General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

ANALYSIS OF DEFECT STRUCTURE IN SILICON

CHARACTERIZATION

DOE/JPL 955676-1 Ibution Category UC - 63

Roldlasta

APP 1983

RECEIVED

SA STI FACILIT

CCESS DE

Unclas 03416

DRL No. 135

Technical Report: MRI - 294

63/44 SHEET CF search, 205 CHAFACTERIZATIC 2 H SILICC GRCWTI LEFEC -AFEA SFEET C F C LI ANALYSIS Mate EL. Z 0 00 Ci III -SILICCS. ES. -THI in 00 (NASA-CR-17C239) FOF LCW-PETERIAL. NI F THE STRUCTURE DEVELO 0 SK YL Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low-Cost Solar Array Project. FINAL REPORT

> by R. Natesh G. B. Stringfellow A. V. Virkar J. Dunn

T. Guyer

February, 1983 JPL Contract No. 955676

The JPL Low-Cost Silicon Solar Array Project is sponsored by the U.S. Department of Energy and forms part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, by agreement between NASA and DOE.

Research 7 Development Consulting and Testing Of Materials

TOO South 790 East Centerville, Utah 84014 Telephonet (801) 298-4000

Materials Research, Inc.

SEMIX MATERIA

ANALYSIS OF DEFECT STRUCTURE IN SILICON

CHARACTERIZATION OF SEMIX MATERIAL

Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low-Cost Solar Array Project.

FINAL REPORT

by

R. Natesh G. B. Stringfellow A. V. Virkar J. Dunn T. Guyer

February, 1983

JPL Contract No. 955676

The JPL Low-Cost Silicon Solar Array Project is sponsored by the U.S. Department of Energy and forms part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, by agreement between NASA and DOE.

Research Development Consulting and Testing Of Materials

700 South 790 East Centerville, Utah 84014 Telephone: (801) 298-4000

TECHNICAL CONTENT STATEMENT

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

2

an S Na A

TABLE OF CONTENTS

SECTION				Page
	LIST	OF TAB	LES	5
	LIST	OF FIGU	JRES	6
1.	ABST	RACT		9
2.	QUAN	TITATIV	E ANALYSIS OF DEFECTS	10
	2.1	INTROE	DUCTION	10
		2.1.1	Advantages of Quantitative Microscopy (QTM)	11
	2.2	EXPER	IMENTAL PROCEDURE	13
•		2.2.1	Chemical Polishing and Etching	13
	2.3	RESUL	rs and discussions	18
·		2.3.1	Measurement of Grain Boundary and Twin Boundary Length Per Unit Area	20
		2.3.2	Measurement of Precipitate Particles	23
		2.3.3	Dislocation Density Measurement	26
		2.3.4	Cell Efficiency Versus Twin Boundary Density	30
		2.3.5	Diffusion Length Versus Dislocation Density	30
		2.3.6	Cell Efficiency Versus Area of All Defects	31
		2.3.7	Cell Efficiency Versus Location of Wafers	34
		2.3.8	Unprocessed Wafers	37
		2.3.9	Numerical Significance of Measured Data	39

SECTION

4

F.

\$} ₩×

3.	EFFE Mobi	CT OF CLITY .	GRAIN BOUNDARY DENSITY ON CARRIER	42
	3.1	INTROE	DUCTION	42
	3.2	EXPER	IMENTAL PROCEDURE	43
	3.3	RESULT	IS AND SAMPLE CALCULATIONS	4 6
		3, 3, 1	Thickness	4 6
		3.3.2	Resistivity	47
		3.3.3	Hall Const., Mobility, Carrier Conc., Carrier Type	48
		3.3.4	Normalized Mobilities	49
		3.3.5	Grain Boundary Density	50
	3.4	DISCUS	SIONS	52
4	CONC	LUSIONS		54
	4.1	QUANTI	TATIVE ANALYSIS OF DEFECTS	54
	4.2	EFFEC? CARRIE	F OF GRAIN BOUNDARY DENSITY ON R MOBILITY	55
5	REFE	RENCES	•••••••••••••••••••••••••••••••••••••••	56
6	APPE	NDIX (7	Tables 1 thru 45)	92-137

LIST OF TABLES

Table No.	Title	Page
I	The Circumference and the Field of View on the Olympus Inverted PME Microscope	19
II	Grain Boundary and Twin Boundary Length Per Unit Area for the Semix Wafers	22
111	Precipitate Particle and Dislocation Pit Density for Semix Wafers	25
IV	Defect Density, Conversion Efficiency, and Diffusion Length of Semix Samples	29
v	Area of Influence of Structural Defects per Unit Volume of Semix Samples	33
VI	Defect Densities in Unprocessed Wafers	38
VII	Thickness Measurements on Sample G-12	46
VIII	Thickness Date for All Samples	46
IX	Measured Voltages On Sample G-12-2	48
x	Resistivity, Hall Mobility, Carrier Concen- tration, Hole Mobility, Normalized Hole Mobility, and Grain Boundary Density for All 20 Specimens	51

5

4) 2

X

Ŧ,

LIST OF FIGURES

Fig	ure No.		Page
	1A	Position of Wafers from UCP Ingot 5848-13C	59
	15	Relative Positions of the Measured Fields in the Semix Wafers	60
	2	Region Showing High Twin Density in Semix A-13 (50X)	61
	3	Region Showing a Large Number of Precipitates in Semix A-13(50X)	61
	4	Large and Small Precipitates in Semix B-2 (1330X)	62
	5	Precipitates in Semix B-2 (530X)	62
	6	Many Grains and Grain Boundaries in Semix C-12 (50X)	63
	7	Twin and Grain Boundaries in Semix C-12 (50 X)	63
	8	Large Number of Small Twin Boundaries in Semix D-8. These are not Typical Regions (66X)	64
	9	Many Twin and Grain Boundary Region in Semix D-8 (66X)	64
	10	Dislocations Piled up Between Twins due to Localized Strain in Semix D-8 (600X)	65
	11	Dislocations Interacting with a Twin Boundary in Semix D-8 (1500X)	65
	12	High Twin Density in Semix E-13 (50X)	66

6

*

4

Æ.

Figure No.

Title

13	Large Precipitate Particle Between Twins in Semix E-13 (530X)	66
14	Twin and Grain Boundary Structure in Semix F.2 (50X)	67
15	Small Precipitate Particles in Semix F-2 (200X)	67
16	Twins and Grain Boundaries in Semix G-12 (50X)	68
17	Region of High Twin Density in Semix G-12 (100X)	6 8
18	Dislocation pile-ups in Semix H-8 (1330X)	69
19	High Dislocation Density Between Twins in Semix D-8 (1330X)	69
20	Twin Boundary Length per Unit Area vs. Relative Position of the wafer in the ingot from Top of the Solidified Ingot	70
21	Dislocation Pit Density vs. Large Pre- cipitate Particle Density	71
22	Solar Cell Efficiency vs. Twin Boundary Length Density	72
23	Diffusion Length vs. Dislocation Pit Density	73
24	Twin Boundary. Length Per Unit Area vs. Grain Boundary Length per Unit Area	74
25	Solar Cell Efficiency vs. Precipitate Area	75
26	Solar Cell Efficiency vs. Dislocation Area	76
27	Solar Cell Efficiency vs. All Defect Area	77
28	Cell Map Showing Locations of Wafers	78

Figure No.	Title		
29	Twin Density vs. Distance from Ingot Axis	79	
30	Cell Efficiency vs. Distance from Ingot Axis	80	
31	Segregation of Impurities in Cast Silicon	81	
32	Procipitate Density vs. Relative Position	82	
33	Large Precipitate Density vs. Relative Position	83	
34	Dislocation Density vs. Relative Position	84	
35	Twin Boundary Density vs. Relative Position	85	
36	Grain Boundary Density vs. Relative Position	86	
37	Electrical Connections to get a Small Contact Area	87	
38	Two Configurations for Resistivity Measurements	87	
39	Two Configurations for Hall Voltage Measurements	88	
40	Grid to Locate Center of a Given Field	88	
41	Configuration to Determine Carrier Type	89	
42	Mobility vs. Grain Boundary Density	90	
43	Normalized Mobility vs. Grain Boundary Density	91	

SECTION 1

ABSTRACT

Statistically significant quantitative structural imperfection measurements were made on samples from Ubiquitous Crystalline Process (UCP) Ingot 5848 - 13C. Important correlation was obtained between defect densities, cell efficiency, and diffusion length. Grain boundary substructure displayed a strong influence on the conversion efficiency of solar cells from Semix material. Quantitative microscopy measurements gave statistically significant information compared to other micro - analytical techniques. A surface preparation technique to obtain proper contrast of structural defects suitable for QTM analysis was perfected and is now being used routinely.

A study was made to determine the relationships between hole mobility and grain boundary density. Mobility was measured using the van der Pauw technique, and grain boundary density was measured using quantitative microscopy technique. Mobility was found to decrease with increasing grain boundary density.

SECTION 2

QUANTITATIVE ANALYSIS OF DEFECTS

2.1 INTRODUCTION

The objective of this work is to gain fundamental understanding of the role of structural imperfections and chemical impurities on solar cell performance.

The type, density, distribution, and electrical activity of such defects have significant effects on solar cell performance. Most of the processes designed to produce silicon crystals at low cost introduce a high density of defects in crystals, which have a distinct effect on solar cell efficiency.

The types of defects present in many of the low - cost silicon "sheets", produced by a variety of methodology, run the gamut from point defects to dislocations, planar defects such as twins and stacking faults, high and low angle grain boundaries, and second phase inclusions. The types of imperfections present and their density are a function of the specific method used for producing the silicon sheets.

In general, rapidly grown ribbon - type crystals produced by techniques such as the EFG process, the Web Dendritic method, etc., typically contain a relatively high population of dislocations usually arrayed along linear boundaries, a high density of twins, and chemical impurities in the form of precipitates. Sheets formed by slicing of cast crystals, such as SEMIX material, are generally polycrystalline in nature with grain diameters from a fraction of a millimeter to several millimeters, and twin boundaries oriented in different direction within many of the grains.

ORIGINAL MACHT

Quantitative analysis of surface defects was performed by using a Quantimet Quantitative Image Analyzer (QTM 720). The results were double checked by manually counting all the defects. The QTM 720 can differentiate and count 64 shades of grey levels between black and white contrasts. In addition, it can characterize structural defects by measuring their length, perimeter, area, density, spatial distribution, frequency distribution (in any preselected direction), and is programmable in these measurements. However, the QTM 720 is extremely sensitive to optical contrasts of various defects. Therefore, to obtain reproducible results, the contrasts produced by various defects must be similar and uniform for each defect types along the entire surface area of samples to be analyzed. To achieve this contrast uniformity, a chemical cleaning and polishing procedure was developed and perfected for the SEMIX samples described in this report. The cleaning and polishing procedure produced a very clean and even surface. Statistically significant quantitative data was measured and their significance is discussed.

2.1.1 ADVANTAGES OF QUANTITATIVE MICROSCOPY TECHNIQUE

There is significant advantage in using quantitative microscopy technique as described herein to analyze structural defects. Techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), while providing useful information, are usually performed at higher magnifications. For example, TEM analysis is usually carried out in the magnification range 10,000X to 300,000X. Because of the high magnification employed, the area of the field of view is very very small

compared to the total surface area of the starting sample, such as a 2cm by 2 cm sample. Hence, the information obtained, although impressive, for an ot be statistically significant. However, in our quantitative microscopy technique as used in this report, the magnifications used are very low such as 100X to 1000X. In addition, a total of 62 fields was analyzed from a 2 cm by 2 cm sample. For grain boundary and twin boundary measurement, the total area analyzed was 1.49 cm^2 for a 2 cm by 2 cm sample i, e., a whopping 37% of total surface area was actually measured. For precipitate particles, the total area analyzed was 0.09 cm^2 i.e., 2.3% of the total surface area was measured. For dislocation pits, the total area analyzed was enclosed was 0.09 cm^2 i.e., 2.3% of the total surface area was measured. For dislocation pits, the total area analyzed 37% of the total sample area. By way of comparision, if we were to analyze 62 fields from a 2 cm by 2 cm sample by TEM technique at 100,000X, the total area for 62 fields will be only 0.0000147 cm² which is 0.000037% of the sample surface area.

Therefore, the results obtained by quantitative microscopy technique as described in this report are <u>statistically more significant and reliable</u> than any other technique such as TEM, SEM, etc.

ORIGINAL PALAN

SECTION 2.2

EXPERIMENTAL PROCEDURE

2.2.1 CHEMICAL POLISHING AND ETCHING

Fifteen (15) samples from SEMIX's Ubiquitous Crystalline Process (UCP) Ingot 5848 - 13C were received by Materials Research, Inc., (MRI) from JPL for characterization of structural defects. These samples measured 2 cm by 2 cm and were designated by JPL as 1-4-13 (or A - 13), 2-10-2 (or B - 2), 3-10-12 (or C - 12), 4-10-8 (or D - 8), 1-2-13 (or E - 13), 2-9-2 (or F - 2), 3-9-12 (or G - 12), 4-9-8 (or H - 8), 1-10-13 (or T), 1-12-14 (or U), 2-5-1 (or V),

3-4-12 (or W), 3-4-16 (or X), 4-2-4 (or Y), and 4-2-8 (or Z). We notice that each sample is defined by three numbers. The first number refers to the section, the second number refers to the wafer number, and the third number refers to the cell number. Thus, sample A is located in section 1, wafer number 4, and cell number 13. The location of the samples is shown clearly in Figure 1 with respect to the center line of the casting Q - Q. From Figure 1A, it is clear that Ingot 5848 - 13 C is one- quarter (1/4) of the total casting. This quarter ingot was cut into four (4)

ORIGINAL C

sections. Each section was further sectioned into twelve (12) waters, and sixteen (16) cells.

Samples T, U. V, W, X, Y, and Z were as a received samples. They were not subjected to any processing. Samples E, F, G, & H were fabricated into solar cells without gettering. Samples A, B, C, and D were gettered at 875⁰ C for 172 hour and then processed into solar cells.

The QTM 720 apparatus is extremely sensitive to contrasts produced by various structural defects. It can distinguish 62 shades of grey levels between black and white. By remembering the exact shade, the QTM 720 is able to correctly count each defect types. Therefore, to obtain accurate and reproducible results, it is very important that each structural defect type be etched to <u>identical</u> contrast. MRI has now perfected a chemical cleaning, polishing, and etching procedure to produce contrasts to such a demanding requirement in these Semix samples. All chemicals used were Low Sodium MOS, Electronic Grade. The following procedures were used:

Chical OF POOR QUALITY

а,	Sample immersed in trichloroethylene	time (min.) 3
b.	Sample rinsed in acetone	3
¢.	Sample rínsed in 2- Propanol	3
d.	Compressed N ₂ gas to blow off 2-Propanol to prevent stain marks	0.5

2) Protective Coating Application

- Using a fine paint brush, Apiezon Wax dissolved in tria. chioroethylene was applied to one surface of the silicon sample.
- The wafer was then heated on a hot plate to about 120°C to b. accelerate evaporation of trichloroethylene. The Apiezon Wax melted and spread uniformly covering the entire surface. All of the trichlorgethylene evaporated leaving behind a thin coating of the acid - resistant Apiezon Wax covering the surface.

		time (min.)
a.	Sample was immersed in concentrated HF	4
b.	It was then rinsed in distilled water	4
c,	It was then rinsed in 2-propanol	4
d.	N ₂ gas to blow off excess 2-propanol	0.5

3) Silicon Oxide Layer Removal

ORIGINAL MACE IN OF POOR QUALITY

The protective coating application is done for two reasons: i) to prevent attack and dissolution of samples from two surfaces. By using a wax coating, the coated surface is prevented from chemical attack during polishing and etching procedure, ii) the protective coating may be dissolved later in trichloroethylene and JPL may in future build a solar cell on that surface. Thus a direct correlation between cell efficiency and defect densities for each sample may be obtained.

4) Chemical Polishing Procedure

The chemical polishing solution is a mixture by volume of 1 part nitric acid (HNO_3) : 2 parts hydrofluoric acid (HF): 3 parts acetic acid (CH_2COOH) . The following procedure was used:

			time (min.)
	a.	The wafer was immersed at $50 \pm 3^{\circ}$ C in polishing solution	0.1-0.75
	b.	It was then rinsed in deionized distilled water	4
<u>,,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	с.	It was then rinsed in 2 - propanol	. 4
	d.	N ₂ gas blown to dry sample surface	0.5
	e,	Sample was observed under micrscope and polishing was continued until a smooth flat surface was observed	0.1-0.75

5) Chemical Etching Procedure

The chemical etching solution consists of 2.5 gm. of chromium trioxide (CrO_3) dissolved in 15 ml. deionized distilled water

ORIGINAL COROLANY

and 15 ml. concentrated hydrofluoric acid (HF). The following

procedure was used:

		time (min.)
a.	Sample was immersed in the chemical etching solution	0. 1-0. 3
b.	It was then rinsed in deionized distilled water	4
с.	It was then rinsed in 2 - propanol	4
d.	N ₂ gas blown to dry sample surface	0,5
е.	Sample was observed under microscope and etching procedure was continued until dislocation pits are visibly observed	

The etching times for the Semix samples were as follows.

Sample No.	Etching Time (Sec.)
A-13	67
B-2	60
C-12	48
D-8	37
E-13	77
F-2	82
G-12	61
H-8	48
Average	60

SECTION 2.3

RESULTS AND DISCUSSION

MEASUREMENT OF GRAIN BOUNDARIES, TWIN BOUND-

ARIES, PRECIPITATE PARTICLES, AND DISLOCATION

PITS

Using an Olympus Inverted Optical Metallurgical Microscope, Model PME, approximately 62 fields on each sample were analyzed for structural defects. Figure 1B shows the relative positions of the 62 fields that were observed on each sample. The feature under investigation is counted in each field and averaged over the 62 fields for a statistical average of the overall sample. The field of view of the microscope is a necessary quantity to know so that some dimensions can be given to the defect feature. Using a 0.01 cm - 0.001 cm calibrated standard microscope slide, the diameter of the field of view was measured at different magnifica-From this data, the circumference and the area of the field tions. of view was determined. This data is tabulated in Table 1. Table 1 shows that as the magnification approximately doubles for successive objective setting, the diameter of field of view decreases by about half.

The defect measurements were done in three (3) separate steps. First, the grain boundary and twin boundary intersections were

TABLE I

The circumference and the field of view on the Olympus Inverted

PME Microscope

Eye- piece Lens	Object- ive Lens	Magnifi- cation	Diameter of field of view (cm)	Circum- ference of field of view (cm)	Area of field of view (cm ²)
10X	5 X	50 X	0.36	1.13	0.102
10X	10 X	100X	0.175	0.55	0.0241
10X	20 X	200 X	0.089	0.28	0,00622
10X	40X	400X	0.0435	0.137	0.00149
10X	100X	1000X	0.0174	0.055	0.000238

Sample Calculation:

Circumference at 50X = ΠD = (Π) (0.36 cm) = 1.13 cm Area of field of view at 50X = $\frac{\Pi D^2}{4}$ = $\frac{\Pi (0.36)^2}{4}$ = 0.102 cm²

ORIGINAL PROP N OF POOR QUALITY

measured for all the 62 fields using a magnification of 100X in the polished condition. Next, the precipitate particles were measured for all the 62 fields using a magnification of 400X in the polished condition. Next, the sample was etched in the etching solution and immediately measurements were made for dislocation pits for all the 62 fields at a magnification of 1000X.

All of these measurements were made manually. Attempts were made to use the Quantitative Image Analyzer (Quantimet QTM 720). However, this was not successful since the contrast on the CRT was poor for the fine precipitates at 1000X. These manual measurements were done <u>very carefully</u>, the measurements were <u>repeated</u>, and found to be reproducible. All measured data is listed in Appendix.

2.3.1 Measurement of Grain Boundary and Twin Boundary Length Per Unit Area

Since grain boundaries can be location of efficient carrier recombination centers and act as sinks for impurities which can be detrimental to the efficiency of the solar cell, $^{1-4}$ the grain boundary length per unit area is an important quantity to know. Using a statistical method of counting the intersections of the grain boundaries and twin boundaries with a test line, the length per unit area can be calculated using the following relationship 5,6 :

$$L_A = (\pi/2) \cdot P_L$$
, where

- $L_A = line length of grain boundaries or twin boundaries$ per unit area (cm/cm²)
- P = number of point intersections of grain boundaries or twin boundaries per unit length of test lines.

Figures 2, 6, 7, 8, 9, 12, 14, 16, and 17 show typical structures of twin boundaries and/or grain boundaries in the Semix samples. The Appendix Tables 1, 4, 7, 10, 13, 16, 19, and 22 contain a listing of the raw measured data for grain boundaries and twin boundaries. The information in the above tables has been summarized in Table II, along with calculated values for arithmetic mean and standard deviation.

Several tentative graphs are shown in order to determine any apparent relationship in the measured data. These graphs are preliminary and subject to revision as more and more samples are examined and better information about sample history is obtained from other sources (such as Semix Corporation, JPL, OCLI, etc.,). Figure 20 shows a plot of twin boundary length as a function of the distance of the wafer from top of the ingot. Figure 20 shows that, as a first approximation, twin boundary density (expressed as length/unit area) decreases as the distance from top of ingot increases. Samples A and E located at top of the ingot have higher densities and lower

TABLE II

Grain Boundary and Twin Boundary Length Per Unit Area for the

Semix Samples

SEMIX Sample Number	G rain Boundary Length per unit area (cm/cm ²)	Twin Boundary Length per unit area (cm/cm ²)
A - 13	$8.2 \\ \overline{x} = 2.9 \\ \overline{\sigma} = 2.0$	99.0 $\bar{x} = 34.6$ $\sigma = 56.5$
B - 2	$ \begin{array}{rcl} 4.5 \\ \overline{\mathbf{x}} &= 1.6 \\ \overline{\mathbf{c}} &= 2.2 \end{array} $	$ \begin{array}{rcl} 15.8 \\ \overline{x} &= 5.6 \\ \sigma &= 9.3 \end{array} $
C - 12	13.4 $\overline{x} = 4.7$ $\sigma = 2.7$	31.9 x = 11.2 $\sigma = 11.1$
D - 8	$ \begin{array}{rcl} 13.8 \\ \overline{x} &= 4.8 \\ \overline{\sigma} &= 3.2 \end{array} $	$ \begin{array}{rcl} 44.5 \\ \overline{\mathbf{x}} &=& 15.6 \\ \sigma^{-} &=& 17.1 \end{array} $
E - 13	7.1 x = 2.5 $\sigma = 2.1$	68.5 $\bar{x} = 24$ $\sigma = 38$
F - 2	5.4 x = 1.9 $\sigma = 2.6$	12.2 $\mathbf{x} = 4.3$ $\sigma = 6.8$
G - 12	$ \begin{array}{rcl} 12.1 \\ \overline{\mathbf{x}} &= 4.2 \\ \overline{\mathbf{c}} &= 2.6 \end{array} $	$40.7 = 14.3 \\ \sigma = 15.5$
H - 8	9.4 $\bar{x} = 3.3$ $\sigma = 1.9$	35.9 x = 12.6 σ = 13.3
A, verage	9.2	43.6

Ξ

 $\mathbf{\overline{x}}$ = arithmetic mean

 σ = standard deviation

Total number of fields

$$pn = \left[\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}\right]^{1/2}$$
22

ORIGINAL PAGE ES

ORICENA MERSING

solar cell efficiencies. To explain this phenomenon, data on crystal growth conditions are required, which is currently not Figure 24 is a plot of the data listed in Table II. available. As a first approximation, Figure 24 shows that as the grain boundary length/unit area increases, the twin boundary length/unit area increases rapidly at first then levels off and decreases. Assuming that nucleation of twin boundaries occur at grain boundaries, one would expect the twin boundary density to increase with decreasing grain size i.e., increasing grain boundary However, there are many interrelated unknown factors area. (regarding crystal growth conditions), which may make any possible definite relation between grain size and twin boundary density difficult to determine. The purpose of plotting twin boundary length versus grain boundary length is simply to pictorially depict observed relationship. Figure 24 does not imply that twin boundary area must depend upon grain boundary area. A further study will be required to see if there is any definite relationship between these variables.

2.3.2 Measurement of Precipitate Particles

The polished samples were observed at a magnification of 400 X, and the number of precipitate particles were counted in

There appeared to be two fairly distinct sizes each field. of what was counted as precipitate particles. The largesized defects were clearly recognized to be precipitate par-However, there were smaller features, that could ticles. not be resolved clearly, which looked like precipitate particles. The only other possibilities were that these features are small stain marks or etch pits. Since there is some questions as to the identity of these features, observation of these samples at a higher magnification using a Scanning Electron Microscope (SEM) is recommended. However, for the time being, these features will be regarded as small precipitates, subject to correction later. The Appendix Tables 2, 5, 8, 11, 14, 17, 20 and 23 contain a listing of the raw measured data for precipitate particles in these Semix samples. The information contained in the above tables have been summarized in Table III, along with values for arithmetic mean and standard deviation. Small and large precipitate particle densities are listed separately in Table III.

TABLE III

ORIGINAL CALINY

SEMIX Sample Number	Precipitate (par	Particle ticles/cm ²)	Dislocation Pit Density (pits/cm ²)			
	small	large	total	· · · · · · · · · · · · · · · · · · ·		
A - 13	22×10^{3} $\overline{x} = 33$ $\sigma = 36.5$	745 $\overline{x} = 1.1$ $\sigma = 1.5$	23 x 10 ³	4.9 x 10^4 $\bar{x} = 1.2$ $\sigma = 2.3$		
B - 2	19.5×10^{3} $\mathbf{\bar{x}} = 29.1$ $\mathbf{\sigma} = 18.1$	444 〒 = 0,66 ☞ = 0,95	20 x 10 ³	9.5×10^4 $\overline{x} = 23$ or = 45		
C - 12	6.2×10^{3} $\overline{x} = 9.2$ $\sigma = 7.7$	$ \begin{array}{rcl} 65 \\ \overline{\mathbf{x}} &= & 0.1 \\ \mathbf{d} &= & 0.4 \end{array} $	6.3 x 10 ³	37×10^4 $\overline{x} = 89$ $\sigma = 62$		
D - 8	2.5×10^{3} $\overline{x} = 3.8$ $\sigma = 4.0$	$152 \\ \mathbf{x} = 0.23 \\ \mathbf{c} = 0.46$	2.7 \times 10 ³	10×10^4 $\overline{x} = 24$ of = 51		
E - 13	9.1 x 10 ³ $\overline{x} = 13.5$ $\sigma = 10.6$	400 17 = 0.6 16 = 0.7	9.5 x 10 ³	37×10^4 . $\overline{x} = 89$ $\sigma = 96$		
F - 2	$\frac{4.8 \times 10^3}{\overline{x}} = 7.2$ of = 10.5	740 $\bar{x} = 1.1$ $\sigma = 2.1$	5.6 x 10 ³	17×10^4 $\overline{x} = 40$ $\sigma = 111$		
G - 12	6.4×10^{3} $\overline{x} = 9.6$ $\mathbf{s} = 8.0$	$140 \\ x = 0.21 \\ s = 0.41$	6.6 x 10 ³	45×10^{4} $\overline{x} = 108$ $\sigma = 161$		
H - 8	9.5 x 10 $\overline{x} = 14.1$ $\sigma = 10.9$	$250 \\ \overline{x} = 0.4 \\ \sigma = 0.8$	9.7 x 10 ³	$ \begin{array}{r} 4 \\ 86 \times 10 \\ \overline{\mathbf{x}} = 204 \\ \sigma = 235 \end{array} $		
Avg.	10.0×10^3	367	10×10^3	31×10^4		

Precipitate Particle and Dislocation Pit Density for Semix Samples

For precipitate particle density, 2.3% of the total area was measured. For dislocation density, 0.37% of the total area was measured.

OF POOR QUALITY

A sample calculation for small precipitate density in sample F-2 in

Table III is shown below:

Magnification = 400X						
Area of field = 0,001	49 cm ²					
X for small precipitate =	447 = 7.2 (see Appendix 62 Table 17)					
No. of small precipitates	(total no. of small precipitates counted)					
unit area	(total no. of fields) (area of a field)					
	$= \frac{(447)}{(62)(0.00149 \text{ cm}^2)} \text{ (see Appendix 'Table 17)}$					
	= 4.8 x 10^3 precipitates/cm ²					

Figures 3, 4, 5, 13, and 15 show precipitate particles on some of the Semix samples. The large precipitate diameter is of the order of magnitude $\sim 15 \times 10^{-4}$ cm, while the small precipitate diameter is of the order of magnitude $\sim 3 \times 10^{-4}$ cm.

2.3.3 Dislocation Dessity Measurement

After etching each of the Semix wafers, the dislocation density was determined by counting the number of dislocation etch pits at 1000X in each field of view for approximately 57 fields per sample. The number of fields measured was slightly lower due to mechanical interference of the longer objective lens with the microscope stage. The Appendix Tables 3, 6, 9, 12, 15, 18, 21, and 24 list the raw measured data

for dislocation number density. The information in the above tables have been summarized in Table III, along with calculated values for arithmetic mean and standard deviation. A sample calculation for wafer F-2 in Table III is as follows:

Magnification = 1000X
Total number of dislocation pits counted = 2334 from 59 fields
Area of Field = 0,000238 cm²
Dislocation Pit density =
$$\frac{(total no. of dislocation pits counted)}{(total no. of fields) (Area of field)}$$

= $\frac{(2334)}{(59) (0.000238 cm2)}$ (see Appendix Table 18)
= 1.7×10^5 dislocation pits/cm²

Figures 10, 11, 18, and 19 show dislocation arrangements in some of the Semix samples.

Figure 21 shows a plot of dislocation density versus large precipitate density from the data listed in Table III (data for small precipitate was not used in Figure 21 since the identity of small precipitate was not positively established). Figure 21 shows that as the large precipitate density increased from sample to sample, the corresponding dislocation density decreased. This trend is quite clear even though some anomalies are present in Figure 21. This observation may be explained on the basis

ORIGINAL MARS IS OF POOR QUALITY

that dislocation lines constitute tubes of fast diffusion, with a diffusion coefficient close to the coefficient of self diffusion along grain boundaries. The rates of diffusion along such short-circuit paths are significantly higher than for volume diffusion, since the associated activation energies are much lower than for volume diffusion⁸. As dislocation density increases, larger number of short-circuit paths are now available for impurity atoms to migrate. This may result in a decrease in precipitate density. While the intrinsic properties of individual dislocations, dislocation networks, and grain boundaries are governed by the presence of space charge cylinders around defects, the typical electrical response of these structural defects is determined by the presence of impurities in association with the defects. The interaction energy between common impurities such as Fe, Ni, Cu and a dislocation are fairly high, so that impurity atmospheres and impurity precipitates can form at dislocations⁹. When defect intersections occur in crystals, the resulting electrical effects are more pronounced^{10, 11}. Presence of impurities at or near crystallographic defects make them electrically active. When P is diffused into the crystals, the impurities from the defects are "gettered" due to reactions between P and impurities decorating the defects. As a result, the defects are no longer electrically active. However, the defects are still present within a diffusion length of beamgenerated charge carriers. Hence, predominant electrical effects in silicon devices are caused by defect-impurity association (see Fig. 10, 11, &19).

TABLE IV

Defect Density, Conversion Efficiency, and Diffusion Length of Semix Samples.

Diffusion length* (und) 19 53 35 22 31 47 51 4 effici-10.7 ency (%) 10.0 10.8 Cell 9.6 9.5 7.2 9.7 6.2 boundary per unit area (cm⁻¹) length Twin 35.9 99.0 40.7 31.9 44.5 12.2 15.8 S 68. boundary per unit area (cm⁻¹) length Grain 13.4 13.8 12.1 4.5 5.4 9.4 8.2 7.1 Dislocation 86 x 10 10×10^4 37 x 10⁴ 37 x 10⁴ 45×10^{4} 4.9 × 10 9.5 × 10 density (cm⁻²) 17×10 precipitate 9.7×10^{3} 6.3×10^{3} 5.6 x 10³ 2.7×10^3 9.5 x 10³ 23 x 10³ 20 x 10³ 6.6 x 10 density (cm⁻²) Total precipitate density (cm⁻²) Large 444 152 400 740 40 250 745 65 precipitate 19.5×10^{3} 9.1 \times 10³ 6.4×10^{3} 2.5×10^3 9.5 x 10³ 4.8 $\times 10^3$ 6.2×10^{3} 22×10^3 density (cm⁻²) Small sample number - 13 12 - 13 - 12 Semix - 2 00 1 œ 2 ł I ŧ Ξ ф ы υ 4 υ Α fæ,

OF POUR QUALING

* data as given in reference No.7

2.3.4 Gell Efficiency Versus Twin Boundary Density

ł

Table IV lists the defect densities in these Semix samples as obtained by MRI along with the data for cell efficiency and diffusion length as obtained by OCLI⁷. The data for cell efficiency was plotted as a function of the observed data for different types of structural defects. Figure 22 shows a plot of cell efficiency versus twin boundary density. An approximate inverse relationship is observed. Plotting cell efficiency versus grain boundary density did not show any clear trend. The significance of Figure 22 is that the grain boundary substructure may influence cell efficiency in Semix material. In other words, the defect structure within grains may influence the cell efficiency more than the grain boundary itself. Furthermore, as mentioned in page 25, interactions of these substructures with one another and with impurity atmospheres may cause more pronounced electrical effects.

2.3.5 Diffusion Length Versus Dislocation Density

The numerical data for diffusion length was plotted in several ways using the various observed data for different types of structural defects listed in Table IV. Figure 23 shows a graphical plot of diffusion length versus observed dislocation density in the eight samples. The figure shows an important trend. An inverse relationship is observed between <u>diffusion</u> <u>length and dislocation density</u>. Since the average grain size in these samples is expected to be larger than the diffusion length in a single crystal Semix of the same doping level (data not currently available), the effective lifetime and diffusion length in the polycrystalline Semix samples is expected to be

OF POOR QUALITY

reduced by <u>substructures within grains</u> (such as the in boundary density, dislocation density, and precipitate particle density along with chemical segregation around these substructures).

2.3.6 Cell Efficiency Versus Area of All Defects

In an attempt to correlate the cell efficiency with various structural imperfections, it was tentatively assumed that the effectiveness (in reducing the cell efficiency) of various defect types was same. With this assumption, the total area of all structural defects was determined and summed.

The actual measurement on plane of polish of silicon wafers yields information in terms of length per unit area of structural features (listed in Table IV). However, these features are truly three-dimensional and, therefore, quantitative stereological relations can be used to convert these measured quantities to area per unit volume. For example, dislocation density measured in number/cm² is the same quantity as length /cm³ of dislocations ⁵. In order to determine the effect of various defects, the data in Table IV have been converted on a unit volume basis and is listed in Table V. The effect of defects on charge carriers will be in the immediate visinity of the defects. Therefore, surface area of defects per unit volume is the most logical parameter to correlate efficiency with defect densities.

The precipitate matrix-interface area per unit volume (i.e., "area of influence" for precipitates) was calculated as follows:

$$S_{v(p)} = \pi d_1^2 P_1 + \pi d_2^2 P_2$$

ORIGINAL PAGE IS

Where d_1 and d_2 are the diameters of the large and small precipitates, and \mathbf{e}_1 and \mathbf{e}_2 are respective densities (number/cm³). The precipitates exhibited binodal distribution. Smaller precipitates were on the average about 3 µm in diameter, while the larger precipitates were on the average about 15 µm in diameter. With this information, the surface area for small and large precipitates may be calculated and these are listed in Table V.

With regards to dislocations, it was assumed that a cylindrical area around a dislocation is the effective area in reducing cell efficiency. The radius of this cylindrical area was assumed to be $20 \stackrel{\circ}{A}$. The reasoning for this assumption is that electrically active impurities will likely be located within 5 b from the core of the dislocation (where b is the Burgers Vector). Thus, the "area of influence " due to the dislocations is given by:

 $S_{v(d)} = 2 \pi R \Gamma$

Where $\int = dislocation density (cm/cm³)$

and R = effective radius 🕿 20Å

In Table V, the respective areas of influence for these defects (per unit volume) are listed along with cell efficiency. It is interesting to note that the effective areas of the precipitate particles and dislocations is insignificant compared with the twin boundary area. It is further observed that at the defect densities observed, there is virtually of correlation between the cell efficiency and either the precipitate surface area or the dislocation surface area. This aspect is graphically demonstrated in Figures 25 and 26. Examination of Table V also shows that the grain boundary area, although not insignificant, is considerably smaller in these samples than the

TABLE V

Area of Influence of Structural Defects per Unit Volume of Semix Samples.

فلنفذ أستاه والأناف المتكرين الأكمان والمتكمان والمتكرين والمتكرين والمتكرين والمتكرين والمتكرين والمتكرين						, en	-		L
Cell effici- ency*	(%)	7.2	10.0	9.7	10.8	6.2	9.6	9.5	10.7
Total areas of all types of structural defects	cm ² /cm ³	107.27	20. 428	45. 762	58.428	76. 065	17.82	53. 368	46. 385
Twin boundary surface area	cm ² /cm ³	99.0	15.8	31.9	44.5	68.5	12.2	40.7	35.9
Grain boundary surface area	cm ² /cm ³	8.2	4.5	13.4	13.8	7.1	5.4	12. 1	9.4
Surface area of dislocation 2JRR I where I is dislocation density and R = 20R	cm ² /cm ³	0.06	0. 12	0.46	0. 126	0.46	0.214	0. 565	1.081
Surface area of small and large precipitates 4 Tr 2d1 + 4 Tr 2d2 r1=3 /2 pm r2=15 /2 pm d1, d2 are precipitate	densities cm ² /cm ³	0.011	0.008	0.002	0. 002	0.005	0, 006	0.003	0. 604
Semix sample number		A - 13	B - 2	C - 12	D - 8	E - 13	F - 2	G - 12	H - 8

33

* data as given in reference No. 7

ORIGINAL PACE IS OF POOR QUALITY

ţ

ţ

ORIGINAL PARE IS OF POOR QUALITY

corresponding twin boundary area. Once again there appears to be no definite correlation between grain boundary area and cell efficiency. Finally, upon examination of twin boundary area, it is seen that cell efficiency decreases with increasing twin boundary area (see Figure 22). Also shown in Figure 27 is a plot of cell efficiency versus total defect areas. Since twin boundary area is the predominant term, the overall behavior is similar to Figure 22.

2.3.7 Cell Efficiency Versus Location of Wafers

An important and definite correlation has been found between cell efficiency and location of the wafers with respect to the center line of ingot (Figure 1A) and in relation to the top center of the ingot. Figure 28 is a plan view of the top of the ingot, which is shown in three dimension in Figure 1A. The center line C in Figure 1A originates at O in Figure 28, and is perpendicular to the plane of paper. Figure 28 shows the distance of the center of a wafer from origin O. Thus, the center of cells A and E are located 1 cm along X-axis and 1 cm along Y - axis from O. Therefore, their center is located at $\sqrt{1^2 + 1^2} = \sqrt{2} = 1.414$ cm from the center The distance from ingot axis for the remaining cells were line of ingot. calculated. Figure 29 shows a definite relationship between twin boundary density and distance from ingot axis for the various cells. It is clear from Figure 29 that the twin boundary density decreases as the distance of the cells from ingot axis increases. Figure 30 shows important correlation between cell efficiency and distance from ingot axis. As the distance from the ingot axis increases, the cell efficciency also increases, Specifically, the cell efficiency increases with increasing distance from
ORIGINAL PART AL

×

the center of the ingot towards its outer surface. For example, note that cells A = 13 and E = 13 have lower efficiency, while cells B = 2, F = 2, D = 8, H = 8 have much higher efficiencies. Furthermore, a definite relation a lso evolves with reference the location of the ingot. For example, note that the cells E - 13 and A - 13 were fabricated from wafers very close to the top center of the ingot. Cell E-13 came from a wafer which was just above cell A-13 (Figure 1A) Correspondingly, cell E-13 has lower efficiency (6.2%) compared to A-13 (7.2%). Even though these wafers are from adjacent location, the difference of 1% in cell effici-Similarly, cell F-2 is just above cell B-2 and encies is significant. correspondingly, cell efficiency for F-2 is smaller than that for B-2 (9.6% vs. 10.0% i.e., the differences is 0.4%). Note that these cells, which are considerably below cells E and A, have much higher efficiencies. Similarly cells G-12 and C-12 have efficiencies of 9.5% vs. 9.7% (difference is 0.2%) where G is above C. Cells H-8 and D-8 have efficiencies of 10.7% and 10.8% (difference 0.1%) where H is above D. Cells H and D came from the lowest section (4th section) These results are very remarkable in that they show a of the ingot. definite pattern of cell efficiency in relation to location in the ingot. A plausible explanation for this behavior is as follows:

It is assumed that this polycrystalline silicon ingot was fabricated by melting silicon in a refractory mold. Upon cooling, it is assumed that the material in contact with the mold is the first to solidify. Consequently,

the topmost center part of the mold will be the last to solidify. Thus, any impurities which have higher solubilities in molten silicon will be rejected into the liquid upon freezing. Thus, the impurity concentration will be highest in the topmost center part of the ingot, while lowest i_{i} the bottom outermost part of the ingot. A schematic of the proposed impurity distribution in solidified ingot is shown in Figure 31. The region around A-B will have higher impurities then C (Figure 31) It is well known that certain impurities, which tend to segregate at various defects, render these defects electrically active. Thus, cells made from topmost center part of the ingot will have highest concentration of impurities and lowest cell efficiencies. This is also the region where highest concentration of twin boundary exists. If these impurities are associated with defects, the defects may become electrically active and reduce the cell efficiency drastically. The measured cell efficiencies clearly show this tread. Furthermore, as the variation of impurity concentration varies exponentially alons with distance in a zone melted or zone - refined body, the relaive variation in cell efficiency will incrase from bottom to the top of the ingot. The obervations clearly corroborate this hypothesis in that the adjacent cells at D and H vary only slightly in efficiency (0.1%) while cells A and E which are from the top of the ingot exhibit large variation (1.0%) in efficiency.

¥

The present work, therefore, suggests avenues for further research in order to fully understand the role of defects on cell efficciency. For example, the

precipitates and dislocations, at the densities observed, have no noticeable effect on cell efficiency. Among the defects characterizable by microscopy twin boundaries and grain boundaries seem to have the largest influence. Clearly then, the manufacturer should make process modifications in an attempt to reduce twin boundary densities.

A significant parameter may yet be related to trace impurities in the ingot. As pointed out above, the distribution of impurities in an ingot is most likely dependent upon the mode of solidification. However, the present analysis suggests that the impurity concentration will be highest in the topmost center part of the ingot. (The region of highest impurity concentration will be the region that solidified last. This region will be somewhat below the top center of the ingot). The future work therefore must focus on a thorough chemical analysis (with reference to trace elements) of wafers as a function or location in the ingot. Furthermore, detrimental impurities and their concentrations must be identified.

2.3.8 Unprocessed Wafers

٤

Table VI lists the defect densities obtained on unprocessed wafers from UCP Ingot 5848 - 13C. Figures 32 thru 36 show the distribution of various defect types as a function depth for unprocessed, gettered, and non-gettered samples. The idea was to determine what effect, if any, gettering and processing may have on the distribution of defects. However, the data in the table and figures are not conclusive. The variation of defect densities in the unprocessed samples is considerable, requiring further study.

ORIGINAL PAGE IS OF POOR QUALITY

ŧ

TABLE VI

Defect Densities in Unprocessed Wafers

Semix sample number	Small precipitate density (cm ⁻²)	Large precipitate density (cm ⁻²)	Dislocation density (cm ⁻²)	Grain boundary length per unit area (cm ⁻¹)	Twin boundary length per unit area (cm ⁻¹)
1-10-13 (T)	44200	2035	6.0	7,88	79.2
1-12-14 (U)	29970	1705	1.1	3.14	29.2
2-5-1 (V)	26250	812	20.6	32	36.3
3-4-12 (W)	40370	2092	10.9	16.9	40
3-4-16 (X)	39050	2405	15.2	28.8	27.0
4-2-4 (Y)	23879	1916	37.2	16.9	34.8
4-2-8 (Z)	11430	693	16.9	13.9	51.2

ORIGINAL MALE IS

2.3.9 Numerical Significance of Measured Data

The measured data for the Semix samples are listed in Appendix Tables 1 thru 24, and the information in these tables are summarized in Tables II, III, and IV. The defect structure characterization was done using a statistical sampling of each sample over a TV raster and from this an average value for each defect type in each sample was obtained 12-22.

Among these eight samples, the large precipitate density varied from 65 to 745 per cm², while the total (large and small) precipitate density varied from 2.7 X 10^3 to 23 X 10^3 per cm².

Grain boundary length per unit area varied from 4.5 to 13.8 cm/cm², whereas the twin boundary length per unit area varied from 12.2 to 99.0 cm/cm². Samples A-13 and E-13 had the higher twin boundary length per unit area, while the grain boundary length per unit area for these samples were in the middle range. Samples C-12, D-8, and G-12 had the higher numerical values for grain boundary length, but in the middle range for twin boundary length. Samples B-2 and F-2 had lower values for both grain boundary and twin boundary length. Figure 24 shows that as the grain boundary length/unit area increases, the twin boundary length/unit area also increases at first rapidly, but at higher values for grain boundary length/unit area, it levels off and gradually decreases.

Dislocation density in these samples varied from 4.9 $\times 10^4$ to 86 $\times 10^4$ /cm².

OF POOR QUALITY

Sample A-13 had the lowest dislocation density but highest large precipitate density (see Table IV). Samples C-12, G-12, and H-8 had lower precipitate density but had higher dislocation density. Therefore, in approximate inverse relationship was observed between dislocation density and precipitate density as shown in Figure 21.

Ĭ

Sample A-13 had the highest twin boundary length per unit area as well as the highest large precipitate density. Figures 2 and 3 show some regions in this sample that illustrate this observation.

Figures 4 and 5 show some precipitate particles in fields free of twin boundaries and grain boundaries in sample B-2. This sample had lower twin boundary and grain boundary lengths per unit area but precipitate density w.s in the medium numerical value. Figures 6 and 7 show some twin boundary and grain boundary regions in sample C-12. Sample C-12 had higher grain boundary density. Sample D-8 had the highest grain boundary length per unit area and also a relatively high twin boundary density as illustrated in Figures 8 and 9. Figure 10 shows an area in sample D-8 where dislocations have piled up between twin boundaries Figure 11 shows another type of interaction between dislocations and a twin boundary. Such a boundary may be electrically active as discussed in page 21.

Figures 12 and 13 show a higher twin boundary density region, which is typical of sample E-13. Sample F-2 has a lower grain boundary and

twin boundary length per unit area, but a high precipitate density. Figure 14 shows interaction between twin boundary and grain boundary, and Figure 15 shows a region of higher precipitate density in sample F-2. Figures 16 and 17 show sample regions in sample G-12 with typical grain boundary and twin boundary structures. Sample H-8 has the highest dislocation density and typical areas are illustrated in Figures 18 and 19. In Figure 18, the dislocations form simple networks. Figure 19 shows linear arrays of dislocations interacting with twin boundaries on either side

The standard deviation from the mean for all of the defect types is of the same order of magnitude as the mean itself. This shows that there is a large variation in the distribution of defects from one field to another in the same sample.

OLEMAN PLACE IS OF POOR QUALLY

SECTION 3

EFFECT OF GRAIN BOUNDARY DENSITY ON CARRIER MOBILITY 3.1 INTRODUCTION

. .

5 E

ſ

٢

The objective of this work is to determine the relationship between carrier mobility and grain boundary density, that is grain boundary length per unit area, in cast polycrystalline silicon.

A polycrystalline wafer sliced from a cast mold will have many defects ranging from vacancies to precipitates, twins, dislocations, and grain boundaries. When considering the effect on carrier mobility, grain boundaries are thought to have the greatest influence.²³

There are several reasons that grain boundaries are considered the limiting factor in mobilities. The most obvious is the high concentration of other defects at a boundary. Since there is a lattice mismatch at a boundary, there is bound to be a high vacancy density. These vacancies act as a sink for dopant atoms, thus resulting in an ionized impurity concentration near the boundary that is higher than the rest of the crystal matrix. Since ionized impurities act as scattering centers for charge carriers, mobilities will necessarily be lowered.

Another feature of a grain boundary is band bending. That is to say the conduction and valence bonds, at the grain boundary, are bent up and down respectively thus presenting an energy barrier for electrons and holes. This, too, should decrease mobility.

Carrier mobility was measured via the Hall effect ^{24,-31} using a four-pointprobe configuration. Important parameters such as resistivity, carrier type, and carrier concentration were also measured. Grain boundary density was measured by quantitative optical microscopy ³².

SECTION 3.2

EXPERIMENTAL PROCEDURE

Equipment List

ŧ

.

Keithley Instruments model 225 current source Hewlett Packard 412 A vacuum tube voltmeter Keithley Instruments model 600 B electrometer Harvey Wells model 1050A magnet power supply Magnion 7" electromagnet Power Logicon model 5C ultrasonic wire bonder Nikon Optiphot optical microscope Olympus OSM optical microscope Hewlett Packard 3465 A Multi meter

Eight (8) SEMIX samples from UCP Ingot 5848-13 C were used in this study. These samples were designated by JPL as A-13, B-2, C-12, D-8, E-13, F-2, G-12, and H-8. The samples were first characterized for structural defects as described in an earlier report ³². The specimens for Hall mobility measurements were obtained from each of the above 8 samples by scribing a line parallel to one of the edges, and then cleaving the sample along the scribed line. The cleaved piece was then broken into three smaller pieces. Therefore, initially there were 24 irregular specimens of sizes ranging from 2mm by 5mm to 5mm by 5mm. Due to breakage and handling problems only 20 specimens were eventually characterized. Thickness was measured by placing

OF POOR QUALITY

samples on edge and measuring them with a filar eyepiece at a magnification of about X100 with the Olympus microscope.

ć

Ľ

C

٤

1

1

4

Electrical connections were made by mounting the sample on a PC board with four copper strips then, using an ultrasonic wire bonder, 18µm aluminum wire was bonded to the silicon surface and then to the copper strip (Fig. 1). This technique was used so that the contact area would be as small as possible and be bonded as close to the edge of silicon sample as possible so as to reduce the influence of the contacts on the measurements. The power and time settings for the silicon and copper bonds were 2 and 1.6, and 2.4 and 2 respectively.

Resistivity measurements were made using the configurations in Fig. 2. Current was passed through the contacts depicted in the figure and the corresponding potential induced at the other contacts was measured. This procedure was repeated in both configurations, with the current flowing in the forward and reverse directions and at \bullet .1 and 1mA to insure ohmic behavior in that region. The ammeter insures that the desired current is indeed what is flowing between the points in question.

Hall voltages were measured with the electrical connections in the configurations shown in Fig. 3. Current was passed through the contacts shown in each configuration and the potential across the other contacts was measured. The magnetic field, which is perpendicular to the face of the sample, was then applied. The voltage was then measured again. The difference between the two readings is the hall voltage. The procedure was repeated in both configurations with the current flowing in the forward and reverse directions. The sample was

OF POOR QUALITY

then turned around 180 degrees with respect to the magnetic field and the procedure was carried out again. This procedure negates the effects of any physical assymmetries in the experimental setup. Most of the samples were measured with a current of 1ma and an 8KG magnetic field. Some samples were run at different levels of current and magnetic field to facilitate more accurate voltage readings.

1

1

Grain boundary density was determined by examining the samples at 400X with the Nikon microscope. The diameter of the field of vision was determined with a calibrated microscope slide. The number of grain boundaries that intersected the circumference of the field of vision were then counted. Due to the irregular shapes and sizes of the samples the number of fields of vision per sample varied greatly. To preserve some statistical validity a grid was used to determine where to locate the center of a given field. See Fig. 4 for a portion of the grid. Each dot represents the center of a field of vision and there is 0.5mm between dots on a horizontal row.

ORIGINAL FRAME IS OF PUOR QUALITY

SECTION 3.3

RESULTS AND SAMPLE CALCULATIONS

3.3.1 THICKNESS

6

٤

(

٤

٢

٤

The calibration of the filar eyepiece on the Olympus microscope when using the 10X objective is 0.9909μ m/div. Data taken for the three pieces from sample G-12 is shown in Table 1. Final results for all eight samples is shown in Table 2.

TA	BI	LE	V	II

THICKNESS MEASUREMENTS ON SAMPLE G-12

	INITIAL READING	FINAL READING	d(div)	d (µm)
1	276	564	288	285
2	361	653	292	289
3	208	526	318	315
	d = 296µm m	ax. % deviation	= 6.4%	<u> </u>

TABLE VIII

sample	d(µm)	max.% deviation
$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	266 315 304 277 305 290 296	2.4 3.1 1.2 5.5 3.5 0.8 6.4
H - 8	285	1.7

THICKNESS DATA FOR ALL SAMPLES

OF POUR QUALITY

3.3.2 RESISTIVITY

Using the configurations (1) and (2) in Fig. 2, the resistances R_{ABCD} and R_{BCDA} , respectively, can be measured where

$$R_{ABCD} = \frac{Potential \ across \ DC}{Current \ through \ AB} = \frac{V_{DC}}{I_{AB}}$$

and

7

8 **(**

ľ

l

£

"

٤

L

$$R_{BCDA} = \frac{Potential \ across \ DA}{Current \ through \ BC} = \frac{V_{DA}}{I_{BC}}$$

It was shown by Van der Pauw 33 that the following relation holds:

$$\exp \left[-\pi R_{ABCD}\left(\frac{d}{\rho}\right)\right] + \exp\left[-\pi R_{DCBA}\left(\frac{d}{\rho}\right)\right] = 1$$
equation (1)

where d is the sample thickness and ρ is the resistivity of the sample. Since the resistances and thickness of a given sample are known, ρ can be determined by use of equation (1).

A calculation of ρ for the first of the C-12 samples, C-12-1, follows:

$$C-12-1$$

I = 1mA $R_{ABCD} = \frac{.00145 + .0015}{21} = 1.47 \Omega$

$$R_{BCDA} = \frac{.045 + .045}{2I} = 45 \,\Omega$$

$$I = 100 \mu A$$
 $R_{ABCD} = \frac{.00015 + .00015}{2I} = 1.5 \Omega$

$$R_{BCDA} = \frac{.0045 + .0046}{2I} = 45.5 \, \text{a}$$

 $\overline{R}_{ABCD} = 1.485$ ohm, $\overline{R}_{BCDA} = 45.25$ ohm; using these values and d = 304 µm, equation (1) gives $\rho = 1.8\Omega$ -cm.

OF FOOR QUALITY

3.3.3 Hall Const., Mobility, Carrier Conc., Carrier Type

The Hall const., mobility, carrier conc., and carrier type were determined using the configurations shown in Fig. 3. Data taken for sample G-12-2 is shown in Table 3. This is followed by sample calculations.

Sample:G-12-2

ţ

٢

2

Ľ

٤

1

I = 1mA, B = 8KG, $d = 296\mu m$, $\rho = 2.1\Omega - cm$

TABLE IX

MEASURED VOLTAGES ON SAMPLE G-12-2

Configuration 1

Configuration 2

	V ₁ (B=0)	V ₂ (B≠0)	v _H	V ₁ (B=O)	V ₂ (B≠0)	v _H
+ I + B	.05	.0515	.0015	.056	.055	.001
I + B	.056	.057	.001	.052	.051	.001
+ I - B	.056	.055	.001	.052	.053	.001
I - B	.051	.05	.001	.056	.057	.001

$$\overline{V_1 - V_2} = \overline{V}_H = .0011V$$

Hall const. =
$$R_{H} = \frac{\overline{V}_{H}d}{BI} = \frac{(.0011V)(296 \times 10^{-4} \text{cm})}{10^{-3} \text{amps } 8.5 \times 10^{-5} \text{w/cm}^2} = 393 \text{cm}^3/\text{coul}$$

Hall mobility
$$\equiv \mu_{\rm H} = \frac{R_{\rm H}}{\rho} = \frac{393}{2.1} = 187 \,{\rm cm}^2/{\rm v-sec}$$

Carrier conc. =
$$P = \frac{1}{R_H q} = \frac{1}{393(1.6 \times 10^{-19} \text{coul})} = 1.58 \times 10^{16} \text{cm}^{-3}$$

where q = charge of an electron.

ORIGINAL PACE IS OF POOR QUALITY

Carrier type is determined by the following example:

if V, is >0 when B = 0, there is an excess of negative charge near the contact D (ref. Fig. 5), when $B \neq 0$ and V₂ > V₁ the charge carrier is a hole since it travels in the direction of conventional current and is deflected by a force, $\mathbf{F} = q(\mathbf{V} \times \mathbf{B})$ thereby increasing the positive potential between B and D.

3.3.4 NORMALIZED MOBILITIES

- 34

Hole mobility may be given by the relation:

$$\mu^{P_{z}} \mu_{\min} + \frac{\mu_{\max} - \mu_{\min}}{1 + \left(\frac{P}{P_{ref}}\right)^{q_{ref}}}$$

where

1

5

ſ

٢

٤

$$\mu_{min} = 47.7 \text{ cm}^2/\text{y-sec}$$

 $\mu_{max} = 495 \text{ cm}^2/\text{v-sec}$
 $P_{ref} = 6.3 \times 10^{16} \text{ cm}^{-3}$

and

The hole mobility normalized to a carrier conc. of $P = 10^{16} \text{ cm}^{-3}$, μ^* , is given by

$$\mu^{\star} = \mu_{\rm H} \left(\frac{\mu^{10^{16}}}{\mu} \right)$$

where $\mu_{\rm H}$ is the hall mobility, and $\mu^{10^{16}}$ = 406 cm²/v-sec.

ORTHON A LAND BA

3.3.5 GRAIN BOUNDARY DENSITY

The grain boundary density, G.B., is calculated by using the following relation from Brandon³⁵:

G.B. =
$$(\frac{\pi}{2}) (\frac{P_L}{N}) cm/cm^2$$

where $P_L = \frac{\text{total number of intersections of}}{\text{unit length of the test line}}$

and N = No. of fields of vision.

At 400X the diameter of the field of vision is .043 cm so the circumference, length of the test line, is $(\pi)(.043)$ cm.

A calculation of G.B. for sample D-8-1 follows:

D-8-1

 $P_{1} = 50$ N = 59

G.B. =
$$(\frac{\pi}{2}) \frac{50}{\pi(.043)59} = 9.85 \text{ cm/cm}^2$$

A summary of results is listed in Table 4. This table lists data for resistivity, Hall mobility, carrier concentration, hole mobility, normalized hole mobility, and grain boundary density for all 20 specimens.

OF PUOR CULLINY

TABLE X

1

1.

1

5

:

L

Ć

٢

C

8

Resistivity, Hall Mobility, Carrier Concentration, Hole Mobility, Normalized

Hole Mobility, and Grain Boundary Density for All 20 Specimens

SAMPLE	(()-ст)	µ _H (cm ² /v-soc)	P x 10 ¹⁶ (cm ⁻³)	μ ^P (cm ² /v-sec)	μ ^{10¹⁶ μ μ}	μ ^{°°} cm ² /v−s	G.B.(cm/cm ²)
A-1 ·	1.65	201	1.80	370	1.10	221	4.42
B-1	2.45	176	1.44	385	1.05	185	9.06
B-2	3.00	213	.97	408	1.00	213	16.97
B-3	1.85	212	1.58	379	1.07	227	12.41
C-1	1.80	337	1.02	405	1.00	337	2.12
C-2	1.69	198	1.86	368	1.10	218	15.17
C-3	2.20	187	1.51	382	1.06	198	11.86
D-1	2.20	178	1.59	378	1.07	190	9.85
D-2	2.15	177	1.64	376	1.08	191	6.43
D-3	3.10	85	2.36	351	1.16	99	16.16
E-1	1.86	274	1.26	393	1.03	282	0
E-2	1.75	226	1.58	379	1.07	242	•32
F-1	2.30	199	1.36	388	1.05	209	15.23
F-2	2.60	104	2.30	353	1.15	120	20.46
F-3	2.15	242	1.15	399	1.02	247	15.61
G-1	2.05	240	1.26	393	1.03	247	10.00
G-2		187	1.58	379	1.07	200	12.79
H-1	1.50	380	1.09	402	1.01	384	2.52
H-2	1.55	124	2.00	363	1.12	139	13.25
H-3	1.58	202	1.90	366	1.10	224	18.45

SECTION 3.4

ŧ

Ľ

1

1

ŗ

1

t

1

5

1

OF PUUK CO

DISCUSSIONS

When hole mobility is plotted as a function of grain boundary density a trend develops. That is, mobility decreased as a function of grain boundary density. This result, based on the electronic features of grain boundaries, is expected. But, it must be noted that while there is a clear trend, there is no clearly defined fundamental relationship evident.

It is noted that for grain boundary densities above all but the lowest values, the great majority of samples have mobility values centered near 200 cm²/v-sec for raw data (Fig. 6) and 215 cm²/v-sec for the normalized data (Fig. 7). It is also noted that within this region there is no defined trend between mobility and grain boundary density. Several explanations may be offered to explain this behavior.

It may be proposed that the range of grain boundary density is too small to allow conclusions to be drawn concerning a cause and effect relationship. Perhaps grain boundary densities spanning several orders of magnitude should be examined to determine if a fundamental relationship can be observed.

It may be reasoned that $\sim 200 \text{ cm}^2/\text{v-sec}$ is the "characteristic" mobility for all but the most defect free samples. Those samples with much lower values are vastly different in the nature of their defect structure. One such difference may be the precipitate density. A precipitate will act as a scattering center and so it stands to reason that a sample with an extremely large precipitate density would have lower mobility

OF POUR QUALITY

values than would be expected based on grain boundary density alone.

Another factor that is likely to affect the mobility as a function of grain boundary density is the grain size distribution and the geometric distribution of grain boundaries on the samples themselves. Distances between grain boundaries ranged from ~100 μ m to more than a millimeter. There is no clearly defined relationship between mobility and grain sizes nor is there enough sample area available to get a statistically valid idea of the grain size distribution.

Ľ

ſ

ť.

Geometric considerations must also be examined. That is to say, what is the actual distribution of grain boundaries on the sample. Grain boundary density does not take into account the uniformity of boundary distribution. It is reasonable to assume that two samples, one with grain boundaries uniformly distributed and the other with nearly all its boundaries concentrated in one portion of the sample, will have different mobility characteristics even if the grain boundary density is the same for both. Since there is no quantitative method to analyze and relate the "boundary distribution" to boundary density, ambiguous results are likely if boundary density is considered the only independent parameter.

SECTION 4

CONCLUSIONS

4.1 Quantitative Analysis of Defects

ŧ

This work has resulted in a breakthrough in correlating the efficiency of solar cells from UCP Ingot 5848-13C with impurities and imperfections. Of the four types of structural imperfections measured, twin boundary density showed a remarkable effect on cell efficiency (Figures 22 and 27, Table V). It was clearly established that cell efficiency increases with decreasing twin boundary density.

A definite correlation was found between cell efficiency and location of wafers (Figure 30). As the distance from ingot axis increases, the cell efficiency also increases. At the top center of the ingot where higher concentration of impurities and twin densities exist, the cell efficiencies were found to be the lowest. Therefore, it appears that impurities <u>interacting</u> with twin boundaries in this region creates electrically active scattering surfaces which <u>drastically</u> reduce the cell efficiency. This may explain why the cell efficiency increases from a low of 6.2% in the top center of the ingot to a high of 10.7% towards the outer surfaces of the ingot.

Therefore, a modification of UCP casting technique to reduce or eliminate twin boundary surfaces and detrimental impurities will result in a <u>significant</u> <u>increase</u> in cell efficiency.

4.2 Effect of Grain Boundary Density on Carrier Mobility

Mobility measurements were made on twenty SEMIX samples using the van der Pauw technique. Grain boundary density was measured using quantitative microscopy technique. The mobility was found to decrease with increasing grain boundary density (Figures 42 and 43).

SECTION 5

REFERENCES

1. K. V. Ravi, <u>Imperfections and Impurities in Semiconductor Silicon</u>, John Wiley & Sons, New York, 1981.

2. Z. C. Putney and W. F. Regnault, Solar Cells, vol. 1, No. 3, p. 285-292, May, 1980.

3. G. H. Schwuttke, T. F. Ciszek, and A. Kron, "Silicon Ribbon Growth by a Capillary Action Shaping Technique", Final Report, DOE/JPL 954144, IBM Corporation, Hopwell Junction, New York, 1977.

4. B. L. Sapori and A. Baghdadi, Solar Cells, vol. 1, No. 3, p. 237-250, May, 1980.

5. E.E. Underwood, <u>Quantitative Stereology</u>, Addison-Wesley Publishing Company, Reading, Massachusetts, 1970.

6. E.E. Underwood, <u>Metals Handbook</u>, vol.8, p. 37-47, American Society for Metals, Metals Park, Ohio, 1973.

7. P.A. Iles and D.C. Leung, "Silicon Solar Cell Process Development, Fabrication, and Analysis", 26th Monthly Report, JPL 955089, Optical Coating Laboratory, Inc., City of Industry, California, October, 1981.

8. J. Friedel, <u>Dislocations</u>, p. 290-292, Addison-Wesley Publishing Company, Reading, Massachusetts, 1964.

9. A.D. Kurtz, S.A. Kulin, and B.L. Averbach, Phys. Rev., vol. 101, p. 1285, 1956.

10. H.B. Serreze, J.C. Swartz, G. Entine, and K.V. Ravi, Mater. Res. Bull., vol. 9, p. 1421, 1976.

11. G. H. Schwuttke, T. F. Ciszek, and A. Kran, "Silicon Ribbon Growth by a Capillary Action Shaping Technique", Quarterly Report No. 6, DOF /JPL 954144, IBM Corporation, Hopwell Junction, New York, Dec. 15, 1976.

- R. Natesh, H. A. Qidwai: "Quantitative Analysis of Defects in Silicon", One - Time Report on Crystal Etching Preparation Technique, DOE/JPL 954977, Materials Research, Inc., Technical Report: MRI - 259, 1978.
- 13. R. Natesh, J. M. Smith, T. Bruce, H. A. Qidwai: "Quantitative Analysis of Defects in Silicon", Final Report, DOE/JPL 954977, Materials Research, Inc., Technical Report: MRI - 276, 1980.
- 14. R. Natesh, J. M. Smith: "Quantitative Analysis of Defects in Silicon", Monthly Technical Letter Progress Report No. 10, DOE/JPL 954977, Materials Research, Inc., Technical Report: MRI - 270, 1979.
- R. Natesh, J. M. Smith, H. A. Qidwai, T. Bruce: "Quantitative Analysis of Defects in Silicon", Quarterly Progress Report, DOE/ JPL 954977, Materials Research, Inc., Technical Report: MRI -273, 1979.
- R. Natesh, M. Plichta, J. M. Smith: "Analysis of Defect Structure in Silicon", Informal Technical Report, DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI - 280, 1980.
- R. Natesh, M. Mena, J. M. Smith, M. A. Sellani: "Analysis of Defect Structure in Silicon", <u>Characterization of Silicon - on-</u> <u>Ceramics Material</u>, Informal Technical Report, DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI - 281, 1981.
- R. Natesh, M. Mena, J. M. Smith, M. A. Sellani: "Analysis of Defect Structure in Silicon", <u>Mobil Tyco EFG Samples</u>, Informal Technical Report, DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI - 282, 1981.
- 19. R. Natesh, M. Mena, M. A. Sellani: "Analysis of Defect Structure in Silicon", <u>Single Crystal and Polycrystalline HEM Material</u>, Informal Technical Report, DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI - 283, 1981.
- R. Natesh, M. Mena, J. M. Smith, M. A. Sellani: "Analysis of Defect Structure in Silicon", <u>Characterization of HAMCO and EFG</u> <u>Solar Cells</u>, Informal Technical Report DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI - 284, 1981.
- 21. R. Natesh, M. Mena, J. M. Smith, M. A. Sellani: "Analysis of Defect Structure in Silicon", <u>Characterization of HEM Solar Cell</u> <u>Material</u>, Informal Technical Report, DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI - 285, 1981.

7

22. R. Natesh, M. Mena, J. M. Smith, M. A. Sellani: "Analysis of Defect Structure in Silicon", <u>Characterization of Mobil Tyco EFG</u> <u>Sheet Material</u>, Informal Technical Report, DOE/JPL 955676, Materials Research, Inc., Technical Report: MRI - 286, 1981.

- 23. J.Y.M. Lee and I.C. Cheng, J. Appl. Phys., vol. 53, p. 490, 1982.
- 24. R.A. Smith, "Semiconductors," Cambridge University Press, London, 1959.
- 25. E. H. Putley, "<u>The Hall Effect and Semiconductor Physics</u>", Butterworth and Co. (Publishers), Ltd., London, 1960: Dover Publications, Inc., New York, 1968.
- 26. A.C. Beer, "Galvanomagnetic Effects in Semiconductors", Academic Press, Inc., New York, 1963.
- 27. L. P. Hunter, Phys. Rev., vol. 94, p. 1157 1160, 1954.
- L. P. Hunter, E. Hulbregtse, and R. Anderson, Phys. Rev., vol. 91, p. 1315 - 1320, 1953.
- 29. G. L. Pearson and J. Bardeen, Phys. Rev., vol. 75, p. 865 883, 1949.
- 30. K. Pigon, J. Appl. Phys., vol. 32, p. 2369 2371, 1961.
- 31. R. L. Petritz, Phys. Rev., vol. 110, p. 1254 1262, 1958.
- 32. R. Natesh, T. Guyer, and G. B. Stringfellow, "<u>Analysis of Defect Structure in Silicon: Characterization of Samples from UCP Ingot 5848 13C</u>", Interim Report, Technical Report: MRI 290, Materials Research, Inc., August, 1982.
- 33. L.J. van der Pauw, Phillips Research Reports, vol. 13, p. 1, 1958.
- 34. R. S. Muller and T.I. Kamins, "Device Electronics for Integrated Circuits," (New York: Wiley 1977) p. 26.
- 35. D. G. Brandon," Modern Techniques in Metallography," (Frinceton, N.J.: D. van Nostrand Company 1966) p. 241.

OF POUR QUALITY

ų

OF POUR QUALITY

Figure 1 B

ORIGINAL PACT IS OF POOR QUALITY

Fig. 2 Region Showing High Twin Density in Semix A-13(50X)

Fig. 3 Region Showing a Large Number of Precipitates in Semix A-13(50X)

ł

1.6

Fig. 4 Large and Small Precipitates in Semix B-2 (1330X)

Fig.5 Precipitates in Seinix B-2 (530X)

ORIGINAL PALL IN OF POOR QUALITY

ORIGINAL PACE IS OF POOR QUALITY

Fig. 6 Many Grains and Grain Boundaries in Semix C-12 (50X)

0

C

ſ

E

Fig. 8 Large Number of Small Twin Boundaries in Semix D-8. These are not Typical Regions (66X). Region marked "U".

Fig. 9 Many Twin and Grain Boundary Region in Semix D-8 (66X)

ORIGINAL PACE IS OF POOR QUALITY

Fig.10 Dislocations Piled up Between Twins due to Localized Strain in Semix D-8 (600X)

Fig.11 Dislocations Interacting with a Twin Boundary in Semix D-8 (1500X)

OF POOR QUALITY

Fig. 12 High Twin Density in Semix E-13 (50X)

Fig.13 Large Precipitate Particle Between Twins in Semix E-13 (530X)

Fig. 14 Twin and Grain Boundary Structure in Semix F-2 (50X)

Fig. 15 Small Precipitate Particles in Semix F-2 (200X)

Fig. 16 Twins and Grain Boundaries in Semix G-12 (50X)

ć

Fig.17 Region of High Twin Density in Semix G-12 (100X)

OF POUR QUALITY

Fig.18 Dislocation pile-ups in Semix H-8 (1330X)

Figure 20
ORIGINAL PAGE IS OF POOR QUALITY

•

Figure 21

ORIGINAL PASSE R OF POOR QUALITY SOLAR CELL EFFICIENCY SOLAR CELL EFFICIENCY (%) VS. TWIN BOUNDARY DENSITY 11 хD HX B 10 ×_G 9 8 7 Ε× 6 0 60 80 100 20 40 0 TWIN BOUNDARY DENSITY (cm/cm²)

Figure 22

¥ : ¥

1.

¥

偏差

.

OF FOOR QUALITY.

Figure 23

ORIGINAL PAGE IN OF POOR QUALITY

4

 $i_{o}^{\frac{6}{2}}$

薯

Figure 24

OF POOR QUALITY

Figure 25

ORIGINAL PROFENS

Figure 26

ORIGINAL DOWN IN OF POOR (LIMIN)

ź

Ø.

Figure 27

OF POOR QUALITY

ŧ

4

4

OF POOR CLARY

1 1.4

Figure 30

4.4

OF. PU-

Figure 31

PRECIPITATE DENSITY PRECIPITATE PARTICLE DENSITY (#/cm²) VS. RELATIVE POSITION IN THE INGOT (X 1000) 50 PROCESSED WAFERS - GET TERED · PROCESSED WAFERS UNPROCESSED WAFERS 45 40 35 30 25 A 20 15 100 . 5 D 0 1/3 ²/3 0 TOP BOTTOM

ORIGINAL MACRI 19 OF POOR QUALITY

Figure 32

4 4

1

OF POCH QUALTE

ŕ

THE TOP OF THE SOLIDIFIED INGOT

Figure 33

ORIGINAL VICE IS OF POOR QUALITY

TWIN BOUNDARY LENGTH PER

Of Alcohoros and a set of the OF POOL CUMANNY

ORIGINAL FACE IS OF POOR QUALITY

Figure 36

M ALUMINUM WIRE الم الم

Fig. 37 Electrical Connections to Obtain a Small Contact Area and Reduce Contact Influence on Measurements

CONFIGURATION (1)

ŧ

٩

1. .

CONFIGURATION (2)

Fig. 38 Two Types of Configurations Used for Resistivity Measurements OF POOR QUALITY

Fig. 39 Two Types of Configurations Used for Hall Voltage Measurements

Fig. 40 Grid Used to Locate the Center of a Given Field

.

ŝ

**

ł,

Fig. 41 Configuration Used to Determine Carrier Type

Ŧ,

£.,

OF POOR CONLINY

ŧ

S.

ĩ

1972 18 2

÷

Fig. 43 Relationship Between Normalized Mobility and Grain Boundary

ORIGINAL PROF TS

ŧ

SECTION 6

APPENDIX

TABLES 1 THRU 45 LISTS ACTUAL DATA

MEASURED

ORIGINAL PRACT OF POOR QUALITY

ł

4

41

TABLE 1. Grain Boundary and Twin Boundary Density SEMIX A-1,3.Sample in polished condition. Magnification 100X. SAMPLE Field area = 0.0241 cm². Circumference of test circle = π . D = 0.55 cm. A denotes No. of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

FIE	LD		A	No. of twins	В	FIE	LD		А	No. of twins	В	
Y	No.	X				Y	No.	X				
12	1	33	7	33	24	10	40	41	4	14	12	
12	2	35	7	28	37	10	41	38	2	112	198	
12	3	37	2	137	201	10	42	35	6	21	24	
12	4	39	4	12	23	° 8	43	34	5	33	42	
12	5	41	2	113	119	8	44	36	2	29	41	
12	6	43	2	. 9	14	8	45	38	4	144	257	
12	7	45	3	15	10		46	40	2	12	22	
12	8	47	6	26	31	8	47	42	2	20	.9	
12	9	49	0	0	0	8	48	44	2	0	0	
12	10	51	0	0	0	8	49	46	0	15	30	
14	11	50	2	0	0	8	50	48	4	63	29	
14	12	47	2	12	12	8	51	50	2	7	11	
14	13	44	0	2	4	6	52	49	4	29	33	
14	14	41	2	12.4	196	6	53	46	0	13	23	
14	15	38	2	19	33	6	54	43	2	5	9	
14	16	35	7	40	47	6	55	40	4	20	24	
16	17	34	0	0	0	6	56	37	4	38	62	
16	18	36	3	27	28	4	57	37	6	117	148	
16	19	38	3	12	15	4	58	39	2	100	160	
16	20	40	5	50	47	4	59	41	3	42	37	
16	21	42	2	1	2	4	60	43	2	3	4	
16	22	44	2	8	8	4	61	45	0	0	0	
16	23	46	4	9	8	4	62	47	0	2	4	
16	24	48	0	0	0	Tati		62	170	1	2145	8
16	25	50	2	0	0	fiel	ar tor	02	179	1088	2145	
18	26	49	3	20	6	1161	.u 5 ;					
18	27	46	5	14	9	т	ford	rain	hound	π.	π 1	79
18	28	43	2	4	6	L'A	tor g	I a III	Doam	1 a ry - 2 · r	L (Zys	J(035)= 8.2 cm
18	29	40	4	6	11							
18	30	37	6	8	4	8	for tu	rin h	ounda	тv=т.	2145	- aa cm/em2
20	31	37	4	39	19	A,		, 111 ()	ounud	(2)((2) (5.55)	- 77 7
20	32	39	2	10	8							
20	33	41	3	3	3	$\overline{\nabla}$	'or ~-	ain	hound	nu - 2 0		
20	34	43	2	2	2		or gr	am sin t		$x_{1}y = 4.9$		
20	35	45	0	1	2	0 1	or gr	a 111 [Jounga	xy - 2.0		
20	36	47	2	0	0		~ * +	L -		24 /		
10	37	50	8	32	3		or tw	III DC		y - 34.6		
1.0	38	47	5	24	25	σι	or tw	IU DC	oundar	y = 50.5		
10	39	44	2	9	9							
			<u> </u>		[<u>π</u> 2 κ	62×0:	55 ⁻	0.046 C	es for grain densety	be mid benneling calcult	for next seven & forin bomelony tean

TABLE2Precipitate Particle Density

SAMPLE SEMIX A-13 Sample in polished condition. Magnification 400X Field area = 0.00149 cm^2

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

X and Y denotes location of microscope stage for the data measured.

FIE	LD		A		В	FIE	ELD		A		В		
Y	No.	X				Y	No.	X					
12	1	33	1		15	8	40	37	0		9		
12	2	34	1		7	8	41	38	2		22		
12	3	35	0		67	8	42	39	0		69		
12	4	36	0		42	8	43	40	0		124		
12	5	37	2		32	8	44	41	0		69		
12	6	38	2		89	8	45	42	2		38		
12	7	39	1		15	8	46	43	0		11		
12	8	40	0		18	8	47	44	0		1		
12	9	41	0		19	8	48	45	1		3		
12	10	42	0		19	8	49	46	0		2		
12	11	43	0		9	8	50	47	0		9		
12	12	44	0		26	8 51 48 0 13							
12	13	45	1		9	8 52 49 3 3							
12	14	46	0		118	3 53 50 3 7							
12	15	47	1		187	8 54 51 1 6							
12	16	48	7		98	4 55 38 1 32							
12	17	49	2		136	4	56	40	0		21		
12	18	50	2		28	4	57	42	0		25		
12	19	51	0		40	4	58	44	1		40		
16	20	34	2		35	4	59	46	2		14		
16	21	35	0		30	20	60	38	0		11		
16	22	36	1		11	20	61	40	0		46		
16	23	37	5	·····	3	20	62	42	1	X	6		
16	24	38	0		20	(T) = 6	1	4	71		2107		
16	25	39	1		24		al lor	04	71		2107		
16	26	40	0		46	1161	u 5 ;				2		
16	27	41	1		60	Are	a of (54 fi	elds	= 0.09536	cm		
16	28	42	1		21	No.	of la	rge p	ppt. =	71/0.0	9536		
16	29	43	1		11	_			=	745/ cm	2		
16	30	44	3		24	X fo	or lar	ge p	pt. =	1.1			
16	31	45	1		32	σfc	or lar	ge p	pt. =	1.5			
16_	32	46	0		5	No. of small ppt. = $2107/0.09536$							
16	33	47	1	l	102				=	22095 / ci	m ²		
16	34	48	1		23	X fo	or sm	all p	pt. =	33.0			
16	35	49	4		17	œfc	or sm	all p	opt. =	36.5			
16	36	50	6		9								
1.6	37	51		L	14								
8	38	35.	0	L	27				OPIO		· . :		
8	39	36	0		12	r) *				nni chia			
20	10	44			0					LENERA N. Catan	te at No.		

18

46

20 | 64

4.4

X

OF POOR QUALITY

TABLE 3DISLOCATION DENSITYSAMPLESEMIX A-13, Sample in etched conditionMagnification 1000X, Area of field = 0.000238 cm²X and Y denote the location of microscope stage (field of view) for the
data measured.

FIE	LD		No. of Disloca Pits	ation	FIE	LD		No.	of Disloc Pits	ation
Y	No.	X			Y	No.	X		•	
12	1	34	45		10	40	41		1	
12	2	35	46		10	41	38		75	
12	3	37	6		10	42	35		2	
12	4	39	5							
12	5	41	1		8	44	36		4	
12	6	43	6		8	45	38		5	
12	7	45	3		8	46	40		8	_
12	8	47	5		8	47	42		1	
12	9	49	8		8	48	44		5	
12	10	50	4		8	49	46		2	
14	11	49	2		8	50	48	 		
14	12	47	6		8	51	49		0	
14	13	44	4		6	52	49		1	
14	14	41	104		6	53	46		4	
14	15	38	118		6	54	43		6	-
14	16	35	26		6	55	40		7	
16	17	35	14		6	56	37		6	
16	18	36	5							
16	19	38	1		5	58	39		2	
16	20	40	22		5	59	41		4	
16	21	42	4		5	60	43		3	
16	22	44	3		5	61	45		4	
16	23	46	3							
16	24	48	2		Tot	alfor	- <u>59</u>		681	
16	25	49	19		fiel	lda [,]	50		001	
18	26	47	5	L.,						
18	27	46	55	+	Dis	locat	ion d	lensity	7	
18	28	43	ļ			01 10-	0.40	00000	201 - 1 - 1	2
18	29	40	9		= 6	817(5	va)(0	, 000Z3	oo) pits/	cm
18	30	37		+	= 4	1.9 x	10	pits/	/cm ²	•
L		_			-					
19	32	39	16			= 12				
19	33	$\frac{41}{1}$	6	+	و ا	= 23			x .	
19	34	$+ \frac{43}{1}$	<u> </u>	+	1					
19	35	45		+						
19_	36	47	<u> 8</u>							
10	37	50	3	+	ł					
10	38	47	3	+						
10	39	44	0	ł						

OF HERE CURLINY

TABLE 4 Grain Boundary and Twin Boundary Density

SAMPLE SEMIX B-2. Sample in polished condition. Magnification 100X. Field area = 0.0241 cm². Circumference of test circle = $\pi \cdot D$ = 0.55 cm. A denotes No, of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersectio... with circumference of test circle. X and Y denotes field location of the data measured.

FIE	CLD		А	No. of twins	в	FIF	ELD		A	No. of twins	В	
Y	No.	X		1	ſ	Y	No.	X				
12	1	33	7		15	10	40	41	2		0	
12	2	35	3		25	10	41	38	2		4	
12	3	37	0		0	10	42	35	4		17	
12	4	39	0		4	8	43	34	7		16	
12	5	41	0		2	8	44	36	6		25	
12	6	43	0		0	8	45	38	4		7	
12	7	45	0	ng gais de 168 o. 1080 feit sent a donnes I fei	0	8	46	40	2	[0	
12	8	47	0		0	8	47	42	0		0	
12	9	49	0	and a construction of the former of the second second second	0	8	48	44	0		0	
12	10	51	4		29	8	49	46	0		7	
14	11	50	0		.0		50	48	0		17	
14	12	47	0		0	8	51	50	3		7	
14	13	44	0		0	6	52	49	0		3	
14	14	41	0		4	6	53	46	0		0	
14	15	38	10		0	6	54	43	0		0	
14	16	35	6		1	6	55	40	5		3	
16	17	34	8		3	6	56	37	2		0	
16	18	36	3		6	4	57	37	5		10	
16	19	38	2		4	4	58	39	4		6	
16	20	40	0		0	4	59	41	2		7	
16	21	42	0		0	4	60	43	0		0	
16	22	44	0		4	4	61	45	0		1	
16	23	46	0		0	4	62	47	0		2	
16	24	48	0	1	()		alfor	62	08	L	347	J
16	25	50	0		0	fial	dei	02	70		741	
18	26	49	0	 MAX Methodal constraints changes and a second s	0	1161						
18	27	46	0	مىمى بىر يى يې يې يې	.7	т	for g	rain	bound	1a mu - T - E	Υ9	8 - A. CI Um
18	28	43	0		0	A ^{LL} A	JOL B		bound	2	L 2×6	2×0.55 Cm
18	29	40	2	a successible and the second state of the second state of the second state of the second state of the second st	4							
18	30	37	2		3	r -	for tu	dir. b	ounda	TA	342	- 15.75 Cm
20	31	37	2		8	 A_	, JI UM	, iJ	Junua	2,	62 10:55	Cm2
20	32	39	2	-	30						•	
20	33	41	2		8	$\overline{\mathbf{x}}$	or ar	ain	hounds	arv= 1 4		
20	34	43	1		6	~f.	or ar	ain F	ounda	rv = 2.2		
20	35	45	0		0		or Ru			-y- 4.6		
20	36	47	0		0	$\overline{\mathbf{x}}$	or twi	in be	uindar	V = E L		
10	37	50	6		50		or tw	in he	unda r	7 = 0,0 V = 0.2		
10	38	47	0		2				/unuul	J 7, 5		
10	39	44	0		0							

OF PUCK QUALITY

TABLE 5 Precipitate Particle Density

SAMPLE SEMIX B-2. Sample in polished condition. Magnification 400X. Field area = 0.00149 cm²

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

X and Y denotes location of microscope stage for the data measured.

FIE	LD		А		В	FIE	LD		A		В	
Y	No.	X				Y	No.	x				
12	1	33	2		14	10	40	41	C		9	
12	2	35	0		24	10	41	38	1		22	
12	3	37	0		18	10	42	35	0	,	31	
12	4	39	1		18	8	43	34	0		19	
12	5	41	0		25	8	44	36	1		17	
12	6	43	<u>0</u>	,	22	8	45	38	0		22	
12	7	45	1		11		46	40	1		16	
12	8	47	0		71	8	47	42	0		33	
12	9	49	0	1	31	8	48	44	1		16	
12	10	51	0		27	8	49	46	0		66	
14	11	50	0		34	88	50	48	0	<u> </u>	59	
14	12	47	3		86	8	51	50	0		59	
14	13	44	2		23	6	52	49	0		27	
14	14	41	1		32	6 53 46 0 22						
14	15	38	0	·	44	6	18					
14	16	35	0		38	6	55	40	1		14	
16	17	34	1		13	6	56	37	1	[15	
16	18	36	0		14	4	57	37	0		25	
16	19	38	0		35	4	58	39	2		95	
16	20	40	2		13	4	59	41	0		36	
26	21	42	0		23	4	60	43	1		64	
16	22	44	0		17	4	61	45	0		40	
16	23	46	0		38	4	62	47	0		29	
16	24	48	0		15	Tota	l	62	41		1802	
16	25	50	1		36	fiel	de.	0.				
18	26	49	3		13		ч с ,				2	
18	27	46	3		48	Are	a of (52 fi	elds	= 0.0923	8 cm	
18	28	43	2		23	No.	of la	rge 1	ppt. =	41 /0.0	9238 2	
18	29	40	0		9	_			=	444/ cm	`	
18	30	37	2		27	X fo	r lar	ge p	pt. =	0.66		
20	31	37	4		34	σfo	r la r	ge p	pt. =	0.95		
20	32	39	0		28	No.	of sn	n all	ppt. =	1802 /0.	09238	
20	33	41	0		20			19506 / c	m ʻ			
20	34	43	1		39	$\overline{\mathbf{X}}$ for small ppt. = 29.1						
20	35	45	0		14	σío	r sm	all, p	opt. =	18.1		
20	36	47	1		13	ł						
10	37	50	1		27	N.						
10	38	47	1		14							
10	39	44	0		17							

97

ay

R

谨

ŧ

Civi - Landard OF FORL CURLEN

TABLE 6

ş

1

ť

á.

DISLOCATION DENSITY

SAMPLE SEMIX B-2. Sample in etched condition Magnification 1000X, Area of field = 0.000238 cm² X and Y denote the location of microscope stage (field of view)for the data measured.

FIE	LD		No. of Disloc Pits	ation	FIE	LD		No. d	of Disloc Pits	ation
Y	No.	X	+		Y	No.	X		•	
12	1	34	10		10	40	41		21	
12	2	35			10	41	38			
12	3	37	30		10	42	35		6	
12	4	39	10		8	43	35			
12	5	41	7		8	44	36	•	3	
12	6	43	8		8	45	38		34	
12	7	45	22		88	46	40		183	
12	8	47	8		8	47	42		13	
12	9	49	69		8	48	44		25	
12	10	50	61		8	49	46		18	
14	11	49			8	50	48	ļ	14	
14	12	47	48		8	5.1	49			
14	13	44	10		6	52	49		2	
14	14	41	6		6	53	46		5	
14	15	38	13		6	54	43		1	+
14	16	35	1		6	55	40		3	
16	17	35	1		6	56	37		5	
16	18	36	0		5	57	38			
16	19	38	28		5	58	39		7	
16	20	40	2		5	59	41		6	
16	21	42	16		5	60	43		14	
16	22	44	7		5	61	45		12	
16	23	46	16		5	62	47	[15	
16	24	48	6		The first		56	L	1266	
16	25	49	13		fiel	ya. At fet	50		1200	
18	26	47	17							
18	27	46	24		Dis	locat	ion d	lensity	7	~
18	28	43	2	<u> </u>	=	266/	(56)(0.000	238) pits	/cm ²
18	29	40	5		= (), 95	$\mathbf{x} \mathbf{l}$	0^5 pits	s/cm^2	
18	30	37	0			• ,•		- F		
19	31	37			x	= 23				
19	32	39			6	= 45				
19	33	41	9		Ĩ					
19	34	43	52							
19	35	45	20	Į						
19	36	47								
10	37	50	294	 						
10	38	47	5	{ 						
10	39	44	4							

98

 γ ;

ORIGINAL PAGE IS OF POOR QUALITY

 $\frac{22ABLE}{SAMPLE}$ Grain Boundary and Twin Boundary Density
OF POOR QUALITY
SEMIX C-12.Sample in polished condition. Magnification 100X.
Field area = 0.0241 cm². Circumference of test circle = $\pi \cdot D$ = 0.55 cm.
A denotes No. of grain boundary intersections with circumference of test circle.
B denotes No. of twin boundary intersections with circumference of test circle.
X and Y denotes field location of the data measured.

FIE	ELD	· · · ·	А	No, of	В	FIE	ELD		A	No. of twins	В	
Y	T No	X	<u>†</u>		 	Y	No	x	₩~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1	1
12	1	33	8	17		10	40	41	4	45	57	1
12	$\frac{1}{2}$	35	10	20	2.4	10	41	38	10	9	8	
$\frac{12}{12}$	$\frac{-}{3}$	37	3	14	19	10	42	35	2	19	22	l l
12	4	39	2	24	30	8	43	34	7	17	15	
12	5	41	4	25	32	8	44	36	0	13	26	1
12	6	43	4	2	2	8	45	38	6	19	22	1
12	7	45	8	1	1	8	46	40	8	15	12	
12	8	47	0	0	0	8	47	42	0	8	9	
12	9	49	4	5	5	8	48	44	4	28	15	1
12	10	51	6	9	8	8	49	46	4	6	3	
14	11	50	10	29	11	8	50	48	6	11	11]
14	12	47	7	11	4	8	51	50	2	3	6	
]4	13	44	5	6	5	6	52	49	5	9	12	I
14	14	41	2	9	10	6	53	46	7	12	7	
14	15	38	5	11	18	6	54	43	0	22	25]
14	16	35	9	22	16	6	55	: <u>)</u>	3	38	43	
16	17	34	3	2	2	6	56	1 37	0	8	10	
16	18	36	3	7	6	4	57	37	0	3	6	1
16	19	38	7	6	6	4	58	39	3	11	14	
16	20	40	8	8	6	4	59	41	8	59	29	
16	21	42	4	3	6	4	60	43	3	22	22	Ĩ
16	22	44	2	2	4	4	61	45	4	11	4	
16	23	46	3	1	1	4	62	47	4	3	2	
16	24	48	7	5	4	(T) = A =	16.0	42	200	702	6.02	ŧ.,
16	25	50	4	28	25		41 IOT	04	290	(45	095	
18	26	49	8	20	15	nei	as:					
18	27	46	9	3	2	т	fora		hout	π	_π 2	290 - 10 07 64
18	28	43	4	1	1	A ^{LL}	tor g	ram	Dound	2	L 2 x6	2 x0:55 C
18	29	40	3	2	1						•	
18	30	37	3	11	10	т	for the	in h	ounda	TT ×	693	- 21.93 Cm_
20	31	37	7	3	3	^{L'} A'	.01 1.0	in D	Junua	2 ×4	2 8 0.55	Cm2
20	32	39	3	6	6						•	
20	33	41	5	0	0			aink	ounda	ww- 4 7		
20	34	43	5	2	4		or gr	an t	ounda	$e_{y} = 2.7$		
20	35	45	7	0	0	010	or Bre	*111 U	Junud	ry- 2.1		
20	36	47	5	1	1		y turi	in ha	undar	v = 11.2		
10	37	50	2	5	4			in ha	unda -	y = 11, 4 y = 11, 1		
10	38	47	4	6	5	010	JI (W)		unuar	y - 11.1		
10	39	44	7	5	5							

ORIGINAL PAGE 19

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

X and Y denotes location of microscope stage for the data measured.

FIE	LD		А		В	FIELD			A		В	
Y	No.	X				Y	No.	Х				
12	1	33	4		0	10	40	41	1		00	
12	2	35	11		C	10	41	38	0		0	
12	3	37	8		0	10	42	35	3		0	
12	4	39	7		0	8	43	34	6		0	
12	5	41	7		0	8	44	36	7		0	
12	6	43	12		0	8	45	38	0		0	
12	7	45	15		0	8	46	40	3		0	
12	8	47	4		0	8	47	42	0		0	
12	9	49	10		0	8	48	44	5		0	
12	10	51	14		0	8	40	46	6		0	
14	11	50	8		0	8	50	48	10		0	
14	12	47	10		0	8	51	50	7		0	
14	13	44	15		0	6	52	49	20		0	
14	14	41	5		0	6	53	46	17		1	
14	15	38	14		0	6	54	43	5		0	
14	16	35	12		0	6	55	40	12		2	
16	17	34	19		0	6	56	37	8		0	
16	18	36	4		0	4	57	37	18	1	0	
16	19	38	6		0	4	58	39	16		0	
16	20	40	0		0	4	59	41	26		0	
16	21	42	2		0	4	60	43	5		0	
16	22	44	0		0	4	61	45	22		2	
16	23	46	17	,	0	4	62	47	35		0	
16	24	48	27		0				5 - 0			
16	25	50	10		0	Tot	al ior	62	572		6	
18	26	49	18		0	iiel	d 8 :				2	
18	27	46	13		0	Are	a of (52 fi	elds	= 0.09238	B cm ²	
18	28	43	7		0	No.	of la	rge	ppt. =	6 /0.0	9238	
18	29	40	29		0				=	65 / cm	2	
18	30	37	8		0	Xfc	r lar	ge p	pt. =	0.1		
20	31	37	4		0	σ for large ppt. = 0.4						
20	32	39	8		1	No. of small ppt. = 572 /0.0923						
20	33	41	3		0				=	6192 / ci	m ^Z	
20	34	43	3		0	X fo	or sm	all p	opt. =	9.2		
20	35	45	2		0	or fo	r sm	all r	. =	7.7		
20	36	47	0		2			•	-			
10	37	50	3		0							
10	38	47	9		0	f						
10	39	44	2		0							

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 9DISLOCATION DENSITYOF FOOR QUALITYSAMPLESEMIX C-12. Sample in etched conditionMagnification 1000X, Area of field = 0.000238 cm²X and Y denote the location of microscope stage (field of view) for thedata measured.

FIE	LD		No. of Dislo Pits	ocation	FIE	LD		No.	of Disloc Pits	ation
v	No	X			Y	No.	X		÷	
12	1	34	26		10	40	41		104	
12	2	35	187		10	41	38		149	
12	3	37	114		10	42	35		132	
12	4	39	58		8	43	35		89	
12	5	41	17		8	44	36		170	
12	6	43	33		8	45	38		97	
12	7	45	29		8	46	40		59	
12	8	47	101		8	47	42		75	
12	9	49	15		8	48	44		99	
12	10	50	11		8	49	46		143	
14	11	49	55		8	50	48	L	35	
14	12	47	162		8	51	49		83	
14	13	44	11		6	52	49			
14	14	41	20		6	53	46		81	
14	15	38	185		6	54	43		121	
14	16	35	253		6	55	40		108	
16	17	35	136		6	56	37		133	
16	18	36	82		5	57	38	1	66	
16	10	38	205		5	58	39	1	96	
16	20	40	37		5	59	41	1	152	
16	21	42	52		5	60	43	1	73	
16	22	44	52		5	61	45		45	
16	23	46	47		5	62	47	1		
16	24	48	44					<u> </u>	4.09.0	
16	25	49	177		Tot	al tor	56		4989	
18	26	47	265		11e1	. d 8 :				
18	27	46	34		Die	locat	ion d	lensity	J	
18	28	43	90							2
18	29	40	43		= 4	1989	(56) (0.000 5	238 pits/	cm
18	30	37	31		= 3	3.7 x	10	pits	/cm ⁻	
19	31	37			T	= 89				
19	32	39				= 62				
19	33	41	10			÷.,				
19	34	43	8							
19	35	45								
19	36	47								
10	37	50	165							
10	38	47	82							

101

10 39

44

Onical OF POOR GERE

Cmz

TABLE 10 Grain Boundary and Twin Boundary Density

SAMPLESEMIX D-8.Sample in polished condition. Magnification 100X.Field area= 0.0241 cm².Circumference of test circle= $\pi \cdot D$ A denotes No. of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

	100						~ ~ ~			· · · · · · · · · · · · · · · · · · ·		
FII	ELD		A	No. of twins	В	FII	ELD		А	No. of twins	В	
Y	No.	X	1			Y	No.	x			-	i
12	1	33	10	89	23	10	40	41	6	22	10	
12	2	35	3	3	6	10	41	38	6	0	0	
12	3	37	4	9	8	10	42	35	5	24	17	
12	4	39	4	2	1	8	43	34	8	58	37	
12	5	41	4	8	8	8	44	36	11	38	37	
12	6	43	2	14	22	8	45	38	17	35	8	Í
12	7	45	2	3	6	8	46	40	12	1	2	
12	8	47	0	0	0	8	47	42	6	17	15	1
12	9	49	4	2.2	24	8	48	44	10	92	75	1
12	10	51	3	0	0	8	49	46	2	47	61	1
14	11	50	4	6	6	8	50	48	3	26	36	l
14	12	47	2	1	1	8	51	50	2	10	10	l
14	13	44	4	5	6	6	52	49	5	2	2	1
14	14	41	11	5	3	6	53	46	8	52	40	í
14	15	38	4	13	13	6	54	43	6	0	0	1
14	16	35	6	9	11	6	55	40	7	17	14	ł
16	17	34	6	24	19	6	56	37	4	127	35	1
16	18	36	2	11	12	4	57	37	5	29	25	1
16	19	38	3	7	7	4	58	39	4	13	16	1
16	20	40	7	23	29	4	59	41	3	4	5	
16	21	42	5	48	21	4	60	43	0	0	0	l
16	22	44	2	0	0	4	61	45	4	33	11	1
16	23	46	2	0	Ō	4	62	47	4	12	10	1
16	24	48	2	1	1	TT - A		62	200	1205	067	I
16	25	50	5	16	15	fiel	de. de	02	677	1695	901	
18	26	49	4	1	1	11e)	us;					
18	27	46	0	0	0	т	for	rain	hour			299
18	28	43	4	0	0	A ^{LL} A	tor B	rain	gound	2	L Zxe	110-56
18	29	40	8	57	56							
18	30	37	7	16	16	Т.	for tu	vin h	ounda	rv= Tx9	167	- 44.51
20	31	37	9	31	28	_ ^{⊥⊥} A`			U LA LA LA GA	2 x	6240.55	, 41 4
20	32	39	10	26	17						•	
20	33	41	6	68	51	TT I	or or	ain	bounds	rv = 4.8		
20	34	43	2	72	57	e f	0r 0r:	ain F	ounda	rv = 3.2		
20	35	45	2	4	11		- 5 · ·		<i>~~~</i> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-y- J.U		
20	36	47	0	0	0	T f	or tw	in bo	unda r	v = 15.6		
10	37	50	2	6	9	r f	or tw	in bo	unda #	y = 10.0		
10	38	47	2	3	3		UI UW.			y = +1,1		
10	39	44	4	24	10							
	1	ľ.	l									

ORIGINAL PAGE IO OF POOR QUALITY

TABLE 11 Precipitate Particle Density

SAMPLE SEMIX D-8. Sample in polished condition. Magnification 400X. Field area = 0.00149 cm^2

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

X and Y denotes location of microscope stage for the data measured.

Committee and the second s				الا المتحدة (بالمتحدة (البين ا		والانتفاق المتخاط والبرق					
FIE	LD		A		В	FIELD			A		В
Y	INO.	X				Y	No.	x			
12	1	33	0		9	10	40	41	0		0
12	2	35	0		10	10	41	38	1		0
12	3	37	0		2	10	42	35	0		11
12	4	39	0		5	8	43	34	0		4
12	5	41	1		0	8	44	36	0		1
12	6	43	0	. jung 1-1 1 Mining an Jung 10 Manuara 1 Maramat	7		45	38	0		0
12	7	45	0	 	17	8	46	40	1		1
12	8	47	0		3	8	47	42	0		0
12	9	49	0		4	8	48	44	1		0
12	10	51	2		6	8	49	46	0		2
14	11	50	0		2	8	50	48_	0		2
14	12	47	0		3	8	51	50	0		1
14	13	44	0		1	6	52	49	0		8
14	14	41	1		2	6	53	46	0		2
14	15	38	0		0	6	54	43	0		0
14	16	35	0		9	6	55	40	0		0
16	17	34	1		1	6	56	37	0		7
16	18	36	0		0	4	57	37	0		16
16	19	38	0		4	4	58	39	0		6
16	20	40	1		3	4	59	41	0		2
16	21	42	0		7	4	60	43	0		4
16	22	41	1		0	4	61	45	0		16
16	23	46	0		5	4	62	47	0		3
16	24	48	0		7	Tet	lfor	62	14		235
16	25	50	0		8	fial	de:	02	17		233
18	26	49	1		2	1101	u <i>b</i> .				2
18	27	46	0		1	Are	a of e	52 fi	elds :	= 0.09238	3 cm ⁻
18	28	43	1		3	No.	of la	rge I	ppt. =	14/0.0	9238
18	29	40	0		<u> </u>				=	152/ cm	1
18	30	37	0		3	$\overline{\mathbf{X}}$ fo	r lar	ge p	pt. =	0.23	
20	31	37	0		6	σ for large ppt. = 0.46					
20	32	39	0		3	No. of small ppt. = $235/0.09231$					
20	33	41	0		3				=	25 44 / ci	m ʻ
20	34	43	0		2	X fo	or sm	all p	opt. =	3.8	
20	35	45	1		2	σfo	r sm	all p	opt. =	4.0	
20	36	47	1		7	2.20 1.20					
10	37	50	0		1						
10	38	47	0		0						
10	39	44	0		1						

ORIGIDAL PROVINS

TABLE12DISLOCATION DENSITYSAMPLESEMIX D-8.Sample in etched conditionMagnification 1000X, Area of field = 0.000238 cm²XX and Y denote the location of microscope stage (field of view) for the data measured.

FIE	LD		No. o	f Disloca Pits	ation	FIE	LD		No.	of Disloca Pits	ation
Y	No.	X				Y	No.	X			
12	1	34		7		10	40	41		12	
12	2	35		5		10	41	38		7	
12	3	37		0		10	42	35		5	
12	4	39	rt	9		8	43	35		2	
12	5	41		64		8	44	36		2	
12	6	43		7		8	45	38		15	
12	7	45		2		8	46	40		11	
12	8	47		8		8	47	42		304	
12	9	49		3		8	48	44		7	
12	10	50				8	49	46		2	
14	11	49		14		8	50	48		8	
14	12	47		6		8	51	49			
14	13	44		2		6	52	49		5	
14	14	41		3		6	53	46		34	
14	15	38		2		6	54	43		3	
14	16	35		4		6	55	40		48	
16	17	35				6	56	37		2	
16	18	36		29		5	57	38			
16	19	38		5		5	58	39		95	
16	20	40		10		5	59	41		6	
16	21	42		2		5	60	43		5	
16	22	44		9		5	61	45		14	
!6	23	46		5		5	62	47		89	
16	24	48		7		Tet		57		1377	
16	25	49		6		fiel		57		1311	
18	26	47		7			шв, —				
18	27	46		8		Dis	locat	ion d	ensity	, 7	
18	28	43		142							2
18	29	40	 	49		= 1	377/	(57) (0	0.0002	238) pits/	cm ²
18	30	37	 	5	 	= 1	0 •	105	nite	lcm^2 ,	
19	31	37		6	ļ	- 1	• · · ·	* 0	Pres	, 0111	
19	32	39	┟────┤	196		v .	- 24				
19	33	41		20	ļ		- 51				
19	34	43		6	ļ		- 51				
19	35	45	 	_7							
19	36	47									
10	37	50		12							
10	38	47		19							
10	39	44		15	1						

OF POOR QUALITY

TABLE 13Grain Boundary and Twin Boundary DensityOF POOR QUALITYSAMPLESEMIX E-13.Sample in polished condition. Magnification 100X.Field area = 0.0241 cm². Circumference of test circle = $\pi \cdot D$ = 0.55 cm.A denotes No. of grain boundary intersections with circumference of test circle.B denotes No. of twin boundary intersections with circumference of test circle.X and Y denotes field location of the data measured.

FIELD		А	No. of twins	В	FIE LD		A	No. of twins	В				
Y	No.	X				Y	No.	X					
12	1	33	4	7	7	10	40	41	2	170	124		
12	2	35	2	5	7	10	41	38	5	27	29		
12	3	37	0	4	6	10	42	35	3	3	2		
12	4	39	0	1	2	8	43	34	5	0	0		
12	5	41	2	38	35	8	44	36	7	12	8		
12	6	43	0	0	0	8	45	38	6	8	6		
12	7	45	2	1_0	0	8	46	40.	3	12	20		
12	8	47	0	0	0	8	47	42	2	8	15		
12	9	49	0	0	0	8	48	44	2	16	24		
12	10	51	0	0	0	8	49	46	6	34	50		
14	11	50	0	0	0	8	50	48	4	86	94		
14	12	47	0	1	1	8	51	50	3	102	161		
14	13	44	0	0	0	6	52	49	2	71	132		
14	14	41	0	0	0	6	53	46	4	92	152		
14	15	38	2	13	13	6	54	43	4	43	71		
14	16	35	0	4	7	6	55	40	4	26	38		
16	17	34	0	0	0	6	56	37	2	0	0		
16	18	36	4	6	3	4	57	37	3	2	2		
16	19	38	0	0	0	4	58	39	3	25	24		
16	20	40	2	15	15	4	59	41	3	33	45		
16	21	42	7	18	10	4	60	43	3	24	38		
16	22	44	6	20	17	4	61	45	7	17	24		
16	23	46	4	51	51	4	62	47	4	26	42		
16	24	48	6	33	39	Tot		62	152	1222	1499		
16	25	50	6	53	74	fiel	de	02	155	1225	1400		
18	26	49	3	69	57	· iiei	U 9 ;						
18	27	46	2	10	11	L _A for grain boundary= $\frac{\pi}{2}$ ·P _L = $\frac{\pi}{2}$ /153 c _m =7.05 c _m c _m =							
18	28	43	0	0	0								
18	29	40	0	0	0								
18	30	37	2	0	0	т.,	for tu	vin h	ounda	Ty Tyl	488	- (8.54 <u>Cm</u>	
20	31	37	0	0	0	` A'		, 111 Ú	Junua	2.76	2 1 0 55	Cmr	
20	32	39	0	0	0	I					•		
20	33	41	0	0	0	$\overline{\mathbf{v}}$	or ar	ain	hound	arv- 2 =			
20	34	43	0	0	0		or ar	am i	ounda	a + y = -2, 5			
20	35	45	2	1	1	∇ for twin boundary = 2.1							
20	36	47	2	8	7								
10	37	50	3	21	17	σ for twin boundary = 24 σ for twin boundary = 37.7							
10	38	47	2	4	4								
10	39	44	3	4	3						,		

. .

1.

ORIGINAL PACE IS

TABLE14Precipitate Particle DensityOF POOR QUALITYSAMPLESEMIX E-13.Sample in polished condition.Magnification 400X.Field area= 0.00149 cm^2

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

X and Y denotes location of microscope stage for the data measured.

FIELD			A		В	FIE	FIELD				В		
Y	No.	X	,			Y	No.	X					
12	1	33	1		22	10	40	41	1		5		
12	2	35	0		13	10	41	38	0		10		
.12	3	37	0		7	10	42	35	0		4		
12	4	39	0		18	8	43	34	0		48		
12	5	41	2		15	8	44	36	0		13		
12	6	43	2		12		45	38	0		4		
12	7	45	2		15	8	46	40	0		8		
12	8	47	ī		4	8	47	42	0		20		
12	9	49	1		19	8	48	44	1		5		
12	10	51	0		30	8	49	46	2		7		
14	11	50	0		48	88	50	48	2		6		
14	12	47	2		12	8	51	50	1		23		
14	13	44	0		4	6	52	49	1		7		
14	14	41	0		12	6	53	46	1		6		
14	15	38	1		12	6	54	43	0		19		
14	16	35	1		16	6	55	40	1		16		
16	17	34	0		8	6	56	37	0		8		
16	18	36	0		5	4	57	37	0		5		
16	19	38	1		13	4	58	39	0		5		
16	20	40	0		8	4	59	41	0		7		
16	21	42	1		9	4	60	43	0		10		
16	22	44	1		7	4	61	45	0		7		
16	23	46	0		19	4	62	47	1		17		
16	24	48	1		10			42	27		840		
16	25	50	0		15	Total for 62 37 840 fields: Area of 62 fields = 0.09238 cm ² No. of large ppt. = $37/0.09238$ = $400/ \text{ cm}^2$ X for large ppt. = 0.6 σ for large ppt. = 0.7 No. of small ppt. = $840/0.09238$ = $9090 / \text{ cm}^2$ X for small ppt. = 13.5 σ for small ppt. = 10.6							
18	26	49	1		11								
18	27	46	1		6								
18	28	43	0		17								
18	29	40	1	L	11								
18	30	37	0		21								
20	31	37	0	[9								
20	32	39	0		10								
20	33	41	0		59								
20	34	43	1		19								
20	35	45	1		9								
20	36	47	1		4								
10	37	50	0		27								
10	38	47	1		21								
10	130	44	12		3								
ORIGINAL PAGE IS OF POOR QUALITY

TABLE15DISLOCATION DENSITYOF POOR QUALITYSAMPLESEMIX E-13, Sample in etched conditionMagnification 1000X, Area of field = 0,000238 cm²X and Y denote the location of microscope stage (field of view) for the
data measured.

FIE	LD		No. of Disloca Pits	ation	FIE	LD		No, of Dis Pite	location
v	No	X			Y	No.	X		
12	1	34	175		10	40	41	242	2
12	2	35	141		10	41	38	93	
12	3	37	245		10	42	35	68	
12	4	39	56		8	43	35	295	5
12	5	41	30		8	44	36	97	
12	6	43	19		8	45	38_	58	
12	7	45	4		8	46	40	17()
12	8	47	1.10		8	47	42	235	5
12	9	49	141		8	48	44	181	7
12	10	50	285		8	49	46	188	3
14	11	49	74		8	50	48	203	<u> </u>
14	12	47	106		8	51	49	102	2
14	13	44	6		6	52	49		
14	14	41	19		6	53	46	70	
14	15	38	9		6	54	43	39	
14	16	35	14		6	55	40	78	
16	17	35	2		6	56	37	62	
16	18	36	4		5	57	38		
16	19	38	24		5	58	39	22	
16	20	40	2		5	59	41	22	
16	21	42	32		5	60	43	35	
16	22	44	6		5	61	45	38	
16	23	46	38		5	62	47		
16	24	48	21		Tati		54	4.00	96
16	25	49			fial	ai 101 de:	20		90
18	26	47	9			uø,			
18	27	46	35		Dis	locati	ion d	ensity	
18	28	43	14					•	2
18	29_	40	2		= 4	1996 /	(56)(0.000238) p	its/cm
18	30	37	<u>↓ 11</u>				!	5 . , 2	•
19	31	37			=	5.7 >	c 10	pits/cm	
19	32	39	34			• •			
19_	33	41			X	= 89			
19	34	43	52	· · · · ·	6	= 96			
19	35	45	2						
19	36	47							
10	37	50	360						
10	38	47	370						
10	39	44	250						

ORICINAL PACE IS

TABLE 16
SAMPLEGrain Boundary and Twin Boundary DensityOF POOR QUALITYSAMPLESEMIX F-2, Sample in polished condition. Magnification 100X.Field area = 0.0241 cm².Circumference of test circle = $W \cdot D = 0.55$ cm.A denotes NGx of grain boundary intersections with circumference of test circle.B denotes No. of twin boundary intersections with circumference of test circle.X and Y denotes field location of the data measured.

ł

ł

FI	ELD		Α	No. of twins	В	FIELD A No. of B twins
Y	No.	X				Y No. X
12	1	33	0	6	9	10 40 41 0 0 0
12	2	35	0	4	7	10 41 38 0 0 0
12	3	37	0	0	0	10 42 35 0 0 0
12	4	39	0	0	0	8 43 34 0 0 0
12	5	41	2	0	0	8 44 36 0 0 0
12	6	43	0	0	0	8 45 38 0 0 0
12	7	45	0	0	0	8 46 40 0 0 0
12	8	47	0	0	0	8 47 42 0 0 0
12	9	49	0	2	4	8 48 44 0 0 0
12	10	51	3	3	2	8 49 46 0 0 0
14	11	50	2	19	28	8 50 48 0 2 4
14	12	47	0	0	0	8 51 50 0 0 0
14	13	44	0	0	0	6 52 49 0 1 2
14	14	41	5	0	0	6 53 46 0 0 0
1.4	15	38	5	0	0	6 54 43 0 0 0
14	16	35	3	28	12	6 55 40 2 6 6
16	17	34	2	30	27	6 56 37 0 0 0
16	18	36	2	26	24	4 57 37 0 0 0
16	19	38	2	3	3	4 58 39 4 5 5
16	20	40	4	10	12	4 59 41 5 19 13
16	21	42	2	5	5	4 60 43 0 0 0
16	22	44	0	0	0	4 61 45 0 0 0
16	23	46	3	1	2	4 62 47 0 0 0
16	24	48	6	12	10	Total for 62 110 207 264
16	25	50	5	11	16	$\frac{10tattor}{02} \frac{11x}{11x} \frac{207}{204}$
18	26	49	5	3	3	Herds,
18	27	46	3	2	3	I for grain boundary T D T HIP a cu Gu
18	28	43	5	5	4	A tor grain boundary 2 L 2 x (2xo's Cu
18	29	40	2	6	9	
18	30	37	3	46	22	L for twin boundary = $\pi \times 264$
20	31	37	3	3	5	A 2 x62x0:55 - 12.16
20	32	39	6	6	2	H
20	33	41	9	10	8	$\frac{1}{X}$ for grain boundary - 1.9
20	34	43	7	5	4	a for grain boundary- 1.7
20	35	45	7	2	8	C.C. Brain Doundary 2.0
20	36	47	11	3	1	$\overline{\mathbf{X}}$ for twin boundary = 4.3
10	37	50	0	0	0	$\sigma_{\text{for twin boundary}} = -2.5$
10	38	47	0	2	4	0 101 twin boundary = 0,0
10	39	44	0	0	0	

OF POOR QUALT

TABLE 17 Precipitate Particle Density

SAMPLE SFMIX F-2. Sample in polished condition. Magnification 400X. Field area = 0.00149 cm^2

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

FIE	LD		в		Α	FIE	ELD		В		Α
								_			
Y	No.	X				Y	No.	X			
12	1	33	11		1	10	40	41	42		0
12	2	35	4		0	10	41	<u>38</u>	7		0
12	3	37	25		3	10	42	35	15		0
12	4	39	43		2	8	43	34	3		5
12	5	41	2		0	8	44	36	7		2
12	6	43	26	•	13	8	45	38	7		3
12	7	45	3		0	8	46	40	4		2
12	8	47	26		3	8	47	42	2		0
12	9	49	6		1	8	48	44	0		0
12	10	51	34		0	8	49	46	5		0
14	11	50	35		2	8	50	48	1		<u> </u>
14	12	47	3		0	8	51	50	5		h
14	13	44	3		1	6	52	49	0		b
14	14	41	6		1	6	53	46	4		1
14	15	38	8		0	6	54	43	2		D
14	16	35	0		0	6	55	40	6		2
16	17	34	6		0	6	56	37	3		1
16	18	36	1		3	4	57	37	6		2
16	19	38	5		0	4	58	39	2	1	0
16	20	40	1		1	4	59	41	3		0
16	21	42	2		0	4	60	43	2	1	1
16	22	44	4		1	4	61	45	6		0
16	23	46	5		0	4	62	47	0		0
16	24	48	0		0			1	4.4.2		20
16	25	50	1		2	Tot	al ior	62	441		00
18	26	49	0	······	1	iie)	.a.s:				2
18	27	46	0		0	Are	a of (52 fi	elds :	= 0.0923	8 cm^2
18	28	43	1		0	No.	of la	rge	opt. =	68 /0.0	9238
18	29	40	1		2				Π	736/ cn	2 ²
18	30	37	1		0	X fc	r lar	ge p	pt. =	1.1	
20	31	37	3		0	σfc	or lar	ge p	- pt. =	2.1	
20	32	39	2		2	No.	of sn	nall	- ppt. =	447/0.	09238
20	33	41	1		0				=	4840 / c	m ²
20	34	43	0		1	X fo	or sm	all r	opt. =	7.2	
20	35	45	0		0	orfo	or sm	all r	. =	10.5	
20	36	47	4		0						
10	37	50	7		8						
10	38	47	1		0						
10	39	44	16		0						

OF POOR CONLINE

TABLE 18DISLOCATION DENSITY

ť

SAMPLE SEMIX F-2. Sample in etched condition Magnification 1000X, Area of field = 0.000238 cm² X and Y denote the location of microscope stage (field of view) for the data measured.

FIE	LD		No. of Disloc Pits	ation	FIE	ELD		No.	of Disloca Pits	tion
Y	No.	X	+		Y	No.	X		V	
12	1	34	7		10	40	41		41	
12	2	35	0		10	41	38		47	
12	3	37	15		10	42	35		34	
12	4	39	14		8	43	35		22	
12	5	41	16		8	44	36		18	
12	6	43	7		8	45	38		22	
12	7	45	4		8	416_	40		37	
12	8	47	7		8	47	42		127	
12	9	49	2		8	48	44		58	
12	10	50	4		8	49	46		25	
14	11	49	66		8	50	48		38	
14	12	47	2		8	51	49	l	22	
14	13	44	4		6	52	49		16	
14	14	41	5		6	53	46		29	
14	15	38	5		6	54	43		68	
14	16	35	12		6	55	40		16	
16	17	35	8		6	56	37		20	
16	18	36	3		5	57	38		21	
16	19	38	3		5	58	39		19	
16	20	40	13		5	59	41		45	
16	21	42	7		5	60	43		14	
16	22	44	5		5	61	45		26	
16	23	46	110		5	62	47		20	
16	24	48	1		Tota	al for	59		2334	
16	25	49	3		fiel	da.	5,		2001	
18	26	47	9			· · · · · ·				
18	27	46	188		Dis	locat	ion d	ensity	7	
18	28	43	9					• • • • •		2
18	29	40	13		= 2	334/	(59) (0.00 0	238 pits/	cm
18	30	37	47			_		5	, 2 '	
19	$\frac{31}{31}$	37				.7 х	: 10°	pits	/ cm ²	
19	32	39	35		-					
19_	33	41	850		X =	40				
19	34	43	44		0 =	: 111				
19	35	45		<u> </u>						
19	30	47	22							
10	37	50	23							
10	38	47	30							
I 10	139	44	1 1 21							

ONIGINAL PACE IS

TABLE 19Grain Boundary and Twin Boundary Density POOR QUALITYSAMPLESEMIX G-12, Sample in polished condition. Magnification 100X.Field area = 0.0241 cm², Circumference of test circle = $\pi_1 D$ = 0.55 cm.A denotes No. of grain boundary intersections with circumference of test circle.B denotes No. of twin boundary intersections with circumference of test circle.X and Y denotes field location of the data measured.

ł

FIF	LD		A	No. of twins	B	FIELD A No. of B twins	
Y	No.	X	T	1		Y No. X	
12	1	33	2	6	9	10 40 41 6 39 11	
12	2	35	5	2	4	10 41 38 3 24 24	
12	3	37	2	3	3	10 42 35 3 6 2	
12	4	39	5	13	16	8 43 34 3 6 6	
12	5	41	2	4	3	8 44 36 2 22 22	
12	6	43	8	30	38	8 45 38 3 16 19	
12	7	45	8	74	100	8 46 40 8 26 17	·
12	8	47	4	52	38	8 47 42 3 14 18	3
12	9	49	4	44	9	8 48 44 6 19 26	
12	10	51	6	79	42	8 49 46 3 45 34	
1.4	11	50	2	25	16	8 50 48 2 15 26	
14	12	47	3	7	7	8 51 50 0 5 10)
14	13	44	5	0	0	6 52 49 0 7 5	
14	14	41	10	5	2	6 53 46 2 19 24	
14	15	38	2	4	2	6 54 43 8 38 40)
14	16	35	0	0	0	6 55 40 7 24 18	3
16	17	34	2	0	0	6 56 37 2 0 0	
16	18	36	5	6	3	4 57 37 8 13 6	
16	19	38	4	20	3	4 58 39 2 3 4	
16	20	40	8	10	5	4 59 41 6 16 9	
16	21	42	10	8	3	4 60 43 4 38 20)
16	22	44	4	1	1	4 61 45 5 33 22	
16	23	46	6	69	15	4 62 47 2 19 20)
16	24	48	3	12	2	Matal from 62 262 1157 99	
16	25	50	4	16	16	10tal for 02 202 1157 66	T.
18	26	49	4	1 30	8	neids;	
18	27	46	4	19	15	1 for any in boundary π D m	TY262
18	28	43	0	0	0	A lor gram boundary-2. L	2 16 3 × 0 · 95 Cml
18	2,9	40	5	15	6		
18	30	37	7	20	5	I for twin hounds we THAREY	
20	31	37	2	11	13	A 2x6270	0.55 Cm
20	32	39	8	27	22	· · · · · ·	
20	33	41	3	12	10	X for arain houndary A 2	
20	34	43	5.	16	8	Tor grain boundary 9.4	
20	35	45	0	2	3	0 101 gram boundary~ 2.0	
20	36	47	2	6		X for twin boundary ~ 14.2	
10	37	50	0	18	28	$\mathbf{\mathcal{A}} = \{0, 1, 0, 1, 0,$	
10	38	47	9	22	11	o for rwm boundary ~ 15,5	
10	39	44	4	32	24		

.

ORIGINE. TRACTICA

OF POOR QUALTIY

TABLE 20 Precipitate Particle Density **SAMPLE** SEMIX G-12. Sample in polished condition. Magnification 400X. Field area = 0.00149 cm^2

A denotes No. of Large precipitates observed in field of view.

8

1

2

B denotes No. of Small precipitates observed in field of view.

FIE	LD		А		В	FIE	LD		A		B
Y	No.	X			1	Y	No.	x			
12	1	33	0	1	16	10	40	41	0		6
12	2	35	0		18	10	41	38	0		9
12	3	37	1	1	3	10	42	35	1		9
12	4	39	0	1	9	8	43	34	0		3
12	5	41	1		15	8	44	36	0		6
12	6	43	0		8	8	45	38	0		2
12	7	45	0		1	8	46	40	0	[3
12	8	47	0		2	8	47	42	0		2
12	9	49	0		7	8	48	44	1		17
12	10	51	0		11	8	42	46	0		2
14	11	50	1		2	8	50	48	1	ļ	16
14	12	47	0		27	8	51	50	0		14
14	13	44	0		8	6	52	49	0		3
14	14	41	0		26	6	53	46	0		10
14	15	38	1		5	6	54	43	1		11
14	16	35	0		8	6	55	40	0		2
16	17	34	0		36	6	56	37	0		15
16	18	36	0		40	4	57	37	0		13
16	19	3.8	0	1	12	4	58	39	0		14
16	20	40	1	1	21	4	59	41	0		11
16	21	42	0	1	9	4	60	43	0		1
16	22	44	1		2	4	61	45	0]	11
16	23	46	1		12	4	62	47	0	[4
16	24	48	0		1	Tati		62	12		5.02
16	25	50	0	1	3	fiel	AI 107 	02	13		595
18	26	49	0		14	1101	u .				2
18	27	46	0		1	Are	a of	62 fi	elds	= 0.09231	8 Em
18	28	43	<u>1</u>	ļ	9	No.	of la	rge j	opt. =	13 /0. 0	9238
18	29	40	0	J	20				=	140 / cm	1 ²
18	30	37	0	 	12	X fo	or lar	ge p	pt. =	0.21	
20	31	37	0		7	σfc	or lar	ge p	pt. =	0.41	
20	32	39	<u> 0</u>		5	No.	of sn	nall	ppt. =	593 / 0.	09238
20	33	41	0		6				=	6420/ c	m ²
20	34	43	0		7	Dî X	or sm	all p	opt. =	9.6	
20	35	45	0	ļ	0	σfc	r sm	all p	opt. =	8.0	
20	36	47	0		13						
10	37	50	0		10						
10	38	47	<u>h</u>		4						
10	20	AA	h	1 1 1	a						

OF FOUR CLIMAN

TABLE 21DISLOCATION DENSITYSAMPLESEMIX G-12.Sample in etched conditionMagnification 1000X, Area of field = 0.000238 cm²X and Y denote the location of microscope stage (field of view) for the
data measured.

t ji

ł

į.

í

FIE	LD		No. of	Disloc	ation	FIE	LD		No.	of Disloc:	ation
	No	v		<u> </u>		v	No	V			T
	140.			· · · · · · · · · · · · · · · · · · ·	{	10	40			22	
$\frac{12}{12}$	2	25	<u></u>	1	<u> </u>	10	41	20			<u>+</u>
12	2	37		2		10	42	36		3	+
12	4	30	·	25		8	43	25		<u>y</u>	+
12	5	61				8	44	36		0	+
12	6	43		27		8	45	38	······································	58	+
12	7	45				8	46	40		127	
12	8	47		106		8	47	42		112	
12	9	49		187		8	48	44		78	1
12	10	50		182		8	49	46		135	
14	11	49		125		8	50	48		15	
14	12	47		158		8	51	49			
14	13	44		163		6	52	49		72	
14	14	41		6		6	53	46		63	
14	15	38		92		6	54	43		15	
14	16	35		23		6	55	40		2	
16	17	35		21		6	56	37		10	
16	18	36		49		5	57	38			
16	19	38		89		5	58	39		85	
16	20	40		63		5	59	41		41	
16	21	42		10		5	60	43		70	
16	22	44		480		5	61	45		47	
16	23	46		310		5	62	47			
16	24	48		1000		Tota	al for	55		5932	
16	25	49		92		fiel	da:	20		5756	
18	26	47		23							
18	27	46				Dis	locati	ion d	ensity	7	
18	28	43		15		= 5	932/1	(55) ((0002	238) pits	$/\mathrm{cm}^2$
18	29	40		99			/54/(, F105	
$\frac{18}{10}$	30	37				= 4	.5 x	105	pits	$/cm^2$ '	
19	1 2 2	31		100		-	••••		L	•	
19	32	41	<u>├</u>	230		x =	= 108				
19	34	42	┝╾╍╌╴┠╌	450		6 =	= 161				
$-\frac{17}{10}$	35	45	<u>├</u> ┤	20		1					
10	36	47	<u>-</u>								
1	37	50	<u>├</u>	320							
10	38	47		275		1					
10	39	44		16							

ORIGINAL BEACH NO OF POOR QUALITY

TABLE 22
SAMPLEGrain Boundary and Twin Boundary DensitySAMPLESEMIX H-8, Sample in polished condition. Magnification 100X.Field area= 0.0241 cm². Circumference of test circle $= \pi \cdot D = 0.55$ cm.A denotes No. of grain boundary intersections with circumference of test circle.B denotes No. of twin boundary intersections with circumference of test circle.X and Y denotes field location of the data measured.

FIE	LD		А	No. of twins	В	FIE	LD		A	No.cï twins	В	
Y	No.	X				Y	No.	x				
12	1	33	8	44	19	10	40	41	3	15	9	
12	2	35	3	4	5	10	41	38	2	2	2	
12	3	37	4	9	8	!,0	42	35	5	15	13	
12	4	39	2	4	3	8	43	34	7	20	24	ļ
12	5	41	5	6	6	8	44	36	6	17	17	
12	6	43	2	10	11	8	45	38	3		4	
12	7	45	2	1	2		46	40	3	1	1	Į
12	8	47	2	3	1	8	47	42	2	17	5	
12	9	49	5	13	12	8	48	44	5	54	39	1
12	10	51	4	3	3	8	49	46	0	14	28	1
14	11	50	2	10	.12	8	50	48	4	9	11	
14	12	47	2	2	2	8	51	50	0	7	9	1
14	13	44	2	4	4	6	52	49	4	11	10	
14	14	41	2	4	2	6	53	46	4	21	34	
14	15	38	5	15	10	6	54	43	4	37	18	
14	16	35	3	12	15	6	55	40	7	8	11	
16	17	34	6	19	18	6	56	37	4	113	28	
16	18	36	2	12	17	4	57	37	6	50	31	
16	19	38	2	2	2	4	58	39	2	7	13	
16	20	40	6	17	24	4	59	41	3	3	3	
16	21	42	6	39	34	4	60	43	0	0	0	
16	22	44	0	1	2	4	61	45	6	35	6	
16	23	46	3	2	2	4	62	47	4	4	4	
16	24	48	3	2	2	Tett		62	205	021	770	1
16	25	50	6	1	2	fiel	de	04	205	951	119	
18	26	49	2	0	0	ilei	us;					
18	27	46	0	0	0	T.	for	rain	hour	$harv=\pi$	π ×:	205 - 9.1
18	28	43	3	6	8	A ^L	tor g	, 1 6 111	bound	2.1	L 2 m	240.55
18	29	40	3	4	45							
18	30	37	3	17	19	т. 4	for tu	vin b	ounda	rv= 11 x	779	- 35.00 0
20	31	37	5	12	9	L'A'		, 111 U	Junua	2×	62×0.55	سند ۲۵۰۵۵ م ۵۸
20	32	39	4	22	18						,	
20	33	41	5	48	44	Ţ,	or ar	ain	hound	arv= 3 3		
20	34	43	2	54	68		or ar	ain b	Jounda	rv = 1.0		
20	35	45	2	13	13	010	or Br	G 111		•y= 1•7		
20	36	47	0	0	0	$\overline{\mathbf{v}}$	or tw	in be	undar	v = 124	Ś	
10	37	50	2	4	5		or tw	in be	unda -	y = 12.0	2	
10	38	47	0	0	0	010	UI IW	III DC	Junual	y - 13,3	,	
10	39	44	3	13	6							

ORIGINAL PROFILE

TABLE 23 Precipitate Particle Density **OF POOR QUALITY** <u>SAMPLE</u> SEMIX H-8. Sample in polished condition. Magnification 400X. Field area = 0.00149 cm^2

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

X and Y denotes location of microscope stage for the data measured.

FIE	LD		A		В	FIE	ELD		А		В
Y	No.	X				Y	No.	X			
12	1	33	2		48	10	40	41	0		10
12	2	35	2		3	10	41	38	4		10
12	3	37	0		13	10	42	35	0		38
12	4	39	0		7	8	43	34	0		41
12	5	41	0		9	8	44	36	0		19
12	6	43	1		14	8	45	38	0		2.5
12	7	45	0		8	8	46	40	0		12
12	8	47	0		5	8	47	42	1		7
12	9	49	1		6	8	48	44	0		11
12	10	51	1		9	8	49	46	0		23
14	11	50	0		17	8	50	48	1		14
14	12	47	0		9	8	51	50	0	L	18
14	13	44	1		14	6	52	49	0		19
14	14	41	0		19	6	53	46	0		34
14	15	38	0		11	6	54	43	0	<u> </u>	8
14	16	35	0		28	6	55	40	0		4
16	17	34	1		14	6	56	37	0		9
16	18	36	0		5	4	57	37	1		13
16	19	38	0		3	4	58	39	0		9
16	20	40	0		4	4	59	41	0		6
16	21	42	0		11	4	60	43	0		16
16	22	44	0		1	4	61	45	0		17
16	23	46	0		5	4	62	47	0		15
16	24	48	0		7	Tot	alfor	62	22		975
16	25	50	0		8	fiel	de loi	02	23		012
18	26	49	0		3	1101					2
18	27	46	0		10	Are	ea of (62 fi	eld	= 0.0923	8 cm
18	28	43	3		18	No.	of la	rge	ppt. =	23/0.0	9238 2
18	29	40	0		3	_			=	250/ cm	ນີ້
18	30	37	0	ļ	14	X fo	or lar	ge p	pt. =	0.4	
20	31	37	0	ļ	37	σ fo	or lar	ge p	pt. =	0.8	
20	32	39	2	<u> </u>	52	No.	of sn	n a 11	ppt. =	875 /0.	09238
20	33	41	0		111	_				9470/c	m".
20	34	43	0		22	\mathbf{X} for small ppt. = 14.1					
20	35	45	<u> </u> 1		9	σfe	or sm	all 1	opt. =	10.9	
20	36	47	0	Ļ	15						
10	37	50	0		7						
10	38	47	0	ļ	3						
1 10	120	1 4 4	11	1	115						

1. .

ORIGINAL PAGE IS OF POOR QUALITY

۳. .

ľ

Ł

10

1

TABLE24DISLOCATION DENSITYSAMPLESEMIX H-8.Sample in etched conditionMagnification 1000X, Area of field = 0.000238 cm²XX and Y denote the location of microscope stage (field of view) for the
data measured.

FIE	LD		No. of Disloc Pits	ation	FIE	LD		No. of D Pi	islocation ts
- v	No.	X		r	Y	No.	X		6
12	1	34	138		10	40	41	16	4
12	2	35	103		10	41	38	96	0
12	3	37	4		10	42	35	72	
12	4	39	71		8	43	35		
12	5	41	197		8	44	36	49	
12	6	43	215		8	45	38	10	50
12	7	45	360		8	46	40	23	
12	8	47	222		8	47	42	72	5
12	9	49	172		8	48	44	11	9
12	10	50	155		8	49	46	32	5
14	11	49	19		8	50	48	21	3
14	12	47	3		8	51	49		
14	13	44	78		6	52	49	25	5
14	14	41	6		6	53	46	32	
14	15	38	69		6	54	43	83	
14	16	35	125		6	55	40	10	30
16	17	35			6	56	37	3	
16	18	36	320		5	57	38		
16	19	38	24		5	58	39	21	
16	20	40	248		5	59	41	18	4
16	21	42	127		5	60	43	22	.8
16	22	44	17		5	61	45	27	0
16	23	46	16		5	62	47		
16	24	48	2		Tot	l l for	56	11	128
16	25	49	2		fiel	de,	50	11	420
18	26	47	310						
18	27	46			Dis	locati	ion d	ensity	
18	28	43	271			1420	1101		2
18	29_	40	425		= 1	1420/	(50)	(0. 000238)	pits/cm
18	30	37	219		0	6	. 10	5	2 .
19	31	37			= 8	.0 3	x 10	pits/cm	L.
19	32	39	303		<u>X</u> =	204			
19	33	41	82	a	d =	235			
$-\frac{19}{19}$	34	43	300						
$\frac{19}{10}$	35	45							
$\frac{19}{19}$	30	47							
10	37	50	6						
	38	47	307						
10	39	44	226						

ORIGINAL PAGE IS OF POOR QUALITY,

ŧ,

1

TABLE 25Grain Boundary and Twin Boundary DensitySAMPLE: Semix 1-10-13 (TSample in polished condition. Magnification 100X.Field area = 0.0241 cm². Circumference of test circle = $\pi \cdot D$ = 0.55 cm.A denotes No. of grain boundary intersections with circumference of test circle.B denotes No. of twin boundary intersections with circumference of test circle.X and Y denotes field location of the data measured.

FIF	ELD		А	No. of twins	В	FIE	ELD		A	No. of twins	В	
Y	No.	X	GB		Twin	Y	No.	X				
12	1	33	0		9	10	40	41	2		37	
12	2	35	2		3	10	41	38	6		78	
12	3	37	5		38	10	42	35	4		7	
12	4	39	4		67	8	43	34	3		30	
12	5	41	0	Į	0	8	44	36	2		29	
12	6	43	3		17		45	38	2		32	
12	7	45	0		40	8	46	40	4		32	
12	8	47	2		35	8	47	42	3		21	
12	9	49	2		10	8	48	44	2		62	
12	10	51	2		13	8	49	46	2		73	
14	11	50	0) }	3	8	50	48	6	_	76	
14	12	47	0		6	8	51	50	3		59	
14	13	44	2		1	6	52	49	8		61	
14	14	41	0		0	6	53	46	2		24	
14	15	38	0		3	6	54	43	5	Į	25	
14	16	35	2		5	6	55	40	4		34	
16	17	34	3		12	6	56	37	8		7	
16	18	36	3	[4	4	57	37	10		7	
16	19	38	2		10	4	58	39	7		8	
16	20	40	5		6	4	59	41	4		43	
16	21	42	3		9	4	60	43	0		50	
16	22	44	2		2	4	61	45	3		71	
16	23	46	0		8	4	62	47	5		76	
16	24	48	0		1	Tet		62	171	<u> </u>	1720	J
16	25	50	0		0	fiel	al lor	02	111		1720	
18	26	49	4		36	1161	us;					
18	27	46	4		33	т	for a	rain	hour	1a rv- T . D	$=\frac{\pi}{2}$	_76 . 7. 88
18	28	43	4		36	L'A	tor g	1911	Dound	2.1	L 20	⁵⁵ cm /cm ²
18	29	40	4		30							
18	30	37	0			т	for tu	vin h	ounda	rv= 12'	7.7	. 79.2
20	31	37	0		0	` A'	101 LV	4 1 1 1 U	Junua	20	. 55	cin/cm^2
° 20	32	39	4	······	0							-
20	33	41	0	L	15	$\overline{\mathbf{x}}$	or ar	ain	hound	arv= 2 76		
20	34	43	0		32		or ar	ain F	ounda	rv = 2.70		
20	35	45	2		26		01 B1			-y- <i>L</i> , <i>L</i> 0	,	,
20	36	47	5		80	∇c	or tw	in be	unda -	·v = 277	,	
10	37	50	2		84		or tw	in he	unda.	y = 41.1		
10	38	47	5		70		UI UW		, und I		T	
10	39	44										

OF POOR QUALITY

TABLE 26**Precipitate Particle Density**

Ł

÷

SAMPLE: Semix 1-10-13 (T) Sample in polished condition. Magnification 400X. Field area = 0.00149 cm^2

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

X and Y denotes location of microscope stage for the data measured.

FIE	LD		A		В	FIE	LD		A		В
Y	No.	X	Large		Small	Y	No.	X			
12	1	33	0		23	10	40	41	12		120
12	2	35	2		94	10	41	38	6		38
12	3	37	8		208	10	42	35	1		115
12	4	39	1		24	8	43	34	11		229
12	5	41	3		36	8	44	36	3		6
12	6	43	4		10	8	45	38	1		105
12	7	45	2		9	8	46	40	0		40
12	8	47	1		60	8	47	42	1		7
12	9	49	3		137	8	48	44	4		128
12	10	51	2		15	8	49	46	1		1
14	11	50	1		6	8	50	48	4		139
14	12	47	0		13	8	51	50	1		20
14	13	44	1		10	6	52	49	7		336
14	14	41	3		6	6	53	46	8		54
14	15.	38	5		83	6	54	43	5		11
14	16	35	3		39	6	55	40	1		12
16	17	34	4		30	6	56	37	2		92
16	18	36	3		39	4	57	37	4		43
16	19	38	4		195	4	58	39	2		48
16	20	40	5		241	4	59	41	11		140
16	21	42	4		56	4	60	43	3		90
16	22	44	3		80	4	61	45	3		51
16	23	46	1		19	4	62	47	5		35
16	24	48	0		5	Tet		62	100		1000
16	25	50	4		161	fiel	da.	02	100		4083
18	26	49	1		46	1161	uð.				2
18	27	46	3		45	Are	a of (52 fi	elds =	= 0.09238	3 cm^{2}
18	28	43	2	·	21	No.	of la	rge p	pt. =	188/0.0	9238
18	29	40	2		_73				=	2035 / cm	<u>ب</u> ع
18	30	37	0		35	X fo	r lar	ge p	pt. =	3.0	
20	31	37	1		48	σfo	r lar	ge p	pt. =	2.6	
20	32	39	1		45	No.	of sn	nall	ppt. =	4083 /0.	09238
20	33	41	2		70	_			=	44200 / ci	n ʻ
20	34	43	3		48	X fo	r sm	all p	pt. =	66	
20	35	45	1		5	σfo	r sm	all p	pt. =	67	
20	36	47	4		114						
10	37	50	2		61						
10	38	47	2		11						
10	39	44			2						

ORIGINAL FACE IS

TABLE 26Precipitate Particle Density

ť

ŧ

ŧ

<u>SAMPLE</u>: Semix 1-10-13 (T) Sample in polished condition. Magnification 400X. Field area = 0.00149 cm^2

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

FIE	FIELD		A		B	FIE	LD		•		В	
Y	No.	X	Large		Small	Y	No.	X				
12	1	33	0		23	10	40	41	12		120	
12	2	35	2		94	10	41	38	6		38	
12	3	37	8	,	208	10	42	35	1		115	
12	4	39	1		24	8	43	34	11		229	
12	5	41	3		36	8	44	36	3		6	
12	6	43	4		10		45	38			105	
12	7	45	2		9	8	46	40	0	· · · · · · · · · · · · · · · · · · ·	40	
12	8	47	1		60	8	47	42			7	
12	9	49	3		137	8	48	44	4		128	
12	10	51	2		15	8	49	46	1		1	
14	11	50	1		6	8	50	48	4		139	
14	12	47	0		13	8	51	50			20	
14	13	44	1		10	6	52	49	1		336	
14	14	41	3		6	6	53	46	8		54	
14	15.	38	5		83	6	54	43	5			
14	16	35	3		39	6	55	40	1		12	
16	17	34	4		30	6	56	37	2		92	
16	18	36	3		39	4	57	37	4		43	
16	19	38	4		195	4	58	39	2		48	
16	20	40	5		241	4	59	41	11		140	
16	21	42	4		56	4	60	43	3		90	
16	22	44	3		80	4	61	45	3	_	51	
16	23	46	1		19	4	62	47	5		35	
16	24	48	0		5	Tota	alfor	62	188		1083	
16	25	50	4		161	fiel	ds:		100		4005	
18	26	49	1		46					0.0000	2	
18	27	46	3		_45	Are	a of (bZ fi	elds :	= 0.09230	on and	
18	28	43	2		21	No,	of la	rge	ppt. =	100/0.0	2238	
18	29	40	2		-73	.			=	2035 / cm	1	
18	30	37	0		35	Xfo	or lar	ge p	pt. =	3.0		
20	31	37			48	- o for large ppt. = 2.6						
20	32	39	<u> </u>		45	No.	of sn	nall	ppt. =	4083 /0.	2	
20	33	41	2		10				. =	44Z00 / CI	m	
20	34	43	$\frac{3}{1}$		48	Xfo	or sm		ppt. =	66		
20	35	45	<u>↓</u>	ļ	5	σfo	or sm	all	ppt. =	67		
20	36	47	4		114							
10	37	50	$\frac{2}{2}$		61							
10	38	47	2	ļ								
10	130	1 44	1 1	1	12							

ORIGINAL CONTRACTOR

C,

TABLE 27DISLOCATION DENSITYSAMPLE: Semix 1-10-13 (T)Sample in etched conditionMagnification 1000X, Area of field = 0.000238 cm²X and Y denote the location of microscope stage (field of view) for the
data measured.

FIE	FIELD		No, of D P	isloca its	ition	FIE	LD		No. c	of Disloc: Pits	ation
Y	No.	X		, ,	I	Ϋ́Υ	No.	X		•	
12	1	34				10	40	41		1	
12	2	35	5			10	41	38		83	
12	3	37	4			10	42	35		6	
12	4	39	0			8	43	35		1	
12	5	41	2			8	44	36		6	
12	6	43	2			8	45	38		4	
12	7	45	4			8	46	40		3	
12	8	47	4			8	47	42		16	
12	9	49	6			8	48	44		7	
12	10	50	4			8	49	46		10	+
14	11	49	0			8	50	48		2.0	-
14	12	47	0			8	51	49		13	
14	13	44	8	I		6	52	49		12	<u> </u>
14	14	41	2			6	53	46		13	
14	15	38	4			6	54	43		7	
14	16	35	3			6	55	40		136	
16	17	35	2			6	56	37		137	
16	18	36	1			5	57	38		27	
16	19	38	2			5	58	39		4	
16	20	40	7	1		5	59	41		20	
16	21	42	5	_		5	60	43		13	
16	22	44	0			5	61	45		14	
16	23	46	4			5	62	47		97	
16	24	48	5		1 / Jan	Tot	a) for	62		895	
16	25	49	0]		fiel	da:	04		665	
18	26	47	7	3							
18	27	46	5_			Dis	locat	ion d	ensity	=6.0 x	10^4 /cm
18	28	43	6								,
18	29	40	6			x =	14.3				
18	30	37	<u>├</u>			6 =	28.7				
19	31	37	<u>↓</u>			Ĩ					
19	32	39	4								
<u>19</u>	33	41	$\frac{4}{2}$								
19	34	43									
19	35	45		<u></u>							
19	36	47	17	<u>'</u>							
10	37	50	3								
10	38	47	8								
10	130	44	1 10	1		8					

OF POOR QUALITY

ť

£

TABLE 28Grain Boundary and Twin Boundary DensitySAMPLE: Semix1-12-14U/Sample in polished condition. Magnification 100X.Field area = 0.0241 cm². Circumference of test circle = π .D = 0.55 cm.A denotes No. of grain boundary intersections with circumference of test circle.B denotes No. of twin boundary intersections with circumference of test circle.X and Y denotes field location of the data measured.

Y No. X GB Twin Y No. X 12 1 33 0 0 10 40 41 0 9 12 2 35 0 0 10 41 38 0 1 12 3 37 0 4 10 42 35 0 0 12 4 39 0 0 8 43 34 2 8 12 5 41 0 11 8 44 36 0 4 12 6 43 0 11 8 45 38 0 6 12 7 45 0 5 8 46 0 34 12 10 51 0 8 49 46 0 9 14 11 50 2 11 8 50 46 2	FII	ELD		А	No. of twins	В	FIELD			A	No. of twins	В	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y	No.	X	GB		Twin	Y	No.	X				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	1	33	Q		0	10	40	41	0		9	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	2	35	0		0	10	41	38	0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	3	37	0		4	10	42	35	0		0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	4	39	0		0	8	43	34	2		8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	5	41	0		11	8	44	36	0		4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	6	43		1		8	45	38	0		6	
12 8 47 0 2 8 47 42 0 13 12 10 51 0 8 8 49 46 0 9 14 11 50 2 11 8 50 48 2 28 14 11 50 2 11 8 50 48 2 28 14 11 44 2 2 6 52 49 2 35 14 14 41 0 5 6 53 46 2 52 14 14 41 0 5 6 54 43 0 18 14 14 44 0 5 6 54 43 0 18 14 16 35 0 0 6 55 40 2 24 16 13 36 0 0 45 39 0 16 16 24 48 0 0	12	7	45	0	-	5	8	46	40	<u> </u>		2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	8	47	0		2	8	47	42	0		13	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	9	49	4		14	8	48	44	0		34	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	10	51	0		8	8	49	46	0		9	
14 12 47 4 7 8 51 50 2 6 14 13 44 2 2 6 52 49 2 35 14 14 41 0 5 6 53 46 2 52 14 15 38 0 5 6 54 43 0 18 14 16 35 0 0 6 55 40 2 24 16 17 34 - - 6 56 37 4 6 16 19 38 0 6 4 58 39 0 16 16 20 40 2 2 4 60 43 0 19 16 22 44 2 8 4 61 45 2 31 16 23 46 2 5 4 62 47 2 68 16 25 50 0	14	11	50	2				50	48	2			
14 13 44 2 2 6 52 49 2 35 14 14 41 0 5 6 53 46 2 52 14 15 38 0 5 6 53 46 2 52 14 16 35 0 0 6 55 43 0 18 14 16 35 0 0 6 55 40 2 24 16 17 34 - - 6 56 37 4 6 16 19 38 0 6 4 58 39 0 16 16 20 40 2 2 4 60 43 0 19 16 22 44 2 8 4 61 45 2 31 16 24 48 0 0 7 623 7 668 16 24 48 0 5	14	12	47	4		7	8	51	50	2		6	
14 14 41 0 5 6 53 46 2 52 14 15 38 0 5 6 54 43 0 18 14 16 35 0 0 6 55 40 2 24 16 17 34 - - 6 56 37 4 6 16 19 38 0 6 4 57 37 0 0 16 19 38 0 6 4 58 39 0 16 16 20 40 2 2 4 60 43 0 19 16 22 44 2 8 4 61 45 2 31 16 23 46 2 5 4 62 47 2 68 16 24 48 0 0 7 61 67 623 18 26 49 4 5	14	13	44	2		2	6	52	49	2		35	
14 15 38 0 5 6 54 43 0 18 14 16 35 0 0 6 55 40 2 24 16 17 34 - - 6 56 37 4 6 16 18 36 0 0 4 57 37 0 0 16 19 38 0 6 4 58 39 0 16 16 20 40 2 2 4 60 43 0 19 16 21 42 2 2 4 60 43 0 19 16 22 44 2 8 4 61 45 2 31 16 24 48 0 0 0 68 16 67 623 16 24 43 0 5 16 67 623 11 10 55 cm/cm ² 18 2	14	14	41	0		5	6	53	46	2	L	52	
14 16 35 0 0 6 55 40 2 24 16 17 34 - - 6 56 37 4 6 16 18 36 0 0 4 57 37 0 0 16 19 38 0 6 4 58 39 0 16 16 19 38 0 6 4 58 39 0 16 16 20 40 2 2 4 59 41 3 14 16 21 42 2 2 4 60 43 0 19 16 22 44 2 8 4 61 45 2 31 16 24 48 0 0 0 16 62 47 2 68 16 25 50 0 0 3 16 62 47 2 68 18 30	14	15	38	0		5	6	54	43	0		18	
16 17 34 - - 6 56 37 4 6 16 18 36 0 0 4 57 37 0 0 16 19 38 0 6 4 58 39 0 16 16 19 38 0 6 4 58 39 0 16 16 20 40 2 2 4 60 43 0 19 16 21 42 2 2 4 60 43 0 19 16 23 46 2 5 4 62 47 2 68 16 24 48 0 0 0 16 67 623 18 26 49 4 5 16 67 623 11 1.4 1.4 1.6 1.6 67 623 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	14	16	35	0		0	6	55	40	2		24	
16 18 36 0 0 4 57 37 0 0 16 19 38 0 6 4 58 39 0 16 16 19 38 0 6 4 58 39 0 16 16 20 40 2 2 4 59 41 3 14 16 21 42 2 2 4 60 43 0 19 16 22 44 2 8 4 61 45 2 31 16 23 46 2 5 4 62 47 2 68 16 24 48 0 0 0 68 16 67 623 18 26 49 4 5 1 16 7 6 0 5 1.4 18 20 31 37 0 10 10 8 2 7 2 0.55 cm/cm ² <td>16</td> <td>17</td> <td>34</td> <td>-</td> <td></td> <td>-</td> <td>6</td> <td>56</td> <td>37</td> <td>4</td> <td></td> <td>6</td> <td></td>	16	17	34	-		-	6	56	37	4		6	
16 19 38 0 6 4 58 39 0 16 16 20 40 2 2 4 59 41 3 14 16 21 42 2 2 4 59 41 3 14 16 21 42 2 2 4 60 43 0 19 16 22 44 2 8 4 61 45 2 31 16 23 46 2 5 4 62 47 2 68 16 24 48 0 0 0 68 68 68 16 24 48 0 0 0 68 16 67 623 18 26 43 0 5 14 16 16 7 623 18 20 34 43 2 7 10 10 10 10 10 10 10 10 10 10 </td <td>16</td> <td>18</td> <td>36</td> <td>0</td> <td></td> <td>0</td> <td>4</td> <td>57</td> <td>37</td> <td>0</td> <td></td> <td>0</td> <td></td>	16	18	36	0		0	4	57	37	0		0	
16 20 40 2 2 4 59 41 3 14 16 21 42 2 2 4 60 43 0 19 16 22 44 2 8 4 61 45 2 31 16 23 46 2 5 4 62 47 2 68 16 24 48 0 0 0 68 16 16 67 623 16 25 50 0 0 0 16 67 623 18 26 49 4 5 16 67 623 18 29 40 0 3 14 0.55 cm/cm ² 20 31 37 0 10 <td>16</td> <td>19</td> <td>38</td> <td>Q</td> <td></td> <td>6</td> <td>4</td> <td>58</td> <td>39</td> <td>0</td> <td></td> <td>16</td> <td></td>	16	19	38	Q		6	4	58	39	0		16	
16 21 42 2 2 4 60 43 0 19 16 22 44 2 8 4 61 45 2 31 16 23 46 2 5 4 62 47 2 68 16 24 48 0 0 0 68 61 45 2 31 16 24 48 0 0 0 68 623 68 16 24 48 0 0 0 67 623 18 26 49 4 5 68 5 7 60 623 18 29 40 0 3 5 14 67 623 18 30 37 0 5 14 67 623 14 18 30 37 0 5 16 16 7 623 20 31 37 0 10 10 3 10	16	20	40	2		2	4	59	41	3		14	
16 22 44 2 8 4 61 45 2 31 16 23 46 2 5 4 62 47 2 68 16 24 48 0 0 0 16 25 50 0 0 16 25 50 0 0 0 16 16 67 623 18 26 49 4 5 16 67 623 18 27 46 0 2 16 7 623 18 29 40 0 3 14 5 16 67 623 18 30 37 0 2 16 7 6 17 16 <	16	21	42	2		2	4	60	43	0		19	
16 23 46 2 5 4 62 47 2 68 16 24 48 0 0 0 16 25 50 0 0 16 25 50 0 0 16 25 50 0 0 0 16 25 50 0 0 0 16 25 50 0 0 0 16 25 50 0 0 0 16 27 46 0 2 16 24 43 0 5 16 67 623 16 68 16 <td>16</td> <td>22</td> <td>44</td> <td>2</td> <td></td> <td>8</td> <td>4</td> <td>61</td> <td>45</td> <td>2</td> <td></td> <td>31</td> <td></td>	16	22	44	2		8	4	61	45	2		31	
16 24 48 0 0 16 25 50 0 0 18 26 49 4 5 18 26 49 4 5 18 26 49 4 5 18 27 46 0 2 18 28 43 0 5 18 29 40 0 3 18 30 37 0 5 20 31 37 0 10 20 32 39 3 9 20 32 39 3 9 20 32 39 3 9 20 32 39 3 9 20 34 43 2 7 20 35 45 3 6 20 36 47 5 4 20 36 47 5 4 20 36 44 2 36 <td>16</td> <td>23</td> <td>46</td> <td>2</td> <td></td> <td>5</td> <td>4</td> <td>62</td> <td>47</td> <td>2</td> <td></td> <td>68</td> <td></td>	16	23	46	2		5	4	62	47	2		68	
16 25 50 0 0 0 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 18 16 11 11 11 11 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 16 16 16 16 16 1	16	24	48	0		0				47		(22	ļ
18 26 49 4 5 18 27 46 0 2 18 28 43 0 5 18 29 40 0 3 18 29 40 0 3 18 30 37 0 5 20 31 37 0 10 20 32 39 3 9 20 32 39 3 9 20 33 41 0 8 20 34 43 2 7 20 35 45 3 6 20 36 47 5 4 10 37 50 2 9 10 38 47 3 3 10 39 44 2 36	16	25	50	0		0	Tota	al lor	01	01		023	
18 27 46 0 2 18 28 43 0 5 18 29 40 0 3 18 29 40 0 3 18 30 37 0 5 20 31 37 0 10 20 32 39 3 9 20 32 39 3 9 20 34 43 2 7 20 35 45 3 6 20 36 47 5 4 10 37 50 2 9 10 38 47 3 3 10 39 44 2 36	18	26	49	4		5	nel	d 8 ;					
18 28 43 0 5 18 29 40 0 3 18 30 37 0 5 20 31 37 0 10 20 32 39 3 9 20 32 39 3 9 20 32 39 3 9 20 33 41 0 8 20 34 43 2 7 20 35 45 3 6 20 36 47 5 4 10 37 50 2 9 10 38 47 3 3 10 39 44 2 36	18	27	46	0		2		6		1	π	_ π _1	1 . 2 14
18 29 40 0 3 18 30 37 0 5 20 31 37 0 10 20 31 37 0 10 20 32 39 3 9 20 33 41 0 8 20 34 43 2 7 20 35 45 3 6 20 36 47 5 4 10 37 50 2 9 10 38 47 3 3 10 39 44 2 36	18	28	43	0		5		ior g	rain	pound	ary=2	r_24	55 am /am ²
18 30 37 0 5 20 31 37 0 10 20 32 39 3 9 20 32 39 3 9 20 33 41 0 8 20 34 43 2 7 20 35 45 3 6 20 36 47 5 4 10 37 50 2 9 10 38 47 3 3 10 39 44 2 36	18	29	40	0		3						U U	cm/cm-
20 31 37 0 10 20 32 39 3 9 20 32 39 3 9 20 32 39 3 9 20 33 41 0 8 20 34 43 2 7 20 35 45 3 6 20 36 47 5 4 10 37 50 2 9 10 38 47 3 3 10 39 44 2 36	18	30	37	0		5		С., на А.			mic). 21	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	31	37	0		10	L ^L A	OF TW	in D	ounda	ry=), 55	^{29.2} , 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	32	39	3		9							cm/cm ⁻
20 34 43 2 7 20 35 45 3 6 20 35 45 3 6 20 36 47 5 4 10 37 50 2 9 10 38 47 3 3 10 39 44 2 36	20	33	41	0		8							
20 35 45 3 6 20 36 47 5 4 10 37 50 2 9 10 38 47 3 3 10 39 44 2 36	20	34	43	2		7		or gr	ain I	bounda	ry = 1.1		
20 36 47 5 4 10 37 50 2 9 10 38 47 3 3 10 39 44 2 36	20	35	45	3		6	σ_{10}	or gra	in b	ounda	ry = 1.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	36	47	5		4	<u> </u>		•	•	10.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	37	50	2		9	Xfo	or twi	n bo	undar	y = 10.2		
10 39 44 2 36	10	38	47	3		3	σfe	or twi	n bo	unda r	y = 12.8		
	10	39	44	2		36							

Onic -13

TABLE 29 Precipitate Particle Density

OF PUCK QUALITY SAMPLE: Semix1-12-14 (U) Sample in polished condition. Magnification 400X. $\overline{\text{Field area}} = 0.00149 \text{ cm}^2$

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

FIE	FIELD		A		В	FIE	LD		۸		В
Y	No.	X	Large		Small	Y	No.	X			
12	1	33	5		129	10	40	41	2		38
12	2	35	3		14	10	41	38	0		32
12	3	37	2		20	10	42	35	2		25
12	4	39	2		44	8	43	34	4		46
12	5	41	5		42	8	44	36	2		30
12	6	43	.2)	_25		45	38	1		34
12	7	45	6		104	88	46	40	2		41
12	8	47	3		39	8	47	42	1		17
12	9	49	4		43	8	48	44	3	[62
12	10	51	11		175	8	49	46	7		75
14	11	50	4		70	8	50	48	ļ. ļ	. `maxyet	43
14	12	47	2		20	8	51	50	1		60
14	13	44	4		8	6	52	49	3		92
14	14	41	3		11	6	53	46	1	<u> </u>	67
14	15	38	6		30	6	54	43	2		41
14	16	35	2		13	6	55	40	0		60
16	17	34	-		-	6	56	37	2		56
16	18	36	1		41	4	57	37	0		8
16	19	38	2		27	4	58	39	1		59
16	20	40	1		30	4	59	41	0		41
16	21	42	2		19	4	60	43	2		24
16	22	44	4		40	4	61	45	2		45
16	23	46	1		33	4	62	47	3		31
16	24	48	2		54			<u>Z</u> ;	155		2724
16	25	50	3		99		al Ior de.	01	155		2124
18	26	49	7		49	liet	as :				2
18	27	46	1		36	Are	a of 6	62 fi	elds :	= 0.09089) cm ⁻
18	28	43	1		47	No.	of la	rge I	opt. =	155/0.0	2089
18	29	40	2		45	_			=	1705 / cm	~
18	30	37	3		36	X fo	r lar	ge p	pt. =	2.54	
20	31	37	0		7	σfo	r lar	ge p	pt. =	1.96	
20	32	39	2		26	No.	of sn	2724 /0.	02089		
20	33	41	5		20				=	29970 / c	m ^c
20	34	43	3		37	X for small			pt. =	44.7	
20	35	45	2		39	σfo	r sm	all p	opt. =	29.1	
20	36	47	3		67			-			
10	37	50	2		55						
10	38	47	1		75	3					
10	39	44	1		26						

L... OF POUR QUALITY

TABLE 30DISLOCATION DENSITYSAMPLE: Semix 1-12-14 (U)Sample in etched conditionMagnification 1000X, Area of field = 0.000238 cm²X and Y denote the location of microscope stage (field of view) for the
data measured.

ź

FIE	ELD		No. of Disloc Pits	ation	FIE	ELD		No. of	Disloc Pits	ation
Y	No.	X	+		Ϋ́Υ	No.	X		¥	
12	1	34	7	1	10	40	41		4	
12	2	35	6		10	41	38		4	
12	3	37	17		10	42	35		2	
12	4	39	5		8	43	35		3	
12	5	41	7		8	44	36		1	
12	6	43	9		8	45	38		8	
12	7	45	2		8	46	40		2	
12	8	47	5		8	47	42		0	
12	9	49	4		8	48	44		0	
12	10	50	4		8	49	46		2	
14	11	49	0		8	50	48			
14	12	47	2		8	51	49		1	
14	13	44	7		6	52	49		0	
14	14	41	2		6	53	46		3	
14	15	38	2		6	54	43		0	
14	16	35	0		6	55	40		0	
16	17	35	4	1	6	56	37		1	
16	18	36	0	• • •	5	57	38		0	
16	19	38	3		5	58	39		2	
16	20	40	0	<u> </u>	5	59	41		0	
16	21	42	1		5	60	43		0	
16	22	44	0	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5	61	45		5	
16	23	46	1		5	62	47		0	
16	24	48	0		(D) . A .		(2		1//	
16	25	49	15		1.014	41 IOF	04		100	
18	26	47			itel	u#(
18	27	46	0		Dis	locati	ion d	ensitv =	1.1 ×	$10^{4}/cp$
18	28	43	4							10 /01
18	29	40		 	$\overline{\mathbf{X}} =$	2.68				
18	30	37	3	 	б =	3.34				
19	31	37	5	ļ						
19	32	39	1		Į					
19_	33	41	0		Į					
19	34	43	2	×						
19	35	45	0							
19	36	47	0							
10	37	50	3							
10	38	47	3							
10	39	44	1		1					

OF FORM COMMY

4

<u>TABLE 31</u> Grain Boundary and Twin Boundary Density <u>SAMPLE</u>: Semix2-5-1 (V) Sample in polished condition. Magnification 100X. Field area = 0.0241 cm². Circumference of test circle = $\pi \cdot D$ = 0.55 cm. A denotes No. of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

FII	ELD		А	No. of twins	B	FIELD			A	No. of	в			
Y	No.	X	GB		Twin	Y	No.	x	1		1			
12	1	33	2	 	0	10	40	41	12		8			
12	2	35	8		0	10	41	38	2		0			
12	3	37	23	······	0	10	43	35	0		0			
12	4	39	22	**************************************	0	8	43	34	0		0			
12	5	41	17	·····	1	8	44	36	0		0			
12	6	43	5	•	0	8	45	38	5	······································	0			
12	7	45	5	tike – reinik∔skyne pådynskak skrimm	15	8	46	40	6		1			
12	8	47	5		8	8	47	42	13		0			
12	9	49	4		9	8	48	44	19	· · · · · · · · · · · · · · · · · · ·	8			
12	10	51	2		26	8	49	46	29		1			
1.2	11	50	2		11	8	50	48	21		0			
14	12	47	3		36	8	51	50	17		0			
14	13	44	10		13	6	52	49	15	······································	2			
14	14	41	6	••••••••••••••••••••••••••••••••••••••	9	6	53	46	22		0			
14	15	38	8		3	6	54	43	23		10			
14	16	35	10		1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
16	17	34	3		10	6	56	37	0	······································	0			
16	18	36	7		40	4	57	37	6		50			
16	19	38	14		40	4	58	39	11	······································	30			
16	20	40	22		17	4	59	41	13) 	41			
16	21	42	11		13	4	60	43	13		8			
16	2.2	44	5		29	4	61	45	12		0			
16	23	46	12	i fe Bar di peri den dan menjari dan penjari	46	4	62	47	14		0			
16	24	48	9		15			(2			700			
16	25	50	15		5	Tota	lior	64	694		789			
18	2	49	3		1	nel	d s :							
18	27	46	11	and + 2 &	24	т.	6		L	π.,	 1	1.2		
18	28	43	14		26	LA	ior g	rain	pound	$ary=\frac{1}{2}\cdot P$	L= 2	; = 32 0,55 . 2		
18	29	40	13		13							cm/cm		
18	30	37	12		43				- -	π 12	2.7			
20	31	37	19		25		ortw	in De	ounda	ry=	0,55	36.3		
20	32	39	22		11	- cm/cm ²								
20	33	41	17		26					11.2				
20	34	43	19		23		or gra	ain b	ounda	ry = 11.2				
20	35	45	12		52	σ ⁻ 10	or gra	UN D	ounga	ry= (.4				
20	36	47	4		14	.		- L.		10 7				
10	37	50	3		0 •			л DO 	unda r	y = 14.7				
10	38	47	23		5	010	or twi	n po	undar	y = 15.0				
10	39	44	26		8									

j. La strativ

ORIGINAL MARE IS OF FOOR QUALITY

TABLE 32Precipitate Particle Density

SAMPLE: Semix 2-5-1 (V) Sample in polished condition. Magnification 400X. Field area = 0.00149 cm^2

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

FIE	FIELD		А		В	FIE	LD		A		В
Y	No.	X	Large		Small	Y	No.	X			
12	1	33	2.		93	10	40	41	0		7
12	2	35	5		22	10	41	38	1		16
12	3	37	0		8	10	42	35	0		10
12	4	39	1		31	8	43	34	1		53
12	5	41	3		27	8	44	36	2		51
12	6	43	.	والاسباد ويهري والأسمو ومسترتب ستهرز	_38	8	45	38	0		$\frac{20}{10}$
12	7	45	1		57	8	46	40	0	·····	18
12	8	47	1		25	8	47	42	0		9
12	9	49	0		17	8	48	44	0		27
12	10	51	0			8	49	46			<u> </u>
14	11	50	0		34	8	50	48	10		20
14	12	47	0		117	8	51	50	1		4
14	13	44	0		26	6	52	49	0		12
14	14	41	1		10	6	53	46	0		3
14	15	38	0		31	6	54	43	1		16
14	16	35	0		123	6	55	40	0		9
16	17	34	2		52	6	56	37	1	· · · · · · · · · · · · · · · · · · ·	4
16	1.8	36	29		53	4	57	37	1		12
16	19	3.8	2		58	4	58	39	2		34
16	20	40	1		13	4	59	41	2		18
16	21	42	1		60	4	60	43	0		12
16	22	44	0		43	4	61	45	0		14
16	23	46	1		253	· 4	62	47	0		µ 4
16	24	48	0		85	Tota	al for	62	75		2425
16	25	50	1		38	fiel	4 e ·	02	15		4440
18	26	49	1		148						2
18	27	46	0		36	Are	a of (62 fi	elds	= 0.0923	8 cm
18	28	43	2		92	No.	of la	rge j	ppt. =	75 /0.0	9238 2
18	29	40	2			_			=	812 / cm	1
18	30	37	0	· · · · · · · · · · · · · · · · · · ·	19	X fo	or lar	ge p	pt. =	1.2	
20	31	37	3	ļ	20	σfc	or lar	ge p	pt. =	3,7	
20	32	39	2		49	No.	of sn	nall	ppt. =	2425 /0.	09238
20	33	41	0		33				=	26250 / c	m
20	34	43	1		34	X fo	or sm	all p	opt. =	39	
20	35	45	0		52	σfo	or sm	all p	opt. =	40	
20	36	47	0		40						
10	37	50	0		28						
10	38	47	0		57						
10	39	44	0	N	60						

OF POOR QUALITY

TABLE 33DISLOCATION DENSITYSAMPLE: Semix 2-5-1 (V)Sample in etched conditionMagnification 1000X, Area of field = 0.000238 cm²X and Y denote the location of microscope stage (field of view) for the
data measured.

ŧ

¥.

1

ŝ

FIE	LD		No. of Disloca Pits	ition	FIE	LD		No. c	of Disloc Pits	ation	
Y	No.	X			Y	No.	X	1			1
12	1	34	7	1	10	40	41		28		
12	2	35	10		10	41	38		7		l
12	3	37	5		10	42	35		9		
12	4	39	32		8	43	35		1		
12	5	41	3		8	44	36		2		
12	6	43	9		8	45	38		7		
12	7	45	8		8	46	40		3		
12	8	47	5		8	47	42		5		
12	9	49	7		8	48	44		9		I
12	10	50	4		8	49	46		12		
14	11	49	26	1	8	50	48		8		
14	12	47	62		8	51	49		5		
14	13	44	27		6	52	49		7		
14	14	41	325	1	6	53	46	1	19		
14	15	38	22		6	54	43		27		i L
14	16	35	58	and he are being a prime of the second s	6	55	40		7		
16	17	35	17		6	56	37	an an an him bet was store	5	+	
16	18	36	21		5	57	38	na ar spons ar can shar c	10	+	
16	10	38	50			58	30	a mar Anna ingi manangan ka sa sa	15		
16	20	40	148		5	59	41		8		
16	21	42			5	60	43		13		
16	27	44	5		5	61	45	• • • • • • • • • • • • • • • • • • •	15	· † • •	
16	22	46	1 A	1.2 militar (1.1 militar (1.1 militar)) (1.1	5	62	47		18		l
16	24	40	6						چ معا ل المعالي		
16	25	49	7		Tota	al for	62		3034		
18	26	47	6		fiel	da:					
18	27	46	15		nia	locati	ion -	onuito	- 20 6	v 104	lam
18	28	43	138			iocat:	COTE 28	anarty	- 40.0	x 10 /	cm
18	29	40	56		$\overline{\mathbf{v}}$	" AU	a				
18	30	37	196				7				
19	31	37	430		0	- 100	1				
19	32	39	16								
19	33	41	95								
19	34	43	210		{						
19	35	45	650								
19	36	47	43								
10	37	50	4								
10	38	47	3								
10	39	44	45								

OF POOR QUALITY

TABLE 34 Grain Boundary and Twin Boundary Density

*

SAMPLE: Semix 3-4-12(W)Sample in polished condition. Magnification 100%. Field area = 0.0241 cm². Circumference of test circle = π -D = 0.55 cm. A denotes No. of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

FIE	LD		А	No. of twins	В	FIELD			A	No. of twins	В			
Y	No.	X	GB		Twin	Y	No.	X						
12	1	33	2		5	10	40	41	7		53			
12	2	35	4		5	10	41	38	3		14			
12	3	37	4		0	10	42	35	2		32			
12	4	39	9		8	8	43	34	6		16			
12	5	41	14		5	8	44	36	7		29			
12	6	43	8		27	8	45	38	6		27			
12	7	45	5		48	8	46	40	10		19			
12	8	47	0	()	14	8	47	42	4		45			
12	9	49	3		23	8	48	44	9		39			
12	10	51	0		18	8	49	46	6	Autor to an average attained by	15			
14	11	50	2	······································	4	8	50	48	9		3			
14	12	47	0		5	8	51	50	4		5	1		
14	13	44	12		10	6	52	49	2		41	!		
14	14	41	8		3	6	53	46	3	<u> </u>	13			
14	15	38	5		12	6 54 43 8 21								
14	16	35	8		13	6 55 40 5 17								
16	17	34	7		6	6	56	37]		
16	18	36	7		0	4	57	37				J		
16	19	38	4		11	4	58	39						
16	20	40	5		8	4	59	41				l		
16	21	42	10		7	4	60	43						
16	22	44	2		0	4	61	45				l		
16	23	46	5		0	4	62	47						
16	24	48	5		6	Tot	alfor	55	325		770	•		
16	25	50	14		11	fiel	ar ioi Ma	55	545		110			
18	26	49	7		22	1101	.u.d.							
18	27	46	2		5	T.	for a	rain	bound	$a_{rv} = \pi$. P	$=\pi$	5.9 -16 9		
18	28	43	5		17	[⊥] A	-v- 6	,,		2	L 2 (0.55 10.9		
18	29	40	3		10							emyem		
18	30	37	14		_5	T.	for ty	vin h	ounda	$rv = - \frac{\pi}{1}$	14	= 40		
20	31	37	3		4	20.55 cm/cm ²								
20	32	39	10		17							, 0111		
20	33	41	1.		14	x	for gr	ain	bound	arv = 5.9				
20	34	43	1		18	- f	0° 0'	ain I	oounda	rv = 3.6				
20	35	45	4		1		- 51			-, 5,0				
20	36	47	0		1	$\overline{\mathbf{x}}$	or tw	in be	ounda r	v = 14				
10	37	50	6		0		or tw	in b	unda r	די דער ער די ער				
10	38	47	6		15		UL LW		Junual	7 - 12. (
10	39	44	7		4									

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 35Precipitate Particle Density

SAMPLE: Semix 3-4-12 (W) Sample in polished condition. Magnification 400X. Field area = 0.00149 cm^2

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

FIE	FIELD		А		B	FIE	LD		A		В		
Y	No.	X	Large		Small	Y	No.	X					
12	1	33	-		- 1	10	40	41	5		24		
12	2	35	0		55	10	41	38	5		13		
12	3	37	0		22	10	42	35	1		5		
12	4	39	5		27	8	43	34	3		38		
12	5	41			10	8	44	36	2		23		
12	6	43	2	,	_16	88	45	38	1		47		
12	7	45	3		39	8	46	40	4		84		
12	8	47	2		51	8	47	42	0		28		
12	9	49	2		13	8	48	44	3		41		
12	10	51	4		79	8	49	46	3		9		
14	11	50	5		24	8	50	48	2		9		
14	12	47	1		34	8 51 50 4 12							
14	13	44	2		47	6 52 49 2 60							
14	14	41	2		20	6 53 46 9 75							
14	15	38	1		_58	6	54	43	5		34		
14	16	35	1		17	6	55	40	2		12		
16	17	34	5		43	6	56	37	3		43		
16	18	36	3		98	4	57	37] 1		6		
16	19	38	6		39	• 4	58	39	2		3		
16	20	40	2		65	4	59	41	1]	8		
16	21	42	1		7	4	60	43	5		94		
16	22	44	4		89	4	61	45	2		21		
16	23	46	5		83	4	62	47	-		-		
16	24	48	5		460	Tet	alfor	60	187		3600		
16	25	50	3		79	fiel	ar 101 d.a.	00	101		3009		
18	26	49	10		420	1161	uø.				2		
18	27	46	1		.93	Are	ea of (62 fi	elds	= 0.0894	cm ⁻		
18	28	43	5		-65	No.	of la	rge j	ppt. =	187 /0.0	894		
18	29	40	9		163				=	2092 / cm	-		
18	30	37	7		290	X fo	or lar	ge p	pt. =	3.1			
20	31	37	7		30	σ for large ppt. = 2.3							
20	32	39	4		29	No. of small ppt. = $3609 / 0.0894$							
20	33	41	4		95	=40370 / cm							
20	34	43	0			X fo	or sm	all p	opt. =	60			
20	35	45	3		54	σfc	or sm	all p	ppt. =	84			
20	36	47	3		119								
10	37	50	2		37								
10	38	47	1		25								
10	39	44	1		14								

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 36DISLOCATION DENSITYOF POOR QUALITYSAMPLE: Semix 3-4-12 (W)Sample in etched conditionMagnification 1000X, Area of field = 0.000238 cm²X and Y denote the location of microscope stage (field of view) for the
data measured.

C

q

r

4. 4

FIE	FIELD		No. of Dislocat Pits	tion	FIE	LD		No.	of Disloca Pits	ation
v	No	Y			· Y	No.	X			
12	110.	24	0		10	40	41		0	
12	2	35			10	41	38		2	
12	2	37	3		10	42	35		0	
12	4	30	1		8	43	35		1	1
12	5	41	173			44	36		0	
12	6	43			8	45	38		0	
12	7	45			8	46	40		0	
12	8	47	0		8	47	42		0	
12	9	49	2	·	8	48	44		183	
12	10	50	28		8	49	46		5	
14	11	49			8	50	48		18	
14	12	47	5		8	51	49		15	
14	13	44	0		6	52	49		0	
14	14	41	25		6	53	46		45	
14	15	38	0		6	54	43		0	
14	16	35	1		6	55	40		127	
16	17	35	66		6	56	37		2	
16	18	36	1		5	57	38		249	
16	19	38	1		5	58	39		19	
16	2.0	40	0		5	59	41		2.	
16	21	42	1		5	60	43		73	
16	22	44	0		5	61	45		-	
16	23	46	101		5	62	47		-	
16	24	48	1		Tet		4.0	L	1561	
16	25	49	0		fiel	de.	00		1501	
18	26	47	27		1101					4
18	27	46	0		Dis	locat	ion d	ensity	r = 10.9	$ x 10^{4} / c $
18	28	43	0					,	/	
18	29	40	↓↓ ↓		x	= 26				
18	30	37	20		6	= 55				
19	31	37	42							
19	32	39	0							
19	33	41	0							
19	34	43	0							
19	35	45	11							
19	36	47	91							, ¹
10	37	50	0							
10	38	47								
10	39	44	217							

ORIGINAL PLACE IS OF POOR QUALITY

TABLE 37 Grain Boundary and Twin Boundary Density

SAMPLE: Semix 3-4-16 (X)Sample in polished condition. Magnification 100X. Field area = 0.0241 cm². Circumference of test circle = $\pi \cdot D$ = 0.55 cm. A denotes No, of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

FIE	FIELD		А	No, of twins	В	FIF	ELD		А	No. of twins	В				
Y	No.	X	GB		Twin	Y	No.	Х							
12	1	33	4		27	10	40	41	15		6				
12	2	35	4		24	. 10	41	38	7	,	13				
12	3	37	9		13	10	42	35	5	[11				
12,	4	39	9		7	8	43	34	5		61				
12	5	41	20		17	8	44	36	9		6				
12	6	43	16		.10		45	38	9		22				
12	7	45	13	analysis - and Microsoft States of States			46	40	14		3				
12	8	47	12	a	1	8	47	42	16		7				
. 12	9	49	16		2	3	48	44	16		0				
12	10	51	15		3	8	49	46	3		14				
14	11	_50	13	n tur barragat dan anta di sebah palan si bel 16.5 til	14		50	48_	0		18				
14	12	47	14		5	8	51	50	0		6				
14	13	44	18		0	6	52	49	0	, 	29				
14	14	41	11		38	6	53	46	0		21				
14	15	38	4		5	6 54 43 14 0									
14	16	35	4		20	6 55 40 9 16									
16	17	34	9		5	6	56	37	8		16				
16	18	36	7		6	4	57	37	8		25				
16	19	38	2		4	4	58	39	11		13				
16	20	40	9		3	4	59	41	-		-				
16	21	42	16		4	4	60	43	11		5				
16	22	44	13		0	4	61	45	4		13	,			
16	23	46	12		3	4	62	47	-		-				
16	24	48	8		4	Tota	alfor	60	6.05		567	l			
16	25	50	8		2	fiel	de	00	005		507				
18	26	49	18		0	IICL	αв,								
18	27	46	14	i der sin eine gesternen gestellter einer einer der	0	Т.	for a	rain	hound	$arv=\pi$, p	<u>π</u> 1	0.1 - 20 0			
18	28	43	20		↓ _	A''	6	~ ~ + 11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	1 2	0.55 cm/cm^2			
18	29	40	17		 	ł						· · · · · · · · · · · · · · · · · · ·			
18	30	37	0		4	Ť. f	for tw	vin h	oundai	rv≃ <u> </u>	. 45	. 27.0			
20	31	37	2		11	$\frac{1}{2}$ $\frac{1}$									
20	32	39	1		11										
20	33	41	14		0	$\overline{\mathbf{x}}$ f	or or	ain F	ounda	rv= 10	1				
20	34	43	7			o fe	~* 5* 17 ars	ain h	ounda	rv≕ 5.4	. 5				
20	35	45	16		0		- 5*	- N		-1 5.1					
20	36	47	15		1	X fr	or twi	n bo	unda r						
10	37	50	77		5	σ for twin boundary = 10.9									
10	38	47	18		1		JI 1973		anaar	7 - 10 , 9					
10	39	4⁄4	16		2										

1.

8

ŧ.

\$

į

ORIGINAL PACE IS

TABLE 38 Precipitate Particle Density OF POOR QUALITY,

X.

¥ 4

SAMPLE: Semix 3-4-16 (X) Sample in polished condition. Magnification 400X. Field area = 0.00149 cm^2

A denotes No. of Large precipitates observed in field of view.

B denotes No, of Small precipitates observed in field of view.

FIE	CLD		А		В	FIE	ELD		A		В
Y	No.	X	Large		Small	Y	No.	X			
12	1	33	4		85	10	40	41	4		69
12	2	35	6		193	10	41	38	1		149
12	3	37	4		41	10	42	35	0		280
12	4	39	1		58	8	43	34	3		265
12	5	41	8		27	8	44	36	1		167
12	6	43	5)	8	8	45	38	1		216
12	7	45	3	, 	6	8	46	40	2	·····	13
12	8	47	6		5	8	47	42	0		104
12	9	49	3		63	8	48	44	2		18
12	10	51	4		160	8	49	46	5		21
14	11	50	9		39	8	50	48	8		80
14	12	47	2		19	8	51	50	6		71
14	13	44	5		9	6	52	49	4		68
14	14	41	2		38	6	53	46	2		38
14	15	38	0		4	6	54	43	2		23
14	16	35	2		32	6	55	40	3		152
16	17	34	0		144	6	56	37	3		55
16	18	36	2		26	4	57	37	2		103
16	19	38	3		3	4	58	39	1		56
16	20	40	5		14	4	59	41	-		-
16	21	42	4		18	4	60	43	3		31
16	22	44	0		14	4	61	45	9		82
16	23	46	5		16	4	62	47	-		-
16	24	48	25		37	Tets	lfor	60	215		3401
16	25	50	6		54	fiel	de.	00	215		3471
18	26	49	1		44	1161	uø,				2
18	27	46	1		21	Are	a of 6	2 fi	e lds =	= 0.0894	cm ⁻
18	28	43	6		8	No.	of lar	ge p	opt. =	215 /0.0	894
18	29	40	4		6	_			= ;	2405 / cm	2
18	30	37	3		12	X fo	r lar	ge pj	pt. =	3.6	
20	31	37	4		19	σfo	r lar	ge pj	pt. =	3.6	
20	32	39	2		37	No.	of sm	all j	ppt. =	3491/0.	0894
20	33	41	3		13	_			=3	89050 / cr	n ²
20	34	43	3	· · · · · · · · · · · · · · · · · · ·	65	X fo	r sma	all p	pt. =	58.2	
20	35	45	4		20	σfo	r sma	all p	pt. =	64.0	
20	36	47	0		15						
10	37	50	2		20						
10	38	47	5		18	Ì					
10	39	44	1		18						

ORIGINAL LAND

TABLE 39DISLOCATION DENSITYSAMPLE: Semix 3-4-16 (X)Sample in etched conditionMagnification 1000X, Area of field = 0.000238 cm²X and Y denote the location of microscope stage (field of view) for the
data measured.

FIE	LD		No. of Disloca Pits	tion	FIE	LD		No, of Dislocation Pits			
v	No	X			Y	No	X			T	ł
12	110.	21	45		10	40	41		49		5
12	2	35			10	41	38		0		
12	3	37			10	42	35		19		
12	4	39	5.9		8	43	35		3		
12	5	41	8		8	44	36	·····	. 26		ł
12	6	43	73		8	45	38		23		
12	7	45	96		8	46	40		4		Į
12	8	47	0		8	47	42		30		
12	9	49	53		8	48	44		83		
12	10	50	34		8	49	46		3		
14	11	49	45		8	50	48		10		
14	12	47	0		8	51	49		0	L	Í
14	13	44	1		6	52	49		4		
14	14	41	146		6	53	46		3		
14	15	38	0		6	54	43		54		l
14	16	35	0		6	55	40		2		
16	17	35	5		6	56	37		46		
16	18	36	0		5	57	38		9		ļ
16	19	38	5	1	5	58	39		7		
16	20	40	190		5	59	41		13		I
16	21	42	170		5	60	43		0		1
16	22	44	2		5	61	45		1		I
16	23	46	200		5	62	47	ļ	0		
16	24	48	22		Tat	alfor	62		2244	1	ł
16	25	49	0		fiel	da)	<u>с</u> п		*1		
18	26	47	114							4	
18	27	46	71		Dis	locat	ion d	ensity	r = 15.2	$\mathbf{x} 10^{\mathbf{T}}$	/ci
18	28	43	0								
18	29	40			x	= 36.	, 2				
18	30	37	25		6	= 47.	. 75				
19	31	37	20								
19	32	39	45								
19_	33	41			1						
19	34	43	12								
19	35	45									
19	36	47	63		ł						
10	37	50	00		ł						
10	38	47	89								
10	39	44									

ORIGINAL PACE IS OF POOR QUALITY

TABLE 40 Grain Boundary and Twin Boundary Density

ŧ

£

SAMPLE: Semix 4-2-4 (Y) Sample in polished condition. Magnification 100X. Field area = 0.0241 cm². Circumference of test circle = $\pi \cdot D$ = 0.55 cm. A denotes No. of grain boundary intersections with circumference of test circle. B denotes No. of twin boundary intersections with circumference of test circle. X and Y denotes field location of the data measured.

FIE	ELD		А	No. of twins	В	FII	ELD		А	No. of twins	В	
Y	No.	X	GB		Twin	Y	No.	X				
12	1	33	5		6	10	40	41	16		19	
12	2	35	3		2	' 10	41	38	0		2	
12	3	37	0		0	10	42	35	0		23	
12	4	39	0		0	8	43	34	4		0	
12	5	41	2		0	8	44	36	26		12	
12	6	43	2		2	8	45	38	10		6	
12	7	45	8		28		46	40	10		15	
12	8	47	4		4	8	47	42	4		25	2
12	9	49	4		0	8	48	44	2		65	
12	10	51	0		2	8	49	46	8			
14	11	<u> 50 </u>	8		18	8	50	.48	6			
14	12	47	4		9	8	51	50	4		7	
14	13	44	4		6	6	52	49	6		25	
14	14	41	3		61	6	53	46	4		10	
14	15	38	3		0	6	54	43	2		18	
14	16	35	4		3	6	55	40	5		14	
16	17	34	5		2	6	56	37	18		16	
16	18	36	8		9	4	57	37	9		18	
16	19	38	4		3	4	58	39	6		8	
16	20	40	3		41	4	59	41	6		9	
16	21	42	3		37	4	60	43	20		2	
16	22	44	0		1	4	61	45	11		13	
16	23	46	9		21	4	62	47	6		4	
16	24	48	6		6	Tot	alfor	62	366		754	
16	25	50	8		27	fial	de.	06	300		750	
18	26	49	13		9							
18	27	46	4	, wa garana wa wa wa ma ma (gan	1	T.	for a	rain	hound	$a r v = \pi$. P	<u>_</u> <u> </u>	5.9
18	28	43	8		8	L'A	.0. 5		bound	2	L 2 0.	55 - 16.9
18	29	<u>40</u>	5		7	1						cm/cm ²
18	30	37	8		28	T. I	for tw	vin b	ounda	$rv = -\frac{\pi}{1}$	2.2	- 24 0
20	31	37	9		21	, ~ A`	.01 00		o un du	2	0.55	· 54.6
20	32	39	9		13							cm/cm
20	33	41	0		0	$\overline{\mathbf{x}}$ f	or gr	ain I	ounda	rv = 5.9		
20	34	43	3		16	e fa	~~ 5* or or:	ain h	ounda	rv = 4.0		
20	35	45	5		24		or Bro	~ 111 <i> </i> ;	Junua	•y= 7		
20	36	47	2		2	$\mathbf{\overline{\mathbf{Y}}}$	or tur	in ho	undar	v = 12.2		
10	37	50	2		1		or twi	$\frac{1}{100}$	unda -	y = 12.2		
10	38	47	9		4	010	JI UW	m b0	unua f	y - 13,4		
10	39	44	6		9							

ORIGINAL FREE IS OF POOR QUALITY

TABLE 41Precipitate Particle Density

C

ŧ

ť

4

7

39 24

1.

1

<u>SAMPLE</u>: Semix 4-2-4 (Y) Sample in polished condition. Magnification 400X. Field area = 0.00149 cm^2

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

FIE	LD		A		В	FIE	ELD		•		В
Y	No.	X	Large		Small	Y	No.	X			
12	1	33	8		68	10	40	41	3		11
12	2	35	1		7	10	41	38	3		3
12	3	37	2		11	10	42	35	0		32
12	4	39	1		6	8	43	34	2		33
12	5	41	6		13	8	44	36	0		5
12	6	43	5		12	8	45	38	1		5
12	7	45	5		6	8	46	40		<u></u>	18
12	8	47	5		11	8	47	42	6		5
12	9	49	3		20	8	48	44	3		24
12	10	51	3		6	8	49	46	5		14_
14	11	50	2		7	8	50	48	2		10
14	12	47	0		6	8	51	50	3		15
14	13	44	3		303	6	52	49	2		27
14	14	41	5	فالناهية هداوني الباوي	28	6	53	46	4		8
14	15	38	4 .		14	6	54	43	2		18
14	16	35	1		92	6	55	40	1		8
16	17	34	1		30	6	56	37	0	<u> </u>	4
16	18	36	1		24	4	57	37	8		21
16	19	3.8	2		23	4	58	39	4		38
16	20	40	5		65	4	59	41	7	I	24
16	21	42	3		146	4	60	43	6	· · · ·	30
16	22	44	1		490	4	61	45	4		18
16	23	46	0		52	4	62	47	5		16
16	24	48	3		54	Tot	al for	62	177		2206
16	25	50	2		40	fiel	da.				2200
18	26	49	0		29						2
18	27	46	2		23	Are	a of (62 fi	elds :	= 0.09238	s cm
18	28	43			19-19-1	No.	of la	rge I	ppt. =	177 /0.0	9238 2
18	29	40	4		8 .	1 _			=	1916/cm	-
18	30	37	3			X fo	or lar	ge p	pt. =	2.9	
20	31	37	2		8	σfo	or lar	ge p	pt. =	2.0	
20	32	39	2		26	No.	of sn	nall	ppt. =	2206 /0.	09238
20	33	41	2		22				=;	23879 / cr	n"
20	34	43	1		17	Xfo	or sm	all p	pt. =	35.6	
20	35	45	3		19	σfo	or sm	all p	opt. =	72	
20	36	47	3		32						
10	37	50	6		36						
10	38	47	4		13						
10	1 7 0		1 7	1	1 20						

OF FOLL QUALITY

TABLE 42DISLOCATION DENSITYSAMPLE: Semix 4-2-4 (Y)Sample in etched conditionMagnification 1000X, Area of field = 0.000238 cm²X and Y denote the location of microscope stage (field of view) for the
data measured.

ŧ

FIE	LD		No. of Disloca Pits	ation	FIE	ELD		No. of Dislocation Pits			
Y	No.	X			Y	No.	X				
12	1	34	0		10	40	41		202		
12	2	35	0		10	41	38		0		
12	$\frac{1}{3}$	37	0		10	42	35		0		
12	4	39	0		8	43	35		790		
12	5	41	0		8	44	36		165		
12	6	43	0'		8	45	38		84		
12	7	45	0		8	46	40		800		
12	8	47	0		8	47	42		27		
12	9	49	3		8	48	44		7	1	
12	10	50	3		8	49	46		84		
14	11	49	199		8	50	.48		0		
14	12	47	13		8	51	49		0		
14	13	44	0		6	52	49		0		
14	14	41	6		6	53	46		0		
14	15	38	0		6	54	43		0		
14	16	35	0		6	55	40		0		
16	17	35	0		6	56	37		480	11	
16	18	36	2		5	57	38		280		
16	19	38	4		5	58	39		0	+	
16	20	40	0		5	59	41		0		
16	21	42	0		5	60	43		0	1	
16	22	44	0		5	61	45		710		
16	23	46	4		5	62	47		173		
16	24	48	0			1		l			
16	25	49	2		Tota	al for	62		5492		
18	26	47	2		nei	as ;					
18	27	46	0		Dis	locati	ion d	ensity	- 37 2	x 10 ⁴ /or	
18	28	43	580			100000		Chory	- 51.2	x 10 /ch	
18	29	40	3		$\overline{\mathbf{v}}$	- 99	6				
18	30	37	0		Â	- 00, - 10	5				
19	31	37	2			- 17:	,				
19	32	39	0								
19	33	41	188								
19	34	43	470								
19	35	45	175								
19	36	47	0								
10	37	50	0								
10	38	47	34								
10	39	44	0								

134

di.

OF POUR QUALITY

ł

1

TABLE 43Grain Boundary and Twin Boundary DensitySAMPLE:Semix 4-2-8 (Z)Sample in polished condition. Magnification 100X.Field area = 0.0241 cm².Circumference of test circle = $\pi \cdot D$ = 0.55 cm.A denotes No. of grain boundary intersections with circumference of test circle.B denotes No. of twin boundary intersections with circumference of test circle.X and Y denotes field location of the data measured.

FIE	CLD		A	No, of twins	В	FIE	ELD		A	No. of twins	В	
Y	No.	X	GB		Twin	Y	No.	X				
12	1	3.3	8			10	40	41	10		19	
12	2	35	7		29	10	41	38	2		0	
12	3	37	0		2	10	42	35	2		10	
12	4	39	2		3	8	43	34	9		1	
12	5	41	5		8	8	44	36	3		1	
12	6	43	7		.16	8	45	38	4		12	
12	7	45	3		6	8	46	40	2		6	
12	8	47	4		2	8	47	42	12		21	
12	9	49	4		5	8	48	44	5		27	
12	10	51	10		32	8	49	46	5		32	
14		50	5		13	8	50	48	0		28	
14	12	47	4		17	8	51	50	6		15	
14	13	44	3		3	6	52	49	10		0	
14	14	41	3		3	6	53	46	2		51	1
14	15	38	2		0	6	54	43	2		45	
14	1.6	35	G		1	6	55	40	5		7	
16	17	34	Ū	**************************************	28	6	56	37	0		2	
16	18	36	0		0	4	57	37	6		2	
16	19	38	3		8	4	58	39	4		68	
16	20	40	5		50	4	59	41	2		72	
16	21	42	7		5	4	60	43	4		54	
16	22	44	6		7	4	61	45	8	1	25	
16	23	46	12	2 - 9 - 9 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	44	4	62	47	5	l	16	
16	24	48	10		12	(T) - 4		12	202	(1112	l
16	25	50	3		4	100		02	502		1112	
18	26	49	5		5	nei	.05:					
18	27	46	5		75	т	6		hound	π.	्र ग	4.87
18	28	43	12		12		lor g	rain	bound	1ary=-2	L-2 C	$\frac{13}{55} = \frac{13}{57} \frac{9}{2}$
18	29	40	7		33							ent/ent
18	30	37	5		19		fan b-	ein L	ounde	π 1	70	- 51 2
20	31	37	6		19	L'A	101-19	4111 D	ounua	2 (0.55	= 51.2
20	32	39	7		24					-	-	cm/cm ⁻
20	33	41	0		6	$\overline{\nabla}$		a (1	وليستعر		-	
20	34	43	3		4		or gr	am. Sim. L		•⊥y⊷ 4.8 •••	(F	
20	35	45	5		34	σι	or gr	a 10 [Jounga	ry- 5,1	C	
20	36	47	10		20	∇		in h-	undar			
10	37	50	4		13			111 DC		y = 17.9		
10	38	47	5		12	σι	OF TW	n pc	junda r	y = 18.3		
10	39	44	7		13							

OF POOR QUALITY

TABLE 44 Precipitate Particle Density

<u>SAMPLE</u>: Semix 4-2-8 (Z) Sample in polished condition. Magnification 400X. Field area = 0.00149 cm²

A denotes No. of Large precipitates observed in field of view.

B denotes No. of Small precipitates observed in field of view.

X and Y denotes location of microscope stage for the data measured.

FIE	LD		А		В	FIE	LD		•		В
Y	No.	X	Large		Small	Y	No.	X			
12	1	33	0		6	10	40	41	1		6
12	2	35	0		10	10	41	38	2		4
12	3	37	1		5	10	42	35	2		12
12	4	39	1		7	8	43	34			3
12	5	41	0		16	8	44	36	4		3
12	6	43	0		_9	8	45	38	2		11
12	7	45	0	3		8	46	40	0	l	2
12	8	47	2		8	8	47	42	8		17
12	9	49	3		31	8	48	44	4		14
12	10	51	0		49	8	49	46	5		9
14	11	50	0		6	8	50	48	2		7
14	12	47	0		4	8	51	50	1		7
14	13	44	0		3	6	52	49	5		15
14	14	41	0		2	6	53	46	4		15
14	15	38	0		10	6	54	43	0		16
14	16	35	1		2	6	55	40	0		2
16	17	34	0		22	6	56	37	0		28
16	18	36	0		0	4	57	37	0		1
16	19	3.8	0		23	4	58	39	0		6
16	20	40	0		1	4	59	41	0	[3
16	21	42	3		27	4	60	43	0		8
16	22	44	0		13	4	61	45	0		3
16	23	46	0		35	4	62	47	0		1
16	24	48	0		37	Tota	alfor	62	64		1056
16	25	50	4		13	fiel	da.		01		1050
18	26	49	0		86						. 2
18	27	46	I		12	Are	a of (52 fi	elds	= 0.09238	cm
18	28	43	0		<u> </u>	No.	of la	rge I	ppt. =	64 /0.0	9238 2
18	29	40	0		26	1 _			=	693 / cm	
18	30	37	0		7	X fo	or lar	ge p	pt. =	1.0	
20	31	37	2		57	σfo	or lar	ge p	pt. =	1.67	
20	32	39	<u> </u>		51	No.	of sn	n all	ppt. =	1056 /0.	09238
20	33	41	0		46					11430 / cr	ກ"
20	34	43	0		79	X fc	or sm	all p	opt. =	17.0	
20	35	45	0		33	orfo	r sm	all p	opt. =	18.3	
20	36	47	1		44						
10	37	50	3		30						
10	38	47	0		24						
10	30	44	0		17						

#. # 4

)

ORIGINAL PART IN OF POOR QUALITY

TABLE 45DISLOCATION DENSITYSAMPLE: Semix 4-2-8 (Z)Sample in etched conditionMagnification 1000X, Area of field = 0.000238 cm²X and Y denote the location of microscope stage (field of view) for the
data measured.

ĩ

i,

Ŀ

FiE	LD		No. of Dislocation Pits	on	FIE	LD		No.	of Disloca Pits	ation
v	No	X			Y	No.	x			
12	1	34	8		10	40	41		1	
12	2	35	31		10	41	38		5	
12	3	37	5		10	42	35		0	
12	4	39	131		8	43	35		3	
12	5	41	0		8	44	36		0	
12	6	43	6		8	45	38		0	
12	7	45	6		8	46	40		0	
12	8	47	10		8	47	42		18	
12	9	49	2	1	8	48	44		1	
12	10	50	7	I	8	49	46		6	
14	11	49	0		8	50	48		480	ļ
14	12	47			8	51	49		195	
14	13	44	1		6	52	49		68	
14	14	41	7		6	53	46		10	
14	15	38	0		6	54	43		76	
14	16	35	0		6	55	40		0	
16	1.7	35	0		6	56	37		2	
16	18	36	0		5	57	38		0	
16	19	38	5		5	58	39		0	
16	20	40	12		5	59	41		0	
16	21	42	33		5	60	43		30	
16	22	44	18		5	61	45		162	
16	23	46	340		5	62	47		55	
16	24	48	0		Tota	1 for	62		2401	
16	25	49	41		fiel	ب ہے	02		AH7I	
18	26	47				· (/')				Л
18	27	46	<u> </u>		Dis	locati	ion d	ensity	r = 16.9	$x 10^{7}/cn$
18	28	43	7	··						
18	29	40	159		\mathbf{X} :	= 40.	2			
18	30	$\frac{37}{27}$			6	= 86.	9			
19	31	37								
19	32	39	0							
19_	33	$\frac{41}{42}$	57							
19	34	43	272							
$\frac{19}{10}$	35	45	616							
19	36	47	72							
10	37	50								
10	38	47								
10	1 40	1 44								