General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
feasibility study of an optically coherent
telescope army in space
CONTRACT NAS8-33893

Final Report
and
Technical Report No. 2
For the period 19 May 1980 to 31 December 1982

Dr. Wesley A, Traub
Principal Investigator

February 1983
 Cambridge, Massachusetts 02138

The Smithsonian Astrophysical Observatory and the Harvard College Observatory are members of the
Center for Astrophysics

The NASA Technical Officer for this contract is Mr. Max Vein, Deputy Director, Advanced Systems Office, Marshall Space Flight Center, Alabama 35812.

FEASIBILITY STUDY OF AN OPTICALLY COHERENT

TFLESCOPE ARRAY IN SPACE

CONTRACT, NAS8-33893

Final Report

and
Technical Report No, 2
For the period 19 May 1980 to 31 Desember 1982

```
Principal Investigator
Dr. Wesley A. Traub
Smithsonian Astrophysical Observatory
60 Garden Street
Cambridge, MA 02138
(617) 495-7406; (FTS: 830-7406)
Coinvestigators
Dr. Nathaniel P. Carleton, SAO
(617) 495-7405 (FTS: 830-7405)
Dr. Giuseppe Colombo, SAO
(617) 495-7261
Dr. Herbert Gursky
Space Science Division
Naval Research Laboratory
Code 4100
Washington, DC }2037
```

Smithsonian Institution
Astrophysical Observatory
Cambridge, Massachusetts 02138

Director: Dr. Irwin I. Shapiro Deputy Director: Mr. John G. Gregory

The Smithsonian Astrophysical Ubservatory and the Harvard College Observatory
are members of the Center for Astrophysics
tarle of contents

1. Introduction 1
2.1. Publications
A. Coherent optical system of modular imaging collectors (COSMIC) telescope array: astronomical goals and preliminary image reconstruction results (Traub and Davis) A1
B. Conceptual design of a coherent system of modular imaging collectors (COSMIC) (Nein and Davis) B1
C. Concepts for large interferometers in space (Morgan, Nein, Davis, Hamilton, Roberts, and Traub) C1
2.2. Internal Working Papers
D. First results from a crude image reconstruction computer pros~am (Traub) D1
E. Computer demonstration of the initial coherent alignment of COSMIC (Traub) E]
T. Lab demonstration of image reconstruction (Traub) F1
G. Scientific prospects with the COSMIC telescope array (ed., Traul) G1
H. Notes on image reconstruction for COSMIC, Part II, pp. 60-155 (Davis) H1
I. Summary of COSMIC image reconstruction as of Oct. 15, 198: (Davis) I1
J. Appendix A: Relationship to radio interferometry (Davis) J1

1. Introduction

This report summarizes the second stage of work done at the Sinithsonian Astrophysical Observatory on a feasibility study of a coherent optical system of modular imaging collectors, or COSMIC. This repori is also submitted as the Final Report. Considerable progress was made since the submission of Technical Report \#1 in November 1981. We believe that the work done to date will form a solid base on which to build for subsequent progress.

The 3 publications that appeared during this period are reprinted in sections A, B, and C. Supporeive details as well as developments on a number of as-yet unpublished topics are included directly as 7 internal working papers. One of these, the notes by W. F. Davis, is a continuation of the series which appeared in the preceding Technical Report No. 1. These latter notes contain suggestions for a number of image reconstruction techniques which should be tested in future programs.

Coherent optical system of modular imaging collectors (COSMIC) telescope array: astronomical goals and preliminary image reconstruction results

Wealoy A. Traub, Warren F. Davis
Harvard-Smithsonian Center for Astrophysics
60 Gardan Sireat, Cambridge, Matsachusetts 02138

Abstract

We are developing numerical methods of image reconstruction which can be used to produce very high angular resolution images at optical wavelengths of astronomical objects fron an orbiting array of telescopes. The engineering design concept for cosmIc (coherent optical system of noduiar jimaging collectors) is currentily being developed at Marshali S.F.C., and includes four co six telescope modules arranged in a linear array, Each telescope has a 1.8 meter aperture, and the total length of the array is about 14 meters. This configuration, when controlled to fractional wavelength tolerances, will yield a diffraction pattern with an elongated central lobe about 4 milli-arc-sec wide and 34 milli-arcsec long, at a wavelength of 0.3 microns, and correspondingly larger at longer wavelengths. The goal of image reconstruction is to combine many images taken at various aspect angles in such a way as to reconstruct the field of view with 4 milli-arc-sec angular resolution in all directions. We are developing a Fourier transform method for extracting fron each individual image, the maximum amount of information, and then combining these results in an appropriateiy weighted fashion to yield an optimum estimate of the original scene. The mathematical model is discussed, and the results of preliminary numerical simulations of data are presented.

Introduction

We have recently developed a method of image reconstruction which makes efficient uae of the individual images received by an orbiting linear array of telescopes, and allows the reconstruction of a conventional image of the scene which is equivalent to that which would be recorded by a large circular aperturg of diameter equal to the longest dimension of the linear array. our previous papers $1,2,3$ on the concept of a coherent, linear array of telescopes in space alluded to the likelihood that such a reconstruction scheme should De possible, but at that time we were not able to suggest an appropriate procedure, Now, inowever, we are able to present: first, an optimized algorithm for image combination; second, a suggestion of the direction in which we are currently moving to develop ari optimum noise filtering technique; and third, a series of numerical examples of image reconstruction using hueristic noise filters which demonstrate the effects of noise and optical imperfections, and also demonstrate the initial coherent alignment procedure.

Astronomical goa:s

The preceding paper in this volume ${ }^{4}$ discusses a first-stage COSMIC with an effective length of about 14 m , and a second-stage of about 35 m , corresponding to angular resolution limits at 0.3 micron of about 4 and 1.6 milli-arc-sec, respectively. This unprecedented capability means that we will be exploring a new domain, so our scientific expectations must necessarily be relatively general and open-ended. However, by analogy with the spectacular results from the VLA and VLBI radio instruments as well as the x-ray images from Einstein, we should anticipate a dramatic increase in our ability to understand the visible uriverse. COSMIC in fact should have an angular resolution in the optical region which will match VLA and VLBI images.

A sampling of projects which have recommended themselves on the basis of a simple extrapolation from present knowledge includes the following: investigate the nature of the diffuse emission seen around certain quasars, to see if it represents an underlying galaxy, and if so, what type; probe the structure of the region surrounding the nuclei of Seyfert galaxies, down to the equivalent of about a light-year in size, i.e. the scale on which broad-line spectral variations are seen; study the nuclei of ordinary galaxies with suspected massive black hole centers to see if tine gravitational potential is truly point-like; make detailed comparisons of the several images produced by a gravitational lens, to probe more fully the gravity field of the lens; exanine the as-yet unresolvable central regions of globular clusters for \in vidence of mass distributions indicative of either black holes or simply self-gravitation; imaje the actual motion and excitation of material arouñ a recent nova; measure diameters, limb and polar darkening, and spots of nearby stars; directly image reflected light from circumstellar shells or discs; image stellar surfaces in very narrow spectral bands, as is done for hydrogen or calcium on the sun; directly image nearby asteroids to measure rotation and search for

ORIGINAL PAGE IS OF POOR QUALITY

companions; resolve cometary nuclei and follow the evolution of the coma and jet-like activity; search for Jupiter-like planets around nearby stars by detecting position variations using localized astrometric techniques.

Telescope concept

The basic idea of the rotating inear array is indicated schematically in figure 1 where we see a plan view of 7 telescope primaries with a beam-combiner telescope (BCT) at one end. To fit into the Shuttle bay, the length of the collecting area is limited to about 14 m . Althougr it is, of course, extremely desirable to have available all 7 mirrors, in principle one can still achieve the same resolution if a minimum redundency array is used, i,e., only mirrors $1,2,5$, and 7 ; the discussion in this paper is applicable in either case. As the array rotates about the line of sight, it sweeps out an area of diameter D_{1}, as shown. We will show in the following sections that the final image, which can be reconstructed while the array is rotating through 180° and simultaneously recording instantaneous images, is equivalent in angular resolution to that obtained with a single large mirror D_{1}. The power of the array is further increased by adding a second colinear stage, and possibly two perpendicular stages, as indicated by tie dotted elements and the final equivalent diameter D_{2}.

Figure 1. Linear array of 7 telescopes, plus beam combiner telescope.

Motivation
The image produced by a linear coherent array will exhibit non-uniform resolution as a function of direction in the image plane. Specifically, the diffraction-limited resolution in the direction colinear with the array will exceed that normal to the array in the same ratio as the aperture aspect ratio L / W. If the array width is decreased to zero, resolution in the normal direction will also become zero (normal diffraction limit becomes infinite).

The situation is analogous to the CAT scan in medical imaging in which the ability to resolve along the beam path is zero. In the latter technique views are taken from a number of directions around the subject and the results combined in such a way that the favorable resolution capability across the beam path is exhibited in all directions in the final image. This suggests that a similar fechnique might be possible in the case of the linear coherent array. The array would be rotated slowly about the optical axis and the intermediate images combjnes in such a way that the more favorable colinear resolution would obtain in all directions in the image plane.

In fact such a technique is possible as we will show. An important distinction is that, due to the finite array or aperture width, the normal resolution of the coherent array is not zero as it is along the CAT beam path. Consequently, the appropriate reconstruction algorithm differs somewhat from the CAT but, not surprisingly, goes over to the CAT algorithm in the limit as the aperture width goes to zero. This will be demonstrated. The image reconstruction algorithm appropriate to the rotating linear coherent array is, then, a generalization of the CAT algorithm familiar from medical applications ${ }^{\text {. As is the cise in CAT analysis, Fourier techniques yield an exact }}$ Fourier techniques are used in the derivation which follows.

ConceptE
The starting point of the derivation of the reconstruction algorithm is the integral representation of the effect of the telescope aperture on the incident wave field. See Figure 2.

Figure 2. Diffraction by an aperture $a(x, z)$.
\vec{k} and \vec{k}^{\prime} are the incident and outgoing wave vectors.

$$
\begin{align*}
& \vec{k}=k_{x} \hat{e}_{x}+k_{y} \hat{e}_{y}+k_{z} \hat{e}_{z} \\
& k=|\vec{k}|=\omega / c=2 \pi / \lambda \tag{1}
\end{align*}
$$

The aperture $a(x, z)$ which is, in general, a complex funftion is assumed to lie in the
 by a subscript zero. Thus, for example,

$$
\begin{align*}
& a(x, z) \equiv a\left(\vec{r}_{0}\right) \\
& \vec{r}_{0} \equiv x \hat{e}_{x}+z \hat{e}_{z} \tag{2}
\end{align*}
$$

We assume that $u(\vec{k})$ represe $7 t s$ the amplitude of the incoming e-field as a function of direction. By formally representing the outgoing field as a superposition of plane wavns (Fraunhofer diffract: n), we are led to the result that ${ }^{5}$

$$
\begin{equation*}
I\left(\vec{k}^{\prime}\right)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} d k_{x} d k_{z}|u(\vec{k})|^{2}\left|A\left[\left(k_{x}^{\prime}-k_{x}\right),\left(k_{z}^{\prime}-k_{x}\right)\right]\right|^{2} \tag{3}
\end{equation*}
$$

where $I\left(\vec{k}^{\prime}\right)$ is the time-averaged intensity of the outgoing component in the \vec{k}^{\prime} direction, and $A(k)$ is the Fourian transform of the aperture defined by

$$
\begin{equation*}
A(\vec{k})=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{++} d^{2} \vec{r}_{0} a\left(\vec{r}_{0}\right) e^{-\vec{k} \cdot \vec{n}} \tag{4}
\end{equation*}
$$

In words, (3) says that the outgoing intensity distribution is given by the convolution of the squared magnitude of the fourier transform of the aperture with the incoming intensity function.

Consider now the fourier transform of the intensity $I(\vec{k})$.

$$
\begin{gather*}
g(\vec{\nu})=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} d k_{x} d k_{z} I(\vec{k}) e^{-2 \pi \vec{k} \cdot \vec{v}} \tag{5}\\
\vec{\nu}=\nu_{x} \hat{e}_{x}+\nu_{z} \hat{e}_{z}
\end{gather*}
$$

We find from evaluation of (5) using (3) that

$$
\begin{equation*}
I(\vec{\nu})=U(\vec{\nu}) d(\vec{v}) \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& U(\vec{\nu})=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} d k_{x} d k_{z}|u(\vec{k})|^{2} e^{-2 \pi \vec{k} \cdot \vec{v}} \tag{7}\\
& A(\vec{v})=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} d k_{x} d k_{z}|A(\vec{k})|^{2} e^{-2 \pi \vec{k} \vec{v}} \tag{8}
\end{align*}
$$

Result (6) is just the familiar Burel convolution theorem applied to (3). U(\vec{v}) given by (7) is the Fourier transform of the incoming intensity eunction. $4(\vec{v})$ given by (8) can be related to the aperture function by substituting (4) into (8) and evaluating to get

$$
\begin{align*}
d(\vec{\nu}) & =\int_{-\infty}^{+\infty} d^{2} \vec{r}_{0} a\left(2 \pi \vec{r}_{0}\right) a^{*}\left[2 \pi\left(\vec{r}_{0}+\vec{\nu}\right)\right]= \tag{9}\\
& =\int_{-\infty}^{+\infty} d^{2} \vec{r}_{0} a^{\bullet}\left(2 \pi \vec{r}_{0}\right) a\left[2 \pi\left(\vec{r}_{0}-\vec{\nu}\right)\right]
\end{align*}
$$

Result (9) is the generalized autocorrelation of the aperture function and represents a second application of Borel's convolution theorem to the product $A(\vec{k}) A^{*}(\vec{k})$.

The results derived so far state that the Fourier transform of the image intensity is equal to the product of the Fourier transform of the incoming, unmodified intensity distribution and the generalized aperture autocorrelation function in suitable cocrdinates.

It is useful to think of the aperture autocorrelation as providing a "window" onto the true (unmodified by the instrument aperture) image Fourier plane. ns the aperture rotates, so does the aperture autocorrelation. At each orientation only a portion of the fourier plane can be "seen" through the window. By piecing together glimpses of the Fourier plane provided by a set of dietinct aperture orientations, a measure of $U(\vec{v})$ can be built up over a region corresponding to the union of the areas covered by the individual autocorrelations. From (9) it is seen that

$$
\begin{equation*}
\mathscr{A}(-\vec{\nu})=\mathbb{A}^{0}(\vec{\nu}) \tag{10}
\end{equation*}
$$

so that after one-nalf revolution of the aperture it is possible to map out a circular region of the \vec{v}-plane whose radius $L / 2 \pi$ is given by the largest value of $|\vec{v}|$ for which $\mathbb{A}(\vec{v})$ is non-zero. Depending on the geometry, there may be annular regions within this radius which can not be mapped because $d(\vec{v})=0$ there.

Such a circular region corresponds to the autocorrelation of a circular aperture of diameter L. In this way we see the possibility of synthesizing from the rotating linear aperture of length I an image equivalent in resolution to that obtainable from a full circular aperture of diameter L. In particular, the resolution in all directions in the synthesized image plane will be equivalent to that attainable from the greatest dimension across the aperture, L.

Relationship to CAT algorithm

Imagine now that the aperture width W is reduced to zero. "In this case the aperture autocorrelation too reduces to a line of width zero, and length L / π. The corresponding image resolution normal to the array also goes to zero. For each angular orientation of the aperture, the autocorrelation "window" permits determination of the image fourier transform oniy along a line through the origin of \vec{v}-space at the orientation angle.

This process matches precisely the Fourier description of the computer-assisted tomography (CAT) algorithm in which the one-dimensional fourier transforms of the individual ray projection functions are mapped onto \dot{V}-space at angles equal to the projection angles. ${ }^{6}$ The inverse transform yields the reconstructed image, Just as the instantaneous image resolution of the telescope is zero normal to the aperture, so too is the resolution of the CAT scanner along the beam and, hence, normal to the projection. Thus our present algorithm contains the CAT algorithm as a special case.

Image combination

Each orientation of the aperture "exposes" part of $U(\vec{v})$ in the Fourier domain, weighted by the aperture autocorrelation according to (6). A given point in the \dot{v}-plane may be exposed, with a different weight, by each of several aperture orientations. The question is how to combine optimally the information about the value of $U(\vec{V})$ implicit in each exposure. In particular, a real instrument will produce images contaminated by noise sc that the true value of $U(\vec{V})$ can only be estimated.

Let us assume that a set of images, N in number, has been formed corresponding to various aperture orientations. We use a subscript to denote a specific member of the set. Let us also assume that signal-independent noise has been added to the spatial domain images. Because of the linearity of the transform, the noise will be additive also in the Fourier domain. Thus, we write for the measured signal at a specific point \vec{v} in the n-th image transform,

$$
\begin{equation*}
y_{n}=U_{A_{n}}+\epsilon_{n} \tag{11}
\end{equation*}
$$

where ε_{n} represents the noise. Explicit reference to $\dot{\forall}$ has been dropped to ease the notation.

Let us assume that the ε_{n} are statistically independent, have zero mean, and variance $\sigma_{\varepsilon n}$

$$
\begin{align*}
& E\left\{\epsilon_{n}\right\}=\operatorname{avg}\left(\epsilon_{n}\right)=0 \tag{12a}\\
& E\left\{\epsilon_{n} \epsilon_{m}^{*}\right\}=0 \quad(n \neq m) \tag{12b}\\
& =\operatorname{var}\left(\epsilon_{n}\right) \equiv \sigma_{\omega_{s}}^{2} \quad(n=m) \tag{12c}
\end{align*}
$$

In this formulation the variance of the noise at a given $\vec{\forall}$ is a function of the image nember index. ihis might be the case, for example, if unequal times are spent observing at the various aperture orientations. To estimate u let us form a weighted sum of the measurements Y_{n} over the set of images.

$$
\begin{equation*}
\sum_{n=1}^{N} g_{n} y_{n}=U \sum_{n=1}^{N} g_{n} d_{n}+\sum_{n=1}^{N} g_{n} \epsilon_{n} \tag{13}
\end{equation*}
$$

where g_{n} are weights to be determined. The estimated value of U is, from (13),

$$
\begin{equation*}
\hat{U}=\sum_{n=1}^{N} g_{n} y_{n} / \sum_{n=1}^{N} g_{n} d_{n}=U+\sum_{n=1}^{N} g_{n} \epsilon_{n} / \sum_{n=1}^{N} g_{n} d_{n} \tag{14}
\end{equation*}
$$

where \hat{U} is defined only where $\mathcal{A}(\vec{v}) \neq 0$. If the noise goes to zero, the estimate \hat{U} goes over to the true value u.

The proper value for the weights g_{n} is found by demanding that the variance of \hat{U} = U be minimum.

$$
\begin{equation*}
E\left(|\hat{U}-U|^{2}\right\}=\text { minimum } \tag{15}
\end{equation*}
$$

A straightforward calculation leads to the conclusion that

$$
\begin{equation*}
g_{n} \sin \alpha_{n}{ }_{n}^{\prime} / \sigma_{c x}^{2} \tag{16}
\end{equation*}
$$

so that

$$
\begin{equation*}
\hat{U}=\sum_{n=1}^{N}\left[\frac{\alpha_{n} y_{n}}{\sigma_{i n}^{2}}\right] / \sum_{n=1}^{N}\left[\frac{\left.\alpha_{n}\right|^{2}}{\sigma_{m n^{2}}^{2}}\right]=U+\sum_{n=1}^{N}\left[\frac{\alpha_{n} \epsilon_{n}}{\sigma_{6 n}^{2}}\right] / \sum_{n=1}^{N}\left[\frac{\left|d_{n}\right|^{2}}{\sigma_{c n^{2}}^{2}}\right] \tag{17}
\end{equation*}
$$

It is easy to show that the variance of 0 about the true value U will be

$$
\begin{equation*}
\sigma \theta^{2}=E\left(|\hat{U}-U|^{2}\right\}=\left[\sum_{n=1}^{N} \frac{\left|d_{n}\right|^{2}}{\sigma_{e n}{ }^{2}}\right]^{-1} \tag{18}
\end{equation*}
$$

The aperture autocorrelation $\mathcal{\lambda}_{n}$ can be determined from the geometry or, using (6), from a test image with good signal-to-noise ratio whose transform U(V) is known. Assuming white noise, the variance σ^{2} is probably best estimated by considering those parts of the n-th \vec{v}-plane which are not "exposed" by the autocorrelation window. There, in the absence of noise, the image transform should be zero. Any non-zero contribution can be assumed to be due to noise or other image contaminant. In this way, using (16), the weighes which minimize the variance of the estimate of U (17) can be determined.

Equation (17) represents the optimum combination, in the sense of minimum variance of U, of information from the Fourier transforms of the individual images formed with the aperture at different orientations. Discounting the need to deal with the effects of noise, the desired spatial image is, by (7), the inverse Fourier transform of (17). Equation (18) shows that in general the variance of the estimate of U will not be constant over the \bar{v}-plane. In particular, the variance will increase in those regions in whicn the magnitude of the aperture autocorrelation decreases. Thus, the noise associated with the weighted combination of the individual image transforms will be non-stationary over \vec{v}.

Equation (14) expresses the estimate of U which is to be optimized in the weighted combination of images. Direct implementation of (14), or (17), in a practical image reconstruction application would suffer from the effective amplification of noise, attributable to the second term, in regions where the magnitude of the aperture autocorrelation is smali. We have already described this effect in terms of the nonstationarity of the noise in the \vec{v}-plane. To recover satisfactory images in the presence of noise, a filtering operation, to be discussed in the next section, must generally follow the image-comining step. Image combination according to the criterion of least variance of \hat{U} and the subsequent filtering operation are separate and distinct steps in the overall processing.

Noise filtering

A frequently applied method for dealing with noise is wiener filtering ${ }^{7}{ }^{8}$, In this technique the noisy function is filtered (weighted) by another function which is inversely proportional to the noise variance. To be effective it is important that regions in which most of the signal information is contained do not coincide with regions in which the noise variance is greatest. The noisy function is, thereby, attenuated most where the noise is greatest, and least where the signal is greatest.

In the case at hand the variance of the noise associated with the estimate of U may be greatest, due to the geometry of the aperture, in regions where U is also most significant. Intuitively, it is undesirable to apply a filtering function which simply attenuates (biases downward) the estimate of U in such regions. Rather, it would be preferable to adopt a strategy which utilizes information from adjacent areas where the noise variance is less, as well as averaging within the relatively noisy areas, to provide a filtered estimate of U which is everywhere unbiased.

We are cuirently investigating a techinique, which may bie described as weighted multipla regression, which yields such an unblased filtered extimath. The results of this work

Resolution

The limiting resolution, in the absence of noise, inherent in the image combination scheme described above is twice that of an aperture of comparable dimensions according to the usual laws of passive optics. That is, without fourier-domain processing. This is most easily seen by considering a one-dimensional example.

Assume that a point source is observed in the absence of noise. The magnitude of its Fourier transform $U(\vec{v})$ will be constant over $\vec{\psi}$. Let the ditarture be unity over a span of length H, and zero elsewhere, The one-dimensional aperture autocorrelation will be a "tent" function centered on $v=0$ which spans an interval L / π,

Figure 3.(a) Image transform f(v) for a point source. (b) Effective point-source image transform frofl eqn. (17) with no noise.

Since the transform of the source is a conssant, the image transform (6) given by the product with the aperture autocorrelation will also have the form of a "tent" function in v of width L / π. The inverse fourier transform of this tent is, within acale factor,

$$
L\left[\frac{\sin (k L / 2)}{k L / 2}\right]^{2}
$$

wilich has its first zeros at

$$
\begin{equation*}
k= \pm 2 \pi / L \tag{19}
\end{equation*}
$$

For small angles 0 the normal component of \vec{k} is $(2 \pi / \lambda) \theta$ so that (19) is equivalent to

$$
\begin{equation*}
\theta= \pm \lambda / L \tag{20}
\end{equation*}
$$

which is the result familiar from elementary optics.
Result (17), which divides-out the magnitude pf the autocorrelation, recovers the underlying uniform source transform in the interval $-L / 2 \pi<\nu<+L / 2 \pi$. The inverse transform of the resulting pedestal of width L / π is, within a scale factor,

$$
\begin{equation*}
L\left[\frac{\sin (k L)}{k L}\right] \tag{21}
\end{equation*}
$$

Which has its first zeros at

$$
\begin{equation*}
k= \pm \pi / L \rightarrow \theta_{0}= \pm \lambda / 2 L \tag{22}
\end{equation*}
$$

Thus the resolution of sac proposed image eombination scheme is, in the absence of noise, twice that expected from elementary optios. In the presence of noise resolution will necessarily be degraded from this ideal because of the requirement to suppress noise amplification in regions where the aperture autocorrelation is small.

Sampling

The results derived so far have been in terms of integral representations, Digital implementation recessarily involves manipulation of sampled functions. The relevant expressions can be converted to discrete sunmations amenabie to computer processing by introducing a series of Dirac delta functions under the integral signs.

$$
\begin{equation*}
\sum_{n}^{\infty} \delta(x-m X) \leftrightarrow \frac{2 \pi}{X} \sum_{n}^{\infty} \delta[2 \pi(\nu-n / X)] \tag{23}
\end{equation*}
$$

In relation (23), which is applicable to one dimension, \rightarrow indicates that the two sides are fourier transform pairs. x and y represent the two domains; X, the sampiing interval in the x-domain, is a constant to be determined. $1 / x$ is the corresponding samping interval in the y-domain.

Sampling of the aperture at intervals X will, by (9), cause the aperture autocorrelation, and hence $g(\vec{v})$, to be sampled at intervals $X / 2 \pi$ in \hat{V}. From the convolution theorem and (23) the corresponding image domain representation wili be given by the convolution of the continuous reconstructed image with a series of dirac delta functions at intervals $\vec{k}=2 \pi / X$. That is, the continuous image will be replicated at intervals $2 \pi / X$ in \vec{k}.

Suppose that the field of view (FOV) is k_{0}. Suppose also that we demand that the point-source image response given by (21) be attenuated by a factor a at the point at which auch a aource at the lower (uppar) fov eage enters the upper (Iower) fov edge aue to the sampling-induced image replication. That is, wa reguire from (21) that the separation of the upper and lower edges of the FOV in the replicated images be

$$
k \geqq \alpha / L
$$

Allowing also for the foV k_{0} the image domain periodicity must be at least $k_{0}+\alpha / L$. Therefore, the required apefture samping interval is

$$
\begin{equation*}
X \leqq \frac{2 \pi}{k_{0}+\alpha / L}=\frac{\lambda}{\theta_{0}+\lambda \alpha / 2 \pi L} \tag{24}
\end{equation*}
$$

where θ_{0} is the FOV in radians.
The reconstruction simulations which follow employ discrete Fourier techniques (FFTs) with sampling intervals over the aperture based on the above considerations.

Numerical image reconstruction: examples

We imagine the detector (CCD or equivalent) to be fixed in inertial space, while the telescope array is rotated, so the center of each star image will not move with respect to the detector, but the diffraction pattern will rotate about each bright point source. mo display the various stages in a calculation, we will first discuss what happens when a conventional circular telescope aperture. is used to image a point source. In the following figures we will display the apertures, functions, or images as points on a 64 by 64 grid, with contour levels at either 5 or 9 equispaced intervals between the maximum and minimum values. Ahove each contour diagram there i.s a plot displaying a slice through the same data, from left to right; the slice is positioned to include the peak data point.

In Figure 4 a we show a single large telescope mirror which is circular to within the discrete limits of our grid, and has unity transmission and no phase delay within this circle. The mirror diameter is 31 units. From eqn. (8) we find the autocorrelation of the aperture, $\mathcal{d}(v)$, as a function of spacial frequansy v across the detector, and display this in Figure $4 b$. The corresponding conventional, diffraction-limited image $I(k)$ is obtained from the real part of the inverse transform of eqn. 5 , and is shown in
 di.toter m 31 units. (b) Autocorrelation of werture $A(\vec{v})$. (c) Image of point
source $I(k)$.
Figure $4 c$ for the case of a single, point-like star centered in the FoV. For contrast, we show in Figure 5 the same sequence for a mirror with diameter 7 units; as expected, the smaller mirror samples fewer of the spatial high frequencies, and therefore produces a broader star image.

Figure 5. (a) Telescope aperture $a(x, z)$, diameter $=7$ units. (b) Autocorrelation of aperture $A(\vec{v})$. (c) Image point source $I(\vec{k})$ 。

The imnging properties of a coherent linear array of telescopes will now be sketched in a way that attempts to clarify the relationship between a circular aperture and a rotating linear aperture. This discussion also applies to rectangular single mirror segments, since it is the overall shape of the aperture, not the details of construction, that matters here. In Figure 6a we show an aperture which is 3 by 15 units; the autocorrelation of the aperture in Figure 6 b extends to high frequencies in the direction parallel to the long axis of the aperture. Figure 6 c shows the effect of this aperture on a star field which consists of 3 stars of equal intensity; 2 of the stars are completely unresolved with this viewing angle. In Figure 7 we show the case where the aperture has rotated by 45 degrees.

From eqn. (17) we see that an appropriately weighted sum over all angles of Fourier transforms of snapshot images will yield a reconstructed image. However, as was pointed out above, eqn. (17) also tends to produce highly amplified noise, and appropriate filtering must be applied to control this effect. We have done numerical experiments with various types of filters, and have sound that, although we do not yet have in hand an optimally derived filter, it is relatively easy to generate filters which perform quite well. one such ad hoc filter we have tried is to multiply egn. (17) by

$$
\begin{equation*}
\sum_{n=1}^{N}\left|\alpha_{n}\right|^{2} / \sum_{n=1}^{M} d_{n} \tag{25}
\end{equation*}
$$

or equivalentiy, simply to replace $\left|A_{n}\right| \hat{e}$ in the denominator of (17) by An in all our cases we assume equal noise variance and equal exposure time at each angle snapshot, so the σ^{2} terms drop out.

Figure 6. (a) Linear aperture at 0 degrees, 3 hy is5 unite. (b) Autocorrelation. (c) Snapshot aincis.

Figure 7.(a) Linear aperture at 45 degrees, 3 by 15 units. (b) Autocorrelation. (c) Snapshot image.

For reference we show in Figure 8 the innut star field which was used to generate Figures $6 c$ and $7 c$. Carrying out the reconstruction for 16 angle views between 0 and 180 degrees, in the noise-free case, we find the result shown in Figure 9 ; note the clean separation of the wide-spaced components and the clear elongation of the ciose-spaced stars. For comparison we show what the star field would look like if we used a small telescope with a 3 by 3 aperture (Figure 10), and a large telescope with a round aperture 15 units in diameter (Figure 11). Note that Figure 9 is quite similar to figure 11 , but

ORIGINAL PAGE IS
 OF POOR QUALITY

With siightly stronger sidelobes. In comparing these figures, note that the diffraction FWHM of a 15 pixel circular mirror $i 34.4$ pixels, and the star separatishis shown are 3

Effects of noise and misalignment

To test the rcioustness of the algorithm to noise, we have added to each pixel in each snapshot random noise values with relative peak-to-peak levels of 0.1 and 1.0 , with the results shown in Figures 12 and 13. The algorithm clearly is stable.

From left to right:
Figure 12. Image reconstruction with relative noise $=0.1$. Figure 13. Image reconstruction with relative noise $=1.0$.
Figure 14. Image reconstruction with phase error $=\lambda / 4$ peak-tompeak.
Figure 15, Image reconstruction with phase error $=\lambda / 2$ peak-tompeak.
The mirror train between the incident wevefront and the detector will undoubtedly include various types of imperfections. Here we model random small-scale piston errors distributed over the pixels which represent the mirrors, with peak-to-peak phase shifts uniformly distributed over the range of 90 and 180 degrees (i.e. $\lambda / 4$ and $\lambda / 2$), in Figures 14 and 15 , respectively. If we take $\lambda / 4$ as an upper limit on the phase variation, and we have 7 qirgrors in the optical path, the surface quality on each mirror must be raughly $(1 / 2) / 7 \$ 75$ times better, or $\lambda / 20$, which is well within the limits of conventional optical polishing technology.

We conclude the numerical results with a brief description of tip-tilt and (large scale) piston errors as applied to individual telescope primaries and their optical trains. This is essentially an exercise in initial alignment of the array, from a non-coherent to a coherent state. We start by blocking the beams from all but two of the telescopes. Taking these two to be adjacent, we will initially see two sets of star images in the focal plane. The telescopes can now be focussed to that each one produces images which are as small in diameter as is possible. If we look at a portion of this field of view, we will have a situation similar to that shown in Figure 16a, where a single star appears double because the mirrors are tilted with respect to one another. Here the wavefront tilt in each of two directions is λ / D, where D is the width of each primary, and for convenience we have scaled each mirror to be 7 by 7 units in size. Removing the tilt on one axis gives us the situation in Figure 16b, where we see significant interference developing in the overlap region. A final tip brings us to Figure 16 c , perfect alignment. Intermediate tilts (not shown) demonstrate that $0.125 \lambda / D$ is virtually indistinguishable from perfect alignment, and that even $0.25 \lambda / D$ is quite good; these may be taken as preliminary upper linits on tip-tilt.

Monochromatic piston errors between two adjacent telescopes are illustrated in Figure 17a, where one of the two 7 by 7 unit primaries is displaced by 0.5λ toward the star; the image bifurcation is an artifact produced by the exact cancellation of amplitudes at the position where the star should ideally have been imaged. Reducing the piston error to 0.25λ yields Figure 17 b , where one of the images grows at the expense of the other, and the peak intensity shifts toward the expected star position. zero error simply returns us to Figure 16c. Polychromatic piston correction requires the leverage of several different wavelength'bands, and is an extension of the technique just discussed.

Conclusion

The preliminary results presented here have demonstrated that image reconstruction fur a rotating linear array of coherent telescopes in space is both theoretically and practically a tractable problem. Nevertheless it is clear that there are many avenues yet

Figure 16. Snapshot images of a single star, using two adjacent 7 by 7 telescopes, with tip-tilt

Figure 17. Snapshot images of a single star, using two adjacent 7 by errors. (a) Wavefront tip $=\lambda / D$, tilt $=\lambda / D$. (b) Wavefront tip $=0$, tilt $=\lambda / D$. (c) Wavefront tip $=0$, tilt $=0$. 7 telescopes, with piston errors.
(a) Wavefront piston error $=0.5 \lambda$.
(b) Wavefront piston error $=0.25 \lambda$.
to be explored, including for example the definition of an optimum filter function, the question of limiting magnitude, the effect of signal-dependent noise, the effect of varying pointing of the spacecraft, the handling of a rotating detector instead of an inertially fixed detector, the sensitivity of the image to optical imperfections, and many other points. We are continuing active study of these problems, meanwhile also addressing the related question of maintaining optical alignment oif the array.

As a result of these efforts, it is becoming increasingly clear that it would be extremely helpful to build in the next few years a balloon-borne version of COSMIC, perhaps at half scale. A balloon-borne COSMIC would be especially valuable because it would allow key engineering questions to be addressed at an early stage. Such an instrument would be capable of investigating a small but significant number of scientifically rewarding questions, much in the spirit of the pioneering Stratoscope flights of two decades ago.

Acknowlecigements

This work was supported by NASA; through MSFC contract NAS 8-33893. We are grateful to M. Nein and his colleagues at MSFC for thelr preliminary engineering studies which have encouraged our recent image reconstruction wo.k. We gratefully acknowledge many fruitful conversations with our collaborators H. Gursky and N. P. Carleton.

References

1. Gursky, H. and Traub, W. A., "Use of coherent arrays for optical asteonomy in space," in Space Optics, SPIE vol. 183, pp. 188-197, 1979.
2. Trauh, W. A. and Gursky, H., "Coherent arrays for optical astronomy in space," in Optical and Infrared Telescopes for the 1990's, vol. I, ed. A. Hewitt, KPNO, pp, 250-262, 1980.
3. Traub, W. A. and Gursky, H., "Coherent optical arrays for space astronomy," in Active Optical Devices and Applications, SPIE vol. 228, pp. 136-140, i980.
4. Nein, M: E. and Davis, B., "Conceptual design of coherent optical system of multiple imaging collectors (COSMIC)", this vol., 1982.
5. Horn, M. and Wolf, E., Principles of Optics, section 9.5.2, Pergamon Press, 1965.
6. Brooks, R. A. and Di Chiro, G., "Principles of Computer Assisted Tomography (CAT) in Radiographic and Radioisotopic Imaging," Phys. Med. Biol., Vol. 21 (5), pp. 689-732, 1976.
7. Pratt, W. K., Digital Image Processing, section 15.1, John Wiley and Sons, 1978.
8. Brault, J. W. and White, O. R., "The Analysis and Restoration of Astronomical Data via the Fast Fourier Transform," Astron. and Astrophys. Vol. 13(2), pp. 169-189, 1971.

Conceptual design of a coherent optical system of modular imaging collectors (COSMIC)

- Max E. Nain, Billy G. Davis

NASA/Marshall Space Flight Canter, Alabama 35812

Abstract

A concept is presented for a phase-coherent optical telescope array which may be deployed in orbit by the Space shuttle in the $1990^{\prime} \mathrm{s}$. The system woula start out as a four-element linear array with a 12 m baseline. The initial module is a minimum redundant array with a photon collecting area three times larger than Space Telescope and a one-dimensioifal resolution of better than 0.01 are seconds in the visible range. Thermal structural requirements for the optical bench are assessed, and major subsystem concepts are identified.

Introduction

A vigorous and comprehensive astron mical program in the 1990^{\prime} s and beyond must provide for the increased spatial resolution and large apertures which will be required to address the questions raised but not answered by the Space Telescope. These needs derive, on the one hand, from the fact that the large cosmological distances over which light must travel reduce the number of photons available to be recorded by Space Telescope (ST) to fewer than $1 / \mathrm{sec}$ for many objects of interest. On the other hand, understanding the details of the fundamental interaction of matter and energy in the most energetic objects in the uriverse depends on recording the spectral characteristics of photons over small physical volumes, a fact which dictates high angular resolution for the large distances involved.

Scientific investigations that will' be pursued in the 1990 's and beyond will require imaging resolutions of 10^{-3} arc-sec. To meet these requirements, a comprehensive program must be formulated that makes use of the space Transportation system, the advanced technology inherent in the Space Telescope program, and new technology as it can be foreseen and developed in order to produce a phased, cost-effective set of astrophysics payloads with a wide spectrum of capabilities.

One such program which is currently being studied is a phase-coherent optical telescope array for launch on the Space Shuttle in the 1990's. The scientific goals for such an instrument and the initial results of image reconstruction analyses are discussed in a companion paper during this conference by W. A. Traub and W. F. Davis of the Harvard-Smithsonian C nter for Astrophysics.

Coherent Optical System of Modular Imaging Collectors (COSMIC)

The COSMIC Program will meet the needs of increased resolution and aperture by the development of phase-coherent arrays which will be progressively combined to form a large equivalent aperture imaging complex capable of achieving 10^{-3} arc-sec imaging resolution.

The study objective for $\cos M I C$ is to investigate the feasibility of developing a modular phase-coherent array which may achieve at least an order-of-magnitude increase in capability over the space Telescope, through a single Shuttle launch. Later additions to the linear array module would then further build up the capability of the telescope facility. Figure 1 shows an artist's concept of COSMIC and the envisioned evolutionary construction of a large cruciform array. The initial linear array contains four Afocal Interferometric Telescopes (AIT) with a Beam Combining Telescope (BCT) at one end. The COSMIC spacecraft module pivots from its launch position at the end of the BCT to its deployed position below the BCT. The solar arrays deploy from stowed positions alongside the telescope module. The scientific instruments are fiaced

ORIGINAL PAGE
 BLACK ${ }_{f}$ AND WHITE PHOTOGRAPH

in the focal plane of the BCT, and sunshades are extended above the telescope apertures. Telemetry antennas will pivot into position for communication and data transmission.

Figure 1. Initial COSMIC Module and Evolutionary Buildup

COSMIC Configuration

Optics

The key to high angular resolution is that light remains coherent over large distances. Diffraction-limited performance of an array of telescopes requires coherence of all participating wave fronts. Such a method has been used successfully to study radio sources at high resolution (0.001 arc-sec) by using data from simultaneously observing radiotelescopes on baselines stretching over the diameter of the Earth. Theoretically, the same resolution can be achieved at optical wavelengths by devices one hundred thousand times smaller in scale. Since the spatial coherence of widely separated beams of visible light is nearly destroyed by passing through the atmosphere, investigations of interesting faint sources of small angular size must be performed in space.

The concept of a minimum redundancy array of telescopes is borrowed from radio astronomy and has been applied by the Smithsonian Astrophysical Observatory to optical systems, as illustrated by the linear four-element array shown in Figure 2. The AIT's are identical and all feed through fold flats, which compensate for the staggered spacings, to the BCT. The four AIT's are located at positions $(0,1,4,6)$, giving the effect of simultaneously having mirror separations of $0,1,2,3,4,5$, and 6 units.

It is required that the array be rotated about its target axis so that two-dimensional images can be constructed that have the full resolution of a single large mirror with a diameter equal to the lenjth of the array. The requirement for maintaining all the optical path lengths equal to within $1 / 4$ wavelength peak to valley is the traditional Rayleigh criterion for near-diffraction imagery. It is an overly simplistic criterion in this case, but it alequately scopes the required dimensional stability at
this conceptual stage. To minimaze the complexity of an already beyond-the-state-of-the-art adaptive optics control problem, the primary mirrors were restricted to a size that would retain their figure quality passively and be packaged within the Shuttle payload bay constraints.

Figure 2. Linear Four Element Array Optical Schematic and AIT Mirror Definition

The 1.8 m square mirrors selected for COSMXC are lightweight mirrors of the Space Telescope class. Figure 2 shows the AIT optical schematic and mirror definition.

Active alignment of all secondary miriors is essential, but probably will only require occasional intermittent adjustment as in the case of Space Telescope. Conversely, it is almost certain that one or more beam-steering fold mirrors and some sort of active path length adjustment will be required in each leg.

The beam from AIr 1 is directed into the BCT in a direct path. The beam from AIT 2, however, must be folded in an indirect manner (optical delay line) so that the total path length is the same as for AIT 1. AIT 3 and AIT 4, which are even closer to the BCT, must have proportionately longer folded paths so that all wave fronts from the four AIT's arrive in phase at the BCT entrance aperture. The large number of reflections, a minimum of seven for AIT 1, from entrance aperture to focus is an inherent drawback to the COSMIC concept. At visible and infrared wavelengths where very lowloss reflective coatings are achievable, the drawback is minimal, but the uv throughput will be significantly attenuated.

With about $3 \mathrm{sq} m$ of collecting area per AIT for a total of 12 sq m , COSMIC has three times the collecting area of the Space Telescope. This, coupled with the factor of ten increase in angular resolution, moans that COSMIC will have a faint-objectdetectivity advantage over Space Telescope comparable to the advantage space Telescope has over ground-based observatories.

Although it is an objective of this study to develop a systam which can provide meaningful science with one Shuttle flight, the design concepts which ware considered are based on the eventual coupling of several linear arrays to form a cross configuration. For this reason, the beam combiner telescope was placed at the end of the linear artay to accommodate additional modules (rigure 1).

Thermal Structural Concept

Two major factors were design drivers for COSMIC: (1) The structural members and structural/thermal approach must produce an optical system with dimensional stability in all directions. In most telescopes, the structure holding the mirrors in relative alignment must be designed to focus the beam on a specified point with very little deviation caused by disturbances which act on the system. But in COSMIC, both relative alignment between individual telescope mircors and between AIT's and the BCT must be maintained. Although the coherent beam combination requirement will be met by an active control system, the structural/thermal design for COSMIC must still meet more stringent criteria than previously designed optical systems such as Space Telescope.
(2) The beams from individual telescopes must be combined to form a coherent wave front to approximatey one-tenth wavelengtl RMS. Thus, dimensional stability of the structure and/or active path-length contru must be better than 0.1 micrometer RMS. COSMIC has an overall line-of-sight aspect determination goal of 0.0005 arc-sec RMS.

Figures 3 and 4 show the strpucture of COSMIC. The telescopes and instruments are mounted in or on the optical bench, which is mounted inside an aluminum structure.

Since active path-length control of the optical components has been ground-ruled, the overall dimensional stability does not depend entirely on the metering structure. A tradeoff exists between the stability of the metering structure and the range over which the active control system must compensate. However, since the structural stability has not been budgeted, the approach was to determine the best metering structure using Space Telescope technology.

Ideally, the metering structure material should have a coefficient of thermal expan'sion (CTE) of zero. However, to postulate a zero CTE would not be practical. Based on results of very precise measurements of Space Telescope metering truss members, a CTE value of about 4×10^{-8} in/in' F was chosen for the structural members of the graphite epoxy truss.

Figure 3. COSMIC - Isometric View of Interior structure

Figure 4. Exterior Shell Structure

A relatively high natural frequency is desirable to have adequate separation between the structure and attitude control bandwidth during on-orbit operations. For the launch or return phase, the observatory should be designed to prevent coupling with the Shuttle's 16 fiz critical frequency. Since the truss weight increases rapidly with increasing frequencies, a lower frequency of 15 Hz was selected as a basis for the truss design.

The metering structure is supported at many redundant points along the outside shell structure during launch. The redundant attach points are subsequentiy released for onorbit operations so that thermal deflections are not transmitted from the outside shell to the metering structure.

The mirrors are attached directly to the metering structure by flexure joints similar to the ST mirror supports. Launch loads are taken directly to the sutside shell.

To obtain a truss structure with minimum elongation and bore-sighting deflections resulting from temperature gradients in the metering truss, a thermally stable optical bench structure was designed to support the mirrors. The eruss is thermaliy isolated by an outer shell covered with a Multiple Layer Insulation (MLI) having a low a/e ratio. This thermal configuration results in a temperature bias, causing energy to be continuously lost from the bench. Thermal conditions are maintained by replacing the lost energy with energy supplied by electric heaters which are controlled by a microm processor. This power is estimated to be 200 wat 3 . Dther thermal control requirements are estimated to be approximately four times that of space rejescope, as shown in Figure 6.
comec mitaino efmucyunt

Figure 5. Metering Structure and supports

Figure 6. Thermal Control Budget and Truss Thermal Control Approach

[^0]

Figure 7. Influence of Bulk Temperature Change on Truss Elongation

Figure B. Bore-Sighting Error as a Function of Radial Temperature Difference

Avionics

The avionics subsystems consisting of the Attitude Control System (ACS), Fine Guiciance System (FGS), Communications and Data Management System (CDMS), Electrical Power System (EPS), and the Propulsion Systems (PS) were analyzed. This paper concentrates on the attitude Control and Fine Guidance Systems because of their role in establishing feasibility,

It was assumed that COSMIC should permit viewing any source on the celostial sphere at any time, subject to constraints such as the sun, moon, and the Earth's limb viewing interference.

Since COSMIC will view a target for periods up to hours and then maneuver to another selected target, the maneuver rate should be rapid to optimize total viewing time. In addition, COSMIC must. be rotated about its line-of-sight (LOS) to build up a total high resolution image with the data being digitally reconstructed on the gound.

While attitude-holding against environmental forces, the ACS must point the COSMIC LOS within 0.2 arc-sec of the target and be stabie to 0.001 arc-sec per sec while data is being taken. These requirements are similar to those of the Space Telescope. However, COSMIC uses photon-counting science detectors with continuous readout; therefore, long-term stability (slow drift) has little meaning in contrast with Space Telescope. However, in reconstructing the data on the ground, the location of the source viewed must be determined relative to the guide stars used for inertial reference to an accuracy of 0.001 arc-sec or better (0.0005 arc-sec goal).

The ACS actuators must be sized to provide control authority during all mission phases from Shuttle deployment to Shuttle revisit for repair or retrieval.

Since COSMIC is unbalanced both in masis distribution and surface areas, large gravity gradient, $0.46 \mathrm{ft-lb}$, and acrodynamic torques, $0.17 \mathrm{ft}-\mathrm{lb}$, will result at the operational orbit altitude of 500 km . As a minimum aizing criterion, the Reaction Wheel Assembly (RWA) or Control Moinent Gyron (CMG's) must be aized to counteract the cycilc momentum and have some reserve capacity for failure moder and to prevent saturation during the peaks of each cycle. With 50 percent contingency, approximately 18 of the Space Telescope's 200 ft-lb-s RWA's would be needed.

Obviously, new and larger torque devices must be provided. It appears that four single gimbal control moment gyros of an existing design (Sperry 1200) can provide suffitient control authority. To prevent the momentum exchange system from saturating, the secular momentum buildup iw continuousiy raacted against the Earth's magnetic field by utilizing three Space Telescope magnetic torquer bars per control axis.
, Several design approaches for the Fine Guidance System were investigated (see Eigure 9). Option 1 was selected for COSMIC. In this approach, the FGS uses part of the field from one AIT that has its total field enlarged to obtain the required probability of guide star acquisition. Fixed solid-state detectors are positioned around the perimeter of the square field of the AIT. Several Charge Transfer Devices (CTD's) are needed to cover the field required for a high star acquisition probability. option 1 appears viable for the 0.001 arc-sec resolution requirement. Thermal control of the detector is critical. Currently we assume an operational temperature of $-20^{\circ} \mathrm{C}$,

OPTION 1: USE AIT FIELD

- APPROACH: SEVERAL FIXED CTD IN

THE FGS FIELD

- ASSESSMENT: VIABLE FOR 0.001 ARC.SEC REQUIREMENT

OPTION 2: TELESCOPE WITH FIXED FIELD

- APPROACH: FOV FOR STAR ACQUISITION WITH FIXED CTD TO COVER THE FIELD
- ASSESSMENT: VIABLE FOR 0.001'ARC-SEC REQUIREMENT
- PROBLEM OF ALIGNMENT WITH AIT

OPTION 3: SCAN MECHANISMS TO COVER FIELD

- APPROACH: DEDICATED TELESCOPE WJTH CTD AND SCAN MECHANISMS
- assessment: optical gain must be better than st VIABLE FOR 0.0005 ARC-SEC GOAL

Figure 9. Fine Guidance System Options

Advanced Technology

Several areas for advanced technology were examined that should increase the probability that $\cos M I C$ can meet its mission objectives, especially for the full cross configuration. The structural members for the metering structure must be designed using very low Coefficient of Thermal Expansion (CTE) materials to meet the one-tenth wavelength criterion over the long length of COSMIC. Materials, manufacturing techniques, and ways of joining members should be examined in detail.

4
The large and difficult-to-control COSMIC conflguration will require new attitude control actuators that have the precision of Space telescope, but are weveral times larger than space Telescope actuators. At the shorter wavelengths and for the cruciform, the expected resolution will require that the subsystems and structure be designed for the 0.0005 arc-sec stability goal. Improvements in senaing for the fine guidance and aspect determination will require development of more accurate rate gyros and star trackers with less noise than those currently available.

While devices for measuring and correcting the optical path distances from each collecting telescope to the science instruments were not addressed during this study, emphasis should be placed in this general technology area. Optical devices for correcting both the path length and focal point must be examined in more depth to determine the operational range reguired.

COSMIC uses photon-counting detectors on the science instruments whose output is telemetered to Earth for image reconstruction. The COSMIC subsystems selection and permissible performance ranges must be related to image quality and/or complexity of data reconstruction, currently under investigation. A greater understanding of those relationships could lead to a relaxation of spacecraft pointing and structural stability requirements.

Conclusions

Overall system concepts for COSMIC were developed, and the primary subsystems, such as thermal control, attitude control, fine guidance, communication and data management, and electrical power, were analyzed.

The initial engineering work concentrated primarily on achieving a very stable optical bench structure by selectively utilizing low thermal expansion materials in conjunction with structural heaters. The design approach results in a structure which is sufficiently stable to allow fine tuning of the optical train via active beam steering devices.

Although current technology should suffice in development of many of che systems, advanced technology will be required in areas where COSMIC systems exhibit specific sensitivity to technological advances, such as in the active optical path length control and alignment, and fine pointing and control of the spacecraft.

Acknowledgemients

We gratefully acknowledge the advice and engineering analyses provided by the members of the COSMIC Study Team at the Marshall Space flight Center and the invaluable review comments by the Smithsonian Astrophysical Observatory. The encouragement and support of Dr. George Newton, Manager, Advanced Programs and Technology, office of Space science and Applications, NASA Headquaiters, is also greatly appreciated.

Bibliogrephy

1. Gursky, H., Traub, W. A., and Colombe, G., Proposal for a Feasibility Study of an Optically Coherent Telescope Array ir space, Smithsonian Institution Astrophysical Observatory, Cambridge, Massachusetts, Riay 1979.
2. Astrophysics Long Term Program, project Eoncept Summary: COSMIC, NASA, October, 1980.
3. Rosendhal, J. D., Space Astronomy to the Year 2000: A Preview of the Possibilities Society of Photo Optical Instrumentation Engineers, Proceedings, Vozume 228, 1980.
4. A Conceptual Definition Study of "Coherent Optical System of Modular Imaging Collectors" (COSMIC), Program Development Directorate, NASA/George C. Marshali Space Flight Center, Alabama, December 1981.

AIAA 82-1851-CP
 Concepts for Large
 Interferometers in Space
 S.H. MORGAN, M.E. NEIN, B.G. DAVIIS, E.C. HÄMILTON, D.H. ROBERTS and W.A. TRAUB

AIAA/SPIE/OSA TECHNOLOGY FOR SPACE ASTROPHYSICS CONFERENCE: The Next 30 Years

October 4-6, 1982/Danibury, Connecticut

S. H. Morgan
 M. E. Nein
 B, G. Dayis

E. C. Hamilton Program Development
George C. Marshall Space Filght Center National Aeronautics and Space Administration Huntsoille, Alabama
D. H. Roberts

Brandeis University
Waltham, Massachusetts

W. A. Traub
Smithsonian Antrophysical Observatory Cambridge, Massachusetts

Abstract

Very high angular resolution can be achieved in optical and radio astronomy through interferometers in space. Evolutionary approaches and required technological advances are presenten. In the optical region a phase-coherent array (COSMIC) starting as a four-element inear array is discussed. Combining several modules results in greatly improved resolution with a goal of combining images to ohtain a single field of view with 0.004 arcsecond resolution. The angular resolution, detail and temporal coverage of radio maps obtained by ground-based Very Long Interferometry (VLBI) can be greatly improved by placing one of the stations in Earth orbit. An evolutionary prograin leading to a large aperture VLBI observatory in space is discussed.

Introduction

During the 1980's Space Astronomy will, without doubt, make discoveries and raise questions that require the use of more powerful astronomical instruments in order for us to understand the diverse astrophysical phenomens that will be unveiled. Detailed structural studies of objects ranging from nearby planets and small bodies to distant quasars will be required during the final decades of this century and into the next. To meet these needs, large astronomical facilities with greatiy improved angular resolvtion and larger collecting areas will be placed in space above the absorbing and distorting interference of the Earth's atmosphere.

Frontier problems in astrophysics during the next 30 years will require angulat resolution approaching 10^{-3} arcseconds in the UV/visible spectral region. This high resolving power coupled with large flux collectors will lead to great advances in our understanding of objects within our solar system, stars, galactic nuclei and other objects as well as offering new avenues to cosmological studies.

At the longer (radio) wavejengths milliarcsecond resolution has already been surpassed with intercontinental VLBI. However, in most objects, there remains spatial structure that is unresolved. For example, virtually every active galactic nucleus has angular structure that cannot be resolved, even with the best VLBI network currently available loffering a resolution of 10^{-4} arcsec). VLBI measurements have reached the limits imposed by the size of the Earth.

The capatility to assemble large structures in ppace and the existence of advanced technology for maintaining precise baselines and accurate pointing of large systems will make possible interferometers in space. Two such concepts currently under study by the Marshall Space Flight Center (MSFC) are the orbiting VLBI and a phase-coherent UV/visible telescope array. Each concept is sonsidered to be evolutionary in nature, progressing from simpler to more complex configurations. The concepts, progi am approach and technological readiness of the required systems are discussed in the following sections.

Extending VLBI To Space

Radio interfel:ometry observations of celemtial sources are routinely performed on Earth by using atomic erequency standarda to synchronize radio telescopes that may be soparated by as much as intercontinental distances. Angular resolution better than mililarcsecond, four ordels of magnitude superior to that of Earthbased optical telescopes, has been achieved. By placing one or more of the observing elements in Earth orbit and making observations in concert with those on the ground, significant advantages over purely ground-based syistems may be obtained. Among these adyantages are improved angular resclution, improved coverage of the celestial sphere, more accurate radio maps, and more rapid mapping. (1)

Scientific Advances with Space VLBI

With orbiting VLBI we will be atile to study in detail the strurture of many astrophysical objects. For example, we will be able to investigate the superluminal phenomenon in quasars (expansion of different portions of guasars that apparently exceed the velocity of light), the structure of the interstellar masses that are often associated with the starformation process, active binary systems, radio stars and other objects.

The famous quasar 3 C273 provides an interesting example of the dramatic improvements that we will achieve with orbiting VLBI. It has become evident that highly unusual physical processes are occurring within guasars and galactic nuclei. Very large amounts of energy are being produced within compact structures. The map resolution and quality reguired to study these compact sources surpasses the capabilities of our current ground-based instruments. In particular, for a low declination source such as 3 C 273 , the North-South resolution is poor. This limitation is caused by the location of present radio telescopes in the temperate zone of the Northern Hemisphere.

Figures 1 and 2 are computer. simulations illustrating the advantages of a VLBI terminal in space. Observations are of 3 C 273 at 18 cm . Figure 1 (a) shows the synthesized beam from a conventional groundmbased network consisting of stations at Haystack (Mass.), NRAO Green Bank (W.Va.), Owens Valley (Calif.) and Bonn (W. Germany). Figure $1(b)$ adds a space-based terminal in low-Earth orbit to a three-station ground-based network. By comparing figures $9(a)$ and $1(b)$, one notes the dramaticimprovement in resolution obtained by adding a single space-based station.

$3 C 273$

 HSTOL Q4
OVAO OVAO
BONN

H 0.001 ARCSECS NN
acsecs

(i) H

Figure 1. Comparison of Synthesized Beams £rom VLBI Observatories

Figure 2 shows the Fourier (u=v) coverage for the two cases shown in Figure 1. The u-v plane is normal to the vector to the source being studied; u and v are the East-West and North-South components of the baseline joining a paix of antennas, as seen from the source. As the elements of the VLBI network move in space due to the Earth's rotation or the orbital motion, the apparent baselines joining the stations change. When the entire set of baselines from all network stations are plotted in the uny plane, the result is equivalent to the synthesized telescope aperture. The extent and completenass of u-v coverage determines the resolution and quality of the radio image constructed from the data. Note from Figure $2(b)$ both the density and extent of the fourier coverage is greatly improved by adding a terminal in space.

Figure 2. Comparison of Fourier Coverage from VLBI Observatories

ORIGINAL' PAGE BLACK AND WHITE PHOTOGRAPH

A Space VLBI Program

The Astronomy Survey Committee of the National Academy of Sciences has recommended that a space VLBI antenna be launched in 2 ow Earth orbit during this decade. (2) To achieve a permanent VLBI system in space, three natural phases can be identified (see Figure 3). Sach phase utilizes the expected evolution in the capabilities of space systems.

Figure 3. An Evolutionary Space VLBI Program

An initial step would be to utilize the capability of the Space Shuttle to demonstrate orbiting VLBI by deploying a large retrievable antenna attached to the Shuttle. This mission could be part of the Large Deployable Antenna Flight fxperiment that has been under active study by MSFC and aerospace contractors during the past several years. $(3,4)$ This flight would provide an on-orbit test of a large (~ 50 meter) antenna system (which also has putential applications in defense, communications and Earth observations among others). An artist's concept of one possible antenna is shown in Figure 4. During the massion about three days wo id be devoted to VLBI observations: Figure 5 is a block diagram of the system with probable locations of the various subsystems indicated in Figure 6. An alternative system now under study at MSFC is a 15 meter antenna aboard the Shuttle that could later be used on the Space Platform or perhaps on an Explorer ciass mission. Although a larger aperture

Figure 4. 50 Meter Deployable Antenna
antenna is desirable, an important set of bright sources could be observed with a space antenna as small as 5 to 10 meters in diameter.

Figure 5. Block Liagram of a Space VLBI System
 \title{
ORIGINAL PAGE
 \title{
ORIGINAL PAGE
 (BLACK AND WHITE PHOTOGRAPH
}

Figure 6. Shuttle VLBI Flight System
The Space Platform could be available by the end of this decade. A VLBI terminal aboard a Space Platform (or Space Station) could carry out observations for extended periods using essentially the same science package previously demonstrated on the Shuttle. Figure 7 illustrates the Platform concept with a 15 meter VLBI antenna attached to one of the ports. A Platform mission would yield a high-resolution survey of the entire sky and temporal studies of the most important sources.

During this time frame an alternative or perhaps concurrent flight configuration might be a 15 meter free flyer in the Explorer class but placed at a higher (5000 km) altitude. Ultimately a large aperture antenna aboard a high altitude free flyer would be desirable.

Both Platform and free flyer VLBI observations are naturally mplementary to a dedicated ground-based VLBI array. A single space VLBI terminal improves both the resolution and density of $u=v$ coverage by large factors and significantly increases the sky coverage available.

Figure 7. Orbiting VLBI: Platform Configurat,ion

Technology Requirements

The technology readiness for orbiting VLBI depends upon the availability of space versions of the same systems that are used for ground observations. These major systems include antenna, receiver, frequency standards, IF to digital electronics and data handling systems. Each of these will be discussed briefly below. The mission and system parameters for the Shuttle mission are shown in Table 1.

Antennas

Two major parameters determine the antenna contribution to the signal-tonoise ratio of the received signal: diameter and efficiency. The first is the more important of the two. The largest civilian space antenna was the 9 meter ATS-6 reflector that was flown in 1974. During the past decade antenna technology has progressed significantly, however a 50 meter antenna operating up to about 8 GHz will probably require demonstration in space.

The antenna efficiency depends on the mesh size and surface irregularities with the latter the more difficult to control. Predicted values of the ratio of antenna diameter to rms surface irregularity for the 50 meter Shuttle antenna is estimated to be about 2×10^{4} which should allow good performance up to about 10 GHz .

A final important consideration is the antenna pointing. It is essential that the antenna be pointed to within the half power beamwidth (i.e., approximately λ / D where λ is the observing wavelength and D the antenna dameter). For $\lambda=3.6 \mathrm{~cm}$ and $D=50 \mathrm{~m}$ the pointing requirement is about 0.04 degrees. The pointing can be achieved using several steps.

For the Shuttle mission the following three steps could be used:
(1) the Shuttle points the antenna to within 0.5 degrees of the celestial target.
(2) An optical or RF sensor is used to drive a movable subreflector to place the target within the 3 dB beamwidth of the antenna.
(3) Knowledge of pointing is recorded from the above sensor to later correct for any residual mispointing of the antenna. This knowledge will permit a posteriori corrections for amplitude loss during mispointing.

As part of the Shuttle VLBI mission study the C. S. Draper Laboratory performed a brief study of the dynamics and control of the Shuttle attached antenna. (5) Initial finite elements simulations have indicated that the antenna structure that was considered is quite stable during various Shuttle motions.

- ANTENNA SYSTEM POINTING INCLUDES: ORBITER, ANTENNA STRUCTURE, MOVABLE FEED/SUGREFLECTOR AND GEAM STEERING TO REACH REQUIRED ACCURACIES.

Table 1 VLBI Demonstration Experiment Parameters
Receivers

Gallium arsenide field effect transistor (GaAs FET) receivers are very suitable for crbiting VLBI. Through radiative cooling, system temperatures uf $70^{\circ} \mathrm{K}$ at 2 GHz and $160^{\circ} \mathrm{K}$ at 8 GHz are probably possible. The long cooldown time of radiative cooling systems nidy preclude their use for the Shuttie mission. However, Peltier devices may be used. Performance can be considerably improved by cryogenic cooling.

Frequency Standards

The local oscillator frequency standard must be stable over the data integration periods to a small fraction of a cycle of RF phase. A hydrogen maser flown in 1976 as part of the sub-orbital Gravity Probe-A (Redshifit) rocket Elight achieved a level of stabilisty of $\Delta f / f \approx$ 3×10^{-14}. This is sufficient for a 100 second coherent integration at Erequencies as high as 22 GHz .

IF to Digital Electronics and Data Handling

The signal from the receiver is mixed with the local oscijestor and converted to an IF signal. It is then converted to a video signal and digitized (See Figure 3). The standard for ground-based observations is the Mark III system. The electronic modules of this system could be repackaged and qualified for space.

The data recording equipment for a space mission will depend upon the data storage and transmission capability of the particular mission. For the Shuttie mission one could use several cassette tape recorders each of which would record one $4 \mathrm{Mbits} / \mathrm{s}$ channel. The tapes would then be returned to the central correlator site to be combined with the recolded data from the ground-based radio telescopes.

VLBI systems aboard a platform, space station or free flyer woula periodically return data via the TDRSS system. High altitude free flyers having long term communication with the Deep Space Network could send data directly to the ground for recording.

Summary of VLBI Technology Readiness

In general, the subsystems required to support orbiting VLBI missions are technologically ready. Antennas as large as 50 meters appear to be technologically feasible; however testing in space is probably required.

The program for orbiting VLBI discussed in this paper is driven by the availability of the space systems described and the continued interest in extending the capability to utilize space. The technology is available. Only the opportunity remains for us to enter into the exciting era of space VLBI.

ORiginal Page BLACK AND WHITE PHOTGGRAPH

Space Based Coherent Optical System pf Modular Imaging Collectors (COSMIC)

At microware wavelengths large ground-based interferometers are routinely employed for high resolution astronomical observations. However, the difficulties of dealing with wavelengths 5 orders of magnitude smaller than microwave have made this a less attractive technique for achieving similar advances with groundbased observations at UV/visible wavelengths. In addition, ground-based problems of atmospheric absorption and seeing fundamentally limit the possible advances. Space will overcome these barriers as well as providing the necessary undisturbed environment.

The capabiity to construct large systems in space and the development of advanced optical control technolsgy to maintain accurate baselines and alignments will allow the development of an array of coherent optical telescopes - the optical analog of radio VLBI. This program, called COSMIC, will meet the needs of increased resolution and larger aperture through the development of phase-coherent arrays which are progressively combined to form a large equivalent aperture imaging complex. Images with angular resolution in the miliiarcsecond range can be achieved. (6-8)

Scientific Prospecte with COSMIC

There are a large number of unique astronomical observations which would be possible with an orbiting telescope having both a large collecting area and an angular resolution in the milliarcsecond range. COSMIC will bre able to resolve the nucleus of many comets, to detect the splitting of a nucleus, and to study the activity of the inner core. At Jupiter, COSMIC will be able to obtain images down to 5 km resolution, comparable to some of the best images obtained by Voyager 2 . Detailed studies of the large scale features of nearby main sequence stars will also be made. Correlations with VLBI measurements of the $\mathrm{H}_{2} \mathrm{O}$ and sio maser emissions in the atmospheres of super giant stars will be possible.

COSMIC will be unique in being able to resolve the highly condensed cores of globular clusters. As an illustration we show in figure 8 a series of images of the globular cluster M3 as it would appear if it were removed from our own galaxy to a much more remote distance, in the galaxy M87. The first panel in Figure 1 is a long-exposure photograph of M87 which shows the many globular clusters surrounding this galaxy. The next three panels show respectively the appearance of M3 (taken from a CCD image) as it would appear at the distance of M87 from the Space Telescope, then from a first
stage COSMIC (14 m in length) and finally a second stage COSMIC (35 m in lengith).

COSMIC will be able to resolve the central regions of active galactic nuclei to help us understand what powers these very bright and condensed regions.

Because such a telescope will be able to solve outstanding astrophysical probiems such as these, the Astronomy Survey Committee of the National Academy of Sciences has recommended "the study and development of the technology required to place a very large telescope in space early in the next century." (2)

Figure 8. Advances in Telescope Resolution

The COSMIC Configuration
Figure 9 shows an artist's concept of COSMIC and the evolutionary construction of a large cruciform array. The initial

Figure 9. Coherent Optical System of Modular Imaging Collectors

OEGINAL PAGE KE OF POOR QUALITY

Ifnear array contains four Afocal Inter- $\frac{1}{4}$ ferometric Telescopes (AIT) with a Beam Combining Telescope (BCT) at one end. The COSMIC spacecraft module pivots from its launch position at the end of the BCT to its deployed position below the BCT. The solar arrays deploy from stowed positions alongside the telescope module: The scientific instruments are placed in the focal plane of the BCT, and sunshades are extended above the telescope apertures. Telemetry antennas will pivot into position for communication and data transmission.

Optics

The concept of a minimum redundancy array of telescopes is borrowed from radio astronomy and applied to optical systems, as illustrated by the linear four-elenent array shown in Fifure 10. The AIT's are identical and all reed through fold flats, which compensate for the variations in the optical path lengths to the $B C T$. The four AIT's are located at positions ($0,1,4,6$), giving the effect of simultaneously having mirror separations of $0,1,2,3,4,5$, and 6 units.

The instantaneous diffraction-1imited image of a poirt source is narrow along the array's major axis only, but by using an already demonstrated image técōnstruction technique it will be easy to build up fully resolved images after a 180 degree rotation of the array, even in the presence of noise and optical imperfections.

The requirement for maintaining all the optical path lengths equal to within $1 / 4$ wavelength peak to valley is the traditional Rayleigh criterion for neardiffraction imagery. It is an overly simplistic criterion in this case, but it adequately scopes the required dimensional stability at this conceptual stage. To minimize the complexity of an adaptive optics control problem that is already beyond-the-state-of-the-art, the primary mircors were restricted to a size that would retain their figure quality passiveiy and be packaged within the constraints of the Shuttle payload bay.

Active alignment of all secondary mirrors is essential, but probably will only require occasional adjustment as in the case of the Space Telescope. Conversely, it is almost certain that one or more beam-steering fold mirrors and an active path length adjustment will be required in each leg.

Optical Schematic of One Module

Optical Schematic of Afocal Interferometric Telescope

PAImany mamon
HDE LINOTH - It m TMICRHESS $\cdot 2.35 \mathrm{~m}$ - 1.1 .7 MADIUS OF $C=. .78 \mathrm{~m}$ WIICHT - $200{ }_{0}$

SECOMDARY MIAROA
HOELENOTH - 0.18 m TMICMNES - 2.5 mm Wilont. -0.66m outert asam aphox 0.18 m souane

Figure 10. Linear Four Element Arcay Optical Schematic and AIT Mirror Definition

The beam from AIT 1 is directed into the BCT in a direct path. The beam from AI'f 2, however, must be folded in an indirect manner (optical delay line) so that the total path length is the same as for AIT 1. AIT 3 and AIT 4, which are even closer to the BCT, must have proportionately longer folded paths so that all wave fronts from the four AIT's arrive in phase at the BCT entrance aperture.

ORIGINAL PAGE RE
 OF POOR QUALITY

A collecting area of about 3 m per AIT gives the initial COSNIC conEiguration three times the collecting area of the Space Telescope. This, coupled with a factor of six increase in angular resolution, means that COSMIC will have a faint-object-detectivity advantage over Space Telescope comparable to the advantefe Space Telescope has over ground-based observatories.

Image Reconstruction

The image produced by a linear coherent array will exhibit non-uniform resolution as a function of direction in the image plane. Specifically, the diferaction-limited resolution in the direction colinear with the array will exceed that normal to the array in the same ratio as the aperture aspect ratio. The image formed in the focal plane is the convolution of the aperture autocorcelation function and the "ideal" sky which falls in the several telescopes" cominon field of view. If we consider the focal plane two-dimensional detector (such an as intensified CCD) to be fixed in inertial space, while the linear telescope rotates about the line of sight, then it is useful to think of the aperture autocorrelation as providing a "window" onto the true (unmodified by the instrument aperture) image Fourier plane, As the aperture rotates, so does the aperture autocorrelation. At each orientation only a portion of the Fourier plane can be "seen" through the window. By piecing together glimpses of the Fourier plane provided by a set of distinct aperture orientations, a measure of the Fourier transform of the sky can be built up over a region corresponding to the union of the areas covered by the individual autocorrelations.

We have begun computer simulations of the image reconstruction process and have been able to investigate the effects of additive noise as well as optical system imperfections. (9) Noise is strongly rejected in this technique, since in the Fourier-plane summing operation, we are able to exploit natural opportunity to suppress noise from non-information bearing frequencies. The images are also very stable against optical imperfections up to about one-quarter wavelength, peaktompeak. Finally, no artifacts have been found to be generated; this should not be at all surprising because the reconstruction process is in fact very close to being a "selective addition" process wherein we simply save and then add together the "good" parts of each image; there is no amplification whatsoever of weak signals, so artifacts and instabilities are completely avoided.

Structural Concept

Two major factors were design drivers for COSMIC: (1) The structural, members and structural/thermal approach must produce an optical system with dimensional stability in all directions. In most telescopes, the structure holding the mirrors in relative alignment must be designed to focus the beam on a specified point with very little deviation caused by disturbances. But in COSMIC, both relative alignment between individual telescope mirrors and between AIT's and the BCT must be maintained. Although the coherent beam combination requirement will be met by an active control system, the structural/ thermal design for COSMIC must still meet more stringent criteria than previous optical systems such as Space Telescope; (2) The beams from individual telescopes must be combined to form a coherent wave front to approximately one-tenth wavelength rms. Thus, dimensional stability of the structure coupled with active path length control must be better than 0.03 ricrometer rms. COSMIC has an overall dine-of-sight aspect determination goal of 0.0005 arcsec rms.

Figures 11 and 12 illustrate the structure of COSMIC. The telescopes and instruments are mounted in or on the optical bench, which is mounted inside an aluminum structure.

Since active path length control of the optical components has been assumed the overall dimensional stability does not depend entirely on the metering structure. A tradeoff exists between the stability of the metering structure and the range over which the active control system must compensate. However, since the structural stability has not been budgeted, the approach used was to determine the best metering structure using Space Telescope technology.

Ideally, the metering structure material should have a zero coefficient of thermal expansion (CTE). However, to postulate a zero CTE would not be practical. Based on results of very precise measurements of Space Telescope metering truss members, a CTE value of about 4×10^{-8} in $/$ in $^{\circ} F$ was chosen for the structural members of the graphite epoxy truss. This will allow elongation control to $0.1 \mu \mathrm{~m}$. The boresighting error which exceeds the allowable requirements by a factor of two must be corrected with an active optical compensation mechanism.

Figure 12. Exterior Shell Structure
The metering structure is supported at many redundant points along the outside shell structure during launch. The redundant attach points are subsequently released for on-orbit operations so that thermal deflections are not transmitted from the outside shell to the metering structure. The mirrors are attached directly to the metering structure by flexure joints similar to the Space Telescope mirror supporics.

Avionics

The avionics subsystems consisting of the Attitude Control System (ACS), Fine Guidance System (FGS), Communications and Data Management System, Electrical Power System, and the Propulsion Systems were analyzed.

While attitude-holding against environmental forces, the ACS must point the COSMIC line-of-sight within 0.2 arcsec of the target and be stable to 0.001 arcsec per sec while data is being taken. These requirements are less restrictive than those of the Space Telescope. Since cosmic will use photon-counting detectors with continuous readout, long-term stability (slow drift) has liftle meaning in contrast with space Telescope. However, in reconstructing the data on the ground, the location of the source viewed must be determined relative to the guide stars used for inertial reference to an accuracy of 0.001 arcsec of better (0.0005 arcsec goal).

Since COSMIC is unbalanced both in mass distribution and surface areas, large gravity gradient and aerodynamic torques will be present at the operational orbit altitude of 500 km . Approximately 18 of the Space Telescope's 200 ft-lb.s Reaction Wheels would be needed to counteract these torques.

Obviously, new and larger torque devices must be provided. It appears that four single gimbal control inoment gyros of an existing design can provide sufficient control authority. To prevent the momentum exchange system from saturating, the secular momentum buildup is continuously reacten against the Earth's magnetic field by utilizing three magnetic torquer bars per control axis.

Several design approaches for the FGS were investigated. We selected an FGS which uses part of the field from one AIT that has its total field enlarged to obtain the required probability of guide star acquisition. This system is capable of meeting the 0.001 arcsec resolution requirements.

Summary of COSMIC Technology Readiness

Several areas of advanced technology were examined that should increase the probability that COSMIC can meet its mission objectives, especially for the full cross configuration. The structural inembers for the metering structure must be designed using very low Coefficient of Thermal Expansion materials to meet the one-tenth wavelength criterion over the long length of COSMIC. Materials, manufacturing techniques, and methoas of joining members should be examined in detail.

The large COSMIC configuration will require new attitude control actuators that have the precision of Space Telescope, but are several times laryer than Space Telescope actuators. At the shorter wavelengths and for the cruciform configuration the expected resolution will require that the subsystems and structure be
designed for the 0,0005 arcsec stabrifity goal. Improvements in sensing for the fine guidance and aspect determination will require development of more accurate rate gyros and star traciers with less noise than those curcently available.

While devices for measuring and correcting the optical path distances from each collecting telescope to the science instruments were not addressed, emphasis should be placed in this general technology area.

COSMIC uses photon-counting detectors on the science instruments with outputs telemetered to Earth for image reconstruc-tion. The COSMIC subsystems selection and permissible performance ranges must be related to image quality and/or complexity of data reconstruction, currently under investigation. A greater, understanding of those relationships could lead to a relaxation of spacecraft pointing and structural stability requirements.

Conclusion

Results from preliminary studies of two large interferometers in space have been presented that would lead to major advances in capabilities for astrophysics during the next 30 years.

At radio wavelengths the technology is generally available to place a VLBI station in Earth orbit. However, large ($\sim 50 \mathrm{~m}$) aperture deployable antennas will probably require demonstration in space.

For UV/Visible spectral coverage COSMIC is a very attractive approach that is both theuretically and practically feasible. Although major technology barriers have not been identified in our studies thus far, one must recognize that the development of the large systems presented here poses formidable tasks in orbital acemely and servicing, maintenance of optical coherency, pointing and stability of the spacecraft and thermal control.

For current systems the accepted approach is to verify performance through extensive ground testing. However, the new generation of large aperture instruments which have structural frequencies as low as a few Hertz can only be adequately tested as functional systems in space. It is thus imperative that considerable space demonstration work precede any commitment to a specific design of a long duration space system. Since the space demonstration capability would lead the design of the final system by several years, it would actually establish many of the technology reguirements.

Acknowledgement

The authors wish to thank professor Bernard Burke (MIT), Dr. Frank Jordan (JPL), Dr. Robert Preston (JPL), and Lester Sackett (Draper Lab), members of a NASA-sponsored VLBI working group. The VLBI concepts discussed in this paper are based on studies conducted by this working group. We would also like to thank Dr. Herbert Gursky (NRL), Dr. Nathaniel Carleton (SAO), and Dr. Warren Davis (SAO) who have made significant contributions to the coimic studies.

References

1. Shuttie VLBI Experiment: Technical Working Group Summary Report, NASA TM-82491 (Samuel H. Morgan and D. H. Roberts, eds.). NASA, G. C. Marshali space Flight Center, July 1982.
2. Field, G. et al., Astronomy and Astrophysics for the 1980 's, Report by the Astronomy Survey Committee, National Academy of Sciences, Natienal Academy Press, Washington, DC, 1982.
3. Deployable Antenna Flight Experiment Definition Study, Final Report, Grumman Aerospace Corp., Bethpage, NY, March 1982.
4. Deployable Antenna Flight Experiment Definition Study, final Report, Harris Government Electronics Systenis Division, Melbourne, FL, March 1982.
5. L. L. Sackett and C. B. Kirchwey, Dynamic Interaction of the Shuttle On-Orbit Flight Control System with Deployable Flexible payloads, AIAA Symposium on Guidance and Control, Paper No. 82-1535-CP, San Diego, CA, August 1982.
6. W. A. Traub and H. Gursky, "Coherent Arrays for Optical Astronomy in Space," in Optical and Infrared Telescopes for the 1990's, vol. 1, ed. A. Hewitt, Kitt peak National Observatory, pp. 250-262, 1980.
7. M. E. Nein and B. G. Davis,
"Conceptual Design of a Coherent Optical System of Modular Imaging Collectors (COSMIC)," in Advanced Technology Optical Telescopes, SPIE Vol. to appear in 1982.
8. W. A. Traub, N. P. Carleton and G. Colombo, Feasibility Study of an Optically Coherent Telescope Array in Space, Technical Report No. 1, Smithsonian
Institution Astrophysical Observatory, Cambridge, MA, November 1981.
9. W. A. Traub and W. F. Davis, "The COSMIC Telescone Array: Astronomical Goals and Preliminary Image Reconstruction Results," Advanced Technology optical Telescopes, SPIE Vol. to appear in 1982.

Center for Astrophysics

Harvard College Observatory Smithsonian Astrophysical Observatory

MEMORANDUM

To: Distribution
December 16, 1981
From: W. A. Traub WAT
Subject:
First results from a crude image reconstruction dompuser program.

The theoretical work that Warren Davis has been doing during the past three months has led to a better understanding of the image reconstruction problem for COSMIC (OCTAS), and has suggested a simple computer technique which will be illustrated in this memo. Part of the motivation for writing this computer program was to gain some experience with the practical aspects of generating an image, doing fast Fourier transforms with the array processor, and displaying the results in a meaningful way. The program also provides a simple reconstruction technique as a baseline against which more refined methods can be compared later. The name of this program, CRUDE, is intended to convey a sense of its current state of sophistication. In fact, only a very few of the theoretical constructs which appear in Davis' notes on this subject have been used in the current computer program; many as yet untouched areas must be explored before we can claim to be able to extract the full amount of information from the individual images produced by a linear array of coherent telescopes.

Consider a single image of a small region of the sky as formed by an ideal, diffraction-limited telescope having an aperture which is essentially a long, narrow slit. The diffraction pattern in the focal plane which corresponds to a point source in the sky will also be elongated, but at a right angle to the aperture slit. This image clearly contains the maximum available amount of high-resolution information in one spatial direction, but little information in the orthogonal direction. Wen can demonstrate this by taking the two-dimensional Fourier transform of the image: we will find many more Fourier coefficients going out in the high-resolution direction than we will in the low-resolution direction. Suppose we save these coefficients.

Now we imagine the detector to be fixed in inertial space, while the telescope array is rotated, so the center of each star image will not move with respect to the detector, but the diffraction pattern will rotate about each bright point source. An image with such a rotated aperture will have high-resolution information in a different direction, so Fourier-transforming the new image and combining this result with the original will start to fill in the frequency plane. clearly some low-frequency points will, be represented in both views and they will be disproportionally represented unless we allow for this multiple counting; a weight function of some sort can easily be used which essentially will keep track of the degree to which each frequency point has been sampled by the various rotated slit apertures. After all views have been added, this weight can be used to normalize each frequency
point. The inverse Fourier transform will then be a representation of the star field which contains essentially all measured high-spatialfrequency components in all directions. This reconstiructed star field should be essentially the same as could have been obtained with a single large mirror having a diameter equal to the length of the slit-aperture telescope, and this is indeed true, as we shall show below.

1. Conventional telescope apertures. To illustrate these concepts and to show how program CRUDE can be used to display the various stages in a calculation, we will first discuss what happens when a convontional circular telescope aperture is used to image a point source. In the following figures we will display various 2-dimensional objects, functions, or images as points on a 64 by 64 grid, with contour levels drawn at either 9 intervals (ie, $10,20, \ldots, 90$ percent) or at 5 intervals (ie, $16,33,50,67,83$ percent). Above each contour diagram there is plot displaying a slice through the same data, from left to right; the slice is positioned to include the peak data point. In Fig. la we show a single large telescope mirror which is circular to within the discrete limits of our grid, and has unity transmission within this circle. The mirror diameter is 31 units.

For photons of a given wavelength, the diffraction pattern of a telescope is conveniently given by the Fourier transform of the autocorrelation of the aperture transmission, as described in Davis' notes (eqn. 26). The autocorrelation can be calculated either by stepping the aperture across itself and multiplying a total of 64×64 times, or more conveniently by calculating the Fourier transform, taking the square magnitude, and again Fourier transforming (eqns. 24 and 25). Using the latter technique, we calculate the autocorrelation shown in Fig. lb, where the lower left-hand corner point is the origin, ie., the point which corresponds to zero relative displacement. between the multiplied apertures. This figure and all others are periodic modulo 64 points, so the plane should be corsidered to be tiled with such figures, making it clear that the four filled corners of $F i g$. ib can be looked upon as offset segments of circles centered on the origin. The total extent of these circles is just one point less than twice the telescope diameter, as expected (Davis' eqn. 197). Again, viewing Fig. Ib as the Fourier transform of the diffraction pattern of the aperture, we see that the origin corresponds to the zero-frequency or DC point, and that higher spatial frequencies correspond to points farther from the origin. Those points beyond $64 / 2=32$ points in either direction are aliased, and the values in these 3 quadrants should be considered to be translated to the left by 64 points so as to surround the origin.

The image of a single point-like star, as seen by the telescope in Fig. la, is shown in Fig. lc. This image was calculated by first setting up a single (l pixel) star, then calculating the Fourier transform of the star (in this case a complex vector with unity atagnitude everywhere in the frequency plane), multiplying by Fig. ib, inverse Fourier transforming, and displaying the real part as seen in Fig. 1 c .

Continuing the illustration, we show in Figs. 2 and 3 the corresponding apertures, autocorrelations, and star images from circular mirrors with diameters of 15 and 7 pixels respectively. As expected, sinaller mirrors sample fewer of the spatial high frequencies, and therefore produce broader star images.

With these three images before us, it is of interest to attack an absolute scale to the figures and make a comparison with standard measures of resolution. Intexpolating between the discrete data points shown in the upper parts of Figs, $1 \mathrm{c}, 2 \mathrm{c}$ and 3 c , we find values for the full-width at half-maximum (FWHM) of 2.18, 4.43, and 9.67 pixels, respectively. Referring to Davis' eqn. 172, we find that the field-of view, ie. the width of Fig. $1 c, 2 c$, or $3 c$, is given by $\lambda / \Delta X$ where λ is the wavelength and ΔX is the sample interval across the mirror, ie. the pixel size in Fig. la, 2a, ox 3a. If we choose a visible wavelength $\lambda=0.5$ micron, and a telescope scaie factor of $\Delta x=1$ meter per pixel, we find a field-of-view of 0.103 arc-sec, which for 64 pixels gives a scale factor of 1.61 milli-arc-sec per pixel. The mirrors in Figs la, 2a, and 3a are then 31, 15, and 7 meters in diameter, and the stars have $F W H M=3.5,7.1$, and 15.6 milli -arc-sec, respectively.

To compare this with the classical equation for the intensity distribution given by $\left[2 J_{1}(z) / z\right]^{2}$, where z is a distance scaled by $\pi \lambda / D$ and D is the telescope diameter, we find that this function has a FWHM of $1.03 \lambda / D$ and a distance to the first zero of $1.22 \lambda / D$. This predicts values of $\mathrm{FWHM}=3.4,7.1$, and 15.2 , all of which are close enough to the hand-measured values that the differences can be attributed to uncertainties in the linear interpolation process, and the discrete approximation to a circular mirror (which biases the perimeter to be less than or equal to a specified diameter, so the diffraction pattern is always wider than predicted by the classical formula).
2. Linear apertures. The imaging properties of a coherent linear array of telescopes will now be sketched in a way that attempts to clarify the relationship between a circular aperture and a rotating linear aperture. This discussion also applies to rectangular single mirxor segments, since it is the overall shape of the aperture, not the details of construction, that matters here. In Fig. 4a we show an aperture which is 3 by 15 pixels, or 3 by 15 meters using our previous scaling for the sake of concreteness. The autocorrelation of the aperture appears in Fig. 4b, where the lower left-hand corner is the zero spatial-frequency point. Note that the orientation of the aperture is important, since the higher spatial frequencies are sampled in a direction parallel to the long axis of the aperture. In Fig. 4 c we show the effect of this aperture on a star field which consists of 3 stars of equal intensity; 2 of the stars are completely unresolved with this viewing angle. (In this and the following, only 5 contour levels appear in the figures.)

If we now imagine the detector to stay fixed with respect to inertial space, while the aperture is rotated by 45 degrees, we have the situation shown in Fig, 5. Note that the rather simple technique which is employed to rotate the discrete 3 by 15 aperture sometimes produces edge distortions and even gaps in the rotated array, bc,th of which are seen in the aperture drawn in Fig. 5a. The effects of these edge distortions and gaps on the final image are relatively minor however, since the overall shape of the aperture is not strongly affected. The frequency plane coverage is shown in Fig. 5b, and the star field image appears in Fig. 5c.

To complete the present example we show in Fig. 6 the case where the rotation has reached 90 degrees. Here the 3 stars have been completely smeared into one feature. In the next section we show how these snapshots can be combined and an image reconstructed.
3. Image reconstruction. The key idea behind our present image reconstruction scheme is given by Davis' eqn. 35 , namely that we consider a stack of frequency planes and that we simply add these planes together, with a suitable filtering function if desired. This sum should be properly normalized to account for the greater number of low frequency measurements with respect to samples at tho rotacing high frequency end of the autocorrelation function. The real part of the inverse fourier transform then is the desired image. This method is very general, as can be seen from the fact that in the limit of very long and narrow apextures, the calculation yields just the computer-assisted-tomographic (CAT) scan reconstruction (see Davis, pp. 9-11).

The entire simulation procedure which was used can be outlined as follows:
A. Set up real stars within the basic 64 by 64 pixel field-of-view,
B. Calculate FT of atars and rave.
C. Set up an "ideal" aperture shape by assigning real l's to the 3 by 15 aperture and 0's elsewhere.
D. Rotate the aperture to the nearest discrete grid points available for a specified rotation angle.
E. Set up a "noisy" aperture by following C and D, except that the I's are replaced by exp (ix) where x is a real random number between $+X / 2$ and $-X / 2$ and X is the peak-to-peak phase error assigned to each mirror element.
F. For the "ideal" aperture, calculate the FT, find the magnitude squared at each point, and calculate a second FT; this is the autocorrelation function.
G. For the "noisy" aperture, follow step F.
H. Set up background noise, by filling the 64 by 64 field-of-view with real random numbers Y, where Y is between $+Y / 2$ and $-Y / 2$ and Y is the peak-to-peak background noise assigned to each pixel in the field of view, from CCD read-out noise, cosmic rays, etc.
I. Calculate the FT of the background noise.
J. Calculate the effect of image smearing and added noise by forming ($B \times G$) $+I$.
K. Calculate a filter function according to whether filter number 0,1 , or 2 ie desired:

Filter 0 real 1 's filling 64 by 64; Filter $1=$ real l's $^{\prime}$ where the magnitude of F is essentially non-zero, Filter $2=$ magnitude of F.
L. Filter the image FT by forming $J \times K$, and add this to previously formed stack, if any.
M. Calculate the current contribution to the normalizing function by adding K into a separate stack.
N. If there are more angles to contribute to the final image, return to step C, and repeat this until the desired number of images has been added, typically 1,8 , or 16.
P. For the summed data now, calculate the normalized, weighted imaje FT by forming L / M.
Q. Find the final image by calculating the inverse $F T$ of P and keeping the real part.

The above reconstruction procedure differs from that discussed by Davis (eqn. 56) in that Davis' normalizing factor includes an extra multiplicative aperture term; in the noise-free case this term will enhonce the angular resolntion substantially, but when noise is included the algorithm becomes uristable. The present method of reconstruction has not yet been theoretically analyzed to optimize the filtering (K) or the normalization (M), and shculd be regarded as being purely exploratory.

For reference we show in Fig. 7 the input star field (step A above) which was used to generate Figs. 4, 5, and 6. Carrying out the full reconstruction as outlined above, in the noise-free case and using filter type 2, we have tried both 8 and 16 angle views (between 0 and 180 degrees) with the results shown in Fig. 8 and $9 a$, respectively. Except for an improved baseline, the two reconstructions are quite similar. Both show a clean separation of the wide-spaced components, and a clear . elongation of the close-spaced stars. For comparison, we show what this star field would look like if we used a small telescope with a 3 by 3 aperture (Fig. 9b), and a large telescope with a round aperture 15 pixels in diameter (Fig. 9c). Note that Fig. 9a is quite similar to Fig. 9c, but with slightly stronger sidelobes (see also Fig. 4c). In comparing these figures, note that the diffraction FWHM of a 15 pixel circular mirror is 4.4 pixels, and the star separations shown are 3 and 10 pixels, so the close pair is expected to be unresolved.
4. Background noise and filters. We now present a catalog of images showing the effects of adding background noise as described in section 3H. At present the noise level is not clearly related to the amplitudes of the stars; this will have to be clarified in later versions of the program. For now, amounts of noise with peak-to-peak parameters of $0.0,0.1$, and 1.0 have been tried, and the effects of the 3 filter schemes have been examined. In Fig. 10 we show the results of using filter types 0,2 , and 2 with no noise. Figs. 11 and 12 are similar, but with noise levels of 0.1 and 1.0 respectively. Several points can be made from these figures. First, filter type 0 gives large, extended wings and relatively poor noise rejection, as could be expected from adding unweighted and unfiltered data. Second, filter types 1 and 2 are roughly comparable in their effects, with type 1 apparently giving somewhat better smoothing of the noise; this is surprising because by design filter type 2 smoothly rolls off the higher frequencies within the passband, whereas type 1 keeps all frequency components right out to the edge of the passband and then cuts off sharply. Future work will be needed to better define useful filters which will deliver optimum resolution at a given noise level.
5. Optical phase fluctuations. The mirror train which lies between the incident wavefront and the detector will unaoubtealy include various types of imperfections. We assume here that there are no gross tip-tilt errors in the alignment of the combining wavefronts, but that there is a residual, random piston error distributed over the pixels which represent the mirrors. In Fig. 13 we show the effect of introducing piston errors with peak-to-peak phase shifts uniformly distributed over the ranges of $36,90,180$, and 360 degrees, corresponding to amplitudes of $\lambda / 10, \lambda / 4, \lambda / 2$, and λ. The rms values are about 4 times smaller than the peak-to-peak values. We see from Fig. 13b in particulax that an acceptable upper limit on the phase variation is probably somewhat greater than $\lambda / 4$, assuming that we require a signal-to-noise of about 100 in the image. If there are 7 mirrors in the optical path, the surface quality on each mirror must be roughly $7^{1 / 2}$ times better, or $\lambda / 10$. This is certainly within the limits of conventional optical polishing technology and should not be too expensive to achieve. This value should be only tentatively entertained however until further computer simulations have been completed, using nore pixels across each mirror, and including some tip-tilt errors as well.

WAT: jv
Distribution:
N. P. Carletion
W. F. Davis
H. Gursky, NRL
M. Nein, MSFC
R. Taylor

ORIGIVAL PNGE [g] OF POOR QUALITY

Fig. la Mirror, diameter $=31$ units

Fig. 2a Mirror,
diameter $=15$ units
Fig. 2a Mirror,
diameter $=15$ units

 Fig. Ib Autocorrelation. Fig. Ic Image
 OF POOR QUALITY

Fig. Aa Linear aperture at 0 degrees

Fig. Ab Autocorrelation Fig. Ac Snapshot image

Fig. Sa Linear aperture at 45 degrees

Fig. Sb Autocorrelation Fig. Sc Snapshot image

Fig. Ga Linear aperture at 90 degrees

Fig. Gb Autocorrelation Fig. 6c Snapshot image

Fig. 7 Three point-like stars
Fig. 8 Reconstruction using 8 angle views and a 3×15 array

Fig. 9a Reconstruction
using 16 angle views, and a 3×15 telescope

URIGINAL PROU E OF POOR QUALITY,

Fig. 9b Single image using one 3×3 telescope aperture

Fig. 9c Single image using one round 15 pixel aperture

Fig. 10a Filter 0
Fig. 10b
Filter 1
Fig. 10c
Filter 2

Fig. 11b
Fig. lia Filter 0
Noise level $=0.1$ in each case.

Fig. 12a Filter 0 Noise level $=1.0$ in each case.

Fig. 12c Filter 2

ORIGINAL PAGE IS. OF POOR QUALITY

Fig. 13a Phase errors $=\lambda / 10$ peak-to-peak

Fig. 13c Phase error $=\lambda / 2 p-p$

Center for Astrophysics

Harvard College Observatory Smithsonian Astrophysical Observatory

MEMORANDUM

Distribution
From: W. A. Traub , iff
Subject: Zomputer demonstration of the initial coherent alignment of cosmic

1. Introduction. This memo is an illustrated demonstration of the technique by which the COSMIC telescope array can be easily aligned using a small or distant star. To start., we assume that each independent telescope module is essentially optically ideal, and that the recombination optics and detector are likewise ideal. Initially, however, these ideal telescopes are assumed to be mutually non-coherent, so that each one is pointing in a slightly different direction and each is slightly ahead or behind its proper position with respect to the incoming wavefront.

The presentation of results here follows that in the previous memo, "first results from a crude image reconstruction computer program." Modifications to that program (CRUDE) now allow each telescope module to be tipped, tilted, and piston displaced. For each case, we show a contour diagram of the intensity in the focal piane, along with a cross-section through the focal-plane which includes the point of maximum intensity.
2. Tip-tilt correction. We start by blocking the beams from all but two of the telescopes. Taking these two to be adjacent, and square, we will initially see two sets of star images in the focal plane. The telescope can now be focussed so that each one produces images which are as smail in diameter as is possible. If we look at a portion of this field of view, we will have a situation similar to that shown in Fig. la, where a single star appears double because the mirrors are tilted with respect to one another. We have offset the second wavefront* by one wavelength across its width for an angular tilt of λ / D, and also by the same angular amount in the perpendicular direction, for a net shift of $\sqrt{2} \lambda / D$, where D is the mirror dimension.

To combine the images, it is easy to see that a telescope operator can reduce the error to essentially zero along one axis without much difficulty, bringing us to the state shown in Fig. lb. Here we see interference patterns developing in the overlap region. Successive tilts in the remaining direction produce the images shown in Figs. lc, d, e, and f, going to tilts of $(0.5,0.25,0.125$, and 0.0$) \lambda / D$ respectively.

[^1]3. Monochromatic piston correction. The telescopes in Fig. 1 had no piston displacement, i.e. we assumed coincident arrival of wavefronts in the focal plane. If there had been, say piston error of 0.5λ, then Fig. la would still fairly accurately describe the images since they do not yet overlap, but bringing the tip-tilt errors to zero will produce the result in Fig. 2a, rather than that in Fig. 1f. The "double image" in Fig. 2a is an artifact produced by the exact cancellation of amplitudes at the position where the star should ideally have been imaged. As we reduce the piston error to ($0.25,0.125$, and $0.0) \lambda$ we find that one of the images grows at the expense of the other, and that the peak intensity shifts toward the expected star position.
4. Combined tip-tilt and piston correction. The first two mirrors (or telescope modules) are now perfectly aligned. In general, of course, both tip-tilt and piston exrors will be present together. However it is not necessary to demonstrate the simultaneous correction of both conditions because it is clear from Fig. la that we can immediately determine the tip-tilt error simply by measuring the offset between images and doing a one step correction, which takes us immediately to Fig. 2a.
5. Polychromatic piston correction. In monochromati.c light the piston correction can only be made modulo one wavelength; but it is also reasonable to expect that if we use a wide spectral band we can reduce the error to at most a very few wavelengths, since we then have the combined leverage of the longest and shortest wavelengths to produce the sharpest possible image. As an example, suppose that the mechanical integrity and structural stability of the cosmic array is such that we can assume each wavefront to be within a piston displacement $\mathrm{p} \gg \lambda$ of the ideal position.

Then using a filter to generate monochromatic light, and following the correction steps shown in Figs. 1 and 2, we adjust the piston position of the second wavefront by an amount < 1.0入. If we define $n=p / \lambda$, there are approximately $n \gg 1$ different positions where we will get about the same image quality, and these positions are spaced by λ. Suppose that the accuracy of positioning is $\varepsilon \lambda$, where $\varepsilon \ll 1.0$; comparison of Fig. 2c with 2 d suggests that $\varepsilon \simeq 0.1$ is appropriate. This argument can also be used to show that the spectral purity of the nominally monochromatic beam does not have to be any better than $\Delta \lambda=\varepsilon \lambda$, which is easy to produce with an interference filter or a circular variable filter.

We now use a different filter to select a second wavelength λ_{2}, where λ_{2} differs from the first wavelength λ by a fractional amount given by the quantity ε, so that $\lambda_{2} \simeq \lambda(1.0+\varepsilon)$. In general this will require a slightly different piston correction, again < $1.0 \lambda_{2}$. Now the number of possible positions where both λ and λ_{2} give good images is reduced to approximately εn, spaced by $\lambda_{2} / \varepsilon \simeq \lambda / \varepsilon$.

If we repeat this process with a third wavelength $\lambda_{3} \simeq \lambda(1.0+2 \varepsilon)$, we will again increase the spacing between acceptable piston displacements to approximately $\lambda / \varepsilon^{2}$, i.e., another factor of $1 / \varepsilon$. If we carry out this process a total of m times, we will fincrease the spacing between acceptable piston spacings to about $\lambda / \varepsilon^{m-1}$; we can stop when this quantity grows, as large as the original positional uncertainty p, so we have $\lambda / \varepsilon^{m-1}=p$.

If we use the above estimate that $E=0.1$, and take $\lambda=0.5$ micron and $p=5 \mathrm{~mm}$ (say), then we require $m=5$. Thus we need 5 different filters centered at wavelengths $0.50,0.55,0.60,0.65$, 0.70 microns. Equivalently, it is likely to be true that we could simply use a single wide band ranging from 0.50 to 0.70 microns and sweep the mirror through the full adjustment range of 5 mm , searching for the minimun image width or brightest central peak.
6. Multi-mirror corrections. The procedures described above will bring two adjacent mirrors into essentially perfect ali,gnment; remaining imperfections are clearly below the level of measurement, and are therefore unimportant. The other telescope mirrors can be aligned in succession. For example, the first mirror could be shuttered, and mirrors number two and three co-aligned, then three and four, etc. Uncovering all mirrors together should yield a well-aligned telescope array, with further minor adjustments needed only to eliminate any accumulated errors.

It may also be possible to devise even more automatic schemes whereby we perturb each mirror control element by a fixed amount, measure the image, and then calculate the complete correction needed, using a matrix inversion (for the linearized case) or an inverted image formation program (for the more general case). In the ideal case, of course, a single image measurement should suffice in order to generate the full correction needed, but this is not likely to be stable in the presence of noise. Nevertheless, these cases all deserve further investigation.

WAT: jv
Distribution:
N. P. Carleton
W. F. Davis
H. Gursky, MRL
M. Nein, MSFC
R. Taylor

Fig. 1. Images from a single star, as formed by two adjacent telescope mirrors, each 7 by 7 elements in size, with second wavefront tipped and tilted with respect to the first mirror.
(a.) Tilt-tip from edge-to-edge of second wavefront is one wavelength (1.0入) on each axis, so image splits in two parts, such that the first (reference) mirror's image remains centered.
(b.) Up-down tip on one axis restored to zero (0.0λ), with other axis tilt remaining at one wavelength (1.0).
(c.) Tilt reduced to 0.5λ.

(a.) Tilt reduced to 0.25λ.
(e.) Tilt reduced to 0.125λ.
(f.) Tilt reduced to zero (0.0λ); note that, as may be expected, Figs. $1(e)$ and (f) are very similar.

- ORIGINAR PAGE IS

 OF POOR QUALITY

Fig. 2. Images from a single star, as formed by two adjacent telescope mirrors, each 7 by 7 elements in size, with second mirror displaced toward the star (i.e. a piston error) with respect to the first mirror.
(a.) Piston error of one-half wavelength (0.5λ) in the wavefront. (b.) piston error reduced to 0.25λ.

(c.) Piston error reduced to 0.125λ.
(d.) Piston error reduced to zero (0.0).

Memo

TO:
Distribution
January 25, 1983
From: W. A. Traub
Subject: Lab demonstration of image reconstruction

This is a brief account of the first laboratory simulation of COSMIC, with computer reconstruction of the image. The work was done in August and September 1982, with Drs. J.Geary and N. P. Carleton in the lab and John Lavagnino at the computer.
optics. The optical set-up is shown in Fig. 1. The light box, aperture slit, lens and CCD camera were clamped to a simple triangular-cross-section optical bench. The wood light box contains a low-wattage incandescent frosted bulb, run at 110 volts. The object mask is a 6 by $12 \mathrm{~mm} \mathrm{T-shaped}$ slot milled in a thin sheet of brass, and backed by a piece of diffusing glass. The object mask and lens are separated by about 1067 mm . The aperture slit is from a lab monochromator, formed by evaporated metal jaws on glass; the width is $102 \pm 2 \mu \mathrm{~m}$ and length is $534 \pm 12 \mu \mathrm{~m}$. The aperture slit mount can be rotated about the optical axis, and set by reference to an azimuth grid of polar coordinate paper taped to the mount. A blue-transmitting filter follows. The camera uses a multi-element $\mathrm{f} / 5.6$, 135 mm Componan Schneider-Kreuznach lens. The CCD is a thinned, back-illuminated RCA 320-by-512-element device, with $30 \mu \mathrm{~m}$ pixels, and essentially no dead space. The chip is located behind a window in an evacuated space, and is cooled by connection to an LN_{2} reservoir to about 150 K .

Exposure. With the slit removed, the lens is first focussed at full aperture. With the slit inserted, the image is only sjightly blurred in the $534 \mu \mathrm{~m}$ direction, but strongly blurred in the $102 \mu \mathrm{~m}$ direction. Eighteen frames are exposed at slit rotation increments of 10 degrees. Each frame consists of a short bias exposure and a long object exposure, in any order, summed on the CCD chip. The bias exposure is $1 / 30 \mathrm{sec}$, with the slit assembly removed, the object blocked, and the camera illuminated by dim room light scattered from a white surface; the bias level amounts to about 100 counts/pixel, and is needed because there is a loss of almost this amount in the camera readout. With the slit in place, the object exposure is 120 sec, giving a peak intensity of about 8000 counts/pixel. A flat field exposure is also made, like the bias exposure, but with a higher light level; the average intensity is 12000 counts/pixel. The conversion factor is 1 count _ 30 electrons.

The 18 frames are apread over 2 days, since 5 of ithe original frames are contaminated by a ghost. A 15 degree tilt of the filter throws the ghost out of the field. The 18 useable frames are flat-fielded with standard Nova software. Readout defects affecting several columns outside the main image are removed by local averaging.

The centering is slightly different on the 2 days. From direct images without the slit, the first group appears to be centered at (row, column) $=(208.5,205(+))$, and the second group is centered at (218(t), 204.5). A 256 by 256 pixel array is selected from each frame, centered at (208, 205) for the first group, and $(218,204)$ for the second group. There is thus some residual centering difference between the groups. The Nova images are recorded on tape for subsequent processing.

Reconstruction. The resulting clean, centered images are manipulated and displayed on the $I^{2} S / V A X$ system. All images are first reduced to 128 by 128 pixels, by binning groups of 2 by 2 ; this is done to accommodate the finite storage space in the Array Processor.

The reconstruction algorithm needs to know the aperture shape, size, and orientation for each exposure. In our discrete Fourier transform approximation, with 128 points in each dimension, a rectangular function of width W pixels has a DFT which is a sinc function having zeroes spaced at multiples of $p_{8}=128 / \mathrm{W}$ pixels. Thus the recorded image is (ideally) the Convolution of this sinc function with the geometric-optics image.

We determine W by measuring the relative positions of the lst and 2nd secondary maxima in a selected image, where the object axes are conveniently aligned with the pixel axes. As sketched in Fig. 2, the diffraction pattern is

$$
\begin{equation*}
\left(\sin \pi p / p_{0}\right)^{2} /\left(\mu p / p_{0}\right)^{2} \tag{1}
\end{equation*}
$$

The first zero occurs at pixel

$$
\begin{equation*}
p_{0}=(\lambda / d) f \tag{2}
\end{equation*}
$$

where f is the distance from the lens to the image:

$$
\begin{equation*}
f^{-1}+(1067)^{-1}=(135)^{-1}, \text { or } £=155 \mathrm{~mm} \tag{3}
\end{equation*}
$$

From 7 measurements of various secondary maxima at positions

$$
\begin{equation*}
p(\max)=(\text { integer }+1 / 2) p_{0} \tag{4}
\end{equation*}
$$

we find

$$
\begin{equation*}
p_{0}=23.90 \pm 0.76 \text { pixel. } \tag{5}
\end{equation*}
$$

Using equation (1) we calculate an effective wavelength

$$
\begin{equation*}
\lambda=0.472 \pm 0.015 \mu \mathrm{~m} . \tag{6}
\end{equation*}
$$

The discrete equivalent aperture width is

$$
\begin{equation*}
W=128 / p_{0}=5.36 \pm 0.17 \mathrm{pixel} \tag{7}
\end{equation*}
$$

Given the measured length to width ratio of the silt

$$
\begin{equation*}
535 / 102=5.24 \pm 0.16 \tag{8}
\end{equation*}
$$

we calculate the discrete equivalent aperture length as

$$
\begin{equation*}
L=5.24 \times 5.36=28.09 \pm 1.24 \text { pixel. } \tag{9}
\end{equation*}
$$

The reconstruction algorithm requires the autocorrelation function, which we usually generate from the DFT of the aperture transmission function. However since (L, W) are not whole integers, some approximation is needed. A modificacion to the program now allows non-integer aperture sizes, by adding a one-pixel fringe around the aperture with a fractional transmissinn instead of unity or zero transmission. The algorithm is also improved by a new aperture rotation scheme which searches out and eliminates gaps which occur as the aperture is numerically rotated on a discrete grid of points. However there still remains the effect that a numerically rotated aperture does not turn smoothly, but in discrete steps, generally producing a staircase profile where it should be smooth. Numerical simulations verified that the above modifications did indeed improve the quality of the reconstruction. Further simulations with a numerical point source also verified the two-dimensional analog of equation (1), as well as the fringe-pixel approximation which leads to

$$
\begin{equation*}
p_{0} W \simeq \text { const. }=122 \text { to } 129 \tag{10}
\end{equation*}
$$

in the examples tested.
The mathematical procedure is described in Traub and Davis (1982), SPIE 332, 164-175. In Fig. 3 and 4 we show individual images at $0,40,90$ degrees, and the final reconstructed image. Several variations of parameters were tried, none of which had any strong effect on the reconstructed image. First we tried 19 frames instead of 18, with only slight improvement. Next we tried filter 1 instead of filter 2, and it was worse, as expected. We tried various values of the cutoff parameter (ε) which prevents very small numbers from being divided by other, even smaller numbers; we found $\varepsilon=0$ and 10^{-8} to be essentially identical, but 10^{-4} to be large enough to degrade the image noticeably. We tried changing the numerical aperture dimensions, finding +10 percent to give a slightly sharper image, and -10 percent to give a slightly
poorer image. Finally we tried changing the initial offset angle of the aperture with respect to the pixel axes, and found -5 degrees to be a bit worse, +5 degrees to be a bit better, in agreement with independent estimates that +3 degrees or so would be most appropriate.
conclusion. Our first laboratory demonstration of image reconstruction was remarkably successful. Many non-ideal factors entered into the process, amply demonstrating that the algorithm is immune to small perturbations. In the future, with an improved optical system, we can expect to do even better.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 1. Optical arrangement. Starting from the back-illuminated object at the left, the light passes through the defining aperture slit, the blue filter, an imaging lens, a vacuum window, and finally falls on the $C C D$ chip. Note that the aperture slit is not being used in strictly parallel light as would be required to simulate an astronomical telescope aperture. Also neither is the aperture coincident with the imaging lens, although it is as close as possible. Numerous glass-air surfaces in this system can contribute to ghosts, although the (untilted) filter-reflection ghost was the only major one noted.

Figure 2. The slit, and its digital approximation (see text) are shown on the left. A schematic diffraction pattern with zero positions marked is shown on the right.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS
 OF POOR QUALITY

Reconstruction ae 18 CCD Images, to Demonstrate COSMIC Image Reconstruction Method.

Figure 3. Images generated in the $I^{2} S$, originally rendered in false color on a transparency. The 0,40 , and 90 degree images are shown, along with the relative orientation of the aperture slit. The reconstructed image is shown at the lower right, along with the equivalent diameter circular aperture.

Figure 4. Contour diagrams of measured intensity are shown in (a)-(c) for the 0, 40, and 90 degree images. All contours are drawn at the $10,20,30, \ldots 80,90$ percent levels after subtraction of a weak background. The reconstructed image is (d), showing a small ghost feature at the 10 percent level near the inner edge of the arms.

SCIENTIFIC PROSPECTS WITH the COSMIC telescope Array

June 1982

Center for Astrophysics
Harvard College Observatory and Smithsonian Astrophysical Observatory

Contributing Authors

N. P. Carleton
S. S. Murras
F. A. Franklin
R. W. Noyes
M. Geller
M. J. Reid
J. E. Grindlay
R. Stachnik
J. P. Huchra
I. P. van Speybroeck
R. E. McCrosky
M. V. Zombeck

Edited by W. A. Traub
Contents
Introduction 2
Comets 4
Asteroids 4
Jupiter 5
Saturn 6
Pluto 6
Main Sequence Stars 6
Supergiants 7
Circumstellar Emission 8
Binary Stars 8
Globular Clusters 8
Active Galactic Nuclei 10
Supernova Remnants 11
Jets in Galactic Nuclei 11
Supermassive Galactic Cores 12
Identification of Faint X-ray Sources 12
Extragalactic Distance Scale 13
Deceleration Parameter 13
References and Acknowledgments 14

Cover: General view of the full cruciform configuration of COSMIC, developed during the Marshall Space Flight Center engineering conceptual definition study (1981). Each of the four main arms is a telescope module which has been brought into orbit by the Space Shuttle. The fully-extended sunshades distributed along the upper surface of each telescope module are collapsed during launch. Also the downward projecting spacecraft and articulated solar panels are folded for launch. Each telescope module is sized to nearly fill the Shuttle bay (4.6 m diameter, 18.3 m length). The first telescope module to be placed in orbit will have an optical baseline of 14 m , and will be fully operational. The second telescope module will increase the optical baseline to 35 m . Third and fourth modules may be added to form a cruciform shape, although recent image reconstruction developments suggest that the cross arms may not be needed. Each telescope module is capable of supporting 7 collecting mirrors, each 1.8 m across (square as shown, or round); only 4 of the 7 possible telescopes in each module are shown, and these are arranged in a minimum redundancy configuration, although ideally of course all available positions will be utilized. A diffraction limited image of the sky is formed in a centrally located Eocal plane, which is instrumented with cameras and spectrometers analogous to those in Space Telescope.

ORIGINAL PAGE IS
 - OF POOR QUALITY

SCIENTIFIC PROSPECTS WITH THE COSMIC TELESCOPE ARRAY

INTRODUCTION

In this paper we discuss for the first time a selected number of unique astronomical observations which would be possible with an orbiting telescope having both a large collecting area and an angular resolution in the milli-arc-second range. Most of these observations will allow us to study at firsthand. phenomena for which we currently have little or no direct evidence. In many cases we will finally be able to resolve objects on an angular scale such that significant new features and new events can be seen, vastly enhancing the opportunity for discovery. In other cases we will be extending to a much greater distance our present capabilities for both isolating individual objects and making morphological measurements, so we will be able to study a significantly increased fraction of the universe at the same level that we can now with relatively nearby objects.

The COSMIC telescope array has been specifically designed to investigate the class of problems described in this paper. COSMIC stands for coherent optical system of modular imaging collectors. In particular we envision a linear array of orbiting telescopes held in a rigid framework which rotates about its line of sight, sweeping out an equivalent diameter circular aperture. All telescopes feed a common focal plane where a diffraction-limited image is formed when the optical path lengths are adjusted to be within a quarter wavelength. For resolvable stellar surfaces a narrow band filter or attenuator will be used to avoid detector saturation; otherwise broad-band imaging will be the normal mode of operation. The instantaneous diffraction-limited image of a point source is narrow along the array's major axis only, but by using an already demonstrated image reconstruction technique it will be easy to build up fully resolved images after a 180 degree rotation of the array, even in the presence of noise and optical imperfections. A 1981 conceptual definition study of COSMIC by engineering personnel at Marshall Space Flight Center established that the overall concept was viable using currently available or anticipated technology. Focal plane instrumentation could be similar to that now being built for Space Telescope in that both cameras and spectrometers can be provided, the
latter taking advantage of the slit-like nature of the imaging point response function. Rapid read-out of the focal plane will ease spacecraft pointing requirements, now expected to be less stringent than for Space Telescope.

For concreteness, this report considers a COSMIC telescope array which is 35 m in length, brought up in two shorter sections by two Space Shuttle flights, although useful science can be done with only the first section in place. There are up to 14 collecting mirrors, each 1.8 m in diameter, feeding a central focal plane. The wavelength range is roughly $0.3 \mu \mathrm{~m}$ to $1.1 \mu \mathrm{~m}$; at the short wavelength end this corresponds to an angular resolution $\lambda / D=1.8 \mathrm{milli}-a r c-s e c$, and in the visible the resolution is 3 milli-arc-sec. The array is a natural follow-on for Space Telescope, since it has about 28 times better angular resolution and 8 times greater collecting area. We expect that the limiting magnitude for COSMIC will be in the neighborhood of $m_{v}=29$, for about 100 counts in a one hour observation.

The observing programs in this report were selected by the contributing authors from the perspective of their current research activities. Each of these programs has requirements in angular resolution and collecting area which go beyond the capabilities of Space Telescope. The only fundamental limitation is one which is common to all high angular resolution telescopes, including ST and VLBI, viz., the minimum detectable surface brightness increases as the angular resolution element decreases. Fortunately in the visible, as in the radio, there are a large number of classes of objects with intrinsically high surface brightness in the milli-arc-sec size range. The enhanced angular resolution of COSMIC will finally allow us to cross that boundary which separates our present status, where msst astrophysical objects appear either as point sources or as hopelessly smeared images, from our potential future status, where a vast number of objects will become well enough resolved that we can begin to understand their true nature.

COMETS

Comet nuclei are thought to have diameters of from l-10 km. Because of this small size and because of the difficulty in distinguishing between the solid nucleus and the bright, inner coma, there has not been a definitive, unambiguous measurement of a nucleus. Radar observation can give useful limits on the radar cross-section. Full scale COSMIC resolution capabilities should be adequate to resolve the nucleus of a comet passing within about 0.2 A.U. of Earth if the contrast between the nucleus and the coma - which will be fully developed at that heliocentric distance - is sufficiently high. COSMIC will also be able to detect and measure the velocities of comet nuclei which have split during perinelion passage.

COSMIC will permit detailed studies of the growth and activity of the inner coma. This includes: the formation, velocity and, possibly, the "hot spot" location of jets; the velocity field in the coma as displayed by any bright feature; and the evolution of the molecular species from the time gas is emitted from the sirface until an equilibrium is reached.

ASTEROIDS

Radii of asteroids are normally obtained by a combination of visual and far-infrared photometry. Confirmation and/or calibration of these somewhat indirect results by direct measurement is important.

The COSMIC telescope will permit us to examine those asteroids for which there is some evidence of'a bound companion.

Earth-bound observations of asteroids are limited to whole-disk measurements. Petrological or mineralogical differences between asteroids are apparent from narrow-band spectrophotometric measures. The periodic light variations seen in broad-band photoelectric photometry are probably due to irregular shapes rather than inhomogeneities in the surface composition but the two effects can not be separated in most asteroids by currently available observing procedures.

Abstract

Assuming a mean perihelion distarce of $2.5 \mathrm{~A} . \mathrm{U}$. for main belt asteroids and an albedo of 0.2 (measured albedus range from 0.05 to 0.4), the resolution element in the visible would be 3.2 km with a brightness of $m_{v} \approx 19$ per resolution element. Significant observations could be made on most of the numbered asteroids as displayed in the following table.

Perihelion magnitude	No. of cases	No, of resolution elements per diameter
$15-16$	672	25
$14-15$	666	60
$13-14$	364	160
<13	397	>270

Twelve of the asteroids included in the table are Amors with perihelion approaches to the earth of $0.2 \mathrm{~A} . \mathrm{U}$. or less and, in addition. there are 19 Apollos with still smaller approach distances. For these bodies, the resolution element will be in the range 100-400 meters. Apollos and Amors hold a special significance in that they, or still smaller bodies in similar orbits, are the source of meteorites. The question of their ultimate origin - asteroids, comets, or both - is unresolved. If, as believed by some, the Apollos include extinct cometary nuclei, the best hope for studying these lies in high resolution observations by COSMIC.

TUPITER

It would be possible with COSMIC to measure the shapes and rotation rates of the larger of the outer satellites J6-J12. Time-dependent observations of Io and studies of Jupiter's atmosphere could also be carried out, since 1.8 milli-arc-sec at Jupiter corresponds to about 5 km resolution, which is comparable to some of the highest resolution images obtained by Voyager 2; for reference, the volcanic plumes on Io are about 100 km high .

Two particular dynamical problems in the Saturnian system require high resolution astrometry.
(a) Positions of the two "co-orbital" satellites, 1980 Sl and 1980 s. These two can be observed from the earth only at the time of ring plane passage (every 15 years). Accurate relative positions will provide the sum of the masses of the two bodies thanks to their urique "co-orbital" motion.
(b) Hyperion, 58 , is a very irregular body whose long axis, apparently, points toward Saturn. This satellite moves in an orbit with an eccentricity of ~ 0.11 so that a libratron should occur. Measurement of this libratron provides a knowledge of the moment of inertia ratio of the body.

PLUTO

A detailed survey of the Pluto system would provide us with the planet's radius, rotation rate and axial orientation; it would also allow us to improve the orbit of, and possibly measure the radius of, its recently discovered satellite. Reliable values for these quantities are unobtainable by other means - i.e. although Voyager flights may provide such material for Uranus and Neptune, no encounters with pluto are scheduled.

MAIN SEQUENCE STARS

A prototypical main sequence star, α Cen, has an angular diameter of about 10 milli-arc-sec, so one should be able to detect (using a narrowband filter in the K-line, for instance) its rotation axis. It may be possible to obtain rough information on surface distribution of activity (whether, for example, emission is concentrated near the poles or the equator) and, over several years, follow crudely the "butterfly diagram" of
latitude of activity versus phase in the activity cycle - - an experiment of importance for stellar dynamo theory. One might detect differential rotation (another parameter of great interest for dynamo theory) with precision sufficient to be extremely important. One could obtain information on size and shape of active regions or activity complexes. In a "magnetograph" mode, one could begin to map large-scale surface structure of magnetic fields. All of these would be extremely useful, when compared with solar behavior.

SUPERGIANTS

a Orionis has an angular diameter of $40 \mathrm{milli-arc-sec}$ and reported diameters for o Cet range up to 100 milli-arc-sec. For o Cet, this implies as many as 30 resolution elements across the disk, in the visible. These M-type red giants possess very interesting and complex atmuspheric structure, COSMIC may be able to answer some fundamental questions, such as whether the variability of these stars is primarily due to pulsation or temperature changes. Spectral-line VLBI observations of $\mathrm{H}_{2} \mathrm{O}$ and SiO maser emission allow one to probe the extended photospheres of these stars in great detail. Very complex motions involving both expansion, contraction, ard shocks are suggested by the data. The ability of COSMIC to obtain spectral information as a function of position on the stellar surface would greatly aid in the understanding of this class of objects. There are a wealth of features that should be searched for, including:
a) Brightness inhomogeneities on the disk due to large convective cells, predicted (Schwarzschild) to have sizes ~ 0.1 of the radius.
b) Velocity asymmetries on the disk due to the above convective motions.
c) Overall shape changes due to photospheric motions; these are already inferred from polarization studies by Daniel Hayes.
d) Chromospheric emission structure above the limb in strong lines like Ca II 8542, Ha, or others; already detections of this by speckle techniques are being reported (not yet in print).
e) Variable velocity outflow in expanding shell could be mapped using dopplex-resolyed imaging.
f) Radial and nonradial large-scale pulsation.

EIRCUMSTELIAR EMISSION

Emission from circumstellar material surrounding and enveloping interacting binaries is potentially a very rich field for investigation with narrow-band interferometry isolating excited lines like H H, Ca II, O IV, etc. Much X-ray radio, UV and visual data suggest complex structure and motions. It would be extremely exciting to map this, for comparison with higher-energy data, including time development.

BINARY STARS

Although high resolution observations of binary stars may lack a certain glamour, they provide fundamental information on stellar masses. At the cost of a relatively small amount of observing time, a vast amount of fundamental information could be gathered.

GLOBULAR CLUSTERS

The milli-arc-sec angular resolution capability of COSMIC would be of special importance for studies of the highly condensed stellar cores of globular clusters. Centrally condensed globular clusters have central densities in the range $10^{4}-10^{5}$ stars $/ \mathrm{pc}^{3}$. Thus the typical stellar separations are only ~ 0.01 parsec and would subtend an angle of 0.2 arcsec at typical cluster distances of 10 kpc . Star counts and stellar population studies can then be carried out in cluster cores with COSMIC. This could only be partially accomplished with ST because of both the more limited angular resolution and sensitivity. The extra factor of $\lambda 10$ in angular resolution achieved with COSMIC will allow direct searches for visual binaries in, cluster cores, since ~ 2 AU separations are resolveable at
~ 1 kpc, mhis permits direct study of the frequency of binary systems in cluster cores. Compact binary systems are now known to exist in cluster cores since recent Einstein X-ray results have determined the mass of globular cluster X-ray scources to be $\sim 2 M_{0}$ or consistent (only) with the sources being compact binary systems and not massive black holes. These binary systems have presumably evolved from a significant population of wider-separation binary systems formed by tidal capture, and it is these systems which COSMIC could study directly.

In addition to studying the binary problem in globular cluster cores with direct images, spatially resolved spectra (with long slits across the core) could extend the searoh greatly by allowing velocity variations to be measured for a large number of stars simultaneously. This is also of fundamental importance for measuring the velocity dispersions in the centers of globulars. Central velpcity dispersions are now very poorly known (they are inferred from line profiles in the integrated cluster spectrum) and yet they are the most fundamental quantity of interest in describing the stellar dynamics of dense stellar systems. Again, the great improvements in both resolution and sensitivity over the $S T$ capabilities allow much more detailed studies to be carried out, e.g., measurements of the degree of isotropy in the velocity dispersion vs. radius and velocity dispersions vs. stellar mass (i.e., spectral type) to explore the central potential.

Finally, the "classic" problem of searching for central cusps in the stellar density profile such as would arise from either a central biack. hole or a subcore of heavier, evolved stellar remnants (black holes, neutron stars or white dwarfs) can be carried out with COSMIC better than with any other instrument in the forseeable future. Present upper limits on the mass of central bjack holes in globulars (which are not, and need not, be x-ray sources) are $\approx 3000 \mathrm{M}_{0}$. COSMIC could measure the $r^{-7 / 4}$ density profile cusp expected around a central black hole for masses as small as $\sim 50-100 \mathrm{M}_{\odot}$, or significantly below the limits possible with ST. The existence of subcores in clusters, already suggested for the X-ray clusters M15 and NGC 6624, could similarly be explored and important constraints on stellar evolution and the initial mass functions of globulars derived.

ACTIVE GALACTIC NUCTEI

COSMIC i w whell suited for imaging of galactic nuclei (Seyferts, quasars, BL Lac objects). The structure of the central regions of AGN's existence and possible variability of compact sources, accretion disk structure, etc. - is a topic of great current interest. present descriptions of the source morphology are based primarily on radiative transfer modeling of spectroscopic emission line data, variability timescale arguments and poor resolution (1 arc-sec) imaging. Very few AGN are bright enough radio sources to be studied with VLBI, especially the closest objects (eg, NGC 4151 or NGC 1068) where the smallest spatial scales would be visible, so optical imaging may provide the key to understanding these objects,

Stratoscope observations (0.2 arc-sec resolution) coupled with lower resolution ground-based spectroscopy have placed some constraints on dynamical models of M31. , However, models with M/L's from 0 to 50 can still be made to fit the datal Higher resolution observations (≈ 0.05 arc-sec) can distinguish between the photometric profiles of the high and low M/L models. COSMIC can also be used to make high resolution observations of the nuclei of other nearby galaxies with a variety of morphologies.

To illustrate with a particular example, there would be great interest in studying the terminal results of emission flows onto active galactic nuclei. X-ray measurements on M\&" ${ }^{\prime \prime}$ and NGC 1275, which go down to a level of about 1 arcsecond, permit accretion flow studies down to distances of 100 to several hundred parsecs from the galactic nucleus. In this regime, there is considerable X-ray emission with temperatures falling dowr to a few million degrees. At closer distances, temperatures should continue to fall to the point where most of the emission is in the optical. Accreting gas would form bright filaments. It would be interesting to observe this structure on the scale of a few tenths of a parsec. Thus, the milli, arcserpnd optical observations would provide a means of continuing the accretion flow studies that begins with X-rays at much larger distances.

SUPERNOVA REMNANTS

X-ray observations of galactic SNR indicate that several contain :nusually bright knots that are not obviously associated with n utron stars or pulsars. The Vela SNR and MSH 15-52 are two examples containing bripht knots (in addition to pulsars). It would be interesting to examine these bright knots to search for point-like components or for very fine filamentary structure that might show up in the optical.

JETS IN GALACTIC NUCLEI

Radio astronomers are now constructing images with an angular resolution from 0.0003 to 0.1 nrosec with VLBI techn.,ques. These images have proven to be exciting and revolutionary and VLBI has become an unparalleled tool for studying the structure and origins of the great variety of bright sources in the Universe. At present, however, interpretation of VLBI images has been limited in part because high quality op"ical images with angular resolution better than 0.1 arcsec do not exist.

There are several cases where high resolution optical images would clearly show significant, ztructure and greatly aid in the astrophysical understanding of the nature of the emitting objects. For example, radio jets are seen on scales from smaller than 0.001 to 10 ascseconds in objects such as QSO's, galaxies with active nuclei, and from the galactic "star" SS433. The mechanism for the radio emission is thought to be incoherent synchrotron emission. Extrapolating the synohrotron brightness to optical wavelengths suggests that many of these objects could be imaged with cosmrc. One of the most interesting extra-galactic sources, M87, appears to emit synchrotron radiation over nearly the entire electro-magnetic spectrum. It exhibits a striking radio/optical/X-ray jet emanating from the nucleus of the galaxy. VLBI images of the nucleus suggest that intensities of > 20 ergs/sec/cm**2/ sterad would be seen at optical wavelengths from a jet less than 0.01 wide and 0.2 arcseconds long; this intensity is nearly 10^{4} times greater than the detection threshold for COSMIC, and should therefore be very easily detected.

SUPERMASSIVE GAIACTIC CORES

Most of the problems outlined above for globular clusters can be carried out as well for the stellar clusters which are likely in galactic nuclei. A prime object for study, of course, is the nucleus of M3l. Stars could be resolved if the density is as high as $\sim 4 \times 10^{7} \mathrm{po}^{-3}$ which is larger than required to fit the central surface brightness. In M87 stars could be resolved and counted into the nucleus at densities of $\sim 10^{4} \mathrm{pe}^{-3}$. This would allow measurements of the isotropy of the velocity dispersion to be made in regions where it should be anisotropic if the apparent central cusps in both density and velocity dispersion are not due to a supermassive black hole. Thus COSMIC can directly probe the dynamical questions necessary to test whether active galactic nuclei and quasays are powered by supermassive ($\sim 10^{8}-10^{9} \mathrm{M}_{\rho}$) black holes.

IDENTIFICATION OF FAINT X-RRAY SOURCES

The most obvious use of the high optical resolution in conjunction with X-ray measurements is to find optical counterparts for X-ray sources which appear in deep surveys. For many X-ray sources, counterparts are too dim to be identified by present means. Very high resolution images, including color measurements (and high resolution spectroscopy, which should also be possible with COSMIC) might help us to find the counterpart or possibly to set very high lower limits on X-ray to optical luminosity and determine if the X-ray to optical ratio is evolving in the early universe. It is quite possible that the early universe contains X-ray sources with no optical counterparts. In general, the x-ray positions would be very well known from AXAF or LAMAR measurements so that the small field of view of COSMIC should not be a problem. A limiting magnitude of 29 will be suitable and necessary, for these observations. (Space Telescope is already needed for the Einstein de*n surveys.)

EXTRAGALACTIC DISTANCE SCALE

The extension of galaxy distance measurements using Cepheids depends critically not only on light gathering power because the or-acts are faint $\left(M_{v}=-6\right)$, but also on resolution because the objects are astan in the parent galaxy. This is also true for the identification and photometry of globular chluster systems ($M_{V}=-10$) around other galaxies. COSMIC can be used to measure Cepheids in rearby galaxies and in galaxies as far as the Virgo and Pegasus clusters (distance modulii of 31 and 33 magnitudes respectively). It can also be used to identify and measure the globular cluster systems around galaxies as far away as the Coma cluster and possibly the Hercules cluster (100 Megaparsecs or a distance modulus of 35) . Such measurements are important for studies of the large-scale dynamics of clusters of galaxies as well as for determination of the Hubble constant. Large-scale dynamical studies are a fundamental probe of the local mean mass density. Complete positional coordinates for galaxies in the flattened Local Supercluster are necessary for discrimination between the pancake and gravitational instability pictures for cluster formation.

DECELERATION PARAMETER

The morphology of the central regions of the brightest elliptical galaxies in clusters is interesting not only for the study of the dynamical evolution of such systens but also for the possible application of the angular size-redshift test to the determination of the cosmic deceleration parameter, q_{0}. If scale lengths in galsies or clusters of galaxies can be used as "standard measuring rods," the determination of change in scale as a function of redshift relation to the expected Euclidean $1 / r$ relation is a very powerful first order test of cosmological models. Brightest cluster galaxies have core-radii (Hubble profile) on the order of 1 kpc which is already smaller than 1 arc-sec at a redshift of only $z=0.1$. To study galaxies at redshifts . of. 0.5 , resolution well in excess of 0.05 arc-sec is required, so COSMIC is ideally matched to this type of observation.

ACKNOWLEDGEMENTS

We gratefully acknowledge the contribution of ideas and review comments by a number of individuals, including J. M. Moran, H. D. Tananbaum, W. H. Press, and G. B. Field. This work has been partially supported by NASA contract NAS8-33893 through Marshall Space Flight Center.

REFERENCES

The astronomical advantages of operating a large (but conventional) telescope in space have been presented in some detail in: Longair, M. S., and Warner, J. W. 1979, editors, Scientific Research with the Space Telescope, IAU Colloquium No. 54, NASA publication CP-2111, 327 pp .

A discussion of the COSMIC telescope array may be found in:
Traub, W. A. and Gursky, H. 1980, "Coherent arrays for optical astronomy in space," in Optical and Infrared Telescopes for the 1990's, vol. I, ed. A. Hewitt, KPNO, pp. 250-262.

The mathematic basis of the image reconstruction algorithm, along with numerical demonstrations, is presented in:

Traub, W. A. and Davis, W. F. 1982, "The COSMIC telescope array: astronomical goals and preliminary image reconstruntion results," in Advanced Technology Optical Telescopes, SPIE vol. to appear.

The engineering conceptual design study mentioned in the Introduction is found in:

Nein, M. E. and Davis, B. G. 1982, "Conceptual design of a coherent optical system of modular imaging collectors (COSMTC)," in Advanced Technology Optical Telescopes, SPIE vol. to appear.

Notes on Image Reconstruction for COSMIC

Part II (pp, 60-155)

Warren F. Davis
15 October 1982

Contents

page
Rotation and autocorrelation of the aperture 60
Aperture synthesis 75
Fourier shift theorem 75
Poisson photon statistics 85
Review of Poisson statistics 86
Post-aperture statistics 89
Fourier domain statistics 89
Other sources of noise 94
Noise filter with Poisson statistics 96
Some moments in the Fourier plane 108
Optimization in the Fourier plane 110
Combined images 132
Iterative solution 141
Hill-climbing solution 142
-60- virinum harid

Whech, BY (155), correesponins to $\lambda \alpha / 2 \pi A=2.65 \times 10^{-6} \mathrm{RAD}$. JNowank $\theta_{0}=1 \times 10^{-6} R A D$, THENE WILL BE AN INHGE SAMPLE EVENY

$$
\theta=3.65 \times 10^{-6} \mathrm{RAD} / 512=7.13 \times 10^{-9} \mathrm{RND} .
$$

 DIRETTION $[A=15 \mathrm{~m}]$ WILL BE

$$
X=\frac{\lambda}{2 \theta A}=1.4
$$

 FACTOR DJ, OF COURBE, TUST THE CATLO OF 512 ACTUAL SAMPLES TO THE $36 G$ REquIRED IN ν-SPACE.

Rotation $\&$ Autoconecurtion of the Apentune
IT IT NEEESSNYY TO COMPUTE THE AUTOCORLELATION OF THE ARERTURE GSVEN By (24) OR (26). IT IS ALSO NEEESNiNy TO 70 SO FON THE VAZTOUS ANGULAR OREENTATEONS OF THLS ANERTURE AN IT ROTATCU ABOUT THE OMISCAL AXIS. FINALLY, FOR COMPDTATIONAL REASONS, ST IS NECCESSARY TO WORK WITH DISCRETE VERSTON' OF THESE FUNCTEONS.

TO ROIATE THE AUTOCORRELATION, LITHER
a) THE ANERTUNE a $\left(\pi_{0}\right)$ CAN BE ROTATED AND THEN THE FOURIEN TRANSFORM OF THE SQUARED MODULUS OF THE TRANFENM OF a [ROTATLD] EVALUATED ACCONDENG TO (25) ANO (24)
or,
b) The Founzen Travsfory of $a\left(\vec{x}_{0}\right)$ CAN BE COMPUTED ONCES AND FOR ALL AND TTK ROTATION ACHEEVED By ROTADINE FSURIER SPACE. AGANN, THE AUTOCORNELTITON [ROTATED] WILL BE THE FOURIER TRANSFORM OF THE SQuANED MODULUS of THE [ROTATED] FOURTER TRANSFONM OF $a\left(\vec{x}_{0}\right)$ ACCONDING 70 (24).

EHTER $a\left(\vec{n}_{0}\right)$ OR ITS. FOURIER TRANSFORM $A(\vec{k})$ MUST BE ROTATLD.

ORIGINAL PREE PG
 WE WTLL CONSTPIER ROTATION [AND, THEREFORE, INTERPOLATION] IN FOUREER SPACE [CASE b)] bECAUSE THE FUNCTITONS TO INTENPOLATED THERE APPEAR TO BE SHDOTHER. HOWEVER, OVERALL THERE IJ PROBABLY NO GNEAT ADVANTAGE. WE WILL FONM THL ANTOCORRELATTON
 COMPUTATLONRLLY MORE EFFTOTLNT. SINCE THSS REQUIRES COMMTATION OF THE FT OF a $\left(\vec{r}_{0}\right)$, IT IS NOT UNREEASONADLE TO CONSTDER ROTATION IN FOURECR SPACE.

 DSFFERLNT FROM THOSE IMPOSED SY IMAGE RECOWSTRUCTION GNVEN ABOVE AND, IF SO, WHY?"
Consapen a peetangular anchiune in one prmensed of wioth A.

AT THE RIEHT IS SHOWN A(K) WHECH, IN ONE DEMENSTON IS, FROM (25),

$$
\begin{align*}
A(k) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} a(x) e^{-i k x} d x= \tag{175}\\
& =\frac{A}{2 \pi} \frac{\sin \left(\frac{k A}{2}\right)}{\left(\frac{k A}{2}\right)}
\end{align*}
$$

Note that $A(k)$ DIFFERS AROM THE FT OF $a(x)$ BY THE FACTOR 2π WHICH JOES NOT AMPEAR BEFONE RS IN TWE EXPONENTLAL [AS WEL AS BY THE OVERALL NCALE FACTBK OF $1 / 2 \pi$].
(1) SuTpLENG of $a(x)$ DY THE SERTES

$$
\begin{equation*}
\sum_{m=-\infty}^{\infty} \delta(x-m x) \tag{1x}
\end{equation*}
$$

Iv equavalent to convoution of $A(K)$ with

$$
\begin{equation*}
\frac{1}{x} \sum_{m=-\infty}^{\infty} \delta\left(k-\frac{2 \pi m}{x}\right) \tag{177}
\end{equation*}
$$

 IS DEFINDO BY (175). (177) IS A SERTES OF δ-FUNETIONS AT INTERVALS $2 \pi / X$ IN k.

TO AVODD ALEASENG IN K-SRACE WE WOULD LILEE THE ENRELOPE OF TTIE SINC FUNCTION (175) TO BE ATTENUATED BY SOME SUBJTANTBLL FACTOR α AT THE BDINT AT WAICH SINC CAN BE TRUNCATED. THE TOTAL WTDTH OF THE [TRUNCATED] SENC FUNETTON, THAT ES TO SAY TUE PERIODIEITY IN R-SPACE, WILL BE TWICE THRS VALUE. WLE RÉquare TheN That

$$
\begin{equation*}
\frac{1}{\left(\frac{k A}{2}\right)}=\frac{1}{\alpha} \quad \text { or, } \quad k=\frac{2 \alpha}{A} \tag{178}
\end{equation*}
$$

WHICH IS THE" ONE-SIDED" CHANGE IN R TO REAOH THE ILX POCNT OF THE ENVELOPE. THE TOTML WIDTH WILL BE TWIELS THITS VALUE

$$
\begin{equation*}
\frac{4 \alpha}{A}=\frac{2 \pi}{x} \quad \text { OR, }, x=\frac{\pi A}{2 \alpha} \tag{179}
\end{equation*}
$$

 ARERTURE SAMPLING ENTENVAL TLAN THAT DEREVED LEVLLER BASOD ON THE REqUEREMENTS OF IMAOE RECOUSTRUCTION AND WE MUST INVESTSGATE WHy THES IS SO.
Consider (174) for X based on imacer recionstruction. In pmiticular

CONSEDER THAT THE FIED of VECW IS ALLOWED TO BE EENO. L.E., $\theta_{0}=0$. THEN $X=2 \pi A / \alpha$ WHICH IS 4 TIMES THAT JUTT DERIVED.

THTS FACTOR OF 4 COMES ABOUT FOR TWO REASONS, EACH OF WHSCH CON.
 ThO PROCESSES INVOLVENG THE ARENTUNG.

Image Reconstituetreon

Rotation/Autocmeneation

IN THE FINST CASE (INBAEE RECONSTRUCTION), AFTEN FORMENG THE AUTOCORRELATION 2 THENE IS A DIVISION DY THE AUTOCOMEELITION IN D-SNACE WHECH EFFEETSVELY CREATES A REGTANGULAR WENDOW ON V-SAACE OF WIDTH A/T [3]. THE FT OF [3] HAS CHABACTERTSTLC WIDTH π / A in k-smace. This division stan os "onphysteal" and resulto in an IMAGE-PLANE RESOLUTTON THITCE THAT OBTALNED WITHOUT "RETIORATION" of the rectankular winpon in v-Space.. One measure of the "unt
() PHYSTCALNLSSS" OF THE REJULTINE IMAGE LS THAT ITT IN CONTSANT WITH THE CRLICNAL ITHGGE, contains nEGATIVE [unPNYSTCMC] values [4]. If

THE TRANSFORM OF THE AUTOCORNELLATLON MQD INSEEAD BEEN TAKEN, THENE WOVLD RETULT

WITH RESOLUTTON 2T/A AS COMPARAD WUTHI Π / A. WETHIN THE OVEMLLL FACTOR A THIS 25 VUIT THE SPUARE OF $A(K)(175)$ AND CONFIRMS (19) FOR A-Fuwetion IN $\mu(k)$.
[5] IS THE ACTUAL [NON-NEGATIVE] IMAGE FORMLDD BY A POLNT SOURCEE. ITS TRANSFORY IS A CONSTANT FUNETSON MULTIMLEP BY THE AUTOCORREL ATIUN OF THE APERTURE [2]. DNRSION BY [2] IN V-SPACE RESTORES [NEGECIING NOISE] FULL WEIGHT'TO THE CONSTNW FUNETION OVER $-N / 2 \pi<\nu<+A / 2 \pi$ WHSCH, IN TURN, RENULTS IN THKCE THE REDOLUTION IN THE IMAGE PLANE. WE HAVE RESTORED HEEH FREQUENCY INFOPMATION ATTENUATES BY THE TAPERING AUTOCORTELATION.

THIS APPEARS TO DE A GEEERN RENUT WHICH COKD BE USED TO EAHANCE THE RESOLUTION OF WY IMAGE GIVEN THE APERTURE FENCTION.

COULD THIS ENHANEEAMENT BE REPEATED ON THE WREADY ENHANCED-RCSOLITION IMAGE [4] ? THE ANSWER IS NO! WHEN Wİ STARTED WTTH [5] WE HAD TO DIVITE IN V-SINEE BY THE TRANSFORM OF 5], [2]. THE TRANSFORM OF THE ALREMDY ENHANCED ITAGE [4] IS [3], A CONSTANT OVER $-A / 2 \pi<\nu<+A / 2 \pi$. HMENEE, NO NEW REWNTVVE WEXGHTLNG OF THE V-DOMAEN COMPONENIS OF THE FIYAGE WILL RESULT, AND NO FURTHER IMPROVE゙MENT OF RESOLUTION.

IN THE JECOND CASE (ROTATION/AUTOCORREATION) THE CHARA TEERSTIEC WTVTH OF THE FOUREER TRANSFORM OF THE AMERTUNE G GAS TWLCE THE VALUEL IN R-SPACE AS TIRE RESOLUTION-LNHANCEO ITAGE 4]. SAMPLSNG $a(x)$ AT INTERVALS X RESULTS, IN THE IMAGE RECONSTNUGTON CARE, IN SMARLES IN V-SARCÉ AT INTIERUNLS $X / 2 \pi$, WHECH IN TURN IMRLLESS A

PERTODLETTY IN THE IMACEE PLANE (A-SNACE) OF 2T1/X. LIKEWNE, SNAPLING a (x) AT INTERVALS X RESULTS IN A PERZODECTTY OF THE Fourerer répreseintation of $2 \pi / X$. Tha Tho iEncropiratruss nee ISENTICAL. HOWLEVEN, THE LESSER WTDTH ON THE RCISIONOL [4 IN. THE FOROER CASE MEANO THAT THE V-SPACE SAMPLENG INIENRN, AND ULTIMATELLY THE SAMPLENE OF $a(x)$, CAN BE INCREASED BY A FACTOR of 2 RELATIVE 70 THAT REqUIRED BY THE LATTEN CASE. THES ACCOUNT FON TNE FIASI FATTON OF 2 MENTIONED ABOVE.

THE SECOND FACTOR OF 2 IS EASTER TO SEE. THE WTDTH OF THE WENDOW' IN K-SPACEE, OTJEOE OF HHSCH IT AS ASUMED THAT THE FI OF THE
 of THE SENC FUNCITOW TO THE PONT AT WHICH THE ENELONE MAN FALLEN TO $1 / 6$.
 1F 2ENO AT $2 \pi / A$.

WINQUW $=2 \times$ BESTHWCE FROOH PEAK
To $1 / \alpha$ point of ENVELONES.
IN THE CASE OF SHAGE RECONSTRUCTION, HOWEVER, THE CRETERTON IS THAT, AT ONE LDGE OF THE R-SPACE WENDOW, THE ENVELORE ASSOCIATED WIETH A POZNT SOURCNE AT THE OTHER WENDOW EDGE, REPLICATED DOE TO SAMILLING, BE ATTEAUATLDD BY $1 / \alpha$. ONLY THE LENVELDPE OF TIFE INTERFERRNG SOURCF IS CONSSDERED 50 THAT ONLY ONE $1 / 2$ DUTTWEE I5 INVOLVCD.

$1 \times$ IITANEE FNOH PLAK TO \quad IT ZERROAT π / A. $1 / \alpha$ pojiv of Lavizloter.

Thes RESUAT IS JYMMETRSCN FOR A SOUREE AT ESTHEN WUNDOW LDOES.

 ACCOUNTS FOR THE SEECOND FACTON OF 2. IN THE APERTURLE SAMPLEVG suterval.

In fact The aperture samplang interival $X=2 \pi A / \alpha$ basga on zeño FTELD OF VIEN IS OBVIOUSLY UNREALISTTE. FOR $A=1.8 \mathrm{~m}$ AND $\alpha=100$ THIS IS $X=11.3 \mathrm{~cm}$. WHEN ALLONANEE WAS MADE FOK A FIELD OF VEEN $\theta_{0}=0.2 \mathrm{ARC}$ vec WE FOUND $x \leq 8.3 \mathrm{~cm}$. SINCE WE HAVE NOW FOUND
 SAMMLNG REPUEREMENT $(x=2.82 \mathrm{~cm})$, LET US ASK WHAT FRELD OF VILEW TIUS AFFORSS. WHEN WA COMBSNE' (179) AND (174) WIEGET

$$
\begin{equation*}
K_{0}=\frac{3 \alpha}{A_{M D N}} \quad \text { or, } \quad \theta_{0}=\frac{3 \lambda \alpha}{2 \pi A_{M N N}}=\operatorname{RrccD} \text { of } V \sec \tag{180}
\end{equation*}
$$

FOR TUE PARAMETERS WE HAVE BEEN USTNG WE FWND $\theta_{0}=7.96 \times 10^{-6}$ NO $=$ $=1.64$ ARC SEC.

WTTH ALL OF THESE CONSODERATEONS IN MEND WE CW NOW COLLETG TOCETHER A sLat of useril recationstipps pertainink to sumpling. From (1775) WE HAVE

$$
\begin{align*}
& X=\frac{\pi A_{\text {MEN }}}{2 \alpha}=\text { SAMPLTNG InTERVAL ACROSS ARERTUURE } \tag{1s/a}
\end{align*}
$$

(1818)

FROM (173) FOR THE GUAOD ZONE, (155), AND (180), WE HAVE

$$
\Phi=\theta_{0}+\frac{\lambda \alpha}{2 \pi-1}=\frac{2 \lambda \alpha}{\pi A_{\text {MUN }}}=\text { TOTR ANGLE, FIESD OFVIEW PLUS (181c) }
$$

In H:U DIMENSTON'S WE CWI PUT THE GUARD ZONE ENTZRELY AROUND THE

FIELD OF VILEN, OR ALONE TWO ORTHOGONAL LDEESS.

ThE NUMBER OF SARTHLLS OF [NON-EERO] ARERTURE AUTOCORRELTTKON ALONG THE LONEER AXIS WTLK BE $2 \mathrm{M}-1$, AN ODD NUMAER. AVTOCORRELATIEN USING FOURSER TECHNTPELSS PRODVELSS CIRCULN, OR PERTODAC, CORRELATITON. TF M POINTS ARE SNONT TO THE FOURER PROCLSN, M POUNT OF PENTODR CORRELATION RESULT. THES IS REPREDENTED JENEMATKCALLY BELLOW FOR $x=4$.

TO PRODUGE THE APLERIODRC AUTOCORRELITION USENG FORJER TECHNLYUUES IT IS NECESSARY TO PAD WITI W LEQUAL NUMBER OF ZENRS [n, RATHEN THAN M-1, ZEROS MUST BE USLD BECAUSE THE FFT REQUKRES M TO BE EVEN]. ThWS WUL YZEL In ANTOCORRETLATION POINTD, ONE OF WHRCH WULL BE ÏLENTTCALLY ZERO, BEENGTNG THE NUMDER OF HEANINGFUL POTNTS TO 2n-1. THE WAY THAT THES COMES ABOUT IS ILLUSNRATED SCMEMATKCALLY BeLON, AGASN FOR $n=4$.

NOTE THAT THE CENTER CONT IS IDENTICALLY ZERO WD TWAT THE NONET 25 SYMMETRIC ABOUT THEN POUT.

WE HAVE SEEN THAT THE NUMBER OF SAMPLES ACROSS THE APERTURE M. (1816) $\angle E A D S$ TB $2 \mathrm{~m}-1$, AN ODD NUMBER, SAMPLES IN V-SPACE. WA HAVE ALSO SEEN THAT THE RÉCONTRUKTED IMAGE INVOLVES THE INVERSE
 of THE APERTUNE: SINCE S, ON A COMFUTER, WE MUS Fave Discrevice FTS (OFT) AND IN PARTXCVAR WILL WANT TO USE FATS, THENCE IS A QULSTITON OF EXACTLY HEN TO HANDLE THE ODD SAMPLE NUMBER WHICH THEA MUTOCQRRELATIEN PRESENTS WHEN THE FFT REQUIRES LEVEN SAMPLE NUMBERS AS WOT AND OUTpUT.

LAT US START WITH THE SAMPLED VERSION OF $U(v)$, $\tilde{U}(v)$, WHICH, AS A RESULT OF THE SAMPLED TORTURE AUTOCORELLTIEN, CONTAIN $2 \mathrm{M}-1$ SAMPLES CENTERED ON THE V-SPAEE OREN AND HAS THE AUTO CORRELATION SEALING EFFLSG ALREADY DIVIDED OUT. THE RESULTING IMAGE WILL BE

$$
\begin{equation*}
|\overrightarrow{\mu(\vec{h})}|^{2}=\iint_{-\infty}^{\infty} d^{2} \vec{v} \tilde{U}(\vec{v}) e^{+2 \pi i \vec{k} \cdot \vec{\nu}} \tag{182}
\end{equation*}
$$

Wloša

$$
\begin{equation*}
\tilde{U}(\vec{v})=\sum_{\ell, A=-(n-1)}^{M-1} U(\vec{v}) \delta\left(\nu_{x}-\frac{x}{2 \pi} \ell\right) \delta\left(\nu_{z}-\frac{x}{2 \pi}+\right) \tag{183}
\end{equation*}
$$

(183) IN (182) GTVINS

$$
\begin{equation*}
|\widetilde{\mu(\vec{k})}|^{2}=\sum_{l, \mu=-(n-1)}^{\mu-1} U\left(\frac{x}{2 \pi} \ell, \frac{x}{2 \pi} A\right) e^{+2 \pi i\left[k_{x} \frac{x}{2 \pi} l+k_{2} \frac{x}{2 \pi} \alpha\right]} \tag{184}
\end{equation*}
$$

To COSE THE notation, Let us conssies only owe prnention.

$$
\begin{equation*}
\left|\widetilde{\mu\left(k_{k}\right)}\right|^{2}=\sum_{l=-(m-1)}^{M-1} v\left(\frac{x}{2 \pi} l\right) e^{i x k_{x} l} \tag{035}
\end{equation*}
$$

BrLEAK (195) SNTO Two suminations and conceintreate on The second.

$$
\begin{equation*}
\left|\widetilde{\mu\left(k_{n}\right)}\right|^{2}=\sum_{l=0}^{\mu-1} U\left(\frac{x}{2 \pi} l\right) e^{i x k_{x} l}+\sum_{l=-(n-1)}^{-1} U\left(\frac{x}{2 \pi} l\right) e^{i x k_{x} l} \tag{186}
\end{equation*}
$$

IN TuF SECCOD Sunmatron DEAINE $\mu=2 x+l=N+l$ WHERE

$$
\begin{equation*}
\sum_{l=-(n-1)}^{-1} U\left(\frac{x}{2 \pi} l\right) e^{N=2 n}, \tag{187}
\end{equation*}
$$

NOW LET US CHOOSE h_{x} SO THAT TTE EXPONLSNTBAL MUETEMYYNG THE SUMIATEON ON THE NTGHT OF (188) IS CNITY. Tunt IS,
$o R_{,}$

$$
\begin{gather*}
X k_{x}(2 n)=2 \pi m \\
k_{x}=\frac{2 \pi}{x} \frac{m}{N} \quad(m=\text { wantacen }) \tag{189}
\end{gather*}
$$

THEN (186) MAY BE WROTTEN

$$
\begin{equation*}
\left.\widetilde{\mid \mu\left(k_{x}\right)}\right|_{m} ^{2}=\sum_{l=0}^{M-1} U\left(\frac{x}{2 \pi} l\right) e^{\frac{2 \pi i m l}{N}}+\sum_{l=n+1}^{N-1} \cup\left[\frac{x}{2 \pi}(l-N)\right] e^{\frac{2 \pi i m l}{N}} \tag{190}
\end{equation*}
$$

THE SAMPLES OF $U(v)$ for $v= \pm n \frac{x}{2 \pi}$ ane Just outstoe THE RANGE of the anerture antocoricimiton ivs so have valu erieo. We may WRITE THAREFFOKC THAT

$$
\begin{equation*}
\left|\widetilde{\mu\left(k_{k}\right)}\right|_{m}^{2}=\sum_{l=0}^{N-1} \hat{U}\left(\frac{x}{2 \pi} l\right) e^{\frac{2 \pi i m l}{N}} \equiv \mu_{m}^{2} \tag{191}
\end{equation*}
$$

WHERE:

$$
\left.\begin{array}{rl}
\hat{U}\left(\frac{x}{2 \pi} l\right) & =U\left(\frac{x}{2 \pi} l\right) \\
& =0 \\
& =U\left[\frac{x}{2 \pi}(l-N)\right]
\end{array}\right\} \begin{aligned}
& (l=0,1,2, \ldots \mu-1) \\
& (l= \pm \mu) \\
& (l=\mu+1, \mu+2, \ldots N-1)
\end{aligned}
$$

μ_{m}^{2} (191) DS गUIT THE DFT OF THE $N=2 \mu$ POINT SENTES $\hat{U}\left(\frac{x}{2 \pi} l\right)$. The Probliver wirct at fenst Involved w opg numeen of poxats puc to TIFS SAYPLED ADTOCORRELATION OF THE APERTURE NOW SNOLNOS THE DFT
 THLE CORRESPONDINE K-SNAEE STEM STZE IJ, FROM (189),

$$
\begin{align*}
K & =\frac{1}{N} \frac{2 \pi}{X} \quad(N=2 n) \tag{192}\\
& =\frac{1}{N} \frac{4 \alpha}{A_{M N N}}
\end{align*}
$$

 FOUND FRom (192) By muLTroLyine by $\lambda / 2 \pi$ aceorpane to (155) or by DNVIDING Φ sein (18/c) BY N.

$$
\theta=\frac{2 \lambda \alpha}{N \pi A_{M N}}=\text { ANGLE BLTNWEAN IMACE SAMPELSS. }
$$

Co OF POOR QUALITY
 a function

$$
\left.\begin{array}{rl}
q(x) & =a(x) \tag{183}\\
& =0
\end{array}\right\} \begin{aligned}
& \left(0 \leq x \leq A_{\max }\right) \\
& \left(A_{\max }<x \leq 2 A_{\max }\right)
\end{aligned}
$$

$$
\begin{equation*}
x=\frac{2 A_{\max }}{N}=\frac{A_{\max }}{n}=\frac{\pi A_{\operatorname{msN}}}{2 \alpha} \quad(\text { From }(181 a)) \tag{AX}
\end{equation*}
$$

THE DPT OF $g(x)$ as ,

$$
\begin{equation*}
F(k)=\sum_{m=0}^{N-1} g(n x) e^{-\frac{2 \pi i m k}{N}} \quad . \quad(k=91,2, \ldots N-1) \tag{085}
\end{equation*}
$$

Compute ThE suschete fT of $G^{*}(k) G(k)$.

$$
\begin{align*}
& \hat{\theta}(l)=\frac{1}{N} \sum_{k=0}^{N-1} G(k) G^{*}(k) e^{-\frac{2 \pi i l k}{N}}= \\
& =\frac{1}{N} \sum_{k=0}^{N-1} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} q(n x) q^{*}(m x) e^{\frac{2 \pi i m k}{N}+\frac{2 \pi i m k}{N}-\frac{2 \pi i l k}{N}}= \\
& =\frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} g(n x) g^{*}(m x) \underbrace{\sum_{k=0}^{N-1} e^{-\frac{2 \pi i}{N}(m-m+l) k}}= \\
& =N \delta_{m,\left.(m+l)\right|_{N}}=N \delta_{\mu,\left.(m-l)\right|_{N}} \\
& =\sum_{n=0}^{N-1} g(n x) q^{*}\left(\left.(n+l)\right|_{N} x\right)=\sum_{m=0}^{N-1} g\left((m-l)(x) g_{N}^{*}(m x)\right. \tag{196}\\
& (l=0,1,2, \ldots . . N-1)
\end{align*}
$$

whenc I Mews "Modulo N ". Note That we havé Taken The
 ONE WOOLD ANTSCLPATE. WE SEEE THAT AS A REESULT (I96) AGRELES
 WITATN (163). IT IS ALSO TO DE NOTED THAT (196) CONTIANLS THE APDSTTITAL "MODULO N" NOTRITEN, WHITCH ACCOUNTS FOR THE CWRCuLN a PERTODSE NATURE OF THE DFT-BUED AUTOCORNELATION.

A CONSEQUENGE OF THIS AND TWE ZERO PADDSNG OIVEN BY (193) J5 TAMT $\hat{a}(l)$ HAS THE CHWACTERIDTES OF $\hat{U}\left(\frac{x}{2 T} l\right)$ GSVEN WRTH (190). NAMELY,

$$
\left.\begin{array}{rl}
\hat{a}(l) & =a\left(\frac{x}{2 \pi} l\right) \\
& =0 \tag{197}\\
& =a\left[\frac{x}{2 \pi}(l-N)\right]
\end{array}\right\} \begin{aligned}
& (l=0,1,2, \ldots n-1) \\
& (l= \pm n) \\
& (l=n+1, n+2, \ldots N-1)
\end{aligned}
$$

Schematseally, $\hat{a}(l)$ wile look linee:

Fror (170) AND (18id) THE OVERSAMPENG FACTOR ALONE THL MAKOMOM RESOUTEON DSEECTKON WILL BE

$$
\eta=\frac{A_{\operatorname{maN}}}{A_{\max }} \frac{N \pi}{4 \alpha}=[1, \text { IF m Grven By }(1810)]
$$

For Exهrace, If $A_{\text {niN }}=1.8 \mathrm{~m}, A_{\text {max }}=12 \mathrm{~m}, N=1024=2^{10}, \alpha=100$, TheN $\eta=1.21$.
NOTE THAT THE K-SPACE STEP SIEE (192) WHRCH COMNESPOnDS TO MAKING

73- ORIGINAL PAEE IS OF POOR QUALITY
[THE EXPPONENTJAL FHCTOK IN (18B) ALNAYS UNETY LEADS TO A TOTN SAMPLED WEDTH [ONER N SAMPLLSS] IN FP-SPACE OF $2 \pi / X$. TATS IS
 InTENEVALS of $X / 2 \pi$.

CONVERSELY, SNMPLNGG OF THE K-SPACE STATGE AT INTENVALS (192) GEN:ERATES A PERTODICRTY, IN THE V-SHAEE RLEPRESENTATION, OF $N(x / 2 \pi)$. AS CAN DE SEEN FROT' (191) AND (197), THE BASE V-SPACE INTENVAL IS $X / 2 T$ AND THETE ARE A TOTNL OF $N=2 \mathrm{~m}$ SUCH SAMPLES OVER THE V-SPACE WINDOW. THES MERLODECTTY, WD THESDISTRIBUTION OF SAMDLES, MEWS THAT THT N-POENT FFT OF THE $2 \pi / X$ K-SPACE WINDOW YTELDS V-SPACE SAMPLES ALIGNED ANB PROMERLY ORDERED FOR OPERATTON WUTH THE AUTOCORRELATION OF THE APLRTUNE, (196) AND (197), PROPUCED BY FFI TECHNTYUES.

A SUMMARY OF THE MAVOR STENS INVOLVLD, EXCLUDENG NOTSE AND NEETTUNE ROTATEON, IS GIVEN BELON. TECHNILIES TO REAPVEE THE OVECHLL COMPVTATEONAL BURPEN WELL BE GIVEN LATER.

1) Form m SAMPLESS OF THE APLERTURE FUNCTSON ALONG ITS GREATEST DIMENSTON AT SNTERVALS $X \leq \pi A_{\text {ren }} / 2 \propto$. ADJUst X is THet
 REETSEN AT THE SAME INTERVALL.
2) DOUBLE THE NUMBER OF SAMMLES ALONG THE GREATLST DTRLECTEON BY PADDING OT WITH W EYUAL NUTDEK OF zEROS. ALS, PAN OUT THE SHORNER DERECTEN WJTH ZERROS SO THAT N NXN ARRAY RESULTS WLTH $N=2 m$.
3) VSLE RESULTS (195) AND (196) TO COMPUTLE THE NXN AIERLODRC AUTOconncíation of THE ARERTURE. THE RUTKEISUTION OF zEROS IN TNE RESUK WELC RE:

4) Preidane w smage of total width in Each dinection of $\left(2 \lambda \alpha / \pi A_{\text {MIN }}\right)=\lambda / x$ RAPSANS. $1 / 4$ of THES SHOULD BE A GUADD ZOME OF ZEROS. FORM w MeMy of $N \times N$ SWMPLES. TAKE THE NXN FFT.
5) "DIVIDE at" cORNESPONDTNG ELEMENTS OF THE IMAGES $N \times N$

6) TAKE THE INERE FFFT TO GLET The ENHaNCED imAGLE.

SoME Numbens Par ThE CNE:

$$
\begin{aligned}
& \lambda=3 \times 10^{-5} \mathrm{~cm} \\
& \alpha=100 \\
& A_{\text {naN }}=180 \mathrm{~cm} \\
& A_{\text {MAX }}=1200 \mathrm{~cm}
\end{aligned}
$$

$\Rightarrow \quad X \leq 2.83 \mathrm{~cm}$,

$$
\begin{aligned}
A_{m x} / x=424 & \Rightarrow m=512=2^{9}, \\
& \Rightarrow x=2.34 \mathrm{~cm}
\end{aligned}
$$

$\Rightarrow \quad N=2 n=1024$
'TOTAL IMAGE WEDTH: \square $1.28 \times 10^{\circ} \mathrm{MAD}=2.64 \mathrm{ARCSEC}$

Aativa tmage waytr:
Sample-sayple anger:
1.98 Me sēc

$$
2.56 \times 10^{-3} \text { ARC SEC }
$$

Orensampencie η :
1.206

Ressolution (
2.58×10^{-3} ANE SEAC.

Ancrovine Synthenter
 TUST OUTINEDD IS INEFFICIENT IN TEROMS OF COMPUTEOR STORAGE. ThEN IS DUE TO THE LARGE NUABER OF ZEROS IN THIE APERTURE AND AUTO-

 SUSTABLY COIBENANE THE FFTS OF SHALLER CONTIGUBUS PONTIONS OF THE APERTURE. THES ES COMPUTATSONALLY MONE CUMBEDOME \&WT MARET BETRER USE OF STORAGE.

A USUAL WE WTLL USE ONE-DIMENSTONAL AROUMENTS TO SHOW THE NTUUC

 THE DESURETE CADE.

Forken Shift Theonery
LET F_{l} be The gaverite Fanten Tewsiany of f_{h}.

$$
\begin{equation*}
F_{l}=\sum_{k=0}^{N-1} f_{k} e^{-\frac{2 \pi i l k}{N}} \quad(l=0,1,3, \ldots N-1) \tag{198}
\end{equation*}
$$

LET THE DISGEETE FUNCTEON f_{R} BE SHIFTED CYCLTCAELY IN THE DERECTION OF INCREASINGK BY ma SAMPLES

$$
\left.f_{k} \rightarrow f_{(k-m)}\right|_{N}
$$

The erfect onttre thansong F_{l} IS:

$$
\begin{aligned}
F_{k} & \rightarrow \sum_{k=0}^{N-1} f_{\left.(k-m)\right|_{N}} e^{-\frac{2 \pi i l k}{N}}=\sum_{k=-m}^{N-1-m} f_{N-1} e_{N}^{-\frac{2 \pi i l(\mu+m)}{N}}= \\
= & \left.e^{-\frac{2 \pi i l_{m}}{N}} \sum_{p=-m}^{N-1, m} f_{\mu}\right|_{N} e^{-\frac{2 \pi i l l_{k}}{N}}
\end{aligned}
$$

Becauje $\exp \left(-2 \pi i l_{1} / N\right)=\exp \left(-\left.2 \pi i l_{\mu}\right|_{N} / N\right)$, we have FLuncly,

$$
F_{l} \rightarrow e^{-\frac{2 \pi i l l m}{N}} \sum_{\mu=0}^{N-1} f_{\mu} e^{-\frac{2 \pi i l_{\mu}}{N}}
$$

or,

The Above rule suge isis that a shifer of the sampuod finetoin fr By AN aHount Not Equal to an zwtegen number of sumples could
 SNTEGER m. That 20 ,

$$
\begin{equation*}
F_{l} \rightarrow e^{\frac{-2 \pi i l x}{N X}} F_{l} \equiv G_{l} \tag{200}
\end{equation*}
$$

WHENE X IS THE SAMPLE SNTERVAL AND x IS TWE ARBTMAYY SHET:
 AVALLABLE FOR "NON-LuTEGEX m". WE MEGT THEN ANE WHRT IS THE EFEECTIVE RESULT IN THE SAMPLE DOMAIU IF WE STHPLY FORM (200) FOR x / X NON-INTEGER DN THE TRUSFORM DOMAN. TO FEND out We EVaLMatE THE LIWERSE TRANSFOMM OF (200).

$$
\begin{align*}
\hat{f}_{k} & =\frac{1}{N} \sum_{l=0}^{N-1} G_{l} e^{+\frac{2 \pi i l h}{N}}=\frac{1}{N} \sum_{l=0}^{N-1} F_{l} e^{\frac{22 \pi_{i} l}{N}\left(k-\frac{x}{x}\right)}= \\
& =\frac{1}{N} \sum_{M=0}^{N-1} f_{m} \sum_{l=0}^{N-1} e^{-\frac{2 \pi i l l}{N}\left(n-k+\frac{x}{x}\right)} \tag{201}
\end{align*}
$$

Constoin the reconi sunnation in (201) wh LITT

$$
y=e^{-\frac{2 \pi \dot{j}}{N}\left(n-k+\frac{x}{x}\right)}
$$

THEN,

$$
\begin{gathered}
\sum_{l=0}^{N-1} y^{l}=\sum_{l=0}^{\infty} y^{l}-\sum_{l=i}^{\infty} y^{l}=\sum_{l=0}^{\infty} y^{l}-y^{N} \sum_{l=0}^{\infty} y^{l}=\left(1-y^{l}\right) \sum_{l=0}^{\infty} y^{l}= \\
=\frac{1-y^{N}}{1-y},
\end{gathered}
$$

WHEnE

$$
y^{N}=e^{-2 \pi i\left(n-k+\frac{x}{x}\right)}=e^{-2 \pi i \frac{x}{x}} \quad(k, \mu-2 \pi \pi E N a n)
$$

WTOH THE ABOVE REJULTS WE ARE ABLE TO EXPRLESS (2O1) AS

$$
\begin{equation*}
\hat{f}_{k}=\frac{1}{N} \sum_{n=0}^{N-1} f_{n}\left\{\frac{1-e^{-2 \pi i \frac{x}{x}}}{1-e^{-\frac{2 \pi i}{N}\left(n-k+\frac{x}{x}\right)}}\right\} \tag{202}
\end{equation*}
$$

THE FAGTOR IN ORACELS IS AN INTERPOLATLON FA CTOR WUTEH WEYCHTIS mOST HEAVLLY TERMS NEAR $n=K$. IF $x \rightarrow 0$, ONLY THE $n=k$ TERM rinvavES AND

$$
\hat{f}_{k}=f_{k} \quad(x \rightarrow 0)
$$

TO SEEE THIS, CONSEDER THL MAGNTTUDE OF THE TENUSN BRHCES. MULTEPLying by the contucate we get

$$
\{\cdots\}\{\cdots\}^{*} \simeq \frac{1-\cos \left(2 \pi \frac{x}{x}\right)}{1-\cos \left[\frac{2 \pi}{N}\left(n-k+\frac{x}{x}\right)\right]}=\frac{\sin ^{2}\left(\pi \frac{x}{x}\right)}{\sin ^{2}\left[\frac{\pi}{N}\left(n-k+\frac{x}{x}\right)\right]}
$$

So That The MAGNDTUDES of THE COFFFECLENT OF f_{M} IN (202) IS

$$
\begin{equation*}
|\{\cdots\}|= \pm \frac{\operatorname{sen}\left(\pi \frac{x}{x}\right)}{\operatorname{sIN}\left[\frac{\pi}{N}\left(n-k+\frac{x}{x}\right)\right]} \tag{203}
\end{equation*}
$$

 NEECSUNY ONLY TO CONSLDER

$$
\begin{equation*}
0 \leq \frac{x}{x}<1 \tag{204}
\end{equation*}
$$

 of (203) DS SKETCHED BELOW AS A FUNETSON of $m-k$.

THE POSITSVE BRANCH ONLY IS SHOWN DUE TO THE \pm STON ON (203). CNENLY THE MAXIMUM VALKS OF (203) IS NEM $m=k$ AD (203) GENERALCY TMENS OFFAS M DEFAGTS FROM K.

A special case is $x / x \rightarrow 0$. Then

$$
\begin{gather*}
\sin \left[\frac{\pi}{N}\left(n-k+\frac{x}{x}\right)\right]=\sin \left[\frac{\pi}{N}(n-k)\right] \cos \left(\frac{\pi}{N} \frac{x}{x}\right)+\cos \left[\frac{\pi}{N}(n-k)\right] \operatorname{sen}\left(\frac{\pi}{N} \frac{x}{x}\right) \\
\underset{x \rightarrow 0}{ } \sin \left[\frac{\pi}{N}(n-k)\right]+\frac{\pi}{N} \frac{x}{x} \cos \left[\frac{\pi}{N}(n-k)\right] \tag{205}
\end{gather*}
$$

Consigen funthisk that $m=k$. Thin from (203) and (205),

$$
\begin{equation*}
|\{\cdots\}|= \pm N \frac{\sin \left(\pi \frac{x}{x}\right)}{\left(\pi \frac{x}{x}\right)} \quad(x \rightarrow 0, k=n) \tag{206}
\end{equation*}
$$

IN THE LIMST THAT $x \rightarrow 0$, (206) EquaLS N. BECAUSE of $\sin \left(\pi-\frac{x}{x}\right)$ IN The NumsRatar of (203), (203) IS zero for $m \neq k$ ans $x=0$. THENEPORE ONLY THE $n=K$ TEMM SUNVIVES IN (2N2) WHEN $x \rightarrow 0$, oxveng

$$
\hat{f}_{k}=f_{k}
$$

AS Clasticd.

Shem Thisonert
 (2076) IS THAT THE RESUK' IS EXACG FON x / x IVEGER, AD AN APPRoxIMATION BY בNTERPOLATEON WILEN x / X LS NOT SNTEGER.

WE HAVE TUT DISCUSSD ENTEPPOLTION SN THE SAMPLLE DOHASN LUDVCED BY A
 THL DOMASNO REVEDLDD. CONSTDER A SPEETAL CASE IN WHCH TKE SHMPLE DOMAIN CLBVITATNS A LONG [CYCLICALLY] CONTBGOUS STRENG OF ZEEROS. FOR SIMPLIGTY, LET IT DE ASSUMED THAT THE SHIFT THSOREM HAS FENST BLEEN APPLEED TO BRING THE NON-ZEERO SAMIRLE SEQUVENCE ZWTO REELSTIER WUTH THE LEFT EDGE OF THE SAMPLE LUNDOW. I.E., SAMPLE NUMIENS $\phi, 1,2$,

$N=12$

Assume Tit THE SHTPLE MOET N is

$$
N=N_{1} N_{2}
$$

is THAT THE INPTT SAMPKE SEPUENCE CON 3E CONSTDERED AS N, GROUPS OF N_{2} SAMPLE EACH. LET LS RESTART ATTENTION TO A SUBSET OF THE POSSBLEE F GIVEN By

$$
\begin{equation*}
\hat{F}_{n} \equiv F_{n N_{1}} \quad . \quad\left(n=0,1,2, \ldots N_{2}-1\right) \tag{20}
\end{equation*}
$$

Sastriution into (193) GIves

$$
\begin{equation*}
\hat{F}_{n}=\sum_{k=0}^{N-1} f_{k} e^{-\frac{2 \pi i R_{n} N_{1}}{N_{1} N_{2}}}=\sum_{k=0}^{N-1} f_{k} e^{\frac{-2 \pi i n k}{N_{2}}} \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\hat{F}_{M}=\sum_{k=0}^{N_{2}-1} f_{k} e^{-\frac{2 \pi i n k}{N_{2}}} \quad\left(n=0,1,2, \ldots N_{2}-1\right) \tag{211}
\end{equation*}
$$

 σ_{K} Foxe $K=0,1,2, \ldots . N_{2}-1$. IN Warps, we HAVE MoN THAT If $N=N, N_{2}$, WE CAN COMPUTE EVERY N, TH POINT OF THE DPT OF f_{k} BY FORDING

 $N=12$ WITH $N_{2}=4, N_{1}=3$. NOTE THAT THE SAMPLES IN THE LEFTMOTT GROUP OF fl DO NOT HAVE TO BE ALL NON-ZERED; BUT ALL THE OTHER f_{h} MUT BE ZERO.
 SUBSET OF THE N poiscgu二 F_{2} vaults.

C

$$
\frac{A}{F_{n, p}} \equiv F_{m N_{1}+\mu}=\sum_{k=0}^{N-1} f_{k} e^{\frac{-2 \pi i k\left(n N_{1}+k\right)}{N_{1} N_{2}}}=
$$

$$
=\sum_{k=0}^{N-1}\left[f_{k} e^{\frac{-2 \pi i k_{1}}{N}}\right] e^{-\frac{2 \pi_{i}^{k} N_{k}}{N_{k}}}
$$

ORIEINAL FAGE TS OF POOR QUALTTY

AGONN, if $f_{k}=0$ Rian $k \geq N_{L}$, THEN

$$
\begin{array}{r}
\hat{\hat{A}}_{M, \mu}=\sum_{k=0}^{N_{2}-1}\left[f_{k} e^{\frac{-2 \pi_{i} k_{k}}{N}}\right] e^{-\frac{2 \pi i n k}{N_{2}}} \tag{2/2}\\
\\
\left(\mu=0,1,2, \ldots N_{1}-1\right) \\
\left(\mu=0,1,2, \ldots N_{2}-1\right)
\end{array}
$$

WHICH LS TUST THE N_{2}-PONTT DFT OP PART OF THE ORIGENAL SEQUVENGE of f_{k} 's CONDETEONED By Th: PHAWE FACTER EXP $(-2 \pi i k \mu / N)$.
CONVERSELY, THE EFFEGT OF TAKENG THE AM MOINT INVENSE DFT OF AN N_{2}-potiv subser [E.c., $l=0,3,6,9$ on $l=y, 4,7,10$ ROR $N=12$] of F_{l}^{2} IS f_{k} IN TVE RAEEE $K=0,1,2, \ldots N_{2}-1$ WTTH A PHASE FACTGR APPLTED.
WE MES NOW LN A POSETSON TO SPEETFY THE STESNS REQURNCDTO SY NTHEDLEE THE ASERUNE AUTOCONLLATION FROM THE DFT'S OF THE SHALLEX SUB-ARERTURES.

$$
\begin{aligned}
& N_{1}=\text { Numbin of GRoves of samplas. } \\
& N_{2}=\text { Number of sampues / Gneve. }
\end{aligned}
$$

Assume Thene ane R sub-APSTUURE a / k wHERE $~ R=1,2,3, \ldots R$ AND $R=0,1,2, \ldots N-1$. ASSUME FUUTIER THATV EACH SUB-ANLSETURRE 55 DEFSNED SO THAT ITS NON-ZENOO SAMPLES OCCUPY THE LOWAUT KO UNDECES AND THAT

$$
\begin{equation*}
\hat{a}_{k}=0 \text { fore } k \geq N_{2} \text {, Aker. } \tag{2/3}
\end{equation*}
$$

THE l TH POINT OF THE DFT OF THLE 1 -TH SUB-APERTURE IS

$$
\begin{equation*}
A_{l}=\sum_{\mu=0}^{N-1}{\underset{\beta}{p}}^{(i)} e^{\frac{-2 \pi i l_{\mu}}{N}} \tag{214}
\end{equation*}
$$

WE CN ALSO EXPRESS \hat{A}_{C} AS

$$
A_{l}=\stackrel{(\mu)}{A_{1, p}}=\sum_{k=0}^{N_{2}-1}\left[\begin{array}{l}
a \\
a_{k}
\end{array} e^{-\frac{2 \pi i k_{k}}{N}}\right] e^{-\frac{2 \pi i m k}{N_{2}}} \quad(l=0,1,2, \ldots \cdot N-1)
$$

FLOM (2,2) WHORE

$$
\begin{align*}
& p=\left.l \bmod N_{1} \equiv l\right|_{N_{1}} \\
& \left.M=\operatorname{sit}\left(l / N_{1}\right) \equiv \llbracket \frac{l}{N_{1}}\right\rceil \tag{21<6}
\end{align*}
$$

(2/ca.

AND (215) IS JUST AN ADPLSCATION of (212).
FIOM (207), THE DFT OF THE A-TH APERTURE APTER TTEUSUTTON A DEStancer x_{2} is

$$
\begin{equation*}
\stackrel{N}{A}_{l}=e^{-\frac{2 \pi \pi_{i} l}{N} \frac{x_{\lambda}}{x}} A_{l} \tag{2,7}
\end{equation*}
$$

Whenc X as the sample zitienval oven the qacriche. Beenuse of the LINEANETY OF THE DFT, THE DFT OF SEVERAL: APERTURES 15 The SUM

$$
\begin{equation*}
A_{l}=\sum_{n=1}^{R} A_{l}=\sum_{i=1}^{R} e^{-\frac{2 \pi i l}{l} x_{l}} A_{l} \tag{218}
\end{equation*}
$$

From (196), THE mU-TH POUUT OF THI APERTURE AuTDORNCLURTON IS

$$
\begin{align*}
& a_{m}=\frac{1}{N} \sum_{l=0}^{N-1} A_{l} A_{l}^{*} e^{-\frac{2 \pi i l m}{N}}= \\
&=\left.\frac{1}{N} \sum_{A=1}^{R} \sum_{A=1}^{R} \sum_{l=0}^{N-1} A_{l}(A) A_{l}\right)_{l} e^{\frac{-2 \pi i l}{N}\left(\frac{x_{l}-x_{l}}{x}+m\right)} \tag{219}\\
&(m=0,1,2, \ldots . N-1)
\end{align*}
$$

 To Nums ovier N_{1}^{\prime} ang N_{2}^{\prime} by ciscrexne

$$
\begin{equation*}
\sum_{l=0}^{N-1} f_{l}=\sum_{M=0}^{N_{n}-1} \sum_{\mu=0}^{N_{1}-1} f_{M N_{1}+j}=\sum_{M=0}^{N_{N}-1} \sum_{m=0}^{N_{1}-1} \hat{i}_{\mu, k} \tag{200}
\end{equation*}
$$

C'ONSEqUENTAY, (219) CAN DE WRETTLEN AS

$$
\begin{equation*}
a_{m}=\frac{1}{N} \sum_{n=1}^{R} \sum_{A=1}^{R} \sum_{m=0}^{N} \sum_{\mu=0}^{N-1} \hat{\hat{i}}_{\mu, \mu^{\prime}}^{(N)} \hat{\hat{A}}_{m, \mu}^{(n)} e^{\frac{-2 \pi i(\mu N+\mu)}{N}\left(\frac{x_{n}-x_{n}}{x}+m\right)} . \tag{221}
\end{equation*}
$$

 OF DFT'S of SMALER SFGMCDVTS OF THE OVERALL PPESTURE.
(A)

Note that, oy (215), forpation of \hat{A}
JNWLYES MULTIPLTEATEON OF $a_{k}^{(a)}$ By A PHASOR PEPENDSNG ON HA. SuBSEYYUENTLY (221) PPLIESS ANOTVER PHASOR PENENDENG ON P. IT IV POSSEBLE TO COMSSNE TAE ORENTITONS INKOLVENG IT SO THAT A SIMPLER EXPRESSYON RESULIS WETH TITE SUMTBNTON ON IA DONE, AN WEL AS THAT ON M. 'INTRODUCE (215) SNTO (221) TO GET

$$
\begin{aligned}
& a_{m}=\frac{1}{N} \sum_{i=1}^{R} \sum_{i=1}^{R} \sum_{n=0}^{N_{2}-1} \sum_{k=0}^{N_{1}-1} \sum_{k=0}^{N_{2}-1} \sum_{l=0}^{N_{L}-1} a_{k} a_{l} a_{l}(1)_{*} e^{-\frac{2 \pi i}{N}\left(k_{N}-l_{\mu}\right)} e^{-\frac{2 \pi i}{N_{2}}(n k-n l)} x \\
& \times e \\
& e^{-\frac{2 \pi \dot{N}}{N}\left(\mu N_{1}+\mu\right)\left(\frac{x_{n}-x_{n}}{x}+r m\right)}= \\
& =\frac{1}{N} \sum_{i=1}^{R} \sum_{R=1}^{R} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} a_{k}(n) a_{i} \sum_{n=0}^{N_{n}-1} e^{-\frac{2 \pi i}{N_{2}}\left(k-l+\frac{x_{n}-x_{N}}{x}+m\right) n} x \\
& x \sum_{k=0}^{N_{1}-1} e^{-\frac{2 \pi i n}{N}\left(k-l+\frac{x_{n}-x_{\mu}}{x}+m\right) p}
\end{aligned}
$$

$$
\sum_{\lambda=0}^{N-1} y^{l}=\frac{1-y^{N}}{1-\psi}
$$

To GKT

$$
\sum_{n=0}^{N} e^{-\frac{2 \pi i}{N_{1}-1}\left(k-l+\frac{x_{1}-x_{\mu}}{x}+m\right) n}=\frac{1-e^{-2 \pi i\left(h-l+m+\frac{x_{n}-x_{1}}{x}\right)}}{1-e^{-\frac{2 \pi i}{N_{2}}\left(k-l+m+\frac{x_{n}-x_{A}}{x}\right)}}
$$

AWB,
 WHEN TTE PROPLCT SO FOVETLS. NOTE ALSO TNAT

$$
e^{-2 \pi i(k-l+m)}=1 \quad(k, l, m, I n \pi a c k)
$$

So THAT (2:2) BECOMES ÄquTVALENTLY

$$
a_{m}=\frac{1}{N} \sum_{n=1}^{R} \sum_{A=1}^{R}\left(1-e^{-2 \pi i \frac{x_{n}-x_{k}}{x}}\right) \sum_{k=0}^{N_{2}-1} \sum_{l=0}^{N_{2}-1} \frac{a_{k} a_{l}^{(1)} a_{k}}{1-e^{-\frac{2 \pi_{i}}{N}\left(k-l+m+\frac{x_{n}-x_{n}}{x}\right)}}
$$

THIS MAY BE PNT INTO WOTHER POSEBLY: USEFUL FORY BY GOSTITUTIN THE
 IMPLLEES TREAT

$$
\Rightarrow{ }_{k}^{(n)}=\frac{1}{N} \sum_{m=0}^{N_{2}-1(n)} \hat{A}_{m} e^{\frac{+2 \pi i n k}{N_{2}}}
$$

WHERE

$$
\left.(\lambda) \hat{A}_{M}=\sum_{k=0}^{N_{2}-1} a\right)^{\frac{185}{4}} e^{-\frac{3 \pi i m h}{N_{2}}}
$$

WTHH (224) $a_{\text {m BECOMKSS }}$

$$
\begin{aligned}
a_{m}=\frac{1}{N^{3}} \sum_{i=1}^{R} \sum_{n=1}^{R}\left(1-e^{-2 \pi i \frac{x_{1}-x_{1}}{X}}\right) \sum_{M=0}^{N_{2}-1} \sum_{\dot{j}=0}^{N_{2}-1(A)(A)} \hat{A}_{M} \hat{A}_{\dot{\gamma}}
\end{aligned} x .
$$

The RIENT-MOST DOUBLLE SUMAATION IS SNPEFLENDENT OF THE APERTUNLE AND IS LSSLOTTHLYY THE 2-DEMENSEONAL DFT OF THE FVIETTON

$$
f_{k l} \equiv\left[1-e^{-\frac{2 \pi i}{N}\left(k-l+m+\frac{x_{1}-x_{k}}{x}\right)}\right]^{-1}
$$

Porsson Photon fratrstics
TO GET A RECOSTRUCTEON PROCEDUNE WHECH APPLEES TO NOISY SEENALS OF A MORE REALISTIC NATURE, LET WI CONSIDER THAT THE AEREVAL OF
 3 STAGES FOR WURCH WE WOULD LIECE EXPRESITONS OF A STATKSTIEAL NATUREE:
-) Ran an'combug stenal.

We WTLL WE SUDSERTOT $\phi, 1$, WP 2 Acarcornaly.

Revisin op Potsson Statitries
ORIGINAL PAGE IS OF POOR QUALITY

LET:

$$
\begin{aligned}
& P_{1}(\vec{k})=\text { PROBABKLITY PEn UNST TTML OF MREVAL OF A PHoTon AT TME } \\
& \text { TELETEDOE from Zonection } K \text {. } \\
& T=\text { TOTAL OBSERVENG TITE WITH ARERTURE SN A GIVEN } \\
& \text { ORENTATION. }
\end{aligned}
$$

 γ IS TRT. PROBABTLLTY OF NO RHTTON ACRNENG IN THE INTENVAL Y LD 1-pit. MULTEREE MRLVALS ASSUBED NEGLTEIDLEE. PROBHBTLITY of exactly in photons araiseng in the l surienvals is

$$
\begin{array}{r}
p_{0}\left(\mu_{0}, T_{0} \vec{k}\right)=\binom{l}{n}\left(p_{0} \tau\right)^{n}\left(1-p_{0} \tau\right)^{l-n}= \tag{227}\\
=\frac{l!}{n!(l-n)!}\left(\frac{p_{0} \tau}{1-p_{0} \tau}\right)^{n}\left(1-p_{0} \tau\right)^{l}
\end{array}
$$

Ler THE Numben of antervals l co to ∞. Then

$$
\begin{equation*}
\lim _{l \rightarrow \infty}\left(\frac{p_{0} T}{1-p_{0} r}\right)^{\mu}=\lim _{l \rightarrow \infty}\left(\frac{1}{\frac{l}{p_{B} T}-1}\right)^{\mu} \simeq\left(\frac{p_{0} T}{l}\right)^{\mu} \tag{258}
\end{equation*}
$$

NWD,

$$
\begin{equation*}
\frac{l!}{(l-m)!} \underset{l \rightarrow \infty}{ } O\left[l^{m}\right] \tag{219}
\end{equation*}
$$

Whone $O[]$ mends "of THE orper or".

ND,
OF POOR QUALI'T

Now mray (229) To $l!/(l-j)!$ is (230) as $l \rightarrow \infty$

$$
\frac{l!}{(l-\dot{\gamma})!} \xrightarrow[l \rightarrow \infty]{ } O\left[e^{i}\right]
$$

THus,

$$
\begin{equation*}
\lim _{l \rightarrow \infty}\left(1-p_{l} T\right)^{l}=\sum_{j=0}^{\infty} \frac{\left(-p_{0} T\right)^{i}}{j!}=e^{-p_{0} T} \tag{231}
\end{equation*}
$$

RLJULT (228), (229), AND (231) IN (247) GIVNE

$$
\begin{equation*}
P_{0}(n, T, \vec{k})=e^{-P_{0}(\vec{k}) T} \frac{\left[\gamma_{0}(\vec{k}) T\right]^{n}}{n!} \tag{232}
\end{equation*}
$$

For the probabiluty of u photont natyeng at the telaseone in a fentic

WE NOW ASK WHAT IS THE EXPECTES NUHBEO OF PHOTOW ARRSVENG AT THE TELESCODE IN TIME T Fhor PInLECTISON \vec{k}.

$$
\begin{aligned}
& E_{0}\{n\}=\sum_{n=0}^{\infty} n P_{0}(n, T, \vec{k})=e^{-p_{0} T} \sum_{n=0}^{\infty} n \frac{\left(p_{0} T\right)^{n}}{n!}= \\
&= e^{-p_{0} T} \sum_{n=1}^{\infty} \frac{\left(p_{0} T\right)^{n}}{(n-1)!}=e^{-10 T}\left(p_{0} T\right) \sum_{n=1}^{\infty} \frac{\left(p_{0} T\right)^{n-1}}{(n-1)!}= \\
&=e^{-p_{0} T}\left(p_{0} T\right) e^{+p_{0} T}
\end{aligned}
$$

on,

$$
\begin{equation*}
E_{0}\{n\}=p_{0}(\vec{k}) T \tag{233}
\end{equation*}
$$

WHAT SI THE VALEANCE OF THE PHOTON NUOTIEN IN TENE 7 ABOUT THE TEN VALUE (2T3)?

$$
\begin{align*}
& E_{0}\left\{\left(n-p_{0} T\right)^{2}\right\}=E_{0}\left\{n^{2}-2 n p_{0} T+\left(p_{0} T\right)^{2}\right\}= \\
&=E_{0}\left\{n^{2}\right\}-2 p_{0} T E_{0}\{n\}+\left(p_{0} T\right)^{2}=E_{0}\left\{n^{i}\right\}-\left(p_{0} T\right)^{2} \tag{234}\\
& E_{i}\left\{n^{2}\right\}=\sum_{m=0}^{\infty} n^{2} p_{0}(n, T, \vec{k})=e^{-p_{0} T} \sum_{m=0}^{\infty} n^{2} \frac{\left(p_{0} T\right)^{m}}{n!}= \\
&=p_{0} T e^{-p T} \sum_{m=1}^{\infty} m \frac{\left(p_{0} T\right)^{n-1}}{(n-1)!}=p_{0} T e^{-p_{0} T} \sum_{n=0}^{\infty}(n+1) \frac{(p, T)^{n}}{n!}= \\
&=p_{0} T e^{-p_{0} T}\left\{\sum_{m=0}^{\infty} n \frac{\left(p_{0} T\right)^{n}}{n!}+e^{+p_{0} T}\right\}= \\
&=p_{0} T e^{-p_{0} T}\left\{p T e^{+p_{0} T}+e^{i p_{0} T}\right\}=\left(p_{0} T\right)^{2}+\left(p_{0} T\right) \tag{235}
\end{align*}
$$

RESVG (235) IN (234) GIUES

$$
\begin{equation*}
E_{0}\left\{\left(n-r_{0} T\right)^{2}\right\}=r_{0}(\vec{h}) T=E_{0}\{n\} \tag{2x}
\end{equation*}
$$

WE ASSUME THAT PO(k) IS PROFORTITONAL TO THE INCOTING INTIENSITY.
(

$$
\begin{equation*}
p(\vec{k})=k|\mu(\vec{k})|^{2} \tag{237}
\end{equation*}
$$

Post-anentune Statiotices
BECAUSE OF (237) WD THE LINENETY OF (19). THE PROBABFLITY

$$
\begin{align*}
p_{1}(\vec{k}) & =k\left\langle I\left(\vec{k}, \hat{t}^{\prime}\right)\right\rangle=k \iint_{-\infty}^{\infty} d k_{x} d k_{z}|\mu(\vec{k})|^{2}\left|A\left[\left(k_{x}^{\prime}-k_{x}\right),\left(k_{z}^{\prime}-k_{z}\right)\right]\right|^{2}= \\
& =k I(\vec{k})=\iint_{-\infty}^{\infty} d k_{x} d k_{z} p_{t}(\vec{k})\left|A\left[\left(k_{x}^{\prime}-k_{x}\right),\left(k_{z}^{\prime}-k_{z}\right)\right]\right|^{2} .
\end{align*}
$$

WE CWW WRETE DOWN IMMEDEATELY THET

$$
\begin{gather*}
E_{1}\{m\}=p_{1}\left(\vec{k}^{\prime}\right) T \\
E_{1}\left\{\left(n-p_{1} T\right)^{2}\right\}=p_{1}\left(\vec{k}^{\prime}\right) T=E_{1}\{n\} \\
P_{1}\left(n, T_{2} \vec{k}\right)=e^{-p_{1}(\vec{k}) T} \frac{\left[p_{1}^{\prime}\left(\vec{k}^{\prime}\right) T\right]^{n}}{n!}
\end{gather*}
$$

(2396

Furion Dorman Sintostes
AS DEFINED ABOVE, THE INTENSITY PREE OR POST ARENTURE IS A MEASURE OF THE PROBABJLTTY PER UNIT TIME OF COUNTENG A PHOTON MOVING IN A GIVEN DIRECTION. EqUATEON (2, REQUINES L5 TO KNOW THE INTEASITY FUNCTTON I (k). SInectLy, WE 20 NOT KNOW I(k) OR, WHAT 25 THE SAME THENG, THE PROBABILETY PEO UNTT TIME OF A PHOTON. WHAT WE
(DO LS TO COUNT, FOR EACH Z_{1}, FOR A TIME T THE MURBEC OF PHOTONS. THAT IS, WE FOWT A FONCTEDN'

$$
N(T, \vec{k})
$$

WHLCH CONSIJTS OF SAMPLES PROM THE DOSTREBULTON (239C). FOR EXARME,

$$
\begin{equation*}
E\{N(T, \vec{k})\}=\sum_{m=0}^{\infty} m P_{1}(n, T, \bar{k}) \cong E_{1}\{n\}=r_{1}(\vec{k}) T=A T I(\vec{k}) . \tag{240}
\end{equation*}
$$

THIS THE EXPECTED VALLE OF $N(T, \vec{k})$ IS PROPONTSONAL TO ThE SUNCTION

 To (2). That 2S, we forv

$$
\begin{equation*}
\tilde{L}(\vec{r})=\iint_{-\infty}^{\infty} d k_{k} d k_{z} N(T, \vec{k}) e^{-2 \pi i \vec{k} \cdot \vec{v}} \tag{241}
\end{equation*}
$$

OVER AN ENSEMBLE, WHAT IS THE MENW AND VARTANCE OF (241)?

$$
\begin{equation*}
E_{2}\{\tilde{L}(\vec{v})\}=\iint_{-\infty}^{\infty} d k_{x} d k_{z} E\{N(T, \vec{k})\} e^{-2 \pi i \vec{k} \cdot \vec{\nu}}=k T d(\vec{v}) \tag{24/2}
\end{equation*}
$$

USTNG (240) AND (21). IN WORD, THE EXPECTED VALuE AT A patut \vec{v} in

The vactinale 25 found fion

$$
\begin{aligned}
& E_{2}\left\{|\tilde{f}(\vec{v})-k T d(\vec{v})|^{2}\right\}= \\
& =E_{2}\left\{\iint_{-\infty}^{\infty} d \overrightarrow{k_{1}} \iint_{-\infty}^{\infty} d \overrightarrow{k_{2}}\left[N\left(T, \overrightarrow{k_{1}}\right)-k T I\left(\overrightarrow{k_{1}}\right)\right]\left[N\left(T, \overrightarrow{k_{2}}\right)-k T I\left(\overrightarrow{k_{2}}\right)\right]^{-2 \pi i \cdot \vec{v} \cdot\left(\overrightarrow{k_{1}}, \overrightarrow{k_{1}}\right.}=\right. \\
& C=\iint_{-\infty}^{\infty} d \overrightarrow{k_{1}} \iint_{-\infty}^{\infty} d \overrightarrow{k_{2}} e^{-2 \pi_{i} \vec{v} \cdot\left(\overrightarrow{k_{1}-\vec{k}_{1}}\right)} E_{1}\left\{\left[N\left(r, \overrightarrow{k_{1}}\right)-k T I\left(\overrightarrow{k_{1}}\right)\right]\left[N\left(T, \overrightarrow{k_{2}}\right)-k T I\left(\overrightarrow{k_{2}}\right)\right]\right\}
\end{aligned}
$$

 UNCoperar LTTAD STM $\vec{R}_{1} \neq \vec{K}_{2}$, THEN

$$
\begin{align*}
& E\left\{\left[N\left(T_{1} \overrightarrow{k_{1}}\right)-k T I\left(\overrightarrow{k_{1}}\right)\right]\left[N\left(T, \overrightarrow{k_{2}}\right)-k T I\left(\overrightarrow{k_{2}}\right)\right]\right\}= \\
& \quad=\delta\left(\overrightarrow{k_{1}}-\overrightarrow{k_{2}}\right) E\left\{\left[N\left(T_{0} \overrightarrow{k_{1}}\right)-k T I\left(\overrightarrow{k_{1}}\right)\right]^{2}\right\} \\
& \quad=\delta\left(\overrightarrow{k_{1}}-\overrightarrow{k_{2}}\right) \star \cdot T I\left(\overrightarrow{k_{1}}\right) \tag{244}
\end{align*}
$$

THID nesult IN (243) GIVES

$$
\begin{align*}
E_{k}\left\{\left|\tilde{f}(\vec{v})-k T_{\sigma^{\prime}}(\vec{v})\right|^{2}\right\} & =k T \iint_{-\infty}^{\infty} d \vec{k} I(\vec{k})= \tag{245}\\
& =\iint_{-\infty}^{\infty} d \vec{k} E\{N(T, \vec{k})\}
\end{align*}
$$

Justafleation fax (244) my be sänd frow the quation mectanical INTERPRETATLON OF THE EFFECT OF THE TELESEOPE ANEKTURE ON THE INCOALNG PIPTONS. SPECLFFICALLY, THE APERTURE IS ULEWED SN THE PARTTCLE PKCTUNE
 RECTEON, WHICH ALE ASSUBED TO ACREVE AT RANPON WD UNCORNELTED WITH EACH OTHEOR, ALE SEATTENED INTO A "CONIE" OF ANGLES んATH A
 proturie.

$$
\mu_{1}--W H A M_{N} h_{m-}
$$

$$
-\cdots \times \operatorname{lom} / 2=-\mu_{1}-\mu_{2}
$$

$$
\mu_{1} \neq \mu_{2}
$$

 CORRELATION OF THE VARIATION OF PHOTON COUNTS AT R_{1} AND R_{2} OVER THE ENSEMBLE, UNLESS THERE IS CORRELATION WITHES EACH ENSEMOLE MEMBER.

 DEnECTIONS, \vec{k}_{1}^{\prime} AND \vec{R}_{2}. AGAIN, OVER THE MANY INTERNALS, THE COUNTS WILL BE DETNRIBUTED RADPOHLY MOUND THE RESPECTIVE MEN VALES μ_{1} AND μ_{2}.
 CORRELATED BeTWEEN \vec{k}_{1}, ND \vec{k}_{2}^{\prime} Far, $\vec{k}_{1}^{\prime} \neq \vec{k}_{2}^{\prime}$? THAT IS, WILL A COUNT ABOVE ON BELLOW THE AVERAGE AT \vec{R}^{\prime} 'HAVE ANY PREDTETSVE VALUE FOR THE COUNT BENG ABOVE OR BELOW THE AVERAGE AT \vec{R}_{2}^{\prime} IN THE INTERVAL T ? IT WOULD APPEAR FROM THE QUANTUM MECHWNZCL VIEW THAT THE ANSWER MUST BEE NO. AFTER ONE PHOTON HAS LWTERAETED NETH THE APERTURES WD BEEN SCATTERED IT US PRESUMED NOT TO CONDITION THE APPARATUS IN ANY WAY WHICH THE NEXT PHON' COULD USK TO DECIDE TO WHERE IT
 INFLUENCE EACH OTHER THROUGH THE, NTTEUMEDDARY OF THE ARERTVINE THEN THE RANDOMNESS BETWEEN \vec{R},' AND \vec{k}_{2} MUST BE WNCORCEATED.

 EVSERTSLE AVERAGE SENSEDNLY. ESSENTIALLY ALL OF THE APPARENT
(. PARADOXEs OF QM. COTE FROM ATTEMPTING TO APPLY THESE PREDECLKNLS TO A SINGLE MEMBERS OF THE LNSGMDLE. A BETTER MPROAEH IS TO
 ERGODIC ASSUMPTION.

IN NORDS RESULTS (242) AND (245) STATE THAT:
ORIGINAL PAC: \% OF POOR QUALITY
a) The avinhace valule at a posnt $\vec{\nu}$ o,e tike Furnex Trewsrorey

 STMAGE:
 IS INDEPENDENT OF \bar{V} AND IS PROPOCTLONAL TO THE TOTAL INTEGRTES TATENSITY OF THL SHACEL.
Nte that:
a) THE FRNT RLSULT ABOVE TO TRUE INDEPENDENT OF THE SPECEIRLC NATVAE OF THE PHOTON PROBABELTVY DESTREBUTION [BECAUSE THE
 THE EXPECEP VRUET].
b) THE SECOND RESUET SS SPEELAIC TO THE POTDON NATURLS OF THE PHOTON DISTREISUTION; IN PARTSEULAR THE FACT THAT THE VATEANE AND MEAN DF A POSSSON DESTREIBUTLD VAELABLE NTE NUTLSNENLLY ERUULL. SEE (236) ANP (239).
 T.30\%s of $\alpha(\vec{v})$. By SNSRECTON, If WLE SET $\vec{v}=0$ IN (21)

$$
f(\vec{v}=0)=\iint_{-\infty}^{\infty} d \vec{k} I(\vec{k}) e^{0}=\iint_{-\infty}^{\infty} d \vec{k} I(\vec{k})
$$

So That

$$
E_{2}\left\{|\tilde{f}(\vec{v})-k T d(\vec{v})|^{2}\right\}=k T \iint_{-\infty}^{\infty} d \vec{k} I(\vec{k})=k T d(\vec{v}=0)
$$

(T) THES RESULT CAN bE OBTANAKD ALSO BY SUBSTITUTING THE SNVENSE FOUREER TRANBEONS OF $f(\vec{v})$ fix $I(\vec{k})$ IN (245) AND USTNG THE VECTOR FOXM of

THE DEFENETTON OF THE DSLAC DELTA-function ($*$).
Other Souneess of Notes

 FRON THE SKY INTO THE ARLETHELE AND COWTS INDULAD WT RUDOM OVER TIIC CCD AREHY LN THL POST-ADERTURE SHAGE PLANE DUG TO COSFIC NAYS LTTC.
Backeround pHoTONS FROM THE SKY APPEAR TO THE SNSTROMENT TO BE PNT OF THE"2,AAGE" AND ARE RERECTRD IN THE VALUE OF $T_{0}(\bar{k})$ AWP, HENCE, OF
 phutons can be distenguithed from ture "triue" smiger.
 BEEEN THROVGH THE ARERTURE, BE DSTTNGUDSHED AND, HENCEE COMPENSHED

 THESS SOURCE OF NoISE?

THE riNSWER IS LEVSDENTLY No. If SUEH COUNTS ARE ASSUMED To \&E PoESON

 CAN BE USOD TO SEIMATE THE TWO SOURCUSS OF VANEABTESTY AT A GIVEN posnt in tha imace plane. To Show ther let the Trob sounces come

$$
\begin{equation*}
P_{1}(m)=e^{-p_{1} T} \frac{\left(p_{1} T\right)^{n}}{n!}, P_{2}(n)=e^{-N_{R} T} \frac{\left(p_{1} T\right)^{n}}{n!} \tag{247}
\end{equation*}
$$

If a Counts ane RECESVED FROM THE TWO DSSTRZBUTLONS, THAT IS, A TOTAL
 THE probabiLety in trme Tof SUEH A RESULT? THE m counts atn be DVE TO EERO LOUNS FROM P_{1} AND m FROM P_{2}; ONE FINAM P_{1} and M-1 frorl P_{2}, LTTC. ConstyEning all The ways that m Total count
 resuet is is

ORIGINAL PACE M OF POOR QUALITY

$$
\begin{aligned}
P(n) & =\sum_{l=0}^{n} P_{1}(l) P_{2}(n-l)=\sum_{l=0}^{n} e^{-1} T \frac{\left(n_{1} T\right)^{l}}{l!} e^{-l T} \frac{\left(p_{2} T\right)^{n-l}}{(n-l)!}= \\
& =e^{-\left(n_{1}+R\right) T} \sum_{l=0}^{n} \frac{\left(\mu_{1} T\right)^{l}\left(p_{2} T\right)^{n-l}}{l!(n-l)!}= \\
& =e^{-\left(n_{1}+p_{l}\right) T} \frac{1}{n!} \sum_{l=0}^{n} \frac{n!}{l!(n-l)!}\left(n_{1} T\right)^{l}\left(p_{l} T\right)^{n-l}
\end{aligned}
$$

THE COEFPICLENT UNDER THE JUMMATISN IS

$$
\frac{n!}{l!(n-l)!}=\binom{n}{l}
$$

$$
P(n)=e^{-\left(n_{1}+p_{n}\right) T} \frac{\left[\left(n_{1}+p_{2}\right) T\right]^{n}}{n!} .
$$

$$
P(n)=e^{-\lambda T} \frac{(\lambda \tau)^{n}}{\mu!}
$$

whene:

$$
\lambda=\sum_{l=1}^{m} p_{l}
$$

 Possiad-DRTRTBuTLD] Souncess of countrs.

A GIVLEN POTNT SN TITE IMAGE PLANE AND, HLNCE, RELATE TO THE OPIIMUM

 REEGONAL INFORPMATIAN IS TAKEN INTO ACCOUNT, AS IN RELTENENE, THEN THERE ALE DRFFRERENEES BETWIESN PIYOTON COUNTS IMAGED BY THE ARMERTURE WD EMAGE -PLANE-ONLY COUNTS. THEE FODTENR GROUND LN THE
 OF THE SNSTRUMENT: THE LATTER DO NOT. THIS DTFFERENEE CWW BE

Nosses Finten wert Poxsion Sinturices

 LCOK MORE CLOSELY AT THES PROBLEM, KEEPSNG EN MSND THNT THE STATESTICS IN THE OREGENAL EMAGE DOMAIN ARE POESSON. WLE ARE ESPFCLILLY INTERESTED IN TECHNIQUES APPLTCABLE TO LDN LEGHT-LEVELU
 PRONOUNCLID. AS THE LEGHT LEVEL IS INCREASED, THES DIFFERENCE DECREASESS, SO THAT WE ANTICLMATE THAT RESULTS DESRVED FOR THE POISSON CASE WIL GO OVEN TO THE REJULTS DERSVED EATLEER FOR THE GAUSSEW CASE. THIS WIL RE SO, OF COURSE, ONLY IF IT CAN BE SHONU THAT THE $\bar{\nu}$-planir statiste os bécome Gausisan at hiva LuGitt Levells.

THE FINT QUESTION TO BE ASKEY IS "WHAT MEE THE $\bar{\nu}$-PLWE STHIISTICS IF THE INAGE PLANE STATESTTES NE POTSDON"? WE HANE ALREADY

 HAVLE NOT GEVEN A RESULT FOR THE \vec{V}-PLANE DISTREBUTLON FINCTTON'. PECTHL THAT THE REGRESSION APPROACHCD DEPENDED ON NNOULNE THE PROBABTLLTY DENSITY FUNCZON, NOT TUST TWO MORSENTS.
THE DESCRETE FOUREN TRANSFORM WHECH PRODuEES THE \vec{V}-fLNE FROM THE ORSGINAL IMAGE PLANE GREATLY COHPLICITES DETERNENATEAV OF THE \bar{V}-plane DENSTTY Function. EACH POINT IN THE \vec{V}-PLANLE IS A

LINEAR COMBINATION OF THE POINTS OF THE IMAGE PLANET. EACH POST OF THE LATTEN IS A SAMPLE SECH A POSSJON DTSTRSDUTTON, LEECH DISTRIBUTION IT A FUNCTION OF POSITION IN THE IMAGE PLANE. FURTHER, THE WEIGHTS OF THE LSNEMP COMSINATEIN NEE COMPLEX TTANSCENDENTALSS CONSEQUENTLY, THE MOST OBVIOW WAY OF GETTING W EXPRLSNEON FOR THE \vec{V}-T MN DENSITY FUNCTION BECOMES PROHIBITIVELY COMPLICATES.
 VALVES μ_{i} SNTLEGORS

$$
r_{i}=0,12,3, \ldots .
$$

 VALUE m, THEN THE PROBABILITY OF GETTENG THE RESSUT m FIOM TWE SUM OF TWO SAMPLES INVOLVES FINDING ALL THE WAYS $\mu_{1}+\mu_{2}$ CW GauL

$$
\begin{aligned}
p(m)= & \sum_{\mu=0}^{m} p_{1}(m) p_{2}(m-n)= \\
= & p_{1}\left(n_{1}=0\right) p_{2}\left(p_{2}=m\right)+p_{1}\left(n_{1}=1\right) p_{2}\left(n_{2}=m-1\right)+\ldots . \\
& +p_{1}\left(m_{1}=m\right) p_{2}\left(n_{2}=0\right)
\end{aligned}
$$

THE DIFFICULTY WITH THEN APPROACH TO FINDING THE PROBABILITY DENSITY IN
 THOUGH THE SAMPLE VALUES, BELL PHOTON COUNTS, ATE SIMILE INTEGERS 0,1 , 2, 3,.... . CONSIDER THE תUM OF JUT T TWO SAMPLES

$$
A=a_{1} m_{1}+a_{2} M_{2} \quad\left(n_{i}=0,1,2, \ldots\right)
$$

 EVERY UNIQUE COMBINATION OF VALUES $\left\{n_{d}\right\}$ GIVESS A UNEqCEE VALUE FOR
 ABOVE CAN NOT BE USED. MORE TO THE HENT, THE SUMMATION FORMULA MAY
 SAY FIN P P (A) as THAT

$$
p(A)=p_{1}^{-98}\left(n_{1}\right) p_{2}\left(n_{2}\right)
$$

 DOMAIN, LS TO WORK WTH THE MOMENTGENEMTTSGG FUNCTSON (MGF) OF THE POISSON DISTRIBUTSUN. IF ONE KNOWS ALL MOMENTS OFA PROBADELITY DESTRIBUTSON, ONE KNOWS THE DISTRSBUTSON UNTPUELY. SLUEE THE MIOF SPECIFTES ALL Monantr, IT IS, LN A SENSE, EquaVALENT TO THE DENSETY FUNCTION 2753.5.

WE WIL DISCUSS SOME RELEVANT PROPERTTES OF MGF'S BELOW BEFOCE APRLYING THE RENULT TO THE IMAGE PROBLETM AT HND. ALSO, TO HELP CONVEY THE 2DEN, WE WILL hIORK IN ONLY ONE DEMENSTON SUTTZALLY.

$$
\begin{equation*}
\mu_{n}=\sum_{n=0}^{\infty} s^{\mu} \mu(n) \tag{250}
\end{equation*}
$$

CONSEDER IWSTEAD THE FUNCTLON:

$$
\begin{equation*}
M(\theta)=\sum_{m=0}^{\infty} e^{\mu \theta} p(n) \tag{251}
\end{equation*}
$$

O is a continuous variable. By Expandints $e^{m \theta}$ wh Get

$$
\begin{align*}
M(\theta) & =\sum_{n=0}^{\infty} \mu(n)+\sum_{m=0}^{\infty}(n \theta) p(n)+\sum_{n=0}^{\infty} \frac{(n \theta)^{2}}{2!} p(n)+\cdots \cdot \\
& =\mu_{0}+\theta \mu_{1}+\frac{\theta^{2}}{2!} \mu_{2}+\frac{\theta^{3}}{3!} \mu_{3}+\cdots \cdot+\frac{\theta^{m}}{m!} \mu_{m}+\cdots \tag{252}
\end{align*}
$$

 (252) BY CVALUATING

$$
\mu_{\Lambda}=\left.\frac{d^{2} M(\theta)}{d \theta^{2}}\right|_{\theta=0} ^{-99 \cdots}
$$

$M(\theta)$ is The moment genventana function (hGF) far $\mu(n)$.
For the partecular case of the Pocsion destinibution

$$
\begin{align*}
& \mu(n)=e^{-\lambda T} \frac{(\lambda T)^{n}}{m!}=e^{-\beta} \frac{\beta^{n}}{n!}, \tag{254}\\
& M(\theta)=e^{-\beta} \sum_{n=0}^{\infty} e^{m \theta} \frac{\beta^{\mu}}{n!}=e^{-\beta} \sum_{n=0}^{\infty} \frac{\left(e^{\theta} \beta\right)^{n}}{n!}= \\
&=e^{-\beta} e^{\beta e^{\theta}}=e^{\beta\left[e^{\theta}-1\right]} \quad \text { (Pot5Sol nof) }
\end{align*}
$$

The Moment plfewe by (250) ake all abovt the arseen. Consipen THE MOMENTS ABOOT A Polnt a, Not NECESNALEy د木ticion.

$$
\begin{equation*}
\mu_{n}=\sum_{n=0}^{\infty}(n-a)^{n} p(n) \tag{256}
\end{equation*}
$$

Constion likewise

$$
\begin{gathered}
\sum_{m=0}^{\infty} e^{(n-a) \theta} p(n)=e^{-\alpha \theta} M(\theta)= \\
=\sum_{n=0}^{\infty} p(n)+\sum_{m=0}^{\infty}[(n-a) \theta]_{k}(n)+\sum_{n=0}^{\infty} \frac{1}{2!}[(n-\alpha) \theta]^{2} p(n)+\cdots=
\end{gathered}
$$

(

$$
\begin{equation*}
=\tilde{\mu}_{0}+\theta \tilde{\mu}_{1}+\frac{\theta^{2}}{2!} \tilde{\mu}_{2}+\frac{\theta^{3}}{3!} \tilde{\mu}_{3}+\cdots+\frac{\theta^{m}}{m!} \tilde{\mu}_{m}+\cdots \tag{257}
\end{equation*}
$$

THUS, THE 1 -TH MOMENT of $f(n)$ Agout a IS GSVEN BY

$$
\begin{equation*}
\tilde{\mu}_{\mu}=\left.\frac{d^{2} \tilde{M}(\theta)}{d \theta^{2}}\right|_{\theta=0} \tag{258}
\end{equation*}
$$

Whene $\tilde{H}(\theta)$ Is The mof far $f(M)$ ABOOT a,

$$
\begin{equation*}
\tilde{M}(\theta)=e^{-a \theta} \cdot M(\theta) \tag{129}
\end{equation*}
$$

 FROM THS ONTGLVAL PEWREBUTSON HAVE VALCKS $0,1,2,3, \ldots$
 articinal smaple values

NEW SAMPLE valcess

Clenrly

$$
\begin{equation*}
p^{\prime}(n \alpha)=p(n) \tag{260}
\end{equation*}
$$

THE M-TH MOMENT OF THE NEW DESTRTBUTION ABEUT THE OREIEN IS

$$
\mu_{n}^{\prime}=\sum_{m=0}^{\infty}(m \alpha)^{n} p^{\prime}(m \alpha)=\alpha^{n} \sum_{n=0}^{\infty} n^{n} p(n)
$$

ar,

$$
\begin{equation*}
\mu_{n}^{\prime}=\alpha^{n} \mu_{\Omega} \tag{261}
\end{equation*}
$$

Note that \propto CAN be comilix.
The moment gententew fviction apreopraita to the new., zotralgutrow is Fown by constocring

$$
\begin{align*}
& \sum_{m=0}^{\infty} e^{m \alpha \theta} p^{\prime}(n \alpha)=\sum_{m=0}^{\infty} e^{m \alpha \theta} p(n)= \\
= & \sum_{m=0}^{\infty} p(n)+\sum_{m=0}^{\infty}(n \alpha \theta) p(n)+\frac{1}{2!} \sum_{m=0}^{\infty}(n \alpha)^{2} \theta^{2} p(n)+\cdots= \\
= & \mu_{0}^{\prime}+\theta \mu_{1}^{\prime}+\frac{\theta^{2}}{2!} \mu_{2}^{\prime}+\cdots+\frac{\theta^{m}}{m!} \mu_{m}^{\prime}+\cdots \tag{262}
\end{align*}
$$

Whene μ_{i}^{\prime} IS GIVEN BY (261). CONSEQUENTLY, THE R-TH MOMENT ABOUT
 BY THE FACTON \propto TS

$$
\begin{equation*}
\mu_{r}^{\prime}=\left.\frac{d^{r} M^{\prime}(\theta)}{d \theta^{r}}\right|_{\theta=0} \tag{263}
\end{equation*}
$$

WHENE

$$
\begin{equation*}
M^{\prime}(\theta)=\sum_{m=0}^{\infty} e^{\mu \alpha \theta} p(n) \tag{264}
\end{equation*}
$$

FOR THE PARTLEULAN CASE OF THE POLSSON DESTRIBUTION (254),

$$
\begin{align*}
M^{\prime}(\theta) & =e^{-\beta} \sum_{n=0}^{\infty} e^{n \alpha \theta} \frac{\beta^{n}}{n!}=e^{-\beta} \sum_{\mu=0}^{\infty} \frac{\left(\beta e^{\alpha \theta}\right)^{\mu}}{n!}= \\
& =e^{-\beta} e^{\beta e^{\alpha \theta}}=e^{\beta\left[e^{\alpha \theta}-1\right]} \tag{265}
\end{align*}
$$

(seacay Patson MGF)

CONSIDER NOW THE MOMENTS AND MON OF THE SUM OF TWO SAMPLES FROM
 AND 价 AND LET US ASSUME THAT THE SHOPLES FROM IT WV T T 2 ARE
 VALUES OF THE SAMPUS'S FROM II, AND HI L , WE CAN SEE THAT

$$
\begin{equation*}
\bar{p}\left(\alpha_{1} n+\alpha_{2} m\right)=p_{1}(n) p_{2}(m) \tag{266}
\end{equation*}
$$

 DISIREZUTION FOR THE ALESOHTED' SUM. THE ROTH MOMENT BOOT THE ARIEIN of 位 IS

$$
\begin{equation*}
\bar{\mu}_{i}=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\left(\alpha_{1} \mu+\alpha_{2} m\right)^{r} p_{1}(n) p_{2}(m) . \tag{267}
\end{equation*}
$$

AS BEFORE, CONSIDER THE FUNCTION

$$
\begin{align*}
\bar{M}(\theta) & =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} e^{\left(\alpha_{1} n+\alpha_{2} m\right) \theta} p_{1}(n){\mu_{2}}_{2}(m)=\sum_{n=0}^{\infty} e^{n \alpha_{1} \theta} p_{1}(n) \sum_{m=0}^{\infty} e^{m \alpha_{2} \theta} p_{2}(m) \\
& =M_{1}^{\prime}(\theta) M_{2}^{\prime}(\theta) \tag{26B}
\end{align*}
$$

WHERE

$$
\begin{equation*}
\eta_{i}^{\prime}(\theta) \equiv \sum_{n=0}^{\infty} e^{n \alpha_{i} \theta} p_{i}(n) \tag{269}
\end{equation*}
$$

IT IS CLEAR FRONT THE SHH REASONING USED V EARLIER THAT

$$
\begin{equation*}
\bar{\mu}_{\lambda}=\left.\frac{d^{A} \bar{M}(\theta)}{d \theta^{\mu}}\right|_{\theta=0} \tag{270}
\end{equation*}
$$

W 2714

$$
\bar{M}(\theta)=M_{1}^{\prime}(\theta) M_{2}^{\prime}(\theta)
$$

THE RESULTS CLENLY EXIEND TO THE SUM of N SANDPES BROM N IN.PEPENIENT 955 ESBBTEONS WLTH WESOITS.

$$
\begin{aligned}
& \overline{p^{\prime}}\left(\sum_{i=1}^{N} \alpha_{i} n_{i}\right)=\prod_{i=1}^{N} p_{i}\left(n_{i}\right) \\
& \bar{M}(\theta)=\prod_{i=1}^{N} M_{i}^{\prime}(\theta) \\
& M_{i}^{\prime}(\theta) \equiv \sum_{m_{i}=0}^{\infty} e^{\mu_{i} \alpha_{i} \theta}{p_{i}\left(n_{i}\right)}_{(27+1)}^{(i=1,2, \ldots N)}
\end{aligned}
$$

WITH (2TOO) STITL APLYZNG.
In the spectesc case of N Possion prsirisbutitond

$$
T_{i}\left(n_{i}\right)=e^{-\beta_{i}} \frac{\beta_{i}^{m_{i}}}{\left(n_{i}\right)!} \quad \begin{align*}
& \left(\beta_{i}=\lambda_{i} T\right) \tag{2+4}\\
& (i=1,2, \ldots N)
\end{align*}
$$

WE KNOW Fhor (265) THT

$$
\begin{equation*}
M_{i}^{\prime}(\theta)=e^{\beta_{i}\left[e^{\alpha_{i} \theta}-1\right]} \tag{275}
\end{equation*}
$$

50 TuAT

$$
\begin{equation*}
\bar{M}(\theta)=\prod_{i=1}^{N} e^{\beta_{i}\left[e^{\alpha_{i} \theta}-1\right]}=e^{\sum_{i=1}^{N} \beta_{i}\left[e^{\alpha_{i} \theta}-1\right]} \tag{276}
\end{equation*}
$$

(MGF for sun of sencel Possion sampars)

FOR COMPARTSON WLTH LARLIOR RESULTS WE REQLIARE MOMENTS WITH RESTECT
to the mean. From (270) and (2π) we find tuat tuce mand of twa. sum of wistortes Potion sationis as

$$
\begin{aligned}
\bar{\mu}_{1} & =\frac{d \bar{M}(\theta)}{d \theta}=e^{-\sum_{i=1}^{N} \rho_{i}} \frac{d}{d \theta}\left\{e^{\sum_{i=1}^{N} \rho_{i} e^{\alpha_{i} \theta}}\right\}= \\
& =e^{-\sum_{i=1}^{N} P_{i}} e^{\sum_{i=1}^{N} P_{i} e^{\alpha_{i} \theta}} \frac{d}{d \theta}\left\{\sum_{i=1}^{N} \beta_{i} e^{\alpha_{i} \theta}\right\}=
\end{aligned}
$$

$$
=e^{-\sum_{i=1}^{N} \beta_{i}} e^{\sum_{i=1}^{N} \beta_{i} e^{\alpha_{i} \theta}} \sum_{i=1}^{N} \beta_{i} \alpha_{i} e^{\alpha_{i} \theta}
$$

evaluatey at $\theta=0$ to geve

$$
\because \bar{\mu}_{1}=\sum_{i=1}^{N} \beta_{i} \alpha_{i} \quad \text { (MENOO WIETEHTED Poasen (277) }
$$

 a) AT THE TON OF PAGE 93. RESULE (259) PORMSIS US TO WRSTE, USENG aLSO (276), THE MGF W.r.T. THE MEW

$$
\begin{equation*}
\tilde{M}(\theta)=e^{-\dot{M}_{1} \theta} \bar{M}(\theta)=e^{\sum_{i=1}^{N} \beta_{i}\left[e^{\alpha_{i} \theta}-\alpha_{i} \theta-1\right]} \tag{278}
\end{equation*}
$$

 SNDIVEDUAL MEWN $\beta_{i} \alpha_{i}$ so TRAT

$$
M_{i}^{\prime}(\theta) \rightarrow e^{\beta_{i}\left[e^{\alpha_{i} \theta}-\alpha_{i} \theta-1\right]}
$$

- (W.A.Ti i-TIN MEAN)

Substritution of tias into (272) THEN cRVES us immepiatcly (278).
WE have rloposed Earldon to focen a werchtad sury of the Fourech tewnForers of tue focal planc Dita ang have jevelopey an exnession (62) POR THE OPTIMUM WELEATSS.

 OF THLE IMACE BE

$$
\mu_{j k} \quad(j, k=0,1,2, \ldots N-1)
$$

Eneh sammes ith comer inath a Possion pestrejzutison

$$
\begin{align*}
\gamma_{j k}^{\alpha}\left(\mu_{j k}\right) & =e^{-\beta_{j k}} \cdot \frac{\left(A_{j k}\right)^{\mu_{j k}}}{\left(\mu_{j h}\right)!} \tag{279}\\
\beta_{j k} & =\lambda_{j k} T=\text { MEAN }=\text { VARIANGK } \tag{200}
\end{align*}
$$

The DFT O, $\mu_{j k}$ WELC BE

$$
\begin{align*}
M_{/ m} & =\sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \mu_{j k} e^{-\frac{2 \pi i\left(l_{j}+m k\right)}{N}}= \tag{201}\\
& =\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \mu_{j k} W^{l i} W^{m k} \quad\left(l_{p}, m=0,1,2, . . N-1\right) \\
W & \equiv e^{-\frac{2 \pi i}{N}} \tag{252}
\end{align*}
$$

 BuTITOAS. Nam WE CAN EXILN'D (278) TO RLAD THEN

$$
\begin{array}{r}
\tilde{H}_{h_{m}}(\theta)=e^{\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \beta_{j k}\left[e^{\theta W^{l_{i}} W^{m h}}-\theta W^{\beta j_{1}^{m k}}-1\right]} \tag{253}\\
\left(i_{2, m}=0,1,2, \ldots N-1\right)
\end{array}
$$

NATION.
TO BE NOLE TO MPRLY THE RECRESSLON TECHNRQU TO THE FOUREER DOMAON WE NELD AN EXPRESSSON FOR THE PRODABILETY OF A GSVEN VALUE x AT GACH POINT IN TKAT POMAEN. LET US GO BACK TO (271-J) whsed ARE NOT spiscuficic to the case of Poasion sintistises.

$$
\begin{align*}
& \bar{M}(\theta)=\prod_{i=1}^{N} \sum_{m_{i}=0}^{\infty} e^{\mu_{i} \alpha_{i} \theta} p_{i}\left(n_{i}\right)= \\
& =\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} \ldots \sum_{\mu_{N}=0}^{\infty} e^{\left(\alpha_{1} m_{1}+\alpha_{2} m_{2}+\cdots \alpha_{N} \mu_{N}\right) \theta} p_{1}\left(m_{1}\right) p_{2}\left(m_{2}\right) \cdots p_{N}\left(m_{N}\right)= \\
& =\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} \cdots \sum_{\mu_{N}}^{\infty}\left\{e^{\theta \sum_{j=1}^{N} \alpha_{i} \mu_{j}}\right\}\left\{\prod_{j=1}^{N} \mathcal{N}_{j}\left(n_{i}\right)\right\} \tag{284}
\end{align*}
$$

LeT us replace θ by iw and Foien

$$
\begin{equation*}
\lim _{Q \rightarrow \infty} \frac{1}{2 Q} \int_{-Q}^{Q} \bar{M}(i \omega) e^{-i \omega x} \cdot d \omega \tag{255}
\end{equation*}
$$

WË GET FROM (284)

$$
\sum_{n_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty} \cdots \sum_{\mu_{N}=0}^{\infty}\left\{\prod_{j=1}^{N} p_{j}\left(n_{j}\right)\right\}\left\{\lim _{\phi \rightarrow \infty} \frac{1}{2 \phi} \int_{-Q}^{Q} e^{-i \omega\left[n-\sum_{j=1}^{N} \alpha_{j} m_{j}\right]} d \omega\right\}
$$

(236)

We clä̈y that tive secong expacssion zn \{\} has turs valuí.

$$
\left\{\begin{array}{l}
1, \text { IF } x=\sum_{j=1}^{-107-} \alpha_{i} m_{i} \tag{297}\\
0, \text { OTHENTSSS. }
\end{array}\right.
$$

To confinary Thes, consrper

$$
\begin{align*}
& \lim _{Q \rightarrow \infty} \frac{1}{2 \phi} \int_{Q}^{\varphi} e^{-i \omega z} d \omega=\lim _{Q \rightarrow \infty} \frac{1}{2 \phi} \int_{-Q}^{\varphi}[\cos \omega z-i \operatorname{SJN} \omega \overline{Q z} d \omega= \\
& =\lim _{\phi \rightarrow \infty} \frac{1}{Q} \int_{0}^{Q} \cos \omega z d \omega=\lim _{\phi \rightarrow \infty} \frac{1}{\phi z} \int_{0}^{\varphi z} \cos \omega d \omega= \\
& =\lim _{\phi \rightarrow \infty} \frac{1}{\phi z}[+\delta N \omega]_{0}^{\phi z}=\lim _{\phi \rightarrow \infty}\left\{\frac{\sin q z}{q z}\right\}= \\
& = \begin{cases}1 & I f z=0 \\
0 & \text { If } \in \neq 0\end{cases} \tag{258}
\end{align*}
$$

AN CLATMED.
LOTUS ANSURE, AS NTLSD BEFORE, THAT THE WEIOHTS α; NEL SNATSONAK. If $x=\sum \alpha_{j} \mu_{i} \dot{\gamma}$ THERE IS THEN A UNIQUE SET OF VALVES m. FOP WHECH ir r THRS 55 TRULE. ACCORDENG TO (287), ALL Of THE TWMM5 of (236) MUST DE ZÉRO ExckiPT FON THE ONE UNXQuE SET OF VALUES STPLESD BY x. IF x CAN NOT DE EXPRESSSD BY ANY $\left\{x_{j}\right\}$, AL TERMS of (2S6) ARE ZERD. WE CONCLUDE THEN THAT

$$
\lim _{Q \rightarrow \infty} \frac{1}{2 Q} \int_{-Q}^{Q} \bar{M}(i \omega) e^{-i \omega x} d \omega \equiv \overline{p^{2}(x)} \begin{cases}\bar{p}\left(\sum_{i=1}^{N} \alpha_{i} \mu_{i}\right)=\prod_{i=1}^{N} p_{i}\left(n_{j}\right) \quad \text { (299ai } \\ 0 & \text { (2s9 l) }\end{cases}
$$

-LOB- ORIGINAL PACR IT 4 OF POOR QUALITY
Case (259a) so true whan x has a valur sueh thet a set $\left\{n_{j}\right\}$ EXIST SATISAYENG

$$
x=\sum_{j=1}^{N} \alpha_{i} n_{i} \quad\left(n_{j} \text { snix<ci }\right)
$$

Casc (2896) as true otrerwise.
 PROBABELETY DRSTMIIUTION IN THE FOUREE PLWE. THE MGF IN THE

$$
\begin{align*}
& \bar{M}_{l_{m}}(\theta)=e^{\sum_{i=0}^{N-1} \sum_{i=0}^{N-1} \beta_{j k}\left[e^{\theta W^{\beta_{i}} W_{m k}}-1\right]} \tag{290}\\
& \quad\left(l_{2 m}=0,1,2, \ldots N-1\right)
\end{align*}
$$

ANI THE INTEGRAL REPRESENTATSON OF THE PROBABLLETY DETTREDUTSON AT

Some Moments in trie Fovaxes Planis
 OF THE PLSCRETE $\sqrt{3}$ ORLER PLANE W.R.T. ZEERO 25 GIVEN BY (253) WUTH THE SECOND TENA IN [] REMOVED. THES LS JUST (290) MBOVE. TH COMPMENG THIE Fian' of (276) AND (290), WP CONSEDE IENE TTIE STESS LCADENG TO (277) IT IS clear thet

$$
\begin{equation*}
\left(\bar{\mu}_{1}\right)=\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \beta_{j k} W^{k} w^{m k} \tag{292}
\end{equation*}
$$

ThLS IS JUST THE DFT OF THE MEW OF THE SLGNAL IN THE IMAGE PLANE ANS

cavFIMS (242) AND a) AT THE To OF PACE 93.

$$
\begin{equation*}
M^{\prime}(\theta)=e^{\beta\left[e^{\alpha \theta}-\alpha \theta-1\right]} \tag{293}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d M^{\prime}}{d \theta}=e^{-\beta} \frac{d}{d \theta}\left\{e^{\beta e^{\alpha \theta}-\alpha \alpha \theta}\right\}=e^{-\beta}\left\{e^{\beta e^{\alpha \theta}-\beta \alpha \theta}\right\} \frac{d}{d \theta}\left\{\beta e^{\alpha \theta}-\beta \alpha \theta\right\}= \\
& =e^{-\beta}\left\{e^{\beta e^{\alpha \theta}-\beta \alpha \theta}\right\}\left\{\beta \alpha e^{\alpha \theta}-\beta \alpha\right\} \tag{294}
\end{align*}
$$

$A \operatorname{A} \theta=0$,

$$
\begin{equation*}
\mu_{1}^{\prime}=\left.\frac{d M^{\prime}}{d \theta}\right|_{\theta=0}=\alpha(\beta-\beta)=0 \tag{295}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d^{2} \mu^{\prime}}{d \theta^{2}}=e^{-\beta}\left\{\left[e^{\beta e^{\alpha \theta}-\beta \alpha \theta}\right]\left[\beta \alpha e^{\alpha \theta}-\beta \alpha\right]^{2}+\right. \\
&\left.+\left[e^{\beta e^{\alpha \theta}-\beta \alpha \theta}\right]\left[\beta \alpha^{2} e^{\alpha \theta}\right]\right\} \tag{296}
\end{align*}
$$

Ar $\theta=0$,

$$
\begin{equation*}
\mu_{2}^{\prime}:\left.\frac{d^{2} \mu^{\prime}}{d \theta^{2}}\right|_{\theta=0}=e^{-\beta}\left\{e^{\beta}(\beta \alpha-\beta \alpha)^{2}+e^{\beta} \beta \alpha^{2}\right\}=\beta \alpha^{2} \tag{297}
\end{equation*}
$$

 BECAUSE WE MAVE, IN SETTING UP THE MGF, USED THE COMPLEX MOMENT
 (245). NO DOVOT A DERSVATicon of THE MEF FOR THE MOMENTS OF THE MAGNTTUDCS OF THE "ARMS" WOULD RESULT IN NW EXPRESECON STMSLAR TO
 By (282), THE W'S NIS PHASORS OF MAENSTUDE 1, THEPE WOULD THEN RESvis

$$
\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \beta_{j k}
$$

 FERTHER AS THE HGF WETH WHLCH WE WAIT TO WORK SS THE OWE DEFENLDD 2N TENMS OF COTMNLEX MOMENT MRMS BECAUSE IT IS THT MOF WHACH LEADS TO TTIE PROBABTLSTY DENSITY ACCOADENG TO (2E9).
WE COULD LOOK, AT THIS POLNT, AT THE HLSHER: MOMENTS Si THE FOURSOn PLANE TO SEE UNDEN WHAT DONDSTSONS, SF WY, THEY GO OVET TO MOMENTS OF GAUSSEAN DESTETBUTTONS. IF THEY DED WE COULD THEN SPECIEY UNDER WHAT CIREUMSTANELSS THE REGRESSEN WALYSIS BEGUN EACLEEC NN APPLECTBLES. HOWEVER, WE HAVE TIST SEEN THAT THE MGF (290) IS NOT THE APPROPROATE ONE FOR THES AWALYSZS AND WE WLL, THEREELCRE, RESTTOONE Exarradatron of thes quesitav.
Optinization an Founzer Pans

 APRRONCH, BUT IT WS NORTHWHSLE NEVERTDELLSS TO TOUCH ON SOME OF TUE NTNR OBKOUS CONDDERATTOWS BECLUSE TIEY REVEAL TWE CHNBACTEOS of (291).
-11/- ORTGNAL PACRE E OF POOR QUALITY
THE ENAT POINT TO BE MAPE IS THAT, WETH THE EXCEFTION OF THE FACTOT of $1 / 2 Q$,

 CONFINTED DY VETRNG $\theta \rightarrow \infty$.

 DERFVATEVE of $\overline{7}_{\text {and }}(i \theta)$

OR

$$
\begin{equation*}
\frac{d}{d \beta} \ln \left\{\bar{M}_{\mu_{m}}(i \theta)\right\}=\frac{\bar{M}_{l_{n}}^{\prime}(i \theta)}{\bar{M}_{\mu_{m}}(i \theta)}=i \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} p_{i k} e^{i \theta W^{\beta i} W^{m k}} W^{L_{i j}} W^{m k} \tag{299}
\end{equation*}
$$

 PRODUCT REERESENTRTLON IS POSSIBLE. IN. PATTRCULAC, THE EVENTIEAL SENGULARTY AT ∞ PROHSBETS Intinpuction Of ANY FLNETS POWEN of θ WHICH WLLL, WN A SEREES EXPANSSTON OF (298), PERMT (299) TO BE BOUNDSD AI O O $\rightarrow \infty$.

WE NEE NT LOBERTY TO MAKE A CHANGE OF SNTLGMATIN VAEABUE IN (291). THE
 guagests THE OHANGE OF VARLARLE

$$
\Rightarrow d z=e^{\omega} \text { dw } \quad \text { on, } \quad d \omega=\frac{d z}{z}
$$

WTTH THIS CMANES (291) BECOMES"

$$
\bar{F}_{l_{m}}(x)=\lim _{\phi \rightarrow \infty} \frac{1}{2 \phi} \int_{e^{-Q}}^{e^{+p}} e^{\sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \beta_{i k}\left[z^{i \omega^{\mu \gamma} W^{m k}}-1\right]} z^{-i x-1} d z \quad \text { (j01) }
$$

In The LTMIT $Q \rightarrow \infty$, $e^{-\phi} \rightarrow 0$ and $e^{+\phi} \rightarrow \infty$. Thenefonet, The INTEGRAL IN (301) 利THE LIMT $Q \rightarrow \infty$ BECOVES THE MELLSN TRANSTORA of

$$
\begin{equation*}
f(z)=e^{\sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \beta_{i k}\left[z^{i W^{\beta} W^{N u m}}-1\right]} \tag{302}
\end{equation*}
$$

 TO BE

$$
\begin{equation*}
F(s)=\int_{0}^{\infty} f(z) z^{s-1} d z \tag{0.j}
\end{equation*}
$$

THE MELLSN TRANSFONY POSSESSES A CONVOLUTEON THEOACY WALDOOUS 13 THTK
 PRODJCT

$$
f(z)=\prod_{j=0}^{N-1} \prod_{k=0}^{N-1} e^{\beta_{i j}\left[z^{i W^{m i j} W^{m h}}-1\right]}
$$

IT IS CSSCNILAL ONLY TO BE ABLE TO EVALUATLS TILS POAM

$$
\begin{equation*}
\lim _{\phi \rightarrow \infty} \int_{e^{-\phi}}^{e^{+Q}} e^{\beta\left[z^{i W}-1\right]} z^{s-1} d z \tag{305}
\end{equation*}
$$

AN awarocous obsenvizon is, of coinse, thue por the Forkse integral
(291).

ORterninu pheie re OF POOR QUALITY

COSIDER THE LOGARSTHMEC DERIVATZVE $f(z)$ (302).

$$
\begin{equation*}
\frac{d}{d z} \ln f(z)=\frac{f^{\prime}(z)}{f(z)}=i \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \beta_{i n} W^{\mu_{j}} W^{m k} z^{i W^{M} W^{m k}-1} \tag{306}
\end{equation*}
$$

THIS HAS BRANOH POINTS AT $z=0$ AND $z=\infty$. CONSEqUENTRY, WE MUST HAKE A BRANCH COT RETNEEN O WD ∞. AGAIN, W MUFINSTE PRODUCT REPRESENTATION IS NOT POSSZBLEE GECAUSE OF THLE NTENSD TO INTECNATL ACDOSS THE BRANCH CUT.

THE REASON FOP TRYING TO FINO LNFINETE PROPUGT REPRLSENTANSNS OF $\bar{M}_{\mathrm{ln}}(i \theta)$ NN $f(\xi)$ (302) IS THE" POSSSBELTTY OF THERESBY IPSNTLFYING A FACTOR OF TWE LNTLERAND WHEAH, TOGETHET WHTH $Q \rightarrow \infty$ NW THE FACTOR $1 / 2 Q$ OSTSLPE THE INTEGRAL, WTLL ACCOWT FOR THE SSLLCTION of DISSCRETE VILUSS OF THE APEOMMLNT OF $\bar{A}_{n}(x)$ FOR WHECH $\bar{T}_{1}(x)$
 DISCRLETE NATURES OF THE PHOTON COUNTS DN THE ORIGINLTC IMAGE PLANE. IF THE [IMPROPER] FUNCTSON WHTCH SELECTS THE ALLONES ARGUNENTS CNV BE IPENTIFICD, AS FOR EXAMPLE SN (2B7) ANS (2EB), ST MAY TMEN BE
 AS SHOWN BY (2:89), TIIS FUNETION WSL BE

$$
\begin{equation*}
P=\prod_{j=0}^{N-1} \prod_{k=0}^{N-1} p_{j k}\left(n_{j N}\right) \tag{307}
\end{equation*}
$$

OF COURSE, THE DKFFICULTY WLTH THE FORH (307) IS THAT POZNTS IN THE
 VNuNS ARE "ORDERED" BY Mij. BUT TO DO MEALTNGALL PROBABKLITYY COMPUTATIONS IN THE FOURESP PLWNE WE NELD "NATUNALLY" ORDERED VALVES. THAT TS, WE MUST GET ATOUND THE PROQLEV OF HAVENG TO DETEULINE THE M,'K WHICH PROPUCEE A CCVEN COMFLEX VALLE AT l_{m}

 OF EVALUATING (291) OR (301) WRLL RESULT IN A PROBABTLITY EXPRESSLS, NTT IN TERYS OF NK, BUT DTREETLY IN TERTS OF THE COMPLEX VALE at point $l_{\text {m }}$.
 SET $\left\{n_{j} k\right\}$ IMPLLOD BY A GEVEN corplax Valve.
WE KNON THAT THE COHDLAX VALNE x AT THE PSNT Rm IN THE BUCTE? PLNWE WLLL BE

$$
\begin{equation*}
x_{l m}=\sum_{i=0}^{N-1} \sum_{k=0}^{N-1} n_{j k} W^{l_{i} W^{m k}} \tag{308}
\end{equation*}
$$

AND, THEREEFORS, TKAT

$$
\begin{equation*}
r_{j k}=\frac{1}{N^{2}} \sum_{l=0}^{N^{\prime-1}} \sum_{m=0}^{N-1} x_{l m}{W^{-j l} W^{-k m} \equiv z_{i k} ~} \tag{309}
\end{equation*}
$$

 PLANE $\left\{x_{\text {lm }}\right\}$. Onis sNTENETTIE PROQERTY OF (309) IS TMAT THE M.jit ARE MATMEMATSCALLY CONTENUOUS FUNCTSONS of TNE $x_{\text {lm }}$. ONE MEGIT THEN ATTEMOT TD EVALUATE

$$
\begin{equation*}
P=\prod_{j=0}^{N-1} \prod_{k=0}^{N-1} p_{j k}^{2}\left[\frac{1}{N^{2}} \sum_{l=0}^{N-1} \sum_{m=0}^{N-1} x_{l_{m}} W^{-j^{l}} W^{-k m}\right] \tag{310}
\end{equation*}
$$

AS AN EXPRESSION OF THE PROBABSLTTY OF A GIVEN $\left\{x_{\text {Lum }}\right\}$ OVER THE FOURLER PLANE. TWO ROUTRD SHOUMD BE POSSTBLE. EZTHER DIREG USE of (310) TOGCTHEE WITH (279), OR CONTIUUATRON OF THE ATTENTT TO LUVLUATEE (291) OR (301) WITH LSE of THE TRANSFORNATTON (309) IF REPUSRED.

If (310) IS To bE EVALUATED IT WELL BE NECESSARY TO REPLACE THN PAcTORIAL IN (279) WETH TItS GAMMA FUNCTIOW'.

$$
\begin{equation*}
z!=\Gamma(z+1) \tag{311}
\end{equation*}
$$

So that

$$
\begin{equation*}
p_{j k}\left(z_{j k}\right) \equiv e^{-\beta_{j k}} \frac{\left(\beta_{j k}\right)^{z_{i k}}}{\Gamma\left(z_{j k}+1\right)} \tag{3/2}
\end{equation*}
$$

THEN,

$$
\begin{align*}
P & =\prod_{i=0}^{N-1} \prod_{k=0}^{N-1} e^{-\beta_{i k}} \frac{\left(\beta_{i k}\right)^{\frac{1}{N^{2}}} \sum_{l=0}^{N-1} \sum_{m=0}^{N-1} x_{m} W^{-i l} W^{-k m}}{\Gamma\left\{\frac{1}{N^{2}} \sum_{k=0}^{N-1} \sum_{m=0}^{N-1} x_{l_{m}} W^{-i l} W^{-k_{m}}+1\right\}}= \\
& =e^{-\sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \beta_{j k}} \frac{\left[\prod_{i=0}^{N-1} \prod_{h=0}^{N-1}\left(\beta_{j k}\right)^{\sum_{l=0}^{N-1} \sum_{m=0}^{N-1} x_{l_{m}} W^{-i l} W^{\left.-k_{m}\right]} \frac{1}{N^{2}}}\right.}{\left.\prod_{i=0}^{N-1} \prod_{k=0}^{N-1} \Gamma \frac{1}{N^{2}} \sum_{i=0}^{N-1} \sum_{m=0}^{N-1} n_{l} l_{m} W^{-i l} W^{-k m}+1\right\}} \tag{313}
\end{align*}
$$

Equation (3/3) IS USEEUL IN THE MOST GENERAL CASE EN WHTCH VALUES IN THE FOUREER PLANE, $x_{l / 2}$, DO NOT CORRECSTOND, VEA (309), TO
 EASE, FOR EXAMPLE, APTOR THE SUS-ITAGCE COMDINATSON STELO DESCUSLED EnsLTER.

But, to get a hanple on an approach to tha proizán using (307), Let

 WKITE FROM (279) ${ }^{\text {JR }}$ AND (307) THAT

$$
\begin{align*}
P & =\prod_{j=0}^{N-1} \prod_{k=0}^{N-1} e^{-\beta_{j k}} \frac{\left(\beta_{j k}\right)^{M_{j k}}}{\left(n_{j k}\right)!}=e^{-\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \beta_{i k}} \frac{\prod_{j=0}^{N-1} \prod_{k=0}^{N-1}\left(\beta_{j k}\right)^{M_{i k}}}{\prod_{j=0}^{N-1} \prod_{k=0}^{N-1}\left(n_{j k}\right)!} \\
& =A e^{-\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \beta_{j k}} \prod_{j=0}^{N-1} \prod_{k=0}^{N-1}\left(\beta_{j k}\right)^{\mu j k} \tag{314}
\end{align*}
$$

The opJectivi io to Aprroxintite, IN some way which Accomplishes

 $3 E$

$$
\begin{equation*}
\tilde{B}_{j k}=\frac{1}{N^{2}} \sum_{k=0}^{M-1} \sum_{m=0}^{M-1} B_{l m} W^{-i l} W^{-k m} \tag{315}
\end{equation*}
$$

Whens, for $M=N$,

$$
\begin{equation*}
B_{l_{m}}=\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \beta_{j k} W^{l_{i}} W^{m k} \tag{3/6}
\end{equation*}
$$

 (314) INVOLVENG Bik.

$$
\begin{equation*}
\frac{\partial}{\partial B_{m=1}}\left\{e^{-\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \tilde{\beta}_{j k}}\right\}=-e^{-\sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \tilde{\beta}_{j k}} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \frac{\partial \tilde{\beta}_{j n}}{\partial B_{M+1}} \tag{3,7}
\end{equation*}
$$

FRory (315),

$$
\begin{align*}
\frac{\partial \tilde{\beta}_{j k}}{\partial B_{M A}} & =\frac{1}{N^{2}} \sum_{l=0}^{M-1} \sum_{m=1}^{M-1} W^{-i l} W^{-k m} \frac{\partial B_{l m}}{\partial B_{N A}}=\frac{1}{N^{2}} \sum_{l 00}^{M-1} \sum_{m=0}^{n-1} W^{-i l} W^{-k_{m}} \delta_{M M} \delta_{m M}= \\
& =\frac{1}{N^{2}} W^{-i n} W^{-k /} \epsilon_{M M} \epsilon_{M A} \tag{318}
\end{align*}
$$

WHENE

$$
\left.\begin{array}{rl}
\epsilon_{m m} & \equiv 1 \tag{3/9}\\
& \equiv 0
\end{array}\right\} \quad \begin{aligned}
& m<n \\
& m \geq m
\end{aligned}
$$

Tünsforis, (317) BECOMES

$$
\begin{equation*}
=-\delta_{O M} \delta_{O M} e^{-\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \tilde{\beta}_{i k}} \tag{320}
\end{equation*}
$$

WHOE

$$
\begin{equation*}
\epsilon_{M A} \epsilon_{M A} \delta_{O M} \delta_{O A}=\delta_{O A} \delta_{O M} \tag{321}
\end{equation*}
$$

WE RÉqưñe ALSO,

$$
\begin{align*}
& =\frac{\epsilon_{M_{N}} \epsilon_{M_{N}}}{N^{2}} \sum_{N=0}^{N-1} \sum_{N=0}^{N-1}\left(\frac{M_{N N}}{\tilde{\beta}_{N \sim N}}\right) W^{-N n} W^{\omega N-} \prod_{j=0}^{N-1} \prod_{\alpha=0}^{N-1} \tilde{\beta}_{j k}^{\mu_{j k}} \tag{322}
\end{align*}
$$

REVVES (320) and (322) IN $\partial P / \partial B_{n+m}$ from (314) GIVE.

$$
\begin{equation*}
\frac{\partial P}{\partial B_{A \alpha}}=P\left\{N^{-2} \epsilon_{M_{N}} \epsilon_{M \alpha} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1}\left(\frac{n_{j k}}{\beta_{j k}}\right) W^{-i n} W^{-k N}-\delta_{0 N} \delta_{0 \mu}\right\}=0 \tag{323}
\end{equation*}
$$

WHERE $\tilde{j}_{j \text { ih }}$ IS DEFSNED DY (315).
As a chick of (323), IF MEN, $\tilde{\beta_{j k}}=\beta_{j k} \cdot(323)$. IS TKEN SOLVED By

$$
\tilde{\beta}_{j k}=x_{j k}=\beta_{j k}
$$

Fon

$$
m_{j k} / \tilde{0}_{j h}=1
$$

$A D$

$$
\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} W^{-j N} W^{-A N}=N^{2} \delta_{0 N} \delta_{0, ~}
$$

USTNE ALSO (321) WE SEE THAT, FOR $M=N$, (323) 25 SATISARLDP BY $\widehat{\beta}_{j k}=m_{j k}$, AS IT SHOULD.
IN TEAn' of the coffficients $B_{l m}$, (323) Is Eequinacentay, uSine (315),
 $r<M \rightarrow \mu=\alpha=0$. THE $\} \operatorname{SN}(324)$ GIVE THEN

$$
\begin{equation*}
\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} n_{j k}=B_{00} \tag{325}
\end{equation*}
$$

WHICH, WHEN POT INTO (315), GIVES

$$
\begin{equation*}
\tilde{B}_{j h}=\frac{1}{N^{2}} B_{\infty}=\frac{1}{N^{2}} \sum_{j=0}^{N-1} \sum_{A=0}^{N-1} m_{j k} \tag{326}
\end{equation*}
$$

 IS LZOLJED TO A CONSTANT' (M=1), THEN THE BEST GUESS OUR CAN MAKE E ASSIGNS THEE AVERAGE SAMIILLE VALUE F OVER THE IMAGE TO THAT CONSTANT:

The First sian in solving the cenkirl case of (324) as to put the first
 FOR FIXED If AND LaT

$$
\begin{align*}
& a_{k} \equiv \mu_{j k} W^{-j / n} W^{-k} \tag{827a}\\
& b_{k} \equiv \sum_{l=0}^{M-1} \sum_{m=0}^{M-1} B_{l m} W^{-j l} W^{-k m} \equiv \gamma_{j h} \tag{3276}
\end{align*}
$$

TO DO THE SUM ON LR WE USE

$$
\begin{equation*}
S_{i}=\sum_{k=0}^{N-1} \frac{a_{k}}{b_{k}}=\frac{\sum_{k=0}^{N-1} a_{k} \prod_{\substack{N=0 \\ N=k}}^{N-1} b_{N}}{\prod_{k=0}^{N-1} N_{k}}=\frac{A_{j}}{B_{j}} \tag{328}
\end{equation*}
$$

WHERE

$$
\begin{align*}
& A_{j}=\sum_{k=0}^{N-1} m_{j k} W^{-j N} W^{-k-} \prod_{\substack{N=0 \\
N \neq k}}^{N-1} \gamma_{j N} \\
& B_{j}=\prod_{k=0}^{N-1} \gamma_{j k} \tag{3296}
\end{align*}
$$

The arter summatson on $\dot{\gamma}$ as

$$
S=\sum_{j=0}^{N-1} \frac{A_{1}}{B_{i}}=\sum_{i=0}^{N-1} S_{j}
$$

FOR WHICH WLE CAN AEASN USE TNS FORM (32B) TO GETT

$$
\begin{align*}
& \prod_{j=0}^{N-1}\left\{\prod_{k=0}^{N-1} \gamma_{j k}\right\} \tag{330}
\end{align*}
$$

whens $\gamma_{j k} 35$ grven Sy (3276).
WHILLE S, WHICH LO EQUTVALENT TO THE NIRTT TERH OF (324), CN BLE USED TO CLEAR (324) OF FRACTIONS, THE RESULT SS CLEARLY VERY COAPLTCATZD
 THE OPTITUN Blm. A GETTEN APPROACH APPEARS TO OE TO MEREM

$$
\begin{align*}
& \sum_{N=0}^{N-1} \sum_{N=0}^{N-1} \frac{\partial P}{\partial B_{N / N}} W^{N N} W^{N / A}= \\
& =P\left\{\sum_{j=0}^{N-1} \sum_{N=0}^{N-1} \frac{M_{j h} \sum_{N=0}^{N-1} \sum_{N=0}^{N-1} \epsilon_{M_{N}} E_{M_{N}} W^{N(N-\dot{\gamma})} W^{N(N-\alpha)}}{\sum_{l=0}^{M-1} \sum_{M=0}^{M-1} B_{l_{M}} W^{-\dot{\gamma} \lambda} W^{-R_{m}}}-\right. \\
& \left.-\sum_{N=0}^{N-1} \sum_{N=0}^{N-1} \delta_{0 N} \delta_{0 N} W^{N / 2} W^{N-1}\right\} \tag{331}
\end{align*}
$$

THE SEFOND TERTD VUST UNTTY.
The inmarator of tiuc ferst teer is

$$
\begin{aligned}
& \text {-12/- original pace is } \\
& \sum_{i=0}^{M-1} \sum_{i=1}^{M-1} W^{n(N-i)} W^{+(\omega-k)}=\text { OF POOR QUALITY }
\end{aligned}
$$

Troveh we have shond now to cuabuare suen a senses gesome [pace 77],

Lat

$$
\begin{equation*}
T=\sum_{M=0}^{N-1} a^{M}=1+a+a^{2}+a^{3}+\cdots+a^{N-1} \tag{332}
\end{equation*}
$$

THEN

$$
a \ddot{T}=a+a^{2}+a^{3}+\cdots+a^{N}
$$

AND

$$
T-a T: T(1-a)=1-a^{N}
$$

on

$$
\begin{equation*}
T=\frac{1-a^{N}}{1-a} \tag{333}
\end{equation*}
$$

Thereracse

$$
\sum_{k=0}^{M-1} \sum_{\alpha=0}^{M-1} W^{n(N-\dot{\gamma})} W^{\alpha(w-k)}=\frac{1-W^{M(v-\dot{\gamma})}}{1-W^{N-\dot{\gamma}}} \frac{1-W^{M(\omega-k)}}{1-W^{N-k}} \text { (334) }
$$

 ALL $\{1, N\}$, (331) AND (334) LEND To

$$
\begin{equation*}
\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} m_{j k} \frac{\frac{1-W^{M(N-j)}}{1-W^{N-\gamma}} \frac{1-W^{M(\omega-k)}}{1-W^{N-k}}}{\sum_{l=0}^{M-1} \sum_{m=0}^{M-1} B_{l_{m}} W^{-\dot{j} N^{-k / m}} W^{-k}}=1 \tag{335}
\end{equation*}
$$

 Bécanes

$$
N^{2} \delta_{0,(r-i) m a d N} \delta_{D_{0}(w-k) m d N}
$$

-122- ORIGHAR Mrat to
ANB (335) Gous orve 70

$$
\begin{equation*}
N_{m_{N N}}=\sum_{l=0}^{N-1} \sum_{m=0}^{N-1} B_{l m} W^{-N l} W^{-N m} \tag{076a}
\end{equation*}
$$

$(M=N)$
ar

$$
\begin{equation*}
B_{l_{m}}=\sum_{N=0}^{N-1} \sum_{N=0}^{N-1} m_{N W} W^{l_{N}} W^{\text {m/en }} \tag{336k}
\end{equation*}
$$

AS ONE WOULD SUSAECT SENCE MEN ENABLESS $\tilde{B}_{i j}=\mu_{i j} \Rightarrow$ MAXETOUA PROSHBKLETY FOR THE SAMPLE VALLES Mi.j.
ANOTEN SNECTAL CASE WLE CAN TEST IN (335) IS ME1. THEN THE SOOBLE GEOmetrere secies in The Numenatore gescornes / AND

$$
\begin{equation*}
B_{\infty}=\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} m_{i k} \tag{337}
\end{equation*}
$$

IN MOREEMENT WITH (326).

 CONDITIONS (324) on (335).
 CAN BE SOLVED, AND TO STELATE TO THLE VALLES OF THE BP. B. FOX EXAMOLE, CONSEDEN THE CASE M=N-I. FOR $M=N$ WIS NNON THE EXAOT Blom Fiony (336 b). For $M=N-1$ WE MICHT TAALS AS A REASONABLE STATTING GUESS THE Blm GIVEN BY (336b) FON M=N WITH liAND me, of COURSE, LIMTTED TB $0_{0} 1, \ldots . . N$, $2[N-1$ VALUES $]$.

TO DEVELON THE TRCNATYUE, LFTUS ASSUME THAT

$$
\begin{equation*}
\left.B_{l m u}=A_{l_{m u}}+a_{l m} \quad \quad s_{\text {mu }}=0,1,2, \ldots M-1\right\} \tag{338}
\end{equation*}
$$

 WAY of gimptrave reaisonabug sinetang values for tus Alm. Aryer
 aldm APTLSED.
EqN. (33B) GRVES far The genomination 2N (324) [OR IN (335)]

$$
\begin{equation*}
\sum_{l=0}^{n-1} \sum_{m=0}^{M-1} A_{l_{m}} W^{-j l} W^{-k_{m}}+\sum_{l=0}^{m-1} \sum_{m=0}^{n-1} a_{l m} W^{-\gamma l_{1}} W^{-k m} \tag{339}
\end{equation*}
$$

To case thi notation cer us pefine

$$
\begin{equation*}
\alpha_{i k} \equiv \sum_{l=0}^{M-1} \sum_{m=0}^{M-1} A_{h m} W^{-i l} w^{-k m s} \tag{340}
\end{equation*}
$$

WD LET US ARPROXIMATE

$$
\begin{align*}
\frac{1}{\sum_{l=0}^{M-1} \sum_{m=0}^{M-1} B_{l_{m}} W^{-j l} W^{-k_{m}}} & =\frac{1}{\alpha_{i k}+\sum_{l=0}^{M-1} \sum_{m=0}^{M-1} a_{l m} W^{-i l} W^{-k_{m}}} \approx \\
& \approx \frac{1}{\alpha_{j k}}\left[1-\frac{1}{\alpha_{j k}} \sum_{l=0}^{M-1} \sum_{m=0}^{M-1} a_{l_{m}} W^{-j l} W^{-k_{m}}\right] \tag{341}
\end{align*}
$$

RESUL (341) ALDNS US TO APPROXIMATB FROM (324) THAT

$$
\begin{align*}
& -\epsilon_{M n} \epsilon_{m} \sum_{l=0}^{M-1} \sum_{m=0}^{M-1} a_{l m} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \frac{m_{j k}}{\left(\alpha_{j h}\right)^{2}} W^{-j(n+l)} W^{-k(\alpha+m)} \approx \\
& \approx \delta_{o n} \delta_{0 \mu}-\epsilon_{m_{i}} \epsilon_{\mu \alpha} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \frac{\mu_{j k}}{\alpha_{j k}} W^{-j n} W^{-k N} \equiv b_{n-\alpha} \tag{3/2}
\end{align*}
$$

 BASES OF THE ITERATIVE SEHEME. GIVEN N SUSTIAL GVESS' FONX THE A $A_{\text {mu }}$,

 ISR.

LET US JEFINE

$$
\begin{equation*}
Q_{\text {rlam }}=\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \frac{M_{j k}}{\left(\alpha_{j k}\right)^{2}} W^{-j(n+l)} W^{-k(n+m)} \tag{343}
\end{equation*}
$$

IF NE LIMTT \sim AND \sim IN (342) TO $\{0,1,2, \ldots M-1\},(342)$ NAYY BE WRITTEN

$$
\sum_{N=0}^{M-1} \sum_{m=0}^{m-1} a_{A m} Q_{n l .4 m}=-b_{n A}
$$

IN THIS FORM $3 T$ IS LASY TO SEEE THNT THE CORRLETEDNS a lm NRE PAT OF A [2-DIMENSTONAL] VECTOR - [4-DSMENSCONAL] MNTRIX PRODUCT AND THAT THEY COULD BE SOLVED FOR EXPLSCTTLY TF WE COULD FIND TIFE INVENSE
 JynMETRY witter THE ELENENS OF $Q_{\text {aim.m. IN FACT THERE ARE }}$
 THAT A VERY EFFLCTENT INVERSION TECHWLQUEE MAYY EXI5T.

 WE CONSTPE THE FORY

$$
\begin{equation*}
\sum_{l=0}^{M-1} a_{l} Q_{A l}=-l_{\lambda} \tag{345}
\end{equation*}
$$

The masierx $Q_{\text {al }}$ has the folcowela symmerty,

$$
[Q]=\left[\begin{array}{cccccc}
q_{0} & q_{1} & q_{2} & q_{3} & \cdots & q_{n-1} \tag{346}\\
q_{1} & q_{2} & q_{3} & q_{4} & \cdots & \cdots \\
q_{n} \\
q_{2} & q_{3} & q_{4} & q_{5} & \cdots & \cdots \\
q_{n+1} \\
\vdots & & & & & \\
q_{n-2} & q_{n-1} & q_{n} & q_{n+1} & \cdots & \cdots \\
q_{n-1} & q_{m-3} & q_{n+1} & q_{n+2} & \cdots & q_{2 n-2}
\end{array}\right]
$$

Note that [Q] is symmitrere and, in appstron, vawiss alone dracominas farallel to the menor Dragonal me equal.

LET is ADSME THAT WE KNOW THE TNUERSE of [O] of M-TH ORDES AND NOULD LIKE TO KNOW THE INVERSE OF THE NATNSX [Q] OF $(M+1)$-TH ORPER. SUCH A RELATEONSHIP WOULD PERTIST INVEVSTON OF $[\phi]$ OF ANY SIzE
 OF [Q]. IN FACT ONE COULD STATT WITH TNE 2×2 SQURRE WHOJE INVENSE IS

$$
\left[q^{2}\right]^{-1}=\frac{\left[\begin{array}{cc}
q_{2} & -q_{1} \\
-q_{1} & q_{0}
\end{array}\right]}{q_{0} q_{2}-q_{1}^{2}}
$$

47)

 INIPLCATE VECTANS AS AELLOWN:

$$
\begin{aligned}
& {[\alpha]=\text { conumd VGctar, M-TH onpan }} \\
& \Psi=\text { ROW VEcTOR, M-TH onAER }
\end{aligned}
$$

M
[I] DENOTES THE M-TH ORDER UNT IATREEX.
 VSNE $[Q+]^{-1}$ To GIVE THE (H+1)rH OLPER UNETM MAREX. FROM (34B) WE CAN NRITE

$$
\begin{align*}
& {\left[Q^{M}\right]\left[Q^{\prime}\right]+[\alpha] \bar{\gamma}=[I]} \tag{349a}\\
& \boxed{W}\left[Q^{\prime}\right]+\beta \bar{\gamma}=\widetilde{0} \tag{349A}\\
& {[\alpha][\gamma]+\delta[\alpha]=[0]} \tag{349c}\\
& \mathbb{M}[\gamma]+\beta \delta=1 \tag{3498}
\end{align*}
$$

THE FORM $[\alpha] \bar{\gamma}$ REPRESENTS THE VECTOR OUTER PROpuct OF M-TH orion. Fon Examble, if

$$
[\alpha]=\left[\begin{array}{l}
\alpha_{0} \tag{350}\\
\alpha_{1} \\
\alpha_{2}
\end{array}\right] \quad A N D, \bar{\gamma}=\sqrt{\gamma_{0} \gamma_{1} \gamma_{2}}
$$

THEN

$$
[\alpha] \boldsymbol{F}=\left[\begin{array}{lll}
\alpha_{0} \gamma_{0} & \alpha_{0} \gamma_{1} & \alpha_{0} \gamma_{2} \tag{351}\\
\alpha_{1} \gamma_{0} & \alpha_{1} \gamma_{1} & \alpha_{1} \gamma_{2} \\
\alpha_{2} \gamma_{0} & \alpha_{2} \gamma_{1} & \alpha_{2} \gamma_{2}
\end{array}\right]
$$

WLTA THE DEFINETEWN (350) TIEN.
originai page is OF POOR QUALITY

$$
\begin{equation*}
\bar{\gamma}[\alpha]=\gamma_{0} \alpha_{0}+\gamma_{1} \alpha_{1}+\gamma_{2} \alpha_{2} \tag{352}
\end{equation*}
$$

$$
\begin{equation*}
\left[Q^{\prime}\right]=[\varphi]^{-1}+[R] \tag{353}
\end{equation*}
$$

So TUAT [R] NWN MUST BE DETERMINED. EqN. (349a) BECOMES

$$
\begin{aligned}
{[Q]\left\{[Q]^{-1}+[R]\right\}+[\alpha] \bar{\gamma} } & =[I]+[Q][R]+[\alpha] \bar{\gamma}= \\
& =[I]
\end{aligned}
$$

WE CAN ELIMINATE [I] FAOM BOTH SIPISS ANP PREMULTENLY BY [P] To GET

$$
\begin{equation*}
[R]=-[\phi]^{-1}[\alpha] \bar{\gamma} \tag{354}
\end{equation*}
$$

By premutidayine (349c) BY $[Q]^{-1}$ we can solvisfor $[Y]$.

$$
\begin{equation*}
[\gamma]=-\delta[Q]^{-1}[\alpha] \tag{355}
\end{equation*}
$$

 of (355) IS

$$
\begin{equation*}
\bar{\gamma}=-\delta \bar{\alpha}[Q]^{-1} \tag{35c}
\end{equation*}
$$

THIS IN (354) EIVES

$$
\begin{equation*}
[R]=\delta[Q]^{-1}[N][Q]^{-1} \tag{357}
\end{equation*}
$$

WHOLE THE MATAIX [N] IS DEFENED TO BE THE OUTEN PRONCT

$$
\left[\begin{array}{c}
-128- \\
{[N] \equiv[\alpha] \widetilde{\Omega}}
\end{array}\right.
$$

SINCE $[\alpha]$ IS KNOWN, $[N]$ IS KNOWN. $[\phi]^{-1}$ IS ASSUMED KNOWN, SOTTHT WE NEED ONLY FOND δ IN ORDLER TO bK ASLE TO EVALUATE $[R]$.

Let us use (353) In (349G) and premakTally by $[\alpha]$ To act

$$
\begin{align*}
{[\alpha] \bar{\alpha}\left\{[Q]^{-1}+[R]\right\} } & =-\beta[\alpha] \bar{\gamma}= \tag{359}\\
& =\beta \delta[\alpha] \bar{\alpha}[Q]^{-1}
\end{align*}
$$

WHINE WE MAVE USED (356). USING THE DEFINETTON (358), (359) BECOMES

$$
\begin{equation*}
[N][R]=(\beta \delta-1)[N][Q]^{-1} \tag{360}
\end{equation*}
$$

IF WE NON SUBSTITUTE (357) FOR [$n]$ IN (360) WE GUT

$$
\begin{equation*}
\delta[N][Q]^{-1}[N][Q]^{-1}=(\beta \delta-1)[N][Q]^{-1} \tag{361}
\end{equation*}
$$

Since op as known, thurs may be soLid (by comparing clements on doth SiDES $)$ FOR δ IN THE FORM

$$
\begin{equation*}
\left\{[N]\left[\phi^{-1}\right]^{2}=\left(\beta-\frac{1}{\delta}\right)\left\{[N][Q]^{-1}\right\}\right. \tag{362}
\end{equation*}
$$

IN WHICH CASE $[N][Q]^{-1}$ pLAYS A CENTML roLE. OR, (361) MAYBE post mutralicel by [Q] To GIVE

$$
\begin{equation*}
[N][Q]^{-1}[N]=\left(\beta-\frac{1}{\delta}\right)[N] \tag{x,3}
\end{equation*}
$$

(WHICH CAR ALSO BE SOLVED FOR δ, BUT IN WHEN $[N][Q]^{-1}$ DOES NOT PAY such a Fundament in Role.

WHEN δ IS KNOWN, $[R]$ CAN RE DETERHEWGD FNOM (357) WHSCH NJSO CONTAINS $[\mathrm{N}][Q]^{-1}$.
In fater, getting δ from (3E2) Does not requerres tuat $[N][Q]^{-1}$
 FOR EXARPLEE, THE DTT PRODVCT (INNOR PRODVET) OF THE FTNT how of $[N][Q]^{-1}$ WITH THL AIRST COLUMN WULL SORFFITE. THIS SHOMD EQUAL ($\beta-1 / \delta$) TMMES THE UPRER LERT ELEMENT'OF $[N][Q]^{-1}$, So that δ IS VERY reñpILY DETEKVINED.
The stens of tive anveriven are then (Gaven [$\left.{ }_{\phi}^{\mu}\right]^{-1}$):

1. FORM THE MXM MaTNX [N]

$$
[N]=[\alpha] \underline{\alpha}
$$

2. FORIT THE MATRSX

$$
[N][Q]^{-1}
$$

3. TAKE THE ZWNER PRODUCT OF THE FIRST ROW AND COLUMN of [$N][Q]^{-1}$. CHLL IT, ψ. EvaluNTE δ FROM THK UPDER LEFT ELEMENT OF $[N][q]^{-1}$

$$
\psi=\left(B-\frac{1}{\delta}\right)\left\{[N][Q]^{-1}\right\}_{\infty}
$$

or,

$$
\delta=\frac{\left\{[N][Q]^{-1}\right\}_{\infty}}{\beta\left\{[N][Q]^{-1}\right\}_{0}-\psi}
$$

Thone 15 evticutly no invense If $\psi=\beta\left\{[n][Q]^{-1}\right\}_{\infty}$.
4. Evalumte [R] from

$$
[R]=\delta[Q]^{-1}\left\{[N][Q]^{-1}\right\}
$$

5. Evaluate $[Y]$ from

OF POOR QUALITY

$$
[\gamma]=-\delta[Q]^{-1}[\alpha]
$$

6. Evaluate $\left[Q^{\prime}\right]$ from

$$
\left[Q^{\prime}\right]=[Q]^{-1}+[R]
$$

 DETENETNLD FROH THE M-TH ORPOX SNVERSE. OBVTOUSLY THES CAN RE TTENATED TO THE FINAL CREDER.

A SOMEWHAT BLTEES APPROACH INVOLVES A MORE DEPET WAY TO GUTT δ.
FIOM (349d) WD (355) WE HAVE THAT

$$
\begin{equation*}
1-\beta \delta=\Phi[\gamma]=-\delta \Phi[\phi]^{-1}[\alpha] \tag{364}
\end{equation*}
$$

himseh givas for δ.

$$
\begin{equation*}
\delta=\frac{1}{\beta-\widetilde{x}[\phi]^{-1}[\alpha]} \tag{365}
\end{equation*}
$$

WE SLLS THAT IN THIS FORONLATTON THELES NO SOLUTTON WHEN

$$
\begin{equation*}
\beta=\stackrel{R}{\infty}[\phi]^{-1}[\alpha] \quad \text { (No solutToN) } \tag{366}
\end{equation*}
$$

 INE WTTH $[Q]^{-1}$ KNOWN.

1. Forir the columd vector $[\eta]=[\phi]^{-1}[\alpha]$.
2. Comare δ fiom $\delta=\{\beta-\Sigma[\eta]\}^{-1}$.
3. Connvic $[\gamma]$ fron $[\gamma]^{\prime}=-\delta[\eta]$.
4. Compute $[Q]^{\prime}$ Fetin $[Q]^{\prime}=[Q]^{-1}+\delta[\eta]$ 负.

AS BEFORE, THIS CAN GE TTERATED FROM THLE 2×2 (ON LVLEN 1×1) UPNER-

 FULL MATRXX NESD NOT BE LVALUATSD By nULTLLTEATUW. ALSO, of course, \bar{r} IS IMPLIED WITHOW FURTIER COMPDTATEON FLOM $[\gamma]$.

THEDERTVATEN DUST GEVEN IS VALED FOR THE INERSTON OF AVY SYMMETIE MATREX. IT DOES NOT TAKE ADVANTAGE OF THE SPELCAL SYMMETAY THAT VALUES ALONG PARALLELS TO THE MENOR DEAGONAL NEE EQUAL, AS EXIESATTDD IN (346). THES SPECIAL KEND OF MATRIX $5 S$ CQLLED "PERSYMMETRIC".
 FOR THE a lom WHICH TAKES FULL ADVANTHE OF ALL SYMNETETES. LA PARTKCVLAR, ZT SHOVM BE NOTED THAT, THOVGH PALAM AS DEFENED
 ONLY ON THE ORDER OF T^{2} UNIQUE ELEMENTS IN PIRMM. TIUS, SOLUTEON FON THE $a_{l m}$, IF DONE LFFSCTENTLY, SHONLD BEE ABOUT AS COMPUTATZONALLY DIEFFTCULT IS A 2-DITENSLONAL PROBLETY: NOT A 4-DIMENSIONAL ONE. ALSO, IT IS GENERALLY ADVATAGEOUS TO FTND AN ALGORTTHM FOC THE UNKNOWNS, $a_{l m}$ IV THES CASE, IZRECTLY RATHEN THAN TO INVOTT TUE SYSTEH MATRXX, Qalamin IV TLES CAEE, IN ORPER To corspuTE TVE $a_{l m}$.
WE POSTPONE FURTUER DISCUSSION OF METHODS OF SOLVLVG FURTHE $a_{l \text { m }}$ UNTIL WE HAVE RENESUED TEEATWG THE PROBLETH OF WETGHTESD COMBINLSD images.

Combinmed Imagrs OF POOR QUALITT

WIS NOW LXTEND THE LDEAS DEVISLOREP FON A SHNGUL SUB-IMGEL TO THE

MUCH EARLEER WE SHOWLD HOW TO WEICHT THE FOURPER TCWSFORRYS OF SUB-SMAGES, IN THE CNE OF ADPITIVE NOLSE, TO MINIMIZE THE
 SUGGLESTS THAT, SUCE THE WERGHTENG WAS DOWE LN THE FONREN DOMATN, NE TRYY TO RELATE IMAGE PROBABSLETY TO VILUES IN γ-SPACLE AFTER THE FT IT TAKEN. TO FINS THE PNOBABULITY OF A GIVEN SUB-IMAGE IN TERMS OF THE GLEMENTS OFITS FOURECR TRANSFACH, IT IS TEMPINE TO Fqer THE PRQDVE, OVEn ALL ELEMENTS lim,
 THE ThM JONT PROBABLLITY DESTUEBUTTON OF TNE SUB-TOBAGE ONKY
 THEY NEE NOT, LVEN THOVGH THE ELEMENTS IN THE ORIEUNK
 That IS,

$$
P^{(j)}=\prod_{l=0}^{N-1} \prod_{M=0}^{N-1} \frac{(j)}{p_{l n}}(x / \ln) \quad(5 N \text { GENENAL) } \quad \text { (3S7) }
$$

HERE, AND IN WHAT ROLLONS, A JURENSCREPT IN PMENOWESES WILL PESIGNATE A PMRTLOULM SUB-IMAGE.

WE SHON FINT THAT (367) 25 TRUE BY SHOWING THAT, IN GENKLRAL,
 DESTRTBUTZONS DO NOT COME FROM STATISTTCALYY INDLNONDENT DISTREBUTLONS. THE PEFINLTITON OF JTATISTICAL INDEDPENDENCE IS THAT THE TOTHT PROBABTLTTY DENTRLBUTLON IS GEVEN BY THE PRODVCT OF THE INDIVINUAL DEJTREDUTSOAS.

$$
p\left(x_{1}, x_{2}, x_{3} \ldots\right)=p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right) p_{3}\left(x_{3}\right) \cdots \quad \text { (3<8) }
$$

ASSUME THAT THE $P_{i}\left(x_{i}\right)$ ARE STATESTRCALLY INDENENDLNT, SO THAT
 LINEAN COMBLNATSONS OF THE x_{i}.

$$
\begin{equation*}
z_{j}=\sum_{i} \alpha_{j i} x_{i} \tag{369}
\end{equation*}
$$

ASSUME funther That this mapring has a unspur envense; Twat as, THAT THE SyOTEO MATRIX $\alpha_{j i}$ HAS AN 2NVERSE. TMIT FS,

$$
\begin{equation*}
x_{i}=\sum_{i}\left(\alpha^{-1}\right)_{i j} z_{j} \tag{370}
\end{equation*}
$$

$$
\tilde{p}\left(z_{1}, z_{2}, z_{3} \ldots\right)=p_{1}\left(f_{1}\left(z_{i}\right)\right) p_{2}\left(f_{2}\left(z_{i}\right)\right) p_{3}\left(f_{3}\left(z_{i}\right)\right) \ldots\left(3 z_{1}\right)
$$

But, GENENALY, THE FUNCTLONAL DENENDENCE ON THE R:'S ON THE RIGHT DOES NOT FACTOR, ON IS NOT SEPMMABLE, AS RÉQUINMD FOM STATTSTLCAL ENDEDENDENCE.

Swer the founcen teabitony wis an unarbatevous sivenere wh is TUSTA LENEAR COMBINATEON [OR, ACTUALLY, COMBENATLONS] OF INPUTS,

 questiond.

AT THS OUTSET WE ASSUAEO THAT PHOTONS AREZVENG AT THE SNIPLLE . POINTS OF THE LYNGE RLMNE CAME FPOM LNDEPENDENT DETTESBUTKONS. THESE SAMALES NEE THE [INDEDENDENT] INPUTS TO THE FOUNEER TRANSFONY TUST PISCUSSEOD. THELR ASSUMOD SNDENENDENCK TUSTIFIED STERAS NUCH AS (271). BUT, IN FACR, THESE SWMNLES HEE OF THE CONVOLUTLON OF THE TRUK SKY [DLRECTENAL] PISTNBUTITON WITH THK̈ SO-CALLED INSTRUMENT FUNCTTON. A CONlCLUTXON IN A
 By THE MGUMENTS VUOT GEVEN, CWN WE AJSMRE SMMNLE LNPEPENPDNCE
 THAT THE SUYPLES ARE UWCORENLLTED TO ESTABLISH JTATIUTTEAL INPEPENDENCE.
 PRANTUA MECMANSES OF THE PHOTON/HPORTURE LNTKNATITON.

SITIEMENT (367) 15 TTRUE ZECAUSE ONE AAS FORARO LENEAR COMBE-
 CASE OF PHOTONS SNTEERACILGG WITH THE HAERTURE, ROTUAL SATBLESS NOULD APPLEM TO RE THE PABTANS THEMSSELVES. IF THE NNSTRUMENT PUNCTION IS COVVCLVED WITH TWE PHOTONF, THEN, WIE HAVE ARGUED, THE SMAGE-PLANE SAMPLES MEE NDT, IN GENERAK, STTTIUTTCALYY INDEPENDENT. TF, ON THE OTHEN HAND, THE CONVOLUTION OF THE INSTRUTENT FUNGTKON ES WITH THE ZNCOYZNG PROMABTLNTY 2RSTRFBUTION, WD No WरTH THE PHOTONS TVENAELVES, THEN 27,55 REAUONABLE TO ASSUME PTATXSTTCAL DNPEPENDEEE OF SAMPLAS IN THE IMAGE PLANE. HE TAKE THE LATTER VIEN, 50 THAT NOT ONKY ARE SAMPLE COUNTO UNOOREEATED AF NROUSD ON PAECS 91 AW 92 , BUT THEY HRE STOTDSTSCALLY INDEPENDENT.

THESE TWO INTENORFDTIONS SEEY TO BE CLOSELY NOLATED TO THE COKG-STANDING DUAL SNTETPPETATION GO THE NAVE FUNCITON IN
 onky PROBABILITY [LN THAL ENSEYBLE AVENGE SENSE], OR POES IT RERRESENT THE STWTE AND EXRENT OF TWE UNPERYYRNG PNTTULES THEYSELLES? STATIUTICAL INDEPENDENEE OF SUTPLOS IN THE

THE FAET THAT (367) ES TRCLE IN THE FOURLSN DOMASN NOWS TABT WE CW MT USN (291) DEEEOTLY TO COMPUTE THE TOAT PROBABELETY IESTETBUTION
 TO THL LMAGE-PLWIF SAMPLES WD EXIEND TNE TACHNIQULS USED FOR A. SENGLE IMAGE. IN SO DOING, WE WLLC NOT ASSUNE A PRETORL THW

 WCOMENE SKYY DESTREBUTKON WHECH MAXIMTEES THE GVEAD TOTNT ROBABTLITY PISTRTBUTSOO POR TWF ENTELE SET OF SUB-IMABCS. THES
 1 Tistrand siep.

Lar
$V_{\text {an }}=$ Fountse thanspaey of The sey (orscumtr)
(a)
 ORIENTATEON.
(n)
 M IN TRGF 7 .

$$
\begin{equation*}
\beta_{j_{k}}^{(n)}=\lambda_{j^{k}}^{(n)} \frac{(n)}{7} \tag{372}
\end{equation*}
$$

(u)
$\lambda_{\text {ih }}=$ PROBABILETY PER UNET TYME DF NRCOVAL OF PHOTONS AT posit jik of M-TN SUB-tratarie.

 THAT

$$
\begin{equation*}
K T V_{L_{m}}^{(n)} w_{m}^{(n)}=\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \beta_{j k}^{(n)} N^{j} N^{k m} \tag{373}
\end{equation*}
$$

WHERE K IS A UNEVERSX CONSWW of Reopocrionalery.

Tuchertis

$$
\begin{equation*}
\beta_{j h}^{(n)}=\frac{1}{N^{2}} K T T_{l=0}^{(m)} \sum_{l=0}^{N-1} \sum_{l_{m}}^{N-1} U_{l_{m}}^{(m)} W^{-l_{l}} W^{-m k} \tag{3+4}
\end{equation*}
$$

 Plobigsitry of TuE m-TN sus-tistate IS

$$
\stackrel{(n)}{P}=\prod_{j=0}^{N-1} \prod_{k=0}^{N-1} e^{-\beta_{j k}^{(n)}} \frac{\left[\begin{array}{l}
(n) \tag{375}\\
\left.\beta_{j k}\right]^{(n)} \\
{\left[\begin{array}{l}
(n) \\
n_{j k}
\end{array}\right]!}
\end{array}\right)}{\left(\begin{array}{l}
(n) \\
\end{array}\right)}
$$

(a)

WHOLE Mik IS THE ACTUAL Pheton count at But jik of TuE M-TH Inages. It To atually avaluate (375) we must somented kNow
 moDifitco by The Apeletures wim, IN SUCA a way tiat
 PROBASTLETY DENSITY

$$
P=\prod_{m=0}^{q-1} P=\text { maxeryum }
$$

Whente 9 IS THE NUMBER OF SUB-ITnGES TO BE corrbinid.
(a)

Pr may bé wartien also as

Thansfont (373) of THE [AS yet. Undpicarifici] Mew Pitorow counts (3) jh.

$$
\begin{equation*}
\tilde{\beta}_{i k}^{(x)}=\frac{K \frac{(\sim)}{T}}{N^{2}} \sum_{l=0}^{M-1} \sum_{m_{i}}^{M-1} U_{l m} w_{l m}^{(x)} W^{-l i} \tilde{W}^{m h} \tag{375}
\end{equation*}
$$

To optsmize P wint. TwE $U_{l_{m}}$ WE NSLD TO paxM

$$
-\frac{\partial}{\partial V_{N+}} \prod_{j=0}^{N-1} \prod_{k=0}^{N-1}\left[\hat{\nu}_{j k}^{(\omega)}\right]^{\left(n_{i}\right)}
$$

FeOH (378) WEAEND THAT

$$
\begin{aligned}
& \frac{\partial \widetilde{\beta}_{j k}^{(N)}}{\partial V_{M A}}=\frac{k T}{N^{2}} \sum_{l=0}^{M-1} \sum_{m=0}^{M-1}(N) N_{l_{m}} W^{-l_{1}} W^{-m k} \delta_{\ln } \delta_{\text {mus }}=
\end{aligned}
$$

on

$$
\frac{\partial}{\partial U_{N 1}}\left\{e^{-\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \tilde{\beta}_{j k}}\right\}=-\delta_{N 0} j_{k 0} K T_{N=1}^{(N)} e^{-\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \tilde{\beta}_{j k}}
$$

LIKENSSE, FRDM (3i2) AND (3S0)

$$
\begin{aligned}
& \frac{\partial}{\partial v_{m k}}\left\{\prod_{j=1}^{N-1} \prod_{k=0}^{N-1}\left[\widetilde{\beta}_{j k}^{(\omega)}\right]^{(N)}\right\}=
\end{aligned}
$$

AND (303) 2N (378) GONES

$$
\begin{aligned}
& \text { ORIGINAL PAGE IS } \\
& \text {-139- OF POOR QUALITY }
\end{aligned}
$$

$E_{\text {MA }} \epsilon_{M A}$ CAN BE ELITINATAD IF $\left\{\mu_{0} A=0,1,2, \ldots M-1\right\}$.
ONE FEEATURE WE CAN SELE IHTEDIATELY PROM (3B5) GE: THAT SUB-5MAGES WETH

 UNCERTAIN.

THE RESULT (385) MAY BE $2 E R T V E D$ IN AVOTHEN, MORE EFFTTEEENT, WIY. RELATSONSHEN (376) IS LGURVALLENTTO

$$
\begin{equation*}
\ln P=\ln \prod_{n=0}^{Q-1}{ }_{p}^{(N)}=\sum_{\mu=0}^{Q-1} \ln \stackrel{(n)}{P}^{(n)}=\operatorname{rixicmon} \tag{3e6}
\end{equation*}
$$

Now, HEOM (375) WI FLWD THAT

$$
\begin{equation*}
\ln \stackrel{P}{P}_{(n)}=\sum_{j=0}^{N-1} \sum_{k=0}^{N-1}\left\{-\beta_{j k}^{(n)}+n_{j h}^{(n)} \ln \beta_{j k}^{(n)}-\ln \left[\left(n_{j k}^{(n)}\right)!\right]\right\} \tag{387}
\end{equation*}
$$

-140- ORIGINAL PAGE IS

$$
\begin{align*}
& =\sum_{j=0}^{N-1} \sum_{k=0}^{N-1}\left\{\frac{m_{j k}^{(N)}}{\left.\frac{\mu_{j}}{\beta_{j k}}-1\right\} \frac{\partial \widehat{\beta}_{j k}^{(n)}}{\partial V_{n-}}}\right. \tag{388}
\end{align*}
$$

WEKNON $\partial / \stackrel{\tilde{\beta}}{\beta_{k}} / \partial U_{\text {MA }}$ FROH (300). To Maxinsere (306) w

$$
\begin{equation*}
\frac{\partial \ln P}{\partial U_{M A}}=\sum_{M=0}^{Q-1} \frac{\partial \ln _{N}^{(M)}}{\partial U_{A M}^{(M)}}=0 \tag{307}
\end{equation*}
$$

Useve (308) and (300) we F20 That

If $n, \sim=0,1,2, . .7-1$ then wé may water (390) as

$$
\begin{equation*}
\sum_{M=0}^{\phi-1} \frac{(m)}{T}(m) \sum_{m=2}^{N-1} \sum_{j=0}^{N-1}\left\{\frac{(M)}{m_{i k}}-1\right\} W^{-1 j_{i}} W^{-a k}=0 \tag{391}
\end{equation*}
$$

GGARATAMS Soutron
ORCGNAL PAGE IS OF POOR QUALITY
Lat us assune that

$$
\begin{equation*}
U_{l_{m}}=A_{l_{m}}+a_{l_{m}} \tag{372}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\beta}_{j k}^{(N)}=\gamma_{j k}^{(n)}+\frac{k T}{N^{2}} \sum_{l=0}^{(M-1} \sum_{m=0}^{M-1} a_{l_{m}} w_{l m}^{(m)} W^{-l_{i}} W^{-m k} \tag{393}
\end{equation*}
$$

NHERE

$$
\begin{equation*}
\gamma_{j k}^{(N)} \equiv \frac{K T}{N^{2}} \sum_{l=0}^{(n)} \sum_{m=0}^{M-1} A_{l_{m}}{ }^{(n)} V_{l m} W^{-l} W^{-m k} \tag{394}
\end{equation*}
$$

THE sincond TEN of (393) ES ASUMED, LLREWISE, TO \& To rik.
Epuaticon (391) may new ge Wiectren, arphoximately,

$$
\begin{aligned}
& \text { or, } \\
& \times W^{-M i} W^{-\alpha k}=0
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{m=0}^{Q-1}(n)(n) \sum_{j=0}^{N-1} \sum_{k=0}^{N-1}\left\{\frac{(n)}{m_{j k}} \begin{array}{l}
(n) \\
\gamma_{j k}
\end{array}\right\} w^{-\wedge_{i} w^{-k k}}=
\end{aligned}
$$

THIS SS IN" THE FONM OF A "MATASX-VECTOR" Equatzon

$$
\begin{equation*}
\left.a_{\text {ai }}^{\prime}=G_{n a h_{m}} a_{l_{m}} \quad \text { (sun oves } l_{, ~ m}\right) \tag{396}
\end{equation*}
$$

WITH

$$
\begin{align*}
& a_{A N}^{\prime} \equiv \frac{N^{2}}{K} \sum_{M=0}^{Q-1} \frac{(n)}{T} N_{N} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1}\left\{\frac{m_{j k}}{(n)}-1\right\} W^{-1 i} W^{-A k} \tag{397}
\end{align*}
$$

AND
 ANY COMPUTEX METHOD WHTCH MAY: NOT NISCESONTLY INVOLV EXPLTCIT computatron of the invense.

Itras Carmbut Saunton
THE DIFFLCULTY WITH THE STENATVE SOLUTTON LS THAT ET INVOLVES MANTPULATIONS WETH A 4-DINEUSZWAL mitresx. IF $N=256=2^{3}, N^{4}=2^{32} \approx 10^{9}$. The Numaen of OPERATEONS AND STORAGE POTRENTLLL'Y REQuTnED MEL

-183- ORIGNAL PAGE IS
 FENTTZOd of G LESS THAN 10° UNELQUE ELEMEVNO OF INFORMATION IN GNARM SO THAT
 WORTH COTRNG BACK TO FQP MORE STUDY.
 PROBLEY THKOVGWOWT, IS TO "HFLL CLTHB" ON UN CWTKL THE" RLAK

 Whrett WE FWW frov (308) wi (380) To DE
 SEPERING THE CASE MEN To THAT THE AINAL RESULT POR UN WILL

... A PISTSNCT STEP WHICH FOLLOWS OPTDUUN COHBEALATEAN.

 CORLESPONDING TO A REASONTBLE GUESU AT TO HAN FMT FARM THE CUMEENT POINT IS THE "TOP OF THE HTLL". THIS PROCESS WZL OE TRTRAEATED CWTLL SOHE CRETETTON, SUCH AS THE REMTIVE CHWNE OF D, FANES BELOW A PREDETENHNLD VALUK.

AN INDERESTLNG BY propuct of This process is the computation of P.
 1. In ANyCASE, P cound SENVE AS A MEASURE OF CONPTOENCE IN

 SOLUTEONS UMA NE THOSE WHICH CNSE SW (372 2) TO DE NEAL. WE

 REAL.

SNuEE WE MUVE TAKEN M=N, (374) rophed, A5 pacs (3i3), frept wheer WE cal herte

$$
\begin{equation*}
\psi_{l m}^{(w)} \equiv U_{l_{m}}{ }^{(w)}=\frac{1}{k-w)} \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \beta_{j k}^{(n)} w^{i l} w^{k m} \tag{100}
\end{equation*}
$$

Ler $l=\frac{N}{2} \pm \mu, m=\frac{N}{2} \pm q$. THEN

$$
\begin{equation*}
\psi_{\frac{N}{2} \pm \mu, \frac{N}{2} \pm q}=\frac{1}{k\left(\frac{\omega}{T}\right)} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \beta_{j k} W^{j\left(\frac{N}{2} \pm \mu\right)} W^{k\left(\frac{N}{2} \pm q\right)} \tag{Hor}
\end{equation*}
$$

Now, $\quad W^{k \frac{N}{2}}=e^{-\frac{2 \pi i_{i}}{N} \frac{N}{2} k}=\left(e^{-\pi i}\right)^{k}=(-1)^{k}=12 N k$.
THEnEFONE, (Hol) CW DE WUTTHEN

$$
\begin{equation*}
\psi_{\frac{N}{2} \pm p, \frac{N}{2} \pm q}^{(\mu)}=\psi_{\frac{N}{2} \mp \mu, \frac{N}{2} \mp q}^{(u)} \tag{404}
\end{equation*}
$$

$$
\left\{\mu, q=0,1, \ldots, \frac{N}{2}\right\}
$$

 REAL.

$$
\begin{array}{ll}
(\omega) \\
\frac{N}{2} \pm \mu, \frac{N}{2} \pm q & (N) \\
N \\
\frac{N}{2} \mp \mu, \frac{N}{2} \mp q
\end{array}
$$

GVEN IF THE ARETTURE FUNGTON ITSELR IS COHPLAX.
RESULT (405) IN (HOH), OR (23) AND THE HROWOLONT TUST GEVEN, SHON THAT RLSO,

$$
\begin{equation*}
U_{\frac{N}{2} \pm p_{3} \frac{N}{2} \pm q}=U_{\frac{N}{2} \mp \mu, \frac{N}{2} \mp q}^{*} \tag{400}
\end{equation*}
$$

IF WE STAN OFF WETH AN SNETZAL GUESS AT C Cin WHECH CORREDPONDS TO B ih REAL, AND MAKE NLL CORRECTIONS SUCA THAT CONDTTLON (HO6) IS PRESERVEP, NE SHAL CONVIEREE ON A [ACTUALYY, THE UNTPUE SELTTXON

 GUARANTEE A PHYSCRAC RESULT.

$$
\begin{equation*}
d[\ln P]=\sum_{l=0}^{N-1} \sum_{m=0}^{N-1} \frac{\partial \ln P}{\partial U_{l m}} d U_{l m} \tag{407}
\end{equation*}
$$

TMES MAY BE EXPANDW TO REND

$$
\begin{align*}
& \left.+\sum_{m=\frac{N}{2}+1}^{N-1} \frac{\partial \ln P}{\partial U_{2 m}} d U_{L_{m n}}\right\}= \\
& =\sum_{l=0}^{N-1}\left\{\frac{\partial \ln P}{\partial U_{l_{0}}} d U_{l 0}+\frac{\partial \ln P}{\partial V_{l \frac{N}{2}}} d V_{l \frac{N}{2}}+\sum_{m=1}^{\frac{N}{2}-1} \frac{\partial \ln P}{\partial U_{l} \frac{N}{2}-m} d U_{l, N}+\right. \\
& \left.+\sum_{m=1}^{\frac{N}{2}-1} \frac{\partial \ln P}{\partial U_{l, \frac{N}{2}+m}} d U_{l_{3} \frac{N}{2}+m}\right\} \tag{4as}
\end{align*}
$$

A SIMILN Axpaiston on l givas,

$$
\begin{aligned}
& d[\ln P]=\frac{\partial \ln P}{\partial U_{00}} d V_{00}+\frac{\partial \ln P}{\partial U_{\frac{N}{2} 0}} d V_{\frac{N}{2} \cdot}+\sum_{l=1}^{\frac{N}{2}-1}\left\{\frac{\partial \ln P}{\partial U_{\frac{N}{2}+l, 0}} d V_{\frac{N}{2}+l, 0}+\right. \\
& \left.+\frac{\partial \ln P}{\partial U_{\frac{N}{2}-1,0}} d U_{\frac{N}{2} x, 0}\right\}+\frac{\partial \ln P}{\partial U_{0 \frac{N}{2}}} d U_{0 \frac{N}{2}}+\frac{\partial \ln P}{\partial U_{\frac{N}{2} \frac{N}{2}}} d V_{\frac{N}{2} \frac{N}{2}}+ \\
& +\sum_{l=1}^{\frac{N}{N}-1}\left\{\frac{\partial \ln P}{\partial U_{\frac{N}{2}+l, \frac{N}{2}}} d U_{\frac{N}{2}+l, \frac{N}{2}}+\frac{\partial \ln P}{\partial U_{N} P} d U_{\frac{N}{2}-l, \frac{N}{2}}\right\}+\sum_{m=1}^{\frac{N}{2}-1} \frac{\partial \ln P}{\partial U_{\rho} \frac{N}{2}-m} d U_{\rho \frac{N}{2}-m}+ \\
& +\sum_{m=1}^{\frac{N}{2}-1} \frac{\partial \ln P}{\partial U_{\frac{N}{2}}^{2}, \frac{N}{2}-m} d U_{\frac{N}{2}, \frac{N}{2}-m}+\sum_{l=1}^{\frac{N}{2}-1} \sum_{m=1}^{\frac{N}{2}-1} \frac{\partial \ln P}{\partial U_{\frac{N}{2}+l, \frac{N}{2}-m}} d \dot{N}_{\frac{N}{2}+l, \frac{N}{2}-m}+
\end{aligned}
$$

(409)
t

$$
+\sum_{l=1}^{\frac{N}{2}-1} \sum_{m=1}^{\frac{\alpha}{2}-1} \frac{\partial \ln P}{\partial V_{N}^{2}-l_{3} \frac{N}{2}-m} d V_{\frac{N}{2}-l_{2} \frac{\alpha}{2}-m}+\sum_{m=1}^{\frac{N}{2}-1} \frac{\partial \ln P}{\partial V_{O_{3} \frac{N}{2}+m}} d V_{0_{3} \frac{N}{2}+m}+
$$

$$
+\sum_{m=1}^{\frac{N}{2}-1} \frac{\partial \ln P}{\partial U_{\frac{N}{2}}, \frac{N}{2}+m} d U_{\frac{N}{2}, \frac{N}{2}+m}+\sum_{l=1}^{\frac{\alpha}{2}-1} \sum_{m=1}^{\frac{N}{2}-1} \frac{\partial \ln P}{\partial U_{\frac{N}{2}+l, \frac{N}{2}+m}} d V_{\frac{N}{2}+l, \frac{\alpha}{2}+m}+
$$

$$
\begin{equation*}
+\sum_{l=1}^{\frac{N}{2}-1} \sum_{m=1}^{\frac{N}{2}-1} \frac{\partial l_{n} P}{\partial U_{N}-l, \frac{N}{2}+m}<V_{N}^{2}-l, \frac{N}{2}+m \tag{409}
\end{equation*}
$$

NON د

$$
\begin{align*}
& W^{-\left(\frac{N}{2}+\mu\right) i} W^{-\left(\frac{N}{2} \pm q\right) k}=(-1)^{\dot{\gamma}+k} W^{\mp \mu i} W^{\mp q k} \\
= & {\left[W^{-\left(\frac{N}{2} \mp \mu\right) \dot{\gamma}} W^{-\left(\frac{N}{2} \mp q\right) k}\right]^{*} } \tag{410}
\end{align*}
$$

THES RESULT, (405), AND (n) ROk REAL 2N (399) SHOWS Twit

$$
\begin{equation*}
\frac{\partial \ln p^{\cdots}}{\partial U_{\frac{N^{\prime}}{2} \pm \mu, \frac{N}{2} \pm q}}=\left[\frac{\partial \ln p}{\partial U_{\frac{N}{2} \mp p, \frac{N}{2} \mp q}}\right]^{*} \tag{411}
\end{equation*}
$$

 (411). If p or q Ls $N / 2$, ho wal Have A susecerm zeno on one SIDE, AND N ON THE OTHER. SINCE

$$
W^{N}=e^{\frac{-2 \pi i}{N} N}=.1=W^{0},
$$

Wetw tiese results in mand, we may mette (yot) as

$$
\begin{align*}
& d[\ln P]=\frac{\partial \ln P}{\partial U_{\infty}} d V_{\infty}+\frac{\partial \ln P}{\partial V_{\frac{N}{2}, 0}} d U_{\frac{N}{2}, 0}+\frac{\partial \ln P}{\partial V_{\rho, \frac{N}{2}}} d U_{\rho, \frac{N}{2}}+\frac{\partial \ln P}{\partial U_{N}^{N}, \frac{U}{2}} d V_{\frac{N}{2}+\frac{N}{2}}+ \\
& +2 \sum_{l=1}^{\frac{N}{2}-1} \operatorname{Re}\left[\frac{\partial \ln P}{\partial V_{\frac{N}{2}-l, 0}} d U_{\frac{N}{2}-L_{, 0}}\right]+2 \sum_{l=1}^{\frac{N}{2}-1} \operatorname{Re}\left[\frac{\partial \ln P}{\partial V_{\frac{N}{2}-1, \frac{N}{2}}} d U_{\frac{N}{2}-l_{,} \frac{N}{2}}\right]+ \\
& +2 \sum_{l=1}^{\frac{N}{2}-1} \operatorname{Re}\left[\frac{\partial \ln P}{\partial V_{\rho, \frac{N}{2}-l}} d V_{\rho=\frac{N}{2}-l}\right]+2 \sum_{l=1}^{\frac{N}{2}-1} \operatorname{Re}\left[\frac{\partial \ln P}{\partial V_{\frac{N}{2}, \frac{N}{2}-l}} d V_{\frac{N}{2}, \frac{N}{2}-l}\right]+ \tag{4/2}
\end{align*}
$$

 $d V_{\infty}, d V_{N, 0}, d V_{0, \frac{N}{2}}$, US $d V_{N}, \frac{N}{2}$ NLE REAL. TNK TEMATNNGG G
 $8\left(\frac{N}{2}-1\right)$ REAL DIFFERENTINLS. TENTS 9 AND 10 ACcount POA $4\left(\frac{N}{2}-r\right)^{2}$ RLAL DIFfoscentanks. The toral numion as

$$
\begin{aligned}
& 4\left(\frac{N}{2}-1\right)^{2}+3\left(\frac{N}{2}-1\right)+4=4\left[\left(\frac{N}{2}-1\right)^{2}+2\left(\frac{N}{2}-1\right)+1\right]= \\
& =4\left[\left(\frac{N}{2}-1\right)+1\right]^{2}=N^{2}
\end{aligned}
$$

 THUS REGARy THE HTLL CLEABAVG ON $\ln P$ as TaKENG place in an

$$
(\alpha+i \beta)(a+i b)=\alpha a-\beta b+i(\beta a+\alpha b)
$$

WE CAW WATTE

$$
\begin{aligned}
& d[\ln P]=\operatorname{Re}\left[\frac{\partial \ln P}{\partial V_{00}}\right] d R_{00}+\operatorname{Re}\left[\frac{\partial \operatorname{Rn} P}{\partial V_{\frac{N}{2}, 0}}\right] d R_{\frac{N}{2}, 0}+\operatorname{Re}\left[\frac{\partial \ln P}{\partial V_{0, \frac{N}{2}}}\right] d R_{0, \frac{N}{2}}+
\end{aligned}
$$

$$
\begin{align*}
& +2 \sum_{l=1}^{\frac{N}{2}-1} \operatorname{Re}\left[\frac{\partial \ln P}{\partial U_{\frac{N}{2}-l, N}^{2}}\right] d R_{\frac{N}{2} x_{0} \frac{N}{2}}-2 \sum_{l=1}^{\frac{N}{2}-1} I_{N}\left[\frac{\partial \ln P}{\partial U_{N} x_{j} \frac{N}{2}}\right]^{\frac{N}{2}-x_{0}, \frac{N}{2}}+ \\
& +2 \sum_{l=1}^{\frac{N}{2}-1} \operatorname{Re}\left[\frac{\partial \ln P}{\partial U_{0, \frac{N}{2}-l}}\right]_{0, \frac{N}{2}-l}-2 \sum_{l=1}^{\frac{N}{2}-1} I_{M}\left[\frac{\partial \ln P}{\partial U_{0, \frac{N}{2}-l}}\right] d I_{0, \frac{N}{2}-l}+ \\
& +2 \sum_{l=1}^{\frac{N}{2}-1} R_{e}\left[\frac{\partial \ln P}{\partial V_{N}, \frac{N}{2}-l}\right] d R_{\frac{N}{2}, \frac{N}{2}-l}-2 \sum_{l=1}^{\frac{N}{2}-1} I_{M}\left[\frac{\partial \ln P}{\partial V_{\frac{N}{2}, \frac{N}{2}-l}}\right] d I_{\frac{N}{2}, \frac{N}{2}-l}+ \\
& +2 \sum_{l=1}^{\frac{N}{2}-1} \sum_{m=1}^{\frac{N}{2}-1} \operatorname{Re}\left[\frac{\partial \ln P}{\partial U_{N}+l, \frac{N}{2}-m}\right] d R_{\frac{N}{2}+l, \frac{N}{2}-m}-2 \sum_{l=1}^{\frac{\alpha}{2}-1} \sum_{m=1}^{\frac{N}{2}-1} I_{m}\left[\frac{\partial \ln P}{\partial U_{\frac{N}{N}}^{2}+l, \frac{N}{2}-m}\right] d I_{\frac{N}{2}+l_{, ~ N}^{N}-m}+ \tag{413}
\end{align*}
$$

 We caw Werte

$$
\begin{equation*}
d[\ln p]=\vec{\nabla} p \cdot d \stackrel{\rightharpoonup}{v} \tag{4/4}
\end{equation*}
$$

$$
\begin{gather*}
\quad d[\ln P] \rightarrow \Delta[\ln p] \tag{1/5}\\
\Rightarrow \quad d \vec{v} \rightarrow \Delta \vec{v} \\
\Rightarrow \quad \Delta[\ln P]=\vec{\nabla} P \cdot \Delta \vec{v} \tag{1/c}
\end{gather*}
$$

 THE UP HTM DEncertion is.

$$
\begin{equation*}
\vec{\mu}=-\frac{\stackrel{\rightharpoonup}{\nabla} P}{|\stackrel{\rightharpoonup}{\nabla} p|} \tag{4/7}
\end{equation*}
$$

WHERE

$$
|\ddot{\vec{\nabla}} p|=\sqrt{\sum_{l=0}^{N^{2}-1}(\vec{\nabla} p)_{l}^{2}}
$$

IT REMALUS TO PRCK AN APPROPRLATEE STED STzE NLON $\vec{\mu}$.
 OP THE AREG COMPONENTS OF UA ALONG THE DLRECTEON $\vec{\mu}$.

Consuy

$$
\Delta \vec{v}=\Delta S \vec{\mu}
$$

that

$$
\begin{aligned}
\frac{d[\ln p]}{d s} \approx \frac{\Delta[\operatorname{mp} p]}{\Delta s} & =\vec{\nabla} p \cdot \vec{\mu}=-\frac{\vec{\nabla} p \cdot \vec{\nabla} p}{|\vec{\nabla} p|}= \\
& =-|\vec{\nabla} p|
\end{aligned}
$$

(420)

Lat is assuma that locally y is quagmatre in S.

$$
\begin{equation*}
y=\ln P A L D N O \bar{\mu}=a S^{2}+b S+c \tag{42,a}
\end{equation*}
$$

Tran

$$
\begin{aligned}
& \frac{d y}{d s}=2 a s+b \\
& \frac{d^{2} y}{d s^{2}}=2 a
\end{aligned}
$$

$d y / d S=0$ TT TNE EXTREMUA GIVES, FROM (4216),

$$
\begin{equation*}
\bar{s}_{1}=-\frac{b}{2 a} \tag{122}
\end{equation*}
$$

Fhery $(42, f t c)$, 2N GENELAL,

$$
\begin{equation*}
b=\frac{\ln }{d S}-\frac{d^{2} W}{d \delta^{2}} s \tag{123}
\end{equation*}
$$

50 THNT FROM (422) AND ($421 c$),

$$
s_{1}=\frac{-\frac{d y}{d s}+\frac{d^{2} y}{d s^{2}} s}{\frac{d^{2} y}{d s^{2}}}=s-\frac{d y / d s}{d^{2} y / d s^{2}}
$$

on,

$$
\begin{equation*}
\Delta S=-\frac{\operatorname{dy} / / d s}{d^{2} y / d s^{2}}=-\frac{d[\ln p] / d s}{d^{2}[\ln p] / d s^{2}} \tag{424}
\end{equation*}
$$

WE CaN evaluate twe numscetor pron (420). The Dindomevator

$$
\begin{align*}
& \frac{d^{2}[\ln P]}{d s^{2}}=(\vec{\mu} \cdot \vec{\nabla})^{2}[\ln p]= \\
= & \left.\vec{\mu} \cdot \vec{\nabla} S_{\dot{u}} \vec{\nabla} \cdot \vec{\nabla} \ln p\right\}=\vec{\mu} \cdot \vec{\nabla}\left\{\frac{\dot{\mu}}{\mu} \cdot \vec{\nabla} p\right\} \tag{425}
\end{align*}
$$

IN TwE NOTATEON ©: (414) IN WHECH $\vec{\nabla} \bar{F}$. REPRESENTS (399).

$$
\begin{equation*}
\vec{\nabla} P=\frac{\partial \ln P}{\partial V_{m}} \tag{426}
\end{equation*}
$$

$$
\begin{equation*}
d V_{M_{M}}=\mu_{M_{M}} d S D R_{,} \quad \mu_{A_{M}}=\frac{d V_{M M}}{d S} \tag{427}
\end{equation*}
$$

So THAT (425) CW DE Wertted

$$
\begin{align*}
& \frac{D^{2}[\operatorname{Rn} P]}{2 s^{2}}=\frac{\partial}{\partial V_{\alpha \beta}}\left\{\frac{\partial \ln P}{\partial U_{\gamma \delta}} \frac{d U_{\gamma \delta}}{d S}\right\} \frac{d V_{\alpha \alpha}}{d S}= \\
& \tag{428}
\end{align*}
$$

$$
\begin{align*}
\frac{d[\ln P]}{d S} & =(\vec{\mu} \cdot \vec{\nabla})[\ln P]=\frac{\partial \ln P}{\partial V_{\alpha \beta}} \mu_{\alpha \beta}= \\
& =-\frac{1}{|\vec{\nabla} P|} \frac{\partial \ln P}{\partial v_{\alpha \beta}} \frac{\partial \ln P}{\partial v_{\alpha / \beta}}=-|\vec{\nabla} P| \tag{429}
\end{align*}
$$

NUSRE: .

$$
\begin{equation*}
\mu_{\alpha \beta}=-\frac{1}{|\nabla P|} \frac{\partial \ln P}{\partial U_{\alpha A}} \tag{430}
\end{equation*}
$$

To civalutie (128) we respuste

$$
\begin{equation*}
\frac{\partial^{2} \ln P}{\partial U_{\alpha \beta} \partial U_{\gamma \delta}}=\frac{k}{N^{2}} \sum_{\mu=0}^{Q-1} T^{(N)} w_{\gamma \delta}^{(n)} \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} M_{j k}^{(n)} w^{-\gamma_{i}-\delta k} \cdot \frac{\partial \beta_{j k}}{\partial V_{\alpha \beta}} \tag{431}
\end{equation*}
$$

Fnom (399). NbW

$$
\frac{\partial \beta_{j k}^{(n)}}{\partial V_{\alpha s}}=-\frac{1}{\beta_{j h}} \frac{\partial \beta_{j k}^{(N)}}{\partial V_{\alpha \beta}}=-\frac{1}{\beta_{j k}} \frac{\kappa T}{N_{1}} \cdot{ }_{\alpha N}^{(n)} W^{-\alpha 1_{N}} N^{-s k} \ldots(432)
$$

WHERE WE MAVE USED (374). THUS,

Now, we have asourap twat α, A, γ, and δ in (32s) - (433) pavofe onky aVER THE INDTEIES AWP ELCMENOS ITHPLED BY (H13). WHTLE d lmP/dS

The Duectrenal penthateve of enp reat tre gurctron gevial by the UnET VECTOR it \bar{u}

$$
\begin{equation*}
\frac{d[\ln P]}{d S}=\frac{\partial \ln P}{\partial V_{\alpha s}} \mu_{\alpha \beta} \tag{434}
\end{equation*}
$$

(Whane $\{\alpha, A\}=0,1,2, \ldots N-1$. IF WE NESN TO construen $d \ln p / d 5$ to SE

REK, NK RUUT TTAEF

$$
\begin{equation*}
\mu_{\alpha \beta}=-\left(\frac{\partial \ln P}{\partial U_{\alpha \beta}}\right)^{*} / \sqrt{\left(\frac{\partial \ln P}{\partial U_{\gamma \delta}}\right)\left(\frac{\partial \ln P}{\partial U_{\gamma \delta}}\right)^{*}} \tag{435}
\end{equation*}
$$

[SUMMATEN ON REEPEATED JNDECSS]. THUS

$$
\begin{equation*}
\mu_{\alpha_{\beta}} \mu_{\beta}^{*}=1 \tag{496}
\end{equation*}
$$

 EVALUATION OF (434) ANS (435) APVAWTAGF CAN BE TANEN DF TWE SYMEETMY (411). \qquad
\qquad
LIKENTSE THIK SRCOND DERIVATE IS

$$
\begin{equation*}
\frac{\ddot{d}^{2}[\ln P]}{d s^{2}}=\frac{\partial^{2} \ln P}{\partial U_{\alpha \beta} \partial V_{\gamma \xi}} \mu_{\alpha_{\beta}} \mu_{\gamma} \tag{437}
\end{equation*}
$$

$--1$
HITH $\mu_{\alpha \beta}$ DERNNED BY (435) AND THE SECOND PAOINL BY (433). $\triangle S$ IS

$$
\begin{equation*}
\Delta U_{\alpha / \beta}=\Delta S \mu_{\alpha / \beta} \tag{438}
\end{equation*}
$$

AGANW, COTIUTATIONAL ADVANTDGE MAY BE TAKEN OF THE SYMOETNY (H11). RETVNT (399), (411), (424); AND (tis3)- (438) FONA THE Baras of A carimeter

 (399), Mas CAN BE FOUND fiom (435). EVawntien of (434) aNP (437) INVOLVES

$$
\begin{equation*}
\sum_{\alpha=0}^{N-1} \sum_{\beta=0}^{N-1} w_{\alpha \beta} w^{-j \alpha} N^{-k s} \mu_{\alpha s} \equiv Z_{i k}^{(N)} \tag{439}
\end{equation*}
$$

(50 тиat

ORIGINAL PAGE IS

$$
\begin{equation*}
\frac{d[\ln P]}{d S}=\frac{k}{N^{2}} \sum_{n=0}^{\varphi-1} T \sum_{j=0}^{N-1} \sum_{i=0}^{N-1}\left\{\frac{m j h}{(n)}-1\right\}_{j k}^{(m)} Z_{j h}^{(n)} \tag{44-}
\end{equation*}
$$

AND,

$$
\frac{d^{2}[\ln p]}{d S^{2}}=-\frac{k^{2}}{N^{4}} \sum_{M=0}^{q^{1}} T_{2} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \frac{\mu_{j h}^{j h}}{N_{2}} z_{j h} z_{i k}
$$

 SHON ONLY. AN $N^{N_{1}}$ SUMBATIEN.

 WN $_{\alpha, \beta} \mu_{K B}$ HAS THE CONJUGATE SYMaritiy AKJo. THE FT OF A FUNGTION

 (441) ARE. NON-NEGATIVE, THE SEEN OF (H41) IS CONSTWTT. AS A CONSEQUENCE, THE JENGE OF THIE CONCAVITY OF THE FUNOTIEN En P is consinat so Thit AN EXDREAvM, IF ROUD, as UNTQuE.

THE OUERALL STENS OF TNE MILC CLINBING PROCODS NRE:
 For ExaHpLE, TANE FT OFHE EAGH SUB-EMAGE AND WETCAT AS
 OF THE M-TH SUB-TMAGE

$$
\begin{equation*}
\eta_{\text {mon }} \equiv \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} m_{j k} w^{i l} N^{k_{m}} \tag{442}
\end{equation*}
$$

FONTTHE INETEAL GUESS

4
 Summary of Cosmic Image Reconstruction
 as of Dec. 15,1982

Warren F. Davis

Summay of COSMIC Inace" Reconsimutron as or Oer. 15, 1982
Whued F. Daras
Ler

 orcertation.
(a) $\beta_{\text {jik }}=$ new nember of photon's Meravide at posir jif of m.TH SUB-1mack on 7 Trace (4).

$$
\begin{equation*}
\beta_{j k}^{(n)}=\lambda_{j k}^{(n)}(x) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { AT PONT jik IN THE M-TH SUR-ZMAGE. } \\
& \frac{(a)}{T}=\text { TIME OF OBSENVATSON WITH THE NSKTHE OT THE MTH } \\
& \text { ortichtaton. } \\
& N=\text { sug-intas zmat sies an pocels. I.L., junaé is } \\
& \text { NXN PIXELW. } \\
& Q=\text { Numben of sug-imacers } \\
& W \equiv e^{-\frac{2 \pi i}{N}} \\
& K=\text { Propontonality constant. }
\end{aligned}
$$

$$
\begin{equation*}
\beta_{j k}^{(n)}=\lambda_{j k}^{(N)} \frac{(\omega)}{T}=\frac{K T(M)}{N^{2}} \sum_{l=0}^{N-1} \sum_{m=0}^{N-1} U_{l m} w_{l m}^{(\omega)} W^{-l_{j}} W^{-m k} \tag{2}
\end{equation*}
$$

We assume That Twe probasthity of Mrivat of con mig photons at
 DISTRESUTAD,

$$
p_{j k}^{(n)}=e^{-(n)} \frac{\left[\begin{array}{l}
(n) \tag{3}\\
B_{j k}
\end{array}\right]^{(n)}}{\left[\begin{array}{c}
(n) \\
M \\
\cdot j k
\end{array}\right]!}
$$

MND TUAT PHOTONS NT PIFRERENT MRETVAL LOCATTOWS ARE INDENENDENT.
 THE EVENT OF MENUNENE THE SET OF COWTS injik compresint AN ACTUAL SUB-ITMAEE

$$
\begin{equation*}
P=\prod_{j=0}^{(n)} \prod_{k=0}^{N-1} P_{j h}^{N-1}(n) \tag{4}
\end{equation*}
$$

 LVET OF HAVENG MEVURND \& SETS DF COUTS in in over ALL ARERTURÉ ORTENTATZOS.

$$
\begin{equation*}
P=\prod_{n=0}^{Q-1}(n) \tag{5}
\end{equation*}
$$

an)

 CHOSEN TO DO THES IS TO ASK WHA C UN NAKWOIZES THE P COMPVTED FROM THK SET OF MEASUREMENTS M MK AGUALGY MAPE.
 Frem (t) anp (5) was permand

$$
\begin{equation*}
\ln P=\sum_{m=0}^{Q-1} \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \ln p_{i k}^{(n)}=\operatorname{maxisic} \tag{6}
\end{equation*}
$$

FROM (3) WE TLID THET

$$
\begin{equation*}
\ln {\underset{P}{j k}}_{(n)}^{P_{j k}}-\beta_{j k}^{(n)}+n_{j k}^{(n)} \ln \beta_{j k}^{(n)}-\ln \left[\left(n_{j k}^{(n)}\right)!\right] \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \ln P}{\partial V_{N A}}=0 \quad[N \max \cdot \ln P] \tag{8}
\end{equation*}
$$

Feory (7) WE FIWD THAT

$$
\begin{equation*}
\frac{\partial \ln P_{j n}^{(n)}}{\partial U_{n-1}}=\left\{\frac{n_{j k}^{(n)}}{(n)}-1\right\} \frac{\partial \beta_{j n}}{\partial V_{j k}} \tag{9}
\end{equation*}
$$

Frem (2) AND

$$
\begin{equation*}
\frac{\partial U_{M M}}{\partial U_{M A}}=\delta_{L_{A}} \delta_{M A} \tag{10}
\end{equation*}
$$

12 concupa tuat

$$
\begin{equation*}
\frac{\partial \beta_{j i k}^{(n)}}{\partial V_{\text {ar }}}=\frac{K T}{(m)} N^{(n)} W_{A R}^{-\infty j} W^{-A k}, \tag{II}
\end{equation*}
$$

so That

Congrain (B), usauc also (6) AND (i2), 35 THERERACE

$$
\begin{equation*}
\sum_{n=0}^{Q-1} \frac{(x)}{T} w_{N=1} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1}\left\{\frac{m_{j k}^{(n)}}{\beta_{j k}}-1\right\} w^{-1 j} w^{-1 k}=0 \tag{13}
\end{equation*}
$$

 ORPER THAT A SET of ACTUAL PHOTON COUNTS MiN HAVE THE MAXAMOM

 actux sat of measuncinents mik. To drsiznoursh That guess
 WE WIL LSE

$$
\hat{\hat{v}}_{L_{m}}
$$

73 PENOTE THE [UNCERTITLT] SOLTTON OF (13) WIKCH, WE HONE,
NPROXIMNES U/M.
MOLE CENELALLY, THS NESUETS 50 FM SHOW THAT
wTth Sujk cover by (2).

 of A HILL CLITBZNG ON lnP IN WHTCH lnP IS MAXSMTZED W.A.T. THE U/RM .
 of Ulm's. That Ir, a SET of $N^{2} U_{\text {lm }}$ Vawes detenciviss a pont
 VALVE. Assume That wL Prek A set or $N^{2} U_{\text {pun }}$'s whectr yreed A "Physreal" P. That 25, P as roal ang grenten tuaì' zefne, so tuat
 BY I I an LeT US investicate

$$
\begin{equation*}
\frac{d \ln P}{d S}=\frac{\partial \ln P}{\partial U_{\alpha \beta}} \frac{d U_{\alpha \beta}}{d S}=\frac{\partial \ln P}{\partial U_{\alpha \beta}} \mu_{\alpha / \beta} \tag{15}
\end{equation*}
$$

[EEnOREN SUMMTREN CONVANTON ON REREATED INDTELS].
$\mu_{\alpha \beta}=d U_{\alpha \beta} / d S$ IS A "UNGF"VECTOR IN THE SENSE TNAT

$$
\begin{equation*}
\mu_{\alpha \beta} \mu_{\alpha \beta}^{*}=\frac{d U_{\alpha \beta}}{d s} \frac{d U_{\mu s}^{*}}{d s^{*}}=\frac{|d s|^{2}}{|d s|^{2}}=1 \tag{18}
\end{equation*}
$$

Where S is scalas sueh that

$$
\begin{equation*}
d U_{\alpha \beta} d U_{\alpha \beta}^{*}=|d \delta|^{2} \tag{17}
\end{equation*}
$$

Equation (15) is twe pincertonal perivative of hap wong the DIRECTEON OF A UNAT VIETOK [DEFINGS BY (16)] IN THE $N^{\prime 2}$ PIMENSLOWAL SPACE OF ULM'S. WE WISH TO CONSTRAIN (15) TO BE TLERL. TMAT IS,

 so if WIE PTCK

$$
\begin{equation*}
\mu_{\alpha \beta}=-\left(\frac{\partial \ln P}{\partial U_{\alpha \beta}}\right)^{*} / \sqrt{\left(\frac{\partial \ln P}{\partial U_{Y \gamma}}\right)\left(\frac{\partial \ln p}{\partial U_{\gamma \delta}}\right)^{*}} \tag{18}
\end{equation*}
$$

Cleanly, (18) satisfies (16). The minus sign as ised an (18) to GIVE THE "UP HILL" DIRECTION. ANY REAPSUSTHENTS OF TNE $U_{R_{m}}$ ALONG $\mu_{\alpha B}$ NTLL RESUTT ZN NEW VALUES OF $\ln P$ WHLCH ARE AOABN REAL.

If we make a out in twe space heove μ ab GIVEN by (iE), wD ASUME
 OF HOW FAK, AS MEASURED BY $\triangle S$, WE MUST GO TO LOCATE THE pEAK of THIE quadratie is

$$
\begin{equation*}
\Delta S=-\frac{d[\ln P] / d S}{d^{2}[\ln P] / d S^{2}} \tag{19}
\end{equation*}
$$

[SELS Paces 150 AND 151 of math ioties.] THE CORESSPONDINO
chavoes in UNB ARA

$$
\begin{equation*}
\Delta U_{\alpha \beta}=\mu_{\alpha_{\beta}} \Delta S \tag{20}
\end{equation*}
$$

OF COURE, UNDEN A PINETE STEP lup MAY NT BE PURELY REAL AT $U_{\alpha}+\Delta U_{\alpha}$, BUT WTLL BE NENALY SO. ONE MAY NELS TO INOLODE A "RENORMALIEATION" STEP IN THE COMPUTATIONS TO AIND THE POWT wEAR $U_{\alpha \beta}+\Delta U_{\alpha}$ hHERE en P is meata pURELY reak.
From (14), (15), aND (18) we can cvawate this numenaton of (19). TTLE PENOMENATOR REQUIRES

$$
\begin{gather*}
\frac{d^{2} \ln P}{d s^{2}}=\frac{d}{d s}\left[\frac{d \ln P}{d s}\right]=\frac{\partial}{\partial U_{\alpha \beta}}\left[\frac{\partial \ln P}{\partial U_{\gamma \delta}} \mu_{\gamma \delta}\right] \frac{d V_{\alpha \beta}}{d s}= \\
=\frac{\partial^{2} \ln P}{\partial U_{\alpha \beta} \partial U_{\gamma \delta}} \mu_{\alpha \beta} \mu_{\gamma \delta} \tag{21}
\end{gather*}
$$

Tras, in TURN, REQUERES $\partial^{2} \operatorname{lu} p / \partial U_{\alpha \beta} \partial U_{r \delta}$. Fron (14) wE PIND TKat

$$
\begin{equation*}
\frac{\partial^{2} \ln P}{\partial U_{\alpha \beta} \partial U_{\gamma \delta}}=\frac{k}{N^{2}} \sum_{m=0}^{Q-1} \frac{(M)}{T} \mu_{\gamma s} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} m_{j h}^{(n)} W^{-\gamma_{i}} w^{-\delta k} \frac{\partial \beta_{j k}^{-1}}{\partial U_{\alpha \beta}} \tag{22}
\end{equation*}
$$

Feon (2) WE FTND THAT

$$
\begin{equation*}
\frac{\partial \beta_{j \beta}^{(n)}}{\partial V_{\alpha \beta}^{-1}}=-\frac{1}{(n)_{2}} \frac{\partial \beta_{j k}^{(n)}}{\partial U_{\alpha \beta}}=-\frac{1}{\left(\beta_{i j}\right.} \frac{K T}{\beta_{i k}} \frac{(x)}{N^{2}} w_{\alpha \beta}^{(\alpha)} N^{-\alpha_{i}} W^{-\beta k} \tag{23}
\end{equation*}
$$

so that

$$
\frac{\partial^{2} \ln P}{\partial U_{\alpha \beta} \partial U_{\gamma \delta}}=-\frac{k^{2}}{N^{4}} \sum_{m=0}^{Q-1} \frac{(N)}{T^{2}} \operatorname{man}_{\alpha \beta}^{(n)} w_{r \delta}^{(m)} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} \frac{(n)}{n_{j k}} W^{-j(\alpha+\gamma)} W^{-k(s+\delta)}
$$

 ONE SEES THMT THE FUNCTITON

$$
\begin{equation*}
z_{j k}^{(w)} \equiv \sum_{\alpha=0}^{N-1} \sum_{\beta=0}^{N-1}\left(\sim_{\alpha \beta}(N) \mu_{\alpha \beta} N^{-\alpha i} N^{-S k}\right. \tag{25}
\end{equation*}
$$

ocans IN SOTH. IN TSMas of $Z_{j k}$, (15) and (21) secare

$$
\begin{equation*}
\frac{d \ln P}{d S}=\frac{k}{N^{2}} \sum_{M=0}^{Q-1} T(N) \sum_{j=0}^{N-1} \sum_{k=0}^{N-1}\left\{\frac{N_{j(k)}^{(N)}}{B_{j k}}-1\right\}_{j k}^{(N)} \tag{26}
\end{equation*}
$$

Ans,

IT COW BE SHowd [PAGE iss of Mred Notes] Tunt
(n)

 Phoran counts. Consequentay, the $d^{2} \ln p / 25^{2}$ as neways NoUATIVE. THENEFORE THONE IS BUT ONE CNOLPUE SOLUTION'TO (B)

 for $\hat{U}_{\alpha S}$.

PDES ALSO [SES PAGE 147 OF MAIN NOTES] IF B Bik DS REAL. IN

 NWE OF THE COUNTS Migh IT EVER NECATVVE, THE SUTITHTEONS IN (6) CAN NEVER RESULT IN CANCNLLATRON OF STAGENANY PANTS OF TVO or

 THE GEHAVEOR OF THE TENY

$$
m_{i k}^{m} \ln \beta_{j k}^{(n)}
$$

(an)
 WHEN GAVE TRISE TO AN IMAGINNYY COMPONENT OF $\ln P$. ONE

 REAL AND WHKCH SHOVLD REDEL STRONGLY WUY TENDSNCY TO GENEMATE A STES REROSS.

 NEW C M, AN IMAGINARY COMPDNEN IS FOUND, WKE HVEE STLEPPLD OVEX
 THE WRONG DERECTION OR GROSLLY TOO LARGEE. IN FMCT, (IB) SHEUS MAVE PREVENTED THES ALTDGETHEK.
 SPOND TO "PHYSLEAL" SKYS IN THAT NO Min [OR (ijh DY (1)] CAN BE \therefore NEGATME.

THE STEGS OF AN ITEMATVE HEL-CLIMBSIN SACuTEO of (13) ARE GNEN
 HERE.

Remacneva Consrienmitads
THE FLNAL RESULT $\hat{U}_{\text {LM }}$ NRL EXHISET NON-UNIABAYY varIGWCE ACROSS THK SPATEAL FREQUENCY PLANE. IT REMAEAS TO

b) Denthe in exinessian fon The EnSEMBLE viezine of $\hat{U}_{\text {lm }}$ OVEn TWE SPATIAL FRLOPuBity PLANE

AWP 70

 IT HAS ALREADY BEEN ARGUKD TRAN WLETKER FILTERUNE MAY Not RE APPROPCLAFEE, AD A WETOHDEP RUNNENE AVERAGE SUGCESTED IUTENO. [SEE PASESS 27 AND $2 E$ DF THE MAN NoTES]. MAXIMEM EVTRDDY METHODS MAVE ALSO RSEN sutessted [I.I. SAAPIRO, $10 / 5 / B_{2}$].

$\stackrel{1}{4}$
 Appendix A
 Relationship to Radio Interferometry

J1.

Warren F. Davis

AppendIx A
Relationship to Radio Interiodometry
Rectirocity
 THE CLENTHL RELATEONSHETP (19)

$$
\begin{equation*}
I(\vec{k})=\iint_{-\infty}^{\infty} d k_{x} d k_{z}|\mu(\vec{k})|^{2}\left|A\left[\left(k_{x}^{\prime}-k_{x}\right),\left(k_{z}^{\prime}-k_{z}\right)\right]\right|^{2} \tag{4.1}
\end{equation*}
$$

TELLS US THAT IF THE SURE U($\vec{k})$ IS DLSDLACES, THE IMAGE I (G)' WILL BE DISPLACED CORRESPONDINGLY. IN THE IMAGE PLANE THE DEFFRACTION PATTERN ZS "CARTED ALONG WITH THE IMAGE". IN RADIO ASTRONOMY ONE THINKS OF A FIXED, DIPFRACTION-LIATELED BLEAT PROTESTED ONTO THE SHY THROUGH WHICH THE OBSERVED OBJET MAY MOVE. THE OBJEGT DOLS NOT DRAG ALONG ITS OWN DEFERACTEON PATTERN but RATHER MOVES THROUGH $5 T$. HOW ARE THESE TWO INTERPRLTTATLON'S RECONCILED?
IN RADIOASTR ONIONs \vec{R} TAKES ON A FIXED VALUE DETERMINED BY THE GEOMETRY; IT IS NOT A VAVEABLE AS IN THE CASE OF IMAGiNG. IT THE SKY REPRESENTED BY $\mu(\vec{k})$ İ DISPuTed By

$$
\vec{k} \rightarrow \vec{k}+\Delta \vec{k}
$$

THEN

$$
\begin{gather*}
\int_{-\infty}^{\infty} d k_{x} d k_{z}|\mu(\vec{k}+\Delta \vec{k})|^{2}\left|A\left[\left(k_{x}^{\prime}-k_{x}\right),\left(k_{z}^{\prime}-k_{z}\right)\right]\right|^{2}= \\
=\int_{-\infty}^{\infty} \int k_{x} d k_{z}|\mu(\vec{k})|^{2}\left|A\left[\left(k_{x}^{\prime}-\left(k_{x}-\Delta k_{x}\right)\right),\left(k_{z}^{\prime}-\left(k_{z}-\Delta k_{z}\right)\right)\right]\right|^{2}= \\
= \tag{2}\\
=I(\vec{k}+\Delta \vec{k})
\end{gather*}
$$

(1) THENEFORE, LETTLNG THE SKY MOVE WITH \vec{k} FIXED [RELATIVE TO THE

TO SAMPLENG THE JMAGE OF A FIKELED SKY AT A POINT DESTLACSD IN THE. IMAGE PLANE. TN EFFEETT THE POTNT DEFFRACTITAN PHTTERN OF THEL INSTRUMENT HAS BEEEN PROTECTED ONTO THESKY.
Equivalences of Mustrme Arentures
 ANTRONOMY. WHON DATA AEE COHRENDD FEOM SUCH MULTEDLE APGRTURES IN THE WAY CUSTOMARY IN RADLO ASTCONOMY, IS THE RESULT REALLY

TAKE THE IMAGENG VECN FIRST. LET THE ACPERTUREE $a(x, z)$ consIST OF TWO COMPONENT NRERTURSS $a_{m}(x, z)$ ATD $a_{l}(x, z)$. EquNTION ($a .1$) REquines The FTT OF

$$
\begin{equation*}
a(x, z)=a_{n}(x, z)+a_{l}(x, z) \tag{1,3}
\end{equation*}
$$

DEPNED Fhom (9) TO BE

$$
A(\vec{k})=\frac{1}{(2 \pi)^{2}} \iint_{-\infty}^{\infty} d^{2} \vec{n} a(\vec{n}) e^{-i \vec{k} \cdot \vec{n}}
$$

\vec{T} AND ir ARE CONFINED To The x,z-pLNE IN ($A \cdot 4$). By THE LeNEANTY OF (A.4), $A(\vec{k})$ WÏLL BE THE SUM OF THE TRNTFORTS OF a_{M} AND a_{l}. LEET a_{μ} AND a_{l} BE EDEATSCAL EXCEPT THAT a_{l} IS DISSPLACED 2N THE x, z-NLNNE FLOM a_{m} BY To. THAT IS,

$$
\begin{equation*}
a_{l}(x, z) \equiv a_{l}(\vec{x})=a_{n}(\vec{x}-\vec{l}) \tag{A.5}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
& A_{l}(\vec{k})=\frac{1}{(2 \pi)^{2}} \iint_{-\infty}^{\infty} d^{2} \vec{i} a_{m}(\vec{r}-\vec{b}) e^{-i \vec{k} \cdot \vec{n}}= \\
&=\frac{1}{(2 \pi)^{2}} \iint_{-\infty}^{\infty} d^{2} \vec{r} a_{m}(\vec{n}) e^{-i \vec{k} \cdot(\vec{r}+\vec{b})}
\end{aligned}
$$

$$
A_{l}(\vec{k})=e^{-i \stackrel{\rightharpoonup}{k} \cdot \vec{b}} A_{n}(\vec{k})
$$

SO THIT

$$
A(\vec{k})=A_{n}(\vec{k})\left[1+e^{-i \vec{k} \cdot \vec{b}}\right]
$$

To evaluate (A.1) we requerte

$$
\begin{aligned}
|A(\vec{k})|^{2} & =\left|A_{n}(\vec{k})\right|^{2}\left(1+e^{-i \vec{k} \cdot \vec{b}}\right)\left(1+e^{+i \vec{k} \cdot \vec{k}}\right)= \\
& =2\left|A_{m}(\vec{k})\right|^{2}(1+\cos (\vec{k} \cdot \vec{b}))
\end{aligned}
$$

 IN TUE x, z-PLWE BY \bar{b},

$$
I(\vec{k})=2 \iint_{-\infty}^{\infty} d\left(k_{x} d k_{2}|\mu(\vec{k})|^{2}\left|A_{n}\left(\vec{k}^{\prime}-\vec{k}\right)\right|^{2}[1+\cos ((\vec{k}-\vec{k})-\vec{b})]\right.
$$

WHERE IT IS TO DE UNDERSTODD THAT A_{n} WS A FUNCTED ONLY OF TWE x WD z componiwts of \vec{k}.
 INTERFEROMETER WN RADIO ATRONOMY? TO GET A HANDLE ON THES WE NEEQ TO GO BACK TO THE EXPRESSLON FOR THE INSTANTANECNS OUTP: [COMNLIX] OF"A SINGLE APERTURLE (II),

$$
\begin{equation*}
f(\vec{k})=\int_{-\infty}^{\infty} \int^{\infty} d^{2} \vec{k} \mu(\vec{k}) \hat{e}(\vec{k}) e^{-i[\omega t+\gamma(\vec{k}, t)]} A(\vec{k}-\vec{k}) \tag{A.9}
\end{equation*}
$$

SLEE THE EAVLTER DRSOUSSTON FOR DEFSNITION OR SyMBOLS.
(Consider tho sub-arentunes as befone. LLT EACH bE altened so THAT K IS THE SAIVE BOR EACH. FUNTHER, LET THE SUM OF THE

TWO INSTANTWENS SUB-APERTURE OUTPUTS BE FORNED WETH AN ARBEIRAMY PHASE φ APPLTED TO ONE OF THEM. THAT IS, wIS RORM

$$
\begin{align*}
& \iint_{-\infty}^{\infty} d^{2} \vec{k} \mu(\vec{k}) \hat{e}(\vec{k}) e^{-i[\omega, t+\gamma(\vec{k}, t)]} A_{m}\left(\vec{k}^{\prime}-\vec{k}\right)+ \\
& +e^{-\lambda \varphi} \iint_{-\infty}^{\infty} d^{2} \vec{k}^{\prime \prime} \mu\left(\vec{k}^{\prime \prime}\right) \hat{e}\left(\vec{k}^{\prime \prime}\right) e^{-i\left[\omega t+\gamma\left(\vec{k}^{\prime \prime}, t^{\prime}\right)\right]} A_{l}\left(\vec{k}^{\prime}-\vec{k}^{\prime \prime}\right)=g(\vec{k}) \tag{A,10}
\end{align*}
$$

 FORM THES FROM (A,10) WE GET FOR THE DLNECT TENMS

$$
\begin{equation*}
\iint_{-\infty}^{\infty} d^{2} \vec{k}|\mu(\vec{k})|^{2}\left|A_{\mu}\left(\vec{k}^{\prime}-\vec{k}\right)\right|^{2}+\iint_{-\infty}^{\infty} d^{2} \vec{k}|\mu(\vec{k})|^{2}\left|A_{l}\left(\vec{k}^{\prime}-\vec{k}\right)\right|^{2} \tag{A.II}
\end{equation*}
$$

AFTER TIME-AVERAGENG. THE CROSS TEURTS BEFFORE TENE-AVERAGING ARE

$$
\begin{array}{r}
e^{+i \varphi} \iint_{-\infty}^{\infty} d^{2} \vec{k}^{\prime \prime} \iint_{-\infty}^{\infty} d^{2} \vec{k} \mu(\vec{k}) \mu^{*}(\vec{k}) \\
{\left[\hat{e}(\vec{k}) \cdot \hat{e}\left(\vec{k}^{\prime \prime}\right)\right] e^{-i[\gamma(\vec{k}, t)-\gamma(\vec{k}, t)]} x} \\
\times A_{m}\left(\vec{k}^{\prime}-\vec{k}\right) \cdot A_{l}^{*}\left(\vec{k}-\vec{k}^{\prime \prime}\right)+c . c .
\end{array}
$$

Where c.c. means "complex contugate". When we timer-average,
 IN $K-\vec{R}^{\prime \prime}$. THEREFORE, AFTER TIME-AVENAING AND INTEGRATSON ON K, (A.12) GOES OVER TO

$$
\begin{equation*}
e^{+i \varphi} \iint_{-\infty}^{\infty} d^{2} \vec{k}|\mu(\vec{k})|^{2} A_{m}\left(\vec{k}^{\prime}-\vec{k}\right) A_{l}^{*}\left(\vec{k}^{\prime}-\vec{k}\right)+\text { c.c. } \tag{A,13}
\end{equation*}
$$

WIISN ALL THE RESULTS ARE COMBINAD WEGET

$$
\begin{aligned}
I\left(\vec{k}^{\prime}\right) & =\iint_{-\infty}^{-d^{2} \vec{k}}|\mu(\vec{k})|^{2}\left\{\left|A_{m}(\vec{k}-\vec{k})\right|^{2}+\left|A_{l}(\vec{k}-\vec{k})\right|^{2}+\right. \\
& \left.+e^{+i \varphi} A_{m}(\vec{k}-\vec{k}) A_{l}^{*}\left(\vec{k}^{\prime}-\vec{k}\right)+e^{-i \varphi} A_{n}^{*}(\vec{k}-\vec{k}) A_{l}(\vec{k}-\vec{k})\right\}
\end{aligned}
$$

Now ASSUME THAT a_{n} AND a_{l} ANE SDENTICAL EXCCEPT THAT a_{l} IS DIS PLACCD FROM a_{μ} BY bl So trut (A-6) APPLTES. THE TEMINS AN $\}$ ABOVE BECOME

$$
\begin{aligned}
& \left|A_{m}\left(\vec{k}^{\prime}-\vec{k}\right)\right|^{2}+\left|A_{m}\left(\vec{k}^{\prime}-\vec{k}\right)\right|^{2}+e^{i\left(\varphi+\left(\vec{k}^{\prime}-\vec{k}\right) \cdot \vec{b}\right)}\left|A_{m}\left(\vec{k}^{\prime}-\vec{k}\right)\right|^{2}+ \\
& +e^{-i(\varphi+(\vec{k}-\vec{k}) \cdot \vec{k})}\left|A_{m}(\vec{k}-\bar{k})\right|^{2}= \\
& 2\left|A_{m}(\vec{k}-\vec{k})\right|^{2}[1+\cos [\varphi+(\vec{k}-\vec{k}) \cdot \vec{k}]]
\end{aligned}
$$

So THAT

$$
I(\vec{k})=\mu \iint_{-\infty}^{\infty} 2^{2} \vec{k}|\mu(\vec{k})|^{2}\left|A_{n}\left(\vec{k}^{\prime}-\vec{k}\right)\right|^{2}\left\{1+\cos \left[\varphi+\left(\vec{k}^{\prime}-\vec{k}\right) \cdot \vec{b}\right]\right\}
$$

Compare this with (A.8) for the Imactik case. The results me IDENTIEAL FOR $Y=0$ OR MULTINES OF 2π.
SPEECIAL CASE FOR RAPDOZNTERPEROMETRY
 A LOCALTELED SET OF DITLECTBONS CENTENED ON \vec{k}. SUPPQSE THAT $\left|A_{n}(\vec{k})\right|^{2}$ IS maximun AT $k=0$ NDD IS VENY BROND. THE SETUATTON IS AS ILLUSTATED BELOW,

ORIGINAL PACE IS OF POOR QUALITY
$\left|A_{\mu}(\vec{h}-\bar{h})\right|^{2}$ SO THE ENVELOPE OF A SENGLE SUB-AnENTURE DESPLACLOD TO \vec{R} AS ILLUSTRATED. THAT IS, THE TELESCOpE IS "POINTED" ALONG $\vec{k} "$ ".
 oVER $|\mu(\vec{h})|^{2}$ AUS CAN BE TAKEN OUT OF THE INTEECNL (A./E).

$$
\begin{align*}
& I\left(\vec{k}^{\prime}\right) \simeq 2\left|A_{\mu}(\vec{k}=0)\right|^{2} \iint_{-\infty}^{\infty} d^{2} \vec{k}|\mu(\vec{k})|^{2}\{1+\cos [\varphi+(\vec{k}-\vec{k}) \cdot \vec{b}]\}= \\
&= 2\left|A_{m}(\vec{k}=0)\right|^{2} \iint_{-\infty}^{\infty} d^{2} \vec{k}|\mu(\vec{k})|^{2}+ \\
&+2\left|A_{m}(\vec{k}=0)\right|^{2} \iint_{-\infty}^{\infty} d^{2} \vec{k}|\mu(\vec{k})|^{2} \cos [\varphi+(\vec{k}-\vec{k}) \cdot \vec{b}]
\end{align*}
$$

THE FLAT TENT IS A CONTORT INDEPENDENT OF φ AND \vec{G}. THE SECOND TEAM MAY BE WRITTEN

$$
2\left|A_{m}(\overrightarrow{0})\right|^{2} \operatorname{Re}\left\{\iint_{-\infty}^{\infty} \int^{2} \vec{k}|\mu(\vec{k})|^{2} e^{+i[\varphi+\vec{k} \cdot \vec{b}]} e^{-i \vec{k} \cdot \vec{b}}\right\}=
$$

$$
=2\left|A_{n}(\overrightarrow{0})\right|^{2} \operatorname{Re}\left\{e^{+i\left[\varphi+\vec{k}^{\prime} \cdot \vec{b}\right]} \cup\left(\frac{\vec{b}}{2 \pi}\right)\right\}
$$

WHENE U, THE FT OF THE SKY, TS DEFENED BY (23).
The Efrec of exp $[\lambda(y+\vec{k} \cdot \vec{b})]$ as to rotate $U(\vec{b} / 2 \pi)$. By varying
 FROM THE PEAK-TO-PLSAK EXCUNSEON OF $I(\vec{k})$. IF $\vec{k} \cdot \vec{b}$ is kNOWN FROM THE GLOMLTRY, ON AT LEAST HELD CONSTAT, NAD \mathscr{C} IS SET TO SOME REPCCRENCE VILUL, SAY, 0 , THE PHOSE OF $U(\vec{b} / 2 \pi)$ CAN BE INFESRED. IN TRES WAY ONE POSNT IN THE \vec{v}-RUNE, $\vec{v}=\overrightarrow{6}, 2 \pi$, OF TME FT OF THE IMAGEE CAN BE ESITMATLD. WITEN U(F/2TT) HAS BEEN EETTMATES FOR MANY DEFFERENT \bar{b}, THE SKY, FUNCTION \mid M $\left.(\vec{A})\right|^{2}$ CNU BE EJTIMATED FNOM THE SWVANSE FT OF $U(t / 2 \pi)$.

Stiots Inticgation
 REFERS TE AS STLIO SNTEGUTITON. THE MONE FAMBLTAR CONCENT OF LINE Sutcenation consigt in zutienutiog a function along a live. Considine A Functian $f(x, y)$.

$$
y(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

I5 A ONE-RSMENSLONAL FUNCTSON OF TITE POSTISON OF TIGE LINE X. Tive.
 THO TO ONE DIMENSEON.

$$
g^{\prime}(x)=\int_{x}^{x+\Delta x} d x \int_{-\infty}^{\infty} d y f(x, y)
$$

ASSUMING $\triangle X$ IS REACARDED AS A CONSTANT, $f(x, y)$ IS AGASN COLCARSO FOPOM A THO TO A ONE-DIMENSTONAL FUNCTION BY THE INTEGORATION.

 IS "NO RESOLUTION" ALONG If.
IF THE CAT SCAN GEAM DS REGARDED AS VERY NARRON AND FRLELE FROM SCATER, TIKE CAT JETECTOR MEASURES A LENE SNTEGUAL THPOUOU TIIE SUBTEET. IF THE

IN THE RADLOTUTERFIEROMLTRY CASE WE NEED TO CONSEDEOR

$$
U\left(\frac{\vec{b}}{2 \pi}\right)=\iiint_{-\infty}^{\infty} d^{2} \vec{k}|\mu(\vec{k})|^{2} e^{-i \vec{k} \cdot \vec{b}}
$$

FROM (A.18). GSVEN CONSTANT $\vec{b}=\hat{e}_{x} b_{x}+\hat{e}_{z} \cdot b_{z}$, $\vec{k} \cdot \vec{b}$ wILL BE CONSTWT

URGINAL PCEM OF POOR QUALTTY

 SCHEMATTC NATURE OF THE DIAGRNY 5 TO BLE EYPHASTECD. IT IS NOT DOSSISBLE TO SHON THE COMPLEEX NATURE OF THE OVERLYYNG EXIONENTIAL. NEVENTHLLESS, THE INJEPENDENEE NORMAL TO F CAUSE ($A .19$) TO BE A GENETEALization of tule conceion of a stath sutechtion given above.

Agatw, as above, $|\mu(\vec{r})|^{2}$ caw be phspanced nonhal to to without CHANGING THE VALLE OF ($A, 19$). GRVEN TIE ONIENTATION OF \vec{b}, ($A, 19$) 25 A ONE-ДTMENSEONAL PUNCTION OF $|\vec{F}|$, IN ANALOGY WTOH THE NEMARES

 $U(\vec{v})$ IS DEFLNED CAN BE DETENTNNED, NAMELY AT $\vec{v}: \vec{b} / 2 \pi$. [TWE CoNVugate point correspondine to - \vec{t} as a aso peticnerened.]

Essential Draperavces
 ALGONTTHM DERTVED HERE DLFFLIN FROM BOTH THE CAT AND RADTO-
 ALITY OF THE PRODLEET. BOTH THE CAT AND THE RADTO ALGORTTHMS DETERHENE $U(\vec{v})$ AT A POTNT OR MLONG 1 LUNE OF PaINTS. THTS IS

BECAUSE THEEY BOTH USE LUNE Of SERTP LNTEGRATITON. THAT IS, THKIV BOTH THIROW AWAY OR, MORE PRECTSELLY, COMPROESI SNFONHATSEX ALONE ONE DIFENSSTON: TITIS 55 NOT THE CNE WITTV THE NEW ALCOCITHMT. THE NEW ALGORITH INHEREENTLY GIVAS INFOMTATLON ABOVT AREAS, RATHER THAN. POINTS OR LINES, IN TRLE PLANE OF THE FT OF THE DTAGE. THISS MEANS IN TUNN THAT SPEELAL CONSIDERATION MUST BE GINEN TO WELEHTSNE IMAGE TRANSFORMS WHEN SUMDED IN \vec{V}-SPACE BEEAUSE OF OVERPLAPPTNG NEEAS. ALL THELEE ALGCRITHMF ARE ALIKEE IN THAT TNEY ATTEMPTO BURLD UP THE FOURIER PLANE OF THE ITAGEN. BUT, THE CAT AD RADLO CASES DO SO IN AN INIENTOUTLY ONE-DTHENSEONL WAY, WHEREN TWE NKN ALGORITHM DOES SO IN A FULLY TWO-DIGENSKONAL MANNER. ONLY WHEN

 GREALS IN WITICH ONE DIHENSTON IS SUPPREDSED.

ORIGINAL PAGE B OF POOR QUAEITY

[^0]: Application of classical beam bending equations for an unconstrained configuration led to expressions for bore sighting and elongation. Truss elongation and boresighting values as functions of temperature changes are shown in figure 7 and 8 for various CTE values.

[^1]: *Throughout, we will refer to the state of the wavefront, rather than the state of the mirrors or other oftical components. Thus a wavefront tilt of λ / D will be produced when the primary miryor is tilted by $0.5 \lambda / D$, and likewise for piston errors.

