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DESIGN AND FABRICATION OF REALISTIC 

ADHESIVELY BONDED JOINTS 

by Peter Shyprykevich 

Grumman Aerospace Corporation 

SUmlARY 

Eighteen bonded joint test specimens representing three different designs 

of a composite wing chordwise bonded splice were designed and fabricated using 

current aircraft industry practices. 

Three types of joints (full wing laminate penetration, two-side stepped; 

mid-thickness penetration, one-side stepped; and partial penetration, scarfed) 

were analyzed using state-of-the-art elastic joint analysis modified for plastic 

behavior of the adhesive. The static tensile fail load at room temperature was 

prrdicted to be: 

• 1026 kN/m (5860 lb/in.) for the two-side stepped joint 

• 925 kN/m (5287 lb/in.) for the one-side stepped joint 

• 1330 kN/m (7600 lb/in.) for the scarfed joint. 

All joints were designed to fail in the adhesive. 

INTRODUCTION 

Recent studies (reference 1) have developed preliminary designs for 

advanced composite wing structure using bonded composite/metal construction. 

The objective was the development of a cost-effective structure with reduced 

weight and increased structural integrity. The design guidelines were: 

• Maximum use of composites in the wing skins 

• Emphasis on use of advanced metallic configurations for the substructure 

• Elimination of mechanical fasteners penetrating the lower wing skin 

• Use of concepts which exhibit potential low fabrication and assembly 

costs. 

To carry the results of this study one step further, test specimens repre­

senting three different composite wing cover to metal spar-bonded joint concepts 
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were designed and fabricated. The specimens will be tested in static tension 

and fatigue at a later date to provide test evaluation of the joint capability 

in the wing chordwise direction. 

The specimen bonded joints, both stepped and scarfed, display state-of-the­

art realism in the selected material and configuration. Furthermore, the speci­

mens were fabricated using current production techniques in processing composite 

material, bonding, titanium machining and welding, and quality control. 

~lany individuals at Grumman contributed to the work reported herein. The 

author wishes to acknowledge the efforts of Mr. Gordon Hudson in Design, 

Mr. Hans Borstell in Materials and Processes, and Mrs. Louise T. Coleman in 

Manufacturing. 

SPECHlEN DESIGN AND ANALYSIS 

Materials 

The selected composite material was AS-l/3S01-SA graphite/epoxy in 76.2-mm 

(3-in.) wide form with fiber volume in the cured state of between 58 and 62 

percent. This material has been fully characterized at Grumman, design allow­

abIes are available, and it is being used on the Shuttle wing spars and X-29A 

wing covers. 

Titanium (Ti-6AI-4V) was the choice for the metal adherend because of its 

low thermal coefficient of expansion and extensive use in aircraft structures. 

The use of aluminum was not considered because of its high coefficient of 

thermal expansion compared to graphite/epoxy and the potential for galvanic 

corrosion between noble and non-noble materials. 

There are a number of adhesive systems in use that are applicable to bonded 

joints, their choice determined by temperature and environmental applications. 

FM-300K was selected on the basis of its shear compliance and its current use in 

the production for the F-18 wing. 



Design 

The adhesive composite-to-metal joints were designed to represent a real­

istic wing-type chordwise splice between a graphite/epoxy cover and metal spar. 

Realistic tension design limit loads would range between 438 to 700 kN/m (2500 

to 4000 lb/in.), which translates into the ultimate design range of 657 to 1050 

kN/m (3750 to 6000 lb/in.). Since the "B" basis allowable is usually taken as 

0.8 on average for composites, the specimens were designed to fail between 823 

and 1313 kN/m (4700 and 7500 lb/in.) at room temperature. 

A major requirement of cover-to-substructure attachments is their ability 

to resist out-of-plane normal loads such as would result from fuel pressure in a 

wing box. The joint designs that were considered have spar caps embedded in the 

composite covers to improve the jOint's out-of-plane or normal load capability. 

Because the embedded spar cap reduces the chordwise continuity of the wing 

cover plies, the joint design becomes a compromise between normal load and 

chordwise load requirements. The joint designs, therefore, include spar caps 

embedded in two different levels: to mid-thickness and to the full thickness of 

the cover laminate. The latter represents a chordwise splice through the entire 

cover thickness and, as such, makes the wing cover fail-safe. 

The cover thickness and layup were sized to be able to carry 2277 kN/m 

(13,000 lb/in.) in the wing spanwise direction. A typical wing laminate in the 

spanwise direction would consist of 40% 0°, 10% 90°, 50% ±45° direction plies. 

For this laminate, the allowable design ultimate stress for graphite/epoxy 

without notches is 586 MPa (85 ksi), which translates into a required thickness 

of 3.9 mm (0.153 in.). Therefore, for a representative chordwise wing splice, a 

32-ply (assuming ply thickness of 0.133 mm (.00525 in.)) laminate consisting of 

4/12/16 (4 plies in 0°, 12 plies in 90°, and 16 plies in ±45° directions) will 

satisfy all requirements. The strength of this laminate away from the joint is 

calculated to be 1820 kN/m (10,400 lb/in.) in the wing chordwise direction. 

Plies of graphite/epoxy were added in the grip area of the specimen, in 

addition to the fiberglass tabs, to achieve the same load capability as the 

unnotched basic laminate and to preclude failure outside of the test section. 

3 
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The specimen configurations that were obtained after several analysis/ 

design iterations are shown in figures 1 through 4. The overall specimen 

geometry, figure 1, was dictated by aspect ratio and test machine requirements 

and is the same for all three concepts. The bonded-an-fiberglass tabs were 

designed to transfer the tension load by shear into the grippers. The required 

thickness of the fiberglass tabs were determined by assuming a 6.35-mm (i-in.) 

thick steel gripper plate. 

The details of the three bonded joint concepts are shown in figures 2, 3, 

and 4. Joint Concept A, figure 2, is a proven, F-14 horizontal-stabilizer-type 

symmetrical-stepped graphite/epoxy-to-titanium bonded joint. This joint pro­

vides high pull-off strength and its manufacturing feasibility is well estab­

lished. Furthermore, because the joint is symmetrical with respect to the 

laminate centerline, the analysis of the· joint is straightforward and this 

concept is therefore a good baseline for comparison between test and analysis of 

the two alternate concepts. 

Joint Concept B, figure 3, provides for partial chordwise composite skin 

continuity. The stepped design is similar to that of Joint Concept A but the 

partially uninterrupted skin makes it potentially a more practical and cost­

effective joint, requiring less titanium and less machining or chern milling. 

The pull-off strength may be lower than that of Concept A, but its partial 

chordwise cover continuity and the reduced quantity of titanium used make it a 

more practical spar-to-cover joint for a multi-spar wing structure. 

Joint Concept C, figure 4, has an embedded, scarfed, titanium spar cap. 

The well-established high strength and manufacturing feasibility of scarfed 

joints makes this concept a viable alternative. To ensure failure in the 

adhesive, a fairly large but still realistic scarf angle was chosen. 

To provide the required spar web height, for all three concepts, the 

titanium caps (blades) were machined from 12.7 mm (0.5 in.) titanium stock and 

then electron-beam (EB) welded to a titanium plate approximately 254 x 140 mm 

(10 x 5.5 in.) in size. 
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FIBERGLASS TAB 
20 PLIES (51 MM (0.2 IN.) TOTAL THICKNESS 
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Figure 1 Specimen Configuration 
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SYMMETRY 4 
FM 300K. 0.2 MM (0.008 IN.) THICK I 

I 

19.0 MM I.. 19.0 MM 
(0.75 IN.) • (0.75 IN.) 

0064-002 (T) 

5.7MM 
(0.224 IN.) 

2-6-8 GRIEP 

1-3-4 GRIEP 
I.. 30.5MM • I 

(1.2 IN.) 

4.3MM 
(0.168 IN.) 

~ 
t ~ ~ ~ ~ : j: ~'\ 132 PLIES 

3.15 MM (0.124 IN.) 
TITANIUM 

t 1.02MM 
(0.04 IN.) 
TITANIUM GRIEP & GLIEP FILL 

X-Y-z 

x = NO. OF rf' PLIES 
y .. NO. OF 9rf' PLIES 
Z .. NO. OF ±45" PLIES 

Figure 2 Concept A Detail, Two-Side Stepped Joint 



..;:J 

FM 300K, 0.2 MM (0.008 IN.) THICK 

SVMMETRY~ 

I 

2-6-8 GRIEP ,I 

1-3·4 GRIEP 

19.0 MM I 19.0 MM 
I • (0.75 IN.) ~ ~ (0.75 IN.) 

0064-003(T) 

1.57 MM (0.062 IN.) 
TITANIUM 

TITANIUM 

GRIEP & GLIEP 
FILL 

.51 MM 
(0.02 IN.) 
TITANIUM 

(0.9 IN.) r
22.9 MM 

2-6-8 GRIEP 

x-V-z 

x = NO. OF 0° PLIES 

4.3MM 
(0.168 IN.) 

V = NO. OF 90° PLIES 
Z .. NO. OF ±45° PLIES 

Figure 3 Concept B Detail, One-Side Stepped Joint 
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4.3 MM (0.168 IN.' 

32 PLIES 

4·12·16 GRIEP 

0064·004(T) 

SYMMETRY 

2.2 MM (0.085 IN.' 
TITANIUM 

2·1()'8 GRIEP 

FM 300K 
0.2 MM (0.008 IN.' 
THICK 

26.9MM 

(1.06 IN.' 

5° 

I III 5.3 MM (0.21 IN.) 

3.2MM (0.125 IN.' 

Figure 4 Conce.pt C Detail, Scarf Joint 

10.25 MM (0.01 IN.' 

X-Y-Z 

x = NO. OF 0° PLIES 
Y = NO. OF 90° PLIES 
Z = NO. OF ±45° PLIES 



All three joint concepts were designed to fail in the adhesive since 

adhesive behavior under fatigue loading is the main program objective. In 

actual practice, bonded joints are usually designed to fail in one of the 

adherends since those types of failures are more predictable and thus can be 

better controlled. 

Analysis 

The three types of bonded joints shown in figures 2, 3, and 4 were analyzed 

for static load using Grumman's STEPS 7 computer program for Concepts A and B, 

and the method of reference 2 for Concept C. 

STEPS 7, reference 3, is based on the closed-form modified elastic analysis 

of stepped bonded joints described in reference 4. The analysis has been 

periodically modified and includes thermal effects induced during cool-down from 

cure temperature. In addition, an arbitrary thickness of adherends can be input 

at each individual step; this implies that the joint need not be symmetrical. 

The only requirement is that the joint be adequately supported normal to the 

splice to minimize out-of-plane bending. 

The adhesive normal and shear stress distributions are found by solving a 

set of simultaneous differential equations arising from the continuity of 

strains and displacements at the interfaces of the adhesives and adherends. The 

peak elastic stress is then reduced to account for the adhesive's nonlinear 

behavior. The relation between the elastic and plastic stress concentration 

factors is assumed to be 

where 
Kp = 1 + (KE - 1) GSEC/GTAN 

KE = Elastic stress concentration factor 

Kp = Plastic stress concentration factor 

GSEC = Secant modulus at failure 

GTAN = Initial tangent modulus 

A similar relation was used in reference 5 for notched plate test data 

showing good correlation. The validity of the above assumptions was verified on 

bonded joints with Hetlbond 329 adhesive by Finite Element Analysis (FEA) , 

nonlinear closed-form analysis, and test results. 

9 



The multiple-step joint takes the modified elastic solution of the single 

overlap splice and applies it separately to each step. The separate analyses at 

each step are combined by satisfying compatibility and equilibrium conditions at 

the internal discontinuities. Adherend bending is neglected in this analysis 

and, therefore, the adhesive normal stresses are assumed to be negligible. This 

last assumption was verified by FEA results which showed that, for a symmetric 

stepped lap joint, the maximum adhesive normal tension stress is less than 10% 

of the corresponding maximum shear stress. These normal stresses are low due to 

the symmetry of the joint configuration and the relatively small offset of load 

lines. This is also valid for scarf joints and, in fact, reference 2 neglects 

normal stresses. 

Graphite/epoxy layer properties at room temperature used in the calcula­

tions were as follows: 

fl 

Ell 

E22 

t 12 

G12 

1112 

all 

a
22 

(longitudinal failure 

stress) 

(longitudinal modulus) 

(transverse modulus) 

(shear failure stress) 

(shear modulus) 

(Poisson's ratio) 

(longitudinal coef of 

thermal expansion) 

(transverse coef of 

thermal expansion) 

= 1447 MPa (210 ksi) 

= 127.5 x 10
6 

kPa (18.5 x 10
6 

psi) 

= 11 x 106 kPa (1.6 x 106 psi) 

= 68940 kPa (10000 psi) 

= 5.86 kPa x 106 (0.85 x 106 psi) 

= 0.25 

Lamination theory with maximum stress failure criterion was used to obtain 

laminate properties from layer properties. 
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The adhesive properties for FH300K were obtained from American Cyanamid. 

The room temperature values used in the analysis were: 

o 
e 

n 

(shear peak failure stress) = 41360 kPa (6000 psi) 

(shear tangent modulus) = 882 HPa (128 ksi) 

(shear secant modulus) = 110 HPa (16 ksi) 

= 8 0 - plastic shear strain, 0 , elastic shear strain , p e 

(bondline thickness) = 0.20 mm (0.008 in.) 

The static strength analysis of Concept A is straightforward using STEPS 7 

because the joint is symmetric. The step length is reduced for analysis from 

19 mm (0.75 in.) to 12.7 mm (0.5 in.) to account for manufacturing tolerances 

and titanium blade curvature. The output from the program (in English units) 

shown in figure 5 is for half the joint. The joint is predicted to fail in the 

adhesive at a load of 1026 kN/m (5860 lb/in.) at the edge of the first step or 

at the end of the zeroth step as identified in figure 5. The failure location 

is where the titanium insert is thinnest. This is within the desired limits. 

The predicted failure load in the titanium is 1443 kN/m (8246 lb/in.) and in the 

graphite/epoxy it is 1820 kN/m (10,400 lb/in.). 

For static strength determination of the inserted one-sided stepped joint 

Concept B, figure 3, the STEPS 7 program was run twice. First, the upper 

bondline between the continuous part of the laminate and the titanium below the 

insert line was checked for strength. In this analysis the stiffness of the 

graphite/epoxy below the insert line was converted to an equivalent titanium 

stiffness. The results of the analysis are summarized in figure 6 and show the 

bondline strength to be more than adequate. Furthermore, 55.4% of the load is 

shed into the titanium insert. Thus, it was assumed in the strength analysis of 

the stepped bond line that 55. 4~~ of the total specimen load goes through the 

lower composite-to-titanium joint. ~ The output from this second analysis is 

summarized in figure 7. Again, the adhesive is the critical element with the 

. total predicted fail load equal to 925 kN/m . ( 2929 = 5287 lb/in.). 
0.554 

11 
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ANALYSIS OF STEPPED BONDED JOINT 
COMPOSITE TO COMPOSITE OR COMPOSITE TO METAL 

PROPERTIES AND CONFIGURATION 

SPLICE IS IN TENSION 

PROPEPT I E::; OF t'lATER I Al tw. 1 

lotJG I TUD I tJAl t·1OD. = 1 :::6001~HJO LotH:; I TUD I tJAl ::;TRUiGTI-I== ;:,:: 10~j00 
SHEAR STRENGTH= 10000 SHEAR MODUlUS= 850000 
TRANSVERSE MODUlUS= 1600000 POISSON'S RATIO= 0.25 
THIun·JES::;= 5.25000E-0::;: FlLPHFl11= 2. ,::0000E-07 ::iLY'I·ii12c,':: 1 .. 52000E-0~; 

PROPERTIES OF HOMOGENEOUS FlDHEREND 

YOUNG'S MODUlUS= 16000000 lONGIT. STRENGTH= 130000 SHEAR MOD.= 
62130000 

SHEAR STRENGTH= 76000 AlPHFI= 5.30000E-06 
STEP 1 THICKNESS= 0.02 
STEP 2 THICKNESS= 0.062 

PROPERTIES OF ADHESIVE 

GSEC/GTFlN= 0.125 SHEAR MOD.= 1280r ~Y~FlR STR.= 6000 
THICKNESS= 8.00000E-03 

t'lATER I Al HJ ZERO- DEG. n I RECT IDI1-· NO.1 COMPOSITE MATERIAL 
t·lATEF.: I Al HJ '30- DEG D I F.:ECTI otJ:"'-- NO.1 COMPOSITE MATERIAL 
t·lATEF.: I Al I t·j +·····-45- DEG DIRECT I otJ-' NO.1 COMPOSITE MATERIAL 

COMPOSITE lAMINATE 

::;TEP ZEF.:O- DEG. 
lA'!'ER::; 

2 
2 

'30-DEG. 
LA,!'ER::: 

.-, 
.:;, 

+./-4~5 DEG. 
LA ,!'E F.:::: 

::: 
4 

:::TEP lEtJGTH 
.:: I t·J ) 

[III 5 
[1.5 

FACTOR OF SAFETY= DELTA TEMP. FROM CURE=-200 

OVERfill JO I tlT ::;TPEtlGTH-A:::: I fll LOFiD (1_8.·' I t·J) 

Et·m OF 

AlPHA11 
(HJ DEG F) 

2. :::5208E-~36 
2. :352E18E-~Z16 

::;TEP C or'l PO:::;;! TE ADHE::: J'..IE Hot'l. flDHER. \ lOl1D Hl H .. FI, t1::-:: <THEF:t'lAU 

1 
2 

5217 
70U::: 4123 

:::060 

O'".'EPRlL JO I tH STPEtlGTH-SHEFiF: lOAD':: lB ... · I tl) 

Et·m OF 
STEP COMPOSITE ADHESIVE HOt'l, FHJHER. 
o 2191 3360 
1 2408 5476 ':,"~"::'O 

~_ I ,_, I_' 

? 4887 4712 

0064-005(T) 

0.60::: 
1 

~.~ LOt1D It··1 H. All 

C1. ~':;45 
1 

Figure 5 STEPS 7 Output for Concept A 

o 
92 

t1::<':: THEF:t'lAl) 
o 
o 
o 



SPLICE IS IN TENSION 

PROPERTIES OF MATERIAL NO. 1 

LONGITUDINAL MOD.= 18500000 LONGITUDINAL STRENGTH= 210000 
S~EAR STRENGTH= 10000 SHEAR MODULUS= 850000 
TRANSVERSE MODULUS= 1600000 POISSON'S RATIO= 0.25 
THICKNESS= 5.25000E-03 ALPHA11= 2.20000E-0T ALPHA22= 1.52000E-05 

PROPERTIES OF HOMOGENEOUS ADHEREND 

YOUNG'S MODULUS= 16000000 LONGIT. STRENGTH= 130000 SHEAR MOD.= 
62(10000 

SHEAR STRENGTH= 76000 ALPHA= 5.30000E-06 
STEP 1 THICKNESS= 0.028 
STEP 2 THICKNESS= 0.0484 
STEP 3 THICKNESS= 0.0842 
STEP 4 THICKNESS= 0.07 

PROPERTIES OF ADHESIVE 

GSEC/GTAN= 0.125 SHEAR MOD.= 128000 SHEAR STR.= 6000 
THICKNESS= 8.00000E-03 

l'lATEF~ I f1L I tl ZEF.:O-DEG. II I F.:ECT IOtl- NO.1 COMPOSITE MATERIAL 
l'lATER I AL Hl 9D-DEG D I F.:ECT I Ot'l--- NO.1 COMPOSITE MATERIAL 
l'lATEF.: I AL Hl +./-45-DEG D I F.:ECT I Otl- NO.1 COMPOSITE MATERIAL 

COMPOSITE LAMINATE 

::HEP ZEF.:O-DEG. ',h)-DEG. 
LAYEF.:::; 

6 

+/-45 DEG. STEP LENGTH ALPHAll 
(1 LA'r'EF~S LA''i'EF~:3 (IN) CIN DEG F) 
1 2 20 2.86296E-D6 
2 2 6 0.539037717 2.86296E-06 
:~: 2 6 0.589339153 2.86296E-06 
4 2 6 20 2.86296E-06 

FACTOR OF SAFETY= DELTA TEMP. FROM CURE=-20D 

OVERALL JOINT STRENGTH-AXIAL LOADCLB/IN) 

Et-lD OF 
STEP COI'lPOS I TE 
o 5241 
1 12112 
2 17102 
:;: 19753 
4 

ADHE:3 I ',lE 
1 (1508 
78134 
25:394 

-3199(l6 
21819 

6339 
'3013 
14:396 
'3100 

OVERALL JOINT STRENGTH-SHEAR LOADCLB/IN) 

HlD OF 
STEP COI'lPOS I TE f1DHESIVE HOM. ADHER. 

(I 2182 8581 
1 4224 53%3 4401 
2 57£15 21080 5957 
:::: 6507 -2~)5120 %27 
4 12404 5320 

~.~ LOAD I~~ H. A. 

0.55 4 
~Z1. 6::: 
O. 72:~: 
1 

~.~ LOf~D It~ H. A. 
o 
(1.4:::3 
0.617 
0.664 
1 

t·lW,'= 0 MARGIN OF SAFETY= 0.747 

SPLICE IS CRITICAL AT END OF STEP 0 
COI'lPI)::; I TE 

0064-006(T) 

Itl THE 

tl:< 0:: THEF~I'lAL) 
(1 

125 
154 
164 
(1 

tl~:: (THERI'lAL) 
o 
(1 

(1 

(1 
(I 

Figure 6 STEPS 7 Output for the Upper Bondline of Concept B 
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ANALYSIS OF STEPPED BONDED JOINT 
COMPOSITE TO COMPOSITE OR COMPOSITE TO METAL 

PROPERTIES AND CONFIGURATION 

SPLICE IS IN TENSION 

PF~OPEF:T I E::: OF t'lATER I AL tlO. 1 

LOtH:; I TUD I tHiL t'10D. = 1 :::6CH].000 LotlG I TUD I tlAL STF:EtlGHI= 210000 
SHEAR STRENGTH= 10000 SHEAR' MODULUS= :::50000 
TRANSVERSE MODULUS= 16000S0 POISSON'S RATIO= 0.25 
THICKNESS= 5.25000E-03 ALPHA11= 2.20000E-07 ALPHA22= 1.52000E-05 

PROPERTIES OF HOMOGENEOUS ADHEREND 

YOUNG'S MODIILUS= 16000000 LdNGIT. STRENGTH= 130000 SHEAR MOD.= 
62CH3000 

SHEAR STRENGTH= 76000 ALPHA= 5.30000E-06 
STEP 1 THICKNESS= 0.02 
STEP 2 THICKNESS= 0.062 

PROPERTIES OF ADHESIVE 

G:::EC""GTAt'l= 0. 125 :3HEAF: "fOD.::: 12:::000 :::HEtiF: :::TF.:.:~ 6000 
THICKNESS= :::.00000E-03 

t'lATEF:IAL Itl ZEF.:O-DEG. DIF.:ECTIotl-- NO.1COMPOSITEMATERIAL 
t'lATEF.: I AL Itl 9[1-DEG D I RECTI otl--- NO.1 COMPOSITE MATERIAL 
t'lRTEF: I RL Itl +/-45- DEG D I F:ECTI ot'l- NO.1 COMPOSITE MATERIAL 

COMPOSITE LAMINATE 

:::TEP ZEF.:O-DEG. 
LA'lEF:S 

2 
2 

90-DEG. 
Ui'lEF:S 

6 
:::: 

+.· .. ·-4~) DEG. 
Lti'r'EF.:::: 

4 

:::TEP LEtlCTH 
0:: I t·l ) 

iJ.5 
o. ~5 

FACTOR OF SAFETY= DELTA TEMP. FROM CURE=-200 

OVERALL JOINT STRENGTH-AXIAL LOADO::LB/IN) 

EtlD OF 

FiLPHFill 
0:: Hl DEG F) 

2. :::520:::E-06 
2. :::5:~0::::E -·06 

::;rEP COI'lPO':::I TE ADHE::: I l,lE Hon. FiDHER.. LOtiD Itl H. A. tl:::: <THERt'lAL) 
o 
1 
2 

5217 
701:::: 

2929 
646';& 
7209 

412:::: 
:::~:160 

OVERALL JOINT STRENGTH-SHEAR LOFiDCLB/IN) 

Et·m OF 

0.60::: 
1 

STEP COMPOSITE FiDHESIVE Hon. ADHER. % LOAD IN H.A. NX(THERnAL) 
o 2191 3360 C1 0 
1 240::: 5476 ,:::'? ::::::: ~:1 • ~:i 4~:; I] 
2 4::::::7.0} 71,:: \':' 

0064-007(T) 

Figure 7 STEPS 7 Output for the Stepped Bondline of Concept B 



Parametric design curves from reference 2 were used to analyze Concept C, 

figure 4. However, STEPS 7 was run first as for the Concept B joint, to deter­

mine the percentage of load going through the lower composite/titanium inter­

face. The output, figure 8, indicates that 47.2% of the total load is carried 

by the scarfed portion of the joint. The elastic-plastic joint strength was 

obtained using figure 6, p. 54 of reference 2. The effect of temperature is 

neglected since it is small for titanium/graphite/epoxy joints. The variables 

used to enter the parametric curves were as follows: 

£ (effective bond length) = 16.5 mm (0.65 in.) 

G
TAN 

[E> E:tJ ).2 = = 60.3 
11 

H = 5.05 

where G
TAN 

= initial tangent. modulus of adhesive 

11 = adhesive thickness 

t = adherend thickness 

E1 = longitudinal modulus of graphite/epoxy laminate 

E2 = longitudinal modulus of titanium 

l 
For the nondimensional overlap, ).£, of 5.05 and a --E. ratio of 8, 

l 

"[ 
avg 

"[ 
max 

e 

= 0.92 

This translates into an axial failure load of 628 kN/m (3590 lb/in.) in the 

adhesive for the "[ of 41260 kPa (6000 psi). The predicted failure load is 
max 

lower than for that portion of the total laminate (2-ply 0°, 4-ply 90°, and 

6-ply ±45°), which is calculated as 690 kN/m (3940 lb/in.). The total failure 

load on the joint (including the passing laminate on top of the insert) is then 

predicted to be 1330 kN/m (3590 = 7600 lb/ in.) . 
0.472 
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SPLICE IS IN TENSION 

PROPERTIES OF MATERIAL NO. 1 

LONGITUDINAL MOD.= 18500000 LONGITUDINAL STRENGTH= 210000 
SHEAR STRENGTH= 10000 SHEAR MODULUS= 850000 . 
TRANSVERSE MODULUS= 1600000 POISSON'S RATIO= 0.25 
THICKNESS= 5.25000E-03 ALPHAll= 2.20000E-07 ALPHA22= 1.52000E-05 

PROPERTIES OF HOMOGENEOUS ADHEREND 

YOUNG'S MODULUS= 16000000 LONGIT. STRENGTH= 130000 SHEAR MOD.= 
62~~10~300 

SHEAR STRENGTH= 76000 ALPHA= 5.30000E-06 
STEP 1 THICKNESS= 0.0224 
STEP 2 THICKNESS= 0.0365 
STEP 3 THICKNESS= 0.0553 
STEP 4 THICkNESS= 0.063 

PROPERTIES OF ADHESIVE 

GSEC/GTAN= 0.125 SHEAR MOD.= 128000 SHEAR STR.= 6000 
THICkNESS= 8.00000E-03 

l'lATEF: I AL I tl ZERO- DEG. D I F:ECT I Otl- NO.1 COMPOSITE MATERIAL 
l'lATEF.: I AL ltl 90- DEG D I F.:ECT IOt·l--- NO.1 COMPOSITE MATERIAL 
l'lATEF.: I AL I tl + ..... -45- DEG D I F.:ECT I otl- NO.1 COMPOSITE MATERIAL 
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Figure 8 STEPS 7 Output for the Upper Bondline of Concept C 



The required thickness of the fiberglass/epoxy tabs was determined by 

treating the fiberglass as a nonlinear shear material between the 6.35-mm 

(i-in.) thick steel gripper plate and the composite. The analysis assumes that 

the pressure plates provide adequate compressive forces to eliminate peel 

stresses. Using this analysis, a 5.1 mm (0.2 in.) thickness of fiberglass/epoxy 

was required, based on the inter laminar shear capability as the failure 

criterion. 

SPECHIEN FABRICATION 

Manufacturing Flow 

The manufacturing flow for the test specimens, figure 9, was based on 

recent Grumman experience in producing specimens of similar configuration. The 

titanium fittings were fabricated as welded detail parts prior to the composite 

laminating step in preference to welding after cocure/bonding. This approach 

eliminated the possibility of thermal degradation/stressing of the composite and 

bond due to the heat generated during welding. For the same reason, the 

titanium blades for each specimen type were cut to final length (figures 10, 11, 

and 12) and cocure-bonded into the composite laminate as details separated by 

graphite/epoxy fillers in preference to requiring cutting of the titani~m while 

trimming individual specimens from a continuous laminate. In this approach, the 

individual specimens were readily parted using a water-cooled diamond grit 

blade. In contrast, the titanium/graphite/epoxy stackup can be sawed only by a 

friction blade which generates sufficient heat to discolor the titanium and 

possibly degrade both the laminate and adhesive locally. 

The composite laminate was laid-up on an aluminum tool using mylar tem­

plates. The tool was recessed in the gripper areas to accommodate the 

additional plies needed in those areas and hence keep the load line concentric. 

After all the graphite/epoxy plies, glass/epoxy ~yedges, and adhesive-coated 

titanium details were laid-up on the tool, the bleeder system was applied and 

the assembly cured. Standard 177°C cure cycle was used. A completed assembly 

from which six specimens were cut is shown in figure 13. 
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Figure 10 Two-Side Stepped Blade 
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Figure 12 Scarfed Blade 
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The grippers were machined flat and parallel after bonding to provide a 

load path through the center of the specimen. The specimen edges were ground to 

provide a clean and visible titanium-to-composite interface. Lastly, the 

required holes were drilled with the aid of a template. 

Pretreatment Requirements 

The titanium pretreatment for this program was identical to that used in 

the boron/epoxy-to-titanium splice joints in the F-14 horizontal stabilizer 

skins and consisted of the following steps: 

(1) The surface was cleaned and solvent-wiped using HEK or isopropyl 

alcohol. 

(2) All surfaces were pressure-blasted using virgin aluminum oxide grit 

with a regulated and controlled air pressure. 

(3) Parts were spray or pressure-rinsed with tap or deionized water at 

temperatures below 38°C and checked for water break-free surfaces. 

(4) The parts were immersed for 10 to 15 min in a Pasa Jell 107H control 

etchant-conversion coating bath within 4 hours of grit blasting. 

(5) The parts were water-rinsed in a t\vo-step operation. 

(6) Parts were force-air-dried using clean filtered air at temperatures 

below 38°C. 

(7) Within 2 hr, EC-2333 bonding primer was applied and oven-dried. 

The pretreatment sequence was performed as a continuous operation 2-3 days 

before the titanium details were placed in the assembly and the adhesive applied. 

QUALITY CONTROL 

Production quality control methods were used to ensure that all composite/ 

metallic specimens were of a consistent level of quality. Quality was con­

trolled by incorporating predetermined inspection points on the work orders, 

facilitating early detection of defects and minimizing production variables. 

Quality of fabricated specimens was determined by NDE methods which provided 

maximum defect resolution. Specific quality control/NDE steps employed during 

specimen manufacture are described below. 
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Vendor Certification of Materials 

Material suppliers were required to certify all incoming material met the 

requirements of the appropriate Grumman specification: GM3013 for graphite/ 

epoxy and GM3l03 for 6Al-4V titanium alloy. 

Receiving Inspection 

Quality Control verified the quantity, condition, and conformance of 

incoming material to specification and procurement requirements. Selective 

samples were taken and sent to the laboratory for physical and mechanical 

determinations. 

Process Control 

The graphite/epoxy layup was controlled through the use of mylar templates 

having all the required information for each particular ply. Each ply was then 

inspected for gaps, overlaps, orientation, and inclusions. Cure cycles were 

monitored for conformance by permanent recordings of vacuum, pressure, tem­

perature, and time. 

Process Verification 

The bonding process was verified by: 

• Five titanium lap shear specimens (figure 14) processed with each group 

of details during the titanium pretreatment 

• Five titanium/concured bonded to graphite/epoxy lap shear specimens, 

figure 14, processed with each assembly during the cure. 

No shear strength requirements for these specimens were established since 

Grumman has no previous production history with the FM300K adhesive. The 

results of these tests are given in table 1. The test specimens strength was 

judged sufficiently high and reasonably in agreement with the pure shear 

strength value of 41,360 mPa (6000 psi) used in the analysis. The lower 

24 



1. 
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T 
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TITANIUM OR 15 PLY 0° GRIEP , , , , ~ * 1.27 MM '0.05 IN.: 

" TITANIUM FM300K, 0.2 MM (.008 IN.! THICK 

Figure 14 Verification Lap Shear Specimen 

Table 1 Results of Process Verification Lap Shear Tests 

JOINT STRENGTH - kPa, (psi) 

LAMINATE ASSEMBLY TITANIUM TO TITANIUM TITANIUM TO GRIEP 

DRAWING NO. RT 121°C (250°F! 177°C (350°F! RT 121°C (250°F) 

01981220 34600 26750 - 32810 21790 

(5020) (3880) - (4760) (3160) 

36100 24820 - 31850 26610 

(5240) (3600) - (4620) (3860) 

- 23850 - - 22340 

- (3460) - - (3240) 

D19B1221 40950 - 9240 39020 26470 

(5940) - (1340) (5660) (3840) 

37230 - 10750 37500 24960 

(5400) - (1560) (5440) (3620) 

- - 6000 - 24130 

- - (870) - (3500) 

01981222 33230 25650 - 18900* 16000 

(4820) (3720) - (2740)* (2320) 

38330 21510 - 22890* 18610 

(5560) (3120) - (3320)* (2700) 

- 22340 - - 16820 

- (3240) - - (2440) 

AVERAGE 36750 24150 8670 35300 22000 

(5330) (3503) (1257) (5120) (3187) 

*LOW VALUES, NOT INCLUDED IN AVG. SUSPECT THE FAILURE OCCURED IN COMPOSITE AND NOT 
IN ADHESIVE. 

0064·015(T) 
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strengths obtained here with a 12.7 mm (0.5 in) overlap specimen are caused by 

additional peel stresses existing in this type of specimen. 

In addition to bonding process verification tests, process control test 

panels were used to verify the adequacy of the cure cycles. These panels were 

fabricated with each autoclave cure cycle and submitted to the Quality Control 

Laboratory with an accompanying traveler which identified the represented 

specimens, including batch and roll number(s) of the material. The control 

panel was machined into test coupons which were subjected to both flexural 

strength and modulus tests and horizontal shear strength tests at room 

temperature and 177°C. The results of these tests are included as table 2. 

Table 2 Test Results of Cure Verification Specimens 

STRENGTH MPa, (ksj) 

LAMINATE ASSEMBLY FLEXURE(1) HORIZONTAL SHEAR(2) 

DRAWING NO. RT 177°C (350°F) RT 177°C (350°F) 

019B1220 2082 1365 110 70.3 
(302) (198) (16.0) (10.2) 

2193 1289 112 68.3 
(318) (187) (16.2 (9.9) 

2020 1551 114 68.9 
(293) (225) (16.6) (10.0) 

019B1221 1779 1455 113 60.0 
(258) (211 ) (16.4) (8.7) 

2076 1462 114 63.4 
(301) (212) (16.5) (9.2) 

1772 1441 126 59.3 
(257) (209) (18.3) (8.6) 

01981222 1806 931* 68.9 35.2 
(262) (135) (10.0) (5.1 ) 

1738 958* 59.3 36.5 
(252) (139) (8.6) (5.3) 

1634 979* 59.3 44.8 
(237) (142) (8.6) (6.5) 

(1) FLEXURE SPECIMENS WERE UNIDIRECTIONAL (0°) LAMINATE-
12.7 x 114.3 mm (0.5 x 4.5 in.) 15-PL Y THICK 

(2) HORIZONTAL SHEAR SPECIMENS WERE UNIDIRECTIONAL (0°) LAMINATE -

6.35 x 15.2 mm (0.25 x 0.6 in.1. 15-PL Y THICK 

* BELOW SPECIFICATION, THE ac PANEL WAS OVERTHICK AND POROUS. HOWEVER, THE LAMINATE 
ASSEMBLY WAS WITHIN THICKNESS TOLERANCE. SUSPECT VACUUM LEAKAGE IN ac PANEL. 



Nondestructive Inspection 

Each laminate/joint assembly was ultrasonically inspected before cutting 

the laminate into individual specimens. Ultrasonic inspection was selected 

since it is the primary technique for detecting voids, delaminations, and 

inclusions and is part of standard inspections used at Grumman. The inspection 

was first conducted using the Immersion-Through-Transmission (Reflector Plate) 

Technique. This immersion technique utilizes automated scanning and provides a 

rapid means of 100% inspection, but does not provide depth of defect 

information. For defect depth information (in cases where defects were found), 

the contact transducer resonance technique was used. These techniques are used 

on the F-14 Horizontal Stabilizer covers with excellent results. 

Representative standards, designed and fabricated by Grumman, were utilized 

for ultrasonic detection of internal defects. These standards contained 

designed defects of the critical flaw size or smaller. All discrepancies 

detected by NDI were reported to cognizant development engineer on a standard 

Grumman discrepant material report (mIR) form. 

Internal defects were found only on one laminate assembly. These were 

reported on the DMR form and consisted of some minor porosity in the grip area 

and a disbond in the adhesive joint. The porosity was deemed not critical for a 

tension specimen. The size and location of the disband affected only one 

specimen out of six and is sho~l1n in figure 15. The disbond, located between the 

composite and titanium on the upper bond side, was not repairable since any 

injections of adhesive would open-up the separation. The length of the disbond 

was verified visually by polishing the edge. 

Each of the panels with six titanium blades were slightly bowed due to 

thermal stresses induced during molding. The panels could be flattened with 

minimal applied load and are satisfactory for tensile testing. This type of 

bowing is expected on flat panels and generally is not noted in formed 

production wing covers. 
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CONCLUSIONS 

Eighteen bonded-joint test specimens representing three different designs 

of a composite chordwise-bonded splice were designed and fabricated using 

current aircraft industry practices. 

The three types of joints are: 

• Full wing laminate penetration, two-side stepped; 

• Hid-thickness penetration, one side stepped; 

• Partial penetration, scarfed. 

These were analyzed using state-of-art elastic joint analysis modified for 

plastic behavior of the adhesive. The static tensile fail load at room 

temperature was predicted to be between 925 and 1330 kN/m (5287 and 7600 lb/in.) 

with critical location in the adhesive. 

There are certain shortcomings in the analysis that make the failure 

predictions less reliable than on might have expected. First, the properties of 

the adhesive are not characterized to an extent that statistically defined 

strength and stiffness values are available. Second, for the inseTted titanium 

blade joints, a more refined finite element analysis would be requlred to 

determine the exact distribution of load between the passing composite laminate 

and the composite/metal joint. Lastly, for the scarfed joint, the analysis is 

based on a knife-edge end of the titanium blade which, in practice, is never 

realized. 
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