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ABSTRACT

The indirect effects on the geoid computation due to the second
method of Helmert's condensation were studied. When Helmert's anomalies
are used in Stokes' equation, there are three types of corrections to the
free-air geoid. The first corvection, the indirect effect on geoid un-
dulation due to the potential change in Helmert's reduction, had a max-
imum value of 0.51 meters in the test area covering the United States.
The second correction, the attraction change effect on geoid undulation,
had a maximum value of 9.50 meters when the 10° cap was used in Stokes'
equation. The last correction, the secondary indirect effect on geoid
undulation, was found negligible in the test area. The corrections were
applied to uncorrected free-air geoid undulations ét 65 Doppler stations
in the test area and ccupared with the Doppler undulations. Based on the
assumption that the Doppler coordinate system has a z-shift of 4 meters
with respect to the geocenter, these comparisons showed that the cor-
rections presented in this study yielded improved values of gravimetric
undulations.
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List of Notations

geoid undulation

gravity anomaly

height above the geoid

mean radius of the earth

normal gravity at the point on the reference ellipsoid

Stokes' function

element of solid angle

gravity potential and gravitational potential, respectively

gravity and gravitational potential change, respectively

indirect effect due to the potential change

attraction change effect on geoid undulation

secondary indirect effect on gravity

vertical attraction and attraction change, respectively

terrain correction

Newton's gravitational constant

volume density

surface density

angular radius from the evaluation point

1linear radius from the evaluation point

quantity referred to the regular part of topography

quantity referred to the irregular part of topography

quantity referred to the topography before the condensation
quantity referred to the condensed layer, i.e., after the condensation

point on the earth's surface (see figure 1)

point on the geoid (see figure 1)

point on the reference ellipsoid corresponding to point Py (see
figure 1) '

fully normalized geopotential coefficients
spherical Bouguer plate (figure 4, p. 22)
plane circular plate (figure 5, p. 23)

Two Differance Spherical Bouguer Plate (p. 35)
Two DifferencePlane Circular Plate (p. 35)
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1. Introduction

A fundamental equation used to compute geoid undulation, N is the
Stokes' integral equation;

N = g [[9 5(9) do (1)
Equation (1) is valid for a reference ellipsoid which (i) has the same poten-
tial as the geoid, (ii) encloses a mass that is numerically equal to the
earth's mass, and (iii) has its center at the center of mass of the earth
(Heiskanen and Moritz, 1967, p. 94). This implies that the gravity anomaly,
Ag used in equation (1) refers to the geoid with no external
masses. This important assumption necessitates the real earth to be regu-
larized so that all masses outside the geoid are completely removed or shifted
below the geoid. The process of removing or shifting the masses is called
a gravity reduction.

To properly obtain the gravity anomaly on the geoid, we must consider
the effect of removing or shifting the masses outside the geoid on the value
of gravity 9obs at point P on the earth's surface. Then, after removing
or shifting the masses, the gravity station is brought down along the vertical
curve to point P, on the geoid (see Figure 1). In other words, the gravity
force is transferred from point P to point P, by a free air reduction.
By subtracting the normal gravity vy at the corresponding point, Qg s On
the ellipsoid from the gravity at P, we then obtain the gravity anomaly
on the geoid.

By removing or shifting the masses outside the geoid in the gravity reduc-
tion process the original potential of the earth is changed as well. Sup-
pose that the geoid is defined to be the equipotential surface having potential
Wo and the reduction process causes the change in potential at a point
originally on the geoid by the amount of &W . To be precise, &W is de-
fined to be the gravity potential of the actual topographic masses minus the
gravity potential of the masses after the reduction process. This means that

the point originally on the geoid now has the potential WO- SW (the negative
-1-
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sign is conventional, see below) and by definition it is not the point on
the geoid anymore. We call the changed geoid as the cogeoid. Hence
the surface computed by Stokes' equation using the gravity anomaly reduced
by the explained process so far is not the geoid but the cogeoid. The
real geoid and the cogeoid are separated by a vertical distance &N which
is called an indirect effect of gravity reduction on geoid undulation.
SN is simply computed by Brun's formula:
SW .

SN = < (2)
where &W is the gravity potential change at the geoid and Yy 1is the
normal gravity on the ellipsoid. A positive &N means that the geoid
is above the cogeoid.

The potential of gravity, W is the sum of the potentials of gravi-
tational force, V and centrifugal force, ¢ , i.e., W=V +¢ ., Now
we are interested in the change of gravity potential, &W or the differ-
ence between the gravity potentials of the masses before and after the
gravity reduction. Since the potentials of the centrifugal forces of
the masses before and after the gravity reduction are the same, the change
of gravity potnetial, &W 1is then the same as the change of gravitational
potential, &V . Brun's formula in equation (2) becomes:

- 8V
oN = 5 (3)

Therefore, the potential change can be referred to as either the change in
gravity potential or the change in gravitational pctential.

Secondary Indirect Effect on Gravity

Since Stokes' equation gives the surface of the cogecid rather than
the geoid then to be more accurate, the gravity anomaly used in the equa-
tion must be the boundary value on the computed surface, i.e., the gravity
station is further brought down from point Po on the geoid to point

-2-
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Figure 1: Geoid, cogeoid and ellipsoid

P. on the cogeoid (see Figure 1) before Stokes' equation can be applied.
In order to bring the gravity station from the geoid to the cogeoid,

it is done by a simple "free-air reduction" (Heiskanen and Mortiz, 1967,
p. 142). The condensation reduction is unnecessary because the masses
between the geoid and cogeoid are relatively small compared to the masses
above the geoid. The movement of such small mass through the very small
distance will produce no significant change in S8W . Therefore, it can
be thought that instead cf moving the masses inside the jeoid in the
first place, we immediately put them inside the cogeoid with &W re-

maining unchanged (Bomford, 1971, p. 493).

The change of gravity by free-air reduction in bringing down the
point for the vertical distance h 1is computed by



In practice, the vertical gradient of gravity 9g/oh , is replaced by the
normal gradient 3y/8h so we have

- %;E.. h

+ 0.3086h mgal (4)

-
hid

for h in meters. From the above equation, the change in gravity in
bringing down the gravity station from point Po On the geoid to point
Pc on the cogeoid can be computed from:

§ =0.3086 SN  mgal (5)

where &N is the separation between the geoid and cogeoid or the indirect
effect on geoid undulation in meters. The effect of & is called "a
secondary indirect effect on gravity" (Heiskanen and Moritz, 1967, p. 142.)

Considering these two indirect effects caused by the gravity reduc-
tion, the undulation of the geoid, N 1is

N = Jf (a9 +8) S() do + on 6)

where Ag is'the gravity anomaly at point P0 on the geoid.

Gravity Reduction

There are several ways in which the gravity reduction can be per-
formed. Individual methods differ, depending cn how the topographic
masses above the geoid are treated. For example, the Bouguer reduction
completely removes the topographic masses. The free-air reduction, in
concept, ignores the existence of the masses so the gravity on the topo-
graphic surface is reduced to the geoid using the vertical component
of the gravity gradient. The second method of Helmert's condensation
shifts and condenses the topographic masses on the layer of the geoid

-4



while an isostatic reduction distributes the masses to a certain depth
under the geoid. More methods and more detaijls can be found in standard
textbooks in physical geodesy, ¢.g. Heiskanen and Moritz (1967), Bomford
(1971), and Grushinsky (1969).

Theoretically, all gravity reductions are equivalent and lead to
the same geoid provided that they are properly applied, i.e., the indirect
effect is taking into consideration (Heiskanen and Moritz, 1967). In
practice, however, gravity reductions which give a lTarge indirect effect
are avoided in determining the geoid., Usually, a free-air anomaly at
sea level is used in Stokes' equation and is said to be an approximation
of Helnert's gravity anomaly (Heiskanen and Moritz, 1967, p. 146). The
indirect effect due to Helmert's reduction is less than 50 cm for the .
topograhic height of 3 km (Heiskaren and Moritz, 1967, p. 145; Grushinsky,
1969, and Neequaye, 1975); therefore, it may not necessarily be considered.
However, the required accuracy of geoid undulations may be on the order
of 10 cm or less in the future. This means that the indirect effects
cannot be neglected anymore.

Since the free-air anomaly is mostly used in practice and clesely

related to the anomaly of the second method of Helmert's condensation.
It is interesting for us to look into more details of these two anomalies.

Free Ajr Anomaly vs. Helmert's Anomaly

Helmert introduced two methods c¢f condensation. In the first method,
the topography is condensed on a paralle]l surface located 21 kilometers
below the geoid (Heiskanen and Moritz, 1967, p. 145). The value of 21
kilometers, the difference between the semimajor and semiminor axes of the
earth, is adopted in order to avoid problems connected with the convergence
of the spherical harmonic series for the potential outside the earth. The
first method is not popular and not used by geodesists. The second method
of Helmert's condensation is therefore the one which is referred to in most
1iterature and also in this study.




In the second method of Helmert's condensation, the topographic
masses of volume density p above the geoid are shifted and condensed
to be a surface layer of surface density ph , where h is the height
of the topographic surface above the geoid. After condensation, the
gravity force at point P on the earth's surface is transferred to the
corresponding point, P, , on the geoid using the vertical gradient
of gravity. In a free-air reduction, the gravity force is just
transferred from point P on the surface to point Po on the geoid
by the vertical gradient of gravity, without doing anything with the
topographic masses. This meansthat if gravity g, . is measured at
point P on the tcpogrpahic surface, the gravity at point P, on the
geoid becomes 9obst F where F 1is the change in gravity by the free-
air reduction computed by equation (4). After subtracting normal gravity,
¥ , at the corresponding point on the ellipsoid, we get a free-air anomaly
on the geoid as:

89 = gops + F - (7)

A gravity anomaly of the geoid obtained by the second method of
Helmert': tnndensation, shortly called here as Helmert's gravity anomaly,
bgy « #irfers from the free-air anomaly at the same point by the amount
of terrain correction C (Lambert, 1930, p. 116), that is,

.AgH = Ag + C (8)

Equation (B8) is obtained based or the linear approximations for the effect
of topography (Moritz, 1968). We will see later that C is only one

part of the tctal attractjon change due to the second method of Helmert's
condensation.

Considering the procedure in the second method of Helmert's condensation,
we see that this method maintains the same earth's mass and the same Tocation
ot the center of the mass of the earth (Bomford, 1971, p. 505). That
is the second method of Helmert's condensation fulfills the second and
the third requirements of Stokes' equation. The first requirement is

-6-
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always fulfilled by keeping the definition of the geoid which is the
equipotential surface having potential Mo . Realizing these facts,
we see that using the gravity anomalies obtained from the second method
of Helmert's condensatich in equation (6) should give the more correct
geoid undulations than using the ones from the free-air reduction. By
using the gravity anomaly of equation (8) in equation (6), the more accurate
geoid undulation becomes

N=]Rﬁfgf (Ag + C+6) S(¥) do + oN (9)

%Y fcf Ag S(¢) do + zﬁ—’% {,f C S(v) do

+ 1’% [[85(v)do + &N (10)
g
N =N; + ANy + 8Nz + N (11)

We ste that Ni is the undulation which has normally been computed from
free-air anomalies and used as the 'correct' undulation. This means

that if the free-air anomalies, Ag are used in Stokes' equation (1),
there are three kinds of errors incurred in determining the geoid. One
comes from neglecting the terrain effect in the gravity reduction and

the other two from the indirect effects. In sequel, we will refer correc-
tion 4N; which comes from the attraction :hange in Helmert's condensation
method as an attraction change effect on geoid unduaition; correction

SN which comes from the potential change as an "indirect effect" and
correction &N, as a "secondary indirect effect".

In the following sections, we will investigate how large each cor-
rection is.



2. Investigation of Formulas for Computation

It is shown in the previous chapter (equation (11)) that the accurate
geoid undulation can be computed by: (i) using the gravity anomalies
obtained from the second method of Helmert's condensation in Stokes'
equation and (ii) taking the indirect effects on geoid undulation and
on gravity into consideration. In other words, if free-air anomalies
instead of Helmert's anomalies are used in Stokes' equation, we must
compute the corrections caused by the potential change and the attraction
change inthe process of Helmert's condensation reduction (the second
method). In literature, various models of topographic masses are used
to derive or to estimate the effects of potential change and attraction
change in the reduction process, for example: a spherical Bouguer plate
(i.e., a portion of a spherical shell); a plane rircular plate
(i.e., a plane plate with finite radius); and a plane Bouguer plate (i.e.,
an infinite plane plate). These examples of topograpgic models are referred
to as "the regular part" or "the smooth part" of the topography because
the irregularity of the topography is not taken into consideration in
these models. When the irregularity of the topography is considered
in the model, the masses above and the non-existing masses below the upper
surface of the regular part of the topography are referred to as the
irregular part of the topography.

In this chapter we investigate the existing expressions to see which
type of model and which expressions we should use to get the geoid compu-
tation of 10 centimeter accuracy. Before we pick up the appropriate
expressions for investigation, there is a 1ittle confusion to be made
clear. The confusion concerns the location of the computation point
where we compute the changes in graVity potential and gravity attraction
due to the reduction process. The following is a literature review that
involves the computation point for the potential change and the attraction
change in the second method of Helmert's condensation.



In the derivation of Moritz (1968), he derives the gravitational
potential of the topographi masses, V , at a point P on the earth's
surface. The potential of the condensed layers, Vg , is implied to
be 1ying on point P, at sea level (Ibid., p. 18). The attraction of
the topographic masses and the condensed layer, A and AS respectively
are both referred to the same point P . By linear approximations for
the topographic effect, Moritz shows that V = Vs and A = AS-C where
C is the quantity known as a terrain correction (Ibid., eq. (67)).

The change in gravity due to the condensation of topography to sea
level by Bomford (1971) is evaluated at point P on the earth's surface
This gravity change is zero if the topography is assumed to be a spherical
shell or an infinite plane as Bomford states that "Condensing the plateau
to below the geoid causes no change in g , whether the plateau is regarded
as an infinite plane or as a spherical shell." There is no definite
statement, however, concerning the point where the change in potential
due to the condensation method is evaluated.

Neequaye (1975) uses a plane circular plate with finite radius
a thickness b and volume density p as a topographic model (see figure
?). He obtains a general expression for computing the gravitational
potential of the topographic masses at some point of height c¢ directly
above the center of the bottom surface of the circular plate as (Ibid.,

eq. (3-1)):
V = ko[ (c-b)2~ c2 -(c-b) va%+(c-b)2 + ¢ vaZ+ c2

-a2gn(c-b+/a2+(c-b)?) + a2gn(c+/az+c?)] (12)
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Figure 2: A topographic model used by Neequaye (1975)

The potential change is the difference between the potential of the actual
topographic mass and the potential of the condensed layer. To get the po-
tential of the topographic mass, Vi , the distance ¢ is set equal to b.
Equation (12) becomes:

[— 2 2
V; = ke (-b%*+bva?+b? + a®#n Eifg_iﬁ__) (13)

This means that the potential of the topography is evaluated at point

P on the earth's surface.

-10-
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To get the potential of the condensed layer, the quantity o in
the equation (12) is set to E. By taking the 1imit b+0, equation (12) becomes

Ve = 2mkpb (va%+ c? -c).

Then by setting ¢ equal tc b , we get
V= 2rkeb (Va®+ b*- b) (14)

The potential of the condensed layer is adain evaluated at the point

P~ . Therefore, the potential change:
6V=VT"VC
S 22+ b2
= mkp{b%- bya’+ b + aZgn 2 +/2 t b } (15)

is evaluated at the point P on the earth's surface.

Grushinsky (1969) uses a plane circular plate with an infinite radius
for computing the potential change. His derivation implies that the
potential due.to topography refers to point P on the earth's surface
while the potential due to the condensed layer refers to point Po on
the geoid. However, because of the symmetry of a plane circular plate,
the gravitational potential due to the topography at point P on the
surface andat point Po on the geoid are exactly the same. Therefore,
thz approximate formula for potential change that has been obtained can
be referred to a point P0 on the geoid.

Lambert (1930, p. 116) makes a clear statement in regard to finding
the reduced gravity at point Po on the geoid. Apart from the free-
air reduction, we must apply & correction to the measured gravity at
P on the earth surface. This correction is equal to the attraction
of the condensed topography at Po on the geoid minus the attraction
of the topography at P on the ecsrth's surface. When Lambert derives
the potentials in isostatic reduction, the compuation points he refers

-11-



to are the same as those to which he refers for the attractions (Ibid.,

p. 150). Helmert's condensation reduction can be viewed as a special

case of isostatic reduction where the compensation depth is zerc (Heiskanen
and Moritz, 1967, p. 145 and Bomford, 1971, p. 497). This means that

the gravitational potential of the topography refers to the point P

on the earth's surface and the potential of the condensed layer refers

to the point P, On the geoid.

Baeschlin (1948, Chapter XII) uses the point P as the computation
point for the attraction difference between the actual topography and
the compensated topography in the isostatic reduction method. He uses
the point P0 on the geoid as the computation point for potential change.

Heiskanen and Moritz (1967, Chapter 3) refer the computation point
to point P on the surface when the attractions of the topography and
the condensed layer are determined in Helmert's condensation reduction.
They also point out that to compute the potentials of the topography
and the condensed layer, the point to which the potentials refer is always
the point P0 on the geoid.

From the above literature review, we see some confusion in using

" computation points for the potential change and the attraction change
in the second method of Helmert's condensation between point P on the
earth's surface and point Po on the geoid. To understand what would
be the reason which causes the corifusion, we take a spherical shell to
represent the topography of the earth. Let the thickness of the shell,
hp represent the height of the topography and MS be the masses of

the spherical shell with constant volume density p . The mass M_ can

be computed from: ;
Ms = p X volume of the spherical shell
= pe=m[(R + hp)3 - R3]
- ﬂgp (3R?h, + 3Rh2 + h) (16)

-12-
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Introduce u = hp/R , then QUALITY,

- 2 1 .2
Mg = 4moR*h, (1 +u + 5-u*) (17)

When evaluation point at P on the earth's surface.

To evaluate the potential of the spherical shell at point P on
the earth's surface, the whole masses of the shell are acting 1like a
point mass at the center of the shell because of the symmetry of the
shell. That is the gravitational potential of the shell at point P
symbolized by V‘IP can be written as:

Vig = -1TEL—-
|P (R +hp)
kM
5 s (18)
R(1 + u)

Expanding (1+u)=* = 1-utu?-u3+ ... and substituting for M, we have

pr ke4moRh, (1+utdu?) (L-utu®-u’+ ...)

4‘nkpth(1+—§;—u2 -udt L) (19)
To get the vertical attraction of the spherical shell at point P on
the earth's surface, we have

. D
Alp == 51 Ve
- . kMg

+ 2
(R hp)
"kMS

R¥(1+u)?

]
—

N

—
~r

since (1+u)~% = 1-2u+3u?-4u+ ... , then we get

Awp = ~4mkph, (l-utdu?-Lui+ ...) (22)

P

-13-
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When the spherical shell is condensed to be a Tayer surface on the
geoid, this layer has the same mass Mg and can still be considered
as the point mass at the center of the sphere, i.e., the potential of
the condensed layer, V; at point P on the earth surface is:

kM

V;lp = —(Fﬁp = V'IP (23)

The vertical attraction of the condensed layer at point P , Aé]P is
also equal to Awp .

When evaluation point at Pg on the geoid.

To evaluate the potential of the spherical shell at point P, on the
geoid, we cannot consider the shell as a point mass anymore since the
evaluating point is now inside the shell. For a point inside the shell
at a distance r from the center, the potential of the shell is
(MacMitlan, 1958, p. 38):

V' = dmkp [4(R#h,)? - &+ - - %] (24)
At point P_ on the geoid r=R , so we have

(¢]

VI

P, 4kp [&(R+hp)2 - +R? - +R?]

dnko [iR%+ th+ &h; - 3R?]

2
4rkp (th+ &hp)

4ﬂkpth(1+£u) (25)

Then we have the vertical attraction of the spherical shell at point
Po as:

3
Alp == s V'
P, LI

- 83 (4koRh, + 2mkoh?)

(26)

i

'
H
3
=
©
>

P -14-
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For the potential of the condensed layer at point P, on the geoid,
we consider that point Po is just outside the condensed layer so the
layer acts like a point mass, i.e.,

g%i

4rkeRhy (L+uts u?) (27)

v;[Po

i

The vertical attraction of the condensed layer at point Py on the geoid
is:

AéIP R2

i

- dkeh, (L+u+d u?) (28)
A summary of expressions for computing the potentials and the ver-
tical attractions of the spherical shell and the corresponding condensed
layer at point P on the earth's surface and at point P, on the geoid
is given in Table 1. Also shown in the table are the changes in potential
and vertical attraction at points P and P, .
Comparing the quantities of V' , Vé , A' and A; at point P
on the earth's surfaceand point P0 on the geoid, we see that the dif-
ferences are in the order of u . Neglecting u-terms in the computation
would cause a relative error smaller than 0.14% (Moritz, 1968, p. 4).
To get an idea how.large the difference of these quantities can be, we
take an example of hp = 3000 meters, R = 6371000 meters, Newtonian gravita-
tional constant k = 6.672 x 10"'' m3/(kg-sec?) and volume density
p = 2.67 gn/cm® or 2,67 x 10° kg/m® . The result is shown in Table 2.

From Table 2, using different evaluation points between P and P,
gives differences of potentials in the order of 1-2 kgal-m and differ-
ences of vertical attractions in the order of 0.3-0.6 mgal for hp =
3000 m . By Brun's formula of equation (2) , the potential change of
1 kgal-m gives approximately the indirect effect on geoid undulation

~15-
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Table 1: Potentials and vertical attractions of the masses
of a spherical shell and the condensed mass onto
the geoid at two evaluation points.

Quantities Evaluated at Py Evaluated at P
kM 2 3
v 4rkoRh (1+3) - i = drkoRhy (L = 3+ .00 )
2 3
v 41Tkpth(1+u+-g-2) 4nkpth(1+g. - g )
2
Ve- v -4nkpth(§-+-§ ) = 0
[ -2nkeh 2]
.............. "----__--_---P-------_--_-#--__--_-_--_------------------_-_;_--------
2
P
2 3
AL -4rkph (1+uty ) grkoh (1wt - B+ L)
' ' u?
At - Ag 4nkphp(u+3; ) 0
Note
()' = effect due to spherical
shell
()¢ = effect due to the condensed
layerr
k = Newton's gravitational const.
Ms = mass of the spherical shell
p = density of the earth's crust
.-t

-16-
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Table 2: Numerical example of Table 1 with hp = 3000 m ,
T R=6,371km, k=6.672x 107** m3/(kg-sec?)
and p = 2.67 x 10° kg/m?* .

Quantity (in unit) Evaluated Evaluated  [Difference be-
at Py at P tween two evalu-
ation points
V' (kgal-m) 4279.6501 4278.6430 1.00;1
Vé (kgal-m) 4280.6578 4278.6430 2.0071
V' - Vé (kgal-m) -1.0077 0 -1.0077
A' (mgal) -671.5810 -671.2650 -0,3160
A; (mgal) -671.8973 =671.2650 =0.6323
A' - A; (mgal) 0.3163 0 0.3163

of 1 meter. Consider that the average terrain is lower than 3000m, we would
normally have the differences less than the values shown in Table 2. In
the past, the magnitudes of differences mentioned above can be tolerated.
Therefore, this could be a reason that not much attention was given to
seriously define the location of evaluation points for computing the
potential change and the attraction change due to the second method of
Helmert's condensation. Now we are talking about the computation of geoid
undulation in the order of 10 centimeters, therefore, we need to define
the exact Jocation of the evaluation point. To do this let us follow the
reduction process in the second method of Helmert's condensation step-by-
step as follows, see alsc figure 1:

(a) We have gravity value, 9obs at point P on the earth's surface.

-17-



(b) Remove the topographic masses above the geoid. We compute the at-
traction, Ay at the point P caused by these masses and subtract
from the observed value, ggpe -

+¢} Bring the masses back and condense on the layer of the geoid. Here,
we have to compute the attraction, Ag at the point P again which
is caused by the condensed layer and add to the result in (b) .

(d) Transfer the gravity to point P, on the geoid by a free-air reduc-
tion, F . For the point P above the geoid, F 1is added to the
result in (c) .

(e) Compute a normal gravity, Yy of the reference ellipsoid at corresponding
point Q, on the ellipsoid.

(f) We finally get

AgH = Oops AT'P + AC!P + F -’Y‘Qo (29)

The vertical 1ine followed by a letter indicates the point where
a particular function is evaluated.

The secondary indirect effect is assumed to be negligibly small
and not included in the reduction procedure explained above. We can
see from equation (29) that 9obst F -y 1is in fact a free-air anomaly
at the geoid and (Ay-Ag) is the gravity attraction change due to the
second method of Helmert's condensation and it is evaluated at point
P on the earth's surface.

To determine the potential change in the reduction process, we realize
that the indirect effect, SN on the geoid undulation is caused by the
potential change, SW on the geoid due to the change of the position
of the masses in the reduction process. Then we have to evaluate the
potential change, &W ai point P, on the geoid.

We can conclude that the computation point or the evaluation point
of the attraction change is at point P on the earth's surface and the
computation point of the potential change is at point Py on the geoid.



In the next sesiion we wil; explore the change in gravitational
potential due to the second method of Helmert's condensation, which will
lead us to the indirect effect on geoid undulation.

2.1 Effect of the Second Method of Helmert's_Condensation on Potential Change

The gravitational potential of the topographic masses at point P,
is:

vk g ’ (30)
\
The integral is extended over the masses outside the geoid; dm is the
element of mass and ¢ is the distance of mass dm from the evsluation
point P, , (See Figure 3). Let p be a volume density of the topo-
graphic masses and assumed to be a constant. Then equaticn (30) can
be written as:

V= kef[[ -d-,zl- (31)
where dv is the element of volume and the integral is extended over
the exterior of the geoid. The element dv = r2dodr where do is the
elenments of solid angle and r is the distance between mass element
dm and the center of the earth. By planar approximation,

dv = R%dodz

(see Figure 3) so that equation (31) becomes

h
; do dz
V = kpR?
{! z£0 %

where o denotes solid angle over the whole sphere. iz rewrite this
equation again as

-10-
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V= koR? ff [ P dddz‘+ keR? [f [ dodz
o 2=0 o z-hp :

= vl + vll (32)

We see that V' represents the gravitational potential at point P,

of the plate which is called the regular part of topography. V" repre-
sents the gravitational potential at point P, of the masses above the
plate and non-existing masses under the plate which are called the ir-
regular part of topography or topographic variation. That is the potentia)l
of the topographic masses can be split into the potentials of the regular
and irregular parts.

Similarly, the potential of the condensed layer after Helmert's
condensation can also be split into two corresponding parts:

V = Ve + V¢ (33)

L «/ car<n's center

Figure 3: The regular part of topography is represented by
a spherical Bouguer plate and the irregular part is
represented by the masses above the plate and the
non-existing masses under the plate (cross hatches
areas in the figure).
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Then the potential change at point P, , 6V in Helmert's condensation
reduction can be written as

Vo=V -V, (34)
(V! o+ V") - (Vg + V)
(Vo= vl o+ (v -

SV' + Sy (35)

]

where &V' vrepresents the potential change of a regular part of topo-
graphy and &V" represents the potential change of an irregular one.
Therefore, we can investigate the expressions for the potential changes
of a regular part and an irregular part of topography separately.

2.1.1 Regular Part

As mentioned before, the effect of a regular part of topography
or the Bouguer plate can be computed by different degrees of approximation.
We start from the one that has the least degree of upproximation.

(a) Spherical Bouguer Plate: The regular part of the topography
is described as a portion of the spherical shell with thickness hp and
angular radius ¥ from the computation point. The gravitational potential
of this topographic mass at point P, on the geoid can be written as
follows (Baeschlin, 1948, p. 519) and (Lambert and Darling, 1936, p. 6):

VE = nkpR? {sin?y [f(v, hp) - f(y, 0)] + 48} (36)
where
- 2siny cosy tany " -
f(Px) 30s? + " + cosyp an tan(z + 1%)
with
- X .
tany = tan%— + w {27)
-21-
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The angle ¢ 1is the angular radius of the plate subtended at the center

of the sphere (see Figure 4), and B  is defined below.

The gravitational potential of a spherical Bouguer plate can also
be expressed in hyperbolic functions as (Baeschlin, 1948, eq. 75.27;
and Lambert and Darling, 1936, eq. 28c):

V' = 4nkpR*[B +2+sin’y(cosh®d2 - cosh®¢y)
+ -sin®ycosy(¢2-¢1)
+ Lsin®ycosy(sinhga coshdz~ sinhgr coshda)} (38)
with
B, = - +(1) 11+ 2 (51
sinh¢; = tan %?
sinh¢2 = tan (39)

g

’
4

\
\lff”

¢

Figure 4: Topography is represented by a spherical Bouguer plate

To obtain the gravitational potential of the condensed layer, we
make use of the expression for the potential of a spherical disk given

-22-
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by Baeschlin (1948, equation 75.17) as:

Vl

2nkpdr-£ (E-2)

with E =vR?+ r’ - 2Rrcosy where r 'is the distance from the center
of the earth to the evaluation point, dr s the thickness of the disk
and z = r-R . To apply the above equation to the condensed layer of

a spherical Bouguer plate of height hp , we replace dr by hp and
with the evaluation point at P, on the geoid, we have r=R and z=0
then,

E =/R? + R® - 2R%cos ¢

= R V2 - 2cosy
With the trigonometric identity (l-cosy) = 2sin? %} we get
E =R sin &

So we can write the potential of the condensed layer of the spherical
Bouguer plate at point P, as

N . ]
Vg = dnkoh R sing (40)

Therefore we can compute the potential change at point Py of spherical
Bouguer plate with equation (36) or {38) and equation (40).

Next we turn to a less accurate way to estimate the potential of
the regular topography.

1
|

///,

i
Figure 5: Topography is represented by a plane circular plate

-23-
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(b) Plane Circular Plate: Here, the regular part of the topography
is a flat plate with thickness hp and linear radius a from the compu-
tation point. The expression for the graviational potential of the plate
is less complicated than the pontential of the spherical Bouguer plate.
The potential of the plane circular plate at point P, 1is given by
(Heiskanen and Moritz, 1967, p. 128; Baeschlin, 1948, p. 500):

h

V' = mkp[-hj + hyEy + a%in -%;El ] (41)

P
with & = va? + hé (see Figure 5). For an equivalent area with the
spherical plate in (a), the linear radius of the plane plate is:

a = R sing (42)

Using equation (3-9) of Heiskanen and Moritz (1967) and letting
quantity c¢ which is the height of the evaluation point equal to zero;
we get the potential of the condensed layer of the plane circular plate
at point P, as:

Vg 2mkca
2wkphp(2R sin%})

4keh R sin% (43)

Comparing equation (43) with equation (40), we see that the potentials
of the condensed layers of the equivalent size of plates are the same
regardless of a spherical or a flat plate.

Finally, we turn to the least accurate approximation for the regular
topography.

(c) Infinite Plane Plate or Plane Bouguer Plate: This is the plane
circular plate of height hp‘ in (b) with a radius of infinity. Grushinsky
(1969, p. 210) gives for the potential of the infinite plate at point Po?

h
V' = 2mkphp a [1 - gg + (52)°]
-2 -
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and the corresponding potential for the condensed topography is:

Vé = anphp *a

Of specific interest, here is the difference V' - Vg (see eq.
35) which can be simply computed for model (c) but not models (a) and
(b). We have:

-2ﬂkphp ca [;g- - (é&%)zl

< + Tkoh}
- nkphp + >3 \

1

sv!

n

As the radius a approaches infinity, the second term in the equation
goes to zero, so we have

sV = -wkph; (44)

Equation (44) will be referred to later as fGrushinsky's formula.

2.1.2 Irregular Part

The gravitational potential at point P, of the irregular part
of topography is defined to be (equation (32)):

h
V" = kpR2 ff f dZ;O‘_ (45)
o z=hp

To solve equation (45), we consider the planar approximation of the topo-
graphy shown in Figure 6. From the figure we have

22 = 9% + 2z° (46)
or we can write
=L 2% -4
i AR

-5
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Expand the expression in parenthesis as a binomial serijes, we get

1 1 ( 22, 5 2 15 28
— o (] - &k L4 3. A L A2 )
2 !
R AR
1 2% 4 2t 45 28
= 15 - % E{ + = EF- - ;_._z_ + )
0

Substitute 1/¢ 1into equation (45) and integrate to obtain

VW= Vo 4+ Vo + Vs + Wy 1, ., (47)
with h

V. = keR® [] [ d;dc

) Z"'hp 0

-t 12 |
o~ 2= hp

kpRZ ff-g-o-& do (48)

do

]

2
Vo = koR? fjf p L dz do
o z=h p 2y

= - & keR? [[+ do
]

e
% z=hp
2 prh-hp?
= - LkeR ff-——-;L do (49)
0
4
Vs = kpR? [/ j 2 2 dz do
o z=h b N
= ZkoR? ff-ﬂs'—hv-— do (50)
0
6
V, = kpR2 [/ f 15 Z_ 4z do
o z=h p 28

7 7
- 2= keR? ff—Lh%h do ' (51)
(o)

etc.
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TTT
Bouguer plate p :
’ |
I £ | V4
topograph | |
_ h
| [ &
geoid Lo %o :
Po %

Figure 6: Topography in the planar approximation. The geoid
may be visualized as a flat plate (Moritz, 1966, p. 33).
The regular part of the topography is then visualed as
the plane Bouguer plate.

Equation (47) with equations (48) to (51) resembles equation (22)
of Moritz (1968) where he derives the gravitational potential at point
P on the earth's surface of the irregular part of topography:

VWP = Vk + VE+ VE+ L L (52)
where "
V¥ = kpR®[f .:#EL do
ag 'Q'o
. - 3
v = - kerzff {BY g (53)
o) Qf(}
h=hp)®
v = 3 kpRz{! L_EE%L do
etc.

The distance 2¢ can be seen in Figure 3 on page 20.

The potential of a surface layer at point Po on the geoid is given
by (Heiskanen and Moritz, 1967, eq. 1-16):

- K
Vg = k fgf - R? do (54)

-27-
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where « 1is the surface density of the layer. Applying this equation
to the irregular part of the topography, we have surface density «k =
p(h-hp) . Then the potential of the condensed layer of the irregular
part at point P, is:

k [ Dfﬁ;hgz R? do
o 0

koR? ff hzhe 4o (55)
(o] 2«0

y

]

We see that V{ 1is equal to Vi term of equation (47) so that oV"
(=V"-Vg) is:

6V"=V2+V3+Vg+... (56)

Therefore, equation (56) in conjunction with the potential change
of either model (a), (b) or (c) in subsection 2.1.1 can be used to obtain
the total potential change due to the second method of Helmert's conden-
sation.

In the next section we will look at the effect of the second method

of Helmert's condensation on the attraction change.

2.2 Effect of the Second Method of Helmert's Condensation on Attraction
Change

By definition, the vertical gravitational attraction at point P
on the surface is written as:

oV,
e
P
where Yp is the gravitational potential at point P and rp repre-
sents the vertical direction at point P for the spherical approximation
of the geoid. Comparable to equation (32), we may separate the gravi-

tational attraction of actual topography into two parts. Since V =
V' + V" , then

-28-
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Similarly, the attraction of the condensed layer at point P can be
written as

As = A; + Ag (58)

Then the difference of gravitational attraction between the {wpography
and the condensed layer at point P is:

Ap - RAg = 6A=A-A
= (A" +A") - (AL + AY) (59)
= (A" - AL + (A" - AY) ' (60)
= 6A' + GA"

Therefore SA' represents the attraction change of a regular part of
topography and §A" represents that of an irregular one. So we will
investigate the attraction change of the regular part of topography sep-
arate from the attraction change of the irregular one.

2.2.1 Regular Part

The attraction change of the regular part may be computed in three
different ways as follows:

(a) Spherical Bouguer Plate: The attraction of the topography
at point P on the earth's surface given by Baeschlin (1948, p. 529) is

A' = -2nkpR siny{(coshg + sinh¢) ({% cosy + 4+ sin?y sinh?¢)

- £ sin? coshd - siny cosy¢ }$i (61)
with
sinh¢=-&§§;—$i); ¢t r=R
P2 ¢ r = R+hp (62)

-29-



ChaCiNAL BREY I8

OF POOR QUALITY
The expressions for sinhd1 and sinhd2 in equation (62) can be easily
reduced to the corresponding expressions in equation (39). The attraction
of the corresponding condensed topography at the point P s

. (R+hp)c ssy-R
AL = 2nkphp(ﬂ;§;-)2 {1 - ""Jlif""' } (63)
where
E = /(R+hp)2 + R® - 2R(R+hy,) cosv (64)

The attraction change of a regular part of the topography is then calculated
from

SA' = A - Al

(b) Plane Circular Plate: The attraction of the actual topography
at point P on the earth's surface given by Heiskanen and Moritz (1967,
eq. 3-6) is:

At = 2rkp (a + h_ - va? + h;) (65)

P
and the attraction of the condensed topography at the point P is (Ibid.,
eq. 3-10):

h
[ - —r
A 2ﬂkphp (1 Vra ) . (66)
P

(c) Infinite Plane Plate: The attraction change of the infinite
plane plate or Bouguer plate is zero. This can be verified by equations
(65) and (66) taking a » » . We can write equation (65) as

A' = 2nkp (hy +a - a vl + (2?—)2 )

h h
Witha+o, -2 +0 and —LE— + 0, the above equation becomes

a J& + hg

Al = 2Wkphp

and equation (66) becomes
-30-
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Therefore,

GA' = A' - AL =0 .
Next we turn to the attraction change of the irregular part of topo-

graphy.

2.2.2 Irregular Part

The total attraction change (sum of the attraction change of the
regular part and that of the irregular part) at point P on the earth's
surface in the second method of Helmert's condensation is given hy Moritz
(1968, eq. 63) to be:

SA = A - Ag =-C (67)

where C is the quantity called the "terrain correction”. By the planar
approximation (Ibid., eq, 42),

C = 4 kpR? [f -(-'1—,-"-"—)2— do (68)
c  4,°

In his derivation, Moritz uses a spherical shell as a regular part of
topography (Ibid., p. 6). If we examine the derivation, we can see that

the total amount of attraction change (-C) comes from the attraction

change of the irregular part alone. This argument is strengthened by

the fact that the attraction change of a spherical shell at point P

on the earth's surface is zero (see Table 1 on page 16) i.e., we have

SA" = - C (69)

It should be noted here that the masses further away from the eval-
uation point P contribute a very small effect on the terrain correction.
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The effect decreases very rapidly as we can see from the term 243
in the denominator of equation (68).

Using equation (69) and the attraction change of the regular part
(mode) (a) or (b) in subsection 2.2.1), we arrive at the total attraction
change within a certain cap size. This statement does not contradict
the statement we just made that the attraction change of the regular
part of topography for the whole spherical shell is zero. In practice,
we do not integrate over the whole sphere. We usualily consider the effect
(e.g., the effect of gravity anomalies on the geoid undulatjons) within
a certain cap size, for example, 10° or 20° from the evaluation point.

To compute the attraction change we may also have to consider the effect
of the topography only within the cap size.

In the next section, we will compute the numerical values of the
potentials and attractions presented here. Then we will make a comparison
so that the conclusion concerning which expressions #e should use to
obtain the most accurate geoid computation can be made.

2.3 Comparison of Formulas Using Simple Test Models

As discussed earlirr, the regular part of the topography may be
represented by at least three models, i.e. the spherical Bouguer plate,
the plane circular plate and the infinite plane plate. We, then, want
to know whether it makes any difference to use one model instead of another
and whether there should belimitations to do so or not. Moreover, based
on the expressions for computing the potential change and the attraction
change of the irregular part of the topography, we would 1ike to know
if these expressions have any relations with the expressions for the
regular part.

The topographic masses above the sea level occur in about 30% of
the total area of the surface of the earth. Masses further away from
the compuation point have very small effects on the values of the potential

-32-
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change and the attraction change. It would then be more appropriate

if we used the regular part of the topography at a certain cap size to
cover a particular continenta) area only. This is because there are

no topographic masses above the geoid to be condensed in the ocean area.
Thus the effects on the potential change and the attraction change at

any evaluation point computed from ocean area masses are zero, By selecting
one cap size for the whole area we may however take too much mass into
account in the computation of the regular part. If it is possible, then

we would like to see that the effect computed from the irregular part

will compensate for the excessive effect from the regular part.

To investigate the numerical effect on the potentia’ change and
the attraction change of the regular part of topography, spherical Bouguer
plates with height h varying from 500m to 9000m and angular radii
varying from 1° to 180° are used in this study for the expressions of model
(a) in subsections 2.1.1 and 2.2.1. Plane circular plates with the same
heights and radii as those of spherical Bouguer plates are used for the
expressions of model (b) in subsections 2.1.1 and 2.2.1. The same size
of the plate in each model is used so that we can compare the effects on
potential change and attraction change.

To compare the effects un potential change and attraction change
of the regular part with those of the irregular part, we use a "spherical
ring” and a "cylindrical ring" (see Figure 7). A spherical ring is a
portion of a spherical Bouguer plate which is bounded by angular radii Y,
and Y, while a cylindrical ring is a portion of a plane circular plate
bounded by 1inear radii a; and a, .

The potential change at point P, of a spherical ring can be computed
from the difference between the potential changes of spherical Bouguer
plates of angular radii @i and Yy, explained in subsection 2.1.1(a).
Similarly, the attraction change at point P of a spherical ring is
computed from the difference between the attraction changes of spherical
Bouguer plates of radii ¢y and ¢, explained in subsection 2.2.1(a).
This method of computing the potential change and attraction change from
two different radius of spherical Bouguer plates will be referred to

-33-
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(a) A section of a spherical (b) A cylindrical ring
ring

Figure 7: Models for comparison between the effects on the potential

change and the attraction change of the regular part and
the irregular part of the topography.
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later as TDSBP (Two Different Spherical Bouguer Plate) method.

The potential change at point P, of a cylindrical ring can be
computed from the difference between the potential changes of plane circular
plates of linear radii a1 and az explained in subsection 2.1.1(b).

The attraction change at point P of a cylindrical ring is computed
from the difference between the attraction changes of plane circular
plates of radii a1 and az explained in subsection 2.2.1(b). The
method of computation here will be referred to as TDPCP (Two Different
Plane Circular Plate) method.

The potential change of the irregular part of topography (equation
(56) with equations (49) to (51) in subsection 2.1.2) can also be used
to compute the potential change of a cylindrical ring as follows: From
equation (49),

YO 1 h'i_hB 2
V2 = - & kp [[ —R R®* do
o 23
For a cylindrical ring, h is constant and we have R%do = rdadr and
L0 = r (see Figure 7 (b)). So we can write

V, =-ko (h3- h3) [32 2T gq LT

P* “p=a; a=0 rs
- - B (e h) f:jalfgg
= - 4 mko (h%- h3) (-4) |32,
= = 4 7kp (h3- h;) (E%}E%l) (70)

Similary, V; and V, terms for a cylindrical ring with height h and
radii a, , a, can be computed directly from

Vs = 3, ko (5= he) (22 (71)

1 2

and -
Vu ==gzymkp (h7- h7) (fjgfg) (72)
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The attraction change of the irregular part of topography is equal
to the negative value of the terrain correction. Equation (€9} with equa-
tion (68) can also be used to compute the attraction change of a cylin-
drical ring. By the same algebraic manipulation used for V2, Vs and
Vy, terms, we can write

= - 2 a2-al_

SA" = -mko (h-hy)? (2£2) (73)
The method of computing the potential change and attraction change

of a cylindrical ring by using the expressions for the irregular part

of topography explained above will be referred to as an integration method.

A spherical ring and a cylindrical ring are called identical if
the linear radius of the cylindrical ring isrelated to the angular radius
of the spherical ring by equation (42) and the heights of both rings
are equal. By using the identical ring in TDSBP, TDPCP and the integra-
tion method, we can compare the values of the potential changes and the
attraction changes. Then we may find a relation between the expressions
of the regular part and the expressions of the irregular part for the
potential change and the attraction change.

The next .subsection is the numerical results in computing the potential
change using the various expressions explaiend above.

2.3.1 Comparison of Formulas for Potential Change

The potential change in the second method of Helmert's condensation
is the difference between the potential of the topography and the potential
of the condensed layer, evaluated at point P, on the geoid. The poten-
tial change at point P, on the geoid of a plane circular piate as computed
from equations (41) and (43) are negative. Its values become more negative
when the thickness of the plate increases. It is approximately a parabolic
function of the thickness or the height of the plate. Figure 8 shows
the typical relation between the potential change, &V' and the height,
hp of a plane circular plate when the radius of the plate is held fixed.
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Figure 8: Relation between the potential change, &V' of
the plane circular plate with ¢ = 5° and height

hp in the second method of Helmert's condensation.
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The numerical values of &V' in Figure 8 are obtained for the radius of
the plate being 5° and the earth radius, R being 6,371 kilometers,

The potential change at the point P, of a plane circular plate
is also more negative when the radius of the plate increases and the
height of the plate is held fixed. However, the value of the potential
change is changing very slowly in this case. As we already discussed
in subsection 2.1.1, an infinite plane plate is a special case of a plane
circular plate where the radius of a circular plate is extended to infinity.
Subsequently, we should expect that as the radius of a plane circular
plate becomes larger, the value of the potential change of the plate
approaches the value computed from Grushinsky's formula (equation (44))
which is the potential change of the infinite plane plate. This intuition
is true as we can see from Table 3. Table 3 shows the potential change
of a plane circular plate in relation to height hp from 500 m to 9000 m
and to angular radius from 1° to 20°, along with the value computed by
Grushinsky's formula. Table 4 gives the potential change error in percents
if we were to use Grushinsky's formula to compute potential change instead
of using a certain size of a plane circular plate. For example, if we
use Grushinsky's formula for the plate of height 3000 m, the potential
change is -0.504 kgal-meter or the indirect effect on geoid undulation
is about -50 cm. Suppose that the plane circular plate of 5° radius
should be used instead of using Grushinsky's formula in the computation.
We have the relative error of 0.2% which i3 equal to 0.1 cm in computation.
In this particular example we see that the difference between the two
expressions 1is insignificant for the geoid accuracy of 10 c¢cm. Even in
the extreme case when the height of the terrain is 9000 m above the geoid,
the error in using Grushinsky's formula to compute the potential change
at point P, is less than 3 cm. We can, then, say that Grushinsky's
formula may be used as an approximation to compute the potential change
at point P, of the plane circular plate.

The potential change of a spherical Bouguer plate at the point Po
is compute from equations (36) and (40). The value of the potential
change of a spherical Bouguer plate starts with nearly the same negative
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value as that of a plane circular plate for the radius of 1°. The po-
tential change of a spherical Bouguer plate however is less negative
with the increase of radius ¥ . The value becomes zero around ¢ =
39° , and beyond this point, the potential change is positive. As an
example, Figure 9 shows the potential changes of the plate 3000 m high
with respect to radius ¥ computed from equations (36) and (40) for

a spherical Bouguer plate, equations (41) and (43) for a plane circular
plate and equation (44) for an infinite plane plate. Also shown in the
Figure 9 is the difference of potential changes between the spherical
Bouguer plate and the plane circular plate. The difference shows almost
a linear function of radius vy .

Comparing the potential of a spherical Bouguer plate computed from
trigonometric functions (equation (36)) and that from hyperbolic functions
by equation (38), it is found that both equations give the same numerical
value up to 10-°kgal-meter.

The computation of the potential change of the irregular part of
topography, &V" by equation (56) with equations (49) to (51) shows
that V, term has a very small contribution to &V" . For example,
using the cylindrical ring explained in Section 2.3 with radii between
1° to 2° and height 6000 m, the contribution of V, term is just 10-°
of &V" . The contribution of V, vrelative to &V" is even smaller
when the radii of the ring are large and/or the height is lower. There-
fore, in most cases we do not need to use Vi term in the computation
of V" .

Comparing Two Different Spherical Bouguer Plate (TDSBP) method,
Two Different Plane Circular Plate (TDPCP) method and the integration
method for determining the potential change at point Po on the geoid
of the ring of width 1° (the difference between angular radii y; and
Y2 or their equivalent linear radii a, and a, ), a good agreement
was found between TDPCP method and the integration method. This means
that the expressions for potential change of a plane circular plate
(equations (41) and (43)) is compatible with that of irregular part of
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topography (equation (56)). Table 5 is the example showing the comparison
TOPCP and integration method for the height of 3000 m, The discrepancy
is less than 10~9kgal-meters which is negligile.

2.3.2 Comparison of Formulas for Attraction Change

The attraction change in the second method of Helmert's condensation
is the difference between the vertical attractions of the topography
before the condensation and the condensed layer, evaluated at point P
on the earth's surface. The attractiun change is subtracted from the
free-air anomaly to obtain the Helmert's anomaly. Table 6 and Table 7
show the attraction changes at point P on the surface when the topography
is represented by the spherical Bouguer plate (SBP) using equations (61)
and (63) and the plane circular plate (PCP) using equations (65) and
(66). Height hp of the plates varies from 500 m to 9000 m and spherical
radius, ¢ , varies from 1° to 20° . Comparing the values of the at-
traction changes of SBP and PCP for small plate (say ¥ g 10°) reveals
that the attraction change of SBP is about three times larger than that
of PCP.

The attraction change of PCP becomes smaller as the radius of the
plate increases and vanishes when the radius is infinitely large as we
have proved in subsection 2.2.1(c). The attraction change of SBP com-
puted from equations (61) and (63) however does not go to zero when
y = 180° or when the plate becomes the whole spherical shell. The ex-
pected value of a spherical shell at the point P is expected to be
zero (see Table 1 on p. 16). Figure 10 shows the behavior of the attrac-
tion change of SBP with height 3000 m as the spherical angle increases
from 10° to 180°. The minimum value of the attraction change occurs
approximatley at ¥ = 70°. This minimum point is compatible with the
curve of the potential change of SBP plotted in Figure 9 where the maximum
slope of the curve is also approximately at ¢ = 70°. This is true regardless
of the evaluation points for the potentiai change and the attraction change
not being the same.
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Comparison of the potential change of a cylindrical ring

3,000 m high between Two Different Plane uircular Plate

(TDPCP) method and integration method.
radius of ring and a,
tance taking R = 6371000 meter.

plate and &V"

is the inner
is its corresponding linear dis-

6V' is the potential
change computed by the expressions for the plane circular
is that for the irregular part of topography.

¥y
(deg.)

(m)

éVH
(kgal-m)

sy!
(kgal-m)

(SVII - GVl
(kgal-m)

; LHL194,
2224879,
Ju3047,
ALLo0)
Hiudv90,
66064065,
VU0,
6864337,
992726,
1110540,
1221207,
1331902,
1412446,
1368059,
166316h.
172008
1833304,
199320648,
2103007,

0, 226430873D~02
0, 734050 16D-03
0. 87741 146D-00

_0,22042643D-00

0. 15093262D-08
0. 107T9290D-03
0. 80830425 D~04
0. 6285687 1D-04
0.50272794D-04
0. 41121005D-04
0. 3425 0548D-04
0. 26979096 D=0+
0. 24830946 =0
0.210 1241 1D=04
0. 18016090D-04
0, 16695670D=01
0., 14745 140D-04
G, 13 186864D-04
¢, 116623 18R~04

0., 220408078D-02

0, TH485015D~08
087711 1AD-00
0, 220400405000

0, [FOYB2062D-0U

0. 1YY 1D-03
0, BGLUOL2 1D-04
0. 4285547 0D~04
0. JO2VEU08D-0d
O b LIS ITUED=04
0, 20 UEE8D-0k
0, 28979 000D-044
0, 2480097 1h-04
0. 215 128090004
0, 1016 106D-04
0. L0BYLHGTID=0
O, 1AB 140D-04
0. 13 186U720-04
0, 11806283 4D-24

=0, LIBOBULOD- 12
=0, 102001 12D=1 1
0. 128400 12D-12
0. 50109 172D-18
0, 124924306D- 18
=0 BO21667T0D~ £ 1
04799760 1D-1 1
=0 6476BLABD~ 1 L
=0. 8201746 1D-11
0. 107602800~ 10
=0 QG4 189D~ 10
0.0 L1GBUYOD-11
=0. 2008060040~ 19
0. 21347046D0- 10
=0 146292 10D~ 19
0. 58308269D- 11
=0, HUATTORD~ 12
=0.79489%06D~1 |
=0, 162693 1Ub-10
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Table 8:

ORlGINAL S 1Y
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Comparison of the attraction change of a cylindrical ring

3,000 m high between Two Different Plane Circular Plate (TDPCP)
Y1 is the inner radius of ring

method and integration method. .
is its corresponding linear distance taking R =

and a,

6371000 meter. 6A' s the attraction change computed by the
exprzssions for the plane circular plate and S8A" is that
for the irreglar part of topography.

 deg. )

a3

(m)

§Au
(mgal)

SA'
(mgal)

6A“ - 6AI
(mgal)

v R AN DO N -

e b s M Dt e Pt s B s
Vv 8 N D DN = O

111194,
222379,
338547,
444609,
553793,
666865
777880,
888897,
999726,

1110538,
1221267,
1331902,
1442435,
1552859
1663165.
1773844.
1883368.
1993288.
2108037,

0.22648290D-02
0.75490166D-03
0.87742207D-03
0.22648022D-03
0.15093429D-03
0.10779375D-03
0.8¢030901D-04
0.62855659D-04
0.502729795-04
0.41121928D-04
0.34258629D-04
0.28979157D-04
0.24830990D-04
0.21512445D-04
0.18816116D-04
0.16595599D-04
0.14745156D-04
0.13186877D-04
0.11862329D-04

0.2262£576D~02
9,75468416D-03
0.37736211D-03
0.22641136D-03
0.15092595D-03
0.10778951D-03
0.40828520D-04
0.62854220D-04
0.50272058D-04
0.41121312D-04
0.34258201D-04
0.2897885 1D-04
0.24830765D-04
0.21512276D-04
0.18815987D-04
0.16595498D-04
0.14745076D-04
6.13186813D~04
0.11862277D-04

0.21623922D-05
0.21749959D~06
0.52953204D-07
0.18859667D-07
0.83374767D-08
0.42411456D-08
0.23813839D-08
0. 14389949D-08
0.920330938D-09
0.61583303D-09
0.42754606D-09
0.30608295D~09
0.22491537D~09
0.16892510D-09
0.12937336D-09
0.10072889D~09
0.79625104D-10
0.63760383D-10
0.51676748D-10
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It should be noted that the value of attraction change of the spher-
jcal Bouguer plate (SBP) at ¢ = 180° used in Figure 10 was computed by
using ¥ = 179.99 degrees. The attraction change of SBP for ¢ being
exactly 180° js indeterminate. We can see this by examining equation
(62) that we get sinh¢ = 4 which is not defined when ¢ = 180°. This
is why we have taken the limiting value when ¢ - 180°.

The attraction expressions of the regular and irregular parts of
the topcgraphy are compared by using the rings of the same mass in TDSBP,
TDPCP and the integration methods. It is found that there is a good
agreement between the expressions of PCP (equations (65) and (66)) and
the expression of the irregular part (equation (69) with (68)). Tab]e‘
8 is an example for the cylindrical ring 3000 m high. The discrepancy
between the attraction changes from the two methods is less than 107°
mgal at ¢ = 1° and it becomes even smailer when ¢ increases.

2.3.3 Conclusion and Discussion

At the first glance we would say that the expressions for spherical
Bouguer plate should give a more accurate result than those for the plane
circular plate since the spherical plate better approximates the earth than
does the plane plate. However, after examining the numerical resuits, the
expressions for the spherical plate may not be appropriate. If we look
at Figure 9, we see that the potential change at the point P, of the spher-
ical Bouguer plate is increasing while the angular radius of the plate is
increasing and it would be a positive value for the whole spherical shell
(v = 180°). Comparing this to the value from Table 1, the potential change
at the point Py of the spherical shell is negative. Moreover, the at-
traction change at the point P of a spherical Bouguer -plate is not zero
when ¢ = 180° (see for example Figure 10). This result contradicts the
attraction change at the point P of the spherical shell shown in Table 1 .
This means that the expressions of potentials and attractions that we have
for the spherical Bouguer plate (equations (36) to (40) and (61) to (64))
do not reflect the reality when ¢ = 180°. So therz must be some Timitations
to these expressions. .
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We consider now the expressions for a plane circular plate. As the
radius of the plane circular plate increases, the value of potential change
at the point P, computed from equations (41) and (43) goes toward the
potential change of the infinite plane plate. The value of attraction change
at point P computed from equations (65) and (66) goes toward zero which
is the value of the attraction change of the infinite plane plate.

Although the potential change due to condensation at the point P, of
the infinite plane plate is not significantly different from that of the
plane circular plate, the attraction change at point P on the earth's
surface of the infinite plane plate is. For example, the difference in
attraction change between the two models is 0.9 mgals for the plate of 3000 m
height and ¢ = 5° . This magnitude of the attraction change difference
gives significant effect on the geoid computation.

When we compared the expressions for potentials and attractions of
the regular part of topography with those of the irregular part using TDSBP,
TDPCP and integration methods (explained at the beginning of Section 2.3),
we found that the expressions of the plane circular plate give a good agree-
ment both in potential change and attraction change with those of the ir-
regular part.

We see that the potential change and attraction change of the plane
circular plate can be compensated by those of the irregular part. When
the plane circular plate is extended, its expressions for potentials and
attractions reflect the correct values. Based on these reasons, the plane
circular plate will be used to represent the regular part of topography
in the next chapter.

In chapter 3, we will develop procedures to compute the potential change
and theattraction change due to Helmelt's condensation using 1°x 1° mean
elevations.
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3. Calculation of the Indirect Effects and the Attraction Change Effect
Using 1°x1° Mean Elevation Data

We have seen from equation (11) in Chapter 1 that to computeé an accurate
geoid, we must take into acount (i) the indirect effect, SN on geoid
undulation due to the potential change in the second method of Helmert's
condensation, ¢V discussed in Section 2.1; (ii) the effect of attraction
change in gravity reduction which is equal to the terrain correction, C
for planar approximation plus a small value of the attraction change of
the regular part depending on the cap size used in computaion; and probably
(ii1) the secondary indirect effect on gravity, ¢ .

Before we develop a procedure to compute these correciions on the global
basis, using information of 1°x 1° mean elevations we shouid know how geoid
undulations are practically computed so that, if possible, we can incor-
porate or apply the corrections properly.

3.1 Computational Methods for Geoid Undulatjons

Stokes' equation in the form of equation (1) cannot be used directly
in practice because the information on gravity anomalies at every point
on the earth is not available and the computation on the global basis requires
a lot of computational effort. Two basic methods are discussed by Rapp
and Rummel (1975) as follows:

Method 1: the geoid undulation;

- R
M=o+ g [ S (09 - 89gg) do + Moo (72)

where the integral of the second term on the right-hand side is extended
over cap size oc and the zero order undulation,

No = - o5 890 + 55 (75)
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non ;
Neor = R nzz mzo (C;m cosmh + 8 sinm) P (sind) (76)
and n h
A s = YnZZ (n-1) mzo (C;m co;mk + gnm sinmA) an (sind) (77)

In this method, Npqf 1is the geoid undulation computed from fully
normalized geopotential coefficients Cf, and S, . The short wavelength
part of the geoid is recovered by using gravity anomalies Agy with the
cap size o, .

Method 2: the geoid undulation is computed from gravity anomalies in a

certain cap size o, with Molodensky's truncation coefficients Q, (V)
compensating for the effect of anomalies outside the cap. The basic equa-
tion is

n~18

0,(¥) g, (3:2) (78)

2

- R R
Ni = No + m{;f S(lp) AgI dGC + é-’? )
C

where Ag, 1is the degree anomaly computed from

He~13

Ag, = y(n-1)

) (C;’;m cosmh + S sinma) an(sin¢) (79)

0

When equations (74) and (78) are used, the integration over the infin-
itely small area do, 1is replaced by the summation over a certain finite
area, e.g., 1°x1°area, then Agy are mean anomalies over the area.

In the next section, we consider how to compute indirect effect due
to potential change from 1°x 1° mean elevations.

3.2 Indirect Effect Due to Potential Change

The total potential change, at point Py on the geoid, &V , caused
by the second method of Helmert's condensation, can be computed in two parts.
One belongs to the regular part of topography and the other belongs to the
irregular part or the topographic variation. Once the cap size ¥ is chosen,
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the potential change at the point P, of the former part is a straight
forward computation (see Subsection 2.1.1, page 21). The potential change
at the point Py of the irregular part is computed by summing up V2 ,
Vs , etc. terms  (See Equations (56) and (49) to (51)). Since these
V; terms are in the integral forms which use the continuous function of
topographic heights, we must modify them to suit the computation which uses
the discrete mean heights of the block. Now consider the V2 term from

equation (49),

hB_hS
V2=_ %.. kpRz ff .___._.._p._

3
o] 20

do
Let dS represent the surface area of a sphere of radius R then,
dS = R*do ' (80)

So we cah write

K- b |
Vo = - 1kp [f —B— ds (81)
3
S %3
In practice, we have to represent the infinitely small area dS by some
finite area AA; and we can substitute the integration by a summation.
Therefore

m h’] ~ hd
V, = - ko ) . A (82)
i=l 895
where m = number of AA; on the surface S
h; = average height over an area AA;
L9 = distance from the computation point P, to the center of the

small area AAi .

In the same way, the other terms from equation (50) and (51) can be written
as

m K.
Ve = ko ] TR,

40 4 5
[

Vy = - ke L ———F - (83)
i=1 %04
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Up to this point we separate the computation of the potentijal change
of the irregular part of topography from that of the regujar part. However,
we have seen from Chapter 2 that if the regular part is represented by a
plane circular plate, we can then get the same potential change of the plate
by using the expressions for the potential change of the irregular part
of topography. This means that instead of using the expression for a plane
circular plate: (i) we can break the plane circular plate into pieces
such as consecutive series of cylindrical rings; (ii) use the expression
for irregular part to compute the effect of an individual piece; (iii)
sum them up and we still get the same result.

We are now going to show that by applying the above idea with 1°x1°
mean height information, we can combine the potential change of the regular
part with that of the irregular part. Instead of breaking the topographic
masses into pieces of cylindrical rings, we break them into prisms of masses
above 1°x1° areas, i.e., the topography of the earth consists of a series
of rectangular columns. Noi we can use equation (56) with equations (82)
and (83) to compute the potential change of the plane circular plate where
AA4 is the area of a 1°x1°block. Taking the height of topography hj
in equations (82) and (83) to be hp and the height of the reference surface,
hp in those equations to be zero, we obtain the components of the potential
change of the .plane circular plate to be:

m pd . 0
Vi = - Ak P A.
crowke kT
m hiE-0
Vi = ko J B— (84)
i=1 i
| m [ - 0
Vi=-3E kp 121 —,{3;:— DA

We, now, combine the potential change of the regular part (equation (84))
and the irregular part (equation (82), (83)) algebraically. Then the indi-
vidual component of the potential change can be computed from

m 3
Vo= - 2 kp Z (=) 0A
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Vg = L ko g‘ (..'.‘.i_)5-AA (85)
TR L Ty L

n

: 15 ¥ My,
Vy = = ==kp Zl( ) AA1
‘!"-'

Lo,
336 %

That is the potential change at the point P, on the geoid of the topography

SV = V2 + V3 + Vt’ + Y S
m hs h;
- 1 1 13 3 IR
= ~kp izl ARG %+ (Eﬁ-—) - 37 (57
h+
5 7
+ S%E(-ﬂ_o-:—) - s s -} (86)

i

We can see that the potential change affected by block i depends on two
parameters h; and %05 . This makes it easy to compute the potential
change of the individual block. After summing up the effects of all blocks,
the indirect effect due to potential change is found from Brun's formula

of equation (4). This indirect effect represents the mean value at the
center of the central block.

In this section, we have not addressed the problem of the central block,
which is the block containing the computation point, where &, is zero.
This will be discussed in Section 3.5. Next, we consider how to compute
the attraction change effect on geoid undulation from 1°x 1° mean heights.

3.3 Attraction Change Effect on Geoid Undulation

An attraction change effect on geoid undulation is an effect coming
from the attraction change when the topographic masses are condensed in
Helmert's condensation reduction. The total attraction change is the sum
of the attraction changes of the regular and the irreguiar parts of the
topography, i.e., SA = sA'+8A" . The attraction change of the regular
part, SA' =A' - Al is computed using equation (65) and (66), while the
attraction change of the irregular part is equal to the terrain correction
in the planar approximation. Similar to expressions for V, , Vs , V4 ,
etc. in equations (82) and (83), the terrain correction can be written as
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SA" = & kp 121 £h%é%2922 AA1 (87)
Unlike the effect of the potential changes, we cannot combine the effects of
the attraction change of the regular part and the jrregular part into one-
step computation since the terrain correction is always positive whether or
not the mass is above or below the surface of the plate. That is the more
rugged the terrain is, the greater the attraction change is. The sum of
SA' and SA" s assumed to be the average attraction change in the central
1°x 1° block.

After the total attraction change has been computed, we can add it
to the free air anomaly before using in Stokes' equation (see equation (9).
Otherwise, we can compute the correction due to attraction change separately
(see equation (10)) if the geoid undulation was already computed with uncor-
rected anomalies.

In order to compute the attraction change effect on geoid undulation
separately, we must know how the geoid undulations in the area of interest
were obtained. For example, if Method 1 of Section 3.1 is used to compute
the geoid undulation from free-air anomalies and the geopotential coef-
ficients derived from satellite altimeter., The satellite derived undulations
are not affected by the topographic masses above the geoid. This means
that no topographic corrections are needed for the information outside
cap size o, . Therefore, the cap size used for computing the attraction
change effect on geoid undulation should be the same as that used in the
computation of geoid undulation. There are two ways which we can use to
compute the attraction change effect on geoid undulation from the 1°x1°
mean attraction change that we have.

Method A: Use the direct Stokes' equation for the attraction change

within cap size o, . The effect of the attraction change on geoid undulation
is then:

AN, = zﬁ—y [ &A S(y) do (88)

%

Method B: Use 1°x1° attraction changes over the whole world to devel-
op correction terms to potential coefficients of the attraction change
-58-
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field using the programs for harmonic development by Colombo (1981), (or
programs of a similar nature). These correction terms are then used to
compute the undulation change. The equation for computing the undulation
change within the cap size o is modified from equation (51) of Rapp (1981)
to include the zeroth- and the first-degree components of the attraction
changes. This equation is:

1
_R 7 R
oMy = 7 1 (2-Gy(n-1)) 8A, + 35 ) 0 o, (89)
where n
8A,, = mZO (6Cpp cosmr + 6S - sinm\) Pypn(sing) (90)
n
6An = ) (GCQ%Q) cosmx + SSéﬁg>sinmX) an(sini)

m=0

8Cpp and &S,,  in equation (90) are corrections in terms of the potential

coefficients. 6CA%9) and 68#%9) are corrections in terms of the anomaly

coefficients. These coefficients are developed from the attraction changes

due to the second method of Helmert's condensation. Qn is the Molodensky's
truncation coefficient of degree n which depends on cap size o, . n

is the maximum degree of harmonic coefficients used for the computation.

The derivation of equation (89) is shown in Appendix A.

3.4 Secondary Indirect Effect

After we have obtained the indirect effect due to the potential change
in the 1°x1°block, we can use equation (5) to compute the secondary indirect
effect on gravity, & . The value & is thus the mean value within the
1°x1° block too. We can add & to Ag + SA so that we compute the corrected
geoid undulation. Otherwise, we cancompute the correction term due to the
secondary indirect effect on gravity separately in the same way we compute
the attraction change effect on geoid undulation (see Section 3.3).
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3.5 Problem of the Central Block

The central block is defined to be the smallest elevation block which
contains the computation point P on the earth's surface or point Po on
the geoid. From equations (86) and (87), we see that &V" and 6A" vary
with the inverses of zéi ) 251 , etc. This means that &V" and JA"
are influenced significantly by the information in the innermost zone around
the computation point Po or P and they vanish when zai is very large.
Consequently we should use more detailed information in the innermost zone.
For example, if we are working with 1°x 1° information then we might use
5'x5' mean elevations in the innermost zone. The size of the central block
is then 5'x5' . We call the 1°x1°block which contains the computation
points as the central zone. The other 1°x1° blocks within the cap size
for computing the potential change and the attraction change are called
blocks in the outer zone. The detailed information however helps to give
a better value in computing SA" only. The reason is that in computing
SV" , if the value of 1°x1° mean elevation that we have represents the average
elevation of all 5'x5' mean elevations in the same 1°x1° block, then both
SV" computed from either size of the mean elevatjon should be the same.

It is not necessary then to use 5'x5' mean elevations for computing the
potential change &V" . The attraction change SA" of the central zone
(1°x 1° block) .is zero if only one 1°x 1° mean elevation is used. The chanhge
SA" is not zero however if 5'x5' mean elevations in the central zone are
used and at Teast one of them is different from the 1°x1° mean elevation
of the corresponding block.

No matter what size of block are used in the calculation of &V"
and SA" in the central zone, we have a problem with the central block
or zone where £, is zero and the effect of the topography is indeterminable.
Therefore, we now consider how to handle the information of the central
block. The potential change and the attraction change of the central block
are computed as follows:

(a) To compute the potential change &V" , the central block is sub-
stituted by the plane circular plate having the same mass as the prism of
masses above the central block. The following equation is used to obtain
the radius of the equivalent plane circular plate:
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Table 9: Postulated 1°x 1° Mean Terrain Corrections
As a Function of the Block Elevation

Model 1 Model 2 Model 3
Hejght* Ter.Cor, Height* | Ter.Cor, Height* Ter.Cor.
Om 0 mgals 200 m 0 mgals 300 m 0 mgals

200 1 400 1 500 1
400 3 600 2 800 2
600 5 800 3 1000 3
800 6 1000 4 1500 4
1000 7 1200 5 2000 5
1500 8 1400 6 2500 6
2000 9 1600 7 3000 7
2500 10 1800 8 3500 8
3000 12 2000 9 4000 9
3500 14 2200 10 9000 10

4000 15 2400 11

4500 17 2600 12

5000 18 2800 13

9000 20 3000 14

’ 3200 15

3400 16

3600 17

3800 18

4000 20

9000 21

*The terrain correction is given for an elevation between the specified
elevation and the previous elevation. (For example, in model 1, if a
1°x 1° mean elevation fell between 1500 and 2000 m, the adopted terrain
correction was 9 mgals). The terrain correction was zero for all
oceanic blocks. (From Rapp, 1977).
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6 (sing, - s1n¢1)]*

4 o= ein" 3 1.
y =2 51in [ A

where 6 1is the side of the equiangular block which is bounded by parallels
¢y and ¢z, Both ® and © are in radians. Note that(sing, - sin ¢y
can be approximately computed by cos¢;sine.

(b) The computation of the attraction change or the terrain correction
of the central block requires a lot of data and efforts to obtain an ace
curate result. It can be computed by using detailed height information
in a very small block (Dimitrijevich et al., 1976) or by least square col-
Tocation (Forsberg and Tscherning, 1981). However, the compuation of the
terrain correction is not the main interest of this study, so we will use
the postualted model given by Rapp (1977) to get the mean terrain cor-
rection of the 1°x1° block. The postulated models are shown in Table 9.

The mean terrain corvrection given by these models include not only the effect
of the topography in the central 1°X1°block but also the eftect of the
topography in the outer zone.

3.6 Summary of the Procedures and Equations for Computing an Accurate
Geoid Using 1°x 1° Mean Elevations

In this section we summarize the procedures and the important equations
used for computing an accurate geoid discussed earlier in the previous sec-
tions.

The theoretically more accurate geoid is obtained if Helmert's anomalies
are used in the Stokes' equatijon and the indirect effects are taken into
account. The equation to compute a more accurate geoid undulation is:

N =Ny + ANy + 8Ny + N » (11)
Ny is the free-air geoid undulation. The terms AN, , 6N, and

8N are correction terms which can be calculated as follows:
(a) The potential change effect or the indirect effect, &N :

6 V
S w—— 3
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The potential change, 6V 4s the difference between the potential of the
topography and the potential of the condensed layer evaluated at point Fo

on the geoid. The effects of the regular and the irregular parts of the
topography are combined into a one-step computation. A cap size Y1 s
chosen for computing the potential change in such a way that the effect

of *he topographic masses outside this cap will be negligible. The potential
change is the suw of the following two compenents.

1. The potential change of the central block is computed using:

8V =V -V
where .
V' = mkp [~h2 + h_ E; + a2en hp+ElJ- Ey = va%+h? (41)
P p p 1 : 3 = 1 P
Vg = 4k hy R sin 5 (43)
Vo= 2 sin” [ e(sing, ;ﬂsin¢1)] :
and
a=2R sin lg- (42)

8 1is the side of the equiangular block which equals one degree in our case.

2. The potential change of the blocks in the outer zone is computed from

m h: 3 hi .5
= L. 3 (1

(b) The attraction chgnge effect on geoid undulation, AN; .
We can use either the Stokes' equation:

BNy = = [ A S(y) do (88)
0 .
C
or the harmonic series: '
R N R 1
ANy = > nZZ (2-Q,(n-1)) SA, + 5y nZO Q, 5An (89)
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where

A (sC

0 nm

n
[ =2

nc . cosmh + Gsnm sinm\) an(s1n¢)

oA

(Ag) (Ag) . ;
N (acnm cosmx + Ssnm sinmi) an(sin¢) (90)

i
=13

m=0

The attraction change is the difference between the vertical attraction of

the topography and the vertical attraction of the condensed layer evaluated
at point P on the earth's surface. A cap size Y2 1is selected for com-

puting the attraction change. It may be the same as the ¢ap Y1 depending
on how accurate the value of the change required. Using a jarger cap size

yields a more accurate result since information in the larger area is taken
into account. The attraction change cunsists of the effects of the regular

and irregular parts of the topography.

1. The attraction change of thé regular part of the topography within the
cap size Yz (or the corresponding linear radius a ) is computed from:

SA' = A' - A;
where
A' = 2mkp (a + hp - /a2+hs ) (65)
) h
Al = 2mkph (1 - —2—) (66)
5 v/az“l'h Z

2. The attraction change of the irregular part of the topography or the
terrain correction is computed from:

SA" = bkp ) Pl AR (87)

Rapp's postulated me'el 1 given in Table 9, however, will be used to obtain
the terrain correction in this study.

(c) The secondary indirect effect on geoid undulation, SN2 :
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where the secondary indirect effect on gravity, & is obtained from
§ = 0.3086 6N (5)

In the next chapter, we present the results of indirect : ‘fects due
to the potential changes, attraction change effects on geoid undulation
and the secondary indirect effects in the test area using procedures ex-
plained in this section.

4. Results in the Test Area

An area referred to as an output area, which is used to test the previous
ideas, was selected to extend from latitude 20°N to Tatitude 50°N and from
Tongitude 130°W to 65°W. A data area where mean elevations of 1°x1° equi-
angular blocks were used to compute the potential and attraction changes,
then, has to be larger than 30° x 65°. It depends separately on the cap sizes
sizes that we use to compute the changes and the cap size o, in Stokes'
aquation. For example, Figure 11 is the diagram showing the data area of
1°x 1° mean elevations needed to get attraction change effects on geoid
undulation in the output area of 30° x 65° when the 10° cap is used in Stokes'
equation and the 5° cap is used to compute the attraction changes. The effect
of the potential change on the geoid undulation is computed directly from the
the indirect effects due to patential change within the same output area
is smaller. Figure 12 is the contour map showing topographic heights above
the geoid in the output area.

In the next section, we look at the effects of the potential changes
due to Helmert's condensation in the test area.

4.1 Effect of Potential Changes on Geoid Undulations

The indirect effect due to the potential change in the second method
of Helmert's Condensation was computed by the procedure explained in section
-65-
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3.6(a), It was anticipated that the topographic masses further away from the
computation point would have a very small contribution on the total potential
change and thus the indirect effect., To test how the remote topographic
masses have an influence on the indirect effect, cap sizes of 3°, 5° and

10° were used to compute the indirect effects at the center of each 1°x1°
block in the test area and compared with those when the 20° cap was used.

It was found that the differences are in the order of few tenths of a millimeter.
The indirect effect computed using the masses only in the central 1°x1°
block (called the 0° cap) were also used in the comparison. The maximum
discrepancy was only 4 millimeters. The statistics of the indirect effects
in the test area for the cap sizes of 0°, 5° and 20° are shown in Table

10. We can see that the remote topographic masses have insignificant con-
tributions on the indirect effect due to the potential change at the centi-
meter Jevel of accuracy. The insignificant contrijbutions of the remote
masses are understandable by examining the V. term of equation

(86). The V, term consists of the factor Ghif)B . If the mean elevation

%o
of the block next to the central block is 1000 méters, then %ﬂ of this

block is less than 10=2 . By neglecting the mass of this b]ockj the relative
error in computing the indirect effect is less than 107% . Presumably,
masses in the block further away from the central block cause a smaller
relative error. As a result, the accumulationof relative errors in neglecting
all masses around the central block is still very small and the effect of
these masses 1% insignificant. From this investigation, we can say that
only the mean elevation of the central block (block containing the compu-
tation point) is needed for computing the indirect effect due to the poten-

tial change.

To illustrate the indirect effect in the test area, the mean value
at the center of each 1°x1°block was used to produce a contour map. The
contour map of the indirect effects is shown in Figure 13. The maximum
absolute value of the indirect effect in the test area is 51 cm. It occurs
at the highest point in the area. We can observe the high correlation between
the topography and the indirect effects by comparing Figure 12 and Figure
13. We see that the peaks of the indirect effects occur at the same locations
where the peaks of topography occur. We can see also that the indirect
effects due to potential changes in the ocean area are zero.
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Table 10: The indirect effects (SV/y) in the test area
using different cap sizes (20°, 5° and 0° for
the calculation of the potential changes.

Statistics Capsize
20° 5° 0°
mean (m) -0.0343 ~0.0342 -0.0340
S.D (m) 0.0728 0.0728 0.0721
max (m) 0.0000 0.0000 0.0000
min  (m) -0.5076 -0.5076 -0.5036
RMS  (in) 0.0805 0.0805 0.0798

4.2 Attraction Changes and Their Effects on Geoid Undulation

The attraction change due to the second method of Helmert's condensation
for 1°x1°bloclk was computed by the procedure explained in Section 3.6(b).
In order to study the effects of remote masses on the attraction changes,
cap sizes of 10° and 5° were used in the computation and compared with
those when the 20° cap was used. Rapp's postulated model No. 1 for esti-
mating the attraction changeof the irregular part of the topography or the
terrain correction was used in this study. Comparison of the three cap
sizes is shown by the statistics in Table 11. The values under column "Dif-
ference between cap sizes"were obtainedby subtracting the attraction change
computed using one cap size from the other of the same 1°x 1° block, then
the statistics of the differences in the area were computed. From the table,
we see the maximum absolute value of the difference from the 20° cap is
0.24 for the 10° cap and 0.69 for the 5° cap. Based on the most accurate
values for the attraction changes that we obtain from the 20° cap, the root
mean squares (RMS) of the differences of the 10° cap and 5° cap indicate no
significant difference. In the mountainous terrain we have the larger
magnitude of difference between the different cap sizes than that in the flat
area. We must decide what order of magnitude differences can be tolerated
in our work. In this study, the 10° cap was used for further investigation.
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Table 11: Comparison of the attraction changes in the test area
using different cap sizes (20°, 10° and 5°) for the

computation.
Difference between
Cap Sizes cap sizes

Statistics : : .

20° 10° 5¢ 20°and 10° | 20°and 5°
mean (mgal) 2.1006 2.0848 2.0551 -0.0158 ~0.0455
S.D. (mga]) 3.0510 3.0223 2.9685 0.0332 0.0964
max. (mgal) 11.7394 11.5009 11.0517 0.0000 0.0000
min. (mga1) 0.0013 -0.0025 -0.0047 -0.2386 -0.6877
RMS (mgal) 3.7036 3.6710 3.6098 0.0370 0.,1067

Figure 14 is the contour map of the attraction changes in test area
due to the Helmert's condensation method. This contour map was produced
from 1°x1° grid values at the center of the blocks. Since the total attrac-
tion change is dominated by the terrain correction which is directly dependent
on the elevation of the computation point, it can be anticipated that the
peaks of the attraction changes occur where the peaks of the topography
do. From this map, the areas having steep slopes are accentuated by the
high gradients of the attraction changes. Similar to the potential change,
there are no attraction change in the ocean area.

The attraction changes obtained from the previous step were used to
compute the attraction change effect on geoid undulation. First we used
Stokes' equation with cap size, o, of 10° (Method A in Section 3.3). There
were two parts of the attraction change being computed, i.e., the effect
of the regular part and the irregular part of the topography. Since the
regular part has a small contribution on the total attraction change, we
investigated how significant the attraction change of the regular part is
in computing the correction to the geoid unduiation. Two models of the
attraction change were then used for this purpose. Model 1 consists of
the attraction changes of both the regular and the irregular parts of the
topography. Model 2 contains only the attraction change of the irregular
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part or the terrain correction. The result of using Stokes' equation (88)
to compute the attraction change effect for geoid undulation 1is shown in
Table 12. The maximum value in the area is 9.50 m computed by using model
1. Dimitrijevich et al. (1976) use an average value of the terrain cor-
rection over some defined cap to compute its effect on height anomalies.
Their result for the 10° cap is the following:

Aver. terrain :
correction 1 2 3 4 5 6 7 8 9 10 12 15

(mgal)

Height

?ngmaly 1.3 2.7 4.0 5.4 6.7 8.1 9.410.8 12.1 13.4 16.1 20.2
m

Considering this and the attraction changes shown in Figure 14, the maximum
value of 9.50 m we have is not an unexpected magnitude which can be obtained

for the 10° cap.

Table 12: Comparison of the attraction change effects on geoid undulation
computed by using different models of the attraction change
in the Stokes' equation (Method A) with o, = 10°

~Corrections to geoid undulation Difference

Statistics due to attraction change between
(Method A equation (88)) Models

Model 1 Model 2 Al & A2
Mean (m) 2.7523 2.8361 0.0838
S.D. (m) 2.7887 2.8938 0.1077
Max. (m) 9.4970 9.9111 0.4318
Min. (m) 0.0000 0.0000 0.0000
RMS  (m) 3.9176 4.0513 0.1365

Al in Table 12 refers to the procedure whose attraction change effects
on geoid undulation are computed by using model 1 of the attraction change
in method A. If we take the div¥arence between the undulation changes computed
by method A using model 1 and model 2, and compute the statistics, we obtain
thevalues in column "Difference between models Al and A2." It can be seen
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that RMS of the differences is 13.6 c¢cm when we use model 2 instead of the
more accurate model 1. Therefore, model 2 cannot be used as an approximation
of attraction changes to compute the attraction change effects on geoid
undulation for the geoid of 10 cm accuracy level, The contour maps of the
corrections to the geojd undulation due to the attraction changes computed

by Stokes' equation (88) using models 1 and 2 are shown in Figures 15 and

16 respectively, Comparing these two figures, we can see the major difference
only 1in the highest contour of 9.5 m. The other contours are almost the
same. We can see that the effect of the big mass in the high mountain area
on the corrections to the geoid undulation can extend over the ocean area
even if there are no attraction changes in the ocean area.

The 1°x 1° attraction over the whole world, were also used to develop
a set of spherical harmonic coefficients. The set of spherical harmonic
coefficients was developed into potential coefficients and anomaly coefficients
(if n <2) up to degree 180 (Colombo, 1981). These coefficients were then
used to compute the corrections to the geoid undulations in the test area
using equation (89). The correction computed by method B is shown in Table
13.

Table 13: Comparison of the corrections in gravity reduction computed
from the harmonic coefficients (method B) with o, = 10° and
comparison between method A (see Table 12) and me%hod B.

Differences of AN

Statistics AN by method B between methods

Model 1 Model 2 Difference | Al & B1 A2 & B2
Mean (m) 2.5469 2.9987 0.4519 -0.2055 0.1626
S.D. (m) 3.1513 2.9440 0.3881 0.5230 0.2944
Max. (m) 9.8689 10.1256 1.8309 0.6204 0.7758
Min. (m) ~1.9339 -0.1768 0.0934 -1.9339 ~0,5501
RMS  (m) 4.0512 4,2018 0.6001 0.5617 0.3363




o R

The contour map of the attraction change effects on geoid undulation, pro-
duced from 1°x1° grid values which were computed by method B via the spher-
jcal harmonic series (equation (89)) using model 1, isshown in Figure 17.
Comparing Figure 17 to Figure 15, the patterns of the contours are the same.
There are some contours extending over the ocean area on the east side of
the continent,

Also shown in Table 13 are the differences of the corrections to geoid
undulation due to the attraction change computed by methods A and B when
the same model of the attraction change was used. Figure 18 is the contour
map showing the differences of the corrections when model 1 of the attrac-
tion change was used. The differences between the two methods are system-
atic. The differences are caused by omitting the harmonic coefficients
of degrees higher than 180, It was found that after the 1°x1° attraction
changes were transformed into the set of spherical harmonic coefficients
(potential coefficients asd anomalies coefficients (if n < 2)) up to degree
180, the attraction field was already distorted. The distortion of the
field was detected by recreating the attraction changes from the set of
the harmonic coefficients and comparing with the original attraction changes.
Table 14 is the comparison by statistics in the test area between the orig-
inal and the recreated attraction changes of model 1. The RMS difference
is 0.6 mgal and the maximum difference is almost 3 mgal which is quite a
large value.

Table 14: Comparison of the original attraction changes (model 1) and

the recreated ones computed from the sei of the spherical harmonic
coefficients up to degree 180, (potential and anomaly coefficients

(if n<2)).
Original Attrac- | Recreated Attrac-
Statistics tion changes tion changes Differences
Mean (mgal) 2.0975 1.9481 -0.1493
S.D. (mgal) 3.0353 3.1801 0.5951
Max. (mgal) 11.5884 10.4839 2.0466
Min. (mgal) -0.0017 -1.6459 -2.8877
RMS (mgal) 3.6888 3.7287 0.6134
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We furthered investigated how well equation (89) agrees with the Stokes'
equation (88). The recreated attraction changes were therefore used to
compute the corrections to the undulations due to the attraction changes
by equation (88). The results were then compared with the correctijons computed
by equation (89). The statistics of the comparison in the test area is
shown in Table 15. The mean difference is only 4.5 cm. This shows a good
agreement of equation (89) and the Stokes' equation (88).

Table 15: Comparison of the attraction change effects on geoid undulation
using equation (89) and the Stokes' equation with the recreated
attraction changes from the harmonic coefficients.

AN by
. Stokes' Eq. (88) AN by
Statistics with the recreated | harmonic series
attraction changes | (equation (89)) Differences
Mean (m) 2.5922 2.5469 0.0453
S.D. (m) 3.1330 3.1513 0.1418
Max. (m) 9.8583 9.8689 0.4943
Min. (m) ~1.8844 -1.9339 -0.4797
RMS  (m) 4.0657 4.0512 0.1488

4.3 Secondary Indirect Effect

From section 4.1 we have seen that the maximum and the mean indirect
effects on geoid undulation, SN in the test area are 0.51 and 0.03 meters
respectively. If we use equation (5) to compute the secondary indirect
effect on gravity § , we will have the maximum effect of only
0.15 mgal and the meanm of 0.01 mgal. "The magnitude of attractions in this
order does not give any significant effect on the value of geoid undulation
at all. Therefore, the computation of the secondary indirect effects on
geoid undulation was neglected.
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4.4 Comparisons between Doppler and Topographically Corrected Gravimetric
Undulations

The calculations derijved in the previous sections represent theoretical
concepts that should be subject to some actual verification. One way to
do this is to compare geoid undulations implied by Doppler satellite obser-
vations at selected sites with those gravimetrically computed undulations
based on data with and without the correction described in this study. A
computation of the undulations, without correction terms, has been described
by Lachapelle (1979) at 65 stations in the US using the GEM10B potential
coefficients and mean surface gravity anomalies (uncorrected for terrain
effect) of varying sizes of anomaly blocks i.e., 5'x5', 30'x30'and 1°x1°
blocks. These undulations are referred to as uncorrected gravimetric
undulations.

Using the procedures of this paper, the correction terms were evaluated
at each of the 65 stations. The correction terms applied to the station
are the mean values of the block where the statjon 1is located. The attrac-
tion change corrections were computed using the direct integration procedure
(equation (88)) and the spherical harmonic technique (equation (89)) based
on 1°x 1° mean attraction changes (the same values ubtained in Section
4.2). By using 1°x1° attraction changes for computing the corrections,
an inconsistency in the computation is created due to the fact that Lachapelle
(ibid.) used 3 sizes of anomaly blocks. The inconsistency can be remedied
if we were to use 5'x5' mean elevations to compute the attraction changes.

The corrections were used to compiite a theoretically more correct
undulation which is referred to as a topographic corrected gravimetric
undulation. The corrected undulation was then compared with the DoppTler
derived undulation given by Lachapelle (ibid.). Before the actual
comparisons are made, it is critical to make sure the Doppler undulations
and the gravimetric undulations refer to the same ellipsoid.

In order to do this we first express the Lachapelle gravimetric undu-
lations in the form:
Ng,L = No + Ng ; (91)
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where No is the zero-order undulation of the geoid s¢ that Ng.L will
refer to a specific ellipsoid. Values of R_ were computed by Lachapelle
using constants of the Geodetic Reference System 1967 (GRS67). l.achapelle
computed Ng and applied a correction of +25m (6378160-6378135m)
to make the gravimetric undulations compatible with the ellipsoid used

in the determination of Doppler undulations. Lachapelle then computed

the mean difference AN defined as:

n
) [ﬂ (R + 25
_ _d=1 D~ g °m):l
M = - |
%
b0 Ny - R
- 121 2 2 25m

where ND is the Doppler derived undulation. Values of AN were determined
using several sets of potential coefficients and anomaly sets. For our
purpose we use the computations with the combination of GEM10B and the
anomaly set. In this case the value of 4N was -25.7 meters. Now Lachapelle
gives the values of Né which are defined as:

£ s N +.25m + ON
g Ng m
Thus we can re-construct the values of Ng from the above equation:

Ng‘= Né - 25m - AN (92)

Note that the mean values of Né would be zero with respect to the Doppler
undulations.

In order to utilize these N_ values we must compute the zero-order
undulation of the geoid so that undulation given by equation (91) will
in fact refer to the Geodetic Reference System 1967. From Rummel and
Rapp (1976, equation (25)) we have:

No = ot + oly)] - KM ay,)
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where ga 1is the difference between the equatorial radius of the mean
earth ellipsoid and that of GRS67, koM 1is the difference between the
geocentric gravitational constant of the mean earth ellipsoid and that
of GRS67, and @(wc) is defined as:
2y) =i I st)do,

(0]

c

Based on the recent estimates of the parameters of the mean earth
ellipsoid, we find (see Appendix C)

NO = -26.11 meters

Thus the geoid undulation with respect to GRS67 is the sum of NO and

Ng given by equation (92). Thus:

For comparisons with the Doppler undulations a correction of the above
undulation is needed so that the values refer to the same ellipsoid.
We would have

Ng,D = Ng,GRS67 + (6378160 - 6378135m)

Thus

H)

N

-26.11m - + + R -4
g,n = ~26-11m - 25m + 26m + A - o

-26.11m + Né - N

For the AN of -25.7m we have

R = Né - 0.41 meters (93)

9,0

We now are able to compare the values of Ng D with the undulations
derived from the Doppler stations. Such comparisons are given in the
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first numerical column of Table 16. We see a systematic difference (Doppler
minus gravimetric N )} of 0.4 meters with a difference standard deviation

of 2.2 meters. At this point we apply the correction terms based on

the Helmert's condensation procedure to the uncorrected (for topography)
undulation given by equation {(93). The details of the corrections at

the 65US statjons are shown in Appendix B. The results of the comparisons
are given in the last two columns of Table 16.

Table 16: The differences: Doppler undulation minus gravimetric
undulations. The Doppler undulations are those from
Lachapelle (1979).

Uncorrected Corrected Undulations

Statistics Undulations When AN When AN
of the Derived from Computed by Computed by
Differences Lachapelle (1979) Equation (88) Equation (89)

Mean (m) 0.41 ' -3.42 ~3.36

S.D. (m) 2.22 3.12 3.25

Max. (m) 5.83 5.03 5.23

Min. (m) -3.78 -8.91 -9.29

RMS  (m) 2.24 4.61 4.66

From Table 16, we can see the deterioration in the agreement between the
gravimetric undulations and the Doppler undulations in all aspects, after
the corrections were added. The absolute mean differences, the difference
standard deviations and the difference RMS of the corrected sets are larger
than the corresponding values of the uncorrected set.

In performing these comparisons we have assumed that the Doppler
derived coordinates are geocentric since the gravimetrically determined
values should theoretically be so. In fact there is a good evidence that
there is a 4m z-axis shift of the Doppler origin with respect to the geocenter.
Thus we should correct the original Doppler undulations to convert them
to a true geocentric systems. We have:

N6 = ND + Az sing
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where Az 1is the z-axis shift of the Doppler origin with respect to the
geocenter, and ¢ is the geodetic latitude of the Doppler station. We
now repeat our gravimetric-Doppler comparisons using the N6 values.
The results are given in Table 17.

Comparing Table 17 to Table 16, we see the decrease in the values
of the difference standard deviations in all three sets of the gravimetric
undulations. This indicates that the systematic effect due to z-shift
of the Doppler origin with respect to the geocenter does exist.

Table 17: The differences: Doppler undulations minus gravimetric
undulations. The Doppler undulations are those from
Lachapelle (1979) corrected for systematic effect due
to 4m z-axis shift.

Uncorrected Corrected Undulations

Statistics Undulations When AN ' When AN

of the Derived from Computed by Computed by
Differences Lachapelle (1979) Equation (88) Equation (89)
Mean (m) 2.86 -0.97 -0.91
S.D. (m) 1.99 2.87 3.02
Max. (m) 7.87 6.78 6.98
Min. (m) . -0.90 -6.09 -6.63
RMS  (m) 3.48 3.01 3.13

When the absolute mean differences of the corrected undulations are
compared to that of the uncorrected undulations in Table 17, the improvement
due to the topographic corrections is obvioiss. The standard deviations
of the two corrected sets are however larger than that of the uncorrected
set. The poorer standard deviations may be caused by the inaccurate values
of the terrain corrections used in the computation of the attraction change
effect on geoid undulation.

5. Summary and Conclusion

The indirect effects on the geoid computation due to the second method
of Helmert'. condencation were studied. Thevretically, the use of Helmert's
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anomalies in Stokes' equation should give a more accurate geoid than the

use of uncorrected free-air anomalies. Using Helmert's anomalies gives
three types of corrections to the free-ajr geoid, First, the indirect
effects on the geoid undulation are the result of the potential changes

in condensing the topographic masses above the geoid onto the geoid in
Helmert's reduction method. The second one is the correction to geoid
undulation affected by the attraction changes in the reduction process. The
third one is the secondary indirect effects on geoid undulation which is the
consequence of the indirect effects caused by the potential changes.

The computation or evaluation point for computing a potential change
in a gravity reduction is not at the same location as the computatjon point
for computing an attraction change. In the second method of Helmert's con-
densation, the potential change is the difference between the potential
of the topography and the potential of the condensed layer, evaluated at
some point P0 on the geoid. The attraction change, on the other hand,
is the difference between the vertical attraction of the topography and
the vertical attraction of the condensed layer. It is evaluated at & point
P on the earth's surface.

In the derivation of potential changes and attraction changes, the
topographic masses above the geoid are divided into a "regular" part and
an "irregular” part (Moritz, 1968). The "regular" part of the topography
is sometimes regarded as an approximation to the actual topography. Three
models can be used to represent the regular part of topography: the spherical
Bouguer plate, the plane circular plate and the infinite plane plate. The
“irregular" part of the topography consists of the topographic masses which
deviate from the plate surface.

The first part of this investigation was an investigation of the poten-
tial change and the attraction change of the regular part of topography as
computed from the three different models. These changes were then compared
with the irregular part when the same amount of mass was used. We found
the closest agreement between the results from the plane circular plate
and the irregular part of the topography.
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Next we developed computation techniques to compute the potential
changes and the attraction changes from 1°x 1° mean elevations. A test area
covering the United States was then used to investigate the actual effects
of the three corrections to the free-air geoid. It was found that the maximum
indirect effect on geoid undulation (potential change effect) in the test
area was 51 centimeters. The maximum attraction change effect on geoid un-
dulation was 9.50 meters when the 10° cap was used in Stokes' equation (88).
The attraction change effect on geoid undulation computed from the set of
harmonic coefficients (equation (89)) up to degree 180 was not the same as
that computed by Stokes' equation. The discrepancy between the two methods
was mainly caused by the higher degree coefficients being omitted. We have
shown that equation (89) produced results approximately equal to Stokes'
equation (88) when the same attraction change field was used in both equations.

The secondary indirect effects on gravity were of small magnitudes in
the test area, the mean value in the area being 0.01 mgal. Thus, the effects
could be neglected in the computation.

Doppler and gravimetric undulations reported by Lachapelle (1979) were
used to investijgate how well the cerrections due to the potential changes
and attraction changes could improve the gravimetric undulations. The
gravimetric undulations were slightly modified so that they would be comparable
to the Doppler derived undulations, i.e., they would refer to the same
ellipsoid (section 4.4). These undulations are referred to as the uncorrected
gravimetric undulations. The corrections were then applied to the uncorrected
undulations to obtain the so called topographically corrected gravimetric
undulations.

Since there is a tendency that the Doppler origin may have a z-axis
shift of 4 meters with respect to the geocenter. The corrections due to
this shift were computed and applied to Lachapelle's Doppler undulations
to get the "corrected" Doppler undulations. The uncorrected and the
corrected gravimetric undulations were then compared with the original and
the corrected Doppler undulations. |

-87-



Our comparisons confirm that there exists the z-shjft in the Doppler
origin. Based on this fact, the corrections due to the potential changes
and the attraction changes in the Helmert's condensation, show that
systematic differences are reduced although the dispersion of the results
increases. More specific conclusions depend on the determination of more
accurate terrain correction values.

The terrain correction used in this study directly depended on the
elevation of the evaluation point. The type of terrain surrounding the
evaluation point was not considered. This assumption leads to a remarkable
error in the terrain correction when the evaluation point is located on
a high plateau, In such an area, the terrain correction would be very small,
or zero, if equation (87) were used. Accurate values for the terrain cor-
rection may be obtained if mean elevations in smaller blocks were used as
done in Dimitrijevich et al. (1976) (5'x5' blocks) and Curiale et al, (1981)
(5/8'x5/8' blocks).

If the more accurate corrections due to the attraction change still cannot
improve the agreement of the Doppler undulations and the corrected gravi-
metric undulations, it is suspected that Helmert's anomalies may not be
appropriate for geoid computation in the high mountain area such as the Rocky
Mountains.

It is recommended, then, that the use of Molodensky's correction in
mountainous regions be studied to see if a better agreement between gravi-
metric and Doppler undulations may result. Two comments should be made
in regards to solving the Molodensky boundary value problem. One is that
instead of the geoid undulation, the height anomaly is obtained from the
solution. It is stated by Heiskanen and Moritz (1967, p. 294) that these
two are very close in magnitude. The second point is that the linear de-
pendency of the gravity anomaly on the elevation must not be presumed. The
reason for this is that the assumption will lead us to the first-order
correction (G1 term) which is the same as the terrain correction (Moritz,
1980, p. 414).
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Derivation of Fquation (89)

Two methods for computing the geoid undulation are presented in section
3.1. The undulations computed by both methods must be the same. If we
equate equations (74) and (77), we get

n
4%7 []' (Agr - Agpq¢) S(¥) do_ + R g

o, )
= 1%? gi Agr S(¥) do, + TT? nzz Q, A9, (A1)
where "
Ay = mZO (C;m cosmA + 5 sinmA) ﬁnm(siné)
Ag, = v(n-1) An

The maximum degree n of the harmonic series js usually selected in such

a way that the error in neglecting the higher degree terms (n > n) will

be very small. The upper limit of the summation in the second term on the
right hand side of equation (Al) then can be set to h . The lower Timit

of this summation must be extended to zero because the zeroth- and the first-
degree components of Ag do exist in the set of the harmonic coefficients
developed from the attraction changes. Since the zeroth and the First-
degree potential coefficients are not defined, we have to use the anomaly
coefficients to compute the components Ago and Agy . Equation (Al) can

be written as:

R
I gi (Agr - Ag,.¢) S(¥) do, + R n22 A

- gy 1] dox S) dog 4 5 nzo Q, 89,

C

T5 ffmref S(¥) d

i 1
£
nZZ Ag Z O [y(n-1) AT + - nZO Q, 49,
R D !
= 5 ngz (2 - Q (n-1)) A+ 2? ngo Q, 29, (A2)
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If Cé%g) and Sggg) are anomaly coefficients, then we can compute
In by:
n

Ag, = mZO(Céﬁg) cosmh + Ségg> sjnnln Pop(sind)

Thus equation (A2) can be used to compute the undulation from harmonic
coefficients within the cap size of 9. when the zeroth and the first-
degree components of Ag exist.

To transform equation (A2) to equation (89), the following list is
used:

Equation (A2) Equation (89)

Ag SA

A, 6A,

A9, SK;
*

o o
Ag Ag Ag Ag

cnm ’ Snm SCnm ’ 6Snm
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Appendix B

Comparison betweer, Doppler and Topographic Corrected
Gravimetric Undulations

Notations used in the table:

= doppler derived undulations (from Lachapelle, 1979)

Np
N; = uncorrected gravimetric undulations (see Section 4.4)

-

DN =ND'N

g

SN = correction due to the potential change

MN' = garrection due to the attraction changes computed by Stokes'
equation (88)

Ng* = the ¢o-rected gravimetric undulation when AN 1is used
= Ng + SN + AN’

DN' = N, - g

AN? = correction due to the attraction changes computed by the harmonic
series (equation (89))

Ng2 = Ng + N + AN2

DNZ = ND - ;‘;_g 2
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The Zero Order Undulation

The zero order undulation for the geoid computation by Method 1 and 2
of section 3.1 is given by (Rummel and Rapp, 1976, equation (25)):

Ry =da 1+ aly) - %%F o(y) (C1)
With
=L
olye) = 7= éi S(p)do, (c2)

where ga is the difference between the equatorial radius of the mean earth
ellipsoid and that of the adopted reference ellipsoid, and kM 1is the differ-
ence between the geocentric gravitational constant of the mean earth ellipsoid
and that of the adopted ellipsoid.

Note that No in equation (Cl) is not that as N0 given 1in equation
(75). This is because the global mean anomaly, Ago must be subtracted from
Agp in the second term of equations (74) and (78), to assure that the gravity
anomalies used in Stokes' equation have a global average equal to zero. See
the detailed derivation in Rummel and Rapp (ibid).

At the present, the best-known constants for the mean earth ellipsoid
which will be used in our calculations are:

(from Moritz, 1979),

kM = 3.9860047 x 1014 mé/sec?
(from Rapp, 1982),

a = 6378135.6 m.

The constants it the Geodetic Reference System 1967 (GRS67) are:
kM = 3.98603 x 10'% m?/sec?

a = 6378160 m.
That is kOM = =253 x 107 m3/sec? and 8§a = -24.4 meters.
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For a cap of 10° in Scokes' integral, ¢(wc = 10°) = 0.2068. Using
R = 6371000 meters and vy= 9.8 m/sec?, the zero order undulation of GRS67
is:

No = -26.11 meters.

~-06-



	GeneralDisclaimer.pdf
	0012A01.pdf
	0012A02.pdf
	0012A03.pdf
	0012A04.pdf
	0012A05.pdf
	0012A06.pdf
	0012A07.pdf
	0012A08.pdf
	0012A09.pdf
	0012A10.pdf
	0012A11.pdf
	0012A12.pdf
	0012A13.pdf
	0012B01.pdf
	0012B02.pdf
	0012B03.pdf
	0012B04.pdf
	0012B05.pdf
	0012B06.pdf
	0012B07.pdf
	0012B08.pdf
	0012B09.pdf
	0012B10.pdf
	0012B11.pdf
	0012B12.pdf
	0012B13.pdf
	0012B14.pdf
	0012C01.pdf
	0012C02.pdf
	0012C03.pdf
	0012C04.pdf
	0012C05.pdf
	0012C06.pdf
	0012C07.pdf
	0012C08.pdf
	0012C09.pdf
	0012C10.pdf
	0012C11.pdf
	0012C12.pdf
	0012C13.pdf
	0012C14.pdf
	0012D01.pdf
	0012D02.pdf
	0012D03.pdf
	0012D04.pdf
	0012D05.pdf
	0012D06.pdf
	0012D07.pdf
	0012D08.pdf
	0012D09.pdf
	0012D10.pdf
	0012D11.pdf
	0012D12.pdf
	0012D13.pdf
	0012D14.pdf
	0012E01.pdf
	0012E02.pdf
	0012E03.pdf
	0012E04.pdf
	0012E05.pdf
	0012E06.pdf
	0012E07.pdf
	0012E08.pdf
	0012E09.pdf
	0012E10.pdf
	0012E11.pdf
	0012E12.pdf
	0012E13.pdf
	0012E14.pdf
	0012F01.pdf
	0012F02.pdf
	0012F03.pdf
	0012F04.pdf
	0012F05.pdf
	0012F06.pdf
	0012F07.pdf
	0012F08.pdf
	0012F09.pdf
	0012F10.pdf
	0012F11.pdf
	0012F12.pdf
	0012F13.pdf
	0012F14.pdf
	0012G01.pdf
	0012G02.pdf
	0012G03.pdf
	0012G04.pdf
	0012G05.pdf
	0012G06.pdf
	0012G07.pdf
	0012G08.pdf
	0012G09.pdf
	0012G10.pdf
	0012G11.pdf
	0012G12.pdf
	0012G13.pdf
	0012G14.pdf
	0013A01.pdf
	0013A02.pdf
	0013A03.pdf
	0013A04.pdf
	0013A05.pdf
	0013A06.pdf

