 4 Y No. X
12 1 34 10 40 1 1

12 2^ 35 5 10 41 38 83

12 3 37 4 1 4 3 6

12 4 39 0 8 43 3 1

12,5__41 2 8 44 36 6

12.
12

b, .. 43
45

12 8 47 4 8 47 42 16

12 9 49 6 y 8 48 44
IZ 10 50 6

14 1 l _ .
14 12 47

_
0 8 51 4 13

14 13^ 44 8 6 52 4 12
14 14 41 2 6 53 46 13

14 43 7

14 16 35 3 6 55 40 136

16 17 35 2 6 56 37 137

16 18 - 36
1 -- -- — 5 57 38

16 19 38 1	 2 5 58 T39

16 _20 40 7 5 59 41 20

21 42
44_

^46
48
49

^^

5
0	 _

J4
5
0

_ ,
5 60 43 13

1

16
16
16 `
16
16

22 - 5 _ 61 45 14
23
24
25

5	 62	 47	 97

Total for 62	 885
fields;

Dislocation density= 6. 0	 x	 104 /cry

X = 14. 3
6'  = 28. 7

18 26 47

18

18

27 46
6

29 – 40
18 30 37
19 31 37 1

1, 9 3 2
19 33 41 4

1 9._
19

..34 43 0
35 45 32

19 .36 47 17
10 37 50 3

10 38 47 8

10 39 44 C
i

I<l a.
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OF POOR QUALIFY

TA BIJ; z8 Grain Boundary and Twin boundary Density
SA MPLE ; Semix 1-12 -14(Y)Sample in polished condition. Magnification 1 OOX .
Field area = 0. 0241 cm . Circumference of test circle = n-D = 0. 55 cm.
A denotes No. of grain boundary intersections with circumference of test circle.
13 denotes No, of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.

FIELD A No, of
twins

B FIELD A No. of
twins

B

Y No. X GB n Y No. X
12 1 33 10 40 1 0

12

12

2^^ 35 0
_

10 41 38 0
3 37 0.. 10 42 3 012
4 39 0 8 43 34 2 8

12

12 Y
12

5

6y
7

41 0 1 8 44 3 16 0 4
43
45

a 0.
___

1.
0

.... 11_ $.
5

12 8 47 0 2 8 47 42 0 13
12

9
49

"¢
14 8 48 44 0 3

12

14
14

10
11 ,
12

51

50
~47

0 8 8

4 7 8 51 50 2 6
14 P 13 _44 b	 2 ^2 6 52 49 2 35
14 T14 41 0 5 6 53 46 2 52
14
14

15
16

38
35 0 0

6, 00
6 55 40 2 24

16 1
.^.

18 ..
"34. 3b ._.

_	 - _
6 56 37

4 _
6

16
_ 0 0^

4 57 37 0 0
16 19 38 _0 6 4 58 39 0 l

16 20 1 40 1	 2 1 2 4 59 41 3 14

16 21 42
4b ..

48
50

2
2....

0
0

2 ~4 60 43 _0 19
16 i2744

_

88. 5

0
0

4 61 45 2 1

16
16
16

2T:
24
25

4 	
62	 47	 2	 68

Total for 61	 67,	 623
 fields;

LA for grain boundary= 1. PL= s y0,

Tr 10.21
LAfor twin boundary = 	 _.-.^_....^

9t 0. 55

X for grain boundary= 1. 1
d'for grain boundary=	 1.4

_...
X for twin boundary = 10. 2
Tfor twin boundary =	 12.8

18 26 49 4 5

1 .8..
18

.2 7_. _
21i

..46 -
4 3

18 29_ 40 0 3
18 30

„
37 0 5

20 31 37 0 10

32 3 3
20 33 41 0 8

_20 34 4 3 ^ 2 7

20 " 35w 45 3 6

L

_2 0

.._
20 36 47 5 4
10
1 6

37 50 2 9
3 7 47 3 ^ 3

10 39 44 2 36

..L s 3. 14
55 cm /cm2

29.'2	 2
cm /cm
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TA 1.3lake 29	 Precipitate Particle Density	 or 1-k u.; R QUALITY
SAMPLE: Senlixl_1: -14 (U Sample in polished condition. Magnification 40OX.
Field area =. 0. 00149 cm

A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitated observed in field of view.
X and Y denotes location of microscope stage for the data measured.

FIELD A B FIELD A B

Y No. X La r Y No. X
12 1 33 5 1 2 38

12 2 35 10 1 0 32

12 3 37 2n 1 2 2
lZ 4 39 2 8 43 34 4 46
12 5 41 8 44 36 2 30

12
12

6 ...
--- 7

43
45^

2 M_. _ _.w 2 5 _.. 31k 1 34
6 104

12 8 47 3 39 8 47 42 1 1

12 9 49 4 43 8 48 44 3
12 10 51 11 175

14 11 50 4 70

14 12 47 2 20 8 51 50 1 60

14 13T 44 1	 4 18 6 52 49 3 92

14 14 41 3 11 6 i53 46 1 67

14 15 38^ 6 3 0 6 r 2 41
14 16 35 2 13 6 55 40 0 60

16 17 34 - - 6 56 37

16 18 36 1 41 4 t 57 37 0

16 19 38 z Z 7 4 58 39 1 159

16 20 40 1 30 4 59 41 0 141

16 21 42 2 is 4 60 43 2 24

16 22 44 . _ 4 Q _ 4 61 45 2 F 
r

45
16

_
23 46 33

99	 11

4 62 47 3 31

16 24 48 2 Tots, a, for 61	 155	 2724
fields:

tArea of 62 fields	 =	 0. 09089	 tin
No. of large ppt. =	 155/0. 01089

= 1705 / cm
X for large ppt.	 =	 2. 54
irfor large ppt.	 =	 1.96
No. of small ppt. = 2724 /0.0 1.089

=29970 / cm
X for small ppt.	 =	 44. 7
crfor small ppt.	 =	 29. 1

16 25 50 3
18 26 49

18 27 ^46 1
18 28 43 47

^18 29 40 2 45
18 30 37 3
ZO 31 37 0
20 32 39 2
20 33 41 5	 1
20 3 4 43 3
2' 45 2
20 36 47 3
10 37 50 2

10 38 47 1

10 39 44 1 26

f c	 121
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TA3LE 30	 DISLOCATIO14 DENSITY	
OF Kiwi Ql,rts..11'Y

SAMPLE: Semix 1-12-14 ( U)	 Sample in etched cotdition
Magnification 1000X, Area of field = 0.000238 cm
X and Y denote the location of microscope stage ( field of view )for the
data measured.

FIELD No. of Dislocation
Pita

r
FIELD No, of Dislocation

Pits
Y No. X Y No. X
iz 1 34 7 10 40 4l 4
12 2 +35 6 10 41 38 4
12 3 37 17 10 42  35 2
12 4 1	 39 5 8 43 35 1 3
12 5 41 7 8 44 36 1
12
12 s

6
7

43_.
45

_...0 _-0

12 8 47 5 8 47 42 0
12 9 1 49 1	 4 8 48 44
12 10 1 50
14 11 _ _a
14 12 47 2 8 51 49 1
14 13 44 6 52 49 0

14 14 41 2 6 53	 146 1 3
14 15 38 _._.f.— 54 Al 0
14 16 35 0 6 55 40 0
16 17 35 4 6 56 37 1
16 18--- - 36 0 5 57 38 1	 0

16 19 38 3 5 58 1 39 2
16 20 40 0 5 59 41 0
16 21 42 1	 __ 5 60 43 0
16 22 44  0 5 61 45 5
16
16
16

23
24
2 5

46

48
49

1

0
15

5	 62	 47	 0

Total for 62	 166
fields :

Dislocation density	 1. 1	 x	 104 /ct

X = 2. 68
6 = 3. 34

18 26 47
18 .._1.^2.27 -- - -46

43
n .—.^.. _
4

^18 2 9 _40 .,.,  _
18 30 37
19 31 37 5
1^ , 3 2 __}^ 1
19 33 41 0
X19 34 43 2
19 35 45 0

19 36 47 0
10 37 50 3
10 38 47 3
10 39 44 1

n2

122



TABLE 31 Grain Boundary and 'Twin Boundary Density
SAMPLE; Semix2-5-1 (V2 Sample in polished condition. Magnification 100X .
Field area = 0. 0241 cr,Y . Circumference of test circle = x•D = 0. 55 cm.
A denotes No, of grain boundary intersections with circumference of test circle.
B denotes No. of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.

FIELD A No. of
twins

B FIELD A No, of
twins

B

Y No. X G B Twin Y No. X
12 1 33 2 _ o 10 40 41 1
12 2 35 8 0 10 41 38 2

_
0

12 3 37 23 0 10 4-; 3 5 0 0

12 4 39 22 0 8 43 34 0 0

12

12

12

5

.
7

41 17 1 8 44 36 -
43

45 5 15 6 1 1

12 8 47 5 . 8 8 47 42 13 0
_ 12

9 49 .

__. 4

9 8 48 44 19
12 10 51 2 26 8 49 46 29 1

11 50 2 11 21 0
14

—
1 2
—
47 3 36 8

--
51 50 17 0

14 13 44 10 13 6 52 49 15

14 14^ 41 6 9 -6 53 46 22 0
14 15 38 _. 3
14 16 35 10 1 6 55 40 13 3

16 17 34 3 10 6 56 37
16 18 36 7 40 4 57 37
16 19 38 14 40 4 58 39 11 3
16 20 40 22 17 4 59 41 13 41
16 21 42

44

48
50

11
5

_^^_ 13 4 60 43 13 8
16

16
16

2.2

24
75
2^

29 4 61 45

9
15

46

15
5

4	 62	 4?	 14	 0

Total for 62,	 694	 789
fields;

7r	 *^	 1 ]LA for grain boundary= Z.PL= 
s O

'T 12.7LAfor twin boundary=—'T
Z.	 0.55

X for grain boundary= 11.2
d for grain boundary=	 7.4

X for twin boundary =	 12. 7
Tfor twin boundary =	 15. 0

18
_49

3

_18.
18 28

?,7_._. _46 .__11.^ _., _ - 24
43

18 29 40 13 13

18 30	 1 37 12 43
20 31 37 19 25
2 0 32 3 9 22 11

20 33 41 1 7 26

20
-20

34 4 3 19 23
35 -45 12 52

2^0 36 47 4 14
10 37 50 3 0

10 38 47 23 5

10 39 44 26 8

=s32
55 cm /cm

36. 3
cm /cm2

i
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TABLE 32	 Precipitate Particle Density	 OF FCsO i QUAl.1N

SAMPLE: Semix2-5-1 (V) Sample in polished condition. Magnification 400X.
Field area = 0. 00149 cm2
A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

f

FIELD A B FIE LD A B

Y No. X Large Small Y No. X
12 1 33 2 93 10 40 41 0 7
12 2 35 5 z z 10 41 38 1 16
12 3 37 0 8 10 42	 1 35 0
12 4 39 1 31 8 43 34 1 53
12 5 41 3 27 8 44 36 2 51
12M 6 43 -1 -,_
12 7 ^~ ~ 45 0 18
1z 8 47 1 25 8 47 42 0 9
12 9	 1 49 0 17 8 48 44 27
12 10	 1 51 0 11 8
14 11 50 _ —5k
14 12 47 0 117 8 51 50 1 4
14 13 44 0 26 6 1 52 _jL 0 12
14 14 41 1 10 6 53 46 0 3
14 15 38 0 31 _ 54 1 16
14 16 35 0 123 6 55 40 0 9
16 17 34 2 52 6 56 37 1
16 18 36 2 9 53 4 57 37 1 12
16 19 38 2 58" 4 58 1 39 12 34
16 20 40 1 13 4 59 41 2 18
16 21 42 1 60 4 60 43 0 _ 12
16 22 44 0 43 4 61 45 0 _ 4
16
16
16
18
18

23
24
25
26
27

46
48
50
49

_46

1
0
1
1
Oi

253
85
38

- 4	 62	 47	 0	 14

Total for 62	 75	 2425
fields:

2Area of 62 fields	 =	 0. 09238	 cin
No. of large ppt. =	 ?5 /0-0 238
_	 = 812 / cm
X for large ppt.	 =	 1.2
trfor large ppt.	 =	 3, 7
No. of small ppt. =	 ?425/0.09238

=26250 / cm2
X for small ppt.	 =	 39
o-for small ppt.	 =	 40

18 28 43 2 q 2,

18 2 40 2
18 30 37 0 19
20 31 37 3 1 20
20 32 2
20 33 41 0 33

_2_0 34 43 1 3
20 35 45 0 52
20 36 47 0 40
10 37 50 0 28
10 38 47 0 5
10 39 44 0 60
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TABLE 33	 DISLOCATION DENSITY 	
OF POOR QUALITY

SAMPLE, Semix 2-5-1 (V)	 Sample in etched condition
Magnification 1000X, Area of field	 0. 000238 em
X and Y denote the location of microscope titage ( field of view ) for the
data measured.

wr ,

F

FIELD No. of Dislocation
Nits

FIELD No. of Dislocation
Pit$

Y No. X 4 Y No. X
12 1 34 10 40 41 18

12 2 35 ____19– 10 41 38 7
12 3 37 5 10 42 3 " 9
12 4 39 32 8 4 3 35 1

12

12
12

5

6
7^

41
43
45  8

12 8 47 5 8 47 42 y

12 9 ' 49 7 8 48 44 9

12 10 _50 4 $__ 4`L. 12
14 1 1 9.. _ _ fz ___... ^^_il _.n .i,
14 lx 47 62 8 51 1 49
4 13 44 27 6 4 7

14 14 41 325 6 V53 46 19

l5 38 22

6 40 —_

2
714 16 35 58

16
1G_

17..15 _i5
36,_

17
65 5657_ 373.8,

5
 

tow
^21

_..

16 19 38 0 5 58 39 15

16 20 40 1 48 5 59 41 8

16

16L1G -
16
16

21

22
23
24.:25 .^

42

44
46.

... 4849

^....
0
5 _
14
6

_

5 60 43 13

 5 61 `15 15N	 ._	 _
5.
	

62	
47 .	 18 _

Total for	 2	 3034
fields;

Dislocation	 Y^nsity	 2,0.6	 x	 10`1/

X	 _.	 48.9

6	 108

18 26 47
H 18

_18

2a7 _.
- 2 8

46
4 3

•15
13

18

18

2 ^-
30

40

37
_

__j96

19 X31 37 430

_32
.

16

19 33 41 95

19^_1.9._ 34 _.._45
– 35 -1

43 210_
650

19 36 47 43
10 37 50 4
10 38 47 3
10 39 44 45

em

I



FIELD A No, of ; B
twins

FIE LD A No. of
twins

B

Y No. X n n Twin Y No. X
12 1 33 2 5 10 40 41 7 53

12 2 35 4
_

10 41 38 3
12 3 37 0 10 42 35 2

12 4 39 9 8 8 43 34 6 16

12 5 41 14 5 8^ 44 36 7 2

12
12

6
7

43
45

.._,. _._ '._ b
4A _8 10 --

12 8 1 47 0 14 8 47 42 4 45

12 9 49 3 23 8 48 44 9 39

12 10 51 0 18 8 4 9 46 6 _ _ _	 5

14 11 5 0 2

14 _12 47

_

0 5 8 51 50 4 5

14 13 44 12 10 6 52 49 2 41

14 14 41 8 3 6 53 46 1	 3 _ 13

14
144

15
16

38 --
35

 5 _
8

12
13

6..._
6

54
55

_4.3
40

8
5

21
17

16 17 34 7 6 6 56 37

16 18 36
_ 7

0 4 57 37
16 19 38 4 11 4 58 1 39

16 20 40 5 8 4 59 41

16

16

21

22

42

44

46 - ^
48
50

10

2

- 	 5 ---.
5
14

7 4 60 43

0 0..__—

6
11

„4	 _ 61 -- 45

16
16
16

23
24
_25

4	 62	 47
Total for 55	 325	 770
fields: 

L	 for grain boundary=M •P =A	 2	 L z 0

tr	 14LAfor twin boundary=--_--.—.
0. 55

X for grain boundary= 5. 9
e"for grain boundary= 	 3. 6

X for twin boundary =	 14
tT fo r twin boundary = 	 12. 7

18

r_l

26 49
18

8 -
27 46 __2,
28^ 43 5

18 29 40 3

18 30 37 14

20 31 37 3
20 32 3 9 10
20 33 41 1:'. 1

-29_1 34
35

'A 3
t 45

^1 i,
'.	 4

^
1

20^ 36 47 0 1
7 50 6 0

38 47 6 15

L0I
3

39 44 7 44

126

t5 :16.9

cm /cm2

41)
cm /cm

TABLE 34 Grain Boundary and Twin Boundary Density
SAMPLE: Setmix 3-4-12 (1y)Sample in polished condition. Magnification 100X .
Field area = 0. 0241 cm . Circumference of test circle = n-D = 0. 55 cm.
A denotes No, of grain boundary intersections with circumference of test circle.
B denotes No. of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.
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TABLE 35	 Precipitate Particle Density	 OF P

SAMPLE: Seinix 3-4-12 (WI Sample in polished condition. Magnification 400X.
Field area = 0. 00 149 cm
A denotes No. of Large precipitates observed in field of view.
Ii denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

F

FIELD A B FIELD A B

No. X Lar g Small Y	 I No. X
12 1 33 - 1 40 1 5 24
12 2 35

37

0

0

55 10 41 3 5 13

12 3 22 1 42 1 5

12 4 3q 5 27 8 43 34 3 38

12 5 41 10 44 36 2 23

12
12

6 ._
7

43
45

.--.. -16— 1 7

RR
12 8 47 2 51 47 42 0 28

12 9 49 2 13 48 44 3 4
12 10 51 4 7 8 49 46 3
14 11 50
14 12 47 1 34 8 51 50 4 12

14 13 44 2 6 52 4 2 60

14 14 41 2 6 53 46 9 75

14 15 38 5 34

14 16 35 1 17, 6 55 40 2 12

16 17 34 5 43 6 56 37 4

16 18 36 3 98 4 57 37 6

16 19 38 6 39 4 58 39 2 3

16 20 40 2 65 4 59 41 1 8

16 21 42 1 7 4 60 43 5 94

16 22 44 4 89 --.4 61 45 2 21

16
16

23
24

^46

48
5
5

-
. _`
84
460

62	 47	 -	 -
Total for 60	 187	 3609
fields:

2
of 62 fields	 =	 0.0894	 ckn

No. of large ppt. = 187 /0. 0894
= 2092 / cm.,.

X for large ppt.	 =	 3. 1
cffor large ppt.	 =	 2 . 3
No. of small ppt. = 3609	 /0. 0894

=40370 / cm
X for small ppt. 	 =	 60
odor small ppt.	 =	 84

16 25 50 3 79
18 26 49 1

18
_18

27 _46 1
28 ,- 43

18 2 40
18 30 37 7 290

20 31 37 7 30
20 32
20 33 41 4 95

_20
20

34 43 0 11
35 45 3 54

20 36 47 3 11

10 37 50 2

10 38 47 1

10 39 44 1 14
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FIELD No. of Dislocation
Pits

FIELD No. of Dislocation
Pits

Y No. X Y No. X
12 1 34 0 10 40 41

12 2 35 0 10 41 38 2

12 3 37 3 10 42	 1 35 0
12 4 39 1 8 43 35 1

i2 5 41 173 8 44 36 0

12 7 45-
12 8 47 0 8 47 42 0

12 9 49 2 8 48 44 183

12 10 50 8 4 h 5
14 11 _ 8 50 AfL 18

14 12 47
_

5 8 51 4 15

14 13 44 0 6 52 4 0

14 14 41 25 6 53 46 45

14 - 15- - 3 _.^_ 0
14 16 35

_
1 6 55 40 127

16 17 35 66 6 56 37 2

16 18 -36 1 5. 57 38 249

16 19 38 1 5 58 39 19

16 ?,0 40 0 5 59 41 2

16 21 42 1 5 60 43 73

16 22 44 _- 0	 _

_

- -_ 5_ 61 45 -

16 -
16
16

2.3
24
25

46
48
49

-101
1
0

5	 62	 47	 -

Total for 60	 1561
fields:

Dislocation density = 10. 9	 x	 104/

X = 26
6 = 55

18 26 47
18

_18
27_ _46 0
28 43

^_

18 2 40
18 30 37

—

19 31 37
19 32 39 0
ly 33 41 0
1 g ._ 34 _43 0
19 35 45 11

19 36 47 91
10 37 50 0
10 38 47 1

10 39 44 217

128
V1 9

2cm

v

oqff

TABLE 36	 DISLOCATION DENSITY	 OF POOR QUALITY

SAMPLE: Semix 3-4-12 (W)	 Sample in etched condition
Magnification 1000X, Area of field = 0.000238 cm
X and Y denote the location of microscope stage ( field of view )for the

.	 data measured.
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OF POOR QUALITY

TABLE 37 Grain Boundary and Twin Boundary Density
SAMPLE; Semix3-4 .-16 OSample in polished condition. Magnification 100X .
Field area = 0.0241 cm . Circumference of test circle = n•D = 0. 55 cm.
A denotes No, of grain boundary intersections with circumference of test circle.
li denotes No. of twin boundary intersections with circumference of test circle.
X and 'Y denotes field location of the data measured.

FIELD A No, of
twins

B FIELD A No. of
twins

B

Y No. X G B Twin Y No. X
12 1 .33 .__4 	 ..

4 _

9
20

16

12
16

_4 T

_

 ..___.

Z.2...

.	 __.

10 40 _ 41 15 6
12

12

2

3

4
5

6
7_

8

35

37

39
41*
43
45

47
49

0^__1 ., 41 38 7 13

10 42 35 — 5 11

12 7
17

8

8
43 34 5 61

12
12
12
12

44 36 9 6

10...

,̂
2

$_ _

___8--
8
3

45 w....
_ 4.b

3$_,
Il

47
48

42 16 7
12 9 44 16 0
12

14
10

11
12

13

51

5 P .
47

15

13
14

f 4
5

0

46 3

8
b_....SL 4$ ._ ► 8_

14 51 50 0 6
14 44 18 6 52_4 4S- 0 2
14 14 41 E 38 6 53 46 0 21

14
14

15
16

38
3, .

4_.4... ....__, ._ 	 _., ._ 5̂,^...^. 6. _ _^ 5-4,..
5 5 40 9 16

16

16

1?_

18

34

36
9
7

5

' 6"

6

4

56 37 8 16
57 37 8 25

16 19 38 2 4 4 58 39 11 13

16 20 1	 40 9 4 59 41 - -

_1_6
16

16
16
i6

21
22
2 3
24
25269

42
44

46
48
50

16
13
12

8
8--- 18

4
0
3
4
20_-

4 160 43 11 5
4	 61	 454	 13

__

Total for 60	 605	 567
fields;

^t	 n	 11LA for grain boundary= 2
.1'L 	 2	 C

Tr	 9. 45L,A for twin boundary � ..-.________
2, 0.55

X for grain boundary«	 10. 1
c-for grain boundary=	 5.6

X for twin boundary =	 9. 45
d• for twin boundary = 1p, 9

18
-

18
18
1.8_.

27
28

-30 ..

46 .
43

.-14
20

37_.
,.,._

20 31 37 2...
_20 32 L..
20
20__._...-
20

33
34._._._
35

41 _ 14_
43..._ __._..._ Z.
45-

20_ 36 47 15 1
10 37 50 ^ 5_

47 1$

L100
38
39 4^ 16 2

1

I. 1
55-cm %cm2

27.0
cm /cm.

1
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TABLE 38	 Precipitate Particle Density OF POOR QUALITY,

SAMPLE: Semix 3-4-16 (X) Sample in polished condition. Magnification 400X.
Field area = 0.00149 cm2
A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

FIELD A B FIELD A B

Y No. X Y No. X
12 1 33 4 85 10 40 41 4 69

12 2 35 6 1.93 10 41 38 1 149
12 3 37 4 41 10 42 35 280

12 4 39 1 58 8 43 34 3 1 265
12 5 41 8 1	 27 8 44 36 % 1 167
1 2^ 6 43 5 — 45 39 1 1_
12 7 45^
12 8 47 6 5 8 47 42 0 104
12 9 49 3 8 48 44 1
12 10 51 8
14 11 50 1_ So 48 q An
14 12 47 2 19 8 51 50 6 71
14 13 44 5 9 6 52 4 4 8

14 14 41 2 38 6 53 46 2 38

14 15 38 0 _ 4 _6 2 23

14 16 35 2 32 6 55 40 3 152

16 17 34 0 144 6 56 37 3 55

16 18 36 2 1 26 4 57 37 2 10

16 19 38 4 58 3q 1

16 20 40 14 4 59 41 - -

16 21 42 4 18 4 60 43 3 31

16 22 44 0 114 - 4 61 45 9

16

16
16

23

24
25

46

48
50

5
25

16

37
54

4	 62	 47	 -	 -

Total for 60	 215	 3491
fields;

Area of 62 fields	 =	 0. 0894	 cm,
No. of large ppt. = 	 215 /0. 0894

= 24,05 / cm
X for large ppt.	 =	 3.6
erfor large ppt.	 =	 3.6
No. of small ppt. =	 3491,10. 0894

=39050 / cm2

X for small ppt.	 =	 58. 2
o-for small ppt.	 =	 64. 0

I

18 26 1 49 1 44
18 27 _46 1 _
18 28 43 6
18 2 40 4
18 30 37 3 12
20 31 37 4 19
20 32
20 33 41 3 13
20 34 43 3 65
20- 35 45 4 20
20 36 47 0 15

10 37 L 50 2 20

10 38 47 5 18

10 39 44 1 18
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c• OF POOR QUtr .k Y

TABIX 39	 DISLOCATION DENSITY
SAMPLE; Set-nix 3-4-16 (X)	 Sample in etched condition
Magnification 1000X, Area of field = 0.000238 cm
X and Y denote the location of microscope stage i field of view )for the
data measured.

I 

No. of Dislocation
Pits

FIELD No. of Dislocation
Pits

. X Y No. X

VZ4

34 10 40 41 4

35 10 41 38 0

37 10 42 3 1

39 8 443 35 3

41 8 44 36 -.26

_ 12
1L

6

7
4
45

_

7.3	 .__ _
99 6

_

^.^ _ _,$.,. _ 4

12 B 47 8 47 42 30

12 9 49 8 48 44 83

l2 10 50 4 8 4 9 46 3

14 11 - `^5 - _
14 1Z-. 47

_
0 8 51 49 0

14 13 44 l 6 5Z--!L— 4

14 14 41 146 6 53 46 3

14 15 38 0 54 _	 a-

14 16 35 0 6 55 40 2

16 17 35 5 6 56 37 46

16 18 - 36
0

5_ 57
38

9

16 19 38 5 5 1 58 39 7

16 20 40 190 5 59 41 13

16 21 42

44

48
46 

_.__.__

170

2	 _
_200	 r

22

_

5 60 43 0

16 22
_
_...5_ 61 45_  1

10 ~

16
23
24

5	 62	 47	 0

Total for 62	 2244
fields;

4
Dislocation density	 ^ 15.2	 x	 10	 d

j{	 36. 2
6	 47.75

16 25 49 0
18 26 - 47

18 _
18

27
. 2 13...

46 -___21^_ -_
_4 3 _ 

^.._

i 18 29 40

18 30
_

37 1

19

1̀Z
19

31 37 35

32
33

_-19L
41

28
65

19^
19._

34 43 84
..35 ..,45

13

19 36 47 83

10 37 50 65

10 38 47 89

10 39 44 3

(cm2
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OF POOR QUALITY

TABLE 40 Crain Boundary and 'Twin boundary Density
SAMPLE; Selnix 4-2-4 (Y2 Sample in polished condition. Magnification 100X .
Field area	 0.0241 cm . Circumference of test circle = n•D = 0. 55 cm.
A denotes No. of grain boundary intersections with circumference of teat circle.
B denotes No. of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.

If

r

FIELD A No. of
twins

B FIELD A No. of
twins

B

No. X C B Twin Y No. X
12 1 33 5 6 10 40 41 16 1
12 2 35 3 2 `10 41 38 0 1 2
12 3 _3_7 0 10 42 35 0 23
12 4 39 0 0 8 43 34 4 0
12
12

5
6

41 2 0 8^ 44 36 26 12
43 2 _..., 2_. 8 4^ 3$_ 10

12 8 47 4 4 8 47 42 4 25
12 9 49 4 8 48 44 2 65
12

1 ^-11 -" '0-
_1

5
-Q-- 8 4 4 8

14 .•^ .1.$.__ --Q_ _48_

14 12 47 4 9 8 51 50 4 7

14 13 44 -6— 6 52 4 6 25

14 14 ^ 41 1 6 53 46 4 10

14 15^ 38_. __ 0...__ 9 2
14 16 35 4 3 6 55 40 5 14

16 17 34

.~
_6 56 37 18

_

16

16 18 36 8 9  4 57 37 9 18

16 19 38 4 3 4 5839 6 1 8

16 20 40 3 41 4 59 41 6 9
16
16

21
22_.._44_

42 3 37 4 60 43 20 2

1....^ _..__.4. ,.	 _61 - 4 r-'- 11 -- 13
16
16

23
24

46
48

_
_

6

_
2
6

4	 62	 47	 6	 4

 Total for 62	 366	 756
fields;

LA for grain boundary= nm.PL= n	 5IM5

Ir	 12.2LAfor twin boundary=_-.	 -
2.	 0.55

X for grain boundary= 5. 9
0-for grain boundary=	 4.9

X for twin boundary = 12.2
Tfor twin boundary = 13.4

16 2 5 50 g 2 7
18 i-6 ----49

-- - 18--.2-7-
18 28

..46_
_43

4...
8

18 29 40 5 _
18 30 37 8 2S
20 31 3?_
2 0 32 -3 9
20 33 41

_
0

20
-20

34 
^35

43
_ 3

45 5 
20 36 47 2 2
10 3? 50 2
10 38 47
10 39 44 6 9

.5
55 16. 9

cm /crr^-

34.8
2cm /cm

r
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TABLE 41	 Precipitate Particle Density	 OF POOR QUALffY,

SAMPLE: Semix 4 - 2-4 (Y) Sample in polished condition. Magnification 400X.
Field area = 0. 00149 cm2
A denotes No. of Large precipitates observed in field of view.

t	 B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

FIELD A B FIELD A B

Y No. X La rgt Small Y No. X
12 1 33 8 10 4 3 11

12 2 35 1 7 10 41 3 3 3

12 3 37 2 11 1 42 0 32

12 4 39 1 6 8 43 34 2 33

12_ 5 41 13 8 44 36 0 5

12_
12

E^ _
7	 .

43
_.45 -

5	
-.

--
.	 5

12 1
,	

— --

12 8 47 5 11 8 47 42 6 5

12 9 49 3 20 8 48 44 3 24
12 10 51 3 6 5

14 11 50 2

14 12 47 0 6 8 51 50 3 15
14 13 44 3 303 6 52 4 2 27
14 14 41 5 28 6 53 46 4 8
14 15 3 8 4 14_ 2

14 16 35 1 92 6 55 40 1 8

16 17 34 1 30 6 56 37 0 4

16 18 36 1 24 4 57 37 8 21

16 19 3.8 23 4 58 3 4 38

16 20 40 5 4 59 41 7 24

16 21 42 3 146 4 60 43 30

16 22 44 1 490 4_ _ 61 45 18
16
16
16
18
18

23
24
25
26
27_

46
48
50
49

_46

0
3

0
2

52
54
40
2

4	 62	 47	 5	 16

r otal for	 2	 177	 2206
fields:

2Area of 62 fields 	 =	 0. 09238	 cm
No. of large ppt. =	 177 /0. 09238

= 1916 / cm
X for large ppt.	 =	 2.9
a for large ppt.	 =	 2. 0
No. of small ppt. =	 2206 /0. 09238

=23879 / cm2
X for small ppt.	 =	 35. 6
o-for small ppt.	 =	 72

18 28 43 1 19_
18 2 40 2 8
18 30

+
37 3 13

20 31 37 2 8
20 32 2 Z6
20 33 41 2 22

_2_0 34 43 1 1
20r 35 1 45 3 19
20 36 47 3 32

10 37 50 6 36

10 38 47 4 13

10 39 44 2 20
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TA13LE 42	 DISLOCATION DENSITY
SAMPLE: Semix 4-2-4 (Y) 	 Sample in etched corditio
Magnification 1000X, Area of field = 0.000238 cm
X and Y denote the location of microscope stage { field of
data measured.

FIELD No. of Dislocation
Pits

FIELD No. of Dislocation
Pits

Y No. X 4 Y No. X
12 1 34 0 10 40 41 202
12 2 35 0 10 41 3 0

12 3F— 37 0 10 4 0
12 4 39 0 8 43 35 790
12 5 _41 0 8 44 36 165
12
12

6
7

43

45
0 _,.__ _ _.__ _ _ 4

12 8 47 0 8 47 42 27
! 2 9 49^ 3 8 48 44
12 10 50 3
14 11
14 12 47

_
13 8 51 49 0

14 13 44 0 b 52 4 0

14 41 6 53 46 0

15 38  0 _'1^ 0E14
16 35 0 6 55 40 0
17 35 0^ 6 56 37 480

16 181 36 5 57 38
_

280

16 19 38 4 5 58 39 0
16 20 40 0 5 5 9 41 0
16
16
16 '-
16
16

21
22
23 -
24
25

42
^44
46f
48
49

_
0 5 60 43 0

_0_ 4

0
2

 5_ 61 45
5	 62	 47	 173
Total for 62	 5492
fields;

Dislocation density	 37. 2	 x	 104

88.6
c195

18 26 47
1818._ 27.28-- 46 0	 _-43 ._._.. _

580
2
30

40 3
37

k

3l

19

^
37 2

32
33 41 _ 188

_l 9
1-9

34 43 4
35 ^45 5

19 36 47 0

10 37 50

10 38 47 3

10 39 44 0

cm2

._.------	 0 ._.__...	 t%A-..
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1F2

A No. of
twins

B FIELD A No. of
twins

B

Y No. X G Y No. X
1 33 8 1 t 10 40 41 10 19

12 2 35 7 2 q 10 41 38 2 0

12 3 2 10 42 3 2 10

12 4 39 2 3
8 43

34 g
1

1212'

12

5	 -.6

7

4143 .

45

7:
3

8 44 36

^,..._.._

_

8,.  4 12
2

12 8 47 4 2 8 47 42 12 21

12 q 49
4

5 8 48 44 5 27

12 10 51 10 32 8 4 5 32

14 11
12

50.
47

_5  l3_.. 4^ 0 2
14 4 17 8 51 50 6 15

14 13 44 3 3 6 52 4 10 0

14 14 3 3 6 53 46 2 51
14 15 38__ 2 .4 ..— -- fit.,. ..4. 2
14 !6 35 0 1 6 55 40 5
16 17 34

0
28 6 56 37 0 _

16 18 36 0 0 4 57 37
16 19 38 3 8 _ 4 58 39 4

d16 20 40 5 50 4 59 41 2

16 1 42

44
46

48
50

7

12

10
3

5 4 60 43 4

1 6
16

16
16

22
23

24
2 5 1

?
44

12
4

4	 61	 45	 8
4	 62	 47	 5 

Total for 62	 302	 1112
fields;

L	 for grain boundary=	 . 'P	 w	 9
A	 ZL Z 0

L for twin boundary =-. 1 2 Q	 -A	 a.	 0.55	 -

X for grain boundary=	 4.87
a'for grain boundary=	 3. 15

X for twin boundary =	 17. 9
dfor twin boundary =	 18.3

18 26^ 49 5 5
_ 18

18

27
28

46
43

 5 
12

 T _

18 24 40

18 3 37
20 31

1
37 1

20 32 39 7 2

20
220

^ 2 0

33
34
35

6
43 _ 3

3

4
45 5 ±, 34

20` 36 47 10 20

10 37 50 4 13
10 1 38 47 5 12
10 1 39 1 44 7 13

.87
13

55 CM Jcn-^

51.2	 2
CM /cm

OF Pt Ui Q'-J4',Lh'`t(

TABLE 43 Grain Boundary and Twin Boundary Density
SAMPLE; Semix 4-2-8 (72► Sample in polished condition. Magnification 1OOX .
Field area = 0.0241 cm . Circumference of test circle = n•D = 0. 55 cm.
A denotes No. of grain boundary intersections with circumference of test circle.
B denotes No. of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.
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TABLE 44	 Precipitate Particle Density	
OF P00w QUALITY

SAMPLE: Sernix 4 - 2-8 (Z) Sample in poliahed condition. Magnification 400X.
Field area	 0.00149 cm2
A denotes No. of Large precipitates observed in field of view.
D denotes No. of Small precipitates observed in field of view.
X and YY denotes location of micro: cope stage for the data measured.

k

FIELD A B FIE LD A B

Y No. X La r Small Y No. X
12 1 33 0 6 10 40 41 1

12 2 35 0 10 10 41 3 2 4

12 3 37 l 5 1 42 3 2 12

12 4 39 1 7 8 43 34 1 3

12 5 41 0 16 8 44 36 4 3

12 6
7

43 0_. _^.__ 2 11

12 45 0 2

12 8 47 2 8 8 47 42 8 17

12 9 49 3 31 8 48 44 4 14

12 10 51 0 4 5

14 11 50 2 _.
14 12 47 0 4 8 51 50 1 7

14 13 44 0 3 6 52 4 5 15

14 14 41 0 2 6 53 46 4 15

14 15 3 C Q 10 , _, ^_ 0 16

14 16 35 1 2 6 55 40 0 2

16 17 34 0  22 6 56 37 0 28

16 18 36 0 0 4 57 37 0 1

16 19 38 0 23 4 58 39 0

16 20 40 0 1 4 59 41 0 3

16 21 42 3 _27 4 60 43 0 8
16 22 44_

_
0 13 _ 4 61 45 0 3

16
16
16

_
23

24
25

46
48
50

_
0
0
4

_
35
37
13

4	 62	 47	 0	 1

orTotal f	 62	 64	 1056
fields:
Area of 62 fields	 =	 0. 09238	 cm
No. of large ppt. =	 64 /0.0238

= 693 / cm
X for large ppt.	 =	 1. 0
odor large ppt.	 = 1.67
No. of small ppt. = 1056 /0.09238

=11430 / cn-12
X for small ppt.	 =	 17.0
crfor small ppt.	 =	 18.3

26 49 0
27 46 —l- _

r 28 43
2 40 0 26

I 

30 37 0
20 31 37 2 57
20 32 1
20 33 41 ` _0 46

_20 34 _43 0 79
20^ 35 45 0 33
20 36 47 1 44

10 37 50 3 30

10 38 47 0 24

10
1

39

1
44 0

--F—T
17 1

136



t
	

OF POOR QUALITY

TABLE 45	 DISLOCATION DFNsi,ry
SAMPLE: Semix 4,2-8 (Z)	 Sample in etched cordition
Magnification 1000X, Area of field = 0.000238 cril
X and Y denote the Iocatl;)n of microscope stage ( field of view )for the
data measured.

FiELD No.	 of Dielocation
P.it s

FIELD No. of Dislocation
Pits

Y No. ' X Y No. X
12 1 34 10 40 41

—, Iz
12 3

35

37

10 41 38
5 10 42 35 0

1
2

12

F
2

4

7

39 131 8 43 35 3
0 8 44 31)3 6 0

45

6

- 6 a
D

41^ 0

12
 

8 47 to 8 47 4 

2_

42 18

12 9 49 2 8 48 44

12 10 50 7 8 46 6

14 --11 0 8 480

14 12 47 it 8 51 49 195

14 13- 44 1, 6 52 49 —78

14 14
—

7 6 53 46 10

14 15 38 0

6

54

14 16 35 0 55 40 0

16

1

'1 35

36

0 6 56 37 2

0 0

16 5 58 39 0

I6 -YO 40 12 5 59 41 0

16

16

16

' ZI

22

24

44

48

33

18

340

0

5 -60 43 30

5 61 45 162

5	 62	 47	 55

Total for 62	 2491
f ie  If.

4
Dislocation density	 16. 9	 x	 10

-K 	 =	 40.2
6 =	 86. 9

16 25 49 41
18 276-- 47

-.„18.,. . 28 .I B 7 - 46 -
 43 7

18
^
2 2_ 40 15 9,

18 30 37 12

-12 37 114

It
19

_32 39 0
33 41 5 7

—1-?
ig

.J 4 43 6
35 45 272

19 36 47 0

10 37 50 73

10 38 47 3

10 39 44 2

2
cm
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