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Summary 
A  multivariable regression analysis was performed on 

traction  data  for  two  modern  traction fluids, Santotrac 
50 and TDF-88,  over  a wide range  of  operating 
conditions.  For these tests maximum  contact  pressures 
ranged from 1 .O to 1.9 GPa; rolling  speeds  from  10 to 80 
m/sec; oil inlet temperature  from 27" to 73" C ;  contact 
ellipse ratios  from  1 to 5; and spin  angles  from 0 to 30". 
A total  of 187 experimental  traction curves for  the 
Santotrac 50 and 147 traction curves for  the TDF-88 
fluid were analyzed. An eight-term  correlation  equation 
to predict the maximum  traction  coefficient p, and a six- 
term  correlation  equation to predict the initial  slope m of 
the  traction curve were developed. Both p and m must  be 
known at  the  appropriate  operating  condition  before a 
traction  contact  performance  analysis, of the  Johnson 
and Tevaarwerk  type,  for  example,  can  be  conducted.  A 
performance analysis can be used to determine the 
traction, creep,  spin torque,  and  contact power loss 
associated with a given traction  contact. A simplified 
slope  correction was developed to correct  the  slope 
correlation for size effect  considering the compliance  of 
the  disks. The  correlation  equations  developed were also 
used to  study  the effects of  different  operating  conditions 
on  the  traction  performance of  each  traction  fluid. 

The  correlation  equations fit the  data reasonably well 
over  the  range  of  operating  conditions. Both traction 
fluids  exhibited  a loss in traction with increases in spin, 
but  the losses with the  TDF-88  fluid were not  as severe as 
those with Santotrac 50. Overall, both fluids  exhibited 
similar performance,  showing an increase in traction with 
contact  pressure up  to  about 2.0 GPa,  and a  reduction in 
traction with higher surface  speeds  up to  about 100 
mlsec.  The  apparent stiffness  of  the  traction contact, 
that is, film-disk combination, increases with contact 
pressure and decreases with speed. 

Introduction 
The  traction characteristics of a  lubricant  are  of  great 

importance to the  performance  of  many  machine 
elements, such as bearings,  gears, and  traction drives. 
The effective  traction  coefficient  occurring  in the  contact 
dictates  the  amount of  slip in ball  bearings,  the skew in 
roller bearings,  and the creep rate across  a  traction-drive 
contact.  The  product of the  traction  force  and slip rate is 
also  a  direct  measure  of  the  load-dependent power loss of 
a rolling-element contact. 

For  traction drives the  traction coefficient is the single 
most  important  parameter in determining  its  life, size, 
and performance. The  fatigue life of a traction-drive 
contact  has been theoretically  shown to  be  proportional 
to  the cube of the  coefficient of  traction  for  a given size 

and a  constant  torque level (ref. 1). It was also  shown 
that  the size of the  traction drive is inversely proportional 
to  the coefficient  of  traction to  the 0.36 power. 

The  traction coefficient  not  only  dictates the  amount 
of  traction  that  can be imposed  across  a  traction  contact 
without  slip,  but  also  determines  the  degree of creep and 
hence  power loss that will be developed. In this  regard, 
several theoretical  investigations  predict the  performance 
of  a  traction-drive  contact using the  rheological 
characteristics  of the  lubricant  as it passes through  the 
elastohydrodynamic  (EHD)  contact (refs. 2 to 7). 
Contact  pressure,  temperature,  shear  rates, and  lubricant 
composition all play important roles in determining 
whether the  lubricant film  exhibits viscous or elastic-solid 
behavior.  It is now generally accepted  (refs.  7 to 10) that, 
in most rolling-element contacts,  the  lubricant behaves 
elastically at small  strain  rates,  that is, at low siiding 
speeds and  that  at higher sliding speeds the  lubricant film 
exhibits highly nonlinear viscous behavior and  tends to 
shear or "yield" like a plastic-solid. Thus,  the  lubricant's 
behavior in a  traction  contact  can  be  modeled with 
reasonable  accuracy  as an elastic-plastic  material  having 
some  characteristic  shear  modulus G and  some limiting 
or critical yield stress 7c (ref. 7). These  two  lubricant 
parameters, which vary with pressure,  temperature, 
velocity, and  contact  geometry, must be determined 
under  the  appropriate  operating  conditions  before 
traction  contact  performance  calculations  can  be 
performed  (refs. 11 and 12). 

In  a typical traction-drive contact, severe transient 
operating  conditions  are  imposed  on  the  lubricant.  The 
lubricant is swept into  the  contact, exposed to contact 
pressures, which are 10 000 times atmospheric or greater, 
and  returned  to  ambient conditions-all in a few 
milliseconds. Because of  the  difficulty  of  simulating  the 
highly transient  nature of an  actual  traction  contact, fluid 
property  data deduced from experimental  traction curves 
(ref. 7) have given more  satisfactory  results in traction 
calculations than  primary measurements from oscillatory 
shear viscosimeters or similar laboratory  equipment. 
However,  some  progress  has been made in resolving the 
computational  differences in these two  methods (ref. 13). 
In  references 7, 11, and 12, Johnson  and Tevaarwerk 
present  a  comprehensive  traction-contact  analysis which 
incorporates  the  lubricant's  shear  modulus  and limiting 
shear  stress in the  form of several dimensionless 
parameters.  These  parameters  can  be  written  in  terms of 
the  maximum  traction coefficient p and  the initial  slope 
m from  an experimental  traction  curve using the 
transformation  methods described in references 7 and 11. 
Until  recently,  traction data  for  modern  traction fluids 
over  sufficiently broad  operating  conditions  for design 
purposes has been relatively scarce  (refs.  14 to 17). In 
reference 18 experimental  traction data were obtained  for 
two  modern  traction fluids  over a range  of speeds, 



pressures, temperatures,  contact ellipticity  ratios, spin, 
and sideslip  values  encountered  in traction drives.  These 
data,  although correlated  against the  major  independent 
variables,  were  not  presented in a  form  convenient  for 
use in traction calculations. The objectives  of the present 
investigation were to (1) perform a regression  analysis on 
the  data  of reference  18  in order  that  the rn and p 
coefficients  can  be  readily  predicted at  any  intermediate 
operating  condition, (2) develop  a  simplified  slope 
correction that  accounts  for  the  compliance  of  the disk 
material,  and (3) use the results of  the regression  analysis 
to  study  how these  variables are affected  by  speed, 
pressure, temperature, ellipticity ratio,  and spin. 

Symbols 
contact ellipse semiwidth  transverse to 
direction  of  rolling, m 

Kalker coefficients in x and y direction, 
respectively 

contact ellipse semiwidth in direction of 
rolling, m 

lubricant  contact  parameter,  (3?r/8)(m/p) 
X &  

traction coefficient  correlation  coefficients 
modulus  of  elasticity, Pa 
=2/[[(1- vi)/E~] + [(l - v i ) / E ~ ] ]  
surface traction  force, N 
elastic  shear  modulus, Pa 
apparent elastic  shear  modulus  of  contact 

elastic  shear  modulus of disk material,  Pa 
Herztian  contact size parameter,  m 
elastohydrodynamic  central film thickness, 

system (film + disks), Pa 

m 
dimensionless  traction  parameters 
initial  slope  correlation  parameters 
contact ellipse ratio, a / b  
initial  slope  of traction  curve (film +disk) 
dry initial  slope of traction  curve (disk 
only) 

normal  load,  N 
regression  coefficient 
equivalent  relative  radii of curvature in 

radius  of curvature, m 
spin torque, N-m 
temperature, “C 
rolling surface velocity in x-direction, m/s 

x-and  y-directions,  respectively, m - 1 

AU 
V 
AV 
CY 

e 

r10 

P 

PP Py 

E 
P 
00 

TC 

WS 

Superscripts: 
I 

* 

Subscripts: 
A 3  

longitudinal  slip  velocity, m/s 
rolling  surface velocity in y-direction, m/s 
sideslip  velocity,  m/s 
lubricant  pressure-viscosity  coefficient, 
Pa-] 

elliptical  integral of  the first  kind 
lubricant  ambient  absolute viscosity, poise 

(or  NWm2) 
maximum  traction coefficient of  traction 
curve 

traction coefficient in x- and y-directions, 

elliptical  integral of the  second  kind 
relative curvature  sum,  m - 1 

maximum  contact  pressure, Pa 
critical yield stress  of film, Pa 
spin  velocity, sec - 1 

respectively 

dry rolling  body  only 
either  second  set  of  rollers or  the rollers 
being analyzed 

rolling-element bodies A and B 
X>Y x (rolling) and y (normal  to rolling) 

f lubricant film only 
direction 

Performance  Predictions 
The  distribution of local  traction forces in the  contact 

of an  actual traction-drive  can be rather  complicated,  as 
illustrated in figure  1 which shows  the  distribution of 
local traction vectors in the  contact when longitudinal 
traction,  misalinement,  and  spin  are  present.  These 
traction forces will aline themselves with the local  slip 
velocities. In  a traction-drive contact,  some  combination 
of creep,  misalinement,  and  spin is always  present. To 
determine  the  performance  of  a  traction-drive  contact, 
the  elemental  traction  forces  must be integrated  over the 
contact area. 

In  the 1960’s and early 1970’s numerous  papers  were 
presented  on  the  prediction  of  traction in EHD contacts 
(refs. 19 to 21). About this  time Poon (ref. 4) and 
Lingard  (ref. 5) developed grid  methods  for  shear  stress 
integration to predict the available traction forces of a 
contact  experiencing  spin.  Poon’s  method used the basic 
traction  data  from  a twin-disk  machine  together with 
contact  kinematics  to  predict  the  available  traction. 
Lingard used a theoretical approach in which the EHD 
film exhibited a  Newtonian viscous behavior  at low shear 
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Figure 1. - Effect of misalinement and spin on contact  traction  force vectors. 

rates  until  a  critical  limiting  shear stress was reached. At 
this  point  the film yielded plastically with increasing 
shear  rate.  The most recent and  perhaps most 
comprehensive  traction-contact  model is that  proposed 
by Johnson  and Tevaarwerk  (refs. 7, 11, and 12). Their 
model covers the full  range of viscous,  elastic, and plastic 
behavior of  the  EHD film.  This  type of behavior  depends 
on  the Deborah  number, a relative measure  of elastic-to- 
inelastic  response, and  on  the  strain  rate.  At low 
pressures and speeds (low Deborah  number),  the film 
exhibits  linear viscous behavior at low strain  rates. It 
becomes increasingly more  nonlinear with increasing 
strain  rate.  At  higher  pressures  and  speeds,  more  typical 
of traction-drive  contacts, the response is linear and 
elastic at low rates of strain.  At sufficiently high strain 
rates,  the  shear stress  reaches some limiting  value, and 
the film shears  like  a  plastic  solid, as in the case of  some 
of the earlier  traction  analytical  models (refs. 2 to 5) .  

Tevaarwerk  presents  graphical  solutions  developed 
from  the  Johnson  and Tevaarwerk  elastic-plastic  traction 
model  (refs. 11 and 12). These  solutions  are  of practical 
value in the design and  optimization  of  traction-drive 
contacts. By knowing m (related to shear  modulus)  and p 
(related to limiting shear  stress) from a  zero-spin/zero- 
sideslip traction  curve,  the  traction,  creep, spin torque, 
and  contact power loss can  be  found over a wide range of 
spin values and  contact geometries. 

In  the  Johnson  and Tevaarwerk  model, several 
dimensionless  parameters were identified that best 
generalized the results of their  analysis.  These  parameters 
can  be  written in terms  of  the  shear  modulus  and limiting 
shear  stress  properties of  the  lubricant or in terms of the 

measured m and p from  a simple experimental  traction 
curve (fig. 2) .  At  this  time it  is more  convenient  and 
reliable to work with actual  traction  data  rather  than 
fundamental fluid  property  data. Fluid property  data  are 
usually generated  under  experimental  conditions that  are 
much  different  from  those in a  traction  contact. For the 
Johnson  and Tevaarwerk dimensionless groupings,  slope 
and maximum  traction  coefficient  data  must be obtained 
from  a zero-sideslip/zero-spin traction  curve  for  the 
lubricant in question.  These  reference  data must also be 
obtained  at  the  same  contact  pressure,  temperature, 
rolling  speed, and  for  the same aspect ratio,  area,  and 
disk material  as  the  contact to be analyzed.  However, it  is 
possible to use data  obtained  from tests where the 
ellipticity ratio  and  contact  area  are  different if certain 
corrections  are  made to the  slope, as will be shown. 
Traction  data of  two  common  traction  fluids  over  a wide 
range of operating  conditions  appear  later in this  paper. 

Figure 2 -Typical  traction  curve showing maximum  traction 
coefficient and traction slope in. 
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With  the  Johnson  and  Tevaarwerk  analysis,  knowing 
just rn and p from  a simple traction test leads to the 
prediction of the entire  traction-creep  curve  under any 
combination  of sideslip and  spin. Also, the  traction  force 
transverse to  the rolling direction and  contact power 
losses can be readily determined. 

The  solutions to this analysis (refs. 11 and 12) are given 
in terms  of  the following dimensionless parameters: 

Slip 

AU 
J l = C -  U (1 1 

Sideslip 

AV 
J z = C - - -  U (2) 

Spin 

us& J3=C--  U (3) 

Traction 

J 4 =  "x (4) 
P 

Side traction 

J 5 =  h (5 )  
P 

Torque  normal  to  the contact 
T 

J 6 =  ~ (6) 
p N G  

Total power loss 

J 7 = J 4 J 1   + J s J 2 + J 6 J 3 =  ( F ,  A U + F ,  A V +  pus) (7) 
C 

PNU 

where C is lubricant  contact  parameter expressed as 

The power loss term J7 can  be  put in a more convenient 
form in terms of a loss factor L where 

L=J?=C power loss 
54 power input 

Thus,  the  ratio  of power loss to power input  may  be 
determined from  equation (9) by knowing the  lubricant 
contact  factor C and  the loss factor L for  the  contact 
being analyzed. 

Traction Fluid Data 
To be able to apply  the  Johnson  and Tevaarwerk 

analysis to the design of a  traction  contact, p and rn must 
be determined at  the  appropriate  operating  condition. 
Recently, experimental  traction data of this  type were 
obtained  for  Monsanto's  Santotrac 50 and  Sun Oil's 
TDF-88 over the  range of  operating  conditions  that 
might be encountered in a  traction  drive  (ref. 18). The 
properties  of  these  lubricants  appear in table  I. 
Approximately 191 and 152 separate  traction tests were 
conducted with the  Santotrac 50 and TDF-88 test fluids, 
respectively. Maximum  contact  pressures  ranged from 
1.0 to 1.9 GPa; rolling speeds from  10 to 80 m/sec;  oil 
inlet temperatures  from 27" to 73 ' C; contact ellipse 
ratios  from 1 to 5; and spin angles from 0 to 30. A wide 
range  of  traction-versus-slip curves were obtained  as 
illustrated in figure 3.  

A twin-disk traction  tester, is described in detail in 
references 9  and 18, was used to generate the  traction 
data. Basically, the tester consists  of  a  transversely 
crowned  upper disk which is driven by a  cylindrical lower 
disk, powered by a variable-speed electric motor.  The 

TABLE I .  - TRACTION  LUBRICANT  PROPERTIES 

Property I Lubricant 

Santotrac 50 

Kinematic viscosity, crr?/sec ( c s )   a t  - 

Flash  point', K ( O i )  

Fire  point, K ( O F )  

Autoignition  temperature, K ( O F )  

Pour point, K ( O F )  

Specific heat a t  311 K (100' F), 

Thermal conductivity a t  311 K (100" F), 

Specific  gravity a t  311 K (looo F )  

J/kgK (Btu/lb O F )  

J/m sec K ( B t u  hr f t  O F )  

0.34 (34) 
0.056  (5.6) 
435  (325) 

600  620 
236 [-35\ 

2130 (0.51) 

447 (345) 

0.10  (0.06) 

0.889 

TDF-88 

0.054  (5.41 
0.42 (42 

408  (275 
428  (3101 

1895  (0.451 

0.11  (0.066) 

0.888 

"""""" 

236 (-35 

-1 
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550 r Traction Coefficient 

A total of 187 traction  coefficient data points  for  the 
Santotrac 50 fluid and 147 data  points  for  the TDF-88 
fluid were analyzed.  After successfully evaluating several 
forms  of  the regression equation,  the following 
expression best represented the  data with the fewest 
terms: 

100 

50 

0 

- SANTOTRAC 50 A 
B 
C 
D 

---- TDF-88 E 
F 
G 
H 

32 
69 
29 
69 
33 
70 
70 30 

MAXIMUM 
KRTZ 

PRESSURE. 
G Pa 

1.45 
1.  00 
1. w 
1.00 
1.45 
1.0 
1.9 
1.45 

SPEED, 
U. 

m kec 

20 
80 
20 
80 
10 
30 
10 
M 

E W  P- NORMAL 
TlClN LOAD. 
RATIO N 

5 
5 
1 
1 

C 

B 

D 

I I 
.1  . 2  . 3  . 4  .5 

Moo 
1500 
1400 
ax, 

1400 
460 
416 
185 

.J 
. 6  

SIDE SUPVF,IOBTY. A V ,  m h e c  

Figure 3. - Range of typical  side  slip  traction  curves. (From ref. 68.) 

.~ 

upper disk is dead-weight loaded  against  the lower disk 
and is supported in a  cradle  that is free to pivot around a 
vertical axis to generate  a sideslip velocity. The  cradle can 
also tilt the upper disk as shown in figure 4 to generate 
angular  spin velocity. The transverse  radius  of  curvature 
of the  upper disk can be varied to vary the  contact 
ellipticity ratio. 

Regression Analysis 
To apply  the  Johnson  and Tevaarwerk analysis to  the 

design of  traction-drive  contacts, p and rn appearing in 
equations (1) to (9) must be determined at the  proper 
operating  speed,  contact  pressure,  temperature,  aspect 
ratio,  and spin level for  the  lubricant in question. To 
accomplish  this, a polynomial regression analysis was 
applied to  the  data  of reference 18. The statistical 
techniques  described  in  reference 22 were used. 

The coefficients  of  this  correlation equation  for each 
of  the test fluids are given in table 11. The  correlation's 
regression coefficient R, a  measure of  the fit of  the 
regression equation, is equal to 0.884 for  Santotrac 50 
and 0.890 for TDF-88  fluid. (An R-value of 0 indicates 
no correlation; an R-value  of 1.0 indicates  a  perfect 
correlation.) A comparison of predicted and measured p 
data  for  the test fluids  appears in figure 5. It  should be 
remembered that  the deviation between measured  and 
predicted values is a  function  not  only  of  the  form  of  the 
correlation  but  also  of  the  random  error or scatter 
associated with the  measurements.  Thus,  the value of  R 
cannot  attain 1.0 with experimental data,  no matter  how 
well the model  fits  (ref. 22). 

Initial Slope 

The m to be used in the  Johnson  and Tevaarwerk 
model is to be obtained  from zero-spin traction  curves. A 

Figure 4 -Twin disk traction  tester  with upper 
disk tilted. 
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TABLE 11. - COEFFICIENTS FOR MAXIMUM TRACTION 

COEFFICIENT  CORRELATION  EQUATION 

Coefficient 

.08 

Maximum traction  coefficient,  
1.1, for  - 

Santotrac 50 

0.0726 

.047 7 

- .0102 

-6.92~10 
-4 

2 . 7 4 ~ 1 0 - ~  
-4 

- 3 . 4 1 ~ 1 0 - ~  

-2.13~10 

-1.22 

TDF-88 

0.0733 

.0443 

“0116 

-7.36~10 
-4 

2 . 3 8 ~ 1 0 ~ ~  

- 9 . 0 8 ~ 1 0 - ~  

-1 

- .433 

0 .02 .M .06 .08 . lo  .12 
1 - 1  

PREDICTED MAXIMUM TRACTION COEFFICIENT 

(a) For  Santotrac 50. 
(b) For TDF-88. 

Figure 5. - Predicted  and  measured  maximum  traction 
coefficients. 

regression analysis was performed  on 73 and 101 slope 
data points  for  the  Santotrac 50 and TDF-88  traction 
fluids, respectively. The regression model took  the 
following form: 

m=K1 + K ~ u O + K ~  In(ao)+KqU+KgU2+K6T+K7k (11) 

Table 111 lists the coefficients for  equation (11) for 
each of the test  fluids. The R-values for  the regression are 
0.852 and 0.803 for  Santotrac 50 and TDF-88, 
respectively. A comparison of predicted and measured rn 
data appears  in  figure 6.  

Slope Correction 
The m of an experimental  traction  curve is a  measure 

of the  tangential  stiffness or apparent  shear  modulus G 
of  the lubricant film and metal  surface  combination. 
When the film is thin and  stiff, as it is at low speeds and 
high pressures, the  tangential  deformation  or compliance 
of  the disk material is not negligible in comparison. Since 
the  slope  produced by the disks in dry  contact  (i.e., 
without  a  lubricant  film) is independent  of  the disk size, 
while that  produced by the film and disk system is not, a 
change in disk size will affect the measured  slope of  the 
film-disk system even if all of the  remaining  operating 
variables are kept the same. Thus  to use slope data 
generated  under  identical  operating  conditions,  but with 
disk of  different size, an adjustment  must be made.  This 
adjustment  can  be  made  under  the  assumption  that  the 
elastic shear  modulus  of  the  film  alone Gf will not be 
affected by changes in disk size under  identical  operating 
conditions.  The  approach  to be taken is then to relate the 
shear  modulus  of  the film to the  measured  slope  of  the 
film-disk system as  follows. 

TABLE 111. - COEFFICIENTS FOR INITIAL SLOPE 

CORRELATION  EQUATION 

Coefficient 

K1 

K2 

K3 

K4 

K7 

T In i t i a l  slope, m, fo r  - 
Santotrac 50 

101.4 

-45.49 

69.44 

,289 

1 . 3 0 ~ 1 0 - ~  

6 . 6 3 ~ 1 0 - ~  

-2.99 

TDF-88 

51.3 

-6.53 

17.20 

- -646 

4 . 9 9 ~ 1 0 - ~  

.236 

-1 -24 

6 
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(a) For Santotrac 50. 
(b) For TDF-88. 

Figure 6.  - Predicted  and  measured slopes. 

Theory 

The rn is related to  the  apparent  shear  modulus  of  the 
contact system G by the expression  (ref. 1 1 ) :  

Therefore, two systems having the  same  apparent  shear 
modulus  operating  at  the  same  pressure,  temperature, 
velocity, and ellipticity ratio will have a different rn, if the 
contact  semiwidth b in the rolling  direction  or EHD 
central film thickness h, are  different.  Thus,  to use slope 
data  generated experimentally with traction rollers  of one 
size to  predict the  performance  of a set of  rollers running 
under  the indentical  operating  conditions but  of a 
different size, hence,  different b and h,, a slope 
correction  factor must  be  applied. The  correction  factor 
is the  ratio  of  the  two  initial slopes: rn*/rn. 

To develop a simple  slope  correction factor,  the 
compliance  of  the disk  material ( 1  /m ') must  be  separated 
from  the  compliance  of  the  contact system (l/rn). In this 
way the  compliance  of  the  lubricant film (l/rnf) may be 
determined  (ref. 23). As in the case  of  two  springs  in 
series, the  compliance  of  the film and disk  system is the 
summation  of  the  compliance  of each  element as follows: 

where rn is the  slope  of  the film and disks  together  as 
normally  measured,  rnfis  the  slope  produced by lubricant 
film alone,  and rn ' is the slope  produced by a  dry  rolling 
body. 

In accordance with the  Johnson  and Tevaarwerk 
model  (ref. Il), the  lubricant is thought  to behave 
elastically at small  strain  rates.  It  therefore follows  that 
the  shear  modulus  of  the film Gfis  proportional  to  the 
slope  of  the  traction curve  produced by the  lubricant film 
alone.  Thus,  the  apparent  modulus  of  the  contact system 
G can  be  corrected  using  equation (13) to  approximately 
determine  the  modulus  of  the film alone  as  follows: 

The  above  compliance  correction assumes that  the fluid 
film  behaves  elastically  over the  entire  contact, when in 
fact it will behave  elastically  only in the center of the 
contact  where  the  Hertzian  pressures  are  sufficiently 
high. A more  detailed  analysis  (ref. 24) numerically 
integrates  the  tangential  traction  distribution  throughout 
the elastic region of  the  contact  and gives fluid  shear 
moduli  that  are significantly higher than  those given by 
equation (14). However,  the interest  here is to determine 
the relative effect that changes in contact  area  and  EHD 
film thickness  have on shear  moduli or, more  specifically, 
slope  under the given operating  conditions. It is therefore 
expected that on a  relative basis the simplified  correction 
adopted  here will give acceptable  results. 

Using the  assumption of reference 1 1  that,  for slope 
measurements  made with disks  of  different  geometry  but 
under  identical  pressure,  speed, and  temperature,  the 
elastic  shear  modulus  of the film with one set of  disks Gf 
would  be  approximately  equal to  the film  modulus G j  
obtained with a  second set of disk's and using equations 
(12) and (14), one  can write: 

where * denotes  variables from  the second  set  of 
experiments. 

Simplifying equation (15) and  noting  that  the  contact 
pressure uo is the  same  for  both sets  of  tests yields 

The  slope  of  two elastic  bodies in dry rolling traction 
contact rn' can  be  deduced  from reference 25 as follows: 
The  creep in the  x-direction, AU/U,  and  that in the 



y-direction, AV/ V, are  shown in reference 25 to be 
related to  the  surface  traction forces Fx and F, by 

m" -A22- 3 Gs 
y -  21r a0 

If, in equation (16), the variables with asterisks  denote 
the  conditions  for  the case being analyzed by the user and 
if those  without  asterisks  denote the  conditions  under 
which the  slope data were generated as  obtained  from  the 
regression analysis  herein,  then  equations (22) and (23) 
can  be  substituted  into  equation (16). Since the  slope data 
were generated on a sideslip type  traction  tester  (ref. 21), 
so m' =mi, and since the  slope data will usually be 
required in the rolling  direction, so that m ' * =mi, 
equation (16) can be rewritten  as 

where All ,  A22 are  Kalker  coefficients in x and y 
direction, respectively, given in reference 25 as  function 
of  Poisson's  ratio, v, and ellipticity ratio, k (plotted in 
fig. 7 for v=O.3) and where Gs is the  shear  modulus of 
the disk material such that, for  steel, 

G - ~ = 79.3 GPa (1 1.5 x 106 psi) G 
s- 2(1 + v) From  equations (A7) and (A12) given in  the  appendix,  it 

is shown that 

b* - R: "- 
b Rx 

Since 

and 

0.33 

Therefore,  equation (24) can be simplified further  to and 

3 N  
a o = G  2 

then  from  equations (17) to (21) 

m" " A l l  - 3 Gs 
x -  27r a. 

For a  Poisson's  ratio  of 0.3, the  terms 1/All and 
All/A2,2 in equation (25) can be fitted to a  good 
approximation by the  following expressions: 

5.5 7 
N 
N 

a 5.0 
a 4.5 
4" 

4.0 

2 3.5 

3.0 

%I 2.5 a 

a z 

Ei 
U 
Y 

E 
W (See figs. 8 and 9.) Thus,  for  the steel test rollers used in 

reference 18, where G,=79.31 GPa, equation (25) can be 
simplified using the  approximation  shown in equation 
(26) as follows: 

L? z o z  
0 . 2  .4  .6 .8 1.0 1.2 1.4  1.6  1.8 20 

RECIPROCAL OF ELUPTICITY  RATIO, I l k  

Figure 7. - Kalker  coefficients  versus  reciprocal  ellipticity 
ratio. Poisson's ratio, 0.3. (From  ref. 20. ) 
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Application of Slope Correction 

The  slope  data presented  here were generated with 
disks  having an equivalent  radius R,  of 22.57 mm  for  the 
Santotrac 50 data  and 12.50 mm for TDF-88 data. If the 
disks to be analyzed  have an R,  different  than  those 
values,  then  equation (28) may  be  solved to determine  the 
appropriate  correction  factor m * / m ,  which can  then  be 
applied to  the m value  calculated from  the  correlation 
equation (1 1) to  obtain  the  corrected  slope  for  the case  in 
question.  Alternatively,  the m * / m  factor  can  be  found 
from figure 10 for each of the  two test fluids by knowing 
R:, the ellipticity ratio k, and  the  contact  factor, 

It is apparent  from  figure 10 that,  at  a given operating 
condition  (i.e.,  at  a given pressure,  surface  speed,  and 
temperature), m * / m ,  and hence slope,  increases with disk 

mq,,-0.21/k. 

Figure 8. - Comparison of reciprocal  Kalker  coefficient  and 
its  approximation [O. 29 exp (-0.21/k)]. Poisson’s  ratio, 
0.3. 

d 1.5 r 
i 

Y 
0 

1.1 

z 
1.0 t i  I I I, 

0 .2 .4  . 6  . 8  1.0 1.2 1.4 1.6 1.8 2 0  
RECIPROCAL OF  ELL1 PTlClTY RATIO, I l k  

Figure 9. - Ratio of Kalker  coefficients  versus  re- 
ciprocal of ellipticity ratio.  Poisson’s  ratio, 0.3. 

size. This is because m at  constant G is proportional  to 
b/h, (see eq. (12)) and b/h,, in turn, is proportional  to 
the 0.67th  power  of size as  shown in the  appendix. 
Increasing UO, and  thus  the second  term in equation (25), 
causes a reduction in m * / m  because at high pressures, 
nearly all of  the  compliance is due  to  the disks whose 
compliances are size independent. The ellipticity ratio k 
has  a relatively small  effect,  altering  only slightly the 
Kalker coefficient  term in equation (28). 

Results and Discussion 
Effect of Operating Conditions 

As  mentioned  before,  knowledge  of p and m and  the 
effects  that  operating  conditions have on them is of  great 
importance in the  optimization  of a traction  mechanism. 
The  correlation  equations (10) and (1 1) can be 

3.0 - 
CONTACT  FACTOR, ELL1  PTI  CITY 

mcJe-O. 21/k RAT1 0. 

25 - ” 20 k 

2.0 - 

1.5 - 

F 

CL 
CL 
0 
V 

y 3 . 0 -  

E s 2.5- 

Ln 

20 - 

””” ”““ - 
1 

I I 
0 10 20 30 40 50 60 70 80 90 100 

EQUIVALENT  ROLLING  RADIUS, Rx = (l/Rax + l/Rbx)-’, mm 

(a)  Santotrac 50 slope correlation. 
(b) TDF-88. 

Figure 10. - Correlation of size effects using slope correction 
factor. 
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conveniently used to study  the effects that speed, 
pressure,  spin, and lubricant  type have on these  traction 
performance  factors. 

Regression limits. - Based on a limited extrapolation 
of  the test data's  operating  variables,  the likely usable 
range  of  the regression equations (10) and (11) is 

u0 = 1 .O to 2.5 GPa 

U= 1.0 to 10 m/s 

k=0.5 to 8 

usdab 
U 

= O  to 0.04 

Effect of speed  and pressure. - As shown  in  figures 1 1  
to 14, p and m tend  to benefit from  an increase  in  contact 
pressure or a reduction in surface velocity. Increases in 
pressure  tend to increase the film's resistance to  shear, 
that is,  its viscosity and/or "yield" shear  strength. 
However, as suggested by figure 12, the film's  shear 
strength seems to reach some limiting value  at  some 
pressure, beyond which there is little or  no gain. This 
behavior  has been observed by others (refs. 16 and 26). 

Increases in  surface velocity are detrimental to p and 
m. The loss in traction is due to  the increase in lubricant 
film thickness, which varies approximately with surface 
velocity to 0.7th power. As shown  in the  thermal analysis 
of references 26 to 18, thick films hinder the heat  transfer 
from  the center plane of the film to  the cooler disk 
surface,  thereby  raising  the  center  plane  film 

10 k 
MAXIMUM 
CONTACT 

PRESSURE, 
G Pa 

,r 2.5 

q 2.04 
a 

.02 

I l l l l l l l l l l  
0 10 20 30 40 50 60 70 80 90  100 

SURFACE VELOCITY, mlsec 

Figure 11. - Effect of surface velocity on  maximum  traction 
coefficient.  Predicted  from  Santotrac 50 correlation. 
Temperature, 80' C; ellipticity  ratio, 5; zero spin. 

temperature. As with most  materials, increases in 
temperature  tend  to  reduce  the  shear  strength  of  the film 
and  thus reduce  its effective traction  coefficient.  The 
traction coefficient and slope  correlated data in figures 11 
and 12 tend to reach some minimum value with 
increasing speed. This is consistent with the observation 
that film thickness  tends to reach some  maximum 
limiting value with increasing speed due to thermal  and 
starvation  effects.  Figure 12 shows that  the slope  tends to 
rise with pressure, reaches a maximum  (near 1.5 GPa), 
and  then diminishes  as  disk  compliance  becomes 
significant. 

Figure 13 shows typical predicted and measured 
traction coefficient data  for  the  Santotrac 50 fluid at  one 

MAXIMUM 
CONTACT 

PRESSURE, 

!& 

10 

1 I I 
0 10 2 0 3 0  40 50 60 70 8 0 9 0 1 0 0  

SURFACE VELOCITY, mlsec 

Figure 12 - Effect of surface velocity on initial slo e. Predicted 
from  Santotrac 50 correlation.  Temperature. 80 8 C; ellip- 
ticity  ratio, 5; zero spin. 
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1 I I I I I I I  
0 1 O a O 3 0 4 0 5 0 6 0 7 0 8 0  

SURFACE VELOCITY, mkec 

Figure 13. - Comparison of test data and  regression  analysis. 
Santotrac 50; temperature, !3? C; zero spin. (Test data 
from ref. 18.) 
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operating condition. For this condition the correlation 
tends to overpredict the  traction coefficient at the lowest 
pressure and two higher speeds, but shows good 
agreement at the lower speeds and also at higher 
pressures. The variation in fit exhibited in figure 13  is not 
uncommon for experimental data of this type, which 
lacks a high  degree of repeatability, as evidenced  by the 
scatter shown for repeat test runs. Taken  as  a whole, the 
correlation equations (10) and (1 1) represent the data 
well, although  there  are obviously regions where there is 
better or worse agreement. 
Effect of spin. -Spin,  the result of a mismatch in roller 

radii at contact points on either side of the point of pure 
rolling has a detrimental effect on  traction  performance 
(fig.  14). It occurs in contacts having conical or 
contoured rolling-elements, such as  an  angular  contact 
bearing, where the tangent to the point of contact  and  the 
axes of rotation  are noncoincident. Spin creates a circular 
slip velocity pattern (fig. l), which disrupts useful 
traction;  that is, the component of traction in the rolling 
direction. It also contributes to spin heating, which also 
reduces the shear strength of the film because of the 
increased temperatures. 

Figure 15 shows that not all lubricants have the same 
sensitivity to spin. It is apparent  that  the TDF-88 fluid 
s h o q a  smaller reduction in p with nondimensional spin, 
w,dab/U, than does the  Santotrac 50 fluid. At zero-spin 
the  Santotrac 50 fluid shows a small advantage in p at this 
operating condition but across the range of operating 
conditions analyzed, this advantage is not particularly 
significant. The p of the  Santotrac 50 fluid also shows a 
somewhat  greater sensitivity to maximum contact 
pressure, but for either fluid there is little incentive in 
operating above about 2.0 GPa. 

VELOCIW, 
m Is 

20 

a3 

80 

I I I 80 
0 . 01 .02 .03 .04 

SPIN PARAMETER, w@hJ 

Figure 14. -Effect of spin  on  maximum  traction  coefficient  from 
Santotrac M correlation.  Temperature. 80a C; ellipticity 
ratio. 5. 
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Figure 15. - Effect of spin on maximum  traction  coefficient. 
Temperature, 80° C; velocity, a0 mhec; ellipticity  ratio, 
5. 

Summary of Results 
A multivariable regression analysis was performed on 

traction data  for two modern traction fluids, Santotrac 
50 and TDF-88, over a wide range of operating 
conditions. For these test, maximum contact pressure 
ranged from 1 .O to 1.9 GPa, rolling speeds from 10 to 80 
m/sec, oil inlet temperatures from 27” to 73” C ,  contact 
ellipse ratios from 1 to 5, and spin angles from 0 to  30”. 
A  total of  187 experimental traction curves for the 
Santotrac 50 fluid and 147 traction  for the TDF-88 fluid 
were analyzed. An eight-term correlation equation to 
predict the maximum traction coefficient p and  a six-term 
equation to predict the initial slope m of the  traction 
curve were developed. Both p and m must be known at 
the  appropriate  operating  condition before a  traction 
contact  performance analysis, such as  the  Johnson  and 
Tevaarwerk type, can be conducted. This analysis can be 
used to determine the  traction, creep, spin, torque,  and 
contact power loss associated with a given traction 
contact.  A simplified slope correction method was 
developed to correct the m correlation for size effect, 
considering the compliance of the disks themselves. The 
correlation  equations developed were also used to study 
the effects of different  operating  conditions  on  the 
traction  performance of both  traction fluids. The 
following results were obtained. 

1. The  correlation  equations represented the test data 
satisfactorily. The R-values were better than 0.88 for  the 
traction coefficient correlation  and 0.83 for the slope 
correlation for  both  traction fluids. 

2. Spin caused a significant reduction in maximum 
traction coefficient for  both fluids, but the TDF-88 fluid 
was  less sensitive to spin than the Santotrac 50 fluid. 
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3. Both  traction  fluids  exhibited  comparable,  overall 
traction  performance  under low spin  conditions. 

4. Increases in maximum  contact  pressure  benefitted 
the  maximum  traction  coefficient.  At  approximately 2.0 
GPa  the  trend  reached  some  upper  limit,  beyond which 
there was little or no further  gain. 

5. Increases in surface  velocity  were  generally 
detrimental to the  maximum  traction  coefficient.  At 
approximately 100 m/sec,  the  trend  reached  some  lower 
limit beyond which there was little or  no  further 
reduction. 

6 .  The  stiffness  of  the film-disk combination  within 
the  contact  as  reflected  by  the  slope  of  the  traction  curve 
increased with contact  pressure  and  decreased with speed. 

7. At  constant  operating  conditions  and ellipticity 
ratio,  an  increase  in disk  size will cause  an  apparent 
increase  in  slope. 

Lewis Research  Center 
National  Aeronautics  and  Space  Administration 
Cleveland,  Ohio,  January 21, 1983 
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Appendix-Effect of Disk Geometry on Relative Contact Size and 
EHD Film Thickness 

The initial  slope  correction m*/m given in the main 
text is to be  applied to slope data  for  the  same  contact E *   = E  (Ex)'=" 
pressure UO, rolling speed U, temperature T, ellipticity RY 

ratio kt disk material,  and  lubricant.  However,  no  The relative  contact ellipse diameters  from  equation (A6) 
restrictions are placed on disk size or relative  radius  of thus become 
curvatures.  The  geometry  of  the  disks will affect  the size 
of the  contact  and relative EHD film thickness as will be b* - R*, 
shown. In keeping with the  main  text, the variables with b R, 647) 

asterisks  denote  conditions  for one set of  disks, and  those 
without  asterisks  referred to  another set of  data.  Therefore,  the relative  contact ellipse diameters between 

Contact ellbse  site. -The semimajor  and  semiminor the  two sets  of  tests are  only a function  of  the  relative 
ellipse diameters are given by equivalent  radii  of curvature in the rolling  direction R,, 

"- 

defined  as 

a=cg 

b= tg  

where E and  are elliptical integrals  of  first and second 
kind  and are only  functions  of (R,/Rx) and where 

where r A x  and rB,  are  the principal  rolling  radii  of  bodies 
A and B, respectively. 

Film thickness. - In reference 29 the  central EHD film 

go: ( $ ! - ) I "  

Since 

thickness is given as 

5 = 2.69 ( E ~ x )  rlOu 0.67 (&')0.53 
R X  

x (E%) (1 - e-0.73k) (A9) 
- 0.067 

then For two  experiments  under the  same  operating  conditions 
with the  same  lubricant  and disk material,  the relative 
film thickness hr/h, can  be  written as 

(A4) 

Since k = a / b  and since the  normal  load is related to a0 by (A 10) 

2iT 
N = - a b q  = - b2koo 

27r 
3 3 

equation (A4) becomes 

( A 3  
From  equations (A5) and (A7) 

Substituting  equation (Al l )  into  equation (A10) and 
simplifying yields: 

For  two experiments  having  equal a0 and k, that is, 0.330 
ab= a0 and k* = k ,  

I 
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