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The Structure of the Heliospheric
Current Sheet: 1978 - 1982

J. Todd Hoeksema, John M. Wilcox & Philip H. Seherrer

Institute for Plasma Research,
Stanford University

Via Crespi
Stanford, CA 94305 USA

ABSTRACT

The structure of the heliospheric magnetic field
changes substantially during the 11 year sunspot cycle. We
have calculated its configuration for the period 1976
through 1982 using a potential field model, continuing our
earlier study near solar minimum in 1976 - 1977 (Hoeksema et
al. 1982). In this paper we concentrate on the structure
during the rising phase, maximum, and early decline of sun-
spot cycle 21, from 1978 to 1982.

Early in this interval there are four warps in the
current sheet (the boundary between interplanetary magnetic
field (IMF) toward and away from the Sun) giving rise to a
four- sector structure in the IMF observed at Earth. The
location of the current sheet changes slowly and extends to
a heliocjraphic latitude of approximately 50°. Near maximum
the structure is much more complex with the current sheet
extending nearly to the poles. Often there are multiple
current sheets. As solar activity decreases the structure
simplifies until, in most of 1982, there is a single, simply
shaped current sheet corresponding to a two-sector IMF
structure in the ecliptic plane.

The Su,°i's polar fields, not fully measured by magneto-
graphs such as that at the Stanford Solar Observatory, sub-
stantially influence the calculated position of the current
sheet near sunspot minimum. We have determined the strength
of the polar field correction throughout this period and
include it in our model calculations. The lower latitude
magnetic fields become much stronger as the polar fields
weaken and reverse polarity near maximum, decreasing the
influence of the polar field correction.	 The major model

	

parameter is the radius of the source surface, the spherical	 I
surface at which the field lines become radial. Correla-
tions of IMF polarity observed by spacecraft with tha.
predicted by the model calculated at various source surface
radii indicate that the optimum source surface radius is not
significantly different from 2.5 R s during this part of the
solar cycle.



I. Introduction

Great changes occur in the mtructure of the helios-

1iieric magnetic field during the course of the sunspot

cycle. Near minimum the current sheet, the boundary betwaen

magnetic field toward and away from the Sun, is nearly equa-

torial, with four small excursions away from the solar equa-

torial plane in each rotation. Since the ecliptic plane is

tilted only 7 0 to the solar equator even these small 10 - 15

degree excursions are large enough to affect the Earth and

produce the four- sector structure commonly observed in the

interplanetary magnetic field (IMF) near minimum (Svalgaard

& Wilcox, 1975).

In an earlier paper Hoeksema et al. (1982) discussed

the heliospheric magnetic structure during the early rising

phase of sunspot cycle 21 as determined by applying a poten-

tial field model (first introduced by Schatten et al., 1969

and Altschuler & Newkirk, 1969) to the photospheric magnetic

field observations made at the Stanford Solar Observatory in

1976 and 1977. We refer to that paper for detailed descrip-

tions of the model, the observations, the simple current

sheet structure near minimum, and of comparisons with the

observed IMF polarity at Earth. In this paper we continue

that analysis through the rising phase, maximum, and the
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beginning of the declining phase of the current sunspot

cycle, from 1978 through 1982. We conclude with a discus-

sion of the source surface radius selection and polar field

correction.^-

The large scale structure evolves slowly throughout

this	 entire interval.	 The latitudinal extent of the struc-

ture increases from	 approximately	 30 0	early	 in	 1978	 to

nearly	 90 0	in 1979.	 Near maximum,	 1979 - 1980, the struc-

ture becomes quite complex.	 Often for	 several	 consecutive

rotations	 there	 are isolated current sheets, some of which

are observed	 in the IMF polarity at	 Earth.	 -rhe	 structure
;i

simplifies in 1981 as activity begins to decline and 	 is rem-

iniscent of the pattern in 1978:	 four	 equatorial	 sectors

with	 large	 excursions	 in	 solar	 latitude	 but having the

polarity of the solar poles reversed.	 In late 1981 and 1982

the	 structure	 simplifies even further to a situation indi-

cating	 two sectors in the IMF.	 Late in	 1982	 four	 sectors

reemerge.

We have compared the I.AF 	 polarity	 observed	 at	 Earth

with	 that	 predicted	 from	 the calculations of the helios-

pheric magnetic structure throughout 	 the	 entire	 interval.

There is little change in the quality of the prediction from

1976	 to 1980 during which 	 the	 correlation	 coefficient	 is

-3- i



about 0.58.	 The simpler structure in 1981 and 1982 is

predicted somewhat more accurately (correlation coefficient

of about 0.68). Most errors are in the timing of sector

boundaries rather than isolated errors, indicating that the

general structure is predicted quite accurately while the

details are subject to the effects of variable solar wind

velocities, solar wind plasma accelerated by flares, and

other causes.

While such comparison is one of the few possible tests

of the model, it is important to note that this provides

only a weak constraint. Earth and most spacecraft sample

only the narrow region within 7 0 of the solar equator. Much

of the interesting activity takes place at higher latitudes.

When spacecraft can provide reliable measurements of solar

wind parameters out of the ecliptic there will be a con-

clusive way to test the results of the potential field model

at higher latitudes. We look forward to the International

Solar Polar Spacecraft. The considerations described here

could be used to predict what such a spacecraft would

observe.

Comparison can also be made with direct coronal obser-

vations. Comparing computed current sheet locations near

sunspot minimum with those derived from maximum polarization

-4-
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brightness measurements obtained with the Mauna Loa coronom-

eter suggests that there is generally good agreement between

the two methods (Wilcox & Hundhausen, 1983).

The Sun's polar field strength is very important for

the potential field model results (Pneuman et al., 1978,

Burlaga et al. 1981, Hoeksema et al. 1982, and Levine et

al., 1982). This is especially true near sunspot minimum

when the polar fields are strong and the lower latitude

fields are relatively weak= The Stanford Solar observatory

magnetograph is a low resolution instrument and does not

measure the flux in the polar regions completely. Only when

the polar fields are corrected does the potential field

model accurately predict the extent in latitude of the

current sheet. We have determined the strength of the solar

polar field correction for the entire interval by extending

the method of Svalgaard et al. (1978) and have included it

in the calculations. Near maximum the polar fields weaken

and ultimately reverse polarity. Meanwhile the lower lati-

tude fields become much stronger. This suggests that the

relative importance of the polar fields in determining the

magnetic configuration in the equatorial region is much less

near maximum than near minimum.

-5-
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The only free parameter in the model is the location of

the source surface. We use a spherical surface at which we

e	 fief 1 e.	 en to the solar• are radial and oassume the	 d in ^.	 p

wind. From the source surface it is assumed that the solar

wind carries the magnetic field radially outward. Comparing

the correlation of observed IMF polarity with that predicted

by the model computed at several different source surface

radii, we find that there is no significant change with time

in the distance at YYiich the source surface should be

located. In light of	 the insensitivity of	 the determination 	 =

of the optimum source surface radius, we will use a radius

of 2.5 Rs in our discussions which reflects the uncertainty

of about 0.25 Rs . At no time does the correlation with the

observed IMF polarity using a radius of 1.6 R s approach the

accuracy of that at 2.5 Rs.

II. The Rising Phase of the Sunspot Cycle

The radial field strength at the source surface for

Carrington Rotation 1665 is represented by a contour plot in

Figure 1. This magnetic configuration is characteristic of

the heliospheric structure throughout 1978. Dashed lines

represent regions where the field is directed toward the sun

and the solid lines field away from the sun. The heavy

-6-
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solid line is the contour o zero radial field. Extension

of this contour line radially outward by the solar wind

defines the current sheet in the heliosphere. We will hen-

ceforth refer to this line as the current sheet. Also plot-

ted in this figure at the heliographic latitude of Earth are

plusses and minuses representing daily averages of IMF

polarity measurements made near Earth. These measurements

are typically from spacecraft such as the International

Sun-Earth Explorer-3 (ISEE-3) or from the Interplanetary

Medium Data Book (King, 1979), but are occasionally inferred

from geomagnetic activity (Svalgaard, 1976) when spacecraft

measurements are not available. These values have been

corotated back to the source surface assuming a propagation

time from Sun to Earth of five days.

There are two extensions of the current sheet north of

the equator and two extensions south of the equator,

predicting a four-sector structure at Earth. The magnetic

field polarity on the source surface agrees well with that

observed at Earth five days later. The current sheet

extends to a latitude of about 60 0 in each hemisphere so we

would expect that a spacecraft anywhere within 60 0 of the

equator would observe a four-sector structure similar to

that at Earth. This is in contrast to the period near solar

-7-



minimum in 1976 when the current sheet extended to only

about 15 0 and Pioneer 11, at a latiti3e of 16 0 north,

observed only a single polarity (Smith et al., 1978).

We now consider the evolution of the field structure.

Figure 2 shows the current sheet at the source surface for

Carrington Rotations 1641 through 1569, May 1976 through

June 1978. Observations began at Stanford during Carrington

Rotation 1641. The 4o.,mat for each rotation is the same as

in Figure 1 except that only the zero contour is plotted

(i.e. the locus of the current sheet). Regions of negative

polarity (toward the Sun) are shaded. We have included an

additional half rotation from the previous and following

synoptic maps at the ends of each Carrington Rotation so

that structures near rotation boundaries can be seen more

easily. Evolution in the large scale structi.ire occurs

slowly with a time scale of several months. The basic pat-

tern of two northward and two southward extensions of the

current sheet persists throughout this interval. The loca-

tions of maximum latitudinal extent shift only a little in

longitude. For example, the northward bulge of the currant

sheet near 30 0 longitude, already apparent in rotation 1641,

is present through at least rotation 1670. This corresponds

to a persistent toward polarity structure in the obsorved

r
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IMF polarity. other features show much the same longevity

with only small, slow drifts in Longitude. A permanent

marked increase in latitudinal extent and size of the warps

in the current sheet occurs in early 1978 (rotations 1663

1665) and the pattern begins to drift slowly westward

(left).

Bach Carrington Flotations is 27.28 days long. Features

on the sun which rotate with a synodic period of 27 days

will arrive a little earlier on each successive rotation.

ya.s will be observed as a drift to the right of about 3.5

degrees per rotation or about 55 0 in 15 rotations. For com-

parison, some structures in the IMF recur with a period near

28.5 days (Svalgaard & Wilcox, 1975) which would be observed

as a rather rapid drift to the left of about 20 0 per rota-

tion.

Generally this interval can be characterized by slow
R

changes in the heliospheric magnetic field.	 The major

change is in the latitudinal extent of the current sheet.

The large scale structure does not in general participate in

differential rotation. This has been noticed earlier for

large scale photospheric mag netiw structures (Wilcox et al.,

1970), for the green line corona (Anta qucci & Svalgaard,

1974) and for coronal holes (Timothy et al., 1975).
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III. Sunspot Maximum

Near maximum, 1979 - 1980, the field structure was more

complex. The dominance of the polar fields gradually disap-

peared and the current sheet commonly extended to the poles.

The for,aat for Figure 3 is the same as for Figure 1. The

structure shown for Rotation 1679 is fairly typical of the
i

structure near maximum.	 There were two large unipolar
t

regions on the source surface with a smaller region of the

opposite polarity in each. At Earth only two sectors were

observed. The positive region near 45 0 longitude was con-

nected to the positive polar region, but did not extend far

enough south to intersect the latitude of the Earth. The

main current sheet extended almost from pole to pole in an

approximately north-south direction at 150 0 and 330 0 longi-

tude; spacecraft at any latitude would have seen a change in

IMF polarity. The small negative polarity region at 2700

was completely disconnected from the Large negative region

thus forming a second closed current sheet. The second

current sheet lay in the Sun's northern hemisphere and would

therefore have been detected only by an observer there. The

Earth at that time was several degrees south of the solar

equator and so did not see the effect of this region.

_10-
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Carrington Rotation 1698, shown in Figure 4, is another

typical example. Near longitude 90 a positive region con-

nected to the south pole intersected the latitude of the

Earth and there was a tingle day of away polarity. A second

current sheet enclosing positive polarity, somewhat larger

than in Rotation 1679, intersected the latitude of Earth.

There was an away sector corresponding to it in the IMF.

During the interval near maximum, changes in magnetic

configuration occurred somewhat more rapidly, yet individual

features last for a long time. Figure 5 shows the current

sheets for Carrington Rotations 1670 - 1699, July 1978

through September 1980, in the same format as Figure 2. The

pcIarity of the solar polar fields reversed near the begin-

ning of 1980 -- about Carrington Rotation 1690. Many rota-

tions exhibit multiple current sheets and often there a-e

two sheets at the same longitude. From one rotation to the

next the changes are usually small: a region of magnetic

flux may grow a little, shrink a little, drift a little in

longitude or latitude, or connect in a different way with

the surrounding regions of flux. The transition of the

polar fields from one polarity to the other occurs smoothly.

Catastrophic changes in field alignments or structure occur

neither near the poles nor at the latitude of the Earth.

-11-
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f` Most features can be observed for many rotations and

their evolution can be traced. For example the large posi-

tive region clearly visible in Rotation 1689 center : ed near

200 0 longitude can be traced through Rotation 1717. The

G

	

	 small positive feature that appears near 120 0 on Rotation	
.I

1694 does not disappear until at least Potation 1712. The

extension of negative polarity into the northern hemisphere

that first expands in Rotation 1660 at longitude 230 drifts

slowly westward until it ^onnects to the northern polar

region in Rotation 1682 or 1683. The eastern boundary of

this region can be traced to Rotation 1687. The small nega-

tive feature clearly visible in the northern hemisphere of

Rotation 1678 near 300 0 longitude can be followed from rota-

tion to rotation in all but Rotation 1684 until it merges

with a larger negative region in rotation 1685. The small

region of positive polarity lying across the equator on

Rotation 1674 near 60 0 longitude drifts slowly westward from

rotation to rotation. During Rotations 1681 through 1683 it

is evident only as a warp in the current sheet, but reap-

pears in 1685 through 1687 at 360 0 longitude. During the

course of 15 rotations it shifts a total of about 60° west-

ward in longitude, corresponding to a rotation rate very

close to 27.5 days.

-12-
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The greatest changes occur during Rotations 1688

through 1692, just at the time of solar polar field reversal

determined from the magnetograph polar region measurements.

The solar field added to our computation at this time is
4

very small and so has little effect on the overall confi-

guration of the fields. During these few rotations the

positive flux region becomes disconnected from the poles and

seems gradually to move southward, enveloping the southern

polar region completely by Rotation 1695. This is indepen-

dent of the inclusion of additional polar flux; graphs of

the solutions with no polar field correction show essen-

tially the same result. Throughout this interval the

changes near the equatorial plane are small. 'There are few

sudden changes in the IMF sector structure observed at

Earth. After maximum the pattern returns to the four-sector

structure commonly observed before maximum.

IV. Declining Phase of the Sunspot Cycle

As the new polar fields strengthen during the beginning

of the declining phase from late 1980 through 19!2, the

large scale heliospheric magnetic structure simplifies and

becomes more ordered. Figure 6 shows the cotaputed current

sheets for Rotations 1700 - 1729, October 1980 through

-13-
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December 1982. Through most of 1981 the structure resembles

the structure observed in 1978 except that the polar region

polarity is reversed. Again there are two extensions of the

current sheet into each hemisphere, but now the south pole

is positive polarity and the north pole negative.

The large positive polarity region near 270 0 longitude

in Flotation 1698 connects to the positive south polar region

in Rotation 1700 and moves southward in succeeding rota-

tions, disappearing by rotation 1719. The large negative

flux region extending from the north pole at at 180 0 remains

atrong through Rotation 1710. This region is apparently

undergoing differential rotation and splits in Rotation

1711.	 The flux region which remains connected to the north

pole begins to die away and by Rotation 1718 has disap-

peared. The differentially rotating negative polarity

region in the southern hemisphere merges with another small

extension of negative flux in Rotation 1712 near 0 0 . 'This

new region grows and continues to move westward at a slower

rate, broadening considerably until by Rotation 1718 there

is only one sector of each polarity. The structure remains

essentially unchanged through most of 1982 (Rotation 1725),

exhibiting almost no signs of differential rotation.	 A

four-sector structure seems to be emerging again in the last

-14-
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few rotations. Throughout this interval the latitudinal

extent of the current sheet is very great, extending almost

to the poles. This is very different from the structure

near minimum.

Figure 7 shows Carrington Rotation 1720 which is

characteristic of the simple two-sector structure. A

predominantly two--sector structure in the IMF has been

observed after solar maximum in most of the five pre-Jious

sunspot cycles according to Svalgaard and Wilcox (1975) .

Again there is good agreement with the IMF polarity measured

at Earth.

V. Polar Field Strength & Source Surface Radius

The polar fields near sunspot minimum are much stronger

than those measured by line-of-sight magnetograph measure-

ments (Stenflo, 1971; Howard, 1977; Suess et al., 1977;

Pneuman et al., 1973; and Svalgaard et al., 1978). This can

be seen in the Stanford measurements by considering the

field measurements obtained in the apertures nearest the

poles. Svalgaard et al. (1978) determined the strength of

the polar fields by considering the annual variation in

measured field strength due to the 7 o inclination of the

solar rotation axis to the ecliptic plane. That study

-15-
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showed that a sharply peaked field of the form 11.5 cos8(9)

Gauss reproduced the observed variation.

lNea ►.' minimum this strong field has a large effect on

the potential field model results as pointed out by Burlag a

et al. (1981) and discussed in Hoeksema et al. (1982). Fig-

:ire 8 shows a diagram of the northernmost aperture of a

Stanford mag netogram. The aperture is 3 arc minutes square.

Ten-day averages of the field strength measured in this

aperture are shown. The annual vartat.;.on is clearly seen,

as is the reversal of the field polarity which occurred near

the end of 1979. The corresponding plot for the south pole

s very similar.

We cannot use the same method to calculate the polar

correction near maximum, since the polar field strength

changes substantially in a year. The straight lines in Fig-

ure 8 show an estimate of the average polar field strength.

We have used this value to scale the strength of the polar

field correction.	 Thus a nominal field of 11.5 cos8(9)

Gauss is added in 1976, U Gauss at the end of 1979, and a

field of about half the original magnitude with the opposite

sign in 1981. As in our earlier work, we have considered

several values of the polar field and investigated the

effect on the correlation of IMF polarity predicted by the

-16-
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eras about 95 litesla. After reversal it was about 45 utesla. The straight lines show the
scaling factor used to determine the polar field correction throughout this interval with
11.5 cos8 (8) gauss being the canonical value in 1976-1977.



model and observed by ISEE-3 or other spacecraft. Figure 9,

described in more detail below, indicates that near maximum

the added polar field has very little effect on the correla-

tion. This is to be expected since the polar fields are

much weaker (zero right at maximum) and the lower latitude

fields are much stronger. At higher heliographic latitudes

the effect would be greater (Levine, 1982). Comparison with

coronagraph measurements might allow a better determination.

As in our earlier paper, we have also investigated the

effect of varying the source surface radius. Previous work-

ers (Schatten et al., 1969, Levine 1977a and b) have used a

source surface radius of 1.6 R s near minimum. Near maximum

and over regions of high activity others (Altschuler &

Newkirk, 1969 and Jackson & Levine, 1981) have used a radius

of 2.6 Rs . Hoeksema et al., (1982) found that a radius of

2.35 Rs gave the best correlation with IMF polarity near

minimum. We have computed the field on source surfaces with

radii ranging from 146 to 3.1 Rs for several values of polar

field corr ,.:ction. From these we have constructed datasets

of predicted IMF polarity. Figure 9 shows the correlation

coefficient of measured IMF polarity with predicted IMF

polarity (lagged 5 days to account for the transit time from

Sun to Earth) vs. source surface radius.
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Interval I includes May 1976 through June 1978, the

rising phase of the sunspot cycle as shown in figure 2. The

four curves correspond to diff-arent values of the polar

field correction. Circles show the result for no polar

field addition; triangles for half the standard field;

squares for the standard correction of 11.4 =o 8 (9) Gauss;

and plusses for 1.5 times the standard strength. 	 We show

similar curves for the period around maximum, July 1978 to

August 1980, labelled Interval II. There is almost no

difference in the curves for this interval, which shows the

unimportance of the polar field in determining the equa-

torial structure.	 Interval III, September 1980 through

December 1982, shows the results for the beginning of the

declining phase. The maximum correlation is substantially

higher, due primarily to the structure's simplicity during

most of 1982. Again the correlation is rather insensitive

to polar field strength.

In no interval is there a sharp peak suggesting that

one source surface radius or polar field strength is clea'n'ly

the best. There i-, , therefore, substantial uncertainty in

the selection of source surface radius and polar field.

Good choices are a source surface radius of 2.5 Rs and the

standard polar field correction. At no time is 1.6 R s as

-18-



good. We must emphasize that Earth is not a good probe of

the heliosphere being limited to solar latitudes less than

7.5 degrees. When the latitudinal extent of the current

sheet is much greater than this we cannot easily determine

which source surface radius or polar field correction is

best usin3 this method.

One additional correction has been made in the results

presented in this paper which was not made in Hoeksema et

al. (1982). For a variety of reasons there is usually a

small zero offset in the average magnetic field value for a

given Carrington Rotation. This is partially due to meas-

urement errors in the magnetograph: saturation effects,

luminosity deficiency of strong magnetic field regions,

measuring only line-of-sight fields, missing data, and the

tilt of the polar regions (Pneuman et al., 1978). In addi-

tion the measurements making up one rotation are observed

over a period of 27 days during which the fields are evolv-

ing. Furthermore rotation rates are slower away from the

equator and so a complete rotation is not observed at higher

latitudes in 27 days.	 The zero offset is usually small,

being only a few per cent of typical field values at the

photosphere.	 Its value has been computed for the 360 0 sur-

rounding each Carrington longitude and removed.
{
i
E
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VI. SUMMARY & DISCUSSION

The heliospheric current sheet reaches high latitudes

for much of the solar cycle. From 1978 through at least

1982 the extent was greater than 50°. The large scale

structure of the heliosphere changes slowly during most of

this period. Even near maximum there is continuity for many

rotations in the structure, in spite of the complexity of

the photospheric fields. The IMF polarity predicted by the

model agrees fairly well with that observed near Earth by

spacecraft such as ISEE-3 in every interval. This suggests

that the potential field model, which does not treat rapidly

evolving fields accurately, is adc;guate to approximate the

heliospheric magnetic structure for this period. We would

expect improved comparisons if we used a more complex, non-

spherical source surface (Levine et al., 1982).

The structure of the IMF observed at Earth remains

fairly simple, consisting of either four or two polarity

sectors. The three dimensional configuration of the helio-

sphere is more complex near maximum. These calculations

show that multiple current sheets probably exist in the two

or three years near maximum. The current sheets shown in

Figure 5 show that the time of polar field reversal is not

one of cataclysmic change in the heliospheric magnetic

-20-
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structure, but rather marks the moment when an ongoing pro-

cess reaches a certain stage.

That the current sheet extends to such high latitudes

over such a large fraction of the solar cycle suggests that

cosmic ray propagation models may need to take this into

account. Jokipii and Thomas (1981) considered the effect of

a simple two-sector current sheet on the solar modulation of

galactic cosmic rays by varying the latitudinal extent of

the current sheet from 10 to 30 degrees. This study shows

that not only is the structure much more complex, but the

extent in latitude is greater than 50 0 from 1978 through

1982. Comparison of IMF observations taken in the last few

years with inferred measurements of five previous sunspot

cycles (Svalgaard & Wilcox, 1975) suggests that the struc-

tures observed during this cycle are not very different from

those observed in past epochs. We expect that similar con-

figurations of heliospheric magnetic field occur in each

cycle.

While a few of the large scale structures shown here

exhibit differential rotation effects, many of them do not,

even though they stretch over great ranges in latitude.

This is similar to the rotation of coronal holes. This sug-

gests that some sort of underlying magnetic structure far

-21-
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beneath the photosphere may be rotating rigidly. Discussion

of the nature of such a structure is beyond the scope of

this paper.

i^

4•

lk

Acknowledgements

We thank H. Henning, R. Howard, and D. Blaskowski for

many contributions to this work. This work was supported in
{

part by the the Office of Naval Research under Contract r

N00014-76-C-0207, by the National Aeronautics and Space

Administration under Grant NGR5-020-559 and Contract NAS5-

24420, by the Atmospheric Sciences Section of the National

Science Foundation under Grant ATM77-20580 and by the Max C.

Fleischmann Foundation.



Bibliography

Altschuler, M.D., R.H. Levine, M. Stix, and J.W. Harvey,
"High resolution mapping of the magnetic field of the solar 	 j
corona," Solar P, hys, 51, 345-76, 1976.

Altschuler, J.U. and G. Newkirk, Jr., "Magnetic fields and
the structure of the solar corona," Solar I 	., 9, 131-49,
1969.

	
' tf

Antonucci, E. and L. Svalgaard, "Rigid and differential
rotation of the solar corona," Solar P, hys., 34, 3-10, 1974.

Burlaga, L.F., A.J. Hundhausen, and X.-P. Zhao, "The coronal
and interplanetary current sheet in early 1976," J. Geophys.
Res., 86 1 8893-98, 1981.

Hoeksema, J.T., J.M. Wilcox, and P.H. Scherrer, "Structure
of the heliospheric current sheet in the early portion of
sunspot cycle 21," J. G eo h ss. Res., 87, 10331-38,1982.

Jackson, B.V. and R.H. Levine, "A Comparison of type III
metric radio bursts and global solar potential field
models," Solar Phys., 73, 183-190, 1981.

Jokipii, J.R., and B. Thomas, "Effects of drift on the tran-
sport of cosmic rays IV: Modulation by a wavy interplane-
tary current sheet," Ap. J., 243, 1115-1122, 1981.

Ding, J.H., Interplanetary Medium Data Book (Supplement 1),
Rep. NSSDC 7908, NASA Goddard Space Flight Center, Green-
belt, Md. 1979.

Levine, R.H., "Open magnetic structure on the Sun: the
Skylab period", Ap.J., 218, 291-305, 1977x.

Levine, R.H., "Chap. 4," in J.B. Zirker, Coronal Holes and
High S eed Solar Wind Streams, Colo. Assoc. Univ. Press,
Boulder, 1977b.

Levine, R.H., "The relation of open magnetic structures to
solar wind flow," J. Geophys. Res., 83, 4193-99, 1978.

Levine, R.H., "Open magnetic fields and the solar cycle, I,"
Solar Phys, 79, 203-230, 1982.

-23-
}



Levine, R.H., M. Schultz, and E.N. Frazier, "Simulation of
the magnetic structure of the inner heliosphere by means of
a non-spherical source surface," Solar Phys., 77, 363-92,
1982.

Pneuman, G.W., M. Schultz, and E.N. Frazier, "On the reality
of potential magnetic fields in the solar corona," Solar
Phys., 59, 313-330, 1978.

Suess, S.T., A.K. Richter, C.R. Winger S.F. Nerney, "Solar
polar, coronal hole -- a mathematical simulation," Ap.J.,
217, 296-305, 1977.

Smith, E.J., B.T. Tsurutani, and R.L. Rosenberg, "Observa-
tions of the interplanetary sector structure up to helio-
graphic latitudes of 16 0 : Pioneer 11," J. Geophys. Res., 83,
717-24, 1978.	

..__.

Schatten, K.H., J.M. Wilcox, and M.F. Ness, "A model of
interplanetary and coronal magnetic fields," Solar Phys., 6,
442 -55, 1969.

Svalgaard, L., "Interplanetary sector structure 1947-1975111
Stanford University Institute for Plasma Research Rpt No.
648, Stanford, California, 1976.

8valgaard, L., T.L. Duvall, Jr., and P. H. Scherrer, "The
strength of the Sun's polar fields," Solar Phys., 58, 225-
40, 1978.

Svalgaard, L. and J.M. Wilcox, "Long term evolution of solar
sector structure," Solar P̂ mss, 41, 461-75, 1975.

Timothy, A.F., A.S. Krieger, and G.S. Viana, "The structure
and evolution of coronal holes." Solar Phys., 42, 135 -56,
1975.

Wilcox, J.M., K.H. Schatten, and A.S. Tanenbaum, "Photos-
pheric magnetic field rotation: rigid and differential,"
Solar Phys., 14, 255-62, 1970.

Wilcox, J.M. and A.J. Hunclh:ausen, "Comparison of helios-
pheric current sheet si-iuoture obtained from potential mag-
netic field computations and from observed maximum coronal
brightness," (submitted to J. G eophys. Res., 1983).

Wilcox, J.M., P.H. Scherrer and J.T. Hoeksema, "The onin of the Warped
Heliospheric Current Sheet," Science, 209, 603-605, 1980.

-24-


	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf

