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NATURAL CONVECTION IN AN ENCLOSED CAVITY 

Timothy N. Phillips 

Institute for Computer Applications in Science and Engineering 

ABSTRACT 

We are concerned with the problem of buoyancy driven flow in a vertical, 

rectangular cavity whose vertical sides are at different temperatures and 

whose horizontal sides are insulated. An application of the dynamic A.D. I. 

method to obtain nUMerical solutions to this problem is described. For large 

non-dimensional temperature differences characterized by the Rayleigh number 

the flow patterns develop strong boundary layers. These boundary layers are 

resolved by applying the D.A.D.I. method to the discretization of this problem 

on a non-uniform grid. 
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Research Council, United Kingdom, while the author was in residence at the 
Oxford University Computing Laboratory and Merton College, Oxford and in part 
by the National Aeronautics and Space Administration under Contract NAS1-
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Introduction 

The problem to be considered was proposed by Jones [4] as a test bed for 

numerical methods for solving a variety of practical thermal problems. It is 

known as the "double glazing" or "window cavity" problem and has many 

applications, particularly in the field of thermal insulation. The most well­

known application is double glazing where a stagnant layer of air acts as an 

insulant between a warm room and a cold outside. The formulation of the 

problem is in terms of stream function, vorticity and temperature. The 

vorticity is eliminated to obtain a coupled pair of partial differential 

equations, one of which is fourth order. A dynamic A.D.I. (D.A.D.I.) method 

for solving these equations numerically is described. Grid stretching 

techniques originally due to Kalnay de Rivas [8] are used to resolve the 

boundary layers which develop for large values of the Rayleigh number. 

2. Formulation of the Problem 

We are concerned with the problem of fluid flow in an upright, 

rectangular cavity described in non-dimensional terms by 0 ( x ( 1, 

o ( z ( 1, with z vertically upwards. The cavity has different constant 

temperatures on the vertical walls, T1 on the hot wall and T2 on the cooler 

wall, and has insulated horizontal walls. We shall consider the two­

dimensional flow of a Boussinesq fluid of Prandtl number 0.71 in which the 

flow takes place perpendicular to the walls. The Boussinesq approximation 

(see Mallinson and De Vahl Davis [9]) assumes that the physical properties and 

the density are constant except in the buoyancy term in the equations where 

the density is taken into account. This approximation is quite realistic and 

can give rise to predictions that are in good agreement with experiment (Jones 
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[5]) for small termperature differences. The governing equations are 

considerably simplified by use of this approximation. A full discussion and 

detailed description of this problem is given by Jones [6]. 

z ~ 

dT 
~ = 0 

T ~ g 

dT 
~ = 0 

x 

Figure 1. 

A non-dimensional temperature, T, is defined by 

T 

where T* is the temperature. The equations representing the conservation of 

mass, momentum and energy may be written as 

(Vxy) x v 

V.v 0, 

2 - Vp - Ra Pr Tk - PrV ~, 

(1 ) 

(2 ) 
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(3 ) 

where y = (u,O,w),l£ = (0,0,1) and p is the perturbation pressure. The 

Rayleigh number is given by 

and the Prandtl number by 

Pr = V/K, 

where g is the acceleration due to gravity, e the coefficient of volumetric 

expansion, v the coefficient of kinematic viscosity and K the coefficient 

of thermal conductivity. 

Mallinson and De Vahl Davis [10] show that the governing equations may be 

recast in the form 

2 aT ac ac 
Pr V C + Pr Ra ax = u ax + w az-' (4) 

-c, (5) 

(6) 

U = ~ w-~ - az' - ax' (7) 

where ~ is known as the vorticity and ~ the stream function. Eqs. (4) to 

(7) represent what is known as the vorticity - stream function formulation of 

the problem. 
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The boundary conditions are 

1)1 =~ = 0 an ' on r, 

where r is the boundary of n { (x, z): 0 " x <: 1,0 " z " 1l, 

T = 1, on x = 0, 

T 0, on x = 1, 

aT 
an = 0, on z = 0 and z = 1. 

Eliminating the velocities u,w and the vorticity ~ we obtain the following 

system of equations: 

0, (8) 

o. (9 ) 

An advantage of eliminating the vorticity is that the need for a vorticity 

boundary condition is avoided. The system of equations (8) and (9) represents 

a fourth order equation for 1)1 and a second order equation for T. The major 

interest is in heat transfer so there are two important quantities namely the 

temperature fields and the overall heat transfer defined by a Nusselt number 

1 aT I 
Nu J axdz x=O· o 
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In order to solve this problem using an A.D. I. method we must first convert 

Eqs. (8) and (9) to the parabolic equations 

(10) 

aT n2T a a at = v - ax (uT) - a; (wT), (11 ) 

whose steady state solution, if one exists, solves Eqs. (8) and (9). The 

parameter A controls the interaction between the equations. It means that 

for A * 1 we are effectively using different time scales for the two 

equations. 

3. Solution of a Nonlinear Equation 

In a numerical process to find the solution of Eqs. (8) and (9) we use 

Eq. (8) to solve for lji and Eq. (9) to solve for T. Eq. (8) is nonlinear 

with respect to lji and can be written in the form 

L (lji) = f (T), (12) 

where L is a nonlinear operator. 

* A Newton-type method is used to solve Eq. (12). Suppose that lji is 

some approximation to the solution of Eq. (12). We replace L by its 

* linearization about lji and then attempt to partially solve the linearized 

problem 

~ * * * L (lji ).(lji-lji ) + L(lji ) - f(T) ~ 0, (13) 
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" * where L (l/J ) is the Frechet derivative of L * at l/J. We use the D.A.D.I. 

method to solve Eq. (13), the linearization being updated after each D.A.D.I. 

step. This will be explained more fully later. 

The Frechet derivative of L at l/J is given by 

(14) 

4. Finite Difference Equations 

We cover n with a square grid of mesh length h = liN where N is a 

positive integer. Let and be the values of and T at the 

point (xi ,Zj) respectively where xi = ih and Zj = jh. We use standard 

second-order centered difference approximations. At this point it is 

convenient to introduce the central difference operators 02 and 0 
x x as 

follows: 

The central difference operators 02 and 6" are defined in a similar 
Z Z 

manner. Eqs. (8) and (9) are discretized using these approxmiations to give 

and 

0, (16) 
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where 

The normal derivative boundary conditions are also discretized using 

central differences and these are used to remove imaginary exterior points 

from Eqs. (15) and (16) near the boundary. We have 2N(N-1) equations for 

the unknowns ~i,j,i = 1, ••• ,N-1, j = 1, ••• ,N-1, and Ti,j,i = 1, ••• ,N-1, 

j = O, ••• ,N. 

Eq. (15) can be written in the form 

which is the discrete form of Eq. (12), where Lh is a nonlinear discrete 

operator. 

5. Method of Solution 

Here we describe how the D.A.D.I. method of Doss and Miller [2] can be 

applied to this problem. Since Eqs. (10) and (11) are parabolic they may be 

advanced in time by a direct method and the complete solution procedure may be 

regarded as a single iterative scheme. Our interest is not in solving the 

parabolic equations (10) and (11) accurately for finite times but to reach the 

steady state solution as soon as possible. We therefore use the D.A.D.I. 

method which uses a strategy that attempts to keep the time step ~t within a 

region of fast convergence. An advantage of using an automatic step size 

changer is that it avoids the necessity of choosing a priori iteration 

parameters. The strategy of Doss and Miller [2] attempts to recognize 
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instabilites as they start to occur and to bypass them by decreasing ~t. 

We start with initial approximations T (0) and 1/1 (0) to T and 1/1 

respectively at time t = O. Suppose that we have reached the nth time step, 

where n = 2m and m is even, and that the current approximations of T and 

1/1 at the grid points are T(n) and 1/I(n) respectively. Starting from these 

approximations we describe a step of the D.A.D.I. method with time step 

We begin by putting 

for i,j = O,l, ••• ,N. 

~ (n
j
) 0, 

i, 

The A.D.!. scheme due to Peaceman and Rachford [11] is used to advance 

Eq. (11) in time. The following systems are solved along lines in the x-

direction: 

i = 1, ••• ,N-l, (17) 

(18) 

i = 1, ••• ,N-l, j = 1, ••• ,N-l, 

(r I_0 2)T(n+1) 
1 x i,N 

( 2) (n) 
rlI+o z Ti,N' i 1, ••• ,N-l, (19) 

with 

T(n+1 ) = 1, T(n+l) = 0, j O,l, ••• ,N, 
O,j N ,j 
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homogeneous Neumann boundary conditions along z = 0 and z = 1 and where 

2 
r = h / b.t. 1 

The following systems are solved along lines in the z- direction: 

( I+o2)T(n+l) -If ~ ( (n)T(n+l») 
r 1 x i,j 2 x u i,j' (20) 

j = O, ••• ,N, i = 1, ••• ,N-l, 

with homogeneous Neumann boundary conditions along z = 0 and z = 1. 

We advance 1jJ in time using the A.D. I. scheme of Douglas and Rachford 

[3] to solve the fourth order linear equation (13). The extension of this 

scheme to solve the biharmonic equation is due to Conte and Dames [1]. 

We solve the following systems, described by j = 1, ••• ,N-1, along lines 

in the x- direction: 

i = 1, ••• ,N-1, 

with homogeneous Dirichlet and Neumann boundary conditions, and where 

r = h4/(A~t). 
2 

(21) 
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The following equations, described by i = I, ••• ,N-I, are solved along 

lines in the z- direction: 

j I, ••• ,N-I. 

We define an A.D.I. step to be the process by which we obtain T(n+2) 

and </>(n+2) from T(n) and </>(n) i.e. the solution of equations (17) to 

(22) • Starting with the approximations T(n+2) and </> (n+2) we perform a 

second A.D.I. step using the same time step tot to obtain T(n+4) and 

</> (n+4) • The next part of the process is the bookkeeping stage of the 

D.A.D.I. step. Here we start with the approximations T(n) and </>(n) and 

perform an A.D.I. step with time step 2tot to obtain T(n+4) d ::k(n+4) 
an 'f • 

We compute the test parameter, TP, which is given by 

TP I[SUM/ASUM], 

where 

SUM liT (n+4)_:r(n+4) II 2 
2 

+ 1I</>(n+4)_~(n+4)n2 
2 

and 

ASUM liT (n+4)_T(n)112 
2 + II</> ( n+4 ) _</> (n) II 2 • 

2 

The test parameter is an estimate of the relative local truncation error. If 

we are interested in solving the parabolic equations (10) and (11) accurately 

then tot will be small, and so will TP. Our main concern, however, is to 
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accelerate convergence and attempt to push TP into an interval where 

convergence for A.D.I. is rapid. The strategy for changing bt is described 

in Doss and Miller [2]. Although their analysis of the step size strategy 

rests on rigid assumptions, they obtain good results in situations beyond the 

realm of the assumptions. If TP > 0.6 then we reject the present D.A.D.I. 

step and start the step again with bt reduced by a factor of 1/16. If 

TP ~ 0.6 then we accept the present D.A.D.I. step and change bt according 

to the strategy: if TP falls in the intervals [0,0.05], (0.05,0.1], 

(0.1,0.3], (0.3,0.4], (0.4,0.6] change bt by the factors - 1 1 4,2,13, /2, /4 

respectively for the next D.A.D.I. step. 

If the present step is accepted then we use one step of Newton's method 

to update the approximation to ~ by setting 

~(n) _ <j>(n+4). 

We are now in a position to start the next D.A.D.I. step. 

6. Numerical Results 

The initial approximations T(O) and ~(O) are chosen to be the values 

at the grid points of the functions TI and ~I respectively, where 

The algorithm described in the previous section was run for different grid 

sizes and for Rayleigh numbers of and 106• The algorithm is 

terminated when the maximum modulus of the difference between successive 
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iterates on even time steps is less than 10-6 for h = 1/16,1/32 and 

5 x 10-5 for h = 1/64. 

We experimented with different values of the parameter A. For A = 1 

we found that for large values of the Rayleigh number the iterates oscillated 

due to the interaction between the equations. For suitable choices of this 

parameter the instabilities were controlled and the method converged. The 

value of A was chosen to be 0.05, 0.01, 0.002 and 0.002 respectively for 

Rayleigh numbers of and The choice of A was not 

critical in the sense that similar convergence behavior was observed for a 

wide range of values in the neighborhood of the chosen value. 

Suppose that for a particular value of the Rayleigh number the problem 

has been solved numerically on a grid of mesh size h. To find the solution 

on a grid of mesh size liz h we use the best available information to begin 

the new calculation i.e. we use as our initial approxmiation values 

interpolated from those obtained on the coarser grid. Cubic interpolation is 

used for values of wand linear interpolation for values of T. 

The average value of the Nusselt number is calculated using the 

trapezoidal rule, where we use the following approximation to the normal 

derivative of T on the hot wall: 

aT 
an(O,z) 

~ {-3T(0,z)+4T(h,z)-T(2h,z)} 
2h 

Table I contains the average Nusselt number on the hot wall and the 

maximum and minimum local Nusselt numbers on the hot wall, and their 

location. Table II contains the number of D.A.D.I. steps and the run time, in 

seconds, required to reach the convergence criterion. The results were 

obtained on the Oxford University ICL 2980 computer. Contours for the 
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temperature and stream function are shown in Figures 2 to 9 for different 

values of the Rayleigh number. 

The results we have obtained mainly show a good agreement and the 

convergence is approximately quadratic. Also it is clear that some form of 

non-uniform grid is needed to resolve the boundary layers accurately when 

Ra is large. In the next section we show that this technique has the effect 

of improving the rate of D.A.D.I. convergence. 

TABLE I 

Heat Transfer Results 

Average Maximum Minimum 

Ra Mesh Nusselt Number Nusselt Number Nusselt Number 

Nu Numax @z = NUmin @z = 

17 x 17 1.120 1.515 0.86 0.697 0.00 

103 33 x 33 1.118 1.508 0.91 0.693 0.00 

65 x 65 1.118 1.507 0.91 0.692 0.00 

17 x 17 2.357 3.838 0.81 0.615 0.00 

104 33 x 33 2.270 3.628 0.84 0.592 0.00 

65 x 65 2.250 3.554 0.86 0.587 0.00 

17 x 17 5.146 8.423 0.88 0.854 0.00 

105 33 x 33 4.758 8.508 0.91 0.755 0.00 

65 x 65 4.573 7.972 0.92 0.735 0.00 

33 x 33 10.062 19.085 0.91 0.926 0.03 

106 65 x 65 9.272 19.590 0.95 0.999 0.00 



14 

TABLE II 

Computational Details 

Ra Mesh Number of D.A.D.I steps Time 

17 x 17 24 4.9 

103 33 x 33 19 14.9 

65 x 65 9 30.3 

17 x 17 36 6.7 

104 33 x 33 36 26.9 

65 x 65 21 66.0 

17 x 17 III 21.1 

105 33 x 33 92 68.9 

65 x 65 49 147.5 

106 33 x 33 362 268.5 

65 x 65 335 1012.0 



a .2 .4 .6 .8 1.0 

Figure 2. Temperature contours for Ra = 103• 
Contour levels are 0.1(0.1)0.9. 
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1.0 ~--------------------------------~ 

.8 

.6 

.4 

.2 

a .2 .4 .6 .8 1.0 

Figure 3. Stream function contours for Ra = 103• 
Contour levels are -0.12(-0.12)-1.08. 
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1.0 ~~~~~~--r--------r----------~----~ 

.8 

.6 

.4 

.2 

a 

1.0 

n 
.0 

.6 

.4 

.2 

o 

.2 .4 .6 .8 1.0 

Figure 4. Temperature contours for Ra = 104 

Contour levels are 0.1(0.1)0.9. 

.2 .4 .6 .8 1.0 

Figure 5. Stream function contours for Ra = 104 • 
Contour levels are -0.552(-0.552)-4.968. 
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1.0 nmrrT~r---------r-------------r---~ 

.8 

.6 

.4 

.2 

o .2 .4 .6 .8 1.0 

Figure 6. Temperature contours for Ra = 105. 
Contour levels are 0.1(0.1)0.9. 

1.0 r-----------------------------------, 

.8 

.6 

.4 

.2 

o .2 .4 .6 .8 1.0 

Figure 7. Stream function contours for Ra = 105. 
Contour levels are -1.06(-1.06)-9.54. 



18 

1.0 
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.6 

.4 

.2 

o 

1.0 

.8 

.6 

.4 

.2 

o 

.2 .4 .6 .8 1.0 

Figure 8. Temperature contours for Ra = 106• 
Contour levels are 0.1(0.1)0.9. 

.2 .4 .6 .8 1.0 

Figure 9. Stream function contours for Ra = 106 • 
Contour levels are -2.1(-2.1)-18.9,-19.3,-19.8. 



19 

7. Non-Uniform Grids 

For large values of the Rayleigh number the flows develop strong boundary 

layers. This effect can be seen in Figure 9, for example. When Ra = 106 we 

have had to use an extremely fine mesh, 65 x 65, in order to resolve these 

boundary layers. This is rather wasteful since the grid points are also 

densely distributed away from these layers where they are not needed. Here we 

apply the technique of Kalnay de Rivas [8] to resolve the boundary layers 

using a non-uniform grid. 

Basically, the idea is to make a change of independent variable so that 

the domain is mapped into a new co-ordinate system where the variations of the 

solution are not so rapid. The grid intervals are varied by defining 

stretched co-ordinates T; and n such that x = x(T;) and z = z(n) where 

the grid intervals tJ.T; and tJ.n are constant and x and z are the old 

physical co-ordinates. The mapping is chosen so that the solution, when 

regarded as a function of the new variables, has no boundary layers. 

Kalnay de Rivas [8] and Jones and Thompson [7] show how to express 

derivatives in terms of the stretched co-ordianates. For example, we can 

express the first derivative in terms of T; in the following manner 

av av dT; 
ax = ~ • dx' (23) 

Eq. (23) can be discretized using central differences to give the 

following approximation 

(24) 

where is the value of v at the grid point with 
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and 

The transformation can be differentiated using central differences to 

obtain the following approximation to the first derivative: 

( vi + 1 • j -v i-I j) 

(Xi +1-Xi_1J (25) 

Finite difference approximations for higher order derivatives are obtained in 

a similar way. 

Let x(~) and zen) be two grid stretching functions with constant grid 

intervals A~ and An respectively. The region n is covered with a 

variable grid defined by the above mappings. We define and 1/J i,j to 

be the values of T(x,z) and 1/J(x,z) respectively at the grid point 

(xi,Zj)' The finite difference equations are constructed using approximations 

like Eq. (25) for the derivatives. The system of finite difference equations 

are solved using the D.A.D.I. method described earlier. 

The problem is solved on the following non-uniform grids: 

(a) 

(26) 

(b) 

zen) 
5 4 3 = 6n - 15n + lOn • (27) 

These grid stretching functions give a smaller spacing of the grid points near 

the boundary. 
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The problem was solved for Rayleigh numbers of 105 and 106 on the non­

uniform grids defined by Eqs. (26) and (27) with 6.r; = 6.n = 0.04. In Table 

III we compare the average value of the Nusselt number along the hot wall 

obtained on these non-uniform grids, a uniform 26 x 26 mesh and a uniform 

65 x 65 mesh. In Tables IV and V we compare the number of D.A.D.I. steps 

and run time respectively to reach the convergence criterion, which is the 

same as that used for the results in Table II. 

In Table III we see that we have obtained a good estimate of the Nusselt 

number by using a stretched grid even though we have only a 26 x 26 mesh. 

For small values of the Rayleigh number the use of a stretched grid has little 

effect. It is only when the Rayleigh number becomes large that we obtain an 

improvement by using non-uniform grids. The use of non-uniform grids to 

resolve the boundary layers has had the effect of improving the rate of 

D.A.D.I. convergence. Approximately twice as many steps of D.A.D.I. were 

required for convergence of the method using the uniform 26 x 26 mesh than 

for stretched 26 x 26 meshes. 

The use of non-uniform grids has allowed us to resolve the boundary 

layers using comparatively few mesh points. Reasonable accuracy has also been 

obtained on the stretched grids compared with an extremely fine mesh. 

The iterative solution of finite difference equations constructed on a 

non-uniform grid usually presents great difficulties. This is due to the 

problem of finding suitable parameters for the acceleration of convergence of 

any selected iterative method. Hence, an advantage of the D. A. D • I. me thod 

over standard iterative methods for solving problems of this type is that we 

do not require an a priori choice of parameters to accelerate convergence. 
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Ra 

Ra 

105 

106 

Ra 

105 

106 

TABLE III 

Average value of the Nusselt number 

Uniform Mesh 

26 x 26 

4.889 

10.163 

Uniform Mesh 

26 x 26 

151 

676 

Uniform Mesh 

26 x 26 

68 

299 

Stretched Mesh 

(a) 

26 x 26 

4.596 

9.123 

TABLE IV 

Stretched Mesh 

(b) 

26 x 26 

4.595 

9.066 

Number of D.A.D.I. steps 

Stretched Mesh Stretched Mesh 

(a) (b) 

26 x 26 26 x 26 

85 84 

334 369 

TABLE V 

Computational time 

Stretched Mesh Stretched Mesh 

(a) (b) 

26 x 26 26 x 26 

85 84 

332 364 

Uniform Mesh 

65 x 65 

4.573 

9.272 

Uniform Mesh 

65 x 65 

80 

426 

Uniform Mesh 

65 x 65 

238 

1280 
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