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DE3IGN OF THE GALILEO R_OTE SCIENCE POINTING ACTUATORS

Fredrick W. Osborn m

ABSTRACT

This paper describes the two actuators developed for pointing the

remote science instruments from the spinning Galileo spacecraft.

Details of the key elements are presented together with their

design features and developmental difficulties. Four techniques

used for power and signal transfer across the actuators' rotating
Joints are also discussed.
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INTRODUCTION

The Galileo mission to investigate the planet Jupiter and

its satellites will use the dual-spin spacecraft shown in Figure

1. A major portion of this spacecraft, the rotor, will spin

continuously at 3.15 revolutions per minute to provide gyro-
scopically stabilized antenna pointing together with a rotating

base for the sky-sweeping fields and particles experiments. In-

struments which must be pointed for remote sensing, including the

imaging system, will be carried on a non-spinning, or stator,

portion of the Galileo Orbiter spacecraft. A Spin Bearing Assem-

bly (SBA) will mechanically and electrically couple these spun
and despun Orbiter sections to permit instrument pointing around

the spacecraft "clock" axis. The Scan Actuator Subassembly (SAS)
will couple the remote science scan platform to the despu,_ stator
to provide instrument pointing in the "cone" axis.

Since achievement of the mission remote science objectives

is very dependent on the reliable operation of these two mecha-

nisms, they contain redundant elements. Total redundancy was not

possible, however, so their development required extensive analy-
sis and testing to insure successful mission completion. Both of

the actuators, and their associated electronics, were developed

by the Space Systems Unit of Sperry Flight Systems, Phoenix, AZ,
under a contract with the Jet Propulsion Laboratory.

Although the two actuators are very dissimilar in

configuration, their key design elements, described below, are
very much alike.

• Guidance and Control Section, Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA.
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Figure 1. Galileo Spacecraft

SPIN BEARING ASSEMBLY CONFIGURATION

The SBA, Figure 2, has a fairly complex structure because it

must provide a spun mounting for the qO0 newton retropropulsion

engine and a path for its fuel lines in addition to providing
mechanical and electrical coupling between rotor and stator. This

engine spins with the rotor so that any thrust vector misalign-
ment will be averaged out during the long Jupiter orbit insertion

burn. An engine support assembly is tied through the central
engine support tube and a top cap to the SBA outer case. This

case is mounted at the spacecraft rotor spin axis by struts which
bolt to the central and lower case flanges.

Midway between the outer case and the central engine tube is

a concentric despun tube whose end flange supports the spacecraft

starer after flight deployment. A duplex bearing pair In the SBA
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encoder is the primary rotating axial load transfer path between

the spacecraft rotor and stator. Inner and outer bearings at the

aft end of the SBA maintain the concentricity between the case,
the despun tube, and the engine tube. These aft bearings are

mounted in sliding sleeves so they cannot carry axial loads.

They are preloaded by sets of coil springs which maintain a

relatively constant preload in the presence of the radial thermal

gradients which exist during portions of the mission. A more

detailed description of the bearings and their lubrication system
is provided below.

The annular volume between the despun tube and the engine

tube contains a stack of 23 rotary transformers and # sllp ring

modules which, together with their associated wiring, provide

electrical power and signal transfer between the spacecraft rotor

and stator. In the annular space between the despun tube and the

outer ease are two redundant brushless DC torque motors and an

optical encoder for rotorlstator relative position sensing.

Obviously, the complexity of the Spin Bearing Assembly

created some difficult design and assembly challenges.

SPIN BEARING ASSEMBLY CHARACTERISTICS

The SBA is 0.75 m (29.5 in) long, the ease diameter is 0.22m

(8.6 in), and it weighs 31.2 kg (68.9 Ib). All major structural

elements are titanium. Each motor can provide a torque of #.5

Nm. The drag torque is approximately 0.5 Nm (4.4 in-lb), pri-
marily from the slip rings. Torque ripple must be less than 0.01

Nm except within discrete frequency bands where it is allowed to

rise to 0.08 Nm. Ripple torque must be limited to minimize

excitation of the spacecraft rotor flexible modes.

Rotary transformers allow 23 channels of digital data

transfer at 800 kilobltslseeond and there are 48 slip rings for
power and low frequency data transfer.

The 16-bit optical eneoder provides a digital grey code

output with a position resolution of 96 micro-radians (20 are-
seconds).

SCAN ACTUATOR SUBASSEMBLY CONFIGURATION

The SAS, Figure 3, is not as complex as the SBA. Its main

housing mounts on the side of the spacecraft despun stator and

contains the optical encoder position sensor. On a hollow shaft,
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extending from the housln_, are two bearings whleh support the

SAS rotor. These bearings are spring loaded by a diaphragm

within the rotor. The honeycomb scan platform, wlth Its selenee

instruments, ls bolted to the rotor flanges. A 200-wire Flexlble
Clreult Assembly (FCA) is located within the hollow shaft to

furnish eleetrleal power and signal transfer between the starer

and the scan platform. An FCA inner shaft drives the eneoder

rotor through a coupling diaphragm. This FCA shaft Is supported

at one end by the eneodee bearings and at the other end by the

SAS rotor end plate. Two redundant brushless DC torque motors

drive the SAS rotor for scan platform pointing. Rotation Is

limited to 210 ° by stops on the ease and the lower rotor flange.

SCAN ACTUATOR SOBASSEMBLY CHARACTERISTICS

The SAS is 0.35 m (13.8 in.) long, the lower rotor flange
diameter is 0.26 m (10.3 ln.), and it welghs 10._ kg (22.9 lb.).
All major structural elements are beryllium. Each of the
redundant motors can provide a torque of 1.0 Nm. The average
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drag torque Is 0.04 Nm (5.7 oz-ln.). Dahl parameters were

established for system performance modeling at low tracking

rates, and a maximum torque stiffness, _, of 85 Nm/rad (12,000
oz-ln./rad) was measured on the SAS engineering development unit.

As In the SBA, the 16 blt optical encoder provides a digital

grey code output with a posltton resolution of 96 mtcro-radlans
(20 arc-seconds).

BEARING AND LUBRICATION SYSTEM

Certainly the key elements in the long term reliability of
the actuators are the bearings and their lubrication. All bear-
ings are ABEC Grade 7T wlth AFBMA Grade 5 balls. Rings are 52100

chrome alloy steel, balls are 440C stainless steel. The ball

separators, chosen for a low and consistent drag torque, are

TEFLON torolds. The large SBA bearings have a 11.43 cm (4.75
In.) bore, a 1.27 cm (0.5 in.) cross section, wlth 0.635 cm (0.25

In.) balls. All SBA bearings operate wlth a 22.7 kg (50 lb.)

preload at a 20 ° contact angle for the encoder duplex pair and a
30° contact angle for the spring loaded aft bearings. The lnner

SBA bearlng has a 5.08 cm (2.0 in.) bore and the same cross
section and ball slze as the larger bearings.

The SAS rotor bearings have a 10.16 cm (_.0 In.) bore, a
1.27 cm cross section, wlth 0.635 cm balls. They operate wlth a
18.1 kg (40 lb.) preload at a 30 ° contact angle. The SAS encoder
separated duplex palr has a 5.08 cm (2.0 ln.) bore, a 0.635 cm
cross section, wlth 0.32 cm (0.25 ln.) balls and they run wlth a

9 kg (20 lb.) preload at a 30 ° contact angle. All of the fllght
bearings were supplied by the Spllt Ball Bearing Division of MPB
Corporation, Lebanon, New Hampshire.

All of the bearings recelve a trlcresyl phosphate pretreat-

ment followed by lubrication wlth Kendal KG-80 oli. Thls lubri-

cant was chosen for Its radiation resistant qualities and its

successful performance history In numerous similar applications.

Each bearlng cavity contains an acrylic copolymer (MICROWELL)

lubricant reservoir which provldes a sacrificial vapor supply to
minimize the loss rate of the bearing otl through the 0.018 cm
(0.007 in.) bearing cavlty gaps. Sperry Fllght Systems' lubrica-

tion loss analysis predicts, as the worst case, that at least 65_
of the bearing lubricant wlll remaln at the end of a seven-year
mission.

A bearing design verification unit, using flight quallty SBA
parts, was bullt and subjected to fllght unit vibration and
thermal-vacuum test environments. It ran, In vacuum, at Sperry
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for about one year prior to shipment to the Jet Propulsion Lab-

oratory, where it continues to run. Bearing drag torque, about

0.06 NN (8.0 oz-in), has been relatively stable, as have the

bearing torque ripple characteristics. Since the SAS bearings
and lubrication system are very similar to the SBA, the test is

also furnishing confidence in the reliability of the SAS design.

Bearing system design required difficult tradeoffs between

good bearing design practice, the SzeroM torque desires of the

pointing control system designers, and the stiffness requirements

of the spacecraft structural analysis group. The bearings are

very lightly loaded in space, yet they must carry significant

loads during shuttle launch and environmental tests. The aft SBA
bearings approach their stress limit during sine vibration tests

at the nheart stopping s retropropulslon englne/englne tube cross

axis resonance. Lead times for high quality bearings always

present fabrication schedule problems. Some bearing deliveries

were delayed by a chlorine corrosion problem which was traced to

the trichloroethylene used to clean parts prior to the TCP treat-
ment.

|

TORQUE HOTORS

Sperry Electro-Components of Durham, NC, supplied the two-

phase, 24 pole, brushless DC torque motors for the SAS and the

SBA. Torque constant for the SAS motors is 1.27 Nm/A (0.94 ft-

ib/A) and for the larger, heavier SBA motors it is 5.29 Nm/A (3.9

ft-lb/A). Both utilize samarium cobalt magnets.

Individual motors in a pair are rotationally oriented to

minimize the magnetic cogging torque and external magnetic field

of the combination. Even with this cancellation, the external

field of the SBA pair exceeded the 10 nano-tesla maximum allow-

able radial field at one meter, so the SBA will require external

compensation. Spacecraft fields must be tightly controlled to

preclude interference with the measurement of external fields by
the Galileo magnetometer.

OPTICAL ENCODEBS

Optical encoders are used in both actuators to supply

position information to the system control computer and for

torque motor commutation. These encoders were supplied by BEI

Electronics, Inc. of Haumelle, AR. The SAS encoder, Figure 4, is

a direct design derivative of the encoders used in the Shuttle

Remote Manipulator System (Canadarm). Its big brother, the SBA

encoder shown in Figure 5, has a larger center bore to fit over
the SBA despun tube.
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Redundant electro-optics assemblies, positioned 1_0o apart
around the glass code disc, are used to read the 16-bit position
information. Position resolution, as mentior_ed earlier, is 96
micro-radians (20 arc-seconds) and the allowable peak-to-peak
error, at the code transitions, is 120 micro-radians (25 arc-
seconds).

Achieving the code disc radial stability needed to meet this
peak-to-peak error requirement proved to be difficult, time
consuming, and, of course, expensive. Piece parts for the
_nitial engineering development encoders were machined from 410
CRES to save schedule time. This material, the bearing material,
and the glass used for the code disc have fairly closely matched
coefficients of thermal expansion and the BEI procedure for
mounting the glass disc on the rotor hub worked normally. Flight
encoder piece parts were machined from titanium for the SBA and
beryllium for the SA& These changes were made to reduce weight
and to match the other structural elements of the actuators.
:_tab_e code disc mounting for the titanium SBA encoders was
(Alrly easy but getting a SAS code disc to remain stable through-
ou_ the thermal environment required many attempts, with
attendant schedule slips. In retrospect, it probably would nave
been better to have changed the glass material to achieve a
better thermal coefficient match.

SIGNAL AND POWER TRANSFER

The complex, and often conflicting, mechanical requirements

imposed on the SAS and SBA are complicated by the added require-

ments imposed on them because they are also an integral part of

the spacecraft electrical cabling system. As such, they must
provide rotating electrical circuit paths for 28 VDC power; 2.4

kHz, 50 V, square wave power; low voltage digital logic power and

signals; high frequency digital bus data; temperature transducer

signals; gyro rebalance loop signals; and pyro firing circuits.

Each of these circuit types comes with its own redundancy,
shielding and isolation, and electrical parameter requirements.
In total, the cabling system required 200 wires through the SAS
and 96 through the SBA.

FLEXIBLE CIRCUIT ASSEMBLY

Because of its limited rotation, the SAS can use flexible

circuit tapes to provide the required circuit paths. This Flex-

Ible Circuit Assembly (FCA), Figure 6, was supplied by the

Electro-Tech Corporation of Blacksburg, YA. It contains four, 50
wire, etched copper circuit tapes manufactured from DuPont

PYRALUX WAIK copper-clad laminate and cover sheet. The tapes are
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arranged in pairs with one palr wound clockwise and the other
counterclockwise to minimize spring torque effects. Maximum

allowable torque to rotate ± 105o is 0.02 Nm (3.0 oz-in.).

Cross-coupling is minimized by the assignment of circuits

within the tapes. A circuit "high" has its return path on the

same trace in the adjacent tape layer and the highs and returns
alternate across each tape. The maximum allowable capacitance of

any trace to the FCA rotor and stator is 125 plco-farads. The

maximum pickup allowed In a circuit pair is 250 mllllvolts when

an adjacent pair is excited with a 100 volt peak-to-peak, 2.4
kHz, square wave with a 0.5 mlcro-second rise and fall time.

Two-foot wire Pigtails extend from the FCA stator end for

connection to the SAS back plate connectors during SAS assembly.
Pigtails on the rotor end terminate at scan platform instrument
connectors. These pigtails contain a variety of wire types and
sizes including Q24, Q26, and Q28 AWO in single wires, twisted
pairs and triplets, shielded and unshielded, with two different
insulation types. Keeping track of all these wires through the
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assembly process and handling this multi-llmbed device, without
damaging wires, were major tasks.

|

ROLL RINGS

In its initial design stages, the SBA used the Sperry roll

rings to accomplish power and signal transfer between the two

sections of the spacecraft. These unique devices, illustrated in

Figure 7, consist of inner and outer rings (which are much like

bearing races) with a thln circular flexure rolling between them
as they rotate. Flexure and ring cross-sectlonal curvatures are

designed so that the flexure rolls on its outer edges provide

redundant contact points and a small amount of wiping action to
keep the surfaces clean. Predicted drag torque for a stack of

100 roll rings was 0.01Nm, certainly a desirable attribute for a
pointlngactuator.

As the roll ring development and test progressed, a series

of problems occurred. First, obtaining uniform platings on the
rings and flexures with adequate adhesion was difficult. As

these plating problems were resolved and as significant amounts

DESPUN TUBE
OUTER RINGS

BARRIERS,

ENGINE TUBE INNER
RINGS

BARRIER SHIELDS

Figure 7. Cross Sectlonal View of Two Roll Rlng Circuits
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of rolling test time accumulated, flexure breakage began.
Flexure stress is determined by a trade-off between desired

flexibility, contact pressure, and fatigue llfe. Sperry had used

published fatigue stress data which proved to be inadequate for
the flexure configuration. They initiated a series of flexure

fatigue tests which furnished the data necessary for a successful

flexure design tradeoff.

Meanwhile, many of the units tested could not meet the

electrical interruption requirements of the digital data transfer

system. Devices which were electrically quiet while running in
air became noisy after a period of operation in a vacuum. Infor-

mation was obtained in a literature search which showed that the

coefficient of friction between unlubrlcated gold surfaces in-

creases dramatically in a vacuum. This led to an explanation for

the random momentary interruptions. As the contact surfaces

cleaned up during vacuum operation, the flexure could climb out

of its normal track, thereby losing its redundant contact at one

edge. This unstable condition would continue until the edge in

contact encountered some surface anomaly, which would cause it to

skid back into its normal track. During the skid, circuit inter-

ruptions could occur, particularly if the anomaly was some form
of surface contamination.

The obvious answer was to lubricate the roll rings, follow-

ing the practice in gold-on-gold slip ring technology. Lubrica-

tion was tried, successfully, but this led to a difficult situa-

tion. With the roll rings unlubrlcated, llfe tests could be

accelerated. With lubrication, they could not, and it was not

possible to adequately prove the reliability of a lubricated

electrical contact in the time available.

Due to the recurring problems with the roll rings, a backup

development effort had been initiated utilizing proven dry lube

silver slip rings and rotary transformers and in December 1980 an
SBA design change was directed.

Sperry has continued development of the roll rings with

their own funds. The original lubricated d_vices are still

running, with excellent electrical characteristics. Steady pro-

gress has been made in resolving the problems inherent in running
roll rings unlubrlcated. In the author's opinion, these devices

will eventually provide a significant improvement in rotating
electrical Joint technology.

|
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SLIP RINGS

The SBA contains 4 slip ring and brush block assemblies with

;2 equal width rings in each module. Two paralleled brushes ride
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on each Ping, about 180 ° apart, to provide contact redundancy.

Two different size brush tips are used, one rated at ] amperes
per brush pair, the other at 0.4 amperes per pair. Each of the q

brush block assemblies contains a different mix of high and low

power brush pairs to give ]I high and 17 low power paths through
the SBA.

The design uses dry lube silver-on-silver technology which

has been proven in many space applications. Brush tips are

molded from 85_ silver, 12_ molydisulphide, and ]_ graphite.
Rings are plated up, starting with copper, followed by fine

silver, which is then covered with hard silver. Ring and brush

block assemblies were supplied by the Electro-Tech Corporation of
Blacksburg, Vh.

There were two major concerns in the application of slip
rings in the SBh. The first was the amount and the characteris-

tics of the wear debris generated during the 11-million revolu-

tion, 7-year mission life. Excess debris, containing long silver
slivers, could generate internal shorts or arclng which would

cause spacecraft system failures. Several measures were taken to
reduce this concern. First, all interior conductive surfaces

were covered with insulating materials to block shorts to the

spacecraft structure. Next, physical and electrical circuit

isolation was provided which will allow continued operation of

the spacecraft systems in the presence of Ping to Ping short
circuits. Then, an accelerated life test was run to demonstrate

that the hard silver ring surface did not tend to generate long
slivers. AFter 13.5 million revolutions, the longest sliver

Found in the debris was 0.076 cm (0.03 in.) long. Total quantity
of debris Formed and brush tip wear rates closely matched the
results reported From several other sources.

The second _ajor concern was that the brush tips might lift

under launch vibration, causing circuit interruptions and the

potential For ring surface and brush tip damage. Brush pressures

were set at the high end of industry standard practice and early
module testing showed that the brushes would not lift.

Nhen the engineering development SBA was tested, brush

bounce did occur during both sine and random vibration inputs.

Tests and analysis disclosed an unfortunate combination of

resonances in the engine tube, the despun tube, and the brush
leaf springs which could cause both of the redundant brushes to

lift simultaneousl_ Extensive brush bounce tests were performed

which demonstrated that the contact surfaces would not be damaged
and the brush tips would not chip or fracture under sustained

vibratio_ Spacecraft systems using the slip rings were reviewed

and some changes were made to allow continued operation with
momentary circuit Interruptions. Shuttle launch vibration data

|
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was analyzed and the random vibration test requirement in the
range between 100 Ifz to 1 kHz was reduced from 0.1 G2/Hz to
0.068G2/Hz. At this test level brush bounce did not occur.

ROTARY TRANSFORMEII8

Rotary transformers are used tot digital data transmission
between the spun and despun sections of the spacecraft.
Preliminary design of these devices was performed at the Jet
Propulsion Laboratory with Sperry Flight Systems Baking the
design refinements necessary for their application in the SBA.

Transformer construction Is shown in Figure 8. Assembly of
the inner and outer transformer sections is similar. Ten turn
coils of #36 AWG wire are wound on ceramic bobbins. These
bobbins ape placed between two manganese-zinc ferrtte half cores

which are cemented into titanium core holders. Assembly tooling
maintains ooncentrlcltles while the cement Joints are cured. In
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the unassembled condition the bobbins and cores are quite fra-
gile, requiring careful packaging and handling, but once assem-
bled, they are much less susceptible to damage. Transformer
cores (MN-31) were supplied by Ceramic Magnetics of Fairfield,
NJ, and the coil windings by Standard Industries of La Mirada,
CA.

Rotary transformers have many characteristics which make

them ideal digital signal transfer devices. There is no wear or

torque drag, they are quite insensitive to axial or radial mis-

alignments, and they are highly reliable. Their primary diffi-
culty is associated with the design of the driver and receiver

circuits required to couple data across the magnetic gap. Mecha-
nism designers prefer a wide gap to minimize tolerance stackup

problems, while circuit designers prefer a narrow gap to reduce

leakage inductance. The Galileo rotary transformer radial gap is
0.05 cm (0.02 in.). The resulting nominal electrical parameters,

including effects of the twisted shielded lead wire, is shown in
Table 1.

TABLE 1. Rotary Transformer Electrical Parameters

TEST PARAMETER

WINDING

INNER-SPUN OUTER-SPUN

MEASUREMENT
FREQUENCY

|
t'

Open Circuit Impedance Phase Angle

Open Circuit Impedance Phase Angle

Short Circuit Impedance Phase Angle

DC Resistance

Resonant Frequency

395 Ohms 370 Ohms 800 kHz

84° 85°.

33 Ohms 3_ Ohms 80 kHz

75° 76°

76 Ohms 76 Ohms 800 kHz

83° 83°

3.52 Ohms 3.5_ Ohms NIA

1.46 MHz 1.66 MHz N/A
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SUMMARY AND ACKNOWLEDGEMENT

These two actuators, and their component parts, presented a

wide variety of technological challenges to everyone involved in

their design, fabrication, and test. Engineerlng development
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systems. The ultimate degree of success cannot be measured until
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date is certainly due to the professional competence and dedica-

tion of many individuals whose contributions are gratefully ac-
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