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INTRODUCTION

Robotics is expected to play an increasingly important role in future space mis-
sions as the complexity and the exploitive nature of the missions increase., Ini-
tially, robot systems are envisioned to perform tasks in space, such as the service
and repair of satellites (ref. 1). Accomplishing these tasks either remotely (tele-
operator control) or by onboard computers (machine intelligence) requires some type
of control logic to maneuver the robot's arm and hand.

Considering the way people control their arms and hands, one finds that people
do not consciously control individual joints in commanding hand movements. A method
of mimicking this type of control in a robot arm is called resolved-rate control
(ref. 2), in which commands to maneuver the robot hand are rotational and transla-
tional velocities in the hand-axis system. These velocities are then resolved
analytically into individual joint rates in the robot arm to accomplish the hand
command.

Positioning a robot arm with resolved-rate control requires relative joint
information, which is not always known (or is not available) for commercially avail-
able robot arms. Hence, a method is needed to ascertain this information without
having to disassemble these arms. The intent in this paper is to develop a method to
calculate the relative joint geometry of an assembled robot arm. Specifically, the
Denavit-Hartenberg parameters (ref. 3), which completely characterize this geometry,
are calculated.

ANALYSIS

The objective of this analysis is to derive equations for calculating the
Denavit-Hartenberg parameters, which completely characterize the relative joint
geometry in robot arms. In essence, these parameters locate consecutive joint-axis
systems with respect to each other, both in position and orientation.

Robot Arm

Figure 1, which is a modification of a figure in reference 4, illustrates a
robot arm and joint-axis systems. To control the arm in a teleoperator mode using
resolved-rate control, a distant operator commands translational velocities
(VX, Vy»r and VZ) and rotational velocities (“k' wy, and wZ) about the hand-axis
system. (A list of symbols and abbreviations used in this paper appears after the
references.) These hand commands are then interpreted (or resolved) in terms of the
individual joint angular rates é, (L1 =1, 2, eee, 6) by us%ng transgormation equa-—
tions based on the relative joint geometry. &Angular rates 6 and 9§ correspond
to rotating the base of the wrist assembly and the cylindrical portion of the wrist.

Relative Joint Geometry

Consider two sequential rotational joints in a robot arm, for instance, joint i
and joint i + 1. In figure 2 the geometric relationship between axis systems at



these joints is completely characterized by the Denavit-Hartenberg parameters, which
consist of three constant parameters aj, 0y and ry and a variable joint rota-
tional angle ©!. By definition, joint rotations are always about the Z-axis, The
Xj-axis is directed along the common normal from 2z;_; to 2;j. For clarity, the
Yi- and Y;_q-axis, which simply complete right-handed coordinate systems at the
respective joints, are not shown in figure 2,

In this method of systematically assigning coordinate systems to successive
joints, the Xj-axis direction for the first joint (or b o for the last joint) is
chosen arbitrarily. For sliding joints, the joint variable is ry; rather than 8!.
Only rotational joints are considered in this paper.

Basic Coordinate Transformation
The relative joint geometry dictates the basic transformation equations between

adjacent joints, The coordinates of a point P(x,y,z) with respect to the i
joint-axis system in figure 2 can be transformed to coordinates with respect to the

i - 1 joint-axis system by using the relation
X X
Y S '
= A, (1)
Z b4
1, 1
1-1 1
with
! - . si ! i . si ' | , '
cos ei cos a; sin el sin a; sin el ‘ a; cos el
. sin 8! cos . cos B! -sin g. cos 6! ' a, sin o!
i i i i i i | i i
A, = (2)
1-1 |
0 sin a, cos ¢« r,
i | i
-5 0 0 _' 1
where Ai_ is the homogeneous transformation matrix from coordinate system i to
i -1, (See ref. 4, for example.) HEguation (1) is equivalent to
' - . si ! i . si ! . '
X cos ei cos a; sin el sin q; sin el X a; cos 61
y = |sin ©! cos q, cos ©! -sin . cos O'||lvy + |a., sin 6! (3)
i i i i i i i
z]. 0 sin q. cos «a, z]. r,
1-1 1 i 1 i

where the second term on the right-hand side is the location vector of the origin of
coordinate system 1 with respect to the origin of coordinate system i - 1.
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Problem Statement

Given a set of coordinates for a point P(x,y,z) with respect to the robot hand
in figure 1, the corresponding coordinates of this same point with respect to the
base coordinate system of the robot arm can be computed as

1,2.3.4. 5
= A0A1A2A3A4

N <X

6| v
AS (4)
zZ

1 1
0 6

where equation (2), with i =1, 2, ..., 6, supplies the matrices in equation (4).

Choose point P(x,y,z) as the origin of the robot hand-axis system so that

(5)

o O O

1 1
6

Now, place the hand at different locations and measure the hand's location with
respect to the base coordinate system., The corresponding joint angles for each
measurement are also recorded (measured or obtained from robot's computer). The
problem is to use these data to calculate the parameters aj, a3, and r; of the
robot arm. For the robot arm in figure 1, there are 18 unknown parameters a;, aj,

and r; (where i =1, 2, ..., 6).

Procedure

A major task in extracting the relative joint parameters is finding a manageable
way to look at the problem. The basic idea used in this paper is indicated in fig-
ure 1., The first problem is to determine the joint parameters aj;, aq, and r,,
which relate the joint coordinate systems (xo,yo,zo) and (x1,y1,z1). To do this, fix
the angle 6, and vary 6, while holding all the other joint angles constant. The
resulting hand positions of the robot arm in base coordinates (xo,yo,zo) are then
used to extract these parameters (a1, aq, and r,). A second problem is to extract
the parameters a,, Oy and r., which relate the joint coordinate systems
(x1,¥1,24) and (x9+¥5:25). Hence, fix B, and vary 03 with all the other joint
angles held constant. Notice that this second problem would be analogous to the
first if the hand positions in (x1,y1,z1) coordinates were known. But, since aq,
@y, and r,; have been computed in the first problem, transformation equations allow
(x9,Y1,24) to be computed from (%Yo rZg) » This process is repeated up the arm. The
mathematics used to extract the parameters in this process are developed in this
paper.



Forward Recursive Transformation Equations

The coordinates in figure 2 are related by the following scalar transformation
equations (which may be obtained from eq. (3) or derived from fig. 2):

x, (k) = x,_ (K) cos 0} (k) +y, (k) sin 8](k) - a, (6)
vi(k) = [y;_q(k) cos 8}(k) - x;_4(k) sin 6}(k)]lcos a; + [z;_4(k) - r;lsin o (7)
z;(k) = [x;_,(k) sin 8](k) - y;_q(k) cos @}(k)Isin a; + [z;_4(k) - r;lcos o (8)

where an index argument k has been introduced to label sets of measurement data;
that is, for each set of joint angles, there are corresponding coordinate positions.
Recall that aj, aj, and r; are constant parameters. For this analysis, equa-
tions (7) and (8) are expressed in different forms because the r; in equations (7)
and (8) is not always computable during the parameter-extraction process. The modi-

fied forms are

y; (k) = [y;_4(k) cos 0}(k) - x;_4(k) sin 6}(k)lcos a; + z¥_;(k) sin ay
- r¥ sin o (9)
z¥(k) = [x;_4(k) sin 0}(k) - y;_4(k) cos @l(k)]sin o; + z¥_,(k) cos a; (10)
where
z3(k) = z;(k) + rf cos oy (11)
r¥ =r; + r¥_, cos a;_, (12)

That equations (9) and (10) are equivalent to equations (7) and (8) is easily veri-
fied by substituting equations (11) and (12) into equations (9) and (10).

In this study, the recursive application of equations (6), (9), and (10) has the
following prerequisites:

1. 26 = Zge r6 = 0, and ag = 0 to start the sequential recursive process.

2. Xgr Ygr and zg are known values from measurements.

3. Joint angles 8} are known.

4. vValues of r{ sin @i, COS &y sin o, and a; have been calculated.



Equations (6), (9), and (10) are later used recursively to transform the
measurement values Xp, Yo, and 2g to other coordinate systems in the arm. By
design, rj does not explicitly appear in these equations.

Equations for Parameter Calculations

The scalar components of equation (3) are

x5 _¢(k) = [x;(k) + a;]cos 0j (k) - [y; (k) cos a; - z; (k) sin a;lsin 8} (k) (13)
Yi-1(k) = [xi(k) + ai]sin ei(k) + [yi(k) cos a - zi(k) sin q; Jcos 8} (k) (14)
z¥_,(k) = y;(k) sin a; + z;(k) cos a; + r¥ (15)

where, as obtained from equation (11),

z¥_4(k) =2z

X (k) + r¥_, cos a;_4 (16)

i-1 i-

and the r* terms are given by equation (12). Again, k has been introduced to
label data sets.

At this point, the objective is to calculate aj, «j, and rj. Assume that
xi_1(k), y._1(k), and 21_1(k) have been previously calculated from equations (6),
(3), and (10). Setting i =i + 1 in equations (13), (14), and (15) gives the
transformation equations from the i + 1 Jjoint-axis system to the i joint-axis
system as

[x5,.1(k) + a; qlcos B}, (k) = [y;,4(k) cos aj4

- 25,4(k) sin a; 4]sin 8,4 (k) (17)

yi(k) = [xi+1(k) + a; 41sin 0}, + [yi+1(k) coS aj 44

i+1
- 25,4(k) sin oy 4q]lcos 8} 41 (k) (18)
z¥(k) = yj,4(k) sin a3, + z;,1(k) cos aj,.q + i, (19)

With a substitution of equations (17) and (18), equations (13) and (14) may be
expressed as

x;_4(k) = [eg + ¢4 cos 6]

1+1(k) = Ca sin 0!

l+1(k)]cos ei(k)

- [cg sin 9i+1(k) + ¢4 cos 8}4q (k) — cglsin 6} (k) (20)



yi_1(k) = [cg + ¢y cos 9i+1(k) - ¢4 sin 9i+1(k)]sin 8] (k)

+ [cy sin 8},4(k) + ¢4 cos 6],4(k) - cglcos 6} (k) (21)
where
co = @4 (22)
Cq = Xj,q + 4y (23)
Cp = Yijuq COS @juq = Zjyq Sin oy, (24)
c3 = ¢y cos (25)
Cyp = Cy COS a3 (26)
cg = zy sin a; (27)

and where k has been dropped in equations (22) to (27) because of the important
assumption that all joint angles, except for 6{+1(k) and possibly e{(k), are held
fixed at arbitrary values (perhaps convenient for making measurements). With this
assumption, no joint angle above 9i+1 is varied. Consequently, Xj41, VYi41r and
Zi{4+q remain constant. In addition, since the joint parameters aj, o, and rj

are constant, it follows that equations (22) to (27) represent constants, At this
point, depending on what angles are physically attainable by the robot arm under con-
sideration, equations (20) and (21) may be handled in different ways to calculate the

constants ¢ to cg.

Parameter Solution Approach
The basic procedure is explained by letting ei(k) = 180° to simplify equa-
tions (20) and (21) to
xi_1(k) = -cy - ©q Cos 6i+1(k) + c, sin 6§ 4 (k) (28)

¥i_1(k) = cg - cy sin 8}, ,(k) = ¢, cos 6}, ; (k) (29)

First, consider equation (28). BAgain, for the sake of discussion, let
6i+1(1) = 0°, Then, with k = 1, equation (28) becomes

xi_1(1) = "'CO bt C1 (30)



Let 6},,(2) = 180° in equation (28) to get
xi_1(2) = -cg + ¢4 (31)

adding equations (30) and (31) yields
_ 1

which is the value of aj in equation (22)., Subtracting equation (30) from equa-
tion (31) produces

1
cq, = - E[xi_1(1) - Xi_1(2)] (33)

Then, from equation (28),
cy = [x;_4(k) + ¢y + cq cos 0}, ,(k)]/sin 8}, ,(k) (34)

where c¢g and c¢q are now known and e{+1(k) is any attainable angle as long as
sin 9i+1(k) # 0, For example, 6],,(k) in equation (34) may be selected as 120°,
Analogously, from equation (29),

1
1
c3 = -lyj_q(k) - cg + ¢4 cos 6];,(k)])/sin 6] (k) (sin 6], ,() # 0) (37)

Determination of cos aj.— If cq # 0 in equation (25),

cos a@; = — (38)



or, if c; # 0 in equation (26),

Ca
cos a; = E- (39)
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In actual computations, if [cjf < 'c1|, then equation (38) is used; otherwise,
unless cq = ¢y = 0, equation (39) is applied.

Deflected extension attached to hand of robot arm.- The situation wherein both
¢y =0 and c5 =0 is avoidable, For example, an extension can be attached to the
hand and deflected to vary the constant value of xj4q1 1in equation (23) so that
cq@ # 0. If an extension is used, measurements are made relative to a point on the
extension rather than on the hand. The extension length or orientation need not be

known in this process.

Equations (32) and (33) and equations (35) and (36) change if ei+1 takes on
values other than 180° and 0°. With choices of 9i+1 which allow solutions, a
generalized matrix-inverse computer routine will furnish the solutions and, at the
same time, provide a single common solution routine for all the legitimate cases,

Determination of sin ¢j.- For convenience, equation (15) is expressed as

z¥_, (k) =dy y; (k) + 4, (40)

where

(41)

[o7]
i

0 sin ay
dy = zi(k) cos qa; + r¥ (42)

Equation (40) is a straight-line equation with ordinate z¥_,(k) and abscissa
yi(k). The constant slope of this line is d and the ordinate intercept is 4, .
The coordinate zi(k) in equation (42) is constant in the parameter-calculation
procedure in this paper, as can be shown with equations (19) and (11). The two
constant parameters dg and dy in equation (40) can be determined by using two
known points on the line, that is, a combination of values of 22_1(k) and yi(k)
corresponding to two different values of ei+1(k). The yi(k) value will vary
according to equation (18), which may be rewritten as

y;(X) = ¢; sin 6],,(k) + ¢, cos 6}, (k) (43)

The value of z§_1(k) results from a recursive process using equation (10).



Determination of «j.~ This constant joint parameter is computed as

- ~1 a3
a; = tan” (sin @;/cos ay) (44)

where sin q; is given by equation (41) and cos a; is given by equation (38)
or (39). The correct quadrant for a; is readily ascertained from the signs
of sin ay and cos ;. Actually, sin o4 and cos a; are needed in the trans-
formation equations rather than oy itself,

Determination of r§ sin aj.~ A value for r¥ sin oy is needed in using the
recursive equation (9). Toward this end, multiply equation (15) by sin a; and
rearrange as follows:

r¥ sin o = z¥_;(k)[sin o] - y;(k)Isin ai]2 - [z sin q; cos a;] (45)

The terms in brackets are known from equations (41), (27), and (38) or (39), Hence,
for values of z§_1(k) and yi(k), corresponding to a value of 6i+1(k), equa-
tion (45) may be evaluated. For different sets of values of z§_1(k) and yi(k),
equation (45) may be solved in a least-squares sense,

At this point, ajr A4 sin oy, COS 0, and r{ sin a; are computable, This
allows the process to be repeated since the right-hand sides of equations (6), (9),
and (10) are computable. Recall that =z¥_;, in equation (10) is always computed in a
previous iteration.

Determination of r¥*.- The reason for introducing the =z* and r* notations
is to allow continuation of the recursive process even though r; may not be explic-
itly known. If sin o; # 0, then equations (27) and (41) reveal that

c
5
zy = — (46)
dg
Thus, from equation (42),
r¥ =4, - zi(k) cos oy (47)

where the right-hand side of equation (47) is now computable, On the other hand, if
sin @; = 0, equation (15) becomes

z¥_,(k) = z;(k) cos a; + r} (48)

and there is no information in equations (13) and (14) about z;(k) to help in elim-
inating =z (k) from equation 47).



Determination of rj.- The calculation of r; 1s best explained by an example.
Suppose sin oy # 0, sin a3 = 0, sin a3 # 0, and sin g4 # 0. This means rf,
r§, and r} are computable by using equations (46) and (47), but r4y is not comput-
able. As justified by equation (12) and prerequisite (1), write

ry = r} (49)
r3 + r, cos a, = r§ - rf cos a cos a, (50)
ry = rj - r}§ cos o3 (51)

In this situation, rq, r3 + rg cos ay, and r, are computable., It appears that
any rp and r3 such that equation (50) holds will give the same results with
respect to the transformation equations. 1Indeed, this is meaningful because, in
locating a point with respect to the robot arm base, two parallel Z-axes will always
displace the point along the common parallel Z-axis by the sum of the individual dis-
placements. This same type of analysis holds for other situations.

Angular Measurements

The joint parameters aj, aj, and r; specify the relative locations and
orientations of the successive joint-axis systems in the robot arm. Until these
parameters are identified, the locations and orientations of the axis systems are not
known. Thus, how can the joint angle ei between the X;_q-axis and the Xj-axis be
measured? Essentially all that is known about the robot arm is that the joints
rotate and that the orientation of the Xp-axis is arbitrary.

If the rotational axis Zj 1lies in or is parallel to a plane that contains the
Zj-1— and Xj_q-axis, then 6/ = 90° by definition of how the joint angle is measured
in figure 2. This is easily seen in figure 1 by aligning 24 with Xg. Then i,
which is the angle between the Xp- and Xq-axis, is 90°,

Displaced Reference Axes

The location of the robot hand (or an extension) is measured with respect to the
base of the robot arm, for example, coordinates (xq,yg,zg) in figure 1. However, if
this is inconvenient, a displaced reference can be used where the base coordinate
system is treated as just another joint-axis system, the location and orientation of
which is to be determined with respect to the new displaced reference axes. Alterna-
tively, knowing the base coordinate system, one can determine its location and orien-
tation with respect to a more conveniently specified reference axis system.

EXAMPLE
The procedure in this paper is applied to compute the relative joint parameters

of the robot arm in fiqure t, This example is strictly analytical in that no phys-
ical measurements are actually made. All data are assumed to be without error.
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Generating Measurement Data

For the position of the robot arm in figure 1 it is not possible to fix 63 and
vary @, to obtain changes in the location of point H in coordinates (By,¥3:25)
This does not provide enough information for the desired calculations. However, if
the segment HW is deflected (e.qg., g is fixed at 90°), sufficient variation does
result, A similar situation occurs in trying to vary 6g and fix 05 to vary the
location of point H in coordinates (x4,y4,z4). But, in this instance, there is no
segment to deflect. To avoid this circumstance a deflected extension HF is assumed
to be attached to the hand. Although no difficulty is incurred for the first three
joints, measurements for these joints are also referenced to point F,

In figure 1 measurements are assumed to be made to point F, which represents a
point on an extension attached to the hand of the robot arm. The location and orien-
tation of F need not be known in a real application where measurements are taken.
But, for the purpose of calculating what these measurement data should be, the seg-
ment HF in figure 1 is assumed to lie along the X -axis and to have a length of
6 in. Base coordinates of F are calculated for three sets (k = 1, 2, and 3) of
specified joint angles by using the relative joint parameters in table I. These data
are given in table II and are used as measurement data to extract the relative joint
parameters.,

Parameter Calculations

Parameters aq, a4, and r,.- These parameters are calculated by using the
three sets of data (k = 1, 2, and 3) for joint 1 in table II. Both ei and @3 are
listed for convenience. Notice that 6! is fixed at 180° while @& takes on values
of 180°, 0°, and 120°. It does not matter what the other joint angfes are as long as
they are constant, but they are chosen as shown. Since i =1 and e; = 180°, equa-
tion (20) becomes

xo(k) = -cy - C4 cos eé(k) + Cy sin eé(k) (52)

Hence, with the three sets of data in table II for joint 1, equation (52) yields
three equations to be solved simultaneously for Cgr Cqr, and c, (given in the
first row of table III). Likewise, equation (21) becomes

Yo(k) = -c4 sin 04(k) - cd cos 05(k) + cg (53)

which, with k = 1, 2, and 3, is solved for C3r Cys and Cge (See table III.)

Letting i = 1 and substituting equation (43) into equation (40) gives

Zﬁ(k) do[c1 sin eé(k) + ¢, cos eé(k)] + d1 (54)

where cq and c5 have been calculated. Letting k = 2 and 3 in equation (54)
results in two equations which are solved simultaneously for d0 and d1. (See
table III. )
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values for a,, cos a,, sin q,, and ¢ are calculated with equations (22),
(38), (41), and (44) and are listed in table 1IvV.

Since d, =sin aq, # 0, =z is computed from equation (46) for i = 1. Like-
wise, r? results from equation (47). But, since r%* = g. = 0 by assumption,
r, = rq. The values of r¥ and r, are shown in table 1IV.

The value of r* sin a shown in table IV is computed with equation (45), where

z, sin a, is just Cg (eg. (27)).

1

Parameters a5, dag and rg.- The calculation proceeds as before with measure-
ment data for joint 2 in table II, except that point F is needed in coordinates
(X1,Y1,Z ) rather than coordinates (x 1Yo rZg)e The appropriate transformation equa-
tions are equations (6), (9), and (10) for i1 = 1. They are

x1(k) = xo(k) cos B (k) + yo(k) sin ei(k) - ay (55)
Yq(k) = [yy(k) cos 8)(k) - x5(k) sin @j(k)]cos a4

+ zB(k) sin ay - rﬁ sin ay (56)
z5(k) = [xo(k) sin e%(k) - yo(k) cos ei(k)]sin a

+ z6(k) cos a4 (57)

At this point, a,, cos ay, sin L and r¥* sin a, are known (table IV) and
za(k) = z5 by definition. Thus, x%,(k), y1(k), and z%(k) are computable with the

e;(k) values for i = 2 in table IT.

Iet i = 2 in equations (20), (21), and (40) to get the following equations:

x4(k) = -cq - ¢4 cos 834(k) + c, sin eé(k) (58)
y1(k) = -Cg3 sin 04(k) - ¢, cos eé(k) + Cg (59)
z% (k) = dgley sin eé(k) + c, cos eé(k)] + 4, (60)

The constant ¢ values are now determined as before with the data in table II for
k = 1, 2, and 3. These values are shown in table TII. Likewise, the subsequently
calculated relative joint parameters are shown in table IV. Since sin ay; =0, 2z
cannot be computed with equation (46); therefore, z, cannot be used to compute r§
in equation (47).

Parameters a,, a3, and rg.- The locations of point F in coordinates
(x5,Y2:25) are needed for these calculations, To obtain these locations, first apply

12



equations (55), (56), and (57). Then, apply the following set of transformation
equations (obtained from egs. (6), (9), and (10) for i = 2):

x2(k) = x1(k) cos eé(k) + y1(k) sin eé(k) - a, (61)
yz(k) = [y1(k) cos eé(k) - x1(k) sin eé(k)]cos oy

+ z¥(k) sin a, - r% sin a, (62)
z5(k) = [x4(k) sin 85(k) - v4 (k) cos 65(k)Isin ay + z¥(k) cos a, (63)

where ay, COS ay, sin a,, and r% sin ay have been previously computed and where
z¥(k) is computed with equation (60).

Iet i = 3 in equations (20), (21), and (40) to get the following equations:

xz(k) = -C4y - ¢, cos ea(k) + c, sin eh(k) (64)
Y,(k) = —c5 sin 6)(k) - ¢, cos 9)(k) + cg (65)
zﬁ(k) = do[c1 sin Ga(k) + c, cos ea(k)] + d1 (66)

The constants calculated with these equations and the data in table II for i = 3

are shown in table III. The results of other calculations are shown in table 1IV.

Notice that a combination value of rs and r, is given. This value is computed
from equation (12) for i = 3 as follows (eq. (50)):

r, + r, cos aq, = r§ - r* cos

1 1 CcCOos cx2

This means that as far as the equations are concerned any rj and r, will give the
same results as long as they satisfy equation (50). ©Notice that the values of rq
and r, in table I satisfy this equation.

Parameters apgr Gy and Ty and ag, Ogs and rge- The same procedure as used
for i =1, 2, and 3 is used to calculate the values shown in tables III and IV.

Parameters agr  Ogs and Fge— If these parameters were calculated in the same
manner as the other parameters, then some means of introducing a rotational angle 04
about Zg in figure 1 would be required. This is not necessary, however, to compute
ag and rg. To compute these parameters find the location of point H (rather than
point P) in fiqure 1 in coordinates (xo,yo,zo). With previously computed relative
joint parameters, point H in coordinates (x5,y5,25) can be computed by recursively
solving equations (6), (7), and (8) with 1 = 1 to 5. The location of point H with
respect to point H is zero, so (x6’y6'26) = (0,0,0).

13



With i = 6, equations (6), (7), and (8) are

x6(k) = x5(k) cos eé(k) + y5(k) sin eé(k) - ag (67)
y6(k) = [y5(k) cos eé(k) - x5(k) sin eé(k)]cos ag + [zs(k) - r6]sin ag (68)
zG(k) = [xs(k) sin Gé(k) - y5(k) cos eé(k)]sin ag + [zs(k) - r6]cos g (69)

From equation (67),
ag = -xg(k) + xg(k) cos eé(k) + y5(k) sin eé(k) (70)

Add equation (68), multiplied by sin ag, to equation (69), multiplied by cos ag, to
obtain

rg = zs(k) - Yg(k) sin ag - zs(k) cos ag (71)
With xg = yg = 2g = 0, equations (70) and (71) are simply

ag = —Xg COS 0g(k) - yg sin 0 (k) (72)

rg = 2z5(k) (73)

where x5, yg5, and 2g are coordinates of point H in figure 1. 1In figure 1, with
8g = 0, point H has coordinates (xs5,ys5,25) = (0,0,6), where the coordinates are in
inches. Hence, from equations (72) and (73), ag =0 and rg = 6 in.

Another way to compute ag other than by the method used to compute a7 to ag
is to specify the axis at point H as desired and then physically measure point F in
coordinates (x6,y6,z6). The coordinates (xg,ys5,2zg) of point F are computed by using
the recursive transformation equations. Then, equations (68) and (69) provide two
simultaneous equations in two unknowns, sin ag and cos ag. The value of rg
is given by equation (73) as the zg coordinate of point H. Hence, tan qg
and then @g can be computed. For example, let point F be moved to lie along the
Zg—axis in figure 1. Thus, the coordinates of this new point F location are
(xg,Y6r2¢) = (0,0,6) and (xg5,y5,25) = (0,0,12) in inches. With these coordinates
and rg = 6 in., equation (68) becomes sin @ = 0 and equation (69) becomes
cos ag = 1. Therefore, tan qg =0 and qg = O.

As expected, a comparison of tables I and IV shows agreement between the
calculated and exact values of the relative joint parameters aj, aj, and rj
(i =1, 2, eee., 6) when simulated perfect measurement data are used.
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CONCLUDING REMARKS

If an operator remotely controls the hand of a robot arm by commanding transla-
tional and rotational rates about the hand axes, then these rates must be resolved
mathematically into joint rates along the arm to effect these commands (resolved-rate
control). This resolution depends on the location of the joints relative to each
other. This information is usually not available or is difficult to measure for
assembled commercially available robot arms. But, in teleoperation studies involving
the control of these arms by resolved rate, this information is required.

This paper presents a theoretical method to compute the relative joint param-
eters of assembled robot arms. The idea is to measure locations of the robot's hand
for different joint angles and to then ascertain the parameters mathematically using
these measurements. The method is illustrated for a six-degree-of-freedom robot
arm. Calculated data agreed perfectly with measurement data.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

March 28, 1983
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SYMBOLS

Ai_1 homogeneous transformation matrix from coordinate system i to i - 1
ai length of common normal between Z, 1 and Zi

CyrCqreeeiCq constants in parameter-extraction process (see egs. (22) to (27))

do,d1 constants in parameter-extraction process (see egs., (41) and (42))

i integer indicating the ith joint axis or parameters associated with this
axis

k integer argument for labeling corresponding measurement data

N number of joints or joint-axis systems in robot arm

P(x,y,2) point in Cartesian coordinates

ri relative distance between coordinate system 1 - 1 and i along Zi 1

r; constant defined to eliminate explicit dependence on ri in parameter-

extraction process

v.,v.,V translational velocities of robot's hand

X'"'y'"'z

X,Y,7Z coordinate axes

Xi axis directed along common normal between Zi-1 and Zi (see fig. 2)
Yi axis directed to complete right-handed-axis system with Xi and Zi
Zi axis of rotation of joint i - 1

X,y,2 coordinates along X, Y, and 2
X, .,%2. coordinates alon X, Y., and Z,
i'Yyr%5 9 il i’ i

xi(k),yi(k),zi(k) coordinates associated with data set Xk

z;(k) new variable which results when r; is introduced into the parameter—
extraction process

@ angle between Zi 1 and Zi’ measured positive counterclockwise about Xi

ei joint angle with initial value corresponding to position of robot arm in
figqure 1

61 joint angle between Xi-1 and X5, measured positive counterclockwise

about zZ;_; (see fig. 2)
Gi(k) joint angle ei associated with data set k

wX’wY’wz rotational velocities of the robot's hand

16



Abbreviations:

NO

SN

ES

WE

HW

HF

neck~-to-base length

shoulder-to~neck length
elbow-to-shoulder length
wrist-to—-elbow length

hand-to-wrist length

hand-to-finger (or extension) length

Use of a dot over a symbol indicates first derivative with respect to time.
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TABLE I.- ASSUMED RELATIVE JOINT PARAMETERS

[From ref. 4]

Joint, o5, aj, Ty, X
i deg in, in, deg
1 90 0 226 6, + 180
2 0 by Cg 6, + 90
3 90 0 0 85 + 90
4 90 0 dq7 6, + 180
5 90 0 0 6 + 180
6 0 0 €6 ¢

8Neck-to-base length (NO).
bElbow—to—shoulder length (ES).
Cghoulder-to-neck length (SN).
Wrist-to-elbow length (WE).
€Hand-to-wrist length {HW).




TABLE II.- ASSUMED MEASUREMENT DATA USED TO CALCULATE RELATIVE JOINT PARAMETERS

) Data
Jo%nt’ index,
1 k
1 1
2
3
2 1
2
3
3 1
2
3
4 1
2
3
5 1
2
3
6 1

0]

90
-90
30

90
90
90

oo

o o

(el e]

0

8;, deg
03 | 84
) 0
0 0

0 0
90 0
-90 0
30 0
90 0
90|-180
90| -60
0 0
0 0
0 0

) 0
0 0
0 0
0 0

[eNeNe]

o

0]

0
-180
-60

0
0
0

0

o o (oo N e]

o

el eNe}

180

120

0

dcoordinates of point H in figure

o)

180
180
180

180
180
180

180
180
180

180
180
180

180
180
180

180

)
180
120

180
180
180

90
20
90

90
90
90

90
90
90

90

i'

o3

90
90
90

180
120
180
180
180
90
90
90
90
20
90

920

!, deg

180
180
180

180
180
180
180
120
180
180
180
180
180
180

180

05

180

180

180

180
180
180

180
180

180

180

120

180

180
180

180

Coordinates of
point F in fig. 1,

in,

¢ Xq Yo zg
0| 40.00| 6.00]| 20.00
0|-40.00| 6.00{ 32.00
0| 25.19| 6.00] 57.64
0| 11.00| 6.00| 3.00
0| 23.00| 6.00| 49.00
0| 33.91| 6.00| 9.30
0| 23.00{ 6.00| 37.00
o| 23.00| 6.00| 49.00
o| 23.00( .80 40.00
0| 6.00| 6.00| 66.00
0| -6.00| 6.00| 54.00
ol -2.19| 6.00| 68.19

180| -6.00| 6.00| 66.00
0| 6.00| 6.00| 66.00

120| -3.00[11.19 | 66.00
0 20 |26.00 [266.00
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TABLE III.- CALCULATED CONSTANTS

Joint Constants in parameter-extraction process from simulated measurements for -
'
i
Cor in, Cqr in, Cor in, C3s in. Cyr in. Cg.» in. do, in. d1, in.
1 o] 40 60 6 0 0 1 26
2 17 6 =23 0] 6 =23 0 6
3 0] -6 0 23 0 0] 1 6
4 o) 6 -6 0 0 0 1 17
5 0 6 0 6 0] 0 1 0
TABLE IV.- CALCULATED CONSTANT PARAMETERS ASSOCIATED WITH ROBOT ARM
Joint, .
i aj, 1n. (cos qj | sin aj | aj, deg |r¥, in. | ry, in. r¥ sin a,, in.
1 0 0 1 90 26 26 26
2 17 1 0 0 0
36
3 0 0 1 90 6 6
4 0 0 1 20 17 17 17
5 0] 0] 1 90 0 0 0]
6 0 1 0 0 6 6 0
ar3 + r, = 6.

20




®

@

)

Figure 1.- Robot arm and joint-axis systems.
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