General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

DRL Nah 135:
$\% 9950-808$

Tedhicical Report: MRI : 294?

ANALYSIS OF DEFECT STRUCTURE IN SILICON characterization of semi materiel
 Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Coot Solar Artsy Project.

\triangle by

R. Natesh
G. B. String fellow
A. V. Virkar
J. Dunn
T. Guyer

4- February, 1983
 UPL Contract No. 955676

> The JPL Low. Cost Silicon Solar Array Project is
> sponsored by the U.S. Department of Energy and forms part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development foflow-cost solar arrays. This work was performed Ion the Jet Propulsion Laboratory, California Institute of Technology, by agreement between NASA and DOE.

Research
M -

ANALYSIS OF DEFECT STRUCTURE IN SILICON

CHARACTERIZATION OF SEMIX MATERIAL

Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low-Cost Solar Array Project.

FINAL REPORT
by
R. Natesh
G. B. Stringfellow
A. V Virkar
J. Dunn
T. Guyer

February, 1983

JiPL Contract No. 955676

> The JPL Low Cest Silicon Solar Array Project is sponsored by the US. Department of Energy and forms part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development of low cost solar arrays. This work was performed for the Jet Propilsion Laboratory, California Institute of of Technology, by agreement between NASA and DOE.

TECHNICAL CONTENT STATEMENT

This report was prepared as an account of work sponsored by the United States Govermment. Neither the linited States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or pruwess disclosed, or represents that its use would not infringe pirivately owned rights.

TABLE OF CONTENTS

SECTION Page
I.IST OF' TABISES 5
IIST OF FICURES 6

1. ABSTRACT 9
2. QUANTITATIVE ANALYSIS OF DEFECTS 10
2.1 INTRODUCTION 10
3. 1.1 Advantages of Quantitative Microscopy (QTM) 11
2.2 EXPERIMENTAL PROCEDURE 13
2.2.1 Chemical Polishing and Etching 13
2.3 RESULTS AND DISCUSSIONS 18
2.3.1 Measurement of Grain Boundary and Twin Boundary Length Per Unit Area 20
2.3.2 Measurement of Precipitate Particles 23
2.3.3 Dislocation Density Measurement 26
2.3.4 Cell Efficiency Versus Twin Boundary Density 30
2.3.5 Diffusion Length Versus Dislocation Density 30
2.3.6 Cell Efficiency Versus Area oi All Defects 31
2.3.7 Cell Efficiency Versus Location of Wafers 34
2.3.8 Unprocessed Wafers 37
2.3.9 Nuncerical Significance of Measured Data 39
4. EFFECT OF GRAIN BOUNDARY DENSITY ON CARRINR MOBILITY 42
3.1 INTRODUCTION 42
3.2 EXPERIMENTAL PROCEDURE 43
3.3 RESULTS AND SAMPLE CALCULATIONS 46
3.3.1 Thickness 46
3.3.2 Resistivity 47
3.3.3 Hall Const., Mobility, Carrier Conc., Carrier Type 48
3.3.4 Normalized Mobilities 49
3.3.5 Grain Boundary Density 50
3.4 DISCUSSIONS 52
4 CONCLUSIONS 54
4.1 QUANTITATIVE ANALYSIS OF DEFECTS 54
4.2 EFFECT OF GRAIN BOUNDARY DENSITY ON CARRIER MOBILITY 55
5 REFERENCES 56
6 APPENDIX (Tables 1 thru 45). 92-137

LIST OF TABLES

Table No. Title Page
I The Circumference and the Field 19 of View on the Olympus Inverted PME Microscope
II Grain Boundary and Twin Boundary 22 Length Per Unit Area for the Semix Wafers
Precipitate Particle and Dislocation 25 Pit Density for Semix Wafers
Defect Density, Conversion Efficiency, 29 and Diffusion Length of Semix Sainples
Area of Influence of Structural Defects 33 per Unit Volume of Semix Samples
Defect Densities in Unprocessed Wafers 38
VI
Thickness Measurements on Sample G-12 46
VII
VIII Thickness Date for All Samples 46
IX Measured Voltages On Sample G-12-2 48
X Resistivity, Hall Mobility, Carrier Concen- 51 tration, Hole Mobility, Normalized Hole Mobility, and Grain Boundary Density for All 20 Specimens

LIST OF FIGURES

Fiqure No. Page
1A Position of Wafers from UCP Ingot 59 5848-13C
12 Relative Positions of the Measured 60Fields in the Semix Warers
2 Region Shiowing High Twin Density 61in Semix A-13 (50X)
3 Region Showing a Large Number of 61 Precipitates in Semix A-13(50X)4Large and Small Precipitates in62Semix B-2 (1330X)
5 Precipitates in Semix B-2 (530X) 62
6 Many Grains and Grain Boundaries 63 in Semix Coll (50X)
7 Twin and Grain Boundaries in Semix 63 C-12 (50X)
8 Large Number of Small Twin Boundaries 64in Semix D-8. These are not TypicalRegions (66X)
Many Twin and Grain Boundary Region 64
in Semix D-8 (66X)Dislocations Piled up Between Twins65due to Localized Strain in SemixD-8 (600X)
11 Dislocations Interacting with a Twin 65Boundary in Semix D-8 (1500X)
High Twin Density in Semix E-13 (50X) 66
Figure No. Title
Page
13 Large Precipitate Particle Between 66
Twing in Semix E-13 (530X)14
Twin and Grain Boundary Structure 67 in Semix F. 2 (50X)
Small Precipitate Particles in Semix 67 F-2 (200X)
Twins and Grain Boundaries in 68Semix G-12 (50X)
Region of High Twin Density in o8 Semix G-12 (100X)18
Dislocation pile-ups in Semix H-8 69 (1330X)
High Dislocation Density Between 69 Twins in Semix D-8 (1330X)
Twin Boundary Length per Unit Area vs. 70 Relative Position of the wafer in the ingot from Top of the Solidified Ingot21
Dislocation Pit Density vs. Large Pre- 71 cipitate Particle Density
Solar Cell Efficiency vs. Twin Boundary 72 Length Density
Diffusion Length vs. Dislocation Pit Density 73
Twin Boundary Length Per Unit Area vs. 74 Grain Boundary Length per Unit Area
Solar Cell Efficiency vs. Precipitate Area 75
Solar Cell Efficiency vs. Dislocation Area 76
Solar Cell Efficiency vs. All Defect Area 77 27Cell Map Showing Locations of Wafers78
Figure No. Title Page
29 Twin Denolty ve. Distance from Ingot Axis 79
30
Cell Efficiency va. Distance from Ingot Axis 80Segregatic:. oi lmpurities in Cant Silicon81
32
Pracipitate Denaity va, Relative Poaition 82
33
Large Precipitate Density ve. Relative Position 8334.3536
Dislocation Density va. Relative Poaition 84
Twin Boundary Density vs. Relative Position 85
Grain Boundary Denvity va. Relative Position 86
Electrical Connestions to get a Small Contact Area 87
Two Configurations for Resistivity Measurements 87
Two Configurations for Hall Voltage Measurements 88
Grid to Locate Center of a Given Field 88
Configuration to Determine Carrier Type 89
Mobility vs. Grain Boundary Density 90
Normalized Mobility vs. Grain Boundary Density 91

SECTION 1

ABSTRACT

Statistically aignificant quantitative structural imperfection measurements were made on samples irom Ubiquitous Crystalline Frocess (UCP) Ingot 5848-13C. Important correlation was obtained between defect densities, cell efficiency, and diffusion length. Grain boundary substructure displayed a strong influence on the conversion efficiency of solar cells from Semix material. Quantitative microscopy measurements gave statistically significant information compared to other micro - analytical techniques. A suriace preparation technique to obtain proper contrast of structural defects suitable for QTM analysis was perfected and is now being used routinely.

A study was made to determine the relationships between hoie mobility and grain boundary density. Mobility was measured using the van der Pauw technique, and grain boundary density was measured using quantitative microscopy technique. Mobility was found to decrease with increasing grain boundary density.

SECTION ?

QUANTITATIVE ANALYSIS OF DEFECTS

2.1 INTRODUCTION

The objective of this work is to gain fundamental understanding of the role of structural imperfections and chemical impurities on colar cell performance.

The type, density, distribution, and electrical activity of such defecta have aignificant effects on solar cell performance. Most of the processes designed to produce silicon crystals at low cost introduce a high density of defecte in crystals, which have a distinct effect on solar cell efficiency.

The types of defects present in many of the low - cost silicon "sheets", produced by a variety of methodology, run the gamut from point defecte to dislocations, planar defects such as twins and stacking faults, high and low angle grain boundaries, and second phase inclusions. The types of imperfections present and their density are a function of the specific method used for producing the silicon sheets.

In general, rapidly grown ribbon - type crystals produced by techniques such as the EFG process, the Web Dendritic method, etc., typically contain a relatively high population of dislocations usually arrayed along linear boundaries, a high density of twins, and chemical impurities in the form of precipitates. Sheets formed by slicing of cast crystals, such as SEMIX material, are generally polycrystalline in nature with grain diameters from a fraction of a millimeter to several millimeters, and twin boundaries oriented in different direction within many of the grains.

ORIGINAL BM: :"

OF POOR QUABIIT,

Quantitative analysis of surface defects was performed by using a Quantimet Quantitative Image Analyzer (QTM 720). The results were double checked by manually counting all the defects. The QTM 720 can differentiate and count 64 shades of grey levels between black and white contrasts. In addition, it can characterize structural defects by measuring their length, perimeter, area, density, spatial distribution, frequency distribution (in any preselected direction), and is programn*able in these measurements. However, the QTM 720 is extremely sensitive to optical contrasts of various defects. Therefore, to obtain reproducible results, the contrasts produced by various defects must be similar and uniform for each defect types along the entire surface area of samples to be analyzed. To achieve this contrast uniformity, a chemical cleaning and polishing procedure was developed and perfected for the SEMIX samples described in this report. The cleaning and polishing procedure produced a very clean and even surface. Statistically significant quantitative data was measured and their significance is discussed.

2.1.1 ADVANTAGES OF QUANTITATIVE MICROSCOPY TECHNIQUE

There is significant advantage in using quantitative microscopy technique as described herein to analyze structural defects. Techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), while providing useful information, are usually performed at bigher magnifications. For example, TEM analysis is usually carried out in the magnification range $10,000 \mathrm{X}$ to $300,000 \mathrm{X}$. Because of the high magnification employed, the area of the field of view is very very small
compared to the total surface area of the starting eample, such as a 2 cm by 2 cm sample. Hence, the information obtained,although impresaive, ma y not be statistically significant. However, in our quantitative microscopy technique as used in this report, the magnifications used are very low such as 100 X to l 000 X . In addition, a total of 62 fields was analyzed from a $2 \mathrm{~cm}, 2 \mathrm{~cm}$ sample. For grain boundary and twin boundary measurement, the total area analyzed was $1.49 \mathrm{~cm}^{2}$ for a 2 cm by 2 cm sample i, e., a whopping 37% of total aurface area was actually measured. For precipitate particles, the total area analyzed was $0.09 \mathrm{~cm}^{2}$ i.e., 2.3% of the total surface area was measured. For dislocation pits, the total anea measured was 0.37% of the total sample area. By way of comparision, if we were to analyze 62 fields from a 2 cm by 2 cm sample by $T E M$ technique at $100,000 \mathrm{X}$, the total area for 62 fields will be only $0.00000147 \mathrm{~cm}^{2}$ which is 0.000037% of the sample surface area.

Therefore, the results obtained by quantitative microscopy technique as described in this report are statistically more significant and reliable than any other technique such as TEM, SEM, etc.

EXPERIMENTAI. PROCEDURE

2.2.1 CHEMICAL POLISHING AND ETCHING

Fifteen (15) samples from SEMIX's Ubiquitous Crystalline Process (UCP) Ingot 5848-13C were received by Materials Research, Inc., (MRI) from JPL for characterization of structural defects. These samples measured 2 cm by 2 cm and were designated by JPL as 1-4-13 (or A-13), 2-10-2 (or B-2), 3-10-12 (or C-12), 4-10-8 (or D-8), 1-2-13 (or E-13), 2-9-2 (or F-2), 3-9-12 (or G-12), 4-9-8 (or H-8), 1-10-13 (or T), 1-12-14 (or U), 2-5-1 (or V), 3-4.-12 (or W), 3-4-16 (or X), 4-2-4 (or Y), and 4-2-8 (or Z). We notice that each sample is defined by three numbers. The first number refers to the section, the second number refers to the wafer number, and the third number refers to the cell number. Thus, sample A is located in section 1 , wafer number 4, and cell number 13. The location of the samples is shown clearly in Figure 1 with respect to the center line of the casting $\mathcal{E}-\mathbb{E}$. From Figure 1 A, it is clear that Ingot $5848-13 \mathrm{C}$ is one-quarter (1/4) of the total casting. This quarter ingot was cut into four (4)
wentlonm, Finch mection wan furthet aectioned lito twelve
(12) watera, and nixieen (16) cella.

Samplen ${ }^{T} T$, $11 . V, W, X, Y$, and Z were nemecelved mallples. They were not subjected to any provemoing. Samplea li, Fi, G, \& ll weve fabricated lnto moler celle whothout ketforitig. Somplen A, B, C, and I were mettered at sha" (" for $1 / 2$ hout and then procesped into oolar celle.
 produced by varione nemetural defecte, It can diefliguleh G: ahades of grey levela between black alld white. liy remembering the exact ohade, life NTM 720 le able correctly comitt each defoct types, lherefore, to obetil accurate and reproducible reoulte, if is very limporiant that each structural defect rype be etched to identical contrant, MRI han now periected a chemical cleaning, poliohing, and etching piocedure (o) prodice contrasta fomblt a deblanding requitement in thene Somix sambleg. All chmmate uned were low Sodimin MOS, Filectronte Grade. The following procedures wete used:

Chricat

OF POOR QUALII

1) Grease, Dust and wher Surface Contamination Removal

a. Sample immersed in trichloroethylene	time (min.) 3
b. Sample rinsed in acetone	3
c. Sample rinsed in 2- Propanol	3
d. Compressed N_{2} gas to blow off 2-Propanol	
to prevent stain marks	0.5

2) Protective Coating Application
a. Using a fine paint brush, Apiezon Wax dissolved in trichiorecthylene was applied to one surface of the silicon sample.
b. The wafer was then heated on a hot plate to about $120^{\circ} \mathrm{C}$ to accelerate evaporation of trichloroethylene. The Apiezon Wax melted and spread uniformly covering the entire suriace. All of the trichlorcethylene evaporated leaving behind a thin coating of the acid-resistant Apiezon Wax covering the surface.
3) Silicon Oxide Layer Removal

a. Sample was immersed in concentrated HF	$\begin{gathered} \text { time } \\ (\min .) \\ 4 \end{gathered}$
b. It was then rinsed in distilled water	4
c. It was then rinsed in 2 -propanol	4
d. N_{2} gas to blow off excess 2-propanol	0.5

The protective coating application is done for two reasons: i) to prevent attack and dissolution of samples from two surfaces. By using a wax coating, the coated surface is prevented from chemical attack during polishing and etching procedure, ii) the protective coating may be dissolved later in trichloroethylene and JPL may in future build a solar cell on that surface. Thus a direct correlation between cell efficiency and defect densities for each sample may be obtained.
4) Chemical Polishing Procedure

The chemical polishing solution is a mixture by volume of 1 part nitric acid $\left(\mathrm{HNO}_{3}\right): 2$ parts hydrofluoric acid (HF): 3 parts acetic acid ($\mathrm{CH}_{3} \mathrm{COOH}$). The following procedire was used s

	time (min.)
a.The wafer was immersed at $50 \pm 3^{\circ} \mathrm{C}$ in polishing solution	$0.1-0.75$
b. It was then rinsed in deionized distilled water	4
c. It was then rinsed in 2-propanol	4
d. $\quad \mathrm{N}_{2}$ gas blown to dry sample surface	0.5
e.Sample was observed under micrscope and polishing was continued untila smooth flat surface was observed	$0.1-0.75$

5) Chemical Etching Procedure

The chemical etching solution consists of 2.5 gm . of chromium trioxide $\left(\mathrm{CrO}_{3}\right)$ dissolved in 15 ml . deionized distilled water
and 15 ml . concentrated hydrofluoric acid (HF). The following procedure was used:

	time (min.)
a.Sample was immersed in the chemical etching solution	$0.1-0.3$
b. It was then rinsed in deionized distilled water	4
c. It was then rinsed in 2-propanol	4
d. N gas blown to dry sample surface	0.5
e. Sample was observed under microscope and etching	
procedure was continued until dislocation pits are visibly observed	

The etching times for the Semix samples were as follows.

Sample No.	Etching Time (Sec.)
A-13	67
B-2	60
C-12	48
D-8	37
E-13	77
F-2	82
G-12	61
H-8	48
Average	60

RESULTS AND DISCUSSION

MEASUREMENT OF GRAIN BOUNDARIES, TWIN BOUND-

ARIES, PRECIPITATE PARTICLES, AND DISLOCATION

PITS

Using an Olympus Inverted Optical Metallurgical Microscope, Model PME, approximately 62 fields on each sample were analyzed for structural defects. Figure lB shows the relative positions of the 62 fields that were observed on each sample. The feature under investigation is counted in each field and averaged over the 62 fields for a statistical average of the overall sample. The field of view of the microscope is a necessary quantity to know so that some dimensions can be given to the defect feature. Using a $0.01 \mathrm{~cm}-0.001 \mathrm{~cm}$ calibrated standard microscope slide, the diameter of the field of view was measured at different magnifications. From this data, the circumference and the area of the field of view was determined. This data is tabulated in Table l. Table 1 shows that as the magnification approximately doubles for successive objective setting, the diameter of field of view decreases by about half.

The defect measurements were done in three (3) separate steps.
First, the grain boundary and twin boundary intersections were

TABLE I

The circumference and the field of view on the Olympus inverted
PME Microscope

Eye- piece Lens	Object- ive Lens	Magnifi- cation	Diameter of field of view (cm)	Circum- ference of field of view (cm)	Area of field of view $\left(\mathrm{cm}^{2}\right)$
10 X	5 X	50 X	0.36	1.13	0.102
10 X	10 X	100 X	0.175	0.55	0.0241
10 X	20 X	200 X	0.089	0.28	0.00622
10 X	40 X	400 X	0.0435	0.137	0.00149
10 X	100 X	1000 X	0.0174	0.055	0.000238

Sample Calculation:
Circumference at $50 \mathrm{X}=\pi \mathrm{D}=(\pi)(0.36 \mathrm{~cm})=1.13 \mathrm{~cm}$
Area of field of view at $50 \mathrm{X}=\frac{\pi \mathrm{D}^{2}}{4}=\frac{\pi(0.36)^{2}}{4}=0.102 \mathrm{~cm}^{2}$

ORIGINAL : SRL. K
 OF POOR QUALITV

measured for all the 62 fields using a magnification of 100 X in the polished condition. Next, the precipitate particles were measured for all the 62 fields using a magnification of 400 X in the polished condition. Next, the sample was etched in the etching solution and immediately measurements were made for dislocation pits for all the 62 fields at a magnification of 1000X.

All of these measurements were made manually. Attempte were made to use the Quantitative Image Analyzer (Quantimet OTM 720). However, this was not successful since the contrast on the CRT was poor for the fine precipitates at 1000X. These manual measurements were done very carefully, the measurements were repeated, and found to be reproducible. All measured data is listed in Appendix.
\qquad Per Unit Area

Since grain boundaries can be location of efficient carrier recombination centers and act as sinks for impurities which can be detrimental to the efficiency of the solar cell, 1-4 the grain boundary length per unit area is an important quantity to know. Using a statistical method of counting the intersections of the grain boundaries and twin boundaries with a test line, the length per unit area can be calculated using the following relationship ${ }^{5,6}$:
$L_{A}=(\pi / 2) \cdot P_{L}$, where
$L_{A}=$ line length of grain bcundaries or twin boundaries per unit area ($\mathrm{cm} / \mathrm{cm}^{2}$)
$P_{L}=$ number of point intersections of grain boundaries or twin boundaries per unit length of test lines.

Figures 2, 6, 7, 8, 9, 12, 14, 16, and 17 show typical structures of twin boundaries and/or grain boundaries in the Semix samples. The Appendix Tables $1,4,7,10,13,16,19$, and 22 contain a listing of the raw measured data for grain boundaries and twin boundaries. The information in the above tables has been summarized in Table II, along with calculated values for arithmetic mean and standard deviation.

Several fentative graphs are shown in order to determine any apparent relationship in the measured data. These graphsare preliminary and subject to revision as more and more samples are examined and better information about sample history is obtained from other sources (such as Semix Corporation, JPL, OCLI, etc.,). Figure 20 shows a plot of twin boundary length as a function of the distance of the wafer from top of the ingot. Figure 20 shows that, as a first approximation, twin boundary density (expressed as length/unit area) decreases as the distance from top of ingot increases. Samples A and E located at top of the ingot have higher densities and lower

Grain Boundary and Twin Boundary Length Per Unit Area for the
Semix Samples

SEMIX Sample Number	```Grain Boundary Length per unit area (cm/cm```	Twin Boundary Length per unit area $\left(\mathrm{cm} / \mathrm{cm}^{2}\right)$
A-13	$\begin{aligned} & \frac{8.2}{x}=2.9 \\ & \sigma=2.0 \end{aligned}$	$\begin{aligned} & \frac{99.0}{x}=34.6 \\ & \sigma=56.5 \end{aligned}$
B-2	$\begin{aligned} & 4.5 \\ & \bar{x}=1.6 \\ & \sigma=2.2 \end{aligned}$	$\begin{aligned} & \frac{15,8}{\bar{x}}=5.6 \\ & \sigma=9.3 \end{aligned}$
C-12	$\begin{aligned} & 13.4 \\ & \bar{x}=4.7 \\ & \sigma=2.7 \end{aligned}$	$\begin{aligned} & 31.9 \\ & \bar{x}=11.2 \\ & \sigma=11.1 \end{aligned}$
D-8	$\begin{aligned} & \frac{13.8}{\bar{x}}=4.8 \\ & \sigma=3.2 \end{aligned}$	$\begin{aligned} & 44.5 \\ & \bar{x}=15.6 \\ & \sigma=17.1 \end{aligned}$
E-13	$\begin{aligned} & \frac{7.1}{x}=2.5 \\ & \sigma=2.1 \end{aligned}$	$\begin{aligned} & 68.5 \\ & \overline{\mathbf{x}}=24 \\ & \sigma=38 \end{aligned}$
F-2	$\begin{aligned} & \frac{5.4}{x}=1.9 \\ & \sigma=2.6 \end{aligned}$	$\begin{aligned} & 12.2 \\ & \mathrm{x}=4.3 \\ & \sigma=6.8 \end{aligned}$
G-12	$\begin{aligned} & \frac{12.1}{\bar{x}}=4.2 \\ & \sigma=2.6 \end{aligned}$	$\begin{aligned} & 40.7 \\ & \bar{x}=14.3 \\ & \sigma=15.5 \end{aligned}$
H-8	$\begin{aligned} & \frac{9 .}{}^{4}=3.3 \\ & \sigma=1.9 \end{aligned}$	$\begin{aligned} & 35.9 \\ & \mathrm{x}=12.6 \\ & \sigma=13.3 \end{aligned}$
Average	9.2	43.6
$\begin{aligned} & \overline{\mathbf{x}}=\text { arithmetic mean }=\frac{\sum \text { features in all fields }}{\text { Total number of fields }} \\ & \sigma=\text { standard deviation }=\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right] \end{aligned}$		

solar cell efficiencies. To explain this phenomenon, data on crystal growth conditions are required, which is currently not available. Figure 24 is a plot of the data listed in Table II. As a first approximation, Figure 24 shows that as the grain boundary length/unit area increases, the twin boundary length/unit area increases rapidly at first then levels off and decreases. Assuming that nucleation of twin boundaries occur at grain boundaries, one would expect the twin boundary density to increase with decreasing grain size i.e., increasing grain boundary area. However, there are many interrelated unknown factors (regarding crystal growth conditions), which may make any possible definite relation between grain size and twin boundary density difficult to determine. The purpose of plotting twin boundary length versus grain boundary length is simply to pictorially depict obstrved relationship. Figure 24 does not imply that twin boundary area must depend upon grain boundary area. A further study will be required to see if there is any definite relationship between these variables.

2.3.2 Measurement of Precipitate Particles

The polished samples were observed at a magnification of 400 X , and the number of precipitate particles were counted in
each ficis. There appeared to be two fairly diatinct oizee of what was counted as precipitate particlea. The large--ized defecte wore clearly recognized to be precipitate particles. However, there were smaller features, that could not be resolved clearly, which looked like precipitate particlea. The only other possibilities were that these features aremall stain marks or etch pits. Since there is some questione as to the identity of these features, observation of these samples at a higher magnification using a Scanning Electron Microscope (SEM) is recnmmended. However, for the time being, these features will be regarded as anall precipitatea, subject to correction later. The Appendix Tables 2, 5, 8, 11, 14, 17, 20 and 23 contain a listing of the raw measured data for precipitate paricles in these Semix samples. The information contained in the above tables have been summarized in Table III, along with values for arithmetic mean and standard deviation. Small and large precipitate particle densities are listed separately in Table III.

TABLE III
Orin

Precipitate Particle and Dislocation Pit Density for Semix Samplea

SEMIX Sample Number	Precipitate Particie Denaity (particles/cm ${ }^{2}$)			Dialocation Pit Denaity (pite $/ \mathrm{cm}^{2}$)
	small	large	total	
$A-13$	$\begin{aligned} & 22 \times 10^{3} \\ & x=33 \\ & \sigma=36.5 \end{aligned}$	$\begin{aligned} & \frac{745}{x}=1.1 \\ & \sigma=1.5 \end{aligned}$	23×10^{3}	$\begin{aligned} & 4.9 \times 10^{4} \\ & \bar{x}=1,3 \\ & \sigma=23 \end{aligned}$
B-2	$\begin{aligned} & 19.5 \times 10^{3} \\ & \hdashline=29.1 \\ & \sigma=18.1 \end{aligned}$	$\begin{aligned} & 44 \\ & \bar{x}=0.66 \\ &=0.95 \end{aligned}$	20×10^{3}	$\begin{aligned} & 9.5 \times 10^{4} \\ & x=23 \\ & x=45 \end{aligned}$
C-12	$\begin{aligned} & 6.2 \times 10^{3} \\ & \frac{x}{x}=9.2 \\ & \sigma=7.7 \end{aligned}$	$\begin{aligned} & \frac{65}{\bar{x}}=0.1 \\ & \sigma=0.4 \end{aligned}$	6.3×10^{3}	$\begin{aligned} & 37 \times 10^{4} \\ & \bar{x}=89 \\ & \sigma=62 \end{aligned}$
D-8	$\begin{aligned} & 2.5 \times 10^{3} \\ & \frac{2}{x}=3.8 \\ & \sigma=4.0 \end{aligned}$	$\begin{aligned} & 152 \\ & \bar{x}=0.23 \\ & \sigma=0.46 \end{aligned}$	2.7×10^{3}	$\begin{aligned} & 10 \times 10^{4} \\ & \bar{x}=24 \\ & \sigma=51 \end{aligned}$
E-13	$\begin{aligned} & 9.1 \times 10^{3} \\ & \frac{9}{x}=13.5 \\ & \sigma=10.6 \end{aligned}$	$\begin{aligned} & 400 \\ & x=0.6 \\ & x=0.7 \end{aligned}$	9.5×10^{3}	$\begin{aligned} & 37 \times 10^{4} \\ & x=89 \\ & \sigma=96 \end{aligned}$
F-2	$\begin{aligned} & 4.8 \times 10^{3} \\ & x=7.2 \\ & \sigma=10.5 \end{aligned}$	$\begin{aligned} & 740 \\ & \bar{x}=1.1 \\ & \sigma=2.1 \end{aligned}$	5.6×10^{3}	$\begin{aligned} & 17 \times 10^{4} \\ & \frac{x}{x}=40 \\ & \sigma=111 \end{aligned}$
G-12	$\begin{aligned} & 6.4 \times 10^{3} \\ & \bar{x}=9.6 \\ & \sigma=8.0 \end{aligned}$	$\begin{aligned} & 140 \\ & \bar{x}=0.21 \\ & \sigma=0.41 \end{aligned}$	6.6×10^{3}	$\begin{aligned} & 45 \times 10^{4} \\ & \bar{x}=108 \\ & \sigma=161 \end{aligned}$
H-8	$\begin{aligned} & 9.5 \times 10^{3} \\ & \frac{9}{x}=14.1 \\ & \sigma=10.9 \end{aligned}$	$\begin{aligned} & 250 \\ & \bar{x}=0.4 \\ & \sigma=0.8 \end{aligned}$	9.7×10^{3}	$\begin{aligned} & 86 \times 10^{4} \\ & \bar{x}=204 \\ & \sigma=235 \end{aligned}$
Avg.	10.0×10^{3}	367	10×10^{3}	31×10^{4}

For precipitate particle density, 2.3% of the total area was meaeured.
For dislocation density, 0.37% of the total area was measured.

A sample calculation for amall precipitate density in ample $\mathbf{F - 2}$ in Table III is shown below:

Figures 3, 4, 5, 13, and 15 show precipitate particlea on some of the Semix samplen. The large precipitate diameter is of the order of magnitude $\sim 15 \times 10^{-4} \mathrm{~cm}$, while the small precipitate diameter is of the order of magnitude $\sim 3 \times 10^{-4} \mathrm{~cm}$..

2.3.3 Dislocation Dessity Measurement

After etching each of the Semix wafers, the dialocation density was determined by counting the number of dislocation etch pits at 1000X in each field of view for approximately 57 fields per ample. The number of fields mersured wes slightly lower due to mechanical interference of the longer objective lens with the microscope stage. The Appendix Tables $3,6,9,12,15,18,21$, and 24 list the raw rneasured data
for dislocation number density. The information in the above tablea have been summarized in Table III, along with calculated valuee for a rithmetic mean and standard deviation. A sample calculation for wafer F-2 in Table LII is as follows:

Figures 10, 11, 18, and 19 show dislocation arrangements in some of the Semix samples.

Figure 21 shows a plot of dislocation density versus la ge precipitate dunsity from the data listed in Table III (data for smali precipitate was not used in Figure 21 since the identity of small precipitate was not positively established). Figure 21 shows that as the large precipitate density increased from sample to sample, the corresponding dislocation density decreased. This trend is quite clear even though some anomalies arepresent in Figure 21. This observation may be explained on the basis
that dislocation lines constitute tuben of fast diffusion, with a diffusion coefficient close to the coefficient of stlf diffusion along grain boundaries. The rates of diffusion along such short-circuit paths are significantly higher than for volume diffusion, since the associated activation energies are much lower than for volume diffusion ${ }^{8}$. As dislocation density increases, larger number of short-circuit paths are now available for impurity atoms to migrate. This may result in a decrease in precipitate density. While the intricidic properties of individual dislocations, dislocation networks, and grain boundaries are governed by the presence of space charge cylinders around deiects, the typical electrical response of these structural defects is determined by the presence of impurities in association with the deíects. The interaction energy between common impurities such as $\mathrm{Fe}, \mathrm{Ni}, \mathrm{Cu}$ and a dislocation are fairly high, so that impurity atmospheres and impurity precipitates can form at dislocations ${ }^{9}$. When defect intersections occur in crystals, the resulting electrical effects are more pronounced ${ }^{10,11}$. Presence of impurities at or near crystallographic defects make them electrically active. When P is diffused into the crystals, the impurities from the defects are "gettered" due to reactions between P and impurities decorating the defects. As a result, the defects are no longer electrically active. However, the defects are still present within a diffusion length of beamgenerated charge carriers. Hence, predominant electrical effects in silicon devices are caused by defect-impurity association (see Fig. 10, 11, \& 19).
TABLE IV

Semix sample number	Small precipitate density (cm^{-2})	Large precipitate density (cm ${ }^{-2}$)	```Total precipitate density (cm-2)```	Dislocation density (cm-2)	Grain boundary length per unit area $\left(\mathrm{cm}^{-1}\right)$	Twin boundary length per unit area (cm ${ }^{-1}$)	Cell efficiency (\%)	Diffusion length* ($\mu \mathrm{m}$)
A - 13	22×10^{3}	745	23×10^{3}	4.9×10^{4}	8.2	99.0	7.2	53
B - 2	19.5×10^{3}	444	20×10^{3}	9.5×10^{4}	4.5	15.8	10.0	51
C-12	6.2×10^{3}	65	6.3×10^{3}	37×10^{4}	13.4	31.9	9.7	41
D-8	2.5×10^{3}	152	2.7×10^{3}	10×10^{4}	13.8	44.5	10.8	47
E-13	9.1×10^{3}	400	9.5×10^{3}	37×10^{4}	7.1	68.5	6.2	35
F-2	4.8×10^{3}	740	5.6×10^{3}	17×10^{4}	5.4	12.2	9.6	22
G-12	6.4×10^{3}	$\because 40$	6.6×10^{3}	45×10^{4}	12.1	40.7	9.5	19
H-8	9.5×10^{3}	250	9.7×10^{3}	86×10^{4}	9.4	35.9	10.7	31

or poun exinems

* data as given in reference No. 7
Defect Density, Conversion Efficiency, and Diffusion Length of Semix Samples.

2.3.4 Cell Efficiency Versus Twin Boundary Density

Table IV lists the defect densities in these Semix samples as obtained by MRI along with the data for cell efficiency and diffusion length as obtained by ochi ${ }^{7}$. The data for cell efficiency was plotted as a function of the observed unta for different iypes of structural defecte. Figure 22 shows a plot of cell efficiency versus twin boundary density. An approximate inverse relationship is observed. Plotting cell efficiency versus grain boundary density did not show any clear trend. The significance of Figure 22 is that the grain boundary substructure may influence cell eficiency in Semix material. In other words, the defect structure within grains may influence the cell efficiency more than the grain boundary itself. Furthermore, as mentioned in page 25, interactions of these substructures with one another and witi impurity atmospheres may cause more pronounced electrical effects.

2.3.5 Diffusion Length Versus Dislocation Density

The numerical data for diffusion length was plotted in several ways using the various observed data for different types of structural defects listed in Table IV. Figure 23 showa a graphical plot of diffusion length versus observed dislocation density in the cight samples. The figure shows an important trond. An inverse relationship is observed between diffusion length and dislocation density. Since the average grain size in these samples is expected te larger than the diffusion length in a single crystal Semix of the same doping level (data not currently avallable), the effective lifetime and difusion length in the polycrystalline Semix samples is expected to be

 OF POOR QUAEITY

reduced by substructures withingrains (such as tw in boundary density, dislocation density, and precipitate particle density along with chemical segregation a round these substructures).

2.3.6 Cell Eficiciency Versus Area of All Defects

In an attempt to correlate the cell efficiency with various structural imperfections, it was tentatively assumed that the effectiveness (in reducing the cell efficiency) of various defect types was same. With this assumption, the total area of all structural defects was determined and summed.

The actual measurement on plane of polish of silicon wafers yields information in terms of length per unit area of structural features (listed in Table IV). However, these features are truly three-dimensional and, therefore, quantitative stereological relations can be used to convert these measured quantities to area per unit volume. For example, dislocation density measured in number $/ \mathrm{cm}^{2}$ is the same quantity as length $/ \mathrm{cm}^{3}$ of dislocations ${ }^{5}$. In order to determine the effect of various defects, the data in Table IV have been converted on a unit volume basis and is listed in Table V. The effectofdefects on charge carriers will be in the immediate vicinity of the defects. Therefore, surface area of defects per unit volume is the most logical parameter to correlate efficiency with defect densities.

The precipitate matrix-interface area per unit volume (i. e. "area of influence" for precipitates) was calculated as follows:

$$
S_{v(p)}=\pi d_{1}^{2} P_{1}+\pi d_{2}^{2} P_{2}
$$

ORIGINAL. PAGE IS
 OF POOR QUALITY

Where d_{1} and d_{2} are the diameters of the large and amall precipitates, and P_{1} and P_{2} are respective densities (number $/ \mathrm{cm}^{3}$). The precipitates exhibited binodal distribution. Smaller precipitates were on the average about $3 \mu \mathrm{~m}$ in diameter, while the larger precipitates were on the average about $15 \mu \mathrm{~m}$ in diameter. With this information, the surface area for small and large precipitates may be calculated, and these are listed in Table V,

With regards to dislocations, it was assumed that a cylindrical area a round a dislocation is the effective area in reducing cell efficiency. The radius of this cylindrical area was assumed to be $20 \AA$. The reasoning for this assumption is that electrically active impurities will likely be located within 5 b from the core of the dislocation (where b is the Burgers Vector). Thus, the "area of influence" due to the dislocations is given by:

$$
S_{v(d)}=2 \pi R \Gamma
$$

Where $\Gamma=$ dislocation density $\left(\mathrm{cm} / \mathrm{cm}^{3}\right)$
and $R=$ effective radius $\approx 20 \mathbb{R}$
In Table V, the respective areas of influence for these defects (per unit volume) are listed along with cell efficiency. It is interesting to note that the effective areas of the precipitate particles and dislocations is insignificant compared with the twin boundary area. It is further observed that at the defect densities observed, there is virtuallyno correlation between the cell efficiency and either the precipitate surface area or the dislocation surface area. This aspect is graphically demonstrated in Figures 25 and 26. Examination of Table V also shows that the grain boundary area, although not insignificant, is considerably smaller in these samples than the
TABLE V
Area of Influence of Structural Defects per Unit Volume of Semix Samples

Semix sample number	Surface area of small and large precipitates $4 \pi r_{1}^{2} \mathrm{~d}_{1}+4 \pi r_{2}^{2} \mathrm{~d}_{2}$ $r_{1}=3 / 2 \mu \mathrm{~m}$ $r_{2}=15 / 2 \mu \mathrm{~m}$ $\mathrm{d}_{1}, \mathrm{~d}_{2}$ are precipitate denpities $\mathrm{cm}^{2} / \mathrm{cm}^{3}$	Surface area of dislocation $27 R \Gamma$ where I is dislocation density and $R=20 \AA$ $\mathrm{cm}^{2} / \mathrm{cm}^{3}$	Grain boundary surface area $\mathrm{cm}^{2} / \mathrm{cm}^{3}$	Twin boundary surface area $\mathrm{cm}^{2} / \mathrm{cm}^{3}$	Total areas of all types of structural defects $\mathrm{cm}^{2} / \mathrm{cm}^{3}$	Cell efficiency* (\%)
A - 13	0.011	0.06	8.2	99.0	107.27	7.2
B-2	0.008	0.12	4.5	15.8	20. 428	10.0
C-12	0.002	0.46	13.4	31.9	45.762	9.7
D-8	0.002	0.126	13.8	44.5	58.428	10.8
E-13	0.005	0.46	7.1	68.5	76. 065	6.2
F-2	0.006	0.214	5.4	12.2	17.82	9.6
G-12	0.003	0.565	12.1	40.7	53.368	9.5
H-8	0.004	1.081	9.4	35.9	46.385	10.7

* data as given in reference No. 7

ORiginn mata m
 OF POOR QUALITY

corresponding twin boundary area. Once again there appears to be no definite correlation between grain boundary area and cell efficiency. Finally, upon examination of twin boundary area, it is seen that cell efficiency decreases with increasing twin boundary area (see Figure 22). Also shown in Figure 27 is a plot of cell efficiency versus total defect areas. Since twin boundary area is the predominant term, the overall behavior is similar to Figure 22.

2.3.7 Cell Efficiency Versus Location of Wafers

An important and definite correlation has been found berween cell efficiency and location of the wafers with respect to the center line of ingot (Figure 1A) and in relation to the top center of the ingot. Figure 28 is a plan view of the top of the ingot, which is shown in three dimension in Figure lA. The center line C in Figure $1 A$ originates at O in Figure 28, and is perpendicular to the plane of paper. Figure 28 shows the distance of the center of a wafer from origin O. Thus, the center of cells A and Eare located 1 cm along X-axis and 1 cm along Y - axis from O. Therefore, their center is located at $\sqrt{1^{2}+1^{2}}=\sqrt{2}=1.414 \mathrm{~cm}$ from the center Sine of ingot. The distance from ingot axis for the remaining cells were calculated. Figure 29 shows a definite relationship between twin boundary density and distance from ingot axis for the various celis. It is clear from Figure 29 that the twin boundary density decreases as the distance of the cells from ingot axis increases. Figure 30 shows important correlation between cell efficiency and distance from ingot axis. As the distance from the ingot axis increases, the cell effieciency also increases, Specifically, the cell efficiency increases with increasing distance from
the center of the ingot towards its outer surface. For example, note that cells A - 13 and E-13 have lower efficiency, while cells B-2, F-2, D-8, H-8 have much higher efficiencies. Furthermore, a definite relation a lso evolves with reference the location of the ingot. For example, note that the cells E-13 and A - 13 were fabricated from wafers very close to the top center of the ingot. Cell E-13 came from a wafer which was just above cell A-13 (Figure 1A) Correspondingly, cell E-13 has lower efficiency (6.2%) compared to A-13 (7.2\%). Even though these wafers are from adjacent location, the difference of 1% in cell efficiencies is significant. Sirnilarly, cell F-2 is just above cell B-2 and correspondingly, cell efficiency for $\mathrm{F}-2$ is smaller than that for B-2 $\mathbf{~} 9.6 \%$ vs. 10.0% i.e., the differences is 0.4%). Note that these cells, which are considerably below cells E and A, have much higher efficiencies. Similarly cells G-12 and C-12 have efficiencies of 9.5% vs. 9.7% (difference is 0.2%) where G is above C. Cells H-8 and D-8 have efficiencies of 10.7% and 10.8% (difference 0.1%) where H is above D. Cells H and D came from the lowest section (4th section) of the ingot. These results are very remarkable in that they show a definite pattern of cell efficiency in relation to location in the ingot . A plausible explanation for this behavior is as follows:

It is assumed that this polycrystalline silicon ingot was fabricated by melting silicon in a refractory mold. Upon cooling, it is assumed that the material in contact with the mold is the first to solidify. Consequently,
the topmost center part of the mold will be the last to solidify. Thus, any impurities which have higher solubilities in molten silicon will be rejected into the liquid upon freezing. Thus, the impurity concentration will be highest in the topmost center part of the ingot, while lowest in the bottom outermost part of the ingot. A schematic of the proposed impurity distribution in solidified ingot is shown in Figure 31. The region around A-B will have higher impurities then C (Figure 31) It is well known that certain impurities, which tend to segregate at various defects, render these defects electrically active. Thus, cells made from topmost center part of the ingot will have highest concentration of impurities and lowest cell efficiencies. This is also the region where highest concentration of twin boundary exists. If these impurities are associated with defects, the defects may become electrically active and reduce the cell efficiency drastically. The measured cell efficiencies clearly show this trad. Furthermore, as the variation of impurity concentration varies exponentially alons with distance in a zone melted or zone - refined body, the relaive variation in cell efficiency will incrase from bottom to the top of the ingot. The obervations clearly corroborate this hypothesis in that the adjacent cells at D and H vary only s lightly in efficiency (0.1%) while cells A and E which are from the top of the ingot exhibit large variation (1.0%) in efficiency.

The present work, therefore, suggests avenues for further research in order to fully understand the role of defects on cell effieciency. For example, the
precipitates and dislocations, at the densities observed, have no noticeable effect on cell efficiency. Among the defects characterizable by microscopy twin boundaries and grain boundaries seem to have the largeat influence. Clearly then, the manufacturer should make process modifications in an attempt to reduce twin boundary densities.

A significant parameter may yet be related to trace impurities in the ingot. As pointed out above, the distribution of impurities in an ingot is most likely dependent upon the mode of solidification. However, the present analysis suggests that the impurity concentration will be highest in the topmost center part of the ingot. (The region of highest impurity concentration will be the region that solidified last. This region will be somewhat below the top center of the ingot). The future work therefore must focus on a thorough chemical analysis (with reference to trace elemente) cf wafers as a function or location in the ingot. Furthermore, detrimental impurities and their concentrations must be identified.

2.3.8 Unprocessed Wafers

Table VI lists the defect densities obtained on unprocessed wafers from UCP Ingot 5848-13C. Figures 32 thru 36 show the distribution of various defect types as a function depth for unprocessed, gettered, and non-gettered samples. The idea was to determine what effect, if any, gettering and processing may have on the distribution of defects. However, the data in the table and figures are not conclusive. The variation of defect densities in the unprocessed samples is considerable, requiring further study.

TABLE VI

Defect Densities in Unprocessed Wafers

Semix eample number	Small precipitate density $\left(\mathrm{cm}^{-2}\right.$)	Large precipitate density (cm^{-2})	Dislocation density (cm-2)	Grain boundary length per unit area (cm^{-1})	Twin boundary length per unit area $\left(\mathrm{cm}^{-1}\right)$
1-10-13 (T)	44200	2035	6.0	7.88	79.2
1-12-14 (U)	29970	1705	1.1	3.14	29.2
2-5-1 (V)	26250	812	20.6	32	36.3
3-4-12 (W)	40370	2092	10.9	16.9	40
3-4-1\% (X)	39050	2405	15.2	28.8	27.0
4-2.4 (Y)	23879	1916	37.2	16.9	34.8
4-2-8. ${ }^{(Z)}$	11430	693	16.9	13.9	51.2

2.3.9 Numerical Significance of Meanured Data

The measured data for the Semix samples are listed in Appendix Tables 1 thru 24, and the information in these tables are summarized in Tables II, III, and IV. The defect structure characterization was done using a statistical sampling of each sample over a TV raster and from this an average value for each defect type in each sample was obtained $\mathbf{1 2 - 2 2}^{\mathbf{2}}$.

Among these eight samples, the large precipitate density varied from 65 to 745 per cm^{2}, while the total (large and small) precipitate density varied from 2.7×10^{3} to 23×10^{3} per cm^{2}.

Grain boundary length per unit area varied from 4.5 to $13.8 \mathrm{~cm} / \mathrm{cm}^{2}$, whereas the tivin boundary length per unit area varied from 12.2 to 99.0 $\mathrm{cm} / \mathrm{cm}^{2}$. Samples $-\mathbb{A}-13$ and E-13 had the higher twin boundary length per unit area, while the grain boundary length per unit area for these samples were in the middle range. Samples $C-12, D-8$, and G-12 had the higher numerical values for grain boundary length, but in the middle range for twin boundary length. Samples B-2 and F-2 had lower values for both grain boundary and twin boundary length. Figure 24 shows that as the grain boundary length/mit area increases, the twin boundary length/unit area also increases at first rapidly, but at higher values for grain boundary length/unit area, it levels off and gradually decreases.

Dislocation density in these samples varied from 4.9×10^{4} to $86 \times 10^{4} / \mathrm{cm}^{2}$.

OF POOR QUALITY

Sample A-13 had the lowest dislocation density but highest large precipitate density (see Table IV). Samples C-12, G-12, and H-8 had lower precipitate density but had higher dislocation density. Therefore, an approximate inverse relationship was observed between dislocation density and precipitate density as shown in Figure 21.

Sample A-13 had the highest twin boundary length per unit area as well as the highest large precipitate density. Figures 2 and 3 show some regions in this sample that illustrate this observation. Figures 4 and 5 show some precipitate particles in fields free of twin boundaries and grain boundaries in sample B-2. This sample had lower twin boundary and grain boundary lengths per unit area but precipitate density whi in the medium numerical value. Figures 6 and 7 show some twin boundary and grain boundary regions in sample C-12. Sample C-12 had higher grain boundary density. Sample D.. 8 had the highest grain boundary length per unit area and also a relatively high twin boundary density as illustrated in Figures 8 and 9. Figure 10 shows an area in sample D-8 where dislocations have piled up between twin boundaries Figure 11 shows another type of interaction between dislocations and a twin boundary. Such a boundary may be electrically active as discussed in page 21.

Figures 12 and 13 show a higher twin boundary density region, which is typical of sample E-13. Sample F-2 has a lower grain boundary and
twin boundary length per unit area, but a high precipitate density. Figure 14 shows interaction between twin boundary and grain boundary, and Figure 15 shows a region of higher precipitate density in sample $F-2$. Figures 16 and 17 show sample regions in sample (i-12 with typical grain boundary and twin boundary structures. Sample. H-8 has the highest dislocation density and typical areas are illustrated in Figures 18 and 19. In Figure 18, the dislocations form simple networks. Figure 19 shows linear arrays of dislocations interacting with twin bounclaries on either side

The standard deviation from the mean for all of the defect types is of the same order of magnitude as the mean itself. This shows that there is a large variation in the distribution ol defects from one field to another in the same sample.

EFFECT OF GRAIN BOUNDA YY DENSITY ON CARRIER MOBILITY

3.1 INTRODUCTION

The objective of this work is to determine the relationship between carrier mobility and grain boundary density, that is grain boundary length per unit area, in cast polycrystalline silicon.

A polycrystalline wafer sliced from a cast mold will have many defects ranging from vacancies to precipitates, twins, dislocations, and grain boundaries. When considering the effect on carrier mobility, grain Doundaries are thought to have the greatest influence. ${ }^{23}$

There are several reasons that grain boundaries are considered the limiting factor in mobilities. The most obvious is the high concentration of other defects at a boundary. Since there is a lattice mismatch at a boundary, there is bound to be a high vacancy density. These vacancies act as a sink for dopant atoms, thus resulting in an ionized impurity concentration near the boundary that is higher than the rest of the crystal matrix. Since ionized impurities act as scattering centers for charge carriers, mobilities will necessarily be lowered.

Another feature of a grain boundary is band bending. That is to say the conduction and valence bonds, at the grain boundary, are bent up and down respectively thus presenting an e. rgy barrier for electrons and holes. This, too, shouid decrease mobility.

Abstract

Carrier mobility was measured via the Hall effect ${ }^{24-31}$ using a four-pointprobe configuration. Important parameters such as resistivit, carrier type, ane carrier concentration were also measured. Grain boundary density was measured by quantitative optical microscopy ${ }^{32}$.

SECTION 3.2

EXPERIMENTAL PROCEDURE

Equipment List

Keithley Instruments model 225 current source Hewlett Packard 412 A vacuum tube voltmeter Keithiey Instruments model 600 B electrometer Harvey Wells model 1050 A magnet power supply Magnion 7" electromagnet Power Logicon model 5C ultrasonic wire bonder Nikon Optiphot optical microscope Olympus OSM optical microscope Hewlett Packard 3465 A Multi meter

Eight (8) SEMIX samples from UCP Ingot 5848,13 C were used in this study. These samples were designated by JPL as A-13, B-2, C-12, D-8, E-13, F-2, G-12, and H-8. The samples were first characterized for structural defects as described in an earlier report ${ }^{32}$. The specimens for Hall mobility measurements were obtained from each of the above 8 samples by scribing a line parallel to one of the edges, and then cleaving the sample along the scribed line. The cleaved piece was then broken into three smaller pieces. Therefore, initially there were 24 irregular specimens of sizes ranging from 2 mm by 5 mm to 5 mm by 5 mm . Due to breakage and handling problems only 20 specimens were eventually characterized. Thickness was measured by placing
samples on edge and measuring them with a filar eyepiece at a magnification of about $\times 100$ with the olympus microscope.

Electrical connections were made by mounting the sample on a PC board with four copper strips then, using an ultrasonic wire bonder, $18 \mu \mathrm{~m}$ aluminum wire was bonded to the silicon surface and then to the copper strip (Fig. 1). This technique was used so that the contact area would be is small as possible and be bonded as close to the edge of silicon sample as possible so as to reduce the influence of the contacts on the measurements. The power and time settings for the silicon and copper bonds were 2 and 1.6 , and 2.4 and 2 respectively.

Resistivity measurements were made using the configurations in Fig. 2. Current was passed through the contacts depicted in the figure and the corresponding potential induced at the other contacts was measured. This procedure was repeated in both configurations, with the current flowing in the forward and reverse directions and at 0.1 and 1 mA to insure ohmic behavior in that region. The ammeter insures that the desired current is indeed what is flowing between the points in question.

Hall voltages were measured with the electrical connections in the configurations shown in Fig. 3. Current was passed through the contacts shown in each configuration and the potential across the other contacts was measured. The magnetic field, which is perpendicular to the face of the sample, was then applied. The voltage was then measured again. The difference between the two readings is the hall voltage. The procedure was repeated in both configurations with the current flowing in the forward and reverse directions. The sample was

Or, M- Maser
of pour guality

then turned around 180 degrees with respect to the magnetic field and the procedure was carried out again. This procedure negates the effects of any physical assymmetries in the experimental setup. Most of the samples were measured with a current of 1 ma and an $8 K G$ magnet.c field. Some samples were run at different levels of current and magnetic field to facilitate more accurate voltage readings.

Grain boundary density was determined by examining the samples at 400 X with the Nikon microscope. The diameter of the field of vision was determined with a calibrated microscope slide. The number of grain boundaries that intersected the circumference of the field of vision were then counted. Due to the irregular shapes and sizes of the samples the number of fields of vision per sample varied greatly. To preserve some statistical validity a grid was used to determine where to locate the center of a given field. See Fig. 4 for a portion of the grid. Each dot represents the center of a field of vision and there is 0.5 mm between dots on a horizontal row.

SECTION 3.3

RESULTS AND SAMPLE CALCULATIONS

3.3.1 THICKNESS

The calibration of the filar eyepiece on the olympus microscope when using the 10 X objective is $0.9909 \mu \mathrm{~m} / \mathrm{div}$. Data taken for the three pieces from sample G-12 is shown in Table 1. Final results for all eight samples is shown in Table 2.

TABLE VII
THICKNESS MEASUREMENTS ON SAMPLE G-12

	INITIAL READING	FINAL READING	d(div)	$d(\mu \mathrm{~m})$
1	276	564	288	285
2	361	653	292	289
3	208	526	318	315

TABLE VIII
THICKNESS DATA FOR ALL, SAMPLES

sample	$d(\mu \mathrm{~m})$	max.\% deviation
A-13	266	2.4
B - 2	315	3.1
C - 12	304	1.2
D - 8	277	5.5
E-13	305	3.5
F-2	290	0.8
G - 12	296	6.4
$\mathrm{H}-8$	285	1.7

```
cony%ay
```

of PCOR Quality

3.3.2 RESISTIVITY

Using the configurations (1) and (2) in Fig. 2, the resistances $R_{A B C D}$ and $R_{B C D A}$, respectively, can be measured where

$$
\mathrm{R}_{\mathrm{ABCD}}=\frac{\text { Potential across } \mathrm{DC}}{\text { Current through } A B}=\frac{\mathrm{V}_{\mathrm{DC}}}{\mathrm{I}_{\mathrm{AB}}}
$$

and

$$
\mathrm{R}_{\mathrm{BCDA}}=\frac{\text { Potential across } \mathrm{DA}}{\text { Current through } \mathrm{BC}}=\frac{\mathrm{V}_{\mathrm{DA}}}{\mathrm{I}_{\mathrm{BC}}}
$$

It was shown by Van der Pauw ${ }^{33}$ that the following relation holds:

$$
\exp \left[-\pi R_{A B C D}\left(\frac{d}{\rho}\right)\right]+\exp \left[-\pi R_{D C B A}\left(\frac{d}{\rho}\right)\right]=1
$$

equation (1)
where d is the sample thickness and ρ is the resistivity of the sample. Since the resistances and thickness of a given sample are known, ρ can be determined by use of equation (1).

A calculation of ρ for the first of the $C-12$ samples, C-12-1, follows:

$$
\mathrm{C}-12-1
$$

$$
I=1 \mathrm{~mA} \quad R_{A B C D}=\frac{.00145+.0015}{2 I}=1.47 \Omega
$$

$$
R_{B C D A}=\frac{.045+.045}{21}=45 \Omega
$$

$$
I=100 \mu \mathrm{~A} \quad \mathrm{R}_{\mathrm{ABCD}}=\frac{.00015+.00015}{2 \mathrm{I}}=1.5 \Omega
$$

$$
\mathrm{R}_{\mathrm{BCDA}}=\frac{.0045+.0046}{2 \mathrm{I}}=45.5 \Omega
$$

$\bar{R}_{A B C D}=1.485$ ohm, $\overline{\mathrm{R}}_{\mathrm{BCDA}}=45.25$ ohm; using these values and $\mathrm{d}=304 \mu \mathrm{~m}$, equation (1) gives $\rho=1.8 \Omega-\mathrm{cm}$.

3.3.3 Hall Conat., Mobility, Carrier Conc., Carrier Type

The Hall const., mobility, carrier conc., and carrier type were determined using the configurations shown in Fig. 3. Data taken for sample G-12-2 is shown in Table 3. This is followed by sample calculations.

Sample:G~12-2

$$
I=1 \mathrm{~mA}, B=8 \mathrm{KG}, \quad \mathrm{~d}=296 \mu \mathrm{~m}, \quad \rho=2.1 \Omega-\mathrm{cm}
$$

TABLE IX

MEASURED VOLTAGES ON SAMPLE G.-12-2

Configuration 1

		$v_{1}(B=0)$	$v_{2}(B \neq 0)$	v_{H}
+I	$+B$.05	.0515	.0015
-I	+B	.056	.057	.001
+I	-B	.056	.055	.001
-I	-B	.051	.05	.001

Configuration 2

$v_{1}(B=0)$	$v_{2}(B \neq 0)$	v_{H}
.056	.055	.001
.052	.051	.001
.052	.053	.001
.056	.057	.001

$$
\overline{v_{1}-V_{2}}=\bar{v}_{H}=.0011 \mathrm{~V}
$$

Hall const. $\equiv R_{H}=\frac{\overline{\mathrm{V}}_{\mathrm{H}} \mathrm{d}}{\mathrm{BI}}=\frac{(.0011 \mathrm{~V})\left(296 \times 10^{-4} \mathrm{~cm}\right)}{10^{-3} \mathrm{amps} 8.5 \times 10^{-5} \mathrm{~W} / \mathrm{cm}^{2}}=393 \mathrm{~cm}^{3} / \mathrm{coul}$

$$
\text { Hall mobility } \equiv \mu_{H}=\frac{R_{H}}{\rho}=\frac{393}{2.1}=187 \mathrm{~cm}^{2} / \mathrm{v}-\mathrm{sec}
$$

Carrier conc. $\equiv P=\frac{1}{R_{H} q}=\frac{1}{393\left(1.6 \times 10^{-19} \mathrm{coul}\right)}=1.58 \times 10^{16} \mathrm{~cm}^{-3}$
where q = charge of an electron.

ORIGINAL PAEE TS OF PUOR QUALITY

Carrier type is determined by the following example:
if V is >0 when $B=0$, there is an excess of negative charge near the contact D (ref. Fig. 5), when $B \notin O$ and $V_{2}>V_{1}$ the charge carrier is a hole since it travels in the direction of conventional current and is deflected by a force, $F=q(\nabla \times B)$ thereby increasing the positive potential between B and D.

3.3.4 NORMA LIZED MOBILITIES

Hole mobility may be given by the relation: ${ }^{34}$

$$
\mu^{P}=\mu_{\min }+\frac{\mu_{\max }-\mu_{\min }}{1+\left(\frac{P}{P_{\text {ref }}}\right)^{\alpha}}
$$

where $\quad \mu_{\text {min }}=47.7 \mathrm{~cm}^{2} / \mathrm{v}-\mathrm{sec}$

$$
\mu_{\max }=495 \mathrm{~cm}^{2} / \mathrm{v}-\mathrm{sec}
$$

$$
P_{\text {ref }}=6.3 \times 10^{16} \mathrm{~cm}^{-3}
$$

and

$$
==.76
$$

The hole mobility normalized to a carrier conc. of $P=$ $10^{16} \mathrm{~cm}^{-3}, \mu^{*}$, is given by

$$
\mu^{*}=\mu_{H}\left(\frac{\mu^{10^{16}}}{P}\right)
$$

where μ_{H} is the hall mobility, and $\mu^{10^{16}=406 \mathrm{~cm}^{2} / \mathrm{v}-\mathrm{sec} \text {. } \mathrm{C} \text {. }{ }^{16}=4}$

3.3.5 GRAIN BOUNDARY DENSITY

The grain boundary density, G.B., is calculated by using the following relation from Brandon ${ }^{35}$:

$$
\text { G.B. }=\left(\frac{\pi}{2}\right)\left(\frac{P_{L}}{N}\right) \mathrm{cm} / \mathrm{cm}^{2}
$$

$$
\text { where } P_{L}=\frac{\begin{array}{l}
\text { total number of intersections of } \\
\text { grain boundaries with the test line }
\end{array}}{\text { unit length of the test line }}
$$ and $N=$ No. of fields of vision.

At 400 X the diameter of the field of vision 1 s .043 cm so the circumference, length of the test line, is (r)(.043) cm. A calculation of G.B. for sample D-5-1 follows:

D-8-1

$$
\begin{gathered}
P_{L}=50 \quad N=59 \\
\text { G.B. }=\left(\frac{\pi}{2}\right) \frac{50}{n(.043) 59}=9.85 \mathrm{~cm} / \mathrm{cm}^{2}
\end{gathered}
$$

A summary of results is listed in Table 4. This table lists data for resistivity, Hall mobility, carrier concentration, hole mobility, normalized hole mobility, and grain boundary density for all 20 specimens.

TABLE X
OF PGMR QLinmit

Resistivity, Hall Mobility, Carrier Concentration, Hole Mobility, Normalized Hole Mobility, and Grain Boundary Density for All $\% 0$ Specimens

SAMPLE	$\left.\alpha^{(2)}-\mathrm{cm}\right)$	$\mu_{11}\left(\mathrm{~cm}^{2} / \mathrm{v-sinc}\right)$	$\mathrm{P} \times 10^{16}\left(\mathrm{~cm}^{-3}\right)$	$\mu^{p}\left(\mathrm{~cm}^{2} / v-\mathrm{sec}\right)$	$\frac{\mu^{10^{16}}}{\mu^{P}}$	$\mu * \mathrm{~cm}^{2} / \mathrm{v-s}$	C.B. ($\mathrm{cm} / \mathrm{cm}^{2}$)
A-1.	1.65	201	1.80	370	1.10	221	4.42
B-1	2.45	176	1.44	385	1.05	185	9.06
B-2	3.00	213	. 97	408	1.00	213	16.97
B-3	1.85	212	1.58	379	1.07	227	12.41
C-1	1.80	337	1.02	405	1.00	337	2.12
C-2	1.69	198	1.86	368	1.10	218	15.17
C-3	2.20	187	1.51	382	1.06	198	11.86
D-1	2.20	178	1.59	378	1.07	190	9.85
D-2	2.15	177	1.64	376	1.08	191	6.43
D-3	3.10	85	2.36	351	1.16	99	16.16
E-1	1.86	274	1.26	393	1.03	282	0
E-2	1.75	226	1.58	379	1.07	242	. 32
F-1	2.30	199	1.36	388	1.05	209	15.23
F-2	2.60	104	2.30	353	1.15	120	20.46
F-3	2.15	242	1.15	399	1.02	247	15.61
C-1	2.05	240	1.26	393	1.03	247	10.00
G-2	2.10	187	1.58	379	1.07	200	12.79
$\mathrm{H}-1$	1.50	380	1.09	402	1.01	384	2.52
H-2	1.55	124	2.00	363	1.12	139	13.25
H-3	1.58	202	1.90	366	1.10	224	18.45

DISCUSSIONS

When hole mobility is plotted as a function of grain boundary density a trend develops. Fihat is, mobility decreased as a function of grain boundary density. This result, based on the electronic features of grain boundaries, is expected. But, it must be noted that while there is a clear trend, there is no clearly defined fundamental relationship evident.

It is noted that for grain boundary densities above all but the lowest values, the great majority of samples have mobility values centered near $200 \mathrm{~cm}^{2} / \mathrm{v}-\mathrm{sec}$ for raw data (Fig. 6) and $215 \mathrm{~cm}^{2} / v-\mathrm{sec}$ for the normalized data (Fig. 7). It is also noted that within this region there is no defined trend between mobility and grain boundary density. Several explanations may be offered to explain this behavior.

It may be proposed that the range of grain boundary density is too small to allow conclusions to be drawn concerning a cause and effect relationship. Perhaps grain boundary densities spanning several orders of magnitude should be examined to determine if a fundamental relationship can be observed.

It may be reasoned that $\sim 200 \mathrm{~cm}^{2} / v-\mathrm{sec}$ is the "characteristic" mobility for all but the most defect free samples. Those samples with much lower values are vastly different in the nature of their defect structure. One such difference may be the precipitate density. A precipitate will act as a scattering center and so it stands to reason that a sample with an extremely large precipitate density would have lower mobility

```
% %.% %
```

OF Mun wuxdiy
values than would be expected based on grain boundary density alone.

Another factor that is likely to affect the mobility as a function of grain boundary density is the grain size distribution and the geometric distribution of grain boundaries on the samples themselves. Distances between grain boundaries ranged from $\sim 100 \mu \mathrm{~m}$ to more than a millimeter. There is no clearly defined relationship between mobility and grain sizes nor is there enough sample area available to get a statistically valid idea of the grain size distribution.

Geometric considerations must also be examined. That is to say, what is the actual distribution of grain boundaries on the sample. Grain boundary density does not take into account the uniformity of boundary distribution. It is reasonable to assume that two samples, one with grain boundaries uniformly distributed and the other with nearly all its boundaries concentrated in one portion of the sample, will have different mobility characteristics even if the grain boundary density is the same for both. Since there is no quantitative method to analyze and relate the "boundary distribution" to boundary density, ambiguous results are likely if boundary density is considered the only independent parameter.

SECTION 4

CONCLUSIONS

4.1 Quantitative Analysis of Defects

This work hae resulted in a breakthrough in correlating the efficiency of solar cells from UCP Ingot 5848-13C with impurities and imperfections. Of the four types of structural imperfections measured, twin boundary density showed a remarkable effect on cell efficiency (Figures 22 and 27, Table V). It was clearly established that cell efficiency increases with decreasing twin boundary density.

A definite correlation was found between cell efficiency and locationir of wafers (Figure 30). As the distance from ingot axis increases, the cell efficiency also increases. At the top center of the ingot where higher concentration of impurities and twin densities exist, the cell efficiencies were found to be the lowest. Therefore, it appears that impurities interacting with twin boundaries in this region creates electrically active scattering surfaces which drastically reduce the cell effieciency. This may explain why the cell efficiency increases from a low of 6.2% in the top center of the ingot to a high of 10.7% towards the outer surfaces of the ingot.

Therefore, a modification of UCP casting technique to reduce or eliminate twin boundary surfaces and detrimental impurities will result in a significant increase in cell efficiency.

4.2 Effect of Grain Boundary Density on Carrier Mobility

Mobility measurements were made on twenty SEMIX samples using the vander Pauw technique. Grain boundary denaity wae measured using quantitative microscopy technique. The mobility was found to decrease with increasing grain boundary density (Figures 42 and 43).

SECTION 5

REFERENCES

1. K. V. Ravi, Imperfections and Impurities in Semiconductor Silicon, John Wiley \& Sons, New York, 1981.
2. Z. C. Putney and W. F. Regnault, Solar Cells, voi. 1, No. 3, p. 285-292, May, 1980.
3. G. H. Schwuttke, T. F. Ciszek, and A. Kron, 'Silicon Ribbon Growth by a Capillary Action Shaping Technique', Final Report, DOE/JPL 954144 , IBM Corporation, Hopwell Junction, New York, 1977.
4. B. L. Sapori and A. Baghdadi, Solaz Cells, vol. 1, No. 3, p, 237-250, May, 1980.
5. E.E. Underwood, Quantitative Stereology, Addison-Wesley Publishing Company, Reading, Massachusetts, 1970.
6. E. E. Underwood, Metals Handbook, vol. 8, p. 37-47, American Society for Metals, Metals Park, Ohio, 1973.
7. P.A. Iles and D.C. Leung, "Silicon Solar Cell Process Development, Fabrication, and Analysis", 26th Monthly Report, JPL 955089, Optical Coating Laboratory, Inc., City of Industry, California, October, 1981.
8. J. Friedel, Dislocations, p. 290-292, Addison-Wesley Publishing Company, Reading, Massachusetts, 1964.
9. A.D. Kurtz, S.A. Kulin, and B. L. Averbach, Phys. Rev., vol. Ied, p. 1285, 1956.
10. H. B. Serreze, J. C. Swartz, G. Entine, and K. V. Ravi, Mater. Res. Bull., vol. 9, p. 1421, 1976.
11. G. H. Schwuttke, T. F. Ciszek, and A. Kran, "Silicon Ribbon Growth by a Capillary Action Shaping Technique", Quarterly Report No.6, DOF/JPL 954144 , IBM Corporation, Hopwell Junction, New York, Dec. 15, 1976.
12. R. Natesh, H. A. Qidwal: "Quantltative Analysis of Defects in Sillicon", One - Time Report on Crystal Etching Preparation Technique, DOE/JPL 954977, Materials Research, Inc., Technical Report: MRI-259, 1978.
13. R.. Natesh, J. M. Smith, T. Bruce, H. A. Qidwai: "Quantitative Analysis of Defects In Silicon", Final Report, DOE/TPL 954977, Materials Research, Inc., Technical lepprt: Mißl - 276, 1980.
14. R. Natesh, J M. Smith: "Quantitative Analysis of Defects in Silicon", Monthly Technical Letter Progress Report No. 10, DOE/JPL 954977, Materials Research, Inc., Technical Report: MRI-270, 1979.
15. R. Natesh, J. M. Smith, H. A. Qidwal, T. Bruce: "Quantitative Analysis of Defects in Sllicon", Quarterly Progress Report, DOE/ JPL 954977, Materials Research, Inc., Technical Report: MRI 273, 1979.
16. R. Natesh, M. Plichta, J. M. Smith: "Analysis of Defect Structura in Silicon", Informal Technical Report, DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI - 280, 1980.
17. R. Natesh, M. Mena, J. M. Smith, M. A. Sellanl: "Analysis of Defect Structure in Sillcon", Characterization of Silicon - onCeramics Material, Informal Technical Report, DOE/JPL 955676 , Materials Research, Inc., Technical Report: MRI-281, 1981.
18. R. Natesh, M. Mena, J. M. Smith, M. A. Sellani: "Analysis of Defect Structure in Silicon", Mobil Tyco EFG Samples, Informal Technical Report, DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI-282, 1981.
19., R. Natesh, M. Mena, M. A. Sellani: "Analysis of Defect Structure in Silicon", Single Crystal and Polycrystalline HEM Material, Informal Technical Report, DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI-283, 1981.
19. R. Natesh, M. Mena, J. M. Smith, M. A. Sellani: "Analysis of Defect Structure in Silicon", Characterization of HAMCO and EFG Solar Cells Informal Technical Report DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI - 284, 1981.
20. R. Natesh, M. Mena, J. M. Smith, M. A. Sellani: "Analysis of Defect Structure in Silicon", Characterization of HEM Solar Cell Materlal, Informal Technical Report, DOE/JPL 955676, Materlals Research, Inc., Technical Report: MRI-285, 1981.
21. R. Natesh, M. Mena, J. M. Smith, M. A. Sellant: "Analysis of Defect Structure in Sllicon", Characterlzation of Mobll Tyco EFG Sheet Material , Informal Technical Report, DOE/JPL 955676 , Materials Research, Inc., Technical Report: MRI-286, 1981.
22. J. Y. M. Lee and 1. C. Cheng, J. Appl. Phys., vol. 53, p. 490, 1982.
23. R.A. Smith,"Semiconductors,' Cambridge University Press, London, 1959.
24. E. H. Putley, "The Hall Effect and Semiconductor Physics", Butterworth and Co. (Publishers), Ltd., London, 1960: Dover Publications, Inc., New York, 1968.
25. A.C. Beer, "Galvanomagnetic Effects in Semiconductore", Academic Press, Inc., New York, 1963.
26. L. P. Hunter, Phys. Rev., vol. 94, p. 1157-1160, 1954.
27. L. P. Hunter, E. Hulbregtse, and R. Anderson, Phys. Rev., vol. 91, p. 1315-1320, 1953.
28. G. L. Pearson and J. Bardeen, Phys. Rev., vol. 75, p. 865-883, 1949.
29. K. Pigon, J. Appl. Phys., vol. 32, p. 2369-2371, 1961.
30. R. L. Petritz, Phys. Rev., vol. 110, p. 1254-1262, 1958.
31. R. Natesh, T. Guyer, and G. B. Stringfellow, "Analysis of Defect Structure in Silicon: Characterization of Samples from UCP Ingot 5848-13C ", Interim Report, Technical Report: MRI-290, Materials Research, Inc., August, 1982 .
32. L. J. van der Pauw, Phillips Research Reports, vol. 1.3, p. 1, 1958.
33. R. S. Muller and T.I. Kamins, "Device Electronics for Integrated Circuits:' (New York: Wiley 1977) p. 26.
34. D. G. Brandon," Modern Techniques in Metallography:' (Princeton, N. J. : D. van Nostrand Company 1966) p. 241.

RELATIVE POSITIONS OF THE MEASURED FIELDS ON THE SEMIX WAFERS

Figure 1 B

Fig. 2 Region Showing High Twin Density in Semix A-13 (50X)

Fig. 3 Region Showing a Large Number of Precipitates in Semix A-13 (50X)

Fig. 4 Large and Small Precipitates in Semix B-2 (1330X)

Fig. 5 Precipitates in Semix B-2 (530X)

ORICRNAL PACU: TM OF POOR QUALITY

Fig. 6 Many Grains and Grain Boundaries in Semix C-12 (50X)

Fig. 7 Twin and Grain Boundaries in Semix C-12 (50X)

Fig. 8 Large Number of Small Twin Boundaries in Semix D-8. These are not Typical Regions (66 X). Region marked ' U '.

Fig. 9 Many Twin and Grain Boundary Region in Semix D-8 (66X)

ORicinta isa. is
of POOR quality

Fig. 10 Dislocations Piled up Between Twins due to Localized Strain in Semix D-8 (600X)

Fig. 11 Dislocations
Interacting with a Twin Boundary in Semix D-8 (1500X)

Fig. 12 High Twin Density in Semix E-13 (50X)

Fig. 13 Large Precipitate Particle Between Twins in Semix E-13 (530X)

Fig. 14 Twin and Grain boundary Struture in Semix F-2 (50X)

Fig. 15 Small Precipitate Particles in Semix F-2 (200X)

Fig. 16 Twins and Grain Boundaries in Semix G-12 (50X)

Fig. 17 Region of High Twin Density in Semix G-12 (100X)

Fig. 18 Lislocation pile-ups in Semix H-8 (1330X)

Fig. 19 High Dislocation
Density Between Twins in Semix D-8 (1330X)

TWIN BOUNDARY LENGTH PER UNIT AREA

TWIN BOUNDARY LENOTH PER UNIT AREA
(em/eme)
vs.
RELATIVE POSITION OF THE WAFER IN THE INGOT FROM THE TOP OF THE SOLIDIFIED INGOT

Figure 20

large precipitate particle density ($\# / \mathrm{cm}^{2}$)
Figure 21

SOL.AR CELL. EFFICIENCY
SOLAR
CELL
EFFICIENCY
(\%)

Figure 22

Of broun gualvi

DIFFUSION LENGTH VS.
OIFFUSION
LENGTH
$(\mu \mathrm{m})$ DISLOCATION FIT DENSITY

Figure 23
$\begin{array}{lc}\text { TWIN } \\ \text { GOUNOARY } & \text { TWIN BOUNDARY LENGTH PER UNIT AREA } \\ \text { LENGTH } \\ \text { PER UNIT } \\ \text { AREEA } \\ \left(\mathrm{cm} / \mathrm{cm}^{2}\right) & \text { GRAIN BOUNDARY LENGTH PER UNIT AREA }\end{array}$

grain goundary lengith per unit area
$\left(\mathrm{cm} / \mathrm{cm}^{2}\right)$
Figure 24

> Ghenc...
> OF POOR GUnthr

SOLAR CELL EFFICIENCY

Fig! $:=2.5$

OF POOR GUNATY

SOLAR CELL EFFICIENCY VS.
solan
exp
tricien
(en) AREA OF INFLUENCE OF DISLOCATIONS $\eta(\%)$

Figur: 26

ORICRMR
 OF POOR Glinnatis

SOLAR CELL EFFICIENCY

Figure 27

OF POOR QUMDK

(cm)

Figure 28

> Onc.
> OF POON

TWIN BOUNDARY DENSITY DISTANCE FROM INGOT AXIS BOUNDARY
DENSITY
$\left(\mathrm{em}^{8} / \mathrm{cm}^{\mathrm{s}}\right)$ Vs.

Figure 29

$$
\text { Or } 1+6
$$

SOLAR CELL EFFICIENCY
SOLAR
CELL EFFICIENCT (\%)

VS.

Figure 30

SEGREGATION OF IMPURITIES IN CAST SILICON

Figure 31

ORIGINAL PECE OF POOR QLALTTY

PRECIPITATE PARTICLE DENSITY
$\left(\mathrm{H} / \mathrm{cm}^{2}\right)$ (X 1000)

PRECIPITATE DENSITY VS.
relative position in the incot

RELATIVE DISTANCE FROM
THE TOP OF THE SOLIDIFIED INCOT
Figure 32

Cremyen
or poon elim...

LaRce
priecipitate DRNSITY (${ }^{2} / \mathrm{cm}^{2}$)

LARGE PRECIPITATE DENSITY

Figure 33

DISLOCATION
PIT DENSITY $\left(\times 10^{-6}\right)$
$\left(4 \mathrm{~cm}^{2}\right)$

DISLOCATION PIT DENSITY VS.
RELATIVE POSITION IN THE INGOT

REI_ATIVE DISTANCE FROM
THE TOP OF THE SOLID/:IED INROT
Figure 34

TWIN BOUNDARY LENGTH PER

TWIN BOUNDARY LENGTH
PER UNIT AREA ($\mathrm{cm} / \mathrm{cm}^{2}$)

UNIT AREA

 VS.RELATIVE DISTANCE FROM
THE TOP OF THE INGOT

RELATIVE DISTANCE FROM
THE TOP OF THE SOLIDIFIER INGOT
Figure 35

ORTEMEA FRSE IS OF POOR QUALITY

GRAIN
BOUNDARY LENETH PER UNIT AREA ($\mathrm{cm} / \mathrm{cm}^{2}$)

GRAIN BOUNDARY LENGTH PER UNIT AREA

Vs.
RELATIVE DISTANCE FROM
THE TOP OF THE INGOT

RELATIVE POSITION FROM
THE TOP OF THE SOLIDIFIED INGOT
Figure 36

$18 \mu M$ ALUMINUM WIRE
Fig. 37 Electrical Cunnections to Obtain a Small Contact Area and Reduce Contact Influence on Measurements

Fig. 38 Two Types of Configurations Used for Resistivity Measurements

Fig. 39 Two Types of Configurations Used for Hall Voltage Measurements

Fig. 40 Grid Used to Locate the Center of a Given Field

Onw whe Of POOR OUN
 OF POOF QUAEITY

Fig. 41 Configuration Used to Determine Carrier Type

Figure 42

Fig. 43 Relationship Between Normalized Mobility
OREMET
OF POOR GUMEAGS

SECTION 6

APPENDIX
TABLES 1 THRU 45 LISTS ACTUAL DATA

MEASURED

OF. POOR gumity

TABLE 1. Grain Boundary and Twin Boundary Density
SAMPLE SEMIX A-13Sample in polished condition. Magnification 100X . Field area $=0.0241 \mathrm{~cm}^{2}$. Circumference of test circle $=\pi . D=0.55 \mathrm{~cm}$. A denotes No. of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

TABLE 2 Precipitate Particle Density SAMPLE SEMIX A-13 Sample in polished condition. Magnification 400X Ficldarea $=0.00149 \mathrm{~cm}^{2}$
A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

OF POOR CUALIM

TABLE 3

DISLOCATION DENSITY
SAMPLE SEMIX A-13. Sample in etched condition Magnification $1000 X$, Area of field $=0.000238 \mathrm{~cm}^{2}$
X and Y denote the location of microscope stage (field of view for the data measured.

TABLE 4 Grain Boundary and Twin Eounciary Density SAMPLE SEMIX B-2, Sample in polished condition. Magnification 100 X . Field area $=0.0241 \mathrm{~cm}^{2}$. Circumference of test circle $=\boldsymbol{n} \cdot \boldsymbol{D}=0.55 \mathrm{~cm}$. A denotes No, of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersectio..s with circumference of teat circle. X and Y denotes field location of the data meapured.

CABLE 5
Precipitate Particle Density
SAMPLE SEMIX B-2. Sample in polished condition. Magnification 400X. Fiddarea : $0.00149 \mathrm{~cm}^{2}$
A denotes No. of Jarge precipitates observed in field of view. B denotes No. of Small precipitates observed in field of view. X and Y denotes location of microscope stage for the data measured.
 Magnification 1000X, Area of field $=0.000238 \mathrm{~cm}^{2}$ X and Y denote th: location of microscope stage (field of view)for the data measured.

FIE	LD		No.	$\begin{aligned} & \text { f Dislo } \\ & \text { Pits } \\ & \hline \end{aligned}$			LD		No. of Dislocation Pits
Y	No.	X		\downarrow		Y	No.	X	\dagger
12	1	34		10		10	40	41	21
12	2	35		7		10	41	38	1
12	3	37		30		10	42	35	6
12	4	39		10		8	43	35	
12	5	41		7		8	44	36	3
12	6	43		8		8	45	38	34
12	7	45		22		8	46	40	183
12	8	47		8		8	47	42	13
12	9	49		69		8	48	44	25
12	10	50		61		8	42	46	18
14	11	49		. 47		8	50	48	14
14	12	47		48		8	5.1	49	
14	13	44		10		6	52	49	2
14	14	41		6		6	53	46	5
14	15	38		13		6	54	43	1
14	16	35		1		6	55	40	3
16	17	35		1		6	56	37	5
16	18	36		0		5	57	38	
16	19	38		28		5	58	39	7
16	20	40		2		5	59	41	6
16	21	42		16		5	60	43	14
16	22	44		7		5	61	45	12
16	23	46		16		5	62	47	15
16	24	48		6		Totalfor 56fields:			
16	25	49		13					
18	26	47		17					
18	27	46		24		$\begin{aligned} & \text { Dislocation density } \\ & =12600 /(56)(0,000238) \text { pits } / \mathrm{cm}^{2} \\ & =0.95 \times 10^{\mathrm{pits} / \mathrm{cm}^{2}} \end{aligned}$			
18	28	43		2					
18	29	40		5					
18	30	37		0					
19	31	37				$\begin{aligned} & \bar{x}=23 \\ & \sigma=45 \end{aligned}$			
19	32	39							
19	33	41		9					
19	34	43		52					
19	35	45		20					
19	36	47							
10	37	50		294					
10	38	47		5					
10	39	44		4					

FIELD			A	No. of	B
Y	No.	X			
12	1	33	8	17	11
12	2	35	10	20	24
12	3	37	3	14	19
12	4	39	2	24	30
12	5	41	4	25	32
12	6	43	4	2	2
12	7	45	8	1	1
12	8	47	0	0	0
12	9	49	4	5	5
12	10	51	6	9	8
14	11	50	10	29	11
14	12	47	7	11	4
14	13	44	5	6	5
14	14	41	2	9	10
14	15	38	5	11	18
14	16	35	9	22	16
16	17	34	3	2	2
16	18	36	3	7	6
16	19	38	7	6	6
16	20	40	8	8	6
16	21	42	4	3	6
16	22	44	2	2	4
16	23	46	3	1	1
16	24	48	7	5	4
16	25	50	4	28	25
18	26	49	8	20	15
18	27	46	9	3	2
18	28	43	4	1	1
18	29	40	3	2	1
18	30	37	3	11	10
20	31	37	7	3	3
20	32	39	3	6	6
20	33	41	5	0	0
20	34	43	5	2	4
20	35	45	7	0	0
20	36	47	5	1	1
10	37	50	2	5	4
10	38	47	4	6	5
10	39	44	7	5	5

FIELD			A	No. of	B
Y	No.	\mathbf{X}			
10	40	41	4	45	57
10	41	38	10	9	8
10	42	35	2	19	22
8	43	34	7	17	15
8	44	36	0	13	26
8	45	38	6	19	22
8	46	40	8	15	12
8	47	42	0	8	9
8	48	44	4	28	15
8	49	46	4	6	3
8	50	48	4	11	11
8	51	50	2	3	6
6	52	49	5	9	12
6	53	46	7	12	7
6	54	43	0	22	25
6	55)	3	38	43
6	56	37	0	8	10
4	57	37	0	3	6
4	58	39	3	11	14
4	59	41	8	59	29
4	60	43	3	22	22
4	61	45	4	11	4
4	62	47	4	3	2
Tot	fo	62	290	723	693

Total for $62 \quad 290$ 723 693 fields:

L_{A} for twin boundary $=-\frac{\pi \times 693}{2 \times 62 \times 0.55}=31.92 \frac{\mathrm{~cm}}{\mathrm{~cm}^{2}}$
\bar{X} for grain boundary $=4.7$
σ for grain boundary= 2.7
$\overline{\mathrm{X}}$ for twin boundary $=11.2$
σ for twin boundary $=11.1$

TABLE 8
Precipitate Particle Density
 SAMPLE SEMIX C-12 Sample in polished condition. Magnification 400X. Field area $=0.00149 \mathrm{~cm}^{2}$
A denotes No. of Large precipitates observed in field of view. B denotes No, of Small precipitates observed in field of view. X and Y denotes location of microscope stage for the data measured.

TABLE 9 SAMPLE

DISLOCATION DENSITY
SEMIX C-12. Sample in etched condition Magnification 1000 X, Area of field $=0.000238 \mathrm{~cm}^{2}$ X and Y denote the location of microscope atage (field of view)for the data measured.

FIE	LD		No.	$\begin{aligned} & \text { Dislo } \\ & \text { Pits } \\ & \hline \end{aligned}$		LD		No. of Dislocation Pits
\bar{Y}	No.	X		\downarrow	$\overline{7}$	No.	X	\dagger
12	1	34		26	10	40	41	104
12	2	35		187	10	41	38	149
12	3	37		114	10	42	35	132
12	4	39		58	8	43	35	89
12	5	41		17	8	44	36	170
12	6	43		33	8	45	38	97
12	7	45		29	8	46	40	59
12	8	47		101	8	47	42	75
12	9	49		15	8	48	44	99
12	10	50		11	8	49	46	143
14	11	4.9		55	8	50	48	35
14	12	47		162	8	51	49	83
14	13	44		11	6	52	49	
14	14	41		20	6	53	46	81
14	15	38		185	6	54	43	121
14	16	35		253	6	55	40	108
16	17	35		136	6	56	37	133
16	18	36		82	5	57	38	66
16	19	38		205	5	58	39	96
16	20	40		37	5	59	41	152
16	21	42		52	5	60	43	73
16	22	44		52	5	61	45	45
16	23	46		47	5	62	47	
16	24	48		44	Total for 56 fields:			4989
16	25	49		177				
18	26	47		265				
18	27	46		34	$\begin{aligned} & \text { Dislocation density } \\ & =4989 /(56)\left(0.000238 \mathrm{pits} / \mathrm{cm}^{2}\right. \\ & =3.7 \times 10^{5} \mathrm{pits} / \mathrm{cm}^{2} \end{aligned}$			
18	28	43		90				
18	29	40		43				
18	30	37		31				
19	31	37			$\overline{\mathrm{X}}=89$			
19	32	39			$\sigma=62$			
19	33	41		10				
19	34	43		8				
19	35	45						
19	36	47						
10	37	50		165				
10	38	47		82				
10	39	44		48				

Onter...
OF POOK Q
TABLE 10 Grain Boundary and Twin Boundary Density SAMPLE SEMLX: D-8. 2 Sample in polished condition. Magnification 100X. Field area $=0.0241 \mathrm{~cm}^{2}$. Circumference of test circle $=\pi \cdot D=0.55 \mathrm{~cm}$. A denotes No, of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

FIELD			A	No. of	B	FIELD			A	No. of twing	B			
Y	No.	X				$\dot{1}$	No.	X						
12	1	33	10	89	23	10	40	41	6	22	10			
12	2	35	3	3	6	10	41	38	6	0	0			
12	3	37	4	9	8	10	42	35	5	24	17			
12	4	39	4	2	1	8	43	34	8	58	37			
12	5	41	4	8	8	8	44	36	11	38	37			
12	6	43	2	14	22	8	45	38	17	35	8			
12	7	45	2	3	6	8	46	40	12	1	2			
12	8	47	0	0	0	8	47	42	6	17	15			
12	9	49	4	22	24	8	48	44	10	92	75			
12	10	51	3	0	0	8	49	46	2	47	61			
14	11	50	4	6	6	8	50	48	3	26	36			
14	12	47	2	1	1	8	51	50	2	10	10			
14	13	44	4	5	6	6	52	49	5	2	2			
14	14	41	11	5	3	6	53	46	8	5?	40			
14	15	38	4	13	13	6	54	43	6	0	0			
14	16	35	6	9	11	6	55	40	7	17	14			
16	17	34	6	24	19	6	56	37	4	127	35			
16	18	36	2	11	12	4	57	37	5	29	25			
16	1.9	38	3	7	7	4	58	39	4	13	16			
16	20	40	7	23	29	4	59	41	3	4	5			
16	21	42	5	48	21	4	60	43	0	0	0			
16	22	44	2	0	0	4	61	45	4	33	11			
16	23	46	2	0	0	4	62	47	4	12	10			
16	24	48	2	1	1	Total for $62 \quad 299$ fields.				1295	967			
16	25	50	5	16	15									
18	26	49	4	1	1	$L_{A} \text { for grain boundary }=\frac{\pi}{2} \cdot P_{L}=\frac{\pi}{2}$								
18	27	46	0	0	0									
18	28	43	4	0	0									
18	29	40	8	57	56	$L_{A} \text { for twin boundary }=-\frac{\pi \times 967}{2 \times 62 \times 0.55}$								
18	30	37	7	16	16									
20	31	37	9	31	28									
20	32	32	10	26	17									
20	33	41	6	68	51	$\overline{\mathrm{X}}$ for grain boundary $=4.8$								
20	34	43	2	72	57									
20	35	45	2	4	11									
20	36	47	0	0	0	$\overline{\mathrm{X}}$ for twin boundary $=15.6$								
10	37	50	2	6	9									
10	38	47	2	3	3									
10	39	44	4	24	10									

TABLE 11 Precipitate Particle Density
SAMPLE SEMIX D-8. Sample in polished condition. Magnification 400X. Fieldarea $: 0.00149 \mathrm{~cm}^{2}$
A denotes No. of Large precipitates observed in field of view. B denotes No. of Small precipitates observed in field of view. X and Y denotes location of microscope stage for the data measured.

OF POOR QUALM,

TABLE 12
SAMPLE

DISLOCATION DENSITY
Magnification $1000 X$, Area of field $=0.000238 \mathrm{~cm}^{2}$
X and Y denote the location of microscope stage (field of view)for the data measured.

FIE	LD		No.	Dislo Pits		FIE	LD		No. of Dislocation Pits
Y	No.	X		\downarrow		Y	No.	X	\dagger
12	1	34		7		10	40	41	$1 ?$.
12	2	35		5		10	41	38	7
12	3	37		0		10	42	35	5
12	4	39		9		8	43	35	2
12	5	41		64		8	44	36	2
12	6	43		7.		8	45	38	15.
12	7	45		2		8	46	40	11
12	8	47		8		8	47	42	304
12	9	49		3		8	48	44	7
12	10	50				8	49	46	2
14	11	49		14		8	50	48	8.
14	12	47		6		8	51	49	
14	13	44		2		6	52	49	5
14	14	41		3		6	53	46	34
14	15	38		2		6	54	43	3
14	16	35		4		6	55	40	48
16	17	35				6	56	37	2
16	18	36		29		5	57	38	
16	19	38		5		5	58	39	95
16	20	40		10		5	59	41	6
16	21	42		2		5	60	43	5
16	22	44		9		5	61	45	14
16	23	46		5		5	62	47	89
16	24	48		7		Total for 57 fields:			1377
16	25	49		6					
18	26	47		7					
18	27	46		8.		Dislocation density			
18	28	43		142					
18	22	40		49		$=1377 /(57)(0.000238) \mathrm{pits} / \mathrm{cm}^{2}$			
18	30	37		5		$=1.0 \times 10^{5} \mathrm{pits} / \mathrm{cm}^{2}$			
19	31	37		6					
19	32	39		126		$\overline{\mathrm{x}}=24$			
19	33	41		20					
19	34	43		6		$\sigma=51$			
19	35	45		7					
19	36	47							
10	37	50		12					
10	38	47		19					
10	39	44		15					

TABLE 13 SAMPLE Field area $=$ rain Boundary and Twin Boundary Density SEMIX E-13. Sample in polished condition. Magnification 100X. $=0.0241 \mathrm{~cm}$. Cizcumference of test circle $=\pi \cdot \mathrm{D}=0.55 \mathrm{~cm}$. A denotes No. of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

FIELD		A	No. of twins	B	
Y	No.	X			
12	1	33	4	7	7
12	2	35	2	5	7
12	3	37	0	4	6
12	4	39	0	1	2
12	5	41	2	38	35
12	6	43	0	0	0
12	7	45	2	0	0
12	8	47	0	0	0
12	9	49	0	0	0
12	10	51	0	0	0
14	11	50	0	0	0
14	12	47	0	1	1
14	13	44	0	0	0
14	14	41	0	0	0
14	15	38	2	13	13
14	16	35	0	4	7
16	17	34	0	0	0
16	18	36	4	6	3
16	19	38	0	0	0
16	20	40	2	15	15
16	21	42	7	18	10
16	22	44	6	20	17
16	23	46	4	51	51
16	24	48	6	33	39
16	25	50	6	53	74
18	26	49	3	69	57
18	27	46	2	10	11
18	28	43	0	0	0
18	29	40	0	0	0
18	30	37	2	0	0
20	31	37	0	0	0
20	32	39	0	0	0
20	33	41	0	0	0
20	34	43	0	0	0
20	35	45	2	1	1
20	36	47	2	8	7
10	37	50	3	21	17
10	38	47	2	4	4
10	39	44	3	4	3

FIE LD			A	No. of twing	B
Y	No.	X			
10	40	41	2	170	124
10	41	38	5	27	29
10	42	35	3	3	2
8	43	34	5	0	0
8	44	36	7	12	8
8	45	38	6	8	6
8	46	40	3	12	20
8	47	42	2	8	15
8	48	44	2	16	24
8	49	46	6	34	50
8	50	48	4	86	94
8	51	50	3	102	161
6	52	49	2	71	132
6	53	46	4	92	152
6	54	43	4	43	71
6	55	40	4	26	38
6	56	37	2	0	0
4	57	37	3	2	2
4	58	39	3	25	24
4	59	41	3	33	45
4	60	43	3	24	38
4	61	45	7	17	24
4	62	47	4	26	42
Total 60	62	153	1223	1488	

fields:
L_{A} for grain boundary $=\frac{\pi}{2} \cdot P_{L}=\frac{\pi}{2} \frac{153}{x 62 \times 0.55^{2}} 7.05 \frac{\mathrm{~cm}}{\mathrm{~cm}_{2}}$
L_{A} for twin boundary $=-\frac{\pi \times 1488}{2 \times 62 \times 0.55}=68.54 \frac{\mathrm{~cm}}{\mathrm{~cm}}$
$\overline{\mathrm{X}}$ for grain boundary $=2.5$
σ for grain boundary= 2.1
$\overline{\mathrm{X}}$ for twin boundary $=24$
σ for twin boundary $=37.7$

TABLE 14 Precipitate Particle Density OF POQR QUALITY SAMPLE SEMIX E-13. Sample in polished condition. Magnification 400X. Field area $=0.00149 \mathrm{~cm}^{2}$
A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

FIELD			A	B	FIELD			A	B
Y	No.	X			Y	No.	X		
12	1	33	1	22	10	40	41	1	5
12	2	35	0	13	10	41	38	0	10
12	3	37	0	7	10	42	35	0	4
12	4	39	0	18	8	43	34	0	48
12	5	41	2	15	8	44	36	0	13
12	6	43	2	12	8	45	38	0	4
12	7	45	2	15	8	46	40	0	8
12	8	47	1	4	8	47	42	0	20
12	9	49	1	19	8	48	44	1	5
12	10	51	0	30	8	49	46	2	7
14	11	50	-	18	8	50	48	2	6
14	12	47	2	12	8	51	50	1	23
14	13	44	0	4	6	52	49	1	7
14	$1 / 2$	41	0	12	6	53	46	1	6
14	15	38	1	12	6	54	43	0	19
14	16	35	1	16	6	56	40	1	16
16	17	34	0	8	6	56	37	0	8
16	18	36	0	5	4	57	37	0	5
16	19	38	1	13	4	58	39	0	5
16	20	40	0	8	4	59	41	0	7
16	21	42	1	9	4	60	43	0	10
16	22	44	1	7	4	61	45	0	7
16	23	46	0	19	4	62	47	1	17
16	24	48	1	10				37	840
16	25	50	0	15		ds:			
18	26	49	1	11					2
18	27	46	1	6		of		ds	$0.09238 \mathrm{~cm}^{2}$
18	28	43	0	17		of. la	e p		37/0.09238
18	29	40	1	11					$400 / \mathrm{cm}^{2}$
18	30	37	0	21		r la	e pp	t.	0.6
20	31	37	0	9		r la	e pp	t,	
20	32	39	0	10		of s	all	ppt.	840/0.09238
20	33	41	0	59					$9090 / \mathrm{cm}^{2}$
20	34	43	1	19		\mathbf{r} sm	11 p	pt.	13.5
20	35	45	1	9		r sm	11 p	pt.	10.6
20	36	47	1	4					
10	37	50	0	27					
10	38	47	1	21					
10	39	44	2	3					

TABLE 15
SAMPLE
DISLOCATION DENSITY
ORIEINAL PAGE IS OF. POOR QUALITY

Magnification $1000 X$, Area of field $=0.0002,38 \mathrm{~cm}^{2}$ X and Y denote the location of microscope stage (ifeld of view for the data measured.

TABLE 16 Grain Boundary and ' T win Boundary Denaity OF POOR QUALITY SAMPLE SEMIX $\mathrm{F}-2{ }_{2}$ Sample in polished condition. Magnification 100X . Field area $=0.0241 \mathrm{~cm}^{2}$. Circumference of teat circle $=\boldsymbol{W} . \mathrm{D}=0.55 \mathrm{~cm}$. A denotes Nex of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersectione with circumference of teat circle. X and Y denotes field location of the data measured.

FIELD		A	No. of twins	B	
\mathbf{Y}	No.	\mathbf{X}			
12	1	33	0	6	9
12	2	35	0	4	7
12	3	37	0	0	0
12	4	39	0	0	0
12	5	41	2	0	0
12	6	43	0	0	0
12	7	45	0	0	0
12	8	47	0	0	0
12	9	49	0	2	4
12	10	51	3	3	2
14	11	50	2	19	28
14	12	47	0	0	0
14	13	44	0	0	0
14	14	41	5	0	0
14	15	38	5	0	0
14	16	35	3	28	12
16	17	34	2	30	27
16	18	36	2	26	24
16	19	38	2	3	3
16	20	40	4	10	12
16	21	42	2	5	5
16	22	44	0	0	0
16	23	46	3	1	2
16	24	48	6	12	10
16	25	50	5	11	16
18	26	49	5	3	3
18	27	46	3	2	3
18	28	43	5	5	4
18	29	40	2	6	9
18	30	37	3	46	22
20	31	37	3	3	5
20	32	39	6	6	2
20	33	41	9	10	8
20	34	43	7	5	4
20	35	45	7	2	8
20	36	47	11	3	1
10	37	50	0	0	0
10	38	47	0	2	4
10	39	44	0	0	0

FIELD			A	No. of	B
Y	No.	X			
10	40	41	0	0	0
10	41	38	0	0	0
10	42	35	0	0	0
8	43	34	0	0	0
8	44	36	0	0	0
8	45	38	0	0	0
8	46	40	0	0	0
8	47	42	0	0	0
8	48	44	0	0	0
8	49	46	0	0	0
8	50	48	0	2	4
8	51	50	0	0	0
6	52	49	0	1	2
6	53	46	0	0	0
6	54	43	0	0	0
6	55	40	2	6	6
6	56	37	0	0	0
4	57	37	0	0	0
4	58	39	4	5	5
4	59	41	5	19	13
4	60	43	0	0	0
4	61	45	0	0	0
4	62	47	0	0	0
Tot	1 for	62	11	287	26

fields:

L_{A} for grain boundary $=\frac{\pi}{2} \cdot P_{L}=\frac{\pi}{2} \times 118{ }^{2}=5.44 \frac{a}{c}$
L_{A} for twin boundary $=-\frac{\pi \times 264}{2 \times 62 \times 0.55}=12 \cdot 16 \frac{\mathrm{~cm}}{\mathrm{~cm}^{2}}$
\bar{X} for grain boundary $=1.9$
σ for grain boundary $=2.6$
\bar{X} for twin boundary $=4.3$
σ for twin boundary $=6.8$

A denotes No. of Large precipitates observed in field of view. B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

TABLE 18
SAMPLE SAMPLE \quad SEMIX F-2. Sample in etched con X and Y denote tise location of microscope stage (field of view)for the deta measured.

TABLE 19 Grain Boundary and T'win Boundary DenaityF POOK QUAilly SAMPLE SEMIX G-12. Sample in polished condition. Magnification 100 ${ }^{\text {K }}$. Fieldarea $0.0241 \mathrm{~cm}^{\text {" Circumference of test circle }=}=\boldsymbol{D}=0.55 \mathrm{~cm}$. A denotes No. of grain boundary intersections with circumference of teat sircle. B denotes No. of twin boundary intersections with circumference of teat circle. X and Y denotes field location of the data meawured.

TABLE 20
Precipitate Particle Density
SAMPLE SEMIX G-12. Sample in polished condition. Magnification 400X. Fieldarea $=0.00149 \mathrm{~cm}^{2}$
A denotef, No. of Large pre-pitates obcerved in field of view. B denotes No. of Small precipitates observed in field of view. X and Y denotes location of microscope stage for the data measured.

TABLE 21 DISLOCATION DENSITY
SAMPLE
SEMIX G-12. Sample in etched condition Magnification 1000 X, Area of field $=0.000238 \mathrm{~cm}^{2}$ X and Y denote the location of microscope stage (field of view)for the data measured.

FIE	LD		No. of Dialoc Pits		LD		No. of Dislocation Pits	
Y	No.	X	\downarrow	Y	No.	X	\downarrow	
12	1	34		10	40	41	33	
12	2	35	1	10	41	38	3	
12	3	37	2	10	42	35	3	
12	4	39	25	8	43	35		
12	5	41	0	8	44	36	0	
12	6	43	27	8	45	38	58	
12	7	45	0	8	46	40	127	
12	8	47	106	8	47	42	112	
12	9	49	187	8	48	44	78	
12	10	50	182	8	49	46	135	
14	11	49	125	8	50	48	15	
14	12	47	158	8	51	49		
14	13	44	163	6	52	49	72	
14	14	41	6	6	53	46	63	
14	15	38	92	6	54	43	15	
14	16	35	23	6	55	40	2	
16	17	35	21	6	56	37	10	
16	18	36	49	5	57	38		
16	19	38	89	5	58	39	85	
16	20	40	63	5	59	41	41	
16	21	42	10	5	60	43	70	
16	22	44	480	5	61	45	47	
16	23	46	310	5	62	47		
16	24	48	1000	Total for 55 fielde:			5932	
16	25	49	92					
18	26	47	23					
18	27	46	122	Dislocation density$=5932 /(55)(0.000238) \mathrm{pits} / \mathrm{cm}^{2}$				
18	28	43	15					
18	29	40	99					
18	30	37	74	$=4.5 \times 10^{5} \mathrm{pits} / \mathrm{cm}^{2}$				
19	31	37						
19	32	39	108	$\overline{\mathrm{X}}=108$				
19	33	41	230					
19	34	43	450		161			
19	35	45	20					
19	36	47						
10	37	50	320					
10	38	47	275					
10	39	44	16					

TABLE 22 Grain Boundary and Twin Boundary Density SAMPLE SEMIX H-8, Sample in polished condition. Magnification 100X. Field area $=0.0241 \mathrm{~cm}^{2}$. Circumference of test circle $=\pi . D=0.55 \mathrm{~cm}$. A denotes No. of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersections with circumference of tent circle. X and Y denotes field location of the data mezsured.

FIELD		A	No. of twins	B	
Y	No.	X			
12	1	33	8	44	19
12	2	35	3	4	5
12	3	37	4	9	8
12	4	39	2	4	3
12	5	41	5	6	6
12	6	43	2	10	11
12	7	45	2	1	2
12	8	47	2	3	1
12	9	49	5	13	12
12	10	51	4	3	3
14	11	50	2	10	12
14	12	47	2	2	2
14	13	44	2	4	4
14	14	41	2	4	2
14	15	38	5	15	10
14	16	35	3	12	15
16	17	34	6	19	18
16	18	36	2	12	17
16	19	38	2	2	2
16	20	40	6	17	24
16	21	42	6	39	34
16	22	44	0	1	2
16	23	46	3	2	2
16	24	48	3	2	2
16	25	50	6	1	2
18	26	49	2	0	0
18	27	46	0	0	0
18	28	43	3	6	8
18	29	40	3	4	45
18	30	37	3	17	19
20	31	37	5	12	9
20	32	39	4	22	18
20	33	41	5	48	44
20	34	43	2	54	68
20	35	45	2	13	13
20	36	47	0	0	0
10	37	50	2	4	5
10	38	47	0	0	0
10	39	44	3	13	6
1					

FIELD			A	No. oi twins	B
Y	No.	X			
10	40	41	3	15	9
10	41	38	2	2	2
10	42	35	5	15	13
8	43	34	7	20	24
8	44	36	6	17	17
8	45	38	3	4	4
8	46	40	3	1	1
8	47	42	2	17	5
8	48	44	5	54	39
8	49	46	0	14	28
8	50	48	4	9	11
8	51	50	0	7	9
6	52	49	4	11	10
6	53	46	4	21	34
6	54	43	4	37	18
6	55	40	7	8	11
6	56	37	4	113	28
4	57	37	6	50	31
4	58	39	2	7	13
4	59	41	3	3	3
4	60	43	0	0	0
4	61	45	6	35	6
4	62	47	4	4	4

Total for $62 \quad 205 \quad 931$ 779
fields:
L_{A} for grain boundary $=\frac{\pi}{2} \cdot P_{L}=\frac{\pi}{2} \frac{\times 205}{162 \times 0.55}=9.44 \frac{4.4}{c m}$
L_{A} for twin boundary $=-\frac{\pi \times 779}{2 \times 62 \times 0.55}=35.89 \frac{\mathrm{am}}{\mathrm{an}^{2}}$
\bar{X} for grain boundary $=3.3$
σ for grain boundary= 1.9
$\overline{\mathrm{X}}$ for twin boundary $=12.6$
σ for twin boundary $=13.3$ Fieldarea $=0.00149 \mathrm{~cm}^{2}$
A denotes No. of Large precipitates observed in field of view. B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

FIELD			A	B	FIELD			A	B
Y	No.	X			Y	No.	X		
12	1	33	2	48	10	40	41	0	10
12	2	35	2	3	10	41	38	4	10
12	3	37	0	13	10	42	35	0	38
12	4	39	0	7	8	43	34	0	41
12	5	41	0	9	8	44	36	0	19
12	6	43	1	14	8	45	38	0	25
12	7	45	0	8	8	46	40	0	12
12	8	47	0	5	8	47	42	1	7
12	9	49	1	6	8	48	44	0	11
12	10	51	1	2	8	49	46	0	23
14	11	50	0	17	8	50	48	1	14
14	12	47	0	9	8	51	50	0	18
14	13	44	1	14	6	52	49	0	19
14	14	41	0	4	6	53	46	0	34
14	15	38	0	11	6	54	43	0	8
14	16	35	0	28	6	55	40	0	4
16	17	34	1	14	6	56	37	0	9
16	18	36	0	5	4	57	37	1	13
16	19	38	0	3	4	58	39	0	9
16	20	40	0	4	4	59	41	0	6
16	21	42	0	11	4	60	43	0	16
16	22	44	0	1	4	61	45	0	17
16	23	46	0	5	4	62	47	0	15
16	24	48	0	7				23	875
16	25	50	0	8					
18	26	49	0	3					
18	27	46	0	10		a of	2 f	eld	$38 \mathrm{~cm}^{2}$
18	28	43	3	18		of la	ge		02238
18	29	40	0	3					
18	30	37	0	14		r la	e p	pt.	
20	31	37	0	37		la	e p	pt.	
20	32	39	2	52		of sm	all	ppt.	. 09238
20	33	41	0	11					cm^{2}.
20	34	43	0	22		r sm	11	pt.	
20	35	45	1	9		\mathbf{r} sm	11	pi.	

TABLE 24
SAMPLE Magnification 1000 X, Area of field $=0.000238 \mathrm{~cm}^{2}$
X and Y denote the location of microscope atage (field of view)for the data measured.

FIE	LD		No. of Dis Pit			LD		No. of Dislocation Pits
Y	No.	X	\downarrow		Y	No.	X	\dagger
12	1	34	138		10	40	41	164
12	2	35	103		10	41	38	960
12	3	37	4		10	42	35	72
12	4	39	71		8	43	35	
12	5	41	197		8	44	36	49
12	6	43	215.		8	45	38	1050
12	7	45	360		8	46	40	23
12	8	47	222		8	47	42	725
12	9	49	172		8	48	44	119
12	10	50	155		8	49	46	325
14	11	49	19		8	50	48	21.3
14	12	47	3		8	51	49	
14	13	44	78		6	52	49	255
14	14	41	6		6	53	46	32
14	15	38	69		6	54	43	83
14	16	35	125		6	55	40	1030
16	17	35			6	56	37	3
16	18	36	320		5	57	38	
16	19	38	24		5	58	39	21
16	20	40	248		5	59	41	184
16	21	42	127		5	60	43	228
16	22	44	17		5	61	45	270
16	23	46	16		5	62	47	
16	24	48	2		Totalfor 56 11428 fields:			
16	25	49	2					
18	26	47	310					
18	27	46	189		Dislocation density$=11428 /(56)(0.000238) \mathrm{pits} / \mathrm{cm}^{2}$			
18	28	43	271					
18	29	40	425					
18	30	37	219		$=8.6 \times 10^{5} \mathrm{pits} / \mathrm{cm}^{2}$			
19	31	37	111					
19	32	39	303		$\bar{x}=204$			
19	33	41	82					
19	34	43	300					
19	35	45	180					
19	36	47						
10	37	50	6					
10	38	47	307					
10	39	44	226					

OnIGINAL PAGE IE OF POOR QUALITY,

TABLE 25 Grain Boundary and Twin Boundary Density SAMPLE:Semix 1-10-13 TlSample in polished condition. Magnification 100X. Field area $=0.0241 \mathrm{~cm}^{2}$. Circumference of teat circle $=\pi \cdot D=0.55 \mathrm{~cm}$. A denotes No. of grain boundary intersectiona with circumference of test circle. B denotes No, of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data meagured.

FIELD			A	No. of	B
Y	No.	X	C B		Twin
12	1	33	0		9
12	2	35	2		3
12	3	37	5		38
12	4	39	4		67
12	5	41	0		0
12	6	43	3		17
12	7	45	0		40
12	8	47	2		35
12	9	49	2		10
12	10	51	2		13
14	11	50	0		3
14	12	47	0		6
14	13	44	2		1
14	14	41	0		0
14	15	38	0		3
14	16	35	2		5
16	17	34	3		12
16	18	36	3		4
16	19	38	2		10
16	20	40	5		6
16	21	42	3		9
16	22	44	2		2
16	23	46	0		8
16	24	48	0		1
16	25	50	0		0
18	26	49	4		36
18	27	46	4		33
18	28	43	4		36
18	29	40	4		30
18	30	37	0		1
20	31	37	0		0
20	32	39	4		0
20	33	41	0		15
20	34	43	0		32
20	35	45	2		26
20	36	47	5		80
10	37	50	2		84
10	38	47	5		70
10	39	44			

FIELD			A	No. of twins	B
Y	No.	X			
10	40	41	2		37
10	41	38	6		78
10	42	35	4		7
8	43	34	3		30
8	44	36	2		29
8	45	38	2		32
8	46	40	4		32
8	47	42	3		21
8	48	44	2		62
8	49	46	2		73
8	50	48	6		76
8	51	50	3		59
6	52	49	8		61
6	53	46	2		24
6	54	43	5		25
6	55	40	4		34
6	56	37	8		7
4	57	37	10		7
4	58	39	7		8
4	59	41	4		43
4	60	43	0		50
4	61	45	3		71
4	62	47	5		76
Total for	62	171		1720	
fields:					

L_{A} for grain boundary $=\frac{\pi}{2} \cdot P_{L}=\frac{\pi}{2} \frac{2.76}{0.55}=7.88 \mathrm{~cm} / \mathrm{cm} 2$
L_{A} for twin boundary $=-\frac{\pi 27.7}{20.55}=\frac{79.2}{\mathrm{~cm} / \mathrm{cm}^{2}}$

X for grain boundary $=2.76$
σ for $g r a i n$ boundary $=2.28$
$\overline{\mathrm{X}}$ for twin boundary $=27.7$
σ for twin boundary $=25.3$

TABLE 26

Precipitate Particle Density

SAMPLE: Semix 1-10-13 (T)Sample in polished condition. Magnification 400X. Fieldarea $=0.00149 \mathrm{~cm}^{2}$
A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

FIELD			A	B	FIELD			A	B
Y	No.	\mathbf{X}	Larg	Small	Y	No.	X		
12	1	33	0	23	10	40	41	12	120
12	2	35	2	94	10	41	38	6	38
12	3	37	8	208	10	42	35	1	11.5
12	4	39	1	24	8	43	34	11	229
12	5	41	3	36	8	44	36	3	6
12	6	43	4	10	8	45	38	1	105
12	7	45	2	9	8	46	40	0	40
12	8	47	1	60	8	47	42	1	7
12	9	49	3	137	8	48	44	4	128
12	10	51	2	15	8	49	46	1	1
14	11	50	1	6	8	50	48	4	139
14	12	47	0	13	8	51	50	1	20
14	13	44	1	10	6	52	49	7	336
14	14	41	3	6	6	53	46	8	54
14	15.	38	5	83	6	54	43	5	11
14	16	35	3	39	6	55	40	1	12
16	17	34	4	30	6	56	37	2	92
16	18	36	3	39	4	57	37	4	43
16	19	38	4	195	4	58	39	2	48
16	20	40	5	241	4	59	41	11	140
16	21	42	4	56	4	60	43	3	90
16	22	44	3	80	4	61	45	3	51
16	23	46	1	19	4	62	47	5	35
16	24	48	0	5					
16	25	50	4	161	Total for 62188 fields:				4083
18	26	49	1	46					
18	27	46	3	45	Area of 62 fields $=0.09238 \mathrm{~cm}^{2}$				
18	28	43	2	21	$\begin{aligned} \text { No. of large ppt. } & =188 / 0.02^{238} \\ & =2035 / \mathrm{cm}^{2} \end{aligned}$				
18	29	40	2	73					
18	30	37	0	35	$\overline{\mathbf{X}}$ for large ppt. $=3.0$				
20	31	37	1	48	σ for large ppt. $=2.6$				
20	32	39	1	45	$\begin{aligned} \text { No. of small ppt. } & =4083 / 0.09238 \\ & =44200 / \mathrm{cm}^{2} \end{aligned}$				
20	33	41	2	70					
20	34	43	3	48	$\overline{\mathbf{x}}$ for small ppt. $=66$ σ for small ppt. $=67$				
20	35	45	1	5					
20	36	47	4	114					
10	37	50	2	61					
10	38	47	2	11					
10	39	44	1	2					

TABLE 26 Precipitate Particle Density
SAMPLE: Semix 1-10-13 (T) Sample in polished condition. Magnifica!ion 400X. Field area $=0.00149 \mathrm{~cm}^{2}$
A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

TABLE 27
DISLOCATION DENSITY
SAMPLE: Semix 1-10-13 (T) Sample in etched condition Magnification 1000 , Area of field $=0.000238 \mathrm{~cm}^{2}$ X and Y denote the location of microscope stage (field of view for the data measured.

FIELD			No, of Dislocation Pits		FIELD			No. of Dislocation Pits	
Y	No.	X		\downarrow	Y	No.	X	5	
12	1	-34		1	10	40	41	1	
12	2	-35		5	10	41	38	83	
12	3	37		4	10	42	35	6	
12	4	39		0	8	43	35	1	
12	5	41		2	8	44	36	6	
12	6	43		2	8	-45	38	4	
12	7	45		4	8	46	40	3	
12	8	47		4	8	47	42	16	
12	9	49		6	8	48	44	7	
12.	10	50		4	8	49	46	10	
14	11	49		0	8	50	48	20	
14	12	47		0	8	51	49	13	
14	13	44		8	6	52	49	12	
14	14	41		2	6	53	46	13	
14	15	38		4	6	54	43	7	
14	16	35		3	6	55	40	136	
16	17	35		2	6	56	37	137	
16	18	36		1	5	57	38	27	
16	19	38		2	5	58	39	4	
16	20	40		7	5	59	41	20	
16	21	42		5	5	60	43	13	
16	22	44		0	5	61	45	14	
16	23	46		4	5	62	47	97	
16	24	48		5	Total for 62fields:				
16	25	49		0					
18	26	47		73					
18	27	46		5	Dislocation density $=6.0 \times 10^{4} / \mathrm{cm}^{2}$				
18	28	43		6					
18	29	40		6	$\begin{aligned} & \bar{x}=14.3 \\ & \sigma=28.7 \end{aligned}$				
18	30	37		1					
19	31	37		1					
19	32	39		4					
19	33	41		4					
19	34	43		0					
19	35	45		32					
19	36	47		17					
10	37	50		3					
10	38	47		8					
10	39	44		0					

TABLE 28 Cirain Boundary and Twin Boundary Density SAMPLE:Semix 1-12-14 (ע)Sample in polished condition. Magnification 100 X . Field area $=0.0241 \mathrm{~cm}$. Circumference of test circle $=\pi . D=0.55 \mathrm{~cm}$. A denotes No. of grain boundary intersections with circumference of teat circle. B denotes No. of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

FIELD		A	No. of twins	B	
Y	No.	X	GB		Twin
12	1	33	0		0
12	2	35	0		0
12	3	37	0		4
12	4	39	0		0
12	5	41	0		11
12	6	43	0		11
12	7	45	0		5
12	8	47	0		2
12	9	49	4		14
12	10	51	0		8
14	11	50	2		11
14	12	47	4		7
14	13	44	2		2
14	14	41	0		5
14	15	38	0		5
14	16	35	0		0
16	17	34	-		-
16	18	36	0		0
16	19	38	0		6
16	20	40	2		2
16	21	42	2		2
16	22	44	2		8
16	23	46	2		5
16	24	48	0		0
16	25	50	0		0
18	26	49	4		5
18	27	46	0		2
18	28	43	0		5
18	29	40	0		3
18	30	37	0		5
20	31	37	0		10
20	32	39	3		9
20	33	41	0		8
20	34	43	2		7
20	35	45	3		6
20	36	47	5		4
10	37	50	2		9
10	38	47	3		3
10	39	44	2		36

FIELD			A	No. of twin:	B
Y	No.	X			
10	40	41	0		9
10	41	38	0		1
10	42	35	0		0
8	43	34	2		8
8	44	30	0		4
8	45	38	0		6
8	46	40	0		2
8	47	42	0		13
8	48	44	0		34
8	49	46	0		9
8	50	48	2		28
8	51	50	2		6
6	52	49	2		35
6	53	46	2		52
6	54	43	0		18
6	55	40	2		24
6	56	37	4		6
4	57	37	0		0
4	58	39	0		16
4	59	41	3		14
4	60	43	0		19
4	61	45	2		31
4	62	47	2		68
Total 1 for	61	67		623	

fields:
L_{A} for grain boundary $=\frac{\pi}{2} \cdot P_{L}=\frac{\pi}{2} \frac{1-\frac{1}{0}}{0.55}=3.14 \mathrm{~cm} / \mathrm{cm}^{2}$
L_{A} for twin boundary $=-\frac{\pi 10.21}{20.55}=29.2$ $\mathrm{cm} / \mathrm{cm}^{2}$
$\overline{\mathrm{X}}$ for grain boundary $=1.1$
σ for grain boundary $=1.4$
$\overline{\mathrm{X}}$ for twin boundary $=10.2$
σ for twin boundary $=12.8$ $\overline{\text { Field area }}=0.00149 \mathrm{~cm}^{2}$
A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

TABLE 30
DISLOCATIOIN DENSITY
SAMPLE: Semix 1-12-14 (U) Sample in etched cordition Magnification $1000 X$, Area of field $=0.000238 \mathrm{~cm}^{2}$ X and Y denote the location of microscope stage (field of view for the data measured.

0
OF Fur : Couny
TABLE 31 Grain Boundary and Twin Boundary Denaity
SAMPLE:Semix 2-5-1 (V) Sample in polished condition. Magnification 100X. Fieldarea $=0.0241 \mathrm{~cm}$. Circumference of test circle $=\pi \cdot D=0.55 \mathrm{~cm}$. A denotes No, of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

FIELD		A	No. of twins	B	
\mathbf{Y}	No.	X	GB		Twin
12	1	33	2		0
12	2	35	8		0
12	3	37	23		0
12	4	39	22		0
12	5	41	17		1
12	6	43	5		0
12	7	45	5		15
12	8	47	5		8
12	9	49	4		9
12	10	51	2		26
1	11	50	2		11
14	12	47	3		36
14	13	44	10		13
14	14	41	6		9
14	15	38	8		3
14	16	35	10		1
16	17	34	3		10
16	18	36	7		40
16	19	38	14		40
16	20	40	22		17
16	21	42	11		13
16	22	44	5		29
16	23	46	12		46
16	24	48	9		15
16	25	50	15		5
18	20	49	3		1
18	27	46	11		24
18	28	43	14		26
18	29	40	13		13
18	30	37	12		43
20	31	37	19		25
20	32	39	22		11
20	33	41	17		26
20	34	43	19		23
20	35	45	12		52
20	36	47	4		14
10	37	50	3		0
10	38	47	23		5
10	39	44	26		8

FIELD			A	No. of	B
Y	No.	X			
10	40	41	12		8
10	41	38	2		0
10	4%	35	0		0
8	43	34	0		0
8	44	36	0		0
8	45	38	5		0
8	46	40	6		1
8	47	42	13		0
8	48	44	19		8
8	49	46	29		1
8	50	48	21		0
8	51	50	17		0
6	52	49	15		2
6	53	46	22		0
6	54	43	23		10
6	55	40	13		3
6	56	37	0		0
4	57	37	6		50
4	58	39	11		39
4	59	41	13		41
4	60	43	13		8
4	61	45	12		0
4	62	47	14		0
Tot fiel	$\begin{aligned} & \text { for } \\ & \text { s. } \end{aligned}$		694		789

L_{A} for grain boundary $=\frac{\pi}{2} \cdot P_{L}=\frac{\pi}{2} \frac{11.2}{0.55}=32$ $\mathrm{cm} / \mathrm{cm}^{2}$
L_{A} for twin boundary $=-\frac{\pi 12.7}{20.55}=36.3$ $\mathrm{cm} / \mathrm{cm}^{2}$
$\overline{\mathrm{X}}$ for grain boundary $=11.2$
σ for grain boundary $=7.4$
$\overline{\mathrm{X}}$ for twin boundary $=12.7$
σ for twin boundary $=15.0$

TABLE 32 Precipitate Particle Density
OF FOCR QUALITY SAMPLE: Semix 2-5-1 (V) Sample in polished condition. Magnification 400X. Fieldarea $=0.00149 \mathrm{~cm}^{2}$
A denotes No. of Large precipitates obsorved in field of view. B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

TABLE 33
DISLOCATION DENSITY
SAMPLE: Semix 2-5-1 (V) Sample in etched condition Magnification $1000 X$, Area of field $=0.000238 \mathrm{~cm}^{2}$
X and Y denote the location of microscope stage (field of view for the data measured.

TABLE 34 Grain Boundary and Twin Boundary Density SAMPLE:Semix 3-4-12 (W)Sample in polished condition. Magnification 100X. Field area $=0.0241 \mathrm{~cm}^{2}$. Circumference of test circle $=\pi \cdot D=0.55 \mathrm{~cm}$. A denotes No. of grain boundary intersections with circumference of teat circle. B denotes No. of t win bundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

FIELD			A	No. of	B	FIELD			A	No. of twins	B
Y	No.	X	CB		Twin	Y	No.	X			
12	1	33	2		5	10	40	41	7		53
12	2	35	4		5	10	41	38	3		14
12	3	37	4		0	10	42	35	2		32
12	4	-39	9		8	8	43	34	6		16
12	5	41	14		5	8	44	36	7		29
12	6	43	8		27	8	45	38	6		27
12	7	45	5		48	8	46	40	10		19
12	8	47	0		14	8	47	42	4		45
12	9	49	3		23	8	48	44	9		39
12	10	51	0		18	8	49	46	6		15
14	11	50	2		4	8	50	48	9		3
14	12	47	0		5	8	51	50	4		5
14	13	44	12		10	6	52	49	2		41
14	14	41	8		3	6	53	46	3		13
14	15	38	5		12	6	54	43	8		21
14	16	35	8		13	6	55	40	5		17
16	17	34	7		6	6	56	37			
16	18	36	7		0	4	57	37			
16	19	38	4		11	4	58	39			
16	20	40	5		8	4	59	41			
16	21	42	10		7	4	60	43			
16	22	44	2		0	4	61	45			
16	23	46	5		0	4	62	47			
16	24	48	5		6	Total for 55 fields:			325		770
16	25	50	14		11						
18	26	49	7		22						

L_{A} for grain boundary $=\frac{\pi}{2} \cdot P_{L}=\frac{\pi}{2} \frac{5.9}{0.55}=16.9$ L_{A} for twin boundary $=-\frac{\pi 14}{20.55}=40 \begin{aligned} & 40 \\ & \mathrm{~cm} / \mathrm{cm}^{2}\end{aligned}$
\bar{X} for grain boundary $=5.9$
σ for grain boundary $=3.6$
$\overline{\mathrm{X}}$ for twin boundary $=14$
σ for twin boundary $=12.7$

TABLE 35
Precipitate Particle Density
SAMPLE: Semix 3-4-12 (W) Sample in polished condition. Magnification 400X. Fieldarea $=0.00149 \mathrm{~cm}^{2}$
A denotes No, of Large precipitates observed in field of view. B denotes No. of Small precipitates observed in field of view. X and Y denotes location of microscope stage for the data measured.

TABLE 36
DISLOCATION DENSITY

Sample in etched condition
Magnification 1000X, Area of field $=0.000238 \mathrm{~cm}^{2}$ X and Y denote the location of microscope stage (field of view for the data measured.

TABLE 37 Grain Boundary and 'I win Boundary Density
SAMPLE:Semix 3-4-16 (X)Sample in polished condition. Magnification 100X. Field area $=0.0241 \mathrm{~cm}^{2}$. Circumference of test circle $=\pi \cdot D=0.55 \mathrm{~cm}$. A denotes No, of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

FIELD		A	No. of twins	B	
Y	No.	X	GB		Twin
12	1	33	4		27
12	2	35	4		24
12	3	37	9		13
12	4	39	9		7
12	5	41	20		17
12	6	43	16		10
12	7	45	13		1
12	8	47	12		1
12	9	49	16		2
12	10	51	15		3
14	11	50	13		14
14	12	47	14		5
14	13	44	18		0
14	14	41	11		38
14	15	38	4		5
14	16	35	4		20
16	17	34	9		5
16	18	36	7		6
16	19	38	2		4
16	20	40	9		3
16	21	42	16		4
16	22	44	13		0
16	23	46	12		3
16	24	48	8		4
16	25	50	8		2
18	26	49	18		0
18	27	46	14		0
18	28	43	20		1
18	29	40	17		1
18	30	37	0		4
20	31	37	2		11
20	32	39	11		11
20	33	41	14		0
20	34	43	7		1
20	35	45	16		0
20	36	47	15		1
10	37	50	7		5
10	38	47	18		1
10	39	44	16		2

FIELD			A	No. of	B
Y	No.	X			
10	40	41	15		6
10	41	38	7		13
10	42	35	5		11
8	43	34	5		61
8	44	36	9		6
8	45	38	9		22
8	46	40	14		3
8	47	42	16		7
3	48	44	16		0
8	49	46	3		14
8	50	48	0		18
8	51	50	0		6
6	52	4 S	0		29
6	53	46	0		21
6	54	43	14		0
6	55	40	9		16
6	56	37	8		16
4	57	37	8		25
4	58	39	11		13
4	59	41	-		-
4	60	43	11		5
4	61	45	4		13
4	62	47	-		-
Tot	1 for	60	605		567

fields:
L_{A} for grain boundary $=\frac{\pi}{2} \cdot P_{L}=\frac{\pi}{2} \frac{10.1}{0.55}=28.8 \mathrm{~cm}^{8} \mathrm{~cm}^{2}$ L_{A} for twin boundary $=-\frac{\pi 9.45}{20.55}=\frac{27.0}{\mathrm{~cm} / \mathrm{cm}^{2}}$
\bar{X} for grain boundary $=10.1$
σ for grain boundary $=5.6$
$\overline{\mathrm{X}}$ for twin boundary $=9.45$
σ for twin boundary $=10.9$

TABLE 38
Precipitate Particle Density
SAMPLE: Semix 3-4-16 (X) Sample in polished condition. Magnification 400X. Fieldarea $=0.00149 \mathrm{~cm}^{2}$
A denotes No. of Large precipitates observed in field of view. B denotes No, of Small precipitates observed in field of view. X and Y denotes location of microscope stage for the data measured.

ORIGinton :
OF POOR QUALMY
TABLE 39
DISLOCATION DENSITY
SAMPLE: Semix 3-4-16 (X) Sample in etched condition Magnification $1000 X$, Area of field $=0.000238 \mathrm{~cm}^{2}$ X and Y denote the location of microscope stage (field of view for the data measured.

ORIGINAL PARE IS OF POOR QUALITY

TABLE 40 Grain Boundary and Twin Boundary Density
SAMPLE:Semix 4-2-4 (Y) Sample in polished condition. Magnification 100X .
Field area $=0.0241 \mathrm{~cm}$. Circumference of test circle $=\pi \cdot D=0.55 \mathrm{~cm}$.
A denotes No. of grain boundary intersections with circumference of teat circle.
B denotes No. of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.

FIELD		A	No. of twins	B	
\mathbf{Y}	No.	\mathbf{X}	GB		Twin
12	1	33	5		6
12	2	35	3		2
12	3	37	0		0
12	4	39	0		0
12	5	41	2		0
12	6	43	2		2
12	7	45	8		28
12	8	47	4		4
12	9	49	4		0
12	10	51	0		2
14	11	50	8		18
14	12	47	4		9
14	13	44	4		6
14	14	41	3		61
14	15	38	3		0
14	16	35	4		3
16	17	34	5		2
16	18	36	8		9
16	19	38	4		3
16	20	40	3		41
16	21	42	3		37
16	22	44	0		1
16	23	46	9		21
16	24	48	6		6
16	25	50	8		27
18	26	49	13		9
18	27	46	4		1
18	28	43	8		8
18	29	40	5		7
18	30	37	8		28
20	31	37	9		21
20	32	39	9		13
20	33	41	0		0
20	34	43	3		16
20	35	45	5		24
20	36	47	2		2
10	37	50	2		1
10	38	47	9		4
10	39	44	6		9

FIELD				A	No. of twins
Y	No.	X			
10	40	41	16		19
10	41	38	0		2
10	42	35	0		23
8	43	34	4		0
8	44	36	26		12
8	45	38	10		6
8	46	40	10		15
8	47	42	4		25
8	48	44	2		65
8	49	46	8		11
8	50	48	6		3
8	51	50	4		7
6	52	49	6		25
6	53	46	4		10
6	54	43	2		18
6	55	40	5		14
6	56	37	18		16
4	57	37	9		18
4	58	39	6		8
4	59	41	6		9
4	60	43	20		2
4	61	45	11		13
4	62	47	6		4

Total for $62366 \quad 756$
fields:
L_{A} for grain boundary $=\frac{\pi}{2} \cdot P_{L}=\frac{\pi}{2} \frac{5.9}{0.55}=16.9$ $\mathrm{cm} / \mathrm{cm}^{2}$
L_{A} for twin boundary $=-\frac{\pi \quad 12.2}{2 \quad 0.55}=\begin{aligned} & 34.8 \\ & \mathrm{~cm} / \mathrm{cm}^{2}\end{aligned}$
$\overline{\mathrm{X}}$ for grain boundary $=5.9$
σ for grain boundary $=4.9$
$\overline{\mathrm{X}}$ for twin boundary $=12.2$
σ for twin boundary $=13.4$

TABLE 41 Precipitate Particle Density
SAMPLE: Semix 4-2-4 (Y) Sample in polished condition. Magnification 400X. Fieldarea $=0.00149 \mathrm{~cm}^{2}$
A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

TABLE 42
U.

OF FUEl: Yunmiry
SAMPLE: Semix 4-2-4 (Y) Sample in etched condition Magnification $1000 X$, Area of field $=0.000238 \mathrm{~cm}^{2}$ X and Y denote the location of microscope stage (field of view) for the data measured.

TABLE 43 Grain Boundary and Twin Boundary Denaity
SAMPLE:Semix 4-2-8 (Z2) Sample in polished condition. Magnification 100X . Field area $=0.0241 \mathrm{~cm}$. Circumference of test circle $=\pi \cdot D=0.55 \mathrm{~cm}$. A denotes No. of grain boundary intersections with circumference of teat circle. B denotes No. of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

FIELD			$A$$\overline{G B}$	No. of twins	B Twin	FIELD			A	No. of twins	B			
Y	No.	X				Y	No.	X						
12	1	33	8		11	10	40	41	10		19			
12	2	35	7		29	10	41	38	2		0			
12	3	37	0		2	10	42	35	2		10			
12	4	39	2		3	8	43	34	9		1			
12	5	41	5		8	8	44	36	3		1			
12	6	43	7		16.	8	45	38	4		12			
12	7	45	3		6	8	46	40	2		6			
12	8	47	4		2	8	47	42	12		21			
12	9	49	4		5	8	48	44	5		27			
12	10	51	10		32	8	49	46	5		32			
14	11	50	5		13	8	50	48	0		28			
14	12	47	4		17	8	51	50	6		15			
14	13	44	3		3	6	52	49	10		0			
14	14	41	3		3	6	53	46	2		51			
14	15	38	2		0	6	54	43	2		45			
14	16	35	0		1	6	55	40	5		7			
16	17	34	0		28	6	56	37	0		2			
16	18	36	0		0	4	57	37	6		2			
16	19	38	3		8	4	58	39	4		68			
16	20	40	5		50	4	59	41	2		72			
16	21	42	7		5	4	60	43	4		54			
16	22	44	6		7	4	61	45	8		25			
16	23	46	12		44	4	62	47	5		16			
16	24	48	10		12	Total for 62 fields:			302		1112			
16	25	50	3		4									
18	26	49	5		5									
18	27	46	5		75	$L_{A} \text { for grain boundary }=\frac{\pi}{2} \cdot P_{L}=\frac{\pi}{2} \frac{4.87}{0.55}=13 / \mathrm{cm}^{9} 2$								
18	28	43	12		12									
18	29	40	7		33									
18	30	37	5		19	$L_{A} \text { for twin boundary }=-\frac{\pi-17.9}{20.55}=\begin{aligned} & 51.2 \\ & \mathrm{~cm} / \mathrm{cm}^{2} \end{aligned}$								
20	31	37	6		19									
20	32	39	7		24									
20	33	41	0		6	$\begin{array}{ll} \bar{X} \text { for grain boundary }= & 4.87 \\ \sigma \text { for } g r a i n ~ b o u n d a r y ~ & = \\ \hline .15 \end{array}$								
20	34	43	3		4									
20	35	45	5		34									
20	36	47	10		20	\bar{X} for twin boundary $=17.9$ σ for twin boundary $=18.3$								
10	37	50	4		13									
10	38	47	5		12									
10	39	44	7		13									

TABLE 44 Precipitate Particle Density
SAMPLE: Semix 4-2-8 (Z) Sample in polished condition. Magnification 400X. Fieldarea $=0.00149 \mathrm{~cm}^{2}$
A denotes No. of Large precipitates observed in field of view.
B denotes No. of Small precipitates observed in field of view.
X and Y denotes location of microscope stage for the data measured.

TABIE 45
DISL,OCATION DENSITY
SAMPLE: Semix 4-2-8 (Z) Sample in etched condition Magnificaticn 1000X, Area of field $=0.000238 \mathrm{~cm}^{2}$ X and Y denote the location of microscope stage (field of view for the data measured.

