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ABSTRACT

The tethered satellite system (TSS), under development by the Marshall

Space Flight Center (MSFC), is used for deployment and retrieval of

instrumented satellites from the Space Shuttle orbiter cargo bay. These

satellites can opera_= at very low orbital altitudes not attainable by

conventional satellites. They can also operate above the Space Shuttle

(higher orbital altitudes) when called for by specific missions.

The concept of maintaining satellites at low altitude by tether attachment

to the Shuttle was first suggested by Professor G. Colombo of the Smlthsonlan

Astrophysical Observatory in 1974.

Martin Marietta Corporation, under contract to MSFC, is developing the

Space Shuttle mechanical equipment required to deploy, retrieve, and control a

500-kg satellite of approximately 1.4-m diameter, attached to a tether I00 km

(65 to 75 miles) long. Under a U.S.-Itallan agreement, Aeritalia was given

the responsibility of developing the first satellite.

The system includes the satellite control mechanism mounted on a European

spacelab pallet. This pallet is located in the Space Shuttle c_rgo bay, and

includes a tether for attachment to the satellite. Figure i is an artist's

concept of a deployed satellite and attached tether, with the Space Shuttle in

the background.

TSS is a multimission program with broad science- and defense-community

interest. One of the early missions selected for the tethered satellite will

be operation in a region of the Earth's atmosphere too high for aircraft

operations and too low for normal satellites. Presently, this region is

accessible using sounding rockets that can return spot information only in

areas where launch facilities are available. The tethered satellite will be

capable of remaining in this atmosphere during several orbits, returning

atmospheric data on a worldwide basis. A possible configuration for this type

of satellite is shown in Figure 2.

The first mission selected may be an electrodynamic experiment. This

mission will use an electrically conductive satellite with tether that will

collect an electrical charge and flow current as it passes througi: the Earth's

magnetic field. Figure 3 shows this type of satellite and its possible

complement of instruments.

Many other science experiments are planned for the tethered satellite. It

is expe:ted that the tethered satellite will find extensive use for many years

and will open the door for development of other applications, such as tethered

habitable modules that create artificial gravity.

*Martin Marietta Denver Aerospace, Denver, Colorado
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INTRODUCT ION

When two masses are linked together (tethered) and separated a distance

apart in space, a gravity gcadlent force between the masses exists, creating

tension in the tether. The llne of force points to Earth; thus, a gravity

gradient stabilization exists. This physical law Is the fundamental basis in

the operation of a tethered satellite. Whether the satellite is positioned

above or below the Space Shuttle, the same rule applles--tether tension is a

function of separation distance. When separation is small, tether tension

wlll be nearly zero. Large separations will result in high tether tensions.

When the satellite is initially deployed, or is close to the Space Shuttle

during retrieval, the gravity gradient force can be as low as a few grams.

For practical purposes, this force is too low to affect separation velocity.

As the satellite moves away from the Space Shuttle, the satellite changes

orbital altitude. As orbital altitude changes, so does orbital velocity. The

result is that the satellite will move ahead of the Space Shuttle when

deployed to a lower altitude and then trail behind the Space Shuttle when
being retrieved.

Low gravity gradient forces at small separation distances, coupled with

the changing orbital velocities of the satellite with respect to the Space

Shuttle, require increased control sensitivity during close-ln operations.

The control sensitivity remains quite high, up to l-km separation. At this

point (I km), tether tension wlll be =bouL 2 Newtons (0.43 ib) for a 500-kg

satellite. The gravity gradient tension at 125-km separation is about 250

Newtons (56 Ib), which will. not require such precise control.

Requirements for the tethered satellite control mechanisms, therefore, are

dictated by tether and satellite orbital dynamics as they exist at time of

deployment, deployment to stationkeeping (at operating orbit), statlonkeeplng,

retrieval, and docking. The wide range of operating parameters dictate

cha]!enging design requirements for the mechanical equipment. Tether veloc-

ities range from 25 m/h to I0 m/_. At time of deployment and before docking,

the tether tension (gravity gradient force) wlll be about 0.I Newton (0.04

oz), while early retrieval from stationkeeplng can produce tensions as hlgh as

320 Newtons (72 Ib). The hlgh retrieval tension forces are a result of the

gravity gradient force, acceleration, and aerodynamic drag.

The mission will be flown according to a preprogrammed profile made from a

computer-predicted analysis of the tether dynamics. The computer output will

specify tether tension, velocity, and position throughout the mission. Data

produced by the mechanisms at a given tlme will be compared to the computer

values for control of the system.

It was deemed impractical to depend on natural gravity gradient forces

below l.O Newton (0.23 lb) for satellite control wzthin the 1-kin range. Four

0.5-Newton In-llne tether thrusters on the satellite will augment tether

tension during close-in operation. Pitch, yaw, and roll thrusters may be

included depending on mission requirements.
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The tethered satellite control mechanisms described in thls paper are

designed to be compatible with the characteristics of a tethered mass attached

to the Space Shuttle and to accommodate a variety of future satellite missions

of various sizes, weights, shapes, and purposes.

A major consideration in the design of these mechanisms is the safety of

the Space Shuttle and crew. To prevent Space Shuttle damage, precautions are

taken to eusure that the 500-kg satellite is always under control. Operating

machinery In this environment requires close attention to safety margins,

emergency shutdown, and recovery procedures.

TETHERED SATELLITE CONTROL MECHANISMS

The tethered satellite control mechanisms consist of four major

subassemblies. These are shown in Figure 4.

\ I

\ /

I.._ Q , /--Fine

I "
Tether_ _ i_---Upper Boom

. | O] , Tether Control

urlp C ._"_ _ Mechanism

z" J "_

(Minimum): / \

_ _'_--Lower Boom Mechaaism

o_,_..._L _,_E _-'3"

OF POOR QUALrc_J

----Reel Drive

Mechanism

Figure 4 Tethered Satellite Control Mechaniem8

|



Reel Drive Mechanism - This mechanism stores the tether. It is motor-

driven and includes a level wind to uniformly feed the tether to the reel.

Lower Boom Mechanism (LBM) - This device serves two primary functions:

(1) it measures tether length and velocity as the tether runs through the

mechanism, and (2) it reads the tether tension at the reel. It also provides

change of direction for the tether from the reel to the upper boom mechanism.

Deployment Boom - The deployment boom positions the upper boom mechanism

with satellite out of the cargo bay. The deployment function places the

500-kg satellite 20 m away from the Space Shuttle (producing a small natural

gravity gradient force), imparts an initial velocity to the satellite for

deployment, and allows for satellite docking at a safe distance from the body

of the Space Shuttle.

Upper Boom Mechanism (UBM) - The UBM serves three functions: (I) it

provides tether control to the satellite as the satellite swings in and out of

plane; (2) it reads tether tension in the low range during the early

deployment and final retrieval parts of the mission; and (3) it produces

additional tether tension at the reel when tether tension to the satellite is

in the low range.

In addition to these four mechanisms required for operations, jettisoning

devices provide for emergency ejection of any equipment that may prevent

closure of the cargo bay doors.

Figure 5 shows the general arrangement of the total system installed on

the European spacelab pallet-. Launch and landing configuration is with the

boom retracted and the satellite locked in the restraining ring. Satellite

flight configuration is with the satellite launch locks released and the boom

extended.

Reel Mechanism

The reel drive mechanism consists of the tether storage reel, the tether

level-wind device and a 5-hp drive motor. The reel assembly is illustrated in

Figure 6.

The size of the reel was determined by tether diameter and length

requirements established by a number of candidate missions. Two types of

tether, conductive and nonconductlve, can be used. Conductive tethers

(stainless-steel or copper-core cable) are required for all missions with

electrodynamlc experiments.

The tether diameter for these missions will range from 1.15 mm to 3.17 mm,

including insulation. Nonconductlve (Kevlar) tether diameter is 1.70 mm for

satellites of the 500-kg size. Figure 7 shows tether reel capacity as a

function of tether diameter.

A level wind geared to the reel shaft ensures proper lay of the tether on

the reel. Because the tether diameter varies for each mission, the level-wlnd

traverse rate must be variable. The method for changing this rate is shown in

Figure 8. The level-wlnd rate is set by gears and a timing belt between the

reel shaft and level-wlnd ball reverser. Different change-gear sets are

needed to obtain the deslred level-wind rate.
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Figure 8 also shows the method used to carry electrical current out of the

conductive tether (electrodynamlcs experiment) through the rotating reel to

the cargo bay supporting equipment. The insulated conductive tether

terminates at the slip-rlng rotor. Sllp-ring brushes complete the circuit to

the supporting equipment. If tether Insulatlon becomes damaged, a current

leak could occur at any conductive point in the mechanism that is near the

tether. To safeguard against arcing, all conductive surfaces near the tether

are protected by dielectric material and pulleys are fabricated from

nonconductlve materials.
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The reel is dlrect-driven by a 5-hp permanent magnet dc motor with tach

generator and brake. The motor was selected for its wide operating range. A

torque of 25 ft-lb at 2000 rpm is required during the early retrieval period

when maximum tether tension may be as great as 320 Newtons (72 Ib), with

velocities as high as I0 m/s. Early deployment and final retrieval rates are

very low (in the 25-m/h range). The motor is capable of operating as low as 3

rev/h. If the spooled tether diameter on the reel is 0.66 m minimum (26 in.),
a tether velocity as low as 6 m/h is possible. These slow speeds are

accomplished by supplying the motor with pulse-modulated power.

During hlgh-horsepower operation, the motor will generate more heat than

can be radiated from the motor housing surface when operating in vacuum.

Therefore, the motor must be mounted on an actively cooled cold plate, as

shown in Figure 6. During deployment, the motor will not be driving, but will

be operating as a generator. The electrical energy generated is dissipated

through resistive heaters located above the primary support truss (Fig. 5).

Lower Boom Mechanism

rollers.

b the tether angle

g on the lev I win

i

i.

Figure 9 is an exploded view of the lower boom mechanism. The LBM

receives the tether from the reel mechanism through a set of flat fairlead

As the reel mechanism level wind traverses the length of the reel,

changes up to +30 deg. The fairlead rollers that also appear
on the level wind maintain alignment of the tether into the mechanism.
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Figure 8 Lower Boom Mechanism
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Legend:

1. Fairlead Rollers

2. Measurement Wheel

3. Pressure Wheel

4. Tether Cutter

5. Load Cell
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Tile flat pressure wheel forces the tether onto the flat measuring wheel,

ensu:ing no slip rotation as the tether moves by. The measuring wheel, which

is pr=clsely 0.5000 m around, contains 30 permanent magnets at 12-deg

spacing. As the wheel turns, the magnets activate the Hall-effect sensor,

generating a voltage that is converted into tether velocity. The pulse

counter will produce information from i per second to 60 pulses per second as

the tether velocity varies from I m/min to I0 m/s. Each pulse from the

Hall-effect device is totaled to supply tether length information.

Tests conducted on a breadboard measurement wheel resulted in _neasurement

accuracies of 99.83% over 800-m lengths. The system should be very accurate

for both length and velocity measurements during the first several kilometers

of deployment, at which time the orbiter rendezvous radar can be used for

updates; however, a computer algorithm will be required to compensate for load
and thermal stretch of the tether for length measurements.

From the measuring wheel, the tether passes over a grooved pulley, under

the grooved load-cell pulley, through the pyro tether cutter, and into the

deployment boom to accomplish a direction change and to produce tension

information, lhe load-cell pulley is attached to a pivoting arm, allowing

free movement of the load-cell shaft. The load-cell reading is double the

actual tether tension due to stroke reduction, producing a high-resolution

output signal. The 890-Newton (200 ib) load cell is identified as the coarse

tensiometer, because its job is to ensure adequate tether tension for proper
spooling of tether on the reel. A coarse tensiometer is also needed when the

tension of the deployed tether exceeds the measuring capability of the fine
tensiometer located in the upper boom mechanism.

A pyro-operated tether cutter is located in the LBM in case emergency

jettison of the deployment boom is required. Also, the LBM is thoroughly

insulated internally and uses nonconductive pulleys for electrical isolation
when conductive tethers are in use.

Deployment Boom

Telescoping, furlable tubular- and lattice-structure booms were evaluated

in selecting the deployment boom design. The lattice structure boom was

chosen because of its inherently greater strength margin and higher damping

properties. The boom will be the continuous longeron type stowed in a spiral

configuration within a canister. Deployment and retraction is accomplished by
feeding the collapsed boom through a motor-drlven nut at the canister outlet.

This type of boom is available through manufacturers with flight-qualifying
experience.

The deployed boom, which extends past the open cargo bay doors, must be
capable of emergency jettison if required.

g
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Figure I0 shows the boom canlster mounted in tracks on the primary support
truss. The canister is restrained by pyro separation nuts at the bottom of

the truss, with ball flttlngs at the mldpolnt ring frame that react lateral

loads. On release of the pyro nuts, the total canlster/boom assembly is

ejected. Four negator spring motors provide the accelerating ejection force,

267 Newtons (60 Ib) over the full 203-cm (80-1n.) track travel. The cables

release from the bottom of the canister on ejection. Final boom/canlster

velocity, with satellite seated in the docking cone, is approximately 0.6 m/s,
and without satellite is 1.3 m/s.
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Support Truss

Track (4) </1 i

Negator

Motor (4)

Translcion

Fitting
Attachments

(2),

Truss
Support

|
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Figure 10 Boom Canister

Storage
Canister

Lower Boom Tether

Control Mechanism

Two electrical interface connectors are located adjacent to the pyro-

technic separation nut assemblies. These sprlng-loaded, nonlatched connectors

separate passively when the pyrotechnic separatlon nuts are actuated and the

canister Is accelerated upward.

Two dual-cartrldge tether cutters, one in the lower boom tether-control

mechanism and another in the upper boom tether-control mechanism, are actuated
before activation of the canlster-release separation nuts.
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Upper Boom Mechanism

The upper boom mechanism mounts on top of the deployment boom on a large-
diameter, double-angular contact ball bearing that allows the mechanism to

rotate _180 deg with respect to the Space Shuttle cargo bay. A gear motor

drives a pinion and gear to cause rotation. The satellite shown in Figure 2

uses an aerodynamic stabilizer for operation in the upper atmosphere. This

stabilizer must be aligned with the Space Shuttle cargo bay to allow the cargo

bay doors to close, thus requiring satellite rotation before latching in the
satellite support ring.

Figure ll is an open view of the upper boom mechanism. The tether enters

the upper boom mechanism from the deployment boom where a second pyro tether

cutter is located for emergency jettison. The tether rides over a grooved

guide pulley into the tether grip pulley assembly. The purpose of the grip
pulley is to provide tether tension between the upper boom mechanism and the

reel when gravity gradient tension drops below practical tether-controlllng

limits. Tests determined this limit to be about 9 Newtons (2 Ib). A 9-Newton

tension was sufficient to ensure smooth operation through the mechanisms and

to give a uniform distribution of the tether on the reel. The grip pulley

engages when the fine tenslometer reading drops to 9 Newtons and disengages
when the fine tenslometer reading moves above 9 Newtons.

Figure 12 illustrates the grip pulley operation. The pulley is

constructed of two grip plates spaced slightly wider than the diameter of the

tether. Small-diameter internal shims space the grip plates a predetermined

distance from the tether bearing plate to allow for grlp-plate deflection.

The pinch rollers mounted on eccentric shafts move in, bearing on the grip

plates, which cause them to deflect and grip the tether. (Note the deflection

line.) This method produces llne contact pressure on the tether over an arc

of approximately 90 deg and allows the unit load to remain low while

generating a high total load. Figure ii shows the grip pulley with pinch

rollers. The pinch rollers are worm gear-drlven as a pair by a gear-motor
reducer. A potentlometer inaicates pinch roller position.

The cable grip pulley that operates only during the low tether tension and

low-veloclty portion of the mission is coupled directly to a magnetic clutch

that engages the drive motor during operation. A dc torque motor is used to

drive the grip pulley; it has adc tachometer generator to measure pulley

velocity. It is necessary to match the motor speed with the tether velocity
before engaging the tether grip pulley clutch.

From the grip pulley, the tether passes over the fine tensiometer grooved
pulley. The tenslometer assembly consists of a torsion sprlng-loaded arm

pivoted about the center of the grip pulley, wlth a free-turnlng pulley on the

unrestrained end of the arm. The tether passes over this pulley as it exits

from the cable grip pulley. The spring-loaded tenslometer arm is free to

travel through a 90-deg arc. As the external tether tension increases, the

sprlng-loaded arm pivots from the minimum tension position to the maximum

tension position. A potentlometer with a 5-arc-mln resolution is used to

monitor the angular position of the tenslometer arm. The mechanism can be

calibrated after assembly to compensate for spring inaccuracy and to generate
precise data output for the rate of tether tension.

13
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Legend:
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2. Guide Pulley

3. Grip Pulley Drive
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4. Grip Pulley Clutch

5. Grip Pulley

6. Pinch Rollers
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ii. Tether Guide Rollers

& Pulleys

12. UBM Gear Motor

Drive
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Figure 11 Upper Boom Mechanism
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Figure 13 illustrates the sensitivity of the fine tensiometer. Large

angle changes are generated in the low tension region, providing a

O.O022-Newton resolution. A lower resolution of 0.243 Newton Is provided in

the higher tension range. The tensiometer peaks at 43.75 Newtons when the arm

attains a 90-deg position. The torsion spring is preloaded to 0.25 Newton and

is adjusted by rotation of the slotted potentiometer coverplate. A viscous

damper that provides 2.8 Newton-cm/rad/s is incorporated on the tensiomete_
arm.
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Figure 13 Tensiometer Sensitiv£ty

The tether exits from the tensfometer and passes through the guide pulley

assembly that consists of two guide pulleys and two falrlead rollers. The

fair]ead rollers provide a rolling surface on which the tether may bear as the

satellite and tether move out of plane. In-plane tether motion is accommo-

dated by the two guide pulleys as indicated In the drawing. The third guide

pulley directs the tether to the tensiometer in a fixed plane and is posi-

tioned to set the geometry of the tether direction for proper tenslometer
operation.
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SATELLITE RESTRAINT ASSEMBLY AND DOCKING CONE

Figure 14 illustrates mechanisms and structures that accommodate the

satellite during launch reentry and docking features.
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Docking I
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Upper Boom
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Figure 14 Sateltite Restraint Assembly and Docking Cone
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The assembly includes a satellite support ring that supports the satellite

during launch, orbital flight, and reentry. The assembly, which is mounted on

top of the primary support structure, includes an aluminum skin, stringers,

ring frame, and longerons. Loads originating at the satellite are reacted

into the upper ring frame and through the satellite tledown latches.

The four satellite latching mechanisms secure the satellite

circumferential flange to the restraint assembly support ring frame. The

latches and rlng frame are designed with enough strength that only two of the

four clamps must be activated for safe reentry of the Space Shuttle.
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The satellite docking cone and its support structure are mounted to the

end of the deployable boom. It serves as a "soft nest" for the satellite when

the boom is deployed and tether tension maintained, and during satellite

docking. The cone is designed to accept docking velocities up to 0.28 m/s.

The soft docking cone consists of 48 individual leaf sprfn_s fastened to a

tubular, structurally supported ring frame. The docking cone is positioned

to avoid tether-llne contact up to the maximum tether cone half-angles of 45

deg. Docking angles are not expected to exceed a 20-deg half-cone angle, but

tests are required to derive a maximum safe docking angle.

The docking cone design approach does not require precise orientation of

the satellite during the docking operation. The satellite can be docked wlth

any yaw (rotational) orientation, and any pitch and roll orientation up to

approximately 20 deg. Once docking is accomplished, automatic flight control

of the system is ended and boom retraction control is begun. Boom retraction

control involves a boom retraction/tether-coordinated retrieval sequence that

maintains a 20- to 30-Newton tether tension during boom retraction. At a

position of 20 to 30 m above the cargo bay, yaw orientation of the satellite

(as determined by the position of the magnetometer boom and aerostabillzer)

can be visually determined. The satellite can then be properly orientated in

yaw by commanding rotation of the motor-drlven cone until the aerostabil!zer

is oriented approximately along the longitudinal centerline of the Space

Shuttle cargo bay. The boom is then retracted until the satellite outer

flange contacts the boom canister support ring frame. Continuing retraction

of the boom until the docking cone disengages from the satellite, and main-

taining tether tension will cause the satellite flange to properly seat on the

support ring frame. The four satellite latches are then locked, and the boom

is fully retracted.

CONCLUSIONS

Prototype, fully operational models of each tether-related mechanism

described in this paper were fabricated and tested in breadboard fashion.

Maximum and minimum operating velocities and tensions were simulated using

a variety of tether material and sizes. These tests were performed manually

(open loop), with no computer control support and wlth tether lengths up to

1500 m. Phase Two of the TSS project will simulate a complete mission and

will incorporate automated control.

The NASA schedule calls for the first of two demonstration flights to

occur in early 1987. One of the demonstration missions wlll be short range

(I0 to 20 km). The other demonstration flight will be full range (I00 km).

It is expected that operational tethered satellites will be flown on the

average of two times each year thereafter.
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