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ABSTRACT 

A least squares formulation of the system div~ = p, curl~ = ~ is 

surveyed from the viewpoint of both finite element and finite difference 

methods. Closely related arguments are shown to establish convergence 

estimates. 
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Introduction 

This paper concerns the three dimensional Cauchy-Riemann type equations 

divu p, curlu = i in D 

(1) 

u·n o on r" , 

D is a bounded domain in R3 with boundary r on which n is the outward 

normal. The functions p ,E,. are prescribed and satisfy the compatabi1ity 

conditons 

(2) fpdlT 
D 

0, divi o in D" , 

these express necessary conditons that the overdetermined first-order system 

(1) has a solution. 

The numerical solution of these equations will be studied from both the 

finite element and finite difference points of view. Indeed, the major goal 

of this paper is to show how both approaches rest on very similar 

foundations. In so doing we hope our study may provide a point of contact 

between those familiar with the, largely separate, literature about each 

method. 

In the case of the finite element method convergence estimates will be 

shown to result quite directly from proof techniques already common to the 

finite element literature. In contrast, many of these same techniques have 

played little or no role in the analysis of finite difference schemes and one 

of our principal objectives lies in clarifying their re1evence to finite 

difference methods. 
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The Cauchy-Riemann type equations (1) were chosen for study because they 

are representative of a type of first-order systems that arise in problems 

from electromagnetics and fluid dynamics. For such systems, arbitrary finite 

differencce and finite element approximations to (1) are generally 

unsuitable. This is certainly true of all but a few finite element schemes 

based on Galerkin formulations [1], while simple finite difference 

approximations can present, among other difficulties, special problems in 

incorporating boundary conditions accurately. 

In Part A notations used in this paper are introduced and the basic 

intergral identity 

(3) f[lcurl~12+ldiv~12] 
D 

flgrad~12 
D 

is derived. This identity has found use in many applications (see, for 

example, [3] where it is used in a discussion of the Navier-Stokes 

equations). The derivation given in Section A.l differs from (3) in 

appearence in order to highlight the structural properties of (1) when viewed 

as a first-order system. 

The fact that (1) is well posed is an immediate consequence of (3) and 

the Lax-Milgram Theorem. This is described in Section A.2 both for 

completeness and because it shows the fundamental role the least squares ideas 

can play in discussing overdetermined systems like (1). 

The derivation of a stable and optimally convergent finite element scheme 

is almost immediate from the material developed in Part A. The arguments, 

while standard, are included in Part B for completeness. It is interesting to 

note that, unlike other least squares approximations to first-order systems, 

these do not impose any restrictions on the finite element spaces [2]. 
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In Part C an analogous development is given for the Keller box-scheme 

based, instead, on a least squares summation formulation. Here a summation by 

parts formula is used to obtain a summation identity analogous to (3) and 

results in a proof that the scheme is second order accurate. Of special 

interest is the fact that this development, also, is not restricted to uniform 

grids nor to grids obtained by images of uniform grids under a global mapping 

function. Thus, like the finite element schemes, it can also be used on 

irregular grids subject only to standard geometric constraints. Finally, we 

remark that the difference scheme employed here (c. f. [10] [12]) involves the 

variables on the same, rather than on staggered, grids in contrast to [5], 

[9] • 

Part A 

A Least Squares Formulation 

AI. An Integral Identity 

In the following, = (x
1

,x2,x
3

) is a point in R3, 3 - 3 x i = -3- , 
xi 

and (ijk) indicates that the indices i ,j ,k are restricted to an even 

permutation of (123). Thus 

divu 

(ijk) , 

grad..!!, 



4 

With 

we define 

and 

3 
(~,~) - [grad~:grad~] - 2 graduigradvi , 

i=l 

lIull 2 :: J (~,~) d1T , 
D 

2 :: Jlul 2
d1T II~IIO 

D 

2 
1I~1I1 lIull 2 + 2 

1I~1I0· 

The system (1) may be written in matrix form as 

(A.1.1) 

where 

Set 

(A.1.2) (ijk) • 

It is easy to verify that 

T 
AiAi I, 

(A.1.3) i 1,2,3, 

BT 
i -B i 

where I is the 3 x 3 identity matrix. 
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Recalling the definition (~,~) - [grad~:grad~], integration by parts 

leads to the identity 

(A.l.4) 

(A.l.S) (ijk) , 

and n(~) is a vector with components Qi given by 

(A. 1.6) (ijk) • 

Suppose u is smooth; since Also, in terms 

of the components of E.. and ::!... the component qi of .9... is easily verified 

to have the form 

Let 

(A.l.7) 

so that 

Since the expression in brackets is a surface divergence then 

f!l.·n.dcr = f~ .. n.dcr. 
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Integrating (A.I.4) and employing Gauss' theorem 

b lli,y) d1T + f~· ndcr 

Suppose uon = von = 0 on r; the preceding remark implies that 
,. 
~on = 0 on r so that 

J(Lu)TLVd1T - -
D 

A2. Norm Estimates and Uniqueness 

The goal here is to use tha basic identity (A.I.9) and the Lax-Milgram 

Theorem to show existence and uniqueness for the system 

(A.2.I) Lu = f in D, uon = 0 on r 

where L is defined in (A.I.I). To do this we must first formulate (A.2.I) 

in terms of a bilinear form a(o,o) on an apropriate space V. In particular 

we put 

(A.2.2) 

Moreover, we let 

(A.2.3) v 

with 

(A.2.4) 

J{divyodi~ + curlyocurl~}d1T 
D 

{ 
+2 

,Y.e:L (D):'y'°!!.. = 0 +2 } on r, grad,Y. e: L (D) 



This is a Hilbert space with the associated inner product 

(A.2.S) ~,'y> = f (.!!.,,Y) d1T 
D 

f(grad~:grad'y)d1T. 
D 
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That the bilinear form a(·,·) satisfies the conditons of the Lax-

Milgram Theorem [13] follows immediately from the integral identity (A.l. 9), 

which can be written 

(A.2.6) a(~,'y) = f(u,v)d1T. 
D 

Indeed, putting v = u we obtain 

(A.2.7) 

while 

(A.2.S) 

is also clear. 

2 
= II.!!. II , 

I a (.!!.,,Y) I .. lIullllvll 

It follows that given any bounded linear functional G(·) on V there 

is a unique ~EV for which 

(A.2.9) 

moreover, 

(A.2.l0) lIull .. DGII. 

Our final task is to choose G(·) so that (A.2.9) is equivalent to (A.2.l) -

(A.2.2). Indeed, given 
2 +2 

pEL (D), ~EL (D) we put 

(A. 2.11) G('y) = fiTLud1T = f{pdiv.Y + ~·curl'y}d1T. 
D D 
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Observe that 

(A.2.12) "i"o"~" 
so that 

(A.2.l3) 

Moreover, (A.2.9) is equivalent to 

(A.2.14) fIL£-iI2d~ = f{ldiv£-pI2+lcurl~-~12}d~ 
D D 

be minmized over vEV. Thus, if the data p ,,f satisfy the compatability 

conditons 

(A.2.15) fpd~ = 0, 
D 

div,f = 0, 

then the min in (A.2.14) will be zero and the minimizing function UEV will 

satisfy (A.2.1). 

In conclusion, it follows that if 

(A.2.16) 

(A.2.17) 

- {~EL2(D): f~d~=o} 
D 

+2 
,fELdiv(D) -

are given then there is a unique UEV such that (A.2.1) holds. Moreover, 

(A. 2.18) 



9 

Part B 

A Finite Element Treatment 

B1. Least Squares Formulation 

Since the infinite dimensional problem (A.2.1) - (A.2.2) has a natural 

characterization (via the Lax-Milgram Theorem) in terms of a least squares 

formulation, it is reasonable to consider approximations based on these 

ideas. 

(B.!.l) 

Indeed, Let 

v S V 
h 

be a finite dimensional subspace parameterized by h > o. We seek a ~£Vh 

which minimizes 

(B.l.2) f h 2 f{ h 2 h 2} ILv -fl = Idivv -pi +Icurlv -~I dn - - - - -D D 

as vh varies over Vh • Observe that if a (.,.) and G (.) are defined as 

in Section A.2, then ~ is a minimizing function if and only if 

(B .1.3) all 

Moreover, application of the Lax-Milgram Theorem to shows ~£Vh is 

uniquely determined by (B .1. 3). Once a basis is chosen for 

reduces to a set of symmetric positive definite algebraic equations. 
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B2. Error Estimates 

Combining (A.2.9) and (B.l.3) we see that 

(B. 2.1) o all 

This orthogonality condition is central to all error estimates. Indeed, first 

note that if ~£Vh is given, then (B.2.l) gives 

(B. 2.2) ( 
~h ~h) 

a ~-~ ,!!,.-,!!. = 

Thus 

It follows that ~ is a best approximation in the sense that 

(B. 2.3) 

where the inf is taken over all 

~h ~h 
inf lIu-u II .. inf n:!!.-:!!. n l' 

~h 
u in V

h
• 

In particular, if Vh consist of piecewise linear elements, then (B.2.3) 

gives 

(B.2.4) 

where h is a generic mesh spacing. Here n • n 2 is the Sobolev norm 

containing all derivatives up to second order. 

To estabilsh L2 estimates we use the standard "duality argument." The 

starting point is the following adjoint problem for ~£V, where the error 

~ - ~ is the data: 



(B. 2. S) all vEV. 

Suppose for the moment that (B.2.S) can be solved for ~ and 

In this case we put ~ = .!!.-~ in (B.2.S) to get 

(B.2.7) 

using orthogonality (i.e. (B.2.1» we get 

(B. 2.8) 

for any wh in Vh • Thus 

(B.2.9) 

We select 

(B. 2.10) 

h h 
"!4JEV so that 

Thus, with (B.2.6) we get 

(B. 2.11) 

Therefore, if linear elements are used 

11 
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The final task is to check (B.2.5) for solvability as well as the a 

priori bound (B.2.6). Rewriting (B.2.5) we get 

(B. 2.12) 

Suppose vEV and v=O on r. Then integration by parts gives 

(B. 2.13) 

where 

Thus defining w by 

* L L 

all ;!.t. V. 

curl curl-grad div !. 

* L ~ = .,!!-!!.t,. in D 

w = 0 on r 

it follows that w satis fies (B. 2.5) • Moreover. the a priori bound (B. 2.6) 

follows from the theory of second order elliptic equations [8]. 
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Part C 

A Finite Difference Approach 

Cl. Notational Preliminaries; 

Box Variables. 

The notations about to be introduced are most naturally interpreted 

when D can be subdivided into cells {1r} each of which is a rectangular 

box. In a later section we shall indicate how more general subdivisions may 

be treated explicitly. 

Following Keller [7] we call v a box variable if it is defined at the 

vertices of cells. For our purpose the importance in employing box variables 

lies in the fact that any average value of a function taken over either a cell 

volume, a face, or an edge of a cell can be approximated in terms of box 

variables by means of the trapezoidal rule. Certain other properties to be 

described then provide a finite difference calculus by means of which 

summation by parts leads to results similar to those established in Section A. 

We employ the notation: i v indicates the centered average and v'i 

the centered divided difference with respect to xi' i.e., 

(C.l.l) 

For smooth v, therefore, 

(C.l.2) 
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in particular, 

(C.1.3) 
i 0 

v J 
,k (JakvdXidXjdXk)/~TI + O(h2) 

TI 

where ~TI = ~x1~x2~x3 and h min{~xi}. 

The algebraic identity 

(C.l.4) i i 
(vw),i = v w,i + W v,i 

then yields a summation by parts formula while the definition 

shows that 

(C.l.S) 

The definitions 

(C.1.6) 

curl~ :: 

v i O 

• J 

( ij 
u k , 

v 0i. ,J 

ik 
-u 

,j 
) (ijk) 

provide finite volume approximations to divu and curlu respectively, i.e., 

div~ = (J div.!!.dTI) .. ~TI + O(h2) 
p 

(C.1.7) 

curl~ = (J curl.!!.oTI) 0 ~TI + O(h
2
). 

TI 
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We propose to examine the finite difference approximations to (1) given, 

in terms of box variables in a cell, by 

(C. 1. 8a) 

iOk 
divh.!:!. = p J 

i Ok 
curl u = z: J 

IF -

The boundary conditions u'n o are imposed by 

(C.I.8b) o (ijk) 

(ijk) 

where u 
ij 

is the trapezoidal approximation to the average value of u on a 

face whose normal is ~. When box variables are understood we shall 

often write u'n o to mean the condition expressed by (C.I.8b). 

C2. A Summation Identity 

Define, using box variables, 

(C.2.I) 

where the coefficient matrices are the same as in the definition of Lu in 

(A.I.I). The box-variables scheme (C .1. 8) expressing di vu = p, curlu = ~ 

may then be written as 
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(C.2.2) 

Next, define 

( 
23 13 12) 

grad~ - !!., 1 ,!!. ,2 ,.£ ,3 

and 

(C.2.3) 

The summation-by-parts formula (C.1.4) then leads to 

(C.2.4) 

where !Lh is the vector with components 

(C.2.S) 

and 

h T k ·)T ik 
qi = (Bku .+B.uJ

k _v , -,J J-, 
(ijk) 

? ( k T k ) ijk 
L Bk~ i· +Bk~ . i ~ , 

i=1 ' J ,J 

(ijk) • 

Since is a box-variable k k «C.1.S)) and, since u !!., ij = .£,ji 

BT -Bk , then h = o. = S1tty k 

Next, multiply (C. 2.4) by !11T and sum over D using the 

analogue of Gauss' theorem to obtain 

(C.2.6) 

summation 

By expressing !Lh as given by (C.2.5) in terms of the components of u 

and v (as in (A.l.7)) the reader may verify that the boundary contribution 

vanishes when u·n = v·n = 0 on r. -- --

Hence, defining 
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(C.2.7) 

we may state: for any box-variables u and v satisfying (C.I.8b), i.e., 

u·n = v·n = 0 on r, 

(C.2.8) 

C3. A Convergence Estimate 

The box-scheme (C.2.2) is an overdetermined system of algebraic equations 

under the boundary conditions u·n = 0 on r. Consider a solution as 

determined by the least squares problem 

(C.3.I) 

with u·n = 0 on r. 

Using (C.2.8) the Euler equations arising from this problem leads to: 

uh provides a least-square solution of L~= ih if 

(C.3.2) 

for any box-variable v satisfying von O. Write 

(C.3.3) 
h h h h If. 

II u II - (a
h 

(£ ,£ )) 2" 

Since only central averages and differences are involved in the 

definition of ~ it follows that if ..!!. is a solution of Lu = f which has 
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continuous and bounded mixed third derivatives then Lh(~-uh) = 0(h
2
), i.e. 

(C.3.4) h h lIu-u II 0(h2). 

Define 

h [ L L T I;. 
(C.3.5) "!!." 0 = !!. (C1)!!.(C1)] 2 

1TED C1E1T 

where ~(C1) indicates the box-variable approximation to the average value 

of u over a face C1 of a cell 1T. For the continuous problem Friedrichs' 

inequality, when ~.~ = 0, yields 

for some constant y. The same argument which establishes this inequality may 

also be followed using summation and difference operators in place of 

integration and differential operators. The result is 

(C.3.6) 

Using (C.3.4) we thus obtain 

h h 
11£-£ "0 

i.e. the box-scheme is second order accurate in the II.II~ norm. 
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C4. A Remark About More General Cells 

As indicated earlier the definitions of divh!!., curl~ can be made 

independent of any assumption about the shape of a cell 1T. Properly 

interpreted, so also can the summation by parts formula (C.l.4) as well as 

(C.l.S). A little reflection will convince the reader that the convergence 

proof just given applies as well for irregularly shaped subdomains. 

The followng describes explicit representations for the box-scheme on 

irregular cells. 

Let o denote an oriented face of 1T,V = 1,2, ••• ,6. v Applying (C.1.7) to 

a smooth function ~, and employing Gauss' theorem, 

indicates the value of u at the centroid of o • 
-\I 

approximating ~(~v) by the average of its values at the vertex points of 

~\I an expresison for div~ results when u is a box-variable. 

Similarly, 

By 

Apply Stoke's theorem on a face do and let 
-\I 

ds 
-\I 

indicate an element of arc 

length in the direction ~\li = d~\lx~i; the result is 

(C.4.2) 

where .!!.. !.\li 

curl~.~ '" H.!!.· ~\li)llO\l/lllT 
v 

is evaluated at the centroid of the face having the area 

60 • 
\I 

By evaluating .!!.·!vi as the average of its values at the vertices of 

~\I (C.4.2) provides an interpretation of curl~ in terms of box-variables. 
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Concluding Remarks 

A comparison of the convergence proofs employed in Parts Band C is of 

interest. The finite-element approach allowed the integral identity (A.lo9) 

to be used directly but utilized estimates arising from the adjoint problem. 

The finite difference approach, on the other hand, required the development of 

a summation identity corresponding to (A. 1. 9); Friedrichs' inequality then 

provided in the required convergence estimate. 

Both proofs are independent of any assumptions about the type of cells 

TI upon which approximations are based. However, the numerical implementation 

of the finite-element approach in such cases may be simpler to employ than the 

box-scheme because of extensive and readily available software for finite-

element methods. The above remarks suggest that this software could be 

adapted to the finite difference method as well. 

Both methods lead to sparse matrices which may be solved by direct 

algebraic techniques. An iterative scheme for least squares problems due to 

Kaczmarz [6] and Tanabe [11] provides an alternative approach and has been 

employed in [4] to treat the finite difference problem in two dimensions. 

Progress in developing fast iterative methods has been reported to us in 

personal communictions by our colleagues (Grosch and Phillips) and will be 

described elsewhere. 
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