General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR- 168122 DDA EDR 11170

Small Gas Turbine Combustor Primary Zone Study

R. E. Sullivan, E. R. Young, G. A. Miles, and J.R. Williams

Detroit Diesel Allison Division of General Motors Conporation P. O. Box 894 Indianapolis, IN 46206

March 1983

Final Report for Period September 1980 through December 1982

(NASA-CR-168122)SMALL GAS TURBINEE 83-28448COMBUSTOR PRIMARY ZONE STUDY Final Report,Sep. 1980 - Dec. 1982 (General Motors Corp.)Unclas208 p HC A10/MF A01CSCL 21EUnclasG3/37 03993G3/37G3993

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Cleveland, OH 44135 Under Contract NAS3-22762

Small Gas Turbine Combustor Primary Zone Study

R. E. Sullivan, E. R. Young, G. A. Miles, and J.R. Williams

Detroit Diesel Allison Division of General Motors Corporation P. O. Box 894 Indianapolis, IN 46206

March 1983

Final Report for Period September 1980 through December 1982

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Cleveland, OH 44135 Under Contract NAS3- 22762

TABLE OF CONTENTS

Section	Title	Page
I	Summary	1
11	Introduction	3
111	Combustor Design Procedure	5
IV	Combustor Designs	9
v	Test Rig and Instrumentation	63
VI	Experimental and Theoretical Results	73
VII	Conclusions	137
	Appendix A: Primary Zone Addendum Program	141
	Appendix B: Test Data Summary	151
	References	199

•

:

PRECEDING PAGE BLANK NOT FILMED

LIST OF ILLUSTRATIONS

Figure

NAMESAND AND AN ADDRESS OF A 1999

1

Title

1	Flowchart for primary zone program 5
2	Combustor concepts
3	Lamilloy cooling and fuel nozzle features
4	Fuel nozzle simplex fuel atomizer details
5	Fuel nozzle airblast swirler details
6	Dimensional cross section of Concept I, baseline,
	combustor
7	Predicted average primary zone fuel-air ratios (Concept I,
	baseline80% power)
8	Predicted radial primary zone fuel-air ratio (Concept I,
	baseline80% power)
9	Predicted primary zone fuel-air ratio contours (Concept I,
	baseline80% power)
10	Predicted primary zone fuel-air contours (Concept I,
	baseline100% power)
11	Predicted primary zone gas temperature contours (Concept I.
	baseline -100% power)
12	Predicted primary zone combustion efficiency contours
	(Concept I. baseline100% power)
13	Concept I. baseline. radial plane velocity diagrams 30
14	Concept I, baseline, axial plane velocity diagrams 31
15	Predicted primary zone fuel-air ratio contours (Concept I,
	mod 180% power)
16	Concept 1, mod 1, combustor internal axial velocities
	prediction (in plane of fuel injector)
17	Predicted average primary zone fuel-air ratio (Concept I.
	mod 280% power)
18	Predicted primary zone fuel-air ratio contours (Concept I.
	mod 2 - 80% power)
19	Concept I. mod 2. combustor primary zone internal radial
	velocities prediction
20	Predicted average primary zone fuel-air ratio (Concept I.
	mod 3-80% nower) $a = 100000000000000000000000000000000000$
21	Predicted primary zone fuel-air ratio contours (Concept I.
	mod $3-80\%$ power)
22	Concept I. mod 3. combustor primary zone internal radial
	velocities prediction
23	Predicted average primary zone fuel-air ratio (Concept I.
	$mod 4 = -80\% \text{ power} \qquad 36$
24	Predicted primary zone fuel-air ratio contours (Concept I.
	mod 480% nower) 37
25	Concept I mod 4 combustor primary zone internal radial
23	velocities prediction 37
26	Comparison of Concept I fuel-air ratio contours for the
-0	herealize and five design mode
27	Dimensional cross section of Concent II baseline
21	combustor
28	Predicted average primery zone fuel-air ratio (Concept IT
20	hasaltno802 nowor)
	preserve on bowers

PRECEDING PAGE BLANK NOT FILMED

LIST OF ILLUSTRATIONS (CONT)

Figure

<u>Title</u>

ŝ

ı Ç

2

29	Predicted primary zone fuel-air ratio (Concept II,	0
30	Predicted primary zone fuel-air ratio contours (Concept II,	0
_	baseline80% power) 40	0
31	Predicted primary zone fuel-air ratio contours (Concept II, baseline80% power)	1
32	Predicted primary zone gas temperature contours (Concept II, baseline80% nower)	2
33	Predicted primary zone combustion efficiency contours	-
	(Concept II, baseline80% power)	3
34	Concept II, baseline, combustorradial plane velocity diagrams	4
35	Concept II, baseline, combustor-axial plane velocity	
• •	diagrams	5
36	Predicted average primary zone fuel-air ratio (Concept II,	2
37	mod 180% power)	D
57	mod 180% power)	6
38	Predicted average primary zone fuel-air ratio (Concept II.	Č
	mod 280% power)	7
39	Predicted primary zone fuel-air ratio contours (Concept II,	
	mod 280% power)	7
40	Predicted average primary zone fuel-air ratio (Concept II,	~
41	mod 380% power)	B
41	mod 380% power)	8
42	Predicted average primary zone fuel-air ratio (Concept II,	_
10	mod 4idle power)	9
43	mod 4idle power)	9
44	Comparison of Concept II fuel-air ratio contours for the	-
	baseline and four design mods	0
45	Dimensional cross section of Concept III, baseline,	
	combustor	1
46	Predicted average primary zone fuel-air ratio (Concept III,	1
47	Daselineou% power/	Ŧ
	baseline80% power)	2
48	Predicted primary zone fuel-air ratio contours (Concept III,	-
	baseline80% power)	2
49	Predicted primary zone fuel-air ratio contours (Concept III,	_
50	baseline80% power)	3
0	baseline80% power)	4
51	Predicted primary zone combustion efficiency contours	_
50	(Concept III, baseline-80% power)	5
52 53	Concept III, baseline, radial plane velocity diagrams	0 7
54	Predicted primary zone fuelesir ratio contours (Concept III)	/
J H	mod 180% power)	8
		-

LIST OF ILLUSTRATIONS (CONT)

Figure

Bar delation and the second

A CONTRACTOR OF

<u>Title</u>

55	Predicted primary zone fuel-air ratio contours (Concept III, mod 280% power)
56	Predicted primary zone fuel-air ratio contours (Concept III, mod 380% power)
57	Predicted primary zone fuel-air ratio contours (Concept III, mod 480% power)
58	Predicted primary zone fuel-air ratio contours (Concept III, mod 580% power)
59	Summary of Concept III fuel-air ratio contours at the plane of primary zone probes
60	Combustor rig with rotating probe
61	Reverse-flow combustor test rig
62	Combustor exit instrumentation
63	Primary zone probe locations
6/	Photograph of primary gaps can compling probe 70
45	Primery sere car compline make
05	Frimary zone gas sampling probe
00	Lmission instrument system arrangement (LFA aircraft
	system)
67	Smoke sampling system schematic
68	Concept I conventional, swirl-stabilized, double-vortex
	annular combustor
69	Concept I, baseline, wall temperature and thermal paint
	results
70	Concept I, baseline, overall compustor performance 105
71	Concept I, baseline, combustor exhaust emission and efficiency
72	Concept I, baseline, combustor unimary zone performance 107
73	Concept I, baseline, primary zone sector emissions
74	Concept I, baseline, jdle-nower comparison of analytical
/4	nrediction and measured primary zone fuel-air ratio
75	Comparison of applytical prediction and many voltant articles
21	comparison of analytical prediction and measured primary
7/	zone ruer-air ratio (concept 1 mods00% power)
/6	Concept 11, baseline, combustor photograph
//	Concept II, baseline, wall temperature and thermal paint
	results
78	Concept II, baseline, exhaust temperature pattern 117
79	Concept II, baseline, combustor exhaust emissions 118
80	Concept II, baseline, primary zone performance
81	Concept II, baseline, primary zone emissions and combustion efficiency
82	Comparison of analytical prediction and measured value
	of primary zone fuel-air ratio (Concept II, baseline
	80% power)
83	Concept II. baseline, analytical prediction and measured
	fuel-sir ratios (80% nover)
Q/.	Comparison of analytical availation and manufactured values
04	oumparison of analytical prediction and measured values
	or primary zone ruer-air ratio (Concept 11 mods00%
05	
62	concept III, baseline, combustor photograph

LIST OF ILLUSTRATIONS (CONT)

Title	Pa
Concept III, baseline, wall temperature and thermal paint	
results	128
Exhaust temperature patterns for Concept IV, baseline	129
Combustor exhaust emission Concept III, baseline	130
Primary zone sector emissions (Concept III, baseline)	131
Comparison of analytical prediction and measured primary	
zone fuel-air ratio (Concept III, baseline80% power)	133
Comparison of analytical prediction and measured primary	
zone fuel-air ratio (Concept III, baseline80% power)	134
Comparison of analytical prediction and measured primary	
zone fuel-air ratio (Concept III #ods)	135
Concept III combustorsingle torus selected for addendum	
to primary zone study	141
Concept III, mod Al, combustor (short fuel tube)	143
Concept III, mod A2, combustor	143
Concept III, mod A3, combustor with bifurcated fuel tube	143
Predicted primary fuel-air contours	145
Comparison of combustor outlet temperature pattern at 80%	
power (Concept III, Addendum mods)	149
Comparison of analytical prediction and measured primary	
zone fuel-air ratio (Concept III, Addendum mods80%	
power)	150
	TitleConcept III, baseline, wall temperature and thermal paint resultsExhaust temperature patterns for Concept IV, baselineCombustor exhaust emission Concept III, baselinePrimary zone sector emissions (Concept III, baseline)Comparison of analytical prediction and measured primary zone fuel-air ratio (Concept III, baseline80% power)Comparison of analytical prediction and measured primary zone fuel-air ratio (Concept III, baseline80% power)Comparison of analytical prediction and measured primary zone fuel-air ratio (Concept III, baseline80% power)Concept III combustorsingle torus selected for addendum to primary zone studyConcept III, mod A1, combustor (short fuel tube)Concept III, mod A2, combustor with bifurcated fuel tubePredicted primary fuel-air contoursComparison of combustor outlet temperature pattern at 80% power (Concept III, Addendum mods)Comparison of analytical prediction and measured primary zone fuel-air ratio (Concept III, Addendum mods)

Figure

Paje

LIST OF TABLES

ţ

Table	Title	Page
I	MARC-I solution grids for the three primary zone	7
TT	Combustor configuration summary	10
III	Concept I combustor design summary	11
т. Т.	Concept II combustor design summary	15
v	Concept III combustor design summary	19
vī	Primary zone probes used in each test configuration	64
VII	Exhaust gas sample survey	66
VIII	Primary zone gas sample survey	67
IX	Combustor operating conditions	73
X	TP-5 paint temperature ranges	74
XI	Concept I. baseline, test data summary	77
XII	Concept I. mods 1-5, test data summary	79
XIII	Fuel-air ratiosConcept I	83
XIV	Concept II, baseline, test data summary	85
XV	Concept II, mods 1-5, test data summary	87
XVI	Fuel-air ratiosConcept II	91
XVII	Concept III, baseline, test data summary	93
XVIII	Fuel-air ratiosConcept III	93
XIX	Concept III, mods 1-5, test data summary	9 5
XX	Combustor performance summary at 80% power conditions	101
XXI	Concept III, mods Al, A2, and A3, test data summary	147

I. SUMMARY

This report documents the design, analysis, and testing of three reverse-flow annular combustor concepts resulting from NASA Contract NAS 3-22762, Small Gas Turbine Combustor Primary Zone Study. The objective of the program was to verify a design methodology using a three-dimensional (3-D) combustor primary zone (PZ) performance computer model for optimizing the design process and for gaining insight into combustor PZ performance. Three reverse-flow annular combustor concepts were used with at least five modifications made to each concept.

The Concept I reverse-flow combustor was a swirl-stabilized, double-vortex, annular combustor. The double vortex in the primary zone resulted from the combination of prechamber swirled air, a sudden expansion into the primary zone, and opposing rows of PZ air entry holes. A baseline liner and five modified versions were designed, analyzed with the 3-D computer model, fabricated, and then tested on a combustor rig. Liner modifications included a change in swirler angle; adjustments in PZ hole spacing, number of holes, and area of holes; and an increase in the porosity of the Lamilloy[®] cooling material.

The Concept II reverse-flow combustor was a swirl-stabilized, double-vortex, reverse-circulation annular combustor with some film cooling in addition to the Lamilloy cooling as in Concept I. This combustor liner incorporated an upstream (reverse) film air cooling for the liner dome and forward portion of the primary zone and was subsequently used as a portion of the PZ combustion air. A baseline liner and five modified versions of this concept were also designed, analyzed, fabricated, and tested. The modifications included a change in swirler angle, increases and decreases in the PZ hole areas, and operation on only eight of the sixteen fuel nozzles.

The Concept III reverse-flow combustor was an annulus-air-aligned, single-vortex design. In this concept the PZ flame stabilization was accomplished by a single large torus created by a single-loop film cooling system and angled primary-air entry jets. Increasing the size of the PZ vortex permitted the reduction in the number of fuel nozzles from sixteen to twelve. In addition to having fewer fuel nozzles, each fuel nozzle was chuted to enhance premixing and prevaporizing of the fuel and air and to permit precise placement of the fuel in the primary zone. A baseline and eight modifications were evaluated in the program. The modifications included changes in fuel placement, changes in the PZ air between inner and outer shells, and changes to the fuel chute designs.

The major analytical effort in this program was the application of a 3-D aerodynamic combustor flow-field model to the design and test-result correlation. The model, designated MARC-I for multidimensional aerodynamic recirculation combustion--version I, is the Detroit Diesel Allison (DDA) adaptation of the 3-D recirculating (elliptic) reacting flow model developed by the Garrett Corporation for the U.S. Army Research and Technology Laboratories (AVRADCOM). MARC-I was used to analyze each of the twenty-one combustor designs. After testing of the combustor designs, the analytical and experimental data were compared to assess both qualitative and quantitative agreement.

*Lamilloy is a registered trademark of General Motors Corporation.

In conclusion, the MARC-I three-dimensional, combustor PZ computer model proved to be a beneficial tool in combustion system design and development. Good agreement was found between analytical and experimental PZ fuel-air ratio distributions, and the three combustor concepts evaluated illustrated that the PZ stabilization can be obtained with various internal aerodynamic and fuel injection methods. As design requirements dictate unique combustor concepts, the computer model will become an increasingly more useful tool.

11. INTRODUCTION

The program discussed herein was part of an effort directed by NASA Lewis Research Center to advance the combustion technology for small gas turbine engines. This report documents the work performed under contract NAS 3-22762, Small Gas Turbine Combustor Primary Zone Study. This program evaluated design methodology and geometric approaches for obtaining the maximum performance potential of reverse-flow annular combustors. This combustor type has gained wide acceptance in small engine designs since it allows a close-coupled compressor-to-turbine shafting arrangement, resulting in a compact engine design.

The objective of this technology-generation program was to improve design methods applicable to the reverse-flow annular combustor. The program goal is to formulate an understanding of PZ aerodynamics and its relation to performance optimization. The emphasis is to improve the design process and gain insight into PZ performance through interactive analysis and test. Analytical models and test results are used to define the interaction of internal airflow patterns with fuel concentrations and burning patterns. Combustors with three distinctively different PZ flame stabilization patterns were included in this evaluation.

All performance goals for the three basic combustor designs were achieved. Despite the varied approaches for achieving flame stabilization by controlling the internal flow paths, each combustor exhibited very acceptable total performance. Gas temperature profiles, stability limits, efficiency, smoke, emissions, and metal-temperature levels were well within the range of acceptable preliminary-design standards. In addition, the effective use of the 3-D analytical aerodynamic/combustion model as a design aid was demonstrated and verified by test results. The performance predictions of the 3-D model provided the needed insight and bitter understanding of the PZ aerodynamics.

The baseline combustor for this investigation is a reverse-flow annular of similar size and construction to the DDA combustor used in the GMA500 engine currently under development for the U.S. Army Research and Technology Laboratories (AVRADCOM), Fort Eustis, Virginia. The primary zone of this combustor features a conventional, double-vortex, swirl-stabilized flow pattern resulting from the interaction of swirl and PZ air jets. Two other combustor concepts were studied which have variations in the flame-stabilization swirl patterns of the primary zone. The second combustor was constructed to achieve a reverse-circulation, double-vortex pattern, while the third combustor concept exhibited a single-vortex flame-stabilization pattern.

The program elements consisted of the design process and analytical performance predictions, fabrication, and test evaluations. Test data were obtained at the intermediate plane of the FZ exit and also at the combustor exit. The test results were correlated with the analysis to validate and update design procedures. This report contains analytical and performance data from each element of the design and development process.

OF POOR QUALITY

III. COMBUSTOR DESIGN PROCEDURE

The design process proceeds in a manner of iterative steps as illustrated in Figure 1. Once the operating conditions and performance goals are established, the type of combustor selected is often dictated from engine component arrangements. Preliminary sizing consists of aerodynamic and chemical loading considerations. Widely accepted practices used for this step are described in the Combustor Design Methods Manual by Northern Research (Ref 1). Variations of this general sizing method are usually at the discretion and preference of the designer.

The design conditions for this program were as follows:

Inlet pressure	1014 kPa (10 atm)
Inlet temperature	672 K (740°F)
Airflow	2.27 kg/s (5 lb/sec)
Temperature rise	695 K (1250°F)
Max liner metal temperature	1144 K (1600°F)
Pressure drop	4%

The final design and development of the combustor is an interactive process between the detail analytical models and feedback from test evaluations. This development phase continues until all performance objectives for the combustor are realized.

Figure 1. Flowchart for primary zone program.

5

ORIGINAL PAGE IS OF POOR QUALITY

The major analytical effort in this program was the application of a 3-D aerodynamic combustor flow-field model to the design and test-result correlation. The model, designated MARC-I for multidimensional aerodynamic recirculation combustion--version I, is the DDA adeplation of the 3-D recirculating (elliptic) reacting flow model developed by the Garrett Corporation for the U.S. Army Research and Technology Laboratories (AVRADCOM) (Ref 2). MARC-I is a primitive variable, finite-difference computer code that solves the Navier-Stokes equations for a three-dimensional reactive flow field. Turbulence is simulated by a two-equation K- ϵ model, and combustion following drop vaporization is determined by a two-step chemical reaction model based on Arrhenius and eddy breakup concepts. A six-flux radiation model is also incorporated.

The following variables are computed by MARC-I:

o velocity (axial, radial, and swirl components)

o pressure

o enthalpy (and, derived from that, temperature and density)

o kinetic energy of turbulence and dissipation rate

o composition (mass fractions of fuel, O_2 , N_2 , CO_2 , and H_2O)

- o radiation flux vectors
- o fuel spray trajectory and evaporation rate

The transport equations for all dependent variables ϕ are of the following general form:

div
$$(\rho \vec{u}\phi - \frac{\mu_{eff}}{\sigma_{\phi}} \operatorname{grad} \phi) = S_{\phi}$$

where

P	is the mixture density
นี้	is the velocity vector
Haff	is the effective turbulence
σ	is the effective Prandtl/Schwidt number
sμ	is the source term for $oldsymbol{\phi}$

An iterative finite-difference solution procedure is used to solve the resulting system of nonlinear, partial-differential equations.

MARC-I has been updated to incorporate the following gas turbine combustor geometrical features:

```
o prechambers
o internal walls
o rounded dome walls
o axial dome swirlers
o vertical dome slots
o slanted liner entries
o reverse cooling slots
```

In addition, an extensive plotting and restart capability has been incorporated into the program. Restart is the terminology used to describe the storage of the computer solution for a combustor design and its subsequent use to begin the solution for a similar design. This technique has significantly reduced the number of iterations required for successful numerical convergence.

ORIGINAL PAGE IS OF POOR QUALITY

By means of an IBM 370/3081 computer the MARC-I model was used to analyze each of the 21 combustor configurations tested during this program. The computer grids used for each of the three combustor concepts are listed in Table I. A complete solution for a combustor design required about 300 computer iterations. A complete solution was required for each of the three concept baseline combustor designs. Using the retart capability, the successive modified combustor revisions required only 100 iterations, thus saving significant machine time. In general, 100 iterations of a 1000-point grid required 4.7 CPU minutes of computer time. The complete solution for the Concept I baseline combustor design was 40.3 CPU minutes. The restart solution for the Concept I mod 1 combustor design was about 13.4 CPU minutes.

- Aller

MARC-I	solution	grids for	the three	1. primary	zone combusto	r concepts.
			Numb	er of gri	ld points	
Combusto	r	Axial	Radial	Circ	cumferential	Total
Concept	I	17	13		13	2873
Concept	11	17	17		17	491 3
Concept	111	27	19		15	7695

The program demonstrated the value of the MARC-I model as a useful tool to the combustor designer. The accuracy of analytical performance predictions compared to test results has not reached a level of precision desired for complete reliance on the analytical method. Combustor designs and performance attainable will still rely heavily upon the quasi-empirical correlations developed from test experience by manufacturers over the years. The analytical model, however, does exhibit the potential of effective interaction with the design process by helping to visualize the resulting aerodynamic effects of geometric variations in the combustor. Design guidance results and experimental costs are reduced when many candidate designs can be studied before committing a chosen design to hardware.

IV. COMBUSTOR DESIGNS

Full-size, reverse-flow annular combustors are being evaluated in this program. The combustors are swirl-stabilized systems established by PZ air entry ports and swirlers. A prechamber cup surrounds the fuel nozzles in the baseline combustor, where partial premixing and prevaporizing of the air and fuel occur prior to entry into the primary zone. Both axial and radial swirlers have been used to induce swirl in the prechamber zone.

Three distinctly different combustor concepts, shown in Figure 2*, were selected to provide a wide scope approach to this investigative program. Each combustor was designed with a different aerodynamic approach to the internal flow patterns that provide the fuel vaporization paths and the flame stabilization regions within the primary zone. These combustors incorporate features that address the elements of the small annular combustor that have been identified as sources of problems. Direct approaches to some problem areas were the application of advanced Lamilloy cooling and simplex airblast fuel nozzles as shown in Figure 3. Unique design approaches were to recycle air used for cooling back into the primary zone for combustion or to utilize air management techniques involving hole locations and swirlers to provide desired fuel-to-air distribution in the primary zones.

The fuel nozzle used for each of the combustor concepts was a simplex-airblast type composed of two subassemblies. The first subassembly was the simplex fuel atomizer shown in Figure 4. The atomizer was mounted through the outer combustor case and piloted inside the airblast swirler subassembly (see Figure 5). The airblast swirler was mounted as a floating ferrule at the front of the combustor liner prechamber. The air passing through the swirler vanes further atomized the fuel from the simplex injector and also helped generate the prechamber swirl aerodynamics. Separation of the simplex injector and the airblast swirler into subassemblies permitted the swirler portion to be a part of the combustor 'ner, thus simplifying the fuel injecting portion of the nozzle.

The combustor PZ concepts selected for study are identified by aerodynamic flow patterns:

Concept I double-vortex swirl-stabilized Concept II double-vortex swirl-stabilized reverse-circulation Concept III single-vortex stabilized

For each of the three combustor concepts, a baseline configuration and five modifications were designed. These eighteen combustor versions are summarized in Table II. Subsequent paragraphs in this section will describe the design of each combustor concept baseline and the five modifications made to each combustor concept. Three additional modifications to the Concept III combustor were designed and evaluated in the contract addendum. These designs are described in Appendix A.

CONCEPT I: DOUBLE-VORTEX, SWIRL-STABILIZED COMBUSTOR

The double-vortex, swirl-stabilized combustor was selected as the Concept I combustor because it represents conventional techniques for obtaining the

*The figures for this section appear at the end of the section.

flame stabilization pattern. The double vortex is achieved by a combination of a radial-inflow swirler and opposing rows of PZ air entry jets. Lamilloy transpiration . Joling was utilized for all the walls of the combustor. The high effectiveness of this cooling technique reduces the amount of cooling air required. Also, the cooling-air entry into the primary zone is at a uniform temperature level and eliminates flame quenching normally associated with films in close proximity to the walls.

-	Combustor com	nfiguration summary.
Combustor	Version	Description
Concept I	Baseline	45 deg prechamber swirler
Swirl stabilized	Mod 1	30 deg prechamber swirler
Double vortex	Mod 2	30 deg swirler, close PZ hole spacing
	Mod 3	Double number of PZ holes
	Mod 4	Reduced-area PZ holes
	Mod 5	Increased Lamilloy cooling airflow
Concept II	Baseline	30 deg axial swirler
Swirl stabilized	Mod 1	45 deg axial swirler
Double vortex	Mod 2	45 deg swirler, 50% more PZ hole area
Reverse cooling flow	Mod 3	100% more rZ hole area
	Mod 4	Original PZ hole area, 8 fuel nozzles
	Mod 5	All PZ air at active fuel nozzles
Concept III	Baseline	Fuel tubes radially out
Annulus air aligned	Mod 1	Fuel tubes circumferential clockwise
Single vortex	Mod 2	Fuel tubes circumferential counterclockwise
	Mod 3	Fuel tubes out, increased outer PZ air, decreased inner PZ air
	Mod 4	All outer PZ air
	Mod 5	All inner PZ air

Table II.

Baseline Combustor

A dimensional sketch of the Concept I baseline combustor can be seen in Figure 6. The baseline combustor has 16 fuel injectors resulting in a 1.4 circumference/height spacing. These fuel nozzles are a combination simplex-airblast type. The basic nozzle consists of a simple shell encasing a filter, spin chamber. and single-orifice tip exit. An air swirler, separately attached to the combustor dome, surrounds the external nozzle casing. The combined parts form the components of an airblast nozzle which utilizes high-velocity air passing through the swirler to improve fuel atomization. The Concept I baseline combustor has 32 primary air-addition holes (2 per nozzle) through the inner liner shell plus 32 primary holes (2 per nozzle) through the outer shell. There are no intermediate zone (IZ) holes. Like the primary holes, there are 32 dilution zone (DZ) air-addition holes through the inner shell and 32 through the outer shell. All remaining air enters through the Lamilloy cooling surfaces. A summary of the air distributions for the Concept I baseline and all five of the Concept I liner mods is presented in Table III.

ORIGINAL PAGE IS OF POOR QUALITY

	Concept I					
	Base	Mod 1	Mod 2	Mod 3	Mod 4	Mod 5
Axial swirler blade angle	45 deg	30 deg	30 deg	30 deg	30 deg	30 deg
Number fuel nozzles	16	16	16	16	16	16
Outer shell PZ holes						
Number holes/nozzle	2	2	2	4	4	2
Spacing* Pair 1 Pair 2	0.250	0.250	0.083	0.083 0.250	0.083 0.250	0.250
Атеа, %	6.9	7.1	7.1	12.5	7.2	7.0
Number IZ holes/nozzle	0	0	0	0	0	0
Number DZ holes/nozzle	2	2	2	2	2	2
Inner shell PZ holes						
Number holes/nozzle	2	2	2	4	4	2
Spacing* Pair 1 Pair 2	0.250	0.250	0.083	0.083 0.250	0.083 0.250	0.250
Area, %	5.9	6.0	6.0	10.7	6.1	6.0
Number IZ holes/nozzle	0	0	0	0	0	0
Number DZ holes/nozzle	2	2	2	2	2	2
Total effective area, mm ² %	3425.9 100.00	3341.4 97.53	3341.4 97.53	3780.1 110.34	3345.3 97.65	3368.7 98.33
Lamilloy porosity, C _d	0.0053	0.0053	0.0053	0.0053	0.0053	0.0057
Liner areas, %						
Dome swirlers	14.4	12.3	12.3	10.9	12.3	12.2
PZ holes total	12.8	13.1	13.1	23.2	13.3	13.0
IZ holes total	0	0	0	0	0	0
DZ holes total	39.6	40.6	40.6	35.9	40.6	40.2
Cooling total	33.0	34.0	34.0	30.1	33.9	34.6
PZ equivalence ratio at						
100% power	0.944	0.998	0.998	0.780	0.992	1.005

Table III. Concept I combustor design summary.

*Spacing = angle of hole from nozzle centerline/angle between nozzles

The Concept I baseline combustor, as well as all of the other combustors, was analyzed with the three-dimensional combustor model described in Section III. For each combustor configuration the 3-D model generated plots of fuel-air ratio in the primary zone at various radial planes so that the interaction of the fuel spray and the combustion air could be observed. Typical of these theoretical investigations are fuel-air plots, shown in Figures 7 through 9.

11

Figure 7 is a prediction of the circumferential average fuel-air ratios for the Concept I baseline combustor for a one-fuel-mozzle centered liner sector (the fuel nozzle is centered at 11.25 deg) in a radial plane located 54.6 mm downstream of the fuel-nozzle exit. This plane corresponds to the location of the FZ gas-sampling probe used in the experimental portion of the program. For the combustor operating at the 80% power condition, the average fuel-air ratio varied from 0.021 to 0.074 in each fuel-nozzle sector. Predicted fuelair ratios for each of the experimental probes are given in Figure 8. These curves illustrate the fuel-air ratio variation across the liner annulus at each of three circumferential positions. Figure 9 shows a fuel-air ratio map of the entire 22.5 deg sector surrounding each fuel nozzle. The view direction for this map is downstream. This type of plot clearly reveals the high and low concentrations of the fuel in the primary zone of the Concept I baseline combustor. The axial position of the plane depicted in Figure 9 is plane of the experimental PZ gas-sampling probe. The predicted contours show that the baseline combustor should have four fuel-air peaks spaced around the fuel-nozzle centerline. If a series of fuel-air contour maps at different axial planes were stacked together, the result would be Figure 10. In this representation of the baseline annulus sector the map from Figure 9 is the plane identified as 54.6 mm downstream. For reference, the prechamber exit is the 13.1 mm location plane, the primary holes are located at the 35.6 mm plane, and the dilution holes are located at 68.8 mm or about halfway between the planes 54.6 mm and 76.2 mm shown. In this type of presentation, the effects of the prechamber swirl, the primary holes, and the dilution holes on the fuel spray can all be traced as the fuel spray passes down the combustor liner.

In a similar manner the gas temperatures and the local combustion efficiencies can be traced through the combustor liner, as illustrated by Figures 11 and 12.

An internal aerodynamic analysis of the liner flow fields was also performed for the first 76.2 mm downstream of the fuel nozzle tip. Figure 13 shows a series of radial planes at 12.7, 17.8, 35.6, and 48.3 mm downstream of the fuel nozzle. Physically these planes correspond to the prechamber flow just prior to the exit, the PZ flow just inside the primary zone, the flow in the plane of the PZ air entry holes, and the PZ flow downstream of the primary holes. Figure 14 is a similar set of velocity plots but in the axial plane of the baseline liner. With the fuel nozzle located at 11.25 deg, a series of velocity plots are presented at circumferential locations of 0, 0.1667, 0.5, and 0.8333 of the half angle spacing between the fuel nozzles.

Mod 1 Combustor

The first modification to the baseline Concept I combustor was the change in the blade angle of the axial swirler surrounding the fuel nozzle from 45 deg of turning to 60 deg of turning or an angle of 30 deg. There were no other changes made to the combustor. Figure 15 shows the fuel-air ratio map in the radial plane of the PZ gas-sample probes for the mod 1 combustor liner. Comparison of this map with the baseline map in Figure 9 shows no change in the distribution of fuel-air in this plane. A look at the liner internal velocities in the axial plane of the fuel nozzle (see Figure 16) does show a change with the increase in swirl number. The velocity map now shows a definite reverse flow region upstream from the plane of the PZ holes to the exit of the prechamber. This reverse flow region is, however, either too small or too weak to have any effect on the PZ combustor performance.

Mod 2 Combustor

The second modification to the Concept I baseline combustor was to move the PZ holes in the inner and outer shells closer to the centerline of the fuel nozzle. The 30 deg swirler from Concept I, mod 1, was retained. Thus there were no changes made other than the moving of the primary holes.

The average circumferential fuel-air ratio for this mod is shown in Figure 17. It shows a definite depression of the fuel-air ratio profile near the axis of the fuel nozzle as compared to the profile in the Concept I baseline design in Figure 7. The sector fuel-air ratio map for this configuration in Figure 18 also shows the evening of the fuel-air pattern. The fuel-air peaks were reduced thus indicating a potential reduction of NO_x and smoke which result from the high-temperature fuel-rich pockets in the primary zone.

Velocity diagrams for Concept I, mod 2, simply show the movement of the air jets toward the fuel nozzle in the axial plane. The radial plane velocities shown in Figure 19 would indicate that all of the flow would be directed toward the center and then would flow circumferentially away from the fuel nozzle. The recirculation seen in Figure 13c for the baseline combustor design would not be present.

Mod 3 Combustor

The third modification to the Concept I baseline combustor was to utilize all of the primary zone holes from mods 1 and 2. This increase in primary zone holes was intended to further smooth the fuel-air ratio distribution in the primary zone. This smoothing process is evident in Figure 20, where the fuelair ratio average varied only between 0.031 to 0.049. It is clear in Figure 21 that the rich pockets in the primary zone have been substantially reduced.

The velocity diagram in the radial plane given in Figure 22 shows that the majority of the flow in this zone is toward the center of the annulus with the recirculation occurring between the fuel nozzles.

Mod 4 Combustor

The fourth modification to the Concept I baseline combustor was to utilize all of the primary zone holes from mods 1 and 2, but to reduce the flow area of the holes to be equivalent with the baseline flow. There was concern that the large holes in mod 3 were overpenetrating and would thus be detrimental to the performance in the primary zone. The circumferential-average, fuel-air ratio pattern, as seen in Figure 23, is between the baseline pattern, which was high in the middle of the sector, and the mod 3 pattern, which was low in the middle of the sector. The radial-plane, fuel-air ratio profiles in Figure 24 also show that the fuel is reasonably uniform but somewhat concentrated in line with the fuel nozzles.

The radial-plane velocity profiles in Figure 25 indicate more mixing in line with the fuel nozzle due to the air jets penetrating less toward the center of the annulus.

Mod 5 Combustor

The fifth modification to the Concept I baseline combustor was to replace the PZ Lamilloy with a more porous, higher flowing Lamilloy to further improve the durability of the combustor in the primary zone. The swirler and PZ hole pattern were returned to the configuration of Concept I, mod 1. Aerodynamics analysis of this combustor modification did not show any effect in the internal flow field. This is due to the fact that the Lamilloy flow was increased only 7.5%. The low flow of Lamilloy and its very shallow air penetration beyond the liner wall contribute to the lack of effect on the flow pattern.

Design Summary

A summary of the radial-plane fuel-air ratio patterns for each of the Concept I combustors is shown in Figure 26. It is clear from inspection of these profiles that the change in axial swirler (mod 1) and the change in Lamilloy porosity (mod 5) had negligible influences on the internal distributions. Changing the PZ air-injection hole sizes and/or location does make predictable changes to the internal flow distributions. Coupling of these changes in the primary zone with their effects on combustor internal and exit performance is an area that will be discussed in the results portion of this report.

CONCEPT II: DOUBLE-VORTEX, SWIRL-STABILIZED, REVERSE-CIRCULATION COMBUSTOR

The double-vortex, swirl-stabilized reverse-circulation combustor was selected as the Concept II combustor because the PZ aerodynamics appears to be well suited for small gas turbine combustors having problems with fuel impingement on the PZ walls or with quenching in a cooling film near the walls. In the reverse-flow design, the PZ cooling-air film is directed upstream and intermixes with the combustion air by entering the reaction zone from behind the fuel spray. This cooling-air regeneration leaves no path of escape for the quenched products of combustion without passing through the more favorable hot reaction zone. Lamilloy transpiration cooling was utilized for all of the remaining walls of the combustor. The high effectiveness of Lamilloy reduces the amount of cooling air required for the rest of the combustor liner.

Baseline Combustor

A dimensional sketch of the Concept II baseline combustor can be seen in Figure 27. The baseline combustor has 16 fuel injectors resulting in a 1.4 circumference/height spacing. These fuel nozzles are a combination simplex-airblast type and were the same nozzles used with the Concept I combustor. The Concept II baseline combustor has 16 primary air-addition holes (1 per nozzle) through the inner liner shell plus 16 primary holes (1 per nozzle) through the outer shell. Each of the holes is located on the centerline of a fuel nozzle. The air enters through formed air bushings. There are 32 intermediate zone holes (2 per nozzle) through the inner shell and 32 holes (2 per nozzle) through the outer shell. Similarly, there are 32 dilution air-addition holes through the inner shell and 32 through the outer shell. All remaining air enters through the PZ reverse film cooling slots, the fuel nozzle swirler, or the Lamilloy cooling surfaces. A summary of the air distributions for the Concept II baseline and all five of the Concept II liner mods is presented in Table IV.

---Concept II--Base Mod 1 Mod 2 Mod 3 Mod 4 Mod 5 45 deg 45 deg 45 deg Axial swirler blade angle 30 deg 45 deg 45 deg 8 16 16 16 16 8 Number fuel nozzles Outer shell PZ holes Number holes/active nozzle 1 1 1 1 3 1 6.5 6.5 6.7 3.5 5.0 Area. % 3.6 2 2 2 2 2 2 Number IZ holes/active nozzle 2 2 2 2 2 2 Number DZ holes/active nozzle Inner shell PZ holes 1 3 1 Number holes/active nozzle 1 1 1 5.7 5.5 3.0 4.3 5.5 3.0 Area, % 2 2 2 2 Number IZ holes/active nozzle 2 2 2 2 2 2 Number DZ holes/active nozzle 2 2 Total effective area, mm² 3333.1 3417.6 3526.0 3633.7 3633.7 3653.8 102.54 105.79 109.02 109.02 109.62 100.00 0.0053 0.0053 0.0053 0.0053 Lamilloy porosity, Cd 0.0053 0.0053 Liner areas. % 6.0 8.4 8.1 7.9 7.9 7.8 Dome swirlers 12.0 12.4 9.3 12.0 6.5 PZ holes total 6.6 6.0 6.1 6.1 6.3 IZ holes total 6.6 6.5 38.5 37.1 40.7 37.3 37.4 DZ holes total 39.7 36.5 36.8 Cooling total 39.9 39.0 37.8 36.8 PZ equivalence ratio at 100% power 1.121 1.041 0.969 0.903 1.452* 0.900

Table IV. Concept II combustor design_summary.

1981 121-24

ORIGINAL PAGE IS OF POOR QUALITY

*Based on effective air for each active fuel nozzle

The Concept II baseline combustor, as well as all of the other combustors, was analyzed with the three-dimensional combustor model described in Section III. For each combustor configuration the 3-D model generated plots of fuel-air ratio in the primary zone at various radial planes so that the interaction of the fuel spray and the combustion air could be observed. Typical of these theoretical investigations are fuel-air plots as shown in Figures 28 through Figure 28 is a prediction of the circumferential average fuel-air ratios 30. for the Concept II baseline combustor for a single nozzle centered liner sector (the fuel nozzle is centered at 11.25 deg) in a radial plane located 54.6 mm downstream of the fuel-nozzle exit. This plane corresponds to the location of the PZ gas-sampling probe used in the experimental portion of the program. For the combustor operating at the 80% power condition, the average fuel-air ratio varied from 0.032 to 0.082 in each fuel-nozzle sector. Predicted fuelair ratios for each of the experimental probes are given in Figure 29. These curves illustrate the fuel-air ratio variation across the liner annulus at each of three circumferential positions. Figure 30 shows a fuel-air ratio map of the entire 22.5 deg sector surrounding each fuel nozzle. The viewing direction

15

for this map is downstream. Figure 30 clearly shows a single, high concentration of the fuel near the PZ inner wall of the Concept II baseline combustor. The axial position of the plane depicted in Figure 30 is the plane of the experimental gas-sampling probes. The predicted contours show that the baseline combustor should have only one fuel-air peak, which is quite different than what was predicted for the Concept I baseline combustor in Figure 9. A series of fuel-air contour maps at different axial planes stacked together results in the composite in Figure 31. In this representation of the baseline annulus sector the map from Figure 30 is the plane identified as 51 mm downstream. For reference, the prechamber exit is the 0.25 mm location plane, the primary holes are located at the 22.9 mm plane, the intermediate holes are located at the 40.6 mm plane, and the dilution holes are located at 71.1 mm or about halfway between the 63.5 mm and 76.2 mm planes shown. In this type of presentation, the effects of the prechamber swirl, the reverse-flow cooling air, the primary holes, the intermediate holes, and the dilution holes on the fuel spray can all be traced as the fuel spray passes down the combustor liner.

In a similar manner the gas temperatures and the local combustion efficiencies can be traced through the combustor liner as illustrated by Figures 32 and 33.

An internal aerodynamic analysis of the liner flow fields was also performed for the first 100 mm downstream of the fuel nozzle tip. Figure 34 shows a series of radial planes at 3.8, 6.4, 22.9, and 40.6 mm downstream of the fuel nozzle. Physically these planes correspond to the flow at the exit of the prechamber, the flow in the plane of the reverse cooling air exit, the flow in the plane of the PZ air-entry holes, and the flow in the plane of the intermediate holes. Figure 35 is a similar set of velocity plots but in the axial plane of the baseline liner. With the fuel nozzle located at 11.25 deg, a series of velocity plots are presented at circumferential locations of 0, 0.244, 0.5, and 0.889 of the half angle spacing between the fuel nozzles.

Mod 1 Combustor

The first modification to the Concept II baseline combustor was to reduce the amount of turning in the axial swirler surrounding the fuel nozzle from 60 deg of turning to 45 deg of turning. There were no other changes made to the combustor. Figure 36 shows the effect of the mechanical change on the circumferential average fuel-air ratio distribution. Comparison with the Concept II baseline distribution (Figure 28) shows that the fuel-air ratio peak would be expected to decrease from 0.082 to about 0.072. Figure 37 shows the fuel-air ratio map in the radial plane of the PZ gas-sample probes. Comparison of this map with the baseline map in Figure 30 shows almost no change in the distribution of fuel-air in that plane.

Mod 2 Combustor

The second modification to the Concept II baseline combustor was to increase the hole area of the primary holes by 50%. The 45 deg swirler from Concept II, mod 1, was retained. There were no changes made other than increasing the size of the primary holes.

The average circumferential fuel-air ratio for this mod is shown in Figure 38 and predicts a slight decrease in the fuel-air ratio peak near the axis of the fuel nozzle when compared to the profiles in both Concept II baseline and mod 1 designs. The sector fuel-air ratio map for this configuration in Figure 39 also shows a smoothing of the fuel-air pattern. The fuel-air peaks were reduced thus indicating a potential reduction of NO_X and smoke which result from the high-temperature fuel-rich pockets in the primary zone.

Comparison of the baseline and the mod 1 predicted internal velocity diagrams did not reveal any meaningful differences between the two designs.

Mod 3 Combustor

The third modification to the Concept II baseline combustor was to further increase the areas of the PZ holes by 100% when compared to the Concept II baseline combustor. This increase in PZ hole area was intended to further smooth the fuel-air ratio distribution in the primary zone. This smoothing process is evident in Figure 40, where the fuel-air ratio peak should be reduced to 0.055. It is clear in Figure 41 that the rich pockets in the primary zone have been substantially reduced.

Comparison of the mod 1 and the mod 2 predicted internal velocity diagrams did not reveal any meaningful differences between the two designs. The mod 2 design showed slightly higher velocities in the region of the primary holes, due to the increased flow, but no significant changes to the flow patterns.

Mod 4 Combustor

The fourth modification to the Concept II baseline combustor was to operate the mod 3 design by supplying fuel only to every other nozzle for a total of eight fuel nozzles. Using only eight equally spaced fuel nozzles produced a doubling of the annulus circumference/height spacing to 2.8. Increasing the circumference/height spacing would have significant advantages in simplifying annular combustors, especially the small annulars which now require small fuel nozzles that are susceptible to contamination and clogging. The predicted circumferential average fuel-air ratio distribution for the mod 4 design is shown in Figure 42 for adjacent fueled and unfueled sectors. Without any change in the combustor liner hole patterns there are alternate sectors of high and low fuel-air ratio corresponding with the fueled and unfueled nozzles. The sector fuel-air ratio map for this design is given in Figure 43. The high and low fuel-air regions are especially evident.

Mod 5 Combustor

The fifth modification to the Concept II baseline combustor was to close the PZ holes in the regions of the unfueled nozzles and add that area to the primary zones of the fueled nozzles. For each closed hole two plane flush holes were added behind the existing primary hole at equal distances from the fuelnozzle centerline. The intention of this design change was to even out the fuel-air ratio distribution between the fueled and the unfueled nozzles.

Design Summary

A summary of the radial-plane fuel-air ratio patterns for each of the Concept II combustors is shown in Figure 44. Decreasing the swirl number at the fuel nozzle and then increasing the quantity of primary zone air in the baseline through mod 3 designs did not change the overall aerodynamic pattern in the liner annulus 'ut tended to steadily suppress the high fuel-air ratio regions while raising the low regions. Changing to eight fuel nozzles in mod 4 produced a very nonuniform fuel-air ratio pattern, but moving all of the PZ air toward the operating fuel nozzles should have improved the fuel-air distribution.

CONCEPT III: SINGLE-VORTEX, ANNULUS-AIR-ALIGNED COMBUSTOR

The single-vortex, annulus-air-aligned combustor was selected as the Concept III combustor because this concept departs from the dual-vortex, conventional flame-stabilization designs by establishing a large single torus in the primary zone. The single-loop film cooling around the primary zone complements the internal annulus flow created by the PZ air jets. One major feature of this design is the widening of the fuel nozzle spacing to reduce the number of fuel injectors from the sixteen used in Concepts I and II to only twelve. The fuel nozzles are of an airblast atomization type feeding a positionable premixing fuel chute. This chute allows for fuel placement into designated sections of the PZ annulus. As in Concept II the primary zone is cooled by a continuously sweeping film of cooling air which, like the Concept II design, flows upstream along the outer surface of the primary zone, inward around the dome, and finally downstream along the inner surface of the primary zone. Lamilloy transpiration cooling was utilized for all of the remaining walls of the combustor as was done in each of the other concepts.

The five modifications to the Concept III combustor were chosen to demonstrate dramatic changes for analytical and experimental verification. Therefore successive modifications to the Concept III combustor were major and not intended to progress toward an optimum design configuration.

Baseline Combustor

A dimensional sketch of the Concept III baseline combustor can be seen in Figure 45. The baseline combustor has 12 fuel injectors resulting in a 1.9 circumference/height spacing compared to a 1.4 spacing in Concepts I and II. These fuel nozzles are a combination simplex-airblast type and were the same nozzles used with the Concept I combustor. Each fuel nozzle feeds into an L-shaped premixing fuel chute which can be rotated to any 360 deg position for placing the fuel in a desired location in the PZ annulus. These chutes act as premixers and, to some degree, as prevaporizers. The Concept III baseline combustor has 24 primary air-addition holes (2 per nozzle) through the liner inner shell plus 24 primary holes (2 per nozzle) through the outer shell. Each of the holes is located 7.5 deg off the centerline of a fuel nozzle. The air enters through formed air bushings inclined to the annulus centerline to form the single torus flow pattern. There are no intermediate zone holes in this combustor concept. The dilution zone of this combustor concept is the same as for Concepts I and II. Therefore, there are 32 dilution air-addition holes through the inner shell and 32 through the outer shell giving a nonsymmetric pattern of dilution holes relative to the number of fuel nozzles. There are eight dilution holes on each shell for every three fuel nozzles making a ratio of 2.67 shell dilution holes for each fuel nozzle. All remaining air enters through the PZ film cooling slots, the fuel nozzle swirler, or the Lamilloy cooling surfaces. A summary of the air distributions for the Concept III baseline and all five of the Concept III liner mods is presented in Table V.

Table V.

ORIGINAL PAGE IS OF POOR QUALITY

Concent	TTT	aamhuatar	dealon	A 11 M M A 1917
LONCEPT	TTT	COMDUSCOR	aesign	summary.

	Concept III					
	Base	<u>Mod 1</u>	Mod 2	Mod 3	Mod 4	<u>Mod 5</u>
Axial swirler blade angle	45 deg					
Fuel nozzles						
Number nozzles Exit chute	12	12	12	12	12	12
Direction Rotation	Radial Out	Circumf CW	Circumf CCW	Radial Out	Radial Out	Radial Out
Outer shell						
Number PZ holes/nozzle Area, X	2 5.2	2 5.2	2 5.2	2 7.5	2 9.8	0
Number DZ holes/nozzle Number DZ holes/active nozzle	2.67	2.67	2.67	2.67	2.67	2.67
Inner shell						
Numbe: PZ holes/nozzle	2	2	2	2	0	2
Area, 7	4.5	4.5	4.5	2.3	0	9.8
Number 12 holes/nozzle Number DZ holes/nozzle	0 2.67	0 2.67	0 2.67	2.67	2.67	2.67
Total effective area, mm ² %	3431.0 100.00	3431.0 100.00	3431.0 100.00	3434.0 100.09	3434.2 100.09	3434.2 100.09
Lamilloy porosity, C _d	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053
Liner areas, %						
Dome swirlers	6.2	6.2	6.2	6.2	6.2	6.2
Dome cooling gaps	16.6	16.6	16.6	16.6	16.6	16.6
PZ holes total	9.7	9.7	9.7	9.7	9.7	9.7
IZ holes total	0	0	0	0	0	0
DZ holes total	39.5	39.5	39.5	39.5	39.5	39.5
Cooling total	44.5	44.5	44.5	44.5	44.5	44.5
PZ equivalence ratio at						
100% power	1.016	1.016	1.016	1.012	1.012	1.012

The Concept III baseline primary zone was also analyzed with the three-dimensional combustor model described in Section II. For each P2 configuration the 3-D model generated plots of fuel-air ratio in the primary zone at various radial planes so that the interaction of the fuel spray and the combustion air could be observed. Typical of these theoretical investigations are fuel-air plots as shown in Figures 46 through 48. Figure 46 is a prediction of the cir-umferential average fuel-air ratios for the Concept III baseline primary zone for a single nozzle centered liner sector (the fuel nozzle is centered at 15 deg) in a radial plane located 63 mm downstream of the fuel-nozzle exit. This plane corresponds to the location of the PZ gas-sampling probe used in the experimental portion of the program. For the combustor operating at the 80% power condition, the average fuel-air ratio varied from 0.025 to 0.063 in each fuel-nozzle sector. Predicted fuel-air ratios for each of the experimental probes are given in Figure 47. These curves illustrate the fuel-air ratio variation across the liner annulus at each of three circumferential positions. Figure 48 shows a fuel-air ratio map of the entire 30 deg sector surrounding each fuel nozzle. The viewing direction for this map is downstream. Figure 48 clearly shows the high concentration of the fuel near the PZ outer wall of the Concept III baseline combustor and the very low levels of fuel concentration along the nozzle centerline. A series of fuel-air contour maps at different axial planes stacked together results in the composite in Figure 48 is the plane identified as 63 mm downstream. In this type of presentation the effects of each of the air addition points on the fuel spray can all be traced as the fuel spray passes down the combustor liner.

In a similar manner the gas temperatures and the local combustion efficiencies can be traced through the combustor liner as illustrated by Figures 50 and 51.

An internal aerodynamic analysis of the liner flow fields was also performed for the first 100 mm downstream of the fuel norzle tip. Figure 52 shows a series of radial planes at 13.0, 18.8, 25.4, and 53.2 mm downstream of the liner dome. Physically these planes correspond to the flow upstream of the fuel chute exit, the flow at the leading edge of the fuel chute, the flow at the exit of the fuel chute, and the flow just upstream of the experimental probes. Figure 53 is a similar set of velocity plots but in the axial plane of the baseline liner. With the fuel nozzle located at 15 deg, a series of velocity plots is presented at circumferential locations of between the fuel nozzle and the primary holes, through the primary holes, and outside the primary holes near the edge of the sector.

Mod 1 Combustor

The first modification to the Concept III baseline combustor was to rotate the fuel chutes so that the fuel exited in a clockwise circumferential direction around the PZ annulus. There were no other changes made to the combustor. Figure 54 shows the effect of this mechanical change on the direction of the fuel exiting from the chute. In the plane of the instrumentation probes, the fuel is predicted to be quite concentrated in a region of the annulus about halfway between the fuel nozzles.

Mod 2 Combustor

The second modification to the Concept III baseline combustor was to rotate the fuel chutes so that the fuel now exited in a counterclackwise circumferential direction around the PZ annulus. There were no other changes made to the combustor. The fuel-air map in Figure 55 shows the effect of this mechanical change to the direction of the fuel exiting from the chute. In the plane of the instrumentation probes, the fuel is again predicted to be quite concentrated in a region of the annulus about halfway between the fuel nozzles.

Mod 3 Combustor

The third modification to the Concept III baseline combustor was to return the fuel chutes to the radially out position of the baseline combustor and to in-

crease by 50% the amount of air entering through the inner shell primary holes. The sector fuel-air ratio map for this modification is shown in Figure 56. Comparison of this map with the fuel-air ratio map predicted for the baseline configuration shows that there should be very little difference in these two designs. There were no discernible differences between the predicted velocity diagrams of the two designs.

Mod 4 Combustor

The fourth modification to the Concept III baseline combustor was to close off the inner shell PZ air in the mod 3 design and to add all of that air to the outer shell primary holes. The fuel chute remained in the radially outward position. The sector fuel-air ratio map for this configuration is shown in Figure 57. Comparison with the baseline and the mod 3 fuel-air maps shows only 4 minor effect of the additional outer shell PZ air on the fuel-air distribution.

Mod 5 Combustor

The fifth modification to the Concept III baseline combustor was to close off the outer shell PZ air in the mod 3 design and to add that air to the inner shell primary holes. The fuel chute remained in the radially outward position. The sector fuel-air ratio map for this configuration is shown in Figure 58. Comparison with the baseline, the mod 3, and the mod 4 configuration fuel-air maps shows that the annulus has become more fuel lean near the inner shell, where all of the primary air was added.

Design Summary

A summary of the radial-plane fuel-air ratio patterns for each of the Concept III combustors is shown in Figure 59. The 3-D model predicted major changes to the fue-air ratio distributions when the fuel chutes were rotated and the fuel entered the primary zone in different directions. As shown, the model predicts that the fuel will not mix well in the primary zone leaving a rich region near the outer shell wall (baseline, mods 3-5) or producing rich cores which may pass through the primary zone altogether. Mods 3-5 attempted to reduce the fuel-sir ratio gradient from the inner shell all to the outer shell wall by adjusting the balance between the PZ air added through the inner and outer shell walls. The intent of the Concept III combustor designs was to produce internal aerodynamic changes of sufficient magnitudes that the 3-D model results and the experimental test results could be compared to assess the prediction accuracy of the model.

Figure 2. Combustor concepts.

TE83-1310

ORIGINAL

QUALITY

Figure 3. Lamilloy cooling and fuel nozzle features.

Note: Dimensions are in millimeters

TE83-1311

Figure 4. Fuel nozzle simplex fuel atomizer details.

Figure 5. Fuel nozzle airblast swirler details.

4

Figure 6. Dimensional cross section of Concept I, baseline, combustor.

Figure 7. Predicted average primary zone fuel-air ration (Concept I, baseline--80% power).

ORIGINAL PAGE IS OF POOR QUALITY

Figure 8. Predicted radial primary zone fuel-air ratio (Concept I, baseline--80% power).

Figure 9. Predicted primary zone fuel-air ratio contours (Concept I, baseline--80% power).

and a construction

Figure 10. Predicted primary zone fuel-air contours (Concept I, baseline--100% power).

Figure 11. Predicted primary zone gas temperature contours (Concept I, baseline--100% power).

Figure 12. Predicted primary zone combustion efficiency contours (Concept I, baseline--100% power).

29

Figure 13. Concept I, baseline, radial plane velocity diagrams.

reaction reaction is a second reaction of the

Figure 14. Concept I, baseline, axial plane velocity diagrams.

Figure 15. Predicted primary zone fuel-air ratio contours (Concept I, mod 1--80% power).

ا الله الله الله الله الله الله الله ال	-		-	-+	
the second se	~	~	~	~	
4 4 4 A - A - A	>	~	×	~	
·	>	~	~	-	
->-, -> -> -> -> -> -> -> -> -> -> -> -> ->	~	_	~	-	
• • • • • • • • • • • • • •	•	•		+	
· - · · · · · · · · · · · · ·	>	~	*		
1	>	\mathbf{i}	>		
x ~~~~~~	5	>	>	7	
1 * * * * * * * * *	>	\mathbf{i}	>	+	
1 1 4 -4 -4 -4 -4 -4					

TE83-1323

Figure 16. Concept I, mod 1, combustor internal axial velocities prediction (in plane of fuel injector).

Figure 17. Predicted average primary zone fuel-air ratio (Concept I, mod 2--80% power).

Figure 18. Predicted primary zone fuel-air ratio contours (Concept I, mod 2--80% power).

TE83-1326

Figure 19. Concept I, mod 2, combustor primary zone internal radial velocities prediction.

Figure 20. Predicted average primary zone fuel-air ratio (Concept I, mod 3--80% power).

Figure 21. Predicted primary zone fuel-air ratio contours (Concept I, mod 3--80% power).

Figure 22. Concept I, mod 3, combustor primary zone internal radial velocities prediction.

Figure 23. Predicted average primary zone fuel-air ratio (Concept I, mod 4--80% power).

Figure 24. Predicted primary zone fuel-air ratio contours (Concept I, mod 4--80% power).

Figure 25. Concept I, mod 4, combustor primary zone internal radial velocities prediction.

Figure 26. Comparison of Concept I fuel-air ratio contours for the baseline and five design mods.

Figure 27. Dimensional cross section of Concept II, baseline, combustor.

Figure 28. Predicted average primary zone fuel-air ratio (Concept II, baseline--80% power).

ORIGINAL PAGE IS OF POOR QUALITY

Figure 29. Predicted primary zone fuel-air ratio (Concept II, baseline--80% power).

Figure 30. Predicted primary zone fuel-air ratio contours (Concept II, baseline--80% power).

Figure 31. Predicted primary zone fuel-air ratio contours (Concept II, baseline--80% power).

Figure 33. Predicted primary zone combustion efficiency contours (Concept II, baseline--80% power).

ORIGINAL

PAGE IS

Figure 34. Concept II, baseline, combustor--radial plane velocity diagrams.

Figure 35. Concept II, baseline, combustor--axial plane velocity diagrams.

a di Cinene

 A second sec second sec

Figure 37. Predicted primary zone fuel-air ratio contours (Concept II, mod 1--80% power).

Figure 38. Predicted average primary zone fuel-air ratio (Concept II, mod 2--80% power).

Figure 39. Predicted primary zone fuel-air ratio contours (Concept II, mod 2--80% power).

Figure 01. Predicted primary zone fuel-air ratio contours Concept II, mod 3--80% power).

1 ÷

Figure 42. Predicted average primary zone fuel-air ratio (Concept II, mod 4--idle power).

Figure 43. Predicted primary zone fuel-air ratio contours (Concept II, mod 4--idle power).

Figure 44. Comparison of Concept II fuel-air ratio contours for the baseline and four design mods.

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

Figure 47. Predicted radial primary zone fuel-air ratio (Concept III, baseline--80% power).

Figure 48. Predicted primary zone fuel-air ratio contours (Concept III, baseline--80% power).

- -----

Figure 49. Predicted primary zone fuel-air ratio contours (Concept III, baseline--80% power).

A CONTRACTOR ME

Figure 51. Predicted primary zone combustion efficiency contours (Concept III, baseline--80% power).

Figure 52. Concept III, baseline, radial plane velocity diagrams.

Figure 53. Concept III, baseline, axial plane velocity diagrams.

Figure 55. Predicted primary zone fuel-air ratio contours (Concept III, mod 2--80% power).

Figure 56. Predicted primary zone fuel-air ratio contours (Concept III, mod 3--80% power).

Figure 57. Predicted primary zone fuel-air ratio contours (Concept III, mod 4--80% power).

Figure 58. Predicted primary zone fuel-air ratio contours (Concept III, mod 5--80% power).

-

COMBUSTOR TEST RIG

The CMA500 component test rig was utilized for the performance testing of these small annular gas turbine primary zones. This rig shown in Figure 60* features a rotating temperature and gas sampling probe.

A cross section of the combustor rig is shown in Figure 61. The engine flow path is simulated from the compressor diffuser to the inlet of the gasifier turbine. All parts surrounding the combustor are actual engine hardware. The primary zone sections have provision for attachment to a flanged dilution zone and a reverse-flow annular transition section, permitting test evaluations of complete combustors.

Detailed instrumentation provides overall performance measurements at the exit of the combustor, and gas sampling probes are used for determining conditions in the primary zone.

In the exit plane of the combustor, the instrumentation consists of temperature rakes and pressure and gas sampling probes as shown in Figure 62. A good survey of overall combustion performance is provided since the instrumentation is capable of traversing through the entire 360 deg annulus. Probes and rakes also survey radial positions, four depths for each of two thermocouple arms, three depths for the gas sampling probe, and four depths for the pressure measurement.

Primary zone gas sampling is conducted with three or four water-cooled probes circumferentially located at fferent positions relative to the fuel nozzle in order to provide representative samples. Figure 63 shows the relative position of the PZ gas-sampling probes when testing both the 12 and 16 fuel nozzle systems. The water-cooled primary zone probes are located immediately upstream of the dilution holes. A photograph of the probe is shown in Figure 64 with a cross section in Figure 65.

GAS ANALYSIS SYSTEM

The NASA PZ gas analysis system consisted of PZ sample probes, a rotating exhsust probe, stainless-steel heated sample lines and sample manifold, a gas analyzer train, and a smoke sampling system. The four sample probes were inserted into the primary zone of each combustor in separate planes arranged so as to provide good coverage in the circumferential direction relative to fuel nozzle location. Concepts I and II used 16 fuel nozzles while Concept III used only 12 nozzles. The fourth probe (No. 4, Figure 63) was added soon after the start of work on Concept III to provide data on the nozzle centerline of Concept III. Table VI is a listing of the number of primary zone probes surveyed for each of the test conditions.

*The figures for this section appear at the end of the section.

	•	Table VI.		
Primary zone	probes us	ed in eac	ch test	configuration.

	Concept I	Concept II	Concept III
Baseline	3	3	3
Mod 1	3	3	3
Mod 2	3	3	4
Mod 3	3	4	1.
Mod 4	4	4	4
Mod 5	4	4	4

A tube was routed from each port to separate fittings on the external support plate of the probe. Four heated sample lines carried the samples from each port to four solenoid values that were manifolded at their exits. The values for each probe could be actuated singly to obtain a port sample or simultaneously for a rake sample. The PZ rakes were water cooled.

The exhaust sample probe was also water cooled and consisted of a 6 mm (0.25 in.), stainless-steel, multihole tube mounted so that it could rotate to any circumferential location in the exhaust stream. The exhaust sample line was also heated and brought the sample gas from the exhaust probe to a solenoid valve whose exit formed part of the sample manifold. Thus with four PZ sample probes of four ports each and the exhaust sample, the completed sample array was able to deliver 17 separate samples.

The resultant sample manifold had a static-pressure tap, reverse purge capability, and two sample-line exits. The static-pressure tap was used to monitor the sample-line pressure. Reverse purging of the separate sample lines was performed frequently to ensure adaquate sample flow. The purge system was simply a nitrogen tank with a high-pressure regulator connected to the sample manifold through a length of high-pressure hose. The nitrogen tank was located in the control room so that it could be used without having to go into the test cell during the run.

Of the two, heated, 6 mm sample lines, one led to the gas analyzer train in the test cell. A schematic of the analyzer train is given in Figure 66. Measured species were carbon monoxide (CO), carbon dioxide (CO₂), oxygen (O₂), unburned hydrocarbons (UHC), and total oxides of nitrogen (NO_X). Although not shown, inlet water vapor was measured and used in the chemistry calculations. Analyzer outputs were read directly by the data acquisition system.

Data acquisition consisted of a performance run and two types of gas-analysis sampling. Each data run required one reading, each with its cwn reading number. To take each type of data, the exhaust probe actuator was preset to stop a certain number of times around the combustor annulus; then data were taken when the probe was at rest and steady state was achieved. Once the reading was begun, the probe could be stopped at any of its preset increments and remain at the position for as long as needed. In automatic mode the probe would reach a position, take the required data, and immediately continue on to the next position. Continuous on-line rig conditions were also monitored. To take a performance-run reading, the probe actuator was set to pause at 10 deg steps. Temperature, pressure, and flow conditions were taken and then the probe continued to the next position. This process repeated until all 36 data points were taken, in which case the probe automatically returned in the reverse rotation to its starting position. All computed data were printed on the line printer. Raw data could be stored on floppy disk and cassette tapes if desired and were controlled by proper input commands during prog am initialization.

The second type of data taken was either one of the gas-analysis reading, which, at the option of the operator, could be either an exhaust survey r a PZ-rake survey. Usually the exhaust sample was taken first and then the four PZ-rake surveys were taken beginning with rake number one. The same sequence of steps was taken for probe actuation except that the probe was stopped after each reading to allow the manual input of the analyzer ranges from the keyboard console. Also the probe stopped at each 45 deg step giving eight samples per exhaust survey. An average exhaust reading was calculated and these values were used in the fuel-air ratio and efficiency computations. To take the chemistry samples, the analyzers were zero checked with an inert purge gas flowing through them. These were zeroed on the concentration range on which the sample would be read to give maximum but less than full-scale voltage output for each species. The analyzers were then switched to sample mode and the exhaust solenoid valve switched on. At each sample stop of the probe, a settling time of at least 90 sec was required to allow steady flow to all analyzers. Smoke measurements were taken at 0 and 180 deg of probe travel after the completion of the exhaust survey. The smoke procedure is described later. A typical exhaust survey printout is given in Table VII.

For the primary zone probe chemistry survey, the probe was set to stop in 90deg steps for four performance data readings and gas samples. At the first stop; port one chemistry was sampled; then port two at 180 deg; and so on. An example of the PZ chemistry printout is shown in Table VIII. A smoke sample was taken after the on-line reading by actuating all four solenoid valves of the probe being sampled.

The smoke sample reached the sampling system through the second 6 mm heated line that exited the sample manifold from the side opposite the chemistry line. To take either an exhaust or a manifolded PZ smoke sample, the gas analyzers are taken off sample and the appropriate solenoid valves opened to the smoke analyzer. Four samples of different volumes of gas are withdrawn and measured for a smoke number according to the SAE ARP 1179A procedure (Ref 3). See Figure 67 for a schematic of the smoke sample system. Table VII. Exhaust gas sample survey. ORIGINAL PACE IS OF POOR QUALITY

DETROIT DIESEL ALLISON DIVISION COMBUSTION RESEARCH LABORATORY - ROOM 8137 NASA PRIMARY ZONE STUDY - COMBUSTOR RIG EXPERIMENTAL RESULTS RIG BUILDUP 14 TEST SERIES -A TEST DATE: 04/03/82

NASA PRIMARY ZONE STUDY--CONCEPT III, MOD. 2 FUEL TUBES ROTATED TO TANGENT POSITION--CCW LOOKING AT DOME FROM FRONT.

************* EXPER	IMENTAL BURNER	OPERATING CONDITIONS **	*****
BURNER AIR FLOW	4.587 LB/SEC	BURNER INLET TEMP	625. DEG F
BURNER INLET PRESSURE	131.4 PSIA	BURNER OUTLET TEMP	1923. DEG F
FLOW FACTOR - F1	1.1499	AVG TEMPERATURE RISE	1297. DEG F
BOT T-MAX/T-AVG	1.2191	PATTERN FACTOR	.3247
BOT HOT SPOT (#30 90)	2344.	SKIN HOT SPOT,#,10	1490. DEG F
BURNER SYSTEM DELTA-P	10.85 "HG	BURNER SYSTEM LOSS	4.06 % DP/P
OUTER CASE DELTA-P	3.71 "HG	OUTER CASE LOSS	1.39 % DP/P
BURNER PRIMARY ZONE DP	02 "HG	PRIMARY ZONE LOSS	01 % DP/P
OVERALL F/A RATIO	. 01957	FUEL FLOW RATE	323.2 LB/HR
FUEL INLET TEMP	73. DEG F	FUEL INLET PRESSURE	511.9 PSIA
FUEL F/M TEMP	76, DEF F	FUEL F/M PRESSURE	798.8 PSIA
CALCULATED ACD VALUE	5.199	FUEL NOZZLE FLOW NO.	16.45
******	****	*****	*****

EXHAUST DUCT CHEMISTRY RESULTS FROM THE ROTATING PROBE

PROBE	02	C02	H20	Cū	снх	CL NOX	ND NO	ND N02	
ANGLE	%	%	GR/LB	PPM	PPM	PPM	PPM	PPM	
225	13.9	5.15	6.3	39.3	1.3	137.7	148.4	. 1	
270	14.5	4.55	6.3	31.0	. 9	128.5	139.4	. 1	
315	14.4	4.61	6.2	34.6	.8	121.2	134.7	. 1	
360	15.3	3.92	6.2	41.2	.8	110.8	120.8	. 1	
45	14.6	4.38	6.2	51.7	. 8	107.4	122.7	. 1	
90	12.0	6.10	6.2	59.8	1.0	160.0	172.7	. 1	
135	14.6	4.47	6.2	36.7	. 6	117.7	132.5	. 1	
180	14.2	4.77	6.3	29.9	. 6	124.2	142.4	. 1	
AVERAGE :	14.2	4.74	6.2	40.5	. 8	125.9	139.2	. 1	
EMISSION	S INDEX	- GM/K	G FUEL:	1.73	. 06	8.80	9.26	. 0 :	
*******	*****	******	******	*******	******	*******	******	********	****
		AVERAGE	OF CHEMI	STRY CALC	JLATION	5 FOR EACI	1 SAMPLE		
		UVERP	ALL FUEL/A	IR RATIU		.01957 ME	IERED		
		CALCI	LATED FUE	LZAIR RAI.	10 =	.02328 W/0	J U2		
					x	.02258 WI	IN U2		
		COMBL	ISTION EFF	ICIENCY	=	99.91 %			
		CALCU	LATED 02		=	13.55 %			
		SAMPL	E MOLECUL	AR WEIGHT	*	28.93			
		SAMPL	E MOLE SU	IM	=	1.01049			
		FZA R	ATIO DEVI	ATION	*	18,93 % (J/O 02		
					=	15.36 % 1	VITH 02		
Table VIII. ORIGINAL PAGE CONTRACT OF POOR QUALITY

DETROIT DIESEL ALLISON DIVISION COMBUSTION RESEARCH LABORATORY - ROOM 810 NASA PRIMARY ZONE STUDY - COMBUSTOR RIG EXPERIMENTAL RESULTS RIG BUILDUP 14 TEST SERIES -A TEST DATE: 04/03/82

NASA PRIMARY ZONE STUDY--CONCEPT III, MOD. 2 FUEL TUBES ROTATED TO TANGENT POSITION--CCW LOOKING AT DOME FROM FRONT.

***** EXP	ERIMENTAL BURNER	OPERATING CONDITIONS	******
BURNER AIR FLOW	4.573 LB/SEC	BURNER INLET TEMP	610. DEG F
BURNER INLET PRESSUR	E 130.8 PSIA	BURNER OUTLET TEMP	1954. DEG F
FLOW FACTOR - F1	1.1433	AVG TEMPERATURE RISE	E 1344. DEG F
BOT T-MAX/T-AVG	1.1944	PATTERN FACTOR	.2826
BOT HOT SPOT (#30 90) 2334.	SKIN HOT SPCT,#,10	1476. DEG F
BURNER SYSTEM DELTA-	P 10.88 "HG	BURNER SYSTEM LOSS	4.09 % DP/P
OUTER CASE DELTA-	P 3.65 "HG	OUTER CASE LOSS	1.37 % DP/F
BURNER PRIMARY ZONE	DP03 "HG	PRIMARY ZONE LOSS	01 % DP/P
OVERALL F/A RATIO	.01965	FUEL FLOW RATE	323.4 LB/HR
FUEL INLET TEMP	78. DEG F	FUEL INLET PRESSURE	514.4 PSIA
FUEL F/M TEMP	81. DEF F	FUEL F/M PRESSURE	837.2 PSIA
CALCULATED ACD VALUE	5,151	FUEL NOZZLE FLOW NO.	16.40
******	******	******	*****

PRIMARY ZONE CHEMISTRY RESULTS FROM RAKE NO. 1, SEQUENTIAL PORT SAMPLING

PORT NUMBER	02 %	CO2 %	H20 GR/LB	CO PPM	CHX PPM	CL NOX PPM	ND NO PPM	ND NO2 PPM
1	7.7	9.04	6.7	2332.5	54.3	190.4	180.0	. 1
2	7.9	8.97	6.7	490.1	2.0	225.9	208.1	. 1
3	10.2	7.48	6.7	319.8	. 9	173.0	174.9	. 1
4	13.8	4.95	6.7	115.9	1.3	101.2	113.9	. 1
AVERAGE :	9.9	7.61	6,7	814.6	14.6	172.6	184.2	. 1
EMISSIONS	INDEX	- GM/KG	FUEL:	21.39	.60	7.44	7.33	. 00

CHEMISTRY CALCULATIONS FOR EACH PORT

RAKE NO. 1 PORT NO.:	1	2	3	4	AVERAGE
CALCULATED F/A RATIO W/0 02:	. 04669	.04520	.03735	.02436	. 03832
CALCULATED F/A RATIO WITH 02:	.04386	.04267	.03544	. 02367	.03644
COMBUSTION EFFICIENCY - X:	98,63	99,70	99.76	99,85	99,42
CALCULATED 02 - %:	6.38	6.73	9.13	13.21	8,86
SAMPLE MOLECULAR WEIGHTS:	28,88	28,91	28.92	28.93	28.91
SAMPLE MOLE SUM:	1.010	1.010	1.010	1.011	1.010

Figure 60. Combustor rig with rotating probe.

Figure 61. Reverse-flow combustor test rig.

Figure 63. Primary zone probe locations.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 64. Photograph of primary zone gas sampling probe.

Figure 65. Primary zone gas sampling probe.

Figure 66. Emission instrument system arrangement (EPA aircraft system).

Figure 67. Smoke sampling system schematic.

VI. EXPERIMENTAL AND THEORETICAL RESULTS

This section describes the component test conditions and procedures, test results, and PZ performance predictions. The test plan was structured coprovide a systematic test investigation of three distinctive primary zone concepts and the modifications necessary to correlate test results with analytical performance predictions. The test evaluation extended over a typical range of engine operating conditions and included the following performance data: outlet gastemperature profile, pressure drop, combustion efficiency, exhaust and PZ emissions (CO, UHC, NO_x, and smoke), metal temperature indications (thermocouple or thermal paint), and blow-out limits. All testing was conducted using JP-4 fuel.

TEST CONDITIONS

The design conditions used in the evaluation tests of these primary zones and modifications are representative of the design point and part load points associated with this size combustor. The range of operating conditions tested is shown in Table IX. In addition to these conditions, other test conditions were evaluated to explore the effects of loading.

Table IX. Combustor operating conditions.									
Power (%)	Airflow (kg/s)	T _{in} (K)	T _{out} (K)	P _{in} (MPa)	<u> </u>				
100	2.27	672	1367	1.01	0.0196				
8 0	2.09	594	1294	0.90	0.0195				
50	1.68	556	1144	0.69	0.0158				
Idle	1.04	456	867	0.38	0.0104				
100 alt*	1.18	639	1367	0.54	0.0204				

*This altitude condition is simulated at 6096 m elevation.

The test evaluation of the three primary-zone concepts and five modifications each required a total of 108.5 burning hours. This test time was divided among the three concepts as follows: Concept I--47.5 hr, Concept II--36.5 hr, and Concept III--24.5 hr. This testing can be categorized as follows:

- o stability limits
- o performance and emissions
- o metal temperature determination

STABILITY LIMITS

This testing consisted of evaluating each combustor configuration's ability to sustain combustion at low fuel flows at the various test operating conditions. With the combustor airflow, inlet temperature, and inlet pressure maintained and the desired test condition and flame stabilized, the following procedure was used: Fuel flow was reduced in discrete steps until flame-out occurred and the flame did not respond to increased fuel flow.

PERFORMANCE AND EMISSIONS

Performance and emission tests consisted of measuring parameters at both the exhaust station and the PZ sampling station. The following parameters were determined at the steady-state operating conditions listed in Table IX:

- o emissions of unburned hydrocarbons, carbon monoxide, carbon dioxide, oxygen, oxides of nitrogen, and smoke
- o pressure loss
- o combustor outlet gas-temperature profile

The instrumentation and data acquisition/reduction system is automated such that these data were obtained in a minimal time period after test conditions stabilized. The description of this instrumentation is covered in Section V and the data acquisition system is covered in Appendix A.

METAL TEMPERATURE DETERMINATION

Test evaluation of the adequacy of the Lamilloy wall cooling and film-cooled combustor walls was determined by both temperature-sensitive paint and thermocouples attached to the outer wall. Type TP-5 paint was applied to each baseline configuration by spraying both internal and external surfaces of the combustor. When applied, this paint has a purple color. After the combustor is run the paint changes to various shades as a function of surface temperature. The colors for various temperature ranges for TP-5 paint are listed in Table X.

Std. ref	Temperature (K)
-	Below /93
N	793-1133
Т	1133-1233
Р	1233-1262
G	1262-1293
М	1293-1323
Y	1323-1344
R	Above 1344
	Std. ref <u>code</u> N T P G M Y R

Table X. TP-5 paint temperature ranges.

To obtain a good thermal paint evaluation, ignition is achieved after combustor inlet conditions (100% power) are attained. Fuel flow is maintained at the design value for 10-15 min to thermally "set" the paint.

CONCEPT I BASELINE EXPERIMENTAL RESULTS

The Concept I combustor has a conventional, swirl-stabilized, double-vortex primary zone. Figure 68* is a photograph of Concept I. The Concept I baseline test scope consisted of thermal paint evaluation at the 100% power condition,

^{*}The figures for this section appear at the end of the section.

combustor exhaust data at all power conditions, and primary zone emission data at idle and 100% power conditions. Also a cold-flow pressure-loss performance was obtained. Table XI presents the measured data for Concept I baseline. Figure 69 presents the wall temperature and thermal paint results. The photos, taken after a run at 100% power conditions, indicate that the maximum Lamilloy wall temperatures occurred in the range of 1133-1233 K on the outside surface of the liner and 1262-1283 K on the inside surface. In addition to the thermal paint temperature evaluation, eighteen C-A thermocouples were attached to the liner outer surface and monitored during all tests. Combustor durability experience has previously been based on thermocouple measurements, the placement of which was intended to read the high metal temperature regions on the combustor liner. During the thermal paint test, the highest metal temperature read by the thermocouples was 954 K. The design goal on this measurement basis was 1144 K.

The overall combustor performance, consisting of combustor outlet pattern, pressure loss, and exhaust smoke, is presented in Figure 70. The circumferential pattern factor of 0.128 at 100% power condition is a good uniform pattern. Exhaust smoke (SAE smoke number) was far below the visible limit. Exhaust emission data and efficiency are shown in Figure 71.

Primary zone emissions data were obtained at idle and 100% power test conditions utilizing the three fixed-position probes. The following constituents were measured: O_2 , CO_2 , H_2O , CO UHC, NO_x , NO_2 , and smoke. Figure 72 presents the primary zone fuel-air ratio, efficiency, and smoke data vs power condition. Figure 73 presents the 100% power data in a sector interpretation. The fuel nozzle is located at the 11.25 deg position.

CONCEPT I BASELINE COMBUSTOR PZ PERFORMANCE ANALYTICAL PREDICTION/TEST DATA COMPARISON

Analytical predictions of the primary zone performance were developed utilizing the 3-D model described in Section III. These predicted values are compared to the measured values obtained from the primary zone gas-sampling probes during the combustor tests. Both the analytical prediction and the test data values will be compared on the same figures for fuel-air ratio, oxides of nitrogen, carbon monoxide, carbon dioxide, and unburned hydrocarbons. The fuelair ratio distribution in the plane of primary zone sampling probes are considered to be the most meaningful from a model verification standpoint. Figure 74 presents the comparison of the predicted and measured fuel-air ratio values for idle-power condition. As can be seen from these data, the probes have four elements each. Considering that each of these probes is located in a different sector of the PZ annulus and influenced by separate fuel nozzles, the similarity of the analytical and measured data is quite good.

CONCEPT I MODIFICATIONS AND EXPERIMENTAL RESULTS

In order to explore the capability of the primary zone analytical-prediction model and compare with actual test results, five primary zone modifications were analytically modeled and rig tested. These five modifications consisted of the following:

Mod 1: Axial swirlers in the prechamber changed from 45 deg to 30 deg (29.6% reduction in swirler area)

- Mod 2: Mod 1 with primary holes relocated closer to fuel nozzle centerline (from 5.6 deg to 1.9 deg)
- Mod 3: Mod 1 with double the number of primary holes and double the hole area (8 holes per fuel nozzle)
- Mod 4: Mod 1 with 8 primary holes/nozzle but diameters reduced to equal baseline hole area
- Mod 5: Mod 1 with new higher flow Lamilloy (7.5% increase) in combustor primary zone walls

Table XII presents a summary of the measured data for Concept I, mods 1 through 5.

The highlights of this summary are as follows:

- o Mod 1, with the 30 deg swirlers, had little effect upon PZ or exhaust performance. There was a measured reduction in PZ smoke from an SAE smoke number of 55 to 32
- o Mod 2, with the close PZ hole spacing, increased exhaust pattern factor and PZ smoke, decreased PZ efficiency, increased PZ fuel-air ratio, and increased carbon monoxide
- o Mod 3, with twice as many primary holes (and a corresponding increase in primary area), had a 9.5% reduction in measured PZ fuel-air ratio and decreased PZ smoke and carbon monoxide
- o Mod 4, with twice the number of primary holes and no change in total primery zone hole area, had an increase in measured PZ fuel-air ratio and NO_v and a reduction in PZ smoke and carbon monoxide

CONCEPT I COMBUSTOR MODIFICATIONS PZ PERFORMANCE ANALYTICAL PREDICTION/TEST DATA COMPARISON

The analytical predictions of the primary zone performance were used in determining the primary zone modifications that were fabricated and tested. It is therefore important to compare these predicted values with the primary zone test results. This comparison is restricted to fuel-air ratio values in the axial plane of the primary zone gas-sampling probes and mainly at the 80% power condition. The bases for making this comparison are overall average value and sector presentation of fuel-air isopleth.

The overall average value of the analytically predicted fuel-air ratio at the PZ probe location is compared to the measured average value (based on 3 or 4 probes) in Table XIII. Considering the limited instrumentation and the stage of development of the analytical model, these values are in reasonable agreement. Measured data for mod 5 were considered to be inaccurate and are not included in this table.

Figure 75 presents a contour plot comparison of the fuel-air ratios of the analytically predicted and measured values. There is considerable similarity for most of the configurations evaluated. Modifications 4 and 5 were tested

Reading	Condition	Measurement	Pressure drop, X	Hot <u>skin, K</u>	Avg <u>skin, K</u>	Pattern factor	Smoke, SAE No.	Lean	Fuel-air blowout	r
91	Idle	Exhaust chemistry	4.49	744	587					
92	Idle	PZ sequential rake 1	4.49	753	591					
95	Idle	PZ sequential rake 2	4.43	747	596					
96	Idle	PZ sequential rake 3	4.43	748	597					
97	Idle	FZ manifold rake 1	4.58	742	594		7			
98	Idle	PZ manifold rake 2	4.56	759	597		0			
99	Idle	PZ manifold rake 3	4.59	757	594		0			
100	Idle	PZ manifold rake 3	4.52	756	598					
101	Idle	Exhaust chemistry	4.54	769	599					
102	Idle	No chemistry	4.49	789	604	0.155				
103	100%	Exhaust chemistry	3.75	1016	859		0			
104	100%	No chemistry	3.74	999	858					
105	100%	PZ manifold rake l	3.69	7014	861		92			
106	100%	PZ manifold rake 2	3.74	999	857		36			
107	100%	PZ manifold rake 3	3.73	998	858		36			
108	Alt	Exhaust chemistry	3.69	1078	876					
109	Alt	No chemistry	3.67	1683	879	0.187				
110	80%	Exhaust chemistry	3.60	933	778		5			
111	80%	No chemistry	3.55	941	782	0.150				
112	50%	Exhaust chemistry	3.85	854	711		0			
113	50%	No chemistry	3.82	851	717	0.178				
114	100%	No chemistry	3.60	954	887	0.162				
115	100%	No chemistry	3.60	945	881	0.156				

.

ORIGINAL PAGE IS OF POOR QUALITY

NAMES OF TAXABLE AND A DESCRIPTION OF TAXABLE AND A DESCRIPTION OF TAXABLE AND A DESCRIPTION OF TAXABLE AND A D

		Table	XI.		
Concept	Ι,	base ine,	test	data	summary.

and a second

.

•

and the second second

Avg	9 Pattern Smoke,		Fuel-air	ratio	CO2,	0 ₂ , Efficiency,	Emission indices			
<u>skin</u> ,	K factor	SAE NO.	Lean	blowout	Chemical	<u>×</u>	<u> </u>	<u>c0</u>	<u>CH</u> ,	NOX
587					0.0108	2.19	98.76	36.1	4.2	1.1
591					0.0226	4.53	99.00	40.8	0.5	4.0
596					0.0121	2.44	98.88	38.2	2.5	1.1
597					0.0200	4.08	99.68	12.2	0.3	2.7
594		7			0.0233	4.62	98.60	59.2	0.3	2.9
597		Ó			0.0120	2.40	98.21	57.8	4.9	0.5
594		õ			0.0177	3.61	99.57	17.1	0.3	2.3
598		v			0.0184	3.76	99.66	13.7	0.1	2.5
500					0.0103	2.10	98.90	35.4	2.9	1.5
604	0 155				0.0105	2010	20120	0014		
859	0.133	0			C.0222	4.54	99.91	1.1	0.0	11.9
858		-								
861		92			0.0436	8.07	96.05	120.6	12.3	6.8
857		36			0.0202	4 . 12	99.77	8.0	0.1	8.2
858		36			0.0399	7.93	99.51	19.1	0.1	9.2
876					0.0232	4.73	99.92	1.4	0.0	8.1
879	0,187									
778	•••••	5			0.0211	4.30	99.91	1.5	0.1	9.8
782	0.150	•					••••			
711		0			0.0163	3.34	99.89	3.2	0.0	6.4
717	0.178									
887	0.162									
881	0.156									

CRIGINAL PAGE IS OF POOR QUALITY

2 EOLDOUT FRAME

Concept I,

						Concept	1, Mod 1		
Reading	Condition	Measurement	Pressure drop, %	Hot <u>skin, K</u>	Avg <u>skin, K</u>	Pattern <u>factor</u>	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout	rat <u>C</u>
165	Idle	No chemistry	4.51	729	5 9 6	0.191		0.0032	
166	Idle	Exhaust chemistry	4.38	718	606				(
167	Idle	PZ sequential rake 1	4.38	716	605		0		0
168	Idle	PZ sequential rake 2	4.57	719	601		0		0
169	Idle	PZ sequential rake 3	4.21	727	5 94		0		0
170	80%	No chemistry	3.55	870	736	0.147		0.0018	
171	80%	Exhaust chemistry	3.64	874	740		0		0
172	80%	PZ sequential rake 1	3.49	892	744		77		(
173	80%	PZ sequential rake 2	3.49	860	736		24		0
174	80%	PZ sequential rake 3	3.55	855	738		82		(
175	100%	No chemistry	3.49	956	846	0.133			
176	100%	PZ sequential rake 1	3.53	970	848		56		C
177	100%	PZ sequential rake 2	3.44	972	854		16		Ċ
178	100%	PZ sequential rake 3	3.43	995	852		23		C
						Concept	1, Mod 2	•	
			D	11- 4	b	.	C	5]	

			rressure	HOT	AVG	Pattern	этоке,	ruel-air	rat
Reading	<u>Condition</u>	Measurement	drop, %	<u>skin, K</u>	<u>skin, K</u>	factor	SAE No.	Lean blowout	Ch
189	Idle	No chemistry	4.15	721	611	0.128		0.0040	
191	Idle	Exhaust chemistry	4.06	704	597		0		0
192	Idle	PZ sequential rake 1	4.09	704	592		0		0
193	Idle	PZ sequential rake 2	4.09	700	591		0		0
194	Idle	PZ sequential rake 3	4.10	680	586		0		0
195	80%	No chemistry	3.56	908	791	0.174			
196	80%	Exhaust chemistry	3.54	904	791		0		0
197	80%	PZ sequential rake 1	3.57	899	791		51		0
198	80%	PZ sequential rake 2	3.46	897	780		100		0
199	80%	PZ sequentia? rake 3	3.57	923	774		91		0
201	100%	No chemistry	3.63	959	872	0.200			
202	100%	Exhaust chemistry	3.60	956	868		16		C
203	80%	No chemistry	3.57	928	808	0.193			
205	80%	PZ sequential rake 1	3.45	891	791		70		C
206	80%	PZ sequential rake 2	3.44	912	783		93		C
207	80%	PZ sequential rake 2	3.57	922	784		85	0.0020	C

ORIGINAL PAGE IS OF POOR QUALITY

Table XII.Concept I, mods 1-5, test data summary.

Concept 1, Mod 1

Avg Pattern		Smoke, Fuel-air		ratio	CO ₂ ,	Efficiency,	Emission indices			
skin,	<u>K</u> <u>f</u>	actor	SAE No.	Lean blowout	Chemical	<u>%</u>	%	<u>co</u>	CHX	NOX
596	(0.191		0.0032						
606					0.0108	2.21	99.26	25.6	1.5	3.2
605			0		0.0189	3.81	99.23	29.5	0.9	2.3
601			0		0.0156	3.09	98.08	57.1	6.3	1.3
594			0		0.0222	4.51	99.76	8.7	0.3	3.6
736	(0.147		0.0018						
740			0		0.0216	4.42	99.91	1.7	0.1	8.4
744			77		0.0403	7.81	98.40	61.3	1.7	6.9
736			24		0.0287	5.81	99.82	5.8	0.1	5.6
738			82		0.0526	9.99	98.10	79.5	0.5	7.7
846	i	0.133								
848			56		0.0355	7.03	99.18	30.0	0.9	9.3
854			16		0,0299	6.04	99.71	9.7	0.2	9.6
852			23		0.0457	9 🤃	99.46	20.5	0.1	11.2

Concept 1, Mod 2

Avg Pattern Smoke,		<u>Fuel-air ratio</u>		CO2,	Efficiency,	Emission indices			
<mark>skin,</mark> K	factor	SAE No.	Lean blowout	Chemical	<u>%</u>	%	CO	CHX	NOX
611	0.128		0.0040						
597	-	0		0.0116	2.36	99.01	30.5	3.0	2.6
592		0		0.0167	3,36	98.95	34.1	2.3	2.6
591		0		0.0136	2.73	98.58	38.9	5.4	2.4
586		0		0.0257	5.15	99.34	24.3	1.0	3.0
791	0.174								
791		0		0.0228	4.65	99.92	1.4	0.0	8.1
791		51		0.0484	9.36	98.74	51.4	0.5	7.1
780		100		0.0470	7.70	87.31	167.0	93.6	5.0
774		91		0.0508	9.40	96.74	122.9	4.4	6.9
872	0.200								
868		16		0.0239	4.87	99.91	0.9	0.1	13.0
808	0.193								
791		70		0.0484	9.16	97.78	90.9	1.0	10.3
783		93		0.0423	7.21	89.82	158.9	63.9	6.7
784		85	0.0020	0.0609	11.01	96.31	150.9	2.0	8.7

ORIGINAL PAGE IS OF POOR QUALITY

						Concept	1, Mod 3	3
<u>Reading</u>	<u>Condition</u>	Measurement	Pressure drop, %	Hot <u>skin, K</u>	Avg skin, K	Pattern <u>factor</u>	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout
214 215 216 217	80% 80% 80% 80%	No chemistry Exhaust chemistry PZ sequential rake 1 PZ sequential rake 2	3.23 3.45 3.34 3.29			0.199	12 48 12	0.0012
218 219	80% 100%	PZ sequential rake 3 No chemistry	3.42 3.37			0.243	37	0.0016
						<u>Concept</u>	1, Mod 4	1
<u>Reading</u>	<u>Condition</u>	Measurement	Pressure drop , %	Hot <u>skin, K</u>	Avg skin, K	Pattern <u>factor</u>	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout
236 237 238 239 240 241 242	80% 80% 80% 80% 80%	No chemistry Exhaust chemistry PZ sequential rake 1 PZ sequential rake 2 PZ sequential rake 3 PZ sequential rake 4 No chemistry	3.59 3.64 3.52 3.44 3.60 3.54 3.79			0.154	4 36 8 23 25 0	0.0015
						Concept	1, Mod 5	5
Reading	<u>Condition</u>	Measurement	Pressure drop, %	Hot <u>skin, K</u>	≓vg <u>skin, K</u>	Pattern factor	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout
286 287 288 289 290 291 292 293	80% 80% 80% 80% 80% 80% 100%	No chemistry Exhaust chemistry PZ sequential rake 1 PZ sequential rake 2 PZ sequential rake 3 PZ sequential rake 4 No chemistry No chemistry	4.19 4.30 4.25 4.27 4.24 4.23 5.73 4.14			0.215 0.214 0.168	11 45 28 27 14 5 5	0.0020

•

OF POOR QUALITY

• . . .

Line All richard

ورز فالتخافين ورافته	Concept	: 1, Mod 3	1						
K	Avg Pattern <u>skin, K</u> factor	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout	ratio Chemical	^{CO} 2,	Efficiency,	<u>Emissi CO</u>	<u>on ind</u> <u>CH</u> x	<u>ices</u> <u>NO</u> x
taning the party of the state o	0.199	12 48 12	0.0012	0.0214 0.0326 0.0293	4.38 6.54 6.03	99.94 99.65 99.93	0.9 13.4 1.4	0.0 0.1 0.0	9.9 7.4 7.4
u da la mais de la mais de la de	0.243	37	0.0016	0.0487	9.38	98.55	60.0	0.5	8.5
والمراجع والمراجع	Concept	t 1, Mod 4	1						
K	Avg Pattern <u>skin, K</u> factor	Smoke. SAE NO.	<u>Fuel-air</u> Lean blowout	<u>ratio</u> <u>Chemical</u>	^{CO} 2, <u>%</u>	Efficiency,	<u>Emissi CO</u>	<u>on ind</u> <u>CH</u> x	<u>ices</u> <u>NO</u> *
	0.154	_	0.0015				• •		
n han na shinin a shinin an tala shinin ta shinin ta shinin ta		4 36 8 23		0.0218 0.0480 0.0337 0.0500	4.46 9.28 6.79 9.77	99.92 98.62 99.84 99.16	1.3 57.4 4.9 34.6	0.0 0.3 0.0 0.1	11.4 8.7 9.3 9.1
and a selected at	0.184	25 0	0.0016	0.0288	5.80	99.08	12.4	0.1	7.9
la tea lan dan diningki at a	Concept	t 1, Mod S	5						
K	Avg Pattern skin, K factor	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout	<u>ratio</u> <u>Chemical</u>	^{CO} 2,	Efficiency,	<u>Emissi</u> <u>CO</u>	<u>on ind</u> <u>CH</u> x	<u>ices</u> <u>NO</u> x
	0.215		0.0020				• •		
		11 45 28		0.0215 0.0234 0.0170	4.39 4.72 3.47	99.90 99.52 99.44	1.6 19.5 4.4	0.3 0.1 4.6	9.1 5.5 5.1
		27 14		0.0306 0.0256	6.17 5.17	99.73 99.53	9.9 17.6	0.1	6.8 6.6
a di da manda da manda da di da mand	0.214 0.168	5 5	0.0020			OPICIPICS	- PALL D		

OF POUR QUALITY

PRECEDING PAGE BLANK NOT FILMED

		Fuel-ai	Percent	
Mod	Test condition	Predicted	Measured	difference
Baseline	100%	0.0474	0.0346	+37
1	80%	0.0508	0.0474	+7.2
2	80%	0.0511	0.0488	+4.7
3	80%	0.0428	0.0370	+15.7
4	80%	0.0489	0.0401	+21.9

Table XIII. Fuel-air ratios--Concept I.

with the fourth primary zone probe installed. This additional probe improves the sector interpretation, as can be seen in Figure 75.

CONCEPT II BASELINE EXPERIMENTAL RESULTS

The Concept II combustor has a double-vortex swirl-stabilized reverse-circulation primary zone. Figure 76 is a photograph of Concept II.

The Concept II baseline test $scope_{1}$ is ted of a thermal paint evaluation at 100% power condition and combustor $z(e_{2})$ it data at 100%, 80%, 50%, idle, and 100% altitude test conditions. Prively zone emission data were obtained at 90% and idle power conditions. Table XIV presents the measured data for the Concept II baseline. Figure 77 presents the wall temperature and thermal paint results. As can be seen from these photos, the outside wall temperature was 1133-1232 K maximum in the dome area close to the fuel nozzle locations and 1293-1323 K on the inner wall.

Exhaust temperature pattern and profile are presented in Figure 78. The circumferential pattern factor of 0.216 at 100% is an acceptable value. The radial gradient of 36 K indicates a relatively uniform profile. The radial gradient is defined as the difference between the maximum and the minimum radial average temperatures.

Combustor exhaust emission indices for CO, UHC, and NO_x and their corresponding combustion efficiencies over the power range are presented in Figure 79. These levels are similar to values obtained with Concept I baseline.

Primary zone emission data, which include CO, UHC, NO_x , and smoke, were obtained at idle and 80% power conditions. The average fuel-air ratio, combustion efficiency, and primary zone smoke versus power condition curves are presented in Figure 80. Figure 81 presents combustion efficiency, CO, and NO_x data at 80% power condition in a sector interpretation. The fuel nozzle is located at 11.25 deg position. The average, measured, primary zone combustion efficiency of 99.47% indicates a high degree of completed reactions at this plane. The zone between fuel nozzles was slightly depressed in efficiency.

CONCEPT II BASELINE COMBUSTOR PZ PERFORMANCE ANALYTICAL PREDICTION/TEST DATA COMPARISON

The analytical prediction of the PZ performance for the Concept II baseline design indicates a high fuel-air ratio in the area of the fuel nozzle at 80% power condition. The hub area is predicted to have a very high fuel-air ratio (above 0.10). The test results at 80% power simulations gave a uniform fuel-air ratio profile except in the center of the passage between fuel nozzles. These data are presented in Figure 82. This does not represent a good correlation between model prediction and test data.

Figure 83 is this same measured data as compared to a circumferential average and a radial prediction in the plane of the PZ probes. From this presentation it is evident that the measured values did not correlate well with the predicted values for probes 1 and 2.

CONCEPT II MOD. FICATIONS AND EXPERIMENTAL RESULTS

The Concept II combustor primary zone section was modified into a total of five configurations. These modifications to this swirl-stabilized, double-vortex reverse-circulation concept consisted of evaluating a reduction in primary zone equivalence ratios (ϕ_{PZ}) and an increase in fuel injector spacing. These modifications consisted of the following:

- Mod 1: Axial swirlers in prechamber changed from 30 deg to 45 deg (42% increase in swirler flow ares), ϕ_{PZ} = 1.041
- Mod 2: Mod 1 with primary hole area increased 50%, $\phi_{PZ} = 0.969$
- Mod 3: Mod 1 with primary hole area increased 100%, ϕ_{PZ} =0.903
- Mod 4: Mod 3 with one half of the fuel injectors inoperative (8 injectors operative); this gave a fuel spacing ratio L/h = 2.8
- Mod 5: Mod 3 with primary air relocated in sector of active fuel injectors (8 injectors operative per mod 4)

Table XV presents a summary of the measured data for Concept II, mods 1 through 5.

The highlights of this summary are as follows:

- o All combustors, as well as the baseline configuration, exhibited a high combustion efficiency at the primary zone station.
- o The measured maximum wall temperature increased with the increase in primary hole area.
- o The testing with only eight fuel nozzles operational was limited to idle evaluation because of the high values of pattern factor. Pattern factor was much improved with the primary-air redistribution close to active fuel nozzles (0.54 to 0.36)
- o Exhaust smoke was far below the visible area (SAE Smoke No. = 5).

CONCEPT II COMBUSTOR MODIFICATIONS PZ PERFORMANCE ANALYTICAL PREDICTION/TEST DATA COMPARISON

Analytical predictions of the primary zone performance were made for mods 1 through 4 of Concept II. A problem in matching the aerodynamic changes to the

Concep

<u>Reading</u>	<u>Condition</u>	Measurement	Pressure drop, X	Hot <u>skin, K</u>	Avg skin, K	Pattern factor	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout
116	100%	No chemistry	3.63	968	873	0.216		
117	100%	No chemistry	3.52	994	866	0.220		
124	Idle	No chemistry	3.66	705	563	0.175		
125	Idle	Exhaust chemistry	3.63	707	567			
126	Idle	PZ sequential make 1	3.64	718	569		6	
127	Idle	PZ sequential rake 2	3.67	731	571		10	
128	Idle	P7 sequential rake 3	3.63	729	569		Ō	
129	Idle	Exhaust chemistry	3.70	730	570		-	
130	Idle	No chemistry	3.72	734	569	0,169		
133	Alt	Fxhaust chemistry	3.45	1039	881			
134	A1+	No chemistry	3,38	1031	873	0.203		
135	A1+	Fyhaust chemistry	3,35	1028	869	01200		
136	50%	Exhaust chemistry	3 52	850	710			
137	50%	No chamistry	3 51	856	714	0 237		
130	20%	No chemistry	3 67	06%	821	0.257		
130	00/0 \$40.76	Exhaust chemistry	3.67	902	824	0.334		
139	90%	D7 coguential wake 1	3.60	024	200		24	
140	00/6	PZ Sequential rake 1	3.00	534 021	709		54	
141	00/6	PZ Sequential rake 2	3.33	921	790		01	
142	0076	PZ sequential rake 2	3.4/	922	797		00	
143	80%	PZ sequential rake 3	3.03	922	/9/		U	
144	80%	PZ sequential rake 3	3.61	931	804			

CE POOR QUALITY

CALINOT FRAME

•

		Table	XIV.		
Concept	II,	baseline,	test	data	summary.

Avg kin,	Pattern <u>K factor</u>	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout	<u>ratio</u> <u>Chemical</u>	^{CO} 2,	Efficiency,	<u>Emiss</u> <u>CO</u>	ion indi <u>CH</u> x	<u>ces</u> <u>NO</u> x
873	0.216								
866	0.220								
563	0.175								
567				0.0097	1.95	98.26	40.8	8.3	1.9
569		6		0.0139	2.79	98.53	38.4	6.1	2.9
571		10		0.0201	3.98	97.87	44.3	11.7	2.5
569		0		0.0129	2.51	95.93	71.4	25.6	0.8
570				0.0096	1.94	98.42	39.4	7.0	1.2
569	0.169								
887				0.0176	3.60	99.89	1.6	0.2	13.6
873	0.203								
869				0.0212	4.33	99.91	1.5	0.1	10.7
719				0.0162	3.32	99,91	2.1	0.1	8.4
714	0.237							•••	
821	0.354								
824				0.0205	4,19	99,92	1.2	0.0	10.8
809		34		0.0345	6.91	99.73	9.8	0.1	8.8
798		61		0.0462	8.79		88.5	0.3	0.0
797		66		0.0343	6.80	99.20	31.3	0.4	10.1
797		ñ		0.0266	5.36	99.62	13.4	0.4	8.4
804		5		0 0244	4 96	99.02	24	01	77
004				0.0244	T + 3 U	55.50	L + 7	U+1	

;

ORIGINAL PAGE IS OF POOR QUALITY .

Concept II

ORIGINAL PAGE IS OF POOR QUALITY

Conce	pt	II.	Mod	1
contraction and second				

Reading	Condition	Measurement	Pressure drop, X	Hot <u>skin, K</u>	Avg Patt <u>skin, K</u> fact	ern Smoke, or <u>SAE No.</u>	<u>Fuel-air r</u> Lean blowout
179 180	Idle 80%	No chemistry No chemistry	3.41 3.29	716 901	585 0.1 800 0.2	172 274	0.0050 0.0040
183	80%	P7 convential rake 1	3.20	906	799	7	
184	80%	PZ sequential rake 2	3.23	903	796	16	
185	80%	PZ sequential rake 3	3.36	904	798	21	
186	100%	No chemistry	3.57	973	880 0.3	216 21	• • • • •
187	100%	Exhaust chemistry	3.59	973	880	5	0.0025
					<u>Co</u>	ncept II, Mo	<u>od 2</u>
	0	M	Pressure	Hot	Avg Patt	ern Smoke,	<u>Fuel-air</u> r
Reading	Condition	measurement	arop, X	<u>skin, k</u>	SKIN, K TACI	or sae no.	Lean DIOWOUT
208	80%	No chemistry	3.57	1011	843 0.3	237	0.0020
209	80%	Exhaust chemistry	3.46	1003	843	8	
210	80%	PZ sequential rake 1	3.51	987	838	27	
211	80%	PZ sequential rake 2	3.41	987	838	33	
212	80%	PZ sequential rake 3	3.44	978	835	29	A AA1 F
213	100%	no chemistry	3.09	1063	930 0.4	238	0.0015
					Co	ncept II, Mo	<u>od 3</u>
			Pressure	Hot	Avg Pati	tern Smoke,	Fuel-air r
Reading	<u>Condition</u>	Measurement	drop, %	<u>skin, K</u>	<u>skin, K</u> fact	tor <u>SAE No.</u>	Lean blowout
227	Idle	No chemistry	3.56		0.	197	0.0050
228	Idle	Exhaust chemistry	3.57			0	_
229	80%	No chemistry	3.51		0.	180	0.0020
230	80%	Exhaust Chemistry	3.25			0	
231	0076 00176	PZ sequential rake 1	3.29			55	
232	80%	PZ sequential rake 2	3.24			21	
234	80%	P7 sequential rake d	3.22			20	
235	100%	No chemistry	3.35		0.	198	0 0017
243	Idle	No chemistry	3.32		0.0	565	0.0017
244	Idle	No chemistry	3.18		0.	156	0.000
245	Idle	No chemistry	3.46		0.	530	
246	Idle	No chemistry	3.38		0.9	569	0.0065
247	Idle	No chemistry	3.80		0.3	267	
248	Idle	PZ sequential rake 1	5.86				
249	Idle	PZ sequential rake 2	3.82				
250	1016	PZ sequential rake 3	3./9				
231	Tale	ri sequencial rake 4	5.84				

.

 Table XV.

 Concept II, mods 1-5, test data summary.

ORIGINAL PAGE IS DE POOR QUALITY

Concept II, Mod 1

¥

K	Avg Patter skin <u>, K</u> factor	n Smoke, SAE No.	<u>Fuel-air</u> Lean blowout	ratio Chemical	^{CO} 2, <u>*</u>	Efficiency,	<u>Emissic</u> <u>CD</u>	<u>on ind</u> <u>CH</u> x	<u>ices</u> <u>NO</u> x
	585 0.172 800 0.274 806 799	0	0.0050 0.0040	0.0217	4.42	99 . 90 99.79	1.5 7.4	0.1	11.4
	796 798 880 0.216	16 21 21		0.0270 0.0322	5.43 6.47	99.49 99.70	20.0 10.9	0.1 0.0	10.5 10.3
	880	5	0.0025	0.0209	4.27	99.90	1.1	0.0	15.6
	Conce	ept II, Mo	<u>od 2</u>						
K	Avg Patter skin. K factor	n Smoke, SAE No.	<u>Fuel-air</u> Lean blowout	<u>ratio</u> Chemical	СО ₂ ,	Efficiency, ☆	<u>Emissi</u> CO	on ind CH	ices NO
-	843 0.237		0.0020					x	
	843 838	8 27		0.0212 0.0282	4.33 5.70	99.92 99.74	1.2 9.4	0.1 0.1	10.7 8.5
י }	838 835	33 29		0.0371 0.0280	7.33 5.66	99.13 99.71	35.6 10.0	0.2 0.1	9.7 10.6
}	930 0.238	}	0.0015						
	Conc	ept II, Mo	<u>od 3</u>						
K	Avg Patter skin, K factor	n Smoke, <u>SAE No.</u>	<u>Fuel-air</u> Lean <u>blowout</u>	ratio Chemical	^{CO} 2, %	Efficiency,	<u>Emissi</u> <u>CO</u>	on ind <u>CH</u> x	ices NO
	0.197	0	0.0050	0.0109	2.02	92.70	121.3	47.8	2.1
	0.180	, 0 55	0.0020	0.0219	4.46	99.88 99.15	1.2 33.3	0.4 0.5	12.0
		27		0.0251 0.0336	5.07 6.77	99.57 99.81	15.1 5.0	0.3	11.7
	0.198 0.665 0.156	29 } ;	0.0017 0.0060	0.0270	5.42	99.30	26.2	0.6	9.6
	0.569)	0.0065						
				0.0222 0.0254 0.0199 0.0272	4.34 5.00 3.99 5.25	97.19 97.67 98.85 96.68	62.2 51.6 35.5 73.7	14.7 12.1 3.5 17.3	2.4 2.3 2.7 2.2
				PREC	EDING	PAGE BLANK	NOT ETT		
									17
						C FOLDOU	T ERAME	8	,,

Concept II, Mod 4

<u>Reading</u>	<u>Condition</u>	Measurement	Pressure drop, X	Hot <u>skin, K</u>	Avg Pattern Smoke, <u>skin, K factor</u> SAE No.	Fuel-ai Lean blowout
252	Idle	No chemistry	3.26		0.539	0.0038
253	Idle	No chemistry	3.67		0.504	
254	Idle	Exhaust chemistry	3.58		0	
255	Idle	Exhaust chemistry	3.65		Ō	
256	Idle	PZ sequential rake	1 3.65		8	
257	Idle	PZ sequential rake	2 3.66		69	
258	Idle	PZ sequential rake	3 3.67		0	
259	Idle	PZ sequential rake	4 3.65		18	

Concept II, Mod 5

Reading	<u>Condition</u>	Measurement	Pressure drop, %	Hot skin, K	Avg Pattern <u>skin, K</u> factor	Smoke, SAE No.	Fuel-air Lean blowout
267	Idle	No chemistry	3.64		0.366		0.0040
268	Idle	Exhaust chemistry	3.56			0	
269	Idle	PZ sequential rake	1 3.49			Ó	
270	Idle	PZ sequential rake	2 3.49			Ŏ	
271	Idle	PZ sequential rake	3 3.47			õ	
272	Idle	PZ sequential rake	4 3.44			ō	
273	Idle	No chemistry	3.91		0.348	•	
274	Idle	Exhaust chemistry	3.76			0	
275	Idle	PZ sequential rake	1 3.67			3	
276	Idle	PZ sequential rake	2 3.64			22	
277	Idle	PZ sequential rake	3 3.80			0	
278	Idle	PZ sequential rake	4 3.78			ŏ	

-

ORIGINAL FACE IS OF POOR QUALITY

FOLDOUT FRAME

.

Concept II	Mod 4
------------	-------

Avg Pattern <u>skin, K</u> factor	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout	ratio Chemical	^{CO} 2, <u>×</u>	Efficiency,	<u>Emiss</u> <u>CO</u>	ion ind <u>CH</u> x	<u>ices</u> <u>NO</u> x
0.539 0.504		0.0038						
01004	0		0.0120	2.42	98.28	38.1	8.8	4.1
	ŏ		0.0152	3.06	98.60	29.0	7.6	4.2
	8		0.0284	5.56	97.75	46.5	12.4	3.7
	69		0.0374	7.08	97.11	102.0	5.6	4.8
	0		0.0120	2.43	98.84	29.0	5.1	4.3
	18		0.0359	6.31	92.43	179.9	36.4	2.4
Concep	ot II, Moo	<u>15</u>						

Avg Pattern	Smoke,	Fuel-air	ratio	CO2,	Efficiency,	Emiss	ion indi	ces
skin, K factor	SAE No.	Lean blowout	Chemical	<u>x</u>	<u>×</u>	<u>co</u>	<u>сн</u> х	NOX
0.366		0.0040						
	0		0.0105	2.07	97.00	52.2	19.1	2.7
	0		0.0138	2.69	96.22	67.3	23.7	2.6
	Ó		0.0190	3.76	97.52	46.5	14.9	3.3
	Õ		0.0102	2.03	97.81	40.9	13.2	2.8
	ŏ		0.0106	2.08	96.39	61.4	23.3	2.2
0.348	•		•••••					
	0		0.0126	2.54	98.67	32.2	6.2	3.1
	3		0.0232	4.57	98.06	59.4	6.1	2.5
	22		0.0388	7.50	98.07	70.4	3.3	3.4
			0.0131	2.66	99.02	24.7	4.3	3.1
	Õ		0.0180	3.55	97.78	61.7	8.5	2.0

PRECEDING PAGE BLANK NOT FILMED

ORIGINAL PAGE IS DE POOR QUALITY

2 FOLDOUT FRAME

analytical model prevented the prediction for mod 5. Again the fuel-air ratio data is compared to the predicted values. This comparison is shown in Figure 84. It can be seen that from these contour plots that rig data do not agree with the predictions either in shape or level.

The absolute level of predicted and measured fuel-air ratios is shown in Table XVI. The measured values represent approximately 2/3 the value for the calculated value. This could be a result of inadequate sampling positions or predicted value shortcomings.

Table XVI.Fuel-air ratios--Concept II.

		Fuel-ai:	Percent	
Mod	Test condition	Predicted	Measured	difference
Baseline	80%	0.0496	0.0331	+49.9
1	80%	0.0484	0.0321	+50.8
2	80%	0.0448	0.0311	+44.1
3	80%	0.0412	0.0295	+39.7
4	Idle	0.0266	0.0283	- 6.0

CONCEPT III BASELINE EXPERIMENTAL RESULTS

The Concept III combustor features a single-vortex primary zone with a 25% reduction in the number of fuel injectors (12 instead of 16). Figure 85 is a photograph of Concept III.

Concept III baseline testing consisted of the following:

o thermal paint at 100% power o exhaust performance at 100%, 80%, 50%, and idle power o primary zone emissions at 80% power

Table XVII presents the measured data for the Concept III baseline. Figure 86 presents the wall temperature and thermal-paint results. The Concept III configuration exhibited localized hot zones in the plane of the fuel injector. Thermal paint results indicates these areas are in the 1323-1344 K temperature range. The film cooling of the dome portion of this design appears to be in-adequate for 100% power operation.

Exhaust temperature profile and pattern factor versus power plots are presented in Figure 87. The circumferential pattern factor of 0.189 at 100% power for a new primary zone concept indicates a uniform gas temperature profile. The level of pattern factor was not affected by power condition. The radial gradient of 30 K indicates a relatively uniform profile.

Combustor exhaust emission level indices for CO, UHC, and NO_X and corresponding combustion efficiency over the power range is presented in Figure 88. These levels are similar to values obtained with Concept I and II.

Primary zone emission data were obtained at 80% power condition. Figure 89 presents the combustion efficiency, carbon monoxide, and oxides of nitrogen data in a sector interpretation. The fuel nozzle is located at the 15 deg

position. The low combustion efficiency at probe No. 2 position is substantiated by a high level of smoke at that position. Smoke level was 87 at probe No. 2 as compared to 42 and 48 for the other probes.

The predicted and measured fuel-air ratios are compared in Table XVIII. Mods 2 through 5 were evaluated with four probe positions providing a uniform location as samples. The measured values for these configurations compare very favorably with the predicted value of the overall primary zone fuel-air ratio.

CONCEPT III BASELINE COMBUSTOR PZ PERFORMANCE ANALYTICAL PREDICTION/TEST DATA COMPARISON

The analytical prediction of the primary zone performance for Concept III baseline design indicated a high radial gradient with the outer zone in excess of 0.05 fuel-air ratio and the inner zone at 0.01 fuel-air ratio. The area between fuel injectors has the higher fuel-air values. The measured data indicated fuel-air values below average between fuel nozzles and did not resemble the predicted values. These data are presented in Figures 90 and 91

CONCEPT III MODIFICATIONS AND EXPERIMENTAL RESULTS

Concept III combustor primary zone section was modified into five distinct configurations. The modifications of this single-vortex primary zone consisted of changes to fuel entry directions and variations of inner-to-outer primaryair balance. These modifications are briefly described as follows:

- Mod 1: Fuel tube exit located tangent to combustor centerline pointing clockwise viewed looking downstream
- Mod 2: Mod 1 with fuel tube pointing in a counterclockwise direction
- Mod 3: Fuel tube radially outward (baseline configuration), with 50% increase in outer-shell primary air and 50% reduction in inner-shell primary air
- Mod 4: Mod 3 with all primary air in the outer wall
- Mod 5: Mod 3 with all primary air in the inner wall

Table XIX presents a summary of the measured data for Concept III, mods 1 through 5.

The highlights of this summary are these:

- o The fuel placement, whether radially out or tangent right or left had little effect upon overall performance except there was some deterioration of exhaust pattern factor for mod 2. It was also noted that the primary zone smoke was lower for mod 2.
- o Lean-burn to a low fuel-air ratio value was observed for all mods.
- o The attempt to put all of the primary sir through the inner wall tubes produced a drastic increase in wall temperature and limited the test evaluation to the idle conditions.

Reading	<u>Condition</u>	Measurement	Pressure drop, %	Hot <u>skin, K</u>	Avg skin,	Pattern K factor	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout	ratic Che
118	100%	No chemistry	3,85	948	841	0.200			
119	100%	No chemistry	3.93	1021	855	0.189			
149	Idle	No chemistry	4.04	772	581	0.200		0.0030	
150	Idle	Exhaust chemistry	4.00	759	578				0.0
151	Idle	Exhaust chemistry	4.01	763	580				0.0
152	50%	No chemistry	3.53	963	704	0.210		0.0018	
153	50%	Exhaust chemistry	3.52	966	706				0.0
154	80%	No chemistry	3.35	1135	793	0.215		0.0024	
155	80%	No chemistry	3.37	1115	785	0.218			į
156	80%	Exhaust chemistry	3.36	1073	771		6		0.0
157	80%	PZ sequential rake 1	3.37	1053	759		48		0.0
158	80%	PZ sequential rake 2	3.32	1096	773		87		0.0
159	80%	PZ sequential rake 3	3.45	1122	764		42		0.0

OF POCR QUALITY

Fuel-air

E DE FLAME	Mod	Test condition
•	Baseline	80%
<u>}</u>	1	80%
	2	80%
	3	80%
	4	80%
	5	Idle

C-7

Table XVII.Concept III, baseline, test data summary.

K	Pattern factor	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout	<u>ratio</u> Chemical	^{CO} 2,	Efficiency, %	<u>Emise</u> CO	sion indi CH	ices NO
							<u> </u>	— x	X
	0.200								
	0.189								
	0.200		0.0030						
				0.0113	2.28	98.85	32.9	4.0	3.9
				0.0114	2.32	99.07	31.5	2.1	2.8
	0.210		0.0018						
				0.0171	3.50	99.84	4.8	0.1	7.3
	0.215		0.0024						
	0.218								
		6		0.0229	4.66	99.91	1.9	0.0	9.6
		48		0.0283	5.72	99.73	9.5	0.1	9.9
		87		0.0545	7.36	72.81	126.5	256.7	2.9
		42		0.0170	7 • 7	99.42	7.5	4.0	6.8

Table XVIII. Fuel-air ratios--Concept III.

		Fuel-ai	Percent	
Mod	Test condition	Predicted	Measured	difference
Baseline	80%	0.0360	0.0333	+8.1
1	80%	0.0350	0.0446	-21.5
2	80%	0.0375	0.0339	+10.6
3	80%	0.0359	0.0355	+1.1
4	80%	0.0374	0.0382	-2.1
5	Idle	0.0205	0.0208	-1.4

Concept III,

Concept III, Mod 1

Reading	<u>Condition</u>	Measurement	Pressure drop, %	Hot <u>skin, K</u>	Avg <u>skin, K</u>	Pattern factor	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout	ratic Che
160	80%	No chemistry	3.53	933	767	0.209	0		!
161	80%	Exhaust chemistry	3.42	933	763				0.1
162	80%	PZ sequential rake 1	3.42	933	763		82		0.1
163	80%	PZ sequential rake 2	3.46	936	765		29		0.1
164	80%	PZ sequential rake 3	3.44	933	763		95		0.
						Concep	t III, Mo	<u>id 2</u>	
			Pressure	Hot	Avg	Pattern	Smoke,	<u>Fuel-air</u>	- rati
Reading	Condition	Measurement	drop, %	<u>skin, K</u>	<u>skin, K</u>	factor	SAE No.	Lean blowout	Che
220	80%	No chemistry	4.04	1071	844	0.452			
221	80%	Exhaust chemistry	4.06	1083	849		5	0.0020	0.
222	80%	PZ sequential rake 1	4.09	1076	842		28		0.(
223	80%	PZ sequential rake 2	4.06	1077	843		33		0.1
224	80%	PZ sequential rake 3	4.03	1079	843		35		0.
225	80%	PZ sequential rake 4	4.24	1073	841		6		0.0
226	100%	No chemistry	4.11	1178	936	0.234		0.0015	-
						Concept	III, Mod	3	-
Pooding	Condition	Moscuramont	Pressure	Hot	Avg skip K	Pattern	Smoke,	Fuel-air	rati
Reauing	CONTRIBU	Measurement	drop, "	SKIII, N	SKIII, N	Tactor	SAE NU.	Lean browout	une

Reading	condicion	riedsur einen c	drop, <i>k</i>	SKIII N	SKIII, N	Tactor	JAL NO.	Lean Drowoul	
260	80%	No chemistry	3.48	856	769	0.239		0.U 01 5	
261	80%	Exhaust chemistry	3.51	848	764		7		0.
262	80%	PZ sequential rake 1	1 3.46	863	778		61		0.
263	80%	PZ sequential rake 2	? 3.74	853	768		74		0.
264	80%	PZ sequential rake 3	3 3.74	864	768		44		0.
265	80%	PZ sequential rake 4	1 3.69	875	770		74		0.
266	100%	No chemistry	3.69	1023	866	0.212		0.0012	

CF FOOR QUALITY

Table XIX. Concept III, mods 1-5, test data summary.

Concept III, Mod 1

K	Pattern factor	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout	<u>ratio</u> Chemical	^{CO} 2,	Efficiency,	<u>Emiss</u> <u>CO</u>	<u>ion indi</u> <u>CH</u> x	<u>ces</u> <u>NO</u> x
	0.209	0							
		-		0.0234	4.77	99.85	3.2	0.3	7.9
		82		0.0458	7.89	91.57	175.6	46.3	4.3
		29		0.0388	7.67	99.18	27.6	1.6	6.6
		95		0.0493	8.49	92.17	186.5	37.4	4.4
	Concept	t III, Mo	<u>d 2</u>						
	Pattern	Smoke,	<u>Fuel-air</u>	<u>ratio</u>	CO2,	Efficiency,	Emiss	<u>ion indi</u>	ces
K	factor	SAE No.	Lean blowout	<u>Chemical</u>	<u>%</u>	<u> </u>	<u><u> </u></u>	<u>сн</u> х	<u>NU</u> x
	0.452								
		5	0.0020	0,0233	4.74	99.91	1.7	0.1	8.8
		28		0.0383	7.61	99.42	21.4	0.6	7.4
		33		0.0307	6.18	99.63	13.8	0.1	8.6
		35		0.0347	6.82	98.75	49.9	0.8	7.3
ļ		6		0.0320	6.45	99.89	2.8	0.1	8.0
	0.234		0.0015						
	Concept	III, Mod	3						

	Pattern	Smoke,	Fuel-air	ratio	CO2,	Efficiency,	Emiss	ion indi	ces
K	factor	SAE No.	Lean blowout	Chemica1	%	<u>%</u>	<u>co</u>	<u>CH</u>	NOX
	0.239		0.0015						
		7		0.0211	4.33	99.83	3.2	0.6	9.6
		61		0.0296	6.00	99.65	9.1	1.1	9.1
		74		0.0422	7.97	94.08	6.6	61.3	7.8
		44		0.0215	4.39	99.63	9.4	0.7	8.8
		74		0.0485	9.63	99.37	7.0	4.8	5.3
	0.212		0.0012						

PRECEDING PAGE BLANK NOT FILMED

OF FOUR QUALITY

2 . COOUT TRAMS

						Concept	III, Mod	4	
Reading	<u>Condition</u>	Measurement	Pressure drop, %	Hot skin, K	Avg <u>skin, K</u>	Pattern factor	Smoke, SAE No.	<u>Fuel-air</u> Lean blowout	rat Ch
279	80%	No chemistry	3.41	887	791	0.239		0.0015	
280	80%	Exhaust chemistry	3.39	902	784		36		0
281	80%	PZ sequential rake 1	3.40	950	796		100		ā
282	80%	PZ sequential rake 2	3.43	947	812		95		Ō
283	80%	PZ sequential rake 3	3.36	956	782		80		Ō
284	80%	PZ sequential rake 4	3.33	948	796		53		ō
285	100%	No chemistry	3.29	978	878	0.233		0.0014	•
						Concept	III, Mod	5	
			Pressure	Hot	Avg	Pattern	Smoke,	Fuel-air	rat
Reading	<u>Condition</u>	Measurement	drop, %	<u>skin, K</u>	<u>skin, K</u>	factor	SAE No.	Lean blowout	Ch
294		No chemistry	3.09	1304	691	0.352		0.0025	
295	Idle	No chemistry	3.46	717	547	0.322		0.0030	
296	Idle	Exhaust chemistry	3.41	614	534				0
297	Idle	PZ sequential rake 1	3.41	616	533		60		Ő
298	Idle	PZ sequential rake 2	3.45	624	538		68		Õ
299	Idle	PZ sequential rake 3	3.39	617	532		42		Ō
300	Idle	PZ sequential rake 4	3.43	631	538		42		Ō

OF POOR QUALITY

Table XIX. (cont)

ept III, Mod 4

tern	Smoke.	Fuel-air ratio		CO2.	Efficiency,	Emission indices			
tor	SAE No.	Lean blowout	Chemica1	<u>%</u>	%	<u>c0</u>	<u>CH</u> X	<u>NO</u> X	
239		0.0015							
	36		0.0220	4.48	99.73	7.2	0.8	8.1	
	100		0.0347	6.61	97.04	90.3	9.2	6.5	
status (95		0.0485	7.40	82.24	180.6	144.2	3.4	
	80		0.0290	5.69	98.26	60.7	3.6	4.6	
	53		0.0406	8.04	99.36	23.8	0.8	4.5	
2 33		0.0014							

ept III, Mod 5

وتقريرها والمتأثث فالمتعادين فالمتعاقف ومعاولا كردية ويستعرز والمريدة

tern	Smoke,	Fuel-air	ratio	C02,	Efficiency,	Emission indices			
tor	SAE No.	Lean blowout	<u>Chemical</u>	*	%	<u>co</u>	<u>CH</u> x	NOX	
352		0.0025							
322		0.0030							
			0.0119	2.37	97.16	50.9	17.7	3.0	
	60		0.0283	5.34	95.38	89.9	27.1	2.7	
	68		0.0250	4.73	95.83	105.0	18.7	2.7	
	42		0.0141	2.71	95.53	82.4	27.3	2.7	
	4?		0.0158	2.96	94.05	106.1	37.3	2.2	

Ϋ́

2 LOUDOUT FRAME

PRECEDING PAGE BLANK NOT FILMED

CONCEPT III COMBUSTOR MODIFICATIONS PZ PERFORMANCE ANALYTICAL PREDICTION/TEST DATA COMPARISON

The comparison of the primary zone analytical prediction and the measured test data for fuel-air ratio in the plane of the primary zone probe for the five modification configurations is presented in Figure 92. The redirection of the fuel spray in modifications 1 and 2 produced a significant shift in the calculated fuel-air signatures. This characteristic was found in the measured data as can be seen in Figure 92, mods 1 and 2. The modifications which were designed to influence the primary air recirculation did not produce data that reflected the anaytical prediction.

COMBUSTOR CONCEPT PERFORMANCE SUMMARY

Even though this was not a combustor development program, some comparative evaluations of the combustor concepts and modifications should be made based on the physical differences among the configurations of each concept and the data resulting from the experimental testing. A summary of the test data for all eighteen combustor tests is shown in Table XX for the 80% power condition. More data were recorded at 80% than at any other condition even though all combustor mods could not be operated at that high a power condition.

The Concept I combustor designs are summarized in Table III. The performance of the baseline Concept I combustor was excellent. Metal temperatures were below 950 K, exhaust temperature profiles were uniform, and exhaust emissions were acceptable. Increasing the fuel nozzle swirler swirl number from 0.84 to 1.45 by increasing the turning angle of the air from 45 deg to 60 deg produced performance improvements. Boch maximum and average metal temperatures were reduced. Exhaust CO and UHC remained nearly the same with NO_X and smoke number decreasing. Changes in primary zone hole spacing (mod 2), numbers of holes (mods 3 and 4), and flow fraction (mod 3) showed no improvement over the baseline configuration or no additional improvement over mod 1. Thus for Concept I, the best configuration from an overall performance standpoint was the mod 1 design with the increased fuel nozzle swirl number.

The Concept II combustor designs are summarized in Table IV. The performance of the baseline Concept II combustor was good, but not as good as the Concept I combustors. Metal temperatures were below 975 K, exhaust pattern factor at 0.35 was poor, and the exhaust emissions showed a hotter reaction zone with lower CO and UHC but higher NO_x. The Concept II, mod 1, combustor changed to the lower swirl number fuel nozzle swirler used in the Concept I baseline combustor and showed an increase in exhaust emissions, especially NO_x. Metal temperature and exit temperature profile were reduced as well as primary zone CO, UHC, and smoke. Primary zone NO_x increased. Mods 2 and 3 progressively increased the flow area of the primary holes by 50% and 100% respectively. Temperature pattern improved for these two mods when compared to mod 1. Mod 2showed lower exhaust CO, UHC, and NO_x but an increase in smoke. In the primary zone, CO, UHC, and smoke increased but NO_x decreased slightly. Both metal temperature and exit temperature profile increased. Mod 2 performance appears equally variable. The final two designs, mods 4 and 5, used only 8 fuel nozzles instead of 16. These combustors at a nozzle spacing-to-annulus height ratio of 2.8 produced very high exit temperature profiles and thus were limited to idle operating conditions. The best overall performance was probably the Concept II, mod 3, design which demonstrated a low exit temperature profile and slightly higher exhaust, UHC, and NO_X . Exhaust smoke and primary zone CG, UHC, and smoke were approximately equal in all Concept II designs.

The Concept III single vortex combustor designs are summarized in Table V. The performance of the baseline Concept III combustor was quite good considering that this was the initial design of the general concept. Except for the 1073 K maximum measured metal temperature, all of the combustor performance parameters were more than satisfactory. The exit temperature profile was very uniform having a pattern factor of 0.215. The exhaust emissions were only slightly higher than the Concept I baseline emissions. The primary zone emissions showed very high levels of CO, UHC, and smoke, but these levels were not observed in the exhaust gas samples. Concept III, mods 1 and 2, rotated the fuel nozzle chutes 90 deg clockwise and counterclockwise, respectively. The clockwise rotation in mod 1 showed considerably setter performance than the mod 2 rotation. The mod 2 design produced high average and maximum metal temperatures as well as an unacceptably high exit temperature profile. Compared to the Concept III baseline combustor, the mod 1 design demonstrated lower metal temperatures, exhaust NO_x, and exhaust smoke, but higher exit temperature profiles, exhaust CO, and exhaust UHC. Concept III, mods 3 and 4, progressively noved primary zone injection air from the inner shell to the outer shell. The wood 3 design which had half the inner shell primary zone injection air transferred to the outer shell gave better performance than the mod 4 and better than the baseline designs; metol temperatures were lower, the exit temperature profile was the most uniform, exhaust $NO_{\mathbf{x}}$ and smoke were low, and exhaust CO and UHC were acceptable. Primary zone emissions also were as low as for most designs Concept 111, mod 5, moved all of the primary zone air to the inner shell, but high metal temperatures restricted operation to idle conditions. Thus for the single vortex design, baseline and mod 2 produced the best overall performance.

								Р	rimary	Zone E	missi	ons
Combus	tor	P/P	Metal	temp (K)	Exit te	mp profile	LBO	<u>C0</u>	UHC	Nox	SN	Eff.
Concept	Mod	<u>(%)</u>	Avg	Max	Tm/Ta	Pat Fact	<u>F/A</u>	(ppm)	(ppm)	(ppm)		(%)
I	Base	3.60	778	933	1.100	0.150						
	1	3.64	740	874	1.100	0.147	0.0018	555	26	29	0	99.02
	2	3.54	789	904	1.119	0.174		5414	964	185	81	94.26
	3	3.45			1.136	0.199	0.0012	1117	5	176	32	99.38
	4	3.64			1.105	0.154	0.0015	1234	3	213	23	99.32
	5	4.30			1.144	0.215	0.0020	323	16	91	28	99.55
II	Base	3.63	824	968	1.235	0.354		1151	5	162	32	99.61
	1	3,26	806	901	1.186	0.274	0.0040	388	1	189	15	99.66
	2	3.46	843	1003	1.160	0.237	0.0020	620	3	182	30	99.52
	3	3.25			1.122	0.180	0.0020	584	8	181	30	99.46
	4											
	5											
III	Base	3.36	771	1073	1.144	0.215	0.0024	2347	2873	112	59	99.65
	1	3.42	763	93 3	1.143	0.209		5981	837	134	69	94.31
	2	4.06	849	1083	1.304	0.452	0.0020	764	9	161	25	99.42
	3	3.51	764	848	1.162	0.238	0.0015	270	449	157	63	98.20
	4	3.39	784	902	1.162	0.239	0.0015	3592	1155	106	82	94.23
	5											

Table XX. <u>Combustor performance summary at 80% power conditions.</u>

CE FUCK QUALITY

EOLDOUJ. ERAMA

ower conditions.

Zone E	missio	ns	Co	mbusto	or Exi	t Emis	sions
Noy	SN	Eff.	<u>C0</u>	UHC	NOx	SN	Eff.
<u>(ppm)</u>		(%)	<u>(ppm)</u>	<u>(ppm)</u>	(ppm))	(%)
			32	1.6	127	5	99.91
29	0	99.02	37	0.9	112	0	99.91
185	81	94.26	33	0.4	113	0	99.92
176	32	99.38	19	0.1	131	12	99.94
2 13	23	99.32	28	0.5	153	4	99.92
91	28	99.55	34	4.0	120	11	99.90
162	32	99.61	26	0.2	136	0	99.92
189	15	99.66	32	2.0	151	0	99.90
182	30	99.52	27	0.8	140	8	99.92
181	30	99.46	26	5.9	162	0	99.88
	~ -						
112	59	99.65	43	0.7	135	6	99.91
134	69	94.31	76	5.2	114	0	99.85
1 61	25	99.42	41	0.8	126	5	99.91
157	63	98.20	67	8.1	125	7	99.83
106	82	94.23	160	10.9	109	36	99.73

2 LOLDOUT FRAME

ORIGINAL PAGE IS OF POOR QUALITY

Figure 68. Concept I conventional, swirl-stabilized, double-vortex annular combustor.

PRECEDING PAGE BLANK NOT FILMED

Figure 69. Concept I, baseline, wall temperature and thermal paint results.

È.

٢Ì

Figure 70. Concept I, baseline, overall combustor performance.

Figure 72. Concept I, baseline, combustor primary zone performance.

LULUOUT ERAME

CRIGINAL PAGE IS

Figure 73. Concept I, baseline, primary zone sector emissions.

109

PRECEDING PAGE BLANK NOT FILMED

EOLDOUT ERAMB

OF POCR QUALITY

Figure 74. Concept I, baseline, idle-power comparison of analytical prediction and measured primary zone fuel-air ratio.

PRECEDING PAGE BLANK NOT FILMED

Figure 75. Comparison of analytical prediction and measured primary zone fuel-air ratio (Concept I mods--80% power).

9.3200

0 0284

0.03

0.0350

n's

PRECEDING PAGE BLANK NOT FILMED

Z FOLDOUT ERAME

Figure 76. Concept II, baseline, combustor photograph.

PRECEDING PAGE BLANK NOT FILMED

Figure 77. Concept II, baseline, wall temperature and thermal paint results.

Figure 78. Concept II, baseline, exhaust temperature pattern.

Figure 79. Concept II, baseline, combustor exhaust emissions.

A STREET, STRE

OF POOR QUALITY

.

Figure 80. Concept II, baseline, primary zone performance.

Combustion Efficiency –%

Figure 81. Concept II, baseline, primary zone emissions en combustion efficiency.

PRECEDING PAGE BLANK NOT FILMED

121

EDI DOUT ERMAN

 \sim

3-D Modeling Results

Figure 82. Comparison of analytical prediction and measured value of primary zone fuel-air ratio (Concept II, baseline--80% power).

PRECEDING PAGE BLANK NOT FILMED

Figure 83. Concept II, baseline, analytical prediction and measured fuel-air ratios (80% power).

and a state of the

and the second second second

FOLDOUT FRAME

Concept 11, Mod 5-1dle

22.5

ZZ.5

0.02

es.

Figure 85. Concept III, baseline, combustor photograph.

Figure 86. Concept III, baseline, wall temperature and thermal paint results.

Figure 87. Exhaust temperature patterns for Concept III, baseline.

Figure 88. Combustor exhaust emission Concept III, baseline.

ł

TE83-1393

Figure 89. Primary zone sector emissions (Concept III, baseline).

Figure 90. Comparison of analytical prediction and measured primary zone fuel-air ratio (Concept III, baseline--80% power).

Figure 91. Comparison of analytical prediction and measured primary zone fuel-air ratio (Concept III, baseline--80% power).

LOUT IRAMO

Figure 92.

Three small gas-turbine annular-combustor concepts and five modifications of each were designed, fabricated, and tested for the purpose of formulating an understanding of primary zone aerodynamics and improving the design methodology of reverse-flow annular combustors.

These combustor concepts were designed with the following features:

- o Concept I double-vortex, swirl-stabilized, primary zone
 o Concept II double-vortex, swirl-stabilized, reverse-circulation primary
 zone
- c Concept III single-vortex primary zone

The MARC-I three-dimensional aerodynamic combustor flow-field model was modified to adapt to the distinctive features of these three primary zone concepts. The combustor geometric features incorporated in this model include the following:

prechambers
internal walls
rounded dome walls
axial dome swirlers
vertical dome slots
slanted liner entries
reverse cooling slots

From the analytical modeling and testing of the eighteen combustor configurations the following conclusions can be drawn:

- o The analytical model as modified and updated has provided a useful tool in designing and analyzing test results from this program.
- o The primary zone gas sampling probes, designed and fabricated for this study, were satisfactory in all aspects. Utilizing these probes, CO, CO_2 , NO_x , and UHC and smoke emissions were obtained for all combustor configurations.
- o The three primary zone concepts, designed with the aid of the analytical model, demonstrated excellent performance in the following areas:

o exhaust temperature pattern
o low exhaust smoke
o cool liner walls
o high combustion efficiency
o wide combustion limits

- o The correlation of primary zone predicted with the measured fuel-air ratio contours demonstrated the usefulness of the analytical model as an aid to the combustion designer.
- o Additional model development is needed to define completely new designs having geometric features that depart from conventional internal flow patterns.

STATUS OF 3-D COMBUSTION MODEL

Several factors are believed to be responsible for those cases when the corrolation between the analytical model and actual fuel-air measurements was less than satisfactory. First the experimental measurements were made at discrete probe locations while the analytical model computed values across the entire combustor cross section. In addition, some simplifying boundary condition assumptions undoubtedly affected the analytical results. For example, Lamilloy air was assumed to enter as cooling slot air parallel to the walls. Beyond these items the three-dimensional combustion model has been found to be deficient in several phiso-chemical areas. These deficiencies are not due to numerical techniques but rather to real deficiencies in the submodels used to describe physical and chemical phenomena. These areas in which deficiencies occur are the following:

1. Prechambers on annular section

Up to the present time all reacting 3-D codes treat the prechamber as part of the annular combustor and attempt to analyze the flow field within this circular can with the coordinates used for the annular sector. Since the coordinates for the entire combustor originate at the centerline of the sector, the circular prechamber is approximated by a polygon. Detailed analysis comparing prechambers analyzed by body-centered coordinates and those analyzed by fine-grid sector coordinates reveals some discrepancies. The correct computation of angular momentum from both axial and, if present, radial air swirlers incorporated in prechambers is extremely sensitive to the coordinate system describing the boundary condition of the prechamber. Deviations from true circular boundary conditions introduce steps such as those resulting from a multisided polygon. A portion of the circulating flow impinges on these steps and creates an overpressure which propagates toward the center of the circulating flow. The net effect of this overpressure is to reduce the angular momentum to a level much lower than that which could be caused by the action of viscous forces within a circular can.

The approach to rectify any possible discrepancy that may disturb the actual flow-field computation is to integrate a body-centered circular coordinate system describing the prechamber can with that describing the body-centered coordinates of the sector.

2. Droplet fuel spray heating. Vaporization and drag, and subsequent micro-mixing and chemically kinetic limited combustion of the fuel vapor

The latest published versions of 3-D models contain at best an initial spray size distribution subprogram. Usually this takes the form of the Rosin-Rammler distribution, a correlation which is generally considered to be adequate. However, subsequent droplet dynamics are treated in a totally simplistic and incorrect manner. Modern well-designed gas turbine combustors are generally believed to be evaporation rate limited. At the high pressures, temperatures, and convective conditions involved, both chemical kinetic and mixing rates are high compared with those of spray evaporation. All present 3-D codes, including MARC-1, only partially recognize this fact. Following spray evaporation, the source term for the rate of oxidation of the fuel is determined by the minimum

of the rate of fuel oxidation as controlled by chemical kinetics or eddy-breakup mixing. This latter mixing term is dependent upon the level of turbulence and fuel vapor and/or oxygen concentration. In almost all cases the rate of oxidation of the fuel must be artificially slowed by choosing the latter minimum rate method involving mixing. Detailed analysis of droplet evaporation under convection conditions indicates that the time for the droplet to evaporate is slow compared to the time for fuel vapor and air to mix in the droplet wake. Clearly, the existing 3-D models appear to be overpredicting the rate of evaporation of the spray.

During droplet heat-up to the wet bulb temperature no evaporation is allowed. As soon as the wet bulb temperature is reached, the vaporization rate is set equal to its maximum rate. But this step function approach is a gross oversimplification. Over wide ranges of operating conditions the heat-up period represents an appreciable portion of the total drop evaporation time. This is especially true for high gas pressures and temperatures where all but the smallest droplets fail to attain their wet bulb temperature and, hence, their maximum steady-state evaporation rate during their lifetime.

The result of the existing droplet evaporation model is to considerably overpredict the evaporation rate. The effects of this overprediction propagate throughout the entire solution domain. The droplet diameter and, hence, droplet mass are underpredicted, with the consequence that the droplet trajectory is not proper evaluated. This affects the calculated distribution of fuel-air ratio, temperature, chemical kinetics, and species concentration. The error is tempered somewhat in all present models by the artificial reduction of the apparent evaporation rate through the use of the mixing model. But, while overall performance and pattern factor predictions may be only slightly changed, local primary zone temperature profiles and chemical kinetics can be substantially affected.

As a consequence of these effects, detailed droplet dynamic models are being evaluated in a separate NASA program (Analytical Fuel Property Effects--Small Combustor, NASA Contract NAS3-23165) and the best of these will be used to replace the existing droplet dynamics package within MARC-1. It is anticipated that incorporation of such a model will remove the need for MARC-1 to rely so heavily upon artificial techniques to properly predict the combustion rate of the fuel.

3. Fuel insertion modeling-dual orifice and airblast type injectors

The phenomena described above with regard to droplet dynamic effects on model predictions are extremely important. But replacement of the current droplet dynamic package with an improved submodel still requires precise boundary conditions regarding the initial fuel placement. Better dual orifice and airblast fuel insertion models are required in order that the improved droplet dynamics submodel can accurately predict fuel-air ratio distributions, etc. Work on such models is presently being initiated. All of the deficiencies described in the paragraphs above are well understood, many as a result of the investigations conducted under this program. Contractual and/or IR&D effort is presently underway to eliminate these problems from MARC-1.

APPENDIX A

ORIGINAL PAGE IS OF POOR OUALITY

PRIMARY ZONE ADDENDUM PROGRAM

The single-torus primary zone combustor (Concept III) demonstrated the potential for reducing the number of fuel nozzles in a small annular combustor. Therefore this combustor concept was selected for additional evaluation in a program addendum. This design, shown in Figure 93, reduced the number of fuel nozzles from 16 to 12, which increased the spacing-to-height ratio from 1.4 to 1.8. The principle of this concept departed from the dual-vortex, conventional flame stabilization methods by establishing a larger single torus in the primary zone. Features of this design were as follows:

- o torus directionally aligned with annulus airflow
- o fuel entry tangential and opposed to torus
- o film cooling upstream on one side and downstream on the other
- o variable fuel directing tubes
- o fewer fuel nozzles

Figure 93. Concept III combustor--single torus selected for addendum to primary zone study.
The major aerodynamic feature of this design was the increased residence time in the primary zone established by the single reversal pattern. This provided the potential for improved vaporization of the fuel droplets and for more complete combustion reaction.

The three additional modifications selected for the contract adjendum included two aerodynamic configurations and one fuel placement configuration. The design changes were made to provide a more uniform fuel-air mixture to avoid fuel impingement on the liner walls and to introduce the fuel at an optimum location that provided the best vaporization path for improved combustion performance.

Modifications to alter the primary zone aerodynamic flow patterns are shown in Figures 94 and 95. In Figure 94 the primary zone air bushings in the outer combustor liner were positioned circumferentially on either side of the fuel nozzle centerline, while on the inner liner wall a larger single air bushing was aligned with the fuel nozzle. The air bushing was located axially near the fuel nozzle to disperse the fuel spray into two patterns emanating from a single fuel nozzle source. The second aerodynamic modification, shown in Figure 95, was a similar concept, but the inner bushings were moved axially downstream to allow more time for the development of the fuel spray prior to introducing the jet flow. Experience has shown that care must be taken when directing air jets near the spray injection point. Combustion instability, noise, or flame quenching are possible results of early air admission. The size and jet angles used were dictated by the predictions from the MARC-1 3-D model.

The third Concept III combustion system modification involved a change to the fuel direction tubes, as shown in Figure 96. The evaluations made during the basic program demonstrated the potential for improved performance from fuel placement techniques. For this modification, the fuel directing tube was capped off and two fuel exit holes were directed in opposed circumferential directions from each fuel nozzle source. In this manner, the fuel spray gave mcre uniform fuel-air coverage between fuel injection points; this design also provided a means of preventing fuel from impinging on the combustor walls.

ANALYTICAL RESULTS

Concept III mods A1, A2, and A3 were analyzed with the three-dimensional combustor model described in Section III. For each modification the 3-D model generated plots of fuel-air ratio in the primary zone at various radial planes so that the interaction of the fuel spray and the combustion air could be studied. Figure 97 shows the predicted fuel-air ratio in the primary zone both on sector presentation and an average circumferential plot per fuel injector sector for all three design configurations. In all mods it was predicted that the inner wall primary air jets would produce a low fuel-air ratio region in its wake. Mod A3, which featured bifurcated fuel tubes, responded with high fuel concentrations on each side of the fuel injector location. While all designs of Concept III exhibit the tendency for high fuel-air ratios at the outer wall and low ratios at the inner wall, the predictions for mod A3 indicated a lower gradient than the other designs.

Figure 94. Concept III, mod Al, combustor (short fuel tube).

Figure 95. Concept III, mod A2, combustor.

Figure 96. Concept III, mod A3, combustor with bifurcated fuel tube.

Figure 97. Predicted primary fuel-air contours.

ĩ

EXPERIMENTAL RESULTS

Experimental testing of the addendum configuration consisted of the following:

o exhaust performance at 100%, 80%, and idle power o primary zone emissions at 80% power

Table XXI summarizes the measured performance for Concept III mods A1, A2, and A3. Included in the table are both the exhaust and the primary zone data.

Exhaust temperature patterns for each of the addendum mods are shown in Figure 98. Mod Al, which features the inner primary hole in close proximity to the fuel spray, resulted in an unsatisfactory exhaust pattern factor of 0.478. The pattern improved significantly by placing the inner air jet in a more normal downstream position, as noted by the 0.294 pattern factor value of Mod A2.

The combustion efficiency measured in the combustor exhaust was 99.15% for mod Al, while mods A2 and A3 were 99.88% and 99.90% respectively. Mod Al's lower overall efficiency was due to the close proximity of the inner primary air jet, which also resulted in the poor temperature pattern.

Primary zone emission data were obtained at 80% power condition. Figure 99 is a comparison of computer code analytical prediction and measured primary zone fuel-air ratio sector contours. There was a degree of similarity between calculated and measured values for these test configurations. All mods exhibited an above average fuel-air ratio on the outer annulus area and below average values at the inner annulus area on both the calculated and predicted evaluations.

SUMMARY

Mod	Performance										
			Primary z	one		Exhaust					
	Eff.	Smoke	CO EI	CH _X EI	NO _X EI	Eff.	P.F.	LBO			
		<u> </u>									
A1	98.84%	35.0	33.8	3.7	6.8	99.15%	0.478	0.0010			
A2	97.44%	49.5	54.4	13.5	7.3	99.88%	0.294	0.0008			
A3	99.01%	5 9. 0	36.8	1.2	8.5	99.90%	0.309	0.0005			

The exhaust and primary zone performance values are as follows (in all mods tested the primary zone combustion efficiency was relatively high):

In conclusion, the design, analysis, and testing of the Addendum Concept III modifications again verified the usefulness of the three-dimensional computer model in combustor design and analysis effort.

Concept III, mod

<u>Reading</u>	<u>Condition</u>	Measurement	Pressure drop, %	Hot <u>skin, K</u>	Avg <u>skin, K</u>	Pattern factor	Smoke, SAE No.	Fuel-air ra Lean blowout C
327	Idle	Exhaust chemistry	3.60	723	586			0.0058
328	idle	No chemistry	3.60	723	584	0.244		
329	80%	No chemistry	3.43	1051	766	0.499		0.0010
330	80%	Exhaust chemistry	3.37	1059	776			1
331	80%	PZ sequential rake 1	3.44	1074	777			Ì
332	80%	P ⁷ sequential rake 1	3.43	1083	785			
333	80%	No chemistry	3.84	1029	777	0.462		
334	80%	PZ sequential rake 1	3.43	1042	789		40	
335	80%	PZ sequential rake 2	3.43	1046	788		78	
336	80%	PZ sequential rake 3	3.38	1098	797		4	d
337	80%	PZ sequential rake 4	3.39	1089	795		18	d
338	80%	No chemistry	3.41	1107	791	0.478	1	
339	80%	Exhaust chemistry	3.42	1115	792			0

Concept III, Mod A2

Concept III, Mod Al

Reading	Condition	Measurement	Pressure drop ¥	Hot skin K	Avg skin K	Pattern	Smoke,	Fuel-air	rat
iteau nig	condition	neason emeric		SKIII K	<u>SKIII K</u>	Tac cor	JAL NO.	Lean Drowoul	
340	Idle	No chemistry	3.85	698	543	0.544		0.0050	and the second
341	Idle	Exhaust chemistry	3.81	699	547				0
348	80%	No chemistry	3.65	855	816	0.294		0.0008	the second s
349	80%	Exhaust chemistry	3.66	834	804				0
350	80%	PZ sequential rake 1	3.61	854	810		53		0
351	80%	PZ sequential rake 2	2 3.58	832	806		37		0
352	80%	PZ sequential rake 3	3.56	836	814		32		0
353	80%	PZ sequential rake 4	3.53	836	802		76		0

Concept III, Mod A3

			Pressure	Hot	Avg	Pattern	Smoke,	Fuel-air rat	
Reading	Condition	Measurement	drop, %	<u>skin, K</u>	<u>skin, K</u>	factor	SAE No.	Lean blowout	Ch
354	80%	No chemistry	3.40	957	870	0.309		0.0005	
355	80%	Exhaust chemistry	3.27	9 50	868				0
356	80%	PZ sequential rake 4	3.25	961	87 6		34		0
357	80%	PZ sequential rake 1	3.22	949	872		80		0.
358	80%	PZ sequential rake 2	3.27	945	867		74		0
359	80%	PZ sequential rake 3	3.24	949	871		48		0.
360	100%	No chemistry	3.53	1011	945	0.333	·		- 1

LULDUUT FRAME

PRECEDING PACE BLANK NOT, FILMEL

OF POOR QUALITY

Table XXI. Concept III, mods A1, A2, and A3, test data summary

Concept III, Mod Al

Avg	Avg Pattern Smoke,		Fuel-air ratio		C02,	Efficiency,	Emission indices			
<u> 3K III,</u>	K TACION	SAE NU.	Lean Drowout	Chemical	<u></u>	<u> </u>	<u>co</u>	X	<u> </u>	
586	0.044		0.0058	0.0117	2.19	91.64	46.3	77.2	3.2	
584 766	0.244 0.499		0.0010							
776				0.0231	4.65	99.00	21.6	5.0	9.5	
777				0.0334	6.53	98.33	58.4	3.4	3.0	
785				0.0252	5.05	99.02	26.8	3.6	5.8	
777	0.462									
789		40		0.0278	5.52	98.58	30.8	7.2	7.5	
788		78		0.0337	6.57	98.16	54.3	6.0	6.8	
797		4		0.0238	4.84	99.79	6.0	0.3	6.8	
795		18		0.0200	4.00	98.84	44.2	1.3	4.1	
791	0.478	ī								
792		·		0.0221	4.44	99.15	26.6	2.1	4.8	

Concept III, Mod A2

Avg	Pattern	Smoke,	Fuel-air	[•] ratio CO ₂ ,		Efficiency,	Emission indices				
<u>skin,</u> K	factor	SAE No.	Lean blowout	Chemical	<u>%</u>	<u> </u>	<u>c0</u>	<u>CH</u> X	NOX		
543	0.544		0.0050								
547				0.0103	1.80	85.78	53.81	37.6	0.3		
816	0.294		0.0008								
804				0.0215	4.38	99.88	3.0	0.1	9.8		
810		53		0.0346	6.75	98.23	61.1	3.6	7.1		
806		37		0.0305	5.99	98.40	52.4	3.8	8.3		
814		32		0.0222	4.52	99.72	9.7	0.1	9.5		
802		76		0.0392	7.14	93.41	94.3	46.7	4.4		

Concept III, Mod A3

Avg	Pattern	Smoke,	Fuel-air	ratio	CO2.	Efficiency,	Emission indices			
<mark>skin,</mark> K	factor	SAE No.	Lean blowout	Chemical	<u>%</u>	%	<u>c0</u>	<u>CH</u> x	NOX	
870	0.309		0.0005							
868				0.0254	5.16	99.90	1.9	0.1	9.6	
876		34		0.0257	5.18	99.53	16.6	0.6	7.7	
872		80		0.0399	7.83	98.84	42.6	1.5	9.2	
867		74		0.0372	7.28	98.68	49.0	1.7	9.2	
871		48		0.0328	6.50	99.00	39.1	0.8	8.0	
945	0.333									

PRECEDING PAGE BLANK NOT FILMED

EOLDOUT ERAME

147

1

ORIGINAL FAGE IS OF POOR QUALITY

Figure 99. Comparison of analytical prediction and measured primary zone fuel-air ratio (Concept III, Addendum mods--80% power).

APPENDIX B

TEST DATA SUMMARY

Tabulated in this appendix are the test data for all three concepts and mode including the addendum test program. Each data grouping requires three lines of description on separate pages for summary of exhaust and primary zone data. An additional two pages are required for tabulation of primary zone probe data. This tabulation is grouped for each of the three concepts and the addendum. The comments below describe the parameters in the following tabulation.

RDG	Reading number
COND	Test conditiondescribed in Section VI
MEASUREMENT	Defines test measurement, i.e., exhaust chemistry, primary zone chemistry (PZSEQUN RK1), and exhaust temp rature pat- tern (no chemistry)
WA	Airflow in lb/sec
BIP	Burner inlet pressure, lb/in. ² abs
BIT	Average burner inlet temperature, °F
вот	Average burner outlet temperature, °F
RISE	Temperature rise, °F
UF	Fuel flow, 1b/hr
F/A	Fuel-air ratio
FLOW #	Fuel flow/(fuel flow pressure drop) ^{1/2}
F1	Flow factor Wa T/P
ACD	Calculated liner effective hole area based on measured pressure loss, $4n^2$
np/p	Burner pressure loss, %
HOT SKIN	Maximum combustor metal temperature via thermocouples
AVG SKIN	Average combustor metal temperature via thermocouples
TM/TA	Exhaust maximum temperature/exhaust average temperature, •F/°F
PATRN	Exhaust pattern factor = $PF = (BOT_{max} - BOT)/(BOT - BIT)$
TIP	Tip (max radius) annulus average exhaust gas temperature, °F
TMID	Mid-tip annulus average exhaust gas temperature, °F

and a second second

And a second second

. And the second se

RMID	Mid-root annulus average exhaust gas temperature, °F
ROOT	Root (min radius) average exhaust gas temperature, °F
AT	Data location (EX = exhaust, PZ = primary zone)
SMOKE	SAE smoke number per ARP-1179
LBO F/A	Lean blowout fuel-air ratio
CHEM F/A	Gas analysis fuel-air ratio
CO2 %	Measured carbon dioxide, percont
Со ррм	Measured carbon monoxide, parts per million
СНХ РРМ	Measured unburned hydrocarbon (C_3 base, as C_3H_8)
NOX PPM	Total nitrogen oxides
EFF	Combustion efficiency calculated from exhaust gases, $\%$
CO EI	Measured carbon monoxide emission index, g/kg
CHX EI	Measured unburned hydrocarbons emission index, g/kg
NOX EI	Measured oxide of nitrogen emission index, g/kg
CIRCUM LOCATION	Circumferential location, degrees from right-hand edge of sector

OF POOR QUALITY

١

1

Street, state

PAG	E 1										
- -	DATA LISTING FOR CONCEPT I BASELINE NASA PRIMARY ZONE STUDY										
			0	ATE TA	BULATED	1 9 F	E8 82				
RDG	COND	MEASURE	HENT	NA	BIP	817	801	RISE	WF	F/A	FLUN
91	IDLE	EXHAUST	CHEM	2.30	55.3	374.	1046.	672.	85.4	0.01034	30.
92	IDLE	PZ SEQUN	RK 1	2.30	55.5	380.	1052.	672.	85.4	0.01032	30.
95	IDLE	PZ SEQUN	RK 2	2.30	56.0	384.	1070.	685.	87.5	0.01059	30.
95	IDLE	PZ SEQUN	RK 3	2.29	56.1	386.	1075.	689.	87.9	0.01065	30.
97	IDLE	PZ MFOLD	RK 1	2.30	55.2	386.	1057.	670.	85.3	0.01031	30.
98	IDLE	PZ MFOLD	RK 2	2.29	55.4	387.	1064.	677.	86.3	0.01046	30.
99	IDLE	PZ NEOLD	RK 3	2.30	55.2	388.	1041.	653.	83.2	0.01006	30.
100	IDLE	PZ NFOLD	RK 3	2.29	55.6	388.	1065.	677.	85.9	0.01040	30.
101	IDLE	EXHAUST	CHEM	2.29	55.6	388.	1058.	669.	84.9	0.01030	30.
102	IDLE	NO CHEN	ISTRY	2.25	55.9	389.	1069.	680.	86.9	0.01055	30.
103	1008	EXHAUST	CHEM	5.03	147.4	754.	1991.	1236.	356.2	0.01968	25.
104	1005	ND CHEMI	STRY	5.02	147.6	75 ? .	1970.	1213.	353.9	0.01957	25.
105	1008	PZ NFOLD	RK 1	5.02	148.4	755.	1992.	1237.	357.1	0.01975	25.
106	1005	PZ HFOLD	RK 2	5.03	147.6	752.	1991.	1238.	355.5	0.01964	24.
107	1001	PZ MFOLD	RK 3	5.04	148.3	751.	1996.	1245.	356.4	0.01963	24.
108	ALT	EXHAUST	CHEM	2.62	78.2	698.	1911.	1213.	190.3	0.02018	24.
109	ALT	NO CHEN	ISTRY	2.62	78.5	702.	1871.	1169.	190.3	0.02017	24.
110	805	EXHAUST	CHEM	4.62	131.2	614.	1885.	1270.	324.6	0.01950	25.
111	8 0K	ND CHEMI	STRY	4.58	130.9	612.	1860.	1247.	323.1	0.01960	24.
112	508	EXHAUST	CHEN	3.73	100.9	535.	1545.	1010.	210.2	0.01563	25.
113	508	ND CHEMI	STRY	3.72	101.3	541.	1547.	1006.	210.6	0.01575	25.
114	1005	ND CHEMI	STRY	4.93	146.1	753.	2026.	1273.	349.2	0.01967	24.
115	100%	NO CHEMI	STRY	4.97	147.0	753.	2019.	1265.	349.2	0.01953	24.

PAG	E 2											
••	DATA L	ISTING	FOR CO	NCEPT	I BAS	ELINE	NASA	PRIMARY	ZON	E STU	CY	
				DATE	TABUL	ATED:	9 FEB (32				
RDG	COND	F1	ACD	DP/P	HOT Skin	AVG Skin	TM/TA	PATRN	ТĮР	THID	RM10 F	ROOT
91	IDLE	1.198	5.15	4.49	880.	596.	1.099	0.155	22.	24.	5.	-51.
92	IDLE	1.201	5.16	4.49	895.	603.	1.088	0.137	23.	24.	۹.	-51.
95	IDLE	1.192	5.16	4.43	885.	612.	1.090	0.140	24.	24.	۹.	-54.
96	IDLE	1.189	5.14	4.43	886.	615.	1.084	0.131	24.	25.	۹.	-53.
97	IDLE	1.210	5.15	4.58	876.	609.	1.084	0.132	25.	25.	3.	-52.
98	10L E	1.202	5.13	4.56	906.	614.	1.084	0.132	24.	25.	۹.	-53.
99	IDLE	1.212	5.15	4.59	903.	609.	1.085	0.135	24.	24.	3.	-51.
100	IDLE	1.202	5.15	4.52	901.	617.	1.083	0.130	24.	24.	3.	-52.
101	IDLE	1.199	5.13	4.54	925.	618.	1.084	0.132	24.	25.	۹.	-52.
102	IDLE	1.192	5.12	4.49	960.	628.	1.099	0.155	22.	25.	6.	-51.
103	1005	1.189	5.59	3.75	1368.	1087.	1.072	0.116	-7.	48.	38.	-79.
104	100%	1.188	5.59	3.74	1338.	1085.	1.079	0.128	-1.	42.	37.	-76.
105	100%	1.180	5.59	3.69	1366.	1090.	1.078	0.126	6.	47.	32.	-85.
106	100%	1.186	5.58	3.74	1338.	1083.	1.078	0.125	7.	47.	32.	-87.
107	1005	i.184	5.58	3.73	1336.	1084.	1.074	0.119	3.	48.	35.	-86.
108	ALT	1.139	5.40	3.69	1480.	1117.	1.094	0.149	40.	55.	26	122.
109	ALT	1.139	5.41	3.67	1490.	1123.	1.117	0.187	29.	48.	30	106.
110	808	1.155	5.54	3.60	1220.	940.	1.080	0.119	5.	37.	32.	-75.
111	80%	1.145	5.54	3.55	1234.	948.	1.100	0.150	-3.	33.	36.	-66.
112	50%	1.168	5.42	3.85	1078.	820.	1.081	0.123	24.	36.	18.	-77.
113	50X	1.161	5.41	3.82	1071.	830.	1.116	0.178	17.	32.	21.	-72.
114	100%	1.176	5.65	3.60	1258.	1137.	1.102	0.162	-25.	31.	37.	-43.
115	100%	1.177	5.65	3.60	1241.	1125.	1.098	0.156	-31.	30.	38.	-38.

PAG	5E 3											
	DAT	LISTI	NG FOR	CONCEPT	1 BASE	LINE -	- NASA	PRIMARY	ZONE	STUDY	••	
				DATE	TABULA	TED:	9 FEB	82				
RDO	AT	SMOKE	LBO F/A	CHEM F/A	CD2	CO PPM	CHX PPM	NOX PPM	EFF	CO E I	CHX E1	NÛX El
91	EX			0.0108	2.19	399.	29.8	7.	98.76	36.1	4.2	1.1
92	PZ			0.0226	4.53	932.	7.5	55.	99.00	40.8	0.5	4.0
9	PZ			0.0121	2.44	472.	19.3	8.	98.88	38.2	2.5	1.1
96	PZ			0,0200	4.08	247.	3.9	33.	99.68	12.2	0.3	2.7
97	PZ	7.		0.0233	4.62	1392.	5.1	41.	98.60	59.2	0.3	2.9
98	PZ	0.		0.0120	2.40	707.	38.0	5.	98.21	57.8	4.9	0.6
99	PZ	٥.		0.0177	3.61	307.	3.3	26.	99.57	17.1	0.3	2.3
100	PZ			0.0184	3.76	257.	1.8	29.	99.66	13.7	0.1	2.5
10]	EX			0.0103	2.10	374.	19.4	9.	98.90	35.4	2.9	1.5
102	2											
103	EX	0.		0.0222	4.54	25.	0.2	163.	99.91	1.1	0.0	11.9
105	PZ	92.		0.0436	8.07	5187.	335.9	179.	96.05	120.6	12.3	6.8
106	PZ	36.		0.0202	4.12	163.	0.9	102.	99.77	8.0	0.1	8.2
107	PZ	36.		0.0399	7.93	756.	1.9	222.	99.51	19.1	0.1	9.2
108	EX			0.0232	4.73	33.	0.0	116.	99.92	1.4	0.0	8.1
109)											
110	EX	5.		0.0211	4.30	32.	1.6	127.	99.91	1.5	0.1	9.8
111												
112	EX	0.		0.0163	3.34	53.	0.2	64.	99.89	3.2	0.0	6.4
113												
114												
115												

PAG	E 1									
1	DATA L	ISTING FOR C	DNCEPT	I MOD 1 4	- NASA	PRIMAR	Y ZONE	STUDY		
			DATE	TABULATED	18	FEB 82				61 OH
RDG	COND	MEASUREMEN	T WA	BIP	817	BOT	RISE	WF	F/A	FLUW G
165	IDLE	ND CHEMIST	RY 2.3	5 55.9	368.	1054.	685.	87.9	0.01038	28.
166	10LE	EXHAUST CH	EM 2.3	6 56.5	370.	1080.	710.	88.3	0.01038	28.
167	IDLE	PZ SEQUN RK	1 2.3	7 56.6	369.	1086.	717.	88.3	0.01036	28.
168	IDLE	PZ SEQUN RK	2 2.2	7 53.3	368.	1079.	711.	94.7	0.01036	28.
169	IDLE	PZ SEQUN RK	3 2.2	7 55.4	370.	1084.	713.	85.4	0.01043	28.
170	80%	ND CHEMIST	RY 4.5	6 129.7	615.	1930.	1315.	323.9	0.01973	24.
171	80%	EXHAUST CH	EM 4.5	6 127.2	618.	1924.	1306.	321.0	0.01955	24.
172	208	PZ SEQUN RK	1 4.5	0 128.3	608.	1933.	1325.	320.7	0.01979	24.
173	80%	PZ SEQUN RK	2 4.5	4 130.2	608.	1923.	1314.	321.0	0.01963	23.
174	80X	PZ SEQUN RK	3 4.5	7 129.6	609.	1928.	1319.	320.6	0.01949	23.
175	100%	NO CHEMIST	RY 4.9	3 146.6	756.	2065.	1309.	346.0	0.01951	24.
176	100%	PZ SEQUN RK	1 4.9	2 146.1	750.	2046.	1296.	345.5	0.01951	24.
177	1005	PZ SEQUN RK	2 4.9	0 147.2	755.	2103.	1348.	347.3	0.01969	23.
178	100%	PZ SEQUN RK	3 4.8	9 147.2	752.	2094.	1342.	345.8	0.01963	22.

PAG	E 2											
	DATA	LISTING	FOR	CONCEPT	I MOD	1	NASA PRI	LMARY 20	ONE S'	TUDY		
				DATE	TABUL	ATED:	18 FEB	82				
RDG	CON) F1	ACD	DP/P	HOT Skin	AVG SKIN	TM/TA	PATRN	T I P F	THID	RMID F	ROOT F
165	IDLE	1.212	5.1	9 4.51	853.	613.	1.124	0.191	29.	34.	-19.	-46.
166	IDLE	1.204	5.2	4 4.38	833.	630.	1.072	0.110	22.	26.	5.	-52.
167	IDLE	1.205	5.2	4 4.38	828.	629.	1.080	0.121	20.	25.	5.	-51.
168	IDLE	1.227	5.2	3 4.57	835.	621.	1.064	0.097	20.	26.	6.	-50.
169	IDLE	1.182	5.2	4 4.21	848.	610.	1.072	0.109	19.	27.	6.	-51.
170	801	1.153	5.5	7 3.55	1106.	864.	1.100	0.147	7.	37.	24.	-67.
171	801	1.177	5.6	2 3.64	1113.	872.	1.090	0.133	-9.	39.	31.	-60.
172	801	1.147	5.5	9 3.49	1145.	880.	1.071	0.104	5.	40.	24.	-71.
173	801	1.141	5.5	6 3.49	1088.	864.	1.106	0.155	-44.	32.	48 c	-38.
174	801	1.153	5.5	7 3.55	1079.	868.	1.076	0.111	-42.	32.	50.	-40.
175	100	1.171	5.7	1 3.49	1260.	1063.	1.084	0.133	10.	37.	22.	-71.
176	100	1.172	5.6	8 3.53	1286.	1067.	1.039	0.062	-5.	30.	29.	-55.
177	100	1.160	5.7	0 3.44	1290.	1078.	1.044	0.068	-7.	27.	27.	-47.
178	1005	K 1.157	5.6	9 3.43	1331.	1074.	1.045	0.070	-4.	26.	30.	-52.

PAG	E 3											
	DAT	A LIST	ING FOR	CONCEPT	I MCD	1 N/	ASA PRI	MARY Z	DNE STU	DY		
				DATE	TABULA	TED:	18 FEB	82				
RDG	AT	SMOKE	¥90	CHEM F/A	C02	CO PPM	CHX PPM	NDX PPM	EFF	ÊÛ	CHX E1	NOX E I
165			0.0032									
166	EX			0.0108	2.21	284.	10.4	22.	99.26	25.6	1.5	3.2
167	PZ	0.		0.0189	3.81	565.	10.6	27.	99.23	29.5	0.9	2.3
168	PZ	0.		0.0156	3.09	904.	63.8	12.	98.08	57.1	6.3	1.3
169	PZ	0.		0.0222	4.51	196.	4.3	49.	99.76	8.7	0.3	3.6
170			0.0018									
171	ЕX	ο.		0.0216	4.42	37.	0.9	112.	99.91	1.7	0.1	8.4
172	PZ	77.		0.0403	7.81	2448.	44.4	168.	98.40	61.3	1.7	6.9
173	PZ	24.		0.0287	5.81	166.	2.7	99.	99.82	5.8	0.1	5.6
174	PZ	82.		0.0526	9.99	4092.	15.9	240.	98.10	79.5	0.5	7.7
175												
176	PZ	56.		0.0355	7.03	1060.	20.6	200.	99.18	30.0	0.9	9.3
177	PZ	16.		0.0299	6-04	290.	3.6	175.	99.71	9.7	0.2	9.6
178	PZ	23.		0.0457	9.02	926.	2.3	308.	99.46	20.5	0.1	11.2

PAG	E 1										
(DATA L	ISTING	FOR CON	CEPT I	MOD 2 -	= NASA	PRIMAP	RY ZONE	STUDY	•-	
				DATE TA	BULATED	: 5 AF	PR 82				
RDG	COND	MEASU	REMENT	HA	BIP	BIT	BOT	RISE	WF	F/A	FLOW F
189	IDLE	NO CH	EMISTRY	2.28	55.4	373.	1070.	697.	84.6	0.01032	28.
191	IDLE	EXHAUS	T CHEM	2.27	55.9	367.	1074.	706.	85.2	0.01041	28.
192	IDLE	PZ SEQ	UN RK 1	2.29	55.9	368.	1051.	683.	84.5	0.01026	27.
193	IGLE	PZ SEQ	UN RK 2	2.29	55.9	367.	1049.	682.	85.2	0.01035	27.
194	IDLE	PZ SEQ	UN RK 3	2.29	55.9	367.	1050.	683.	84.4	0.01026	27.
195	80%	ND CH	EMISTRY	4.59	130.6	620.	1976.	1355.	323.9	0.01958	24.
196	80%	EXHAUS	T CHEM	4.59	131.6	617.	1974.	1357.	323.2	0.01955	24.
197	80%	PZ SEQ	UN RK 1	4.66	131.6	608.	1978.	1370.	325.5	0.01942	24.
198	803	PZ SEQ	UN RK 2	4.68	133.5	602.	1995.	1393.	327.0	0.01941	24.
199	80%	PZ SEQ	UN RK 3	4.68	132.0	601.	1990.	1388.	327.6	0.01946	24.
201	100%	ND CH	EMISTRY	4.89	146.2	751.	2061.	1309.	345.0	0.01958	22.
202	100%	EXHAUS	T CHEM	4.88	147.0	749.	2088.	1339.	342.9	0.01952	22.
203	80%	ND CH	EMISTRY	4.60	130.2	619.	1945.	1326.	323.5	0.01952	23.
205	80X	PZ SEQ	UN RK 1	4.57	131.1	604.	2086.	1481.	323.5	0.01967	23.
206	80%	PZ SEQ	UN RK 2	4.57	331.7	603.	2117.	1514.	322.2	0.01957	23.
207	80%	PZ SEQ	UN RK 3	4.58	128.9	600.	2095.	1494.	322.4	0.01957	23.
PAG	E 2										
•• 1	DATA L	ISTING	FOR CON	CEPT 1	MOD 2 -	- NASA	PRIMA	RY ZONE	STUDY		
				DATE T	BULATED	I 5 AI	PR 82				
RDG	COND	F1	ACD	DP/P I SI	NOT AV	G TM. N	TA PI	TRN TI	P THID	RMID RO	OT F
189	IDLE	1.185	5.29	4.15 8	37. 64	0. 1.0	084 0	128 20	. 28.	35	1.
191	IDLE	1.170	5.28	4.06 8	308. 61	8. 1.(088 0	.133 10	. 26.	44	7.
192	IDLE	1.177	5.30	4.09 8	807. 60	6. 1.3	108 0.	167 18	. 26.	24	7.
193	IDLE	1.175	5.30	4.09 1	800. 60	3. 1.)	122 0	187 21	. z7.	14	9.
194	IDLE	1.177	5.29	4.10	764. 59	4. 1.3	116 0	179 19	. 26.	34	8.
195	80%	1.156	5.58	3.56 1	175. 96	4. 1.3	119 0	.174 6	37.	246	6.
196	80X	1.145	5.54	3.54 1	168. 96	0. 1.	110 0.	160 -1	. 35.	266	0.
197	80%	1.156	5.57	3.57 1	158. 96	4. 1.(085 0	123 -0	3. 29.	274	9.
198	208	1.143	5.60	3.46 1	54. 94	4. 1.(070 0	101 -40	. 27.	463	4.
199	208	1.154	5.56	3.57 12	202. 93	4. 1.0	068 0	.097 -2	2. 37.	266	1.
201	100%	1.165	5.57	3.63 12	266. 110	9. 1.3	127 0	200 -10). 36.	454	ο.
202	100%	1.154	5.54	3.60 12	261. 110	z. 1.(067 0	105 -28	34.	374	۹.
203	8 0X	1.162	5.60	3.57 12	211. 99	4. 1.3	131 0.	.193	1. 43.	277	7.
205	80%	1.138	5.57	3.45 1	143. 96	4. 1.0	036 0	051 -13). ZZ.	364	6.
206	80%	1.132	5.56	3.44 12	181. 95	0. 1.(028 0	.038 -12	2. 26.	395	3.
207	805	1-156	5.57	3.57 11	99. 95	2. 1.(022 0.	.030 -14	. 23.	414	A.

OTHER PACT IS OF POOR QUALITY

PAG	E 3		IGE 3 • DATA LISTING FOR CONCEPT I MOD 2 'IASA PRIMARY ZONE STUDY													
••	DAT	A LIST	ING FOR	CONCEPT	I MOD	2 '4	ASA PRI	MARY Z	ONE ST	UDY						
				DATE	TABULA	TED: 1	5 APR 8	2								
RDG	AT	SMOKE	₽ ₽/A	CHEM F/A	C02 #	CO PPM	CHX PPM	NOX PPM	EFF	CO E I	CHX E1	NOX E I				
189			0.0040													
191	EX	0.		0.0116	2.36	363.	22.6	19.	99.01	30.5	3.0	2.6				
192	PZ	0.		0.0167	3.36	578.	29.8	27.	98.95	34.1	2.8	2.6				
193	PZ	ο.		0.0136	2.73	538.	47.8	20.	98.58	38.9	5.4	2.4				
194	PZ	0.		0.0257	5.15	628.	15.8	47.	99.34	24.3	1.0	3.0				
195																
196	EX	0.		0.0228	4.65	33.	0.4	113.	99.92	1.4	0.0	8.1				
197	PZ	51.		0.0484	9.36	2446.	15.4	206.	98.74	51.4	0.5	7.1				
198	PZ	100.		0.0470	7.70	7679.2	2737.4	139.	87.31	167.0	93.6	5.0				
199	PZ	91.		0.0508	9.40	6116.	138.6	209.	96.74	122.9	4.4	6.9				
201																
202	EX	16.		0.0239	4.87	22.	1.4	190.	99.91	0.9	0.1	13.0				
203																
205	PZ	70.		0.0484	9.16	4319.	29.0	298.	97.78	90.9	1.0	10.3				
206	PZ	93.		0.0423	7.21	6620.1	827.7	169.	89.82	158.9	68.9	6.7				
207	PZ	85.	0.0020	0.0609	11.01	8907.	76.5	313.	96.31	150.9	2.0	8.7				

and a second second

PAGE 1 -- DATA LIS/ING FOR CONCEPT I MOD 3 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 5 APR 82 FLOH ROG COND MEASUREMENT HA. BIP BIT BOT RISE NF. F/A 214 80% ND CHEMISTRY 4.65 130.8 A08. 1925. 1317. 324.6 0.01941 24. 215 80% EXHAUST CHEM 4.66 130.1 611. 1906. 1295. 324.6 0.01935 24 . 216 80% PZ SEQUN RK 1 4.63 131.5 608. 1940. 1332. 324.4 0.01944 24. 217 BOX PZ SEQUN RK 2 4.61 132.2 610. 1909. 1300. 324.5 0.01957 24. 218 80% PZ SEQUN RK 3 4.64 129.9 609. 1911. 1303. 324.7 0.01944 23. 219 100% ND CHEMISTRY 4.98 147.0 760. 2015. 1256. 352.6 0.01966 24.

PAGE 2 -- DATA LISTING FOR CONCEPT 1 MOD 3 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 5 APR 82 HOT RDG COND F1 DP/P AVG TH/TA PATRN TIP THID RHID RODT ACD 214 80% 1.161 5.88 3.23 117. 0. 1.136 0.199 -53. 25. 57. -30. 215 80% 1.172 5.74 3.45 116. 0. 1.116 0.171 -85. 24. 71. -10. 216 80% 1.151 5.74 3.34 118. 0. 1.052 0.076 -78. 21. 70. -13. 217 80% 1.139 5.72 3.29 121. 0. 1.065 0.095 -72. 73. 65. -15. 218 80% 1.168 5.75 3.42 120, 0. 1.079 0.116 -59. 25. 60. -25. 219 100% 1.183 5.87 3.37 134. 0. 1.152 0.243 -61. 47. 75. -69.

PAGE 3 -- DATA LISTING FOR CONCEPT I MCD 3 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 5 APR 82 RDG AT SHOKE 195 CHEW CQ2 sea BBY EFF Éð CĘŁ NDY 0.0012 214 215 EX 12. 0.0214 4.38 19. 0.1 131. 99.94 0.9 0.0 9.9 216 PZ 48. 0.0326 6.54 435. 1.2 147. 99.65 13.4 0.1 7.4 217 PZ 12. 0.0298 6.03 43. 0.7 134. 99.93 1.4 0.0 7.4 218 PZ 37. 0.0487 9.38 2872. 13.9 246. 98.55 60.0 0.5 8.5 219 0.0016

160

and the second second

PAGE 1 -- DATA LISTING FOR CONCEPT I MOD 4 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 26 MAY 82 FLQH ROG COND **MEASUREMENT** MA BIP 81T BOT RISE F/A MF 236 BOX ND CHEMISTRY 4.58 131.1 613. 1928. 1315. 322.3 0.01956 23. 237 BOX EXHAUST CHEM 4.58 131.2 611. 1940. 1328. 322.6 0.01955 23. 238 80% PZ SEQUE RK 1 4.57 131.6 609. 1930. 1320. 322.7 0.01960 23. 239 80% PZ SEQUN RK 2 4.56 132.8 609. 1940. 1330. 322.9 0.01967 23. 240 80% PZ SEQUN RK 3 4.58 130.9 610. 1957. 1347. 322.3 0.01956 23. 241 80% PZ SEQUN RK 4 4.62 132.6 609. 1932. 1323. 322.2 0.01936 23. 242 100% ND CHEMISTRY 4.97 146.7 748. 2076. 1328. 351.8 0.01966 22.

PAGE 2 -- DATA LISTING FOR CONCEPT 1 NOD 4 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 26 MAY 82 RDG COND F1 DP/P HOT AVG TM/TA PATRN TIP THID RHID ROOT ACD 236 80% 1.143 5.50 3.59 87. 0. 1.105 0.154 -29. 57. 58. -87. 237 80% 1.143 5.46 3.64 87. 0. 1.078 0.114 -16. 54. 47. -87. 238 80% 1.136 5.51 3.52 89. 0. 1.100 0.146 -27. 56. 49. -78. 239 80% 1.122 5.51 3.44 90. 0. 1.076 0.110 -21. 55. 49. -84. 240 80% 1.144 5.49 3.60 91. 0. 1.089 0.130 -6. 55. 42. -92. 241 80% 1.139 5.52 3.54 90. 0. 1.074 0.108 -7. 52. 43. -90. 242 100% 1.178 5.51 3.79 94. 0. 1.118 0.184 6. 60. 44.-112.

```
PAGE 3
-- DATA LISTING FOR CONCEPT I HCD 4 -- NASA PRIMARY ZONE STUDY --
                     DATE TABULATED: 26 MAY 82
RDG AT SHOKE LBO
                    CHEM
F/A
                           cös
                                 00
00
                                             NOX
                                       CHX
                                                        CO
                                                             CMX
                                                                   NDX
                                                   EFF
236
            0.0015
237 EX
                   0.0218 4.46
        4.
                                28.
                                       0.5 153. 99.92
                                                         1.3 0.0 11.4
238 PZ 36.
                                       9.1 250. 98.62 57.4 0.3 8.7
                   0.0480 9.28 2712.
239 PZ
      8.
                   0.0337 6.79 166.
                                       0.6 191. 99.84
                                                         4.9 0.0 9.3
240 PZ 23.
                   0.0500 9.77 1700. 2.0 272. 99.16 34.6 0.1 9.1
Z41 PZ 25.
                   0.0288 5.80 357.
                                       1.1 139. 99.68 12.4 0.1 7.9
242
        0. 0.0016
```

PAGE 1 -- DATA LISTING FOR CONCEPT I NOD 5 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 28 MAY 82 FLOW 801 RDG COND MEASUREMENT MA BIP BIT RISE MF F/A 286 80% ND CHEMISTRY 4.59 131.1 616. 1863. 1247. 323.4 0.01957 33. BOR EXHAUST CHEM 4.58 130.4 623. 1949. 1326. 323.6 0.01961 287 31. 288 202 PZ SEGUN RK 1 4.59 131.5 604. 1924. 1320. 323.2 0.01955 29. 805 PZ SEGUN RK 2 4.62 131.3 607. 1907. 1300. 323.7 0.01946 289 29. 290 80% PZ SEGUN RK 3 4.57 130.5 611. 1933. 1321. 323.6 0.01966 27. 291 80% PZ SEGUN RK 4 4.59 131.2 612. 1932. 1320. 323.3 0.01955 27. ND CHEMISTRY 5.26 129.6 612. 1865. 1253. 370.2 0.01957 25. 292 805 293 100% ND CHEMISTRY 4.95 148.1 755. 1983. 1228. 349.3 0.01962 24. PAGE 2 -- DATA LISTING FOR CONCEPT I NOD 5 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 28 MAY 82 DP/P HOT SKIN AVG TH/TA PATRN TIP THID RHID ROOT RDG COND F1 ACD 1.148 5.11 4.19 ο. 0. 1.144 0.215 3. 31. 38. -74. 286 80% 0. 1.098 0.144 287 80% 1.156 5.08 4.30 с. 8. 37. 42. -87. 80% 1.139 5.03 4.25 288 0. 0. 1.125 0.183 -5. 27. 47. -71. 80% 1.150 5.07 4.27 ٥. 0. 1.124 0.182 -0. 30. 45. -74. 289 С. 80% 1.147 5.07 4.24 0. 1.134 0.196 3. 34. 46. -82. 290 0. 1.120 0.175 45. -75. 30. 291 80% 1.147 5.08 4.23 ٥. 1. 292 80% 1.327 5.05 5.73 0. 1.144 0.214 44. -85. 0. 4. 36. 293 100% 1.164 5.21 4.14 c. 0. 1.104 0.168 6. 38. 49. -94. PAGE 3 -- DATA LISTING FOR CONCEPT I MOD 5 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 28 MAY 82 BOG AT SHOKE LAS CHEN CQ2 EFF Eð chi NP¥ -6A **shy** BBY. 0.0020 286 4.0 120. 99.90 1.6 0.3 9.1 287 EX 11. 0.0215 4.39 34. 288 PZ 45. 0.0234 4.72 459. 2.2 79. 99.52 19.5 0.1 5.5 0.0170 3.47 76. 50.8 53. 99.44 289 PZ 28. 4.4 4.6 5.1 305. 2.6 127. 99.73 9.9 0.1 6.8 290 PZ 27. 0.0306 6.17 291 PZ 14. 0.0256 5.17 453. 6.6 104. 99.53 17.6 0.4 6.6 292 5. 293 5. 0.0020

1	JUNE	82	TABL	JLATIO	IN OF	DATA F	ION PRIM	ARY ZONE	PROBE	ES C	DNCEPT I
	6 C.OM	U CON	CEPT	-		SIRFYE		AVERA	GE RAN	E YALU	ES)
9	2 IDL	E	1 8/	ASLNE	1	11.25	0.0226	99.00	4.53	РР́й 932.	PPH 55.
9	5 1 DL	E 1	1 8/	SLNE	2	22.50	0.0121	98.88	2.44	472.	8.
9	6 IDL	E	1 8/	SLNE	3	15.50	0.0200	99.68	4.08	247.	33.
9	7 IOL	E 1	1 8/	SLNE	1	11.25	0.0233	98.60	4.62	1392.	41. 7.
9	B IOL	E	1 8/	SLNE	2	22.50	0.0120	98.21	2.40	707.	5. 0.
9	9 1 DL	E 1	L 84	SLNE	3	15.50	0.0177	99.57	3.61	307.	26. 0.
10	O IDL	E I	1 84	SLNE	3	15.50	0.0184	99.66	3.76	257.	29.
10	5 100	z :	1 8/	SLNE	1	11.25	0.0436	96.05	8.07	5187.	179. 92.
10	6 100	x :	1 8/	SLNE	2	22.50	0.0202	99.77	4.12	163.	102. 36.
10	7 100	K 1	I 8/	SLNE	3	15.50	0.0399	99.51	7.93	756.	222. 36.
16	7 IDL	E I	t	1	1	11.25	0.0189	99.23	3.81	565.	27. 0.
16	B IDL	E 1	I	1	2	22.50	0.0156	98.08	3.09	904.	12. 0.
16	9 IOL	E 1	l	1	3	15.50	0.0222	99.76	4.51	196.	49. 0.
17	2 80	X 1	I	1	1	11.25	0.0403	98.40	7.81	2448.	168. 77.
17	3 80	R 1	I	1	2	22.50	0.0287	99.82	5.81	166.	99. 24.
17	4 80	K 1	I	1	3	15.50	0.0526	98.10	9.99	4ŭ92.	240. 82.
17	6 100	K 1	I	1	1	11.25	0.0355	99.18	7.03	1060.	200. 56.
17	7 100	K 1	I	1	2	22.50	0.0299	99.71	6.04	290.	175. 16.
17	8 100	K :	I	1	3	15.50	0.0457	99.46	9.02	926.	308. 23.
192	Z IDL	E 1	I	2	1	1' 25	0.0167	98.95	3.36	578.	27. 0.
19	3 IOL	E 1	I	2	2	22.50	0.0136	98.58	2.73	538-5	20. 0.
19	IDL	E 1	I	2	3	15 .50	0.0257	99.34	5.15	628.	47. 0.
19	7 80	K 1	I	2	1	11.25	0.0484	98.74	9.36	2446.	206. 51.
19	80	K 1	1	2	2	22.50	0.0470	87.31	7.70	7679.	139.100.
19	9 80	K 1	ſ	2	3	15.50	0.0508	96.74	9.40	6116.	209. 91.
20	5 80	K 1	L	2	1	11.25	0.0484	97.78	9.16	4319.	298. 70.
200	5 80	K 1	1	2	2	22.50	0.0423	89.82	7.21	6620.	169. 93.
20	7 80	K 1	I	2	3	15.50	0.0609	96.31 1	1.01	8907.	313. 85.
21(6 80	K 1	I	3	1	11.25	0.0326	99.65	6.54	435.	147. 48.
21	7 80	K 1	I	3	2	22.50	0.0298	99.93	6.03	43.	134. 12.
21	80	K 1	I	3	3	15.50	0.0427	98.55	9.38	2872.	246. 37.
23	B 80		I	4	1	11.25	0.0480	98.62	9.28	2712.	250. 36.
23	9 80	K 1	I	4	2	22.50	0.0337	79.84	6.79	166.	191. 8.
24	0 80	4 1	l	4	3	15.50	0.0500	99.16	9.77	1700.	272. 23.
24	1 80	K 2	1	4	4	7.50	0.0288	99.68	5.80	357.	139. 25.
28	80		l	5	1	11.25	0.0234	77.52	9.72	459.	79.45.
289	9 801	K 1	[5	Z	22.50	0.0170	77.44	3.47	76.	53. 28.
Z9(801	K 1	[2	3	15.50	0.0306	99.73	•.17	305.	127. 27.
79)	1 201	K 1		2	•	7.50	0.0230	TT • D J	2.17	975.	109. 19.

RDG	COND	CONCE	PT HOD #	TAKE	PORT	LOCXII	DN FZA	-INDIAID	UAL COZ	KI YELU	E SNO
92	IDLE	I	BASLNE	1	•	4 07		*	* *	1776	PP
					ł	\$: <u>75</u>	0.0235	48:1 3	3:70	458:	
				•	4	5.12	0.0185	99.35	3.61	46Z.	- 44
77	IULE	1	BASLNE	2	•	5.12	0.0105	98.81	2.13	410 .	Ģ
TPUK		NECIE	D WALKNA	IKD2	ž	3:75	0.0139	98.87 98.64	2.80	535.	
96	IOLE	I	BASLNE	3	1	6.07	0.0108	99.0Z	2.19	385.	٩
					12	5.75	0.0278	99.69 99.71	5.61	332. 248.	3
					2	2:12	8:8133	33: 82	3:31	ł72:	- 32
- 37	IDLE	Ŧ	BASLNE BASLNE	ł	HANIF Manif	OLDED					
100	IBLE	ł	BASLNE	3	MAN IF Han If	DEDED					
105	100%	ł	BASENE BASENE	ł	MANIF MANIF						
107	100%	i	BASENE	3	HANIF	ŌĹĎĔĎ					
167	IDLE	1	1	1	1	6.07	0.0224	99.17	4.50	797.	40
					Š	3:22	8.8173	\$3:33	3.50	838:	ŝ
168	IDLE	I	1	2	ă,	5.12	0.0158	99.54	3.22	ž79.	Ž
		•	-	-	3	8:93	8:8237	88:78	8:89	1297-	3
					3	5.44	0.0169	98.22	3.35	893.	ī
169	IDLE	1	1	3	1	6.07	0.0271	99.84	5.50	161.	50
					Ž	5.75	0.0212	99.59 99.79	4.30	304.	50
172	801	1	1		Ĩ	5.12	0.0135	99 .79	2 . 78	-99:	33
•••	•••	•	•	•	1	6.07	0.0385	97.13	7.28	4259.	14
					3	5.15	0.0434	22.22	4.55	1238.	žğ
173	80%	I	1	?	۲ ۱	6.07	0.0222	60 A3	5.00 4 EA	174	124
					Ż	2:15	0.0348	99 .77	7.00	‡ ? 2 :	123
176			,	2	4	3:12	ŏ:ŏ199	99.85	4:87	· 98:	1
1/4	-V3	1	1	د	1	8.07	8-849	22.82	12.33	3132.	30
					3	5.44	0.0612	26.53	iĭ.29	8671.	27
176	100%	1	1	1	•	7.12	0.0352	77.70	7.00	391. 3140	12
					Ż	5.75	0.0405	99.57	8.06	637.	233
	1000			•	3	3:12	0.0349	77.84 99.83	5.23	113:	11
111	1004	1	1	2	1	¢•9?	0.0321	99.86	Q.98	112.	121
					ş	3.75	0.0377	22.62	6.02	>>0. ♦10.	- 33
178	100%	I	1	3	•	7.12	0.0201	77.85	4.10	8/. Bar	116
					12	5.75	0.0510	77.60	10.05	727.	35
					3	3:12	0.0366	99.54	10.69	2067.	26

164

.

PAGE 2 CONTINUED 1 JUNE 82 -- TABULATION OF DATA FROM PRIMARY ZONE PROBES -- CONCEPT 1 RDG COND CONCEPT HOD RAKE PORT LOCATION F/A EFF COZ CO NOX 1 0.0164 0.0154 0.0174 0.0176 3:93 98.74 98.64 98.75 99.40 3.29 3.08 3.50 3.57 620. 660. 628, 405. 234 27: 5.12 193 JULE I 2 2 **6.07** 5.75 5.44 5.12 **98.89 98.54 98.58 98.14** 3.15 3.24 2.6? 1.89 567. 697. 488. 401. 23.27.27.15.).0162 0.0130 0.0094 194 IDLE 1 2 3 6.07 5.75 5.44 5.12 0.0358 0.0237 0.0294 0.0111 1234 484. 841. 685. 500. 7.15 4.74 5.88 2.84 70. 99.17 99.34 98.88 41. 23. 197 80% 1 2 1 \$.07 \$.75 \$.12 0.0473 0.0448 0.0489 0.0525 **78.08 99.32 99.14 98.4**7 9.03 1234 3547. 1713: 3292. 176. 198 80% Ţ 2 2 85.38 10.60 80.83 10.41 98.72 6.04 99.56 3.68 \$:97 3:15 3:12 0.0695 0.0728 0.0306 0.0181 1334 14047. 15262 1225. 180. 166. 185. 135. 199 80% I 2 3 68. 6.07 5.75 5.44 5.12 0.0623 0.0490 0.0653 0.0276 123

 96.55
 11.34

 97.74
 9.30

 95.18
 11.43

 98.95
 5.52

 7782. 374: 12376. 363. 242. 231. 247. 117. 205 801 I 2 1 6.32 6.00 5.37 0.0408 0.0477 0.0138 0.0614 **78.98** 97.28 **99.08** 96.42 8.00 8.95 8.59 11.11 1676. 5155. 1641. 3806. 207. 259. 263. 461. 1234 206 80% I 2 2 6.32 77.53 91.69 99.84 99.79 7.77 9.78 9.61 0.0564 13532. 12753. 133. 119. 233. 190. 135. 6.00 5.99 5.37 0.0311 3 207 801 I 2 3 **6.3**7 5.69 5.37 0.0597 0.0604 0.0625 0.0612 96.07 10.73 96.02 11.05 95.24 10.99 97.13 11.26 9767: 1471. 7150. 181. 428: 287: Ż 216 803 35ġ 1 3 1 \$.07 5.75 0.0302 0.0330 0.0353 0.0319 **99.25 99.68 99.75 99.90** 1234 6.02 6.62 7.09 915. 407. 325. 93. 149. 153. 149. 136. 5.44 217 801 1 3 2 6.07 5.75 5.12 0.0266 0.0284 0.0311 0.0330 1 **9**9.93 **9**9.92 **9**9.93 **9**9.93 38. 130. 2.70 2.20 136. 218 801 1 3 3 6.07 7.75 5.12 0.0580 **95.**77 **29.**79 **99.**79 **99.**77 10.36 9.20 8.52 9.43 255. 244. 214. 273. 9984. 0.0464 0.0429 0.0476 ŝ 441. 680. 383. ā 238 803 1 4 1 \$:97 5:12 0.0571 0.0515 0.0442 0.0396 10.56 9.56 8.78 7.92 **9**7:16 96:38 99:73 99:75 \$614: 3450: 437: 347: <u>}</u> 5 239 801 I 4 2 6.07 5.75 5.44 5.12 0.0300 0.0359 0.0383 0.0307 **49.90 99.91 99.86 79.70** 6.07 7.23 7.68 6.19 76. 80. 169. 338. 1234 172. 213.

	PAG	E 2	CON	TINU	ED									
1	JUNE	82	1		LATI	ION D	E DATA	FROM	PR	IMARY	ZONE P	ROBES -	- CONCE	PT I
RC)G C0	ND	CONCI	EPT	MOD	RAKE	PORT	LBERT	ton	(F7A	-INDIVI EFF X		T VALU PPH	ES) NOX PPM
24	0 8	20	1		•	3	1234	\$.07 5.75 5.44 5.12	800	.0567 .0504 .0486 .0446	98.33 99.56 99.26 99.65	10.78 9.92 9.51 8.85	3906. 850. 1458. 588.	294. 276. 249. 269.
29)] 5	0%	1		•	•	1 2 3	6.07 5.75 5.44 5.12	0000	.0091 .0331 .0411 .0324	99.03 99.66 99.74 99.79	1.84 6.64 8.21 6.53	373. 441. 377. 240.	47. 127 224 158,
20		~			,	1	1234	6.07 5.75 5.44 5.12	0000	.0115 .0268 .0307 .0246	98.55 99.24 99.83 99.89	2.31 5.36 6.21 5.01	725. 835. 188. 88.	35. 93. 101. 86.
20			•		, E	2	1234	6.07 5.75 5.44 5.12	0000	.0138 .0196 .0206 .0141	98.47 99.63 99.73 99.70	2.80 4.00 4.20 2.89	64. 60. 92. 89.	46. 64. 61. 41.
~ ~		~	•		,	,	1234	6.07 5.75 5.44 5.12	0000	.0240 .0390 .0269 .0327	99.57 99.75 99.73 99.86	4.84 7.81 5.44 6.61	461. 359. 257. 142.	88. 171. 113. 134.
23	/1 8	VX	I		2	•	1234	6.07 5.75 5.44 5.12	0000	.0115 .0232 .0440 .0243	98.88 99.50 99.57 99.80	2.32 4.68 8.74 4.94	500. 440. 726. 144.	46. 93. 172. 104.

PAG	E 1									
(DATA L	ISTING FOR CONC	EPT II	BASELI	NE	NASA PR	IMARY 2	ZONE ST	UDY	
		D	ATE TA	BULATED	: 9 F	EB 82				E1 04
RDG	COND	MEASUREMENT	MA	BIP	81T	80T	RISE	NF	F/A	\$
116	1003	NO CHEMISTRY	4.94	145.1	752.	1981.	1230.	345.6	0.01943	25.
117	100%	NO CHEMISTRY	4.94	147.0	751.	1998.	1247.	349.4	0.01965	26.
124	IDLE	ND CHEMISTRY	2.27	54.7	367.	1041.	675.	85.5	0.01045	29.
125	IDLE	EXHAUST CHEM	2.27	55.6	370.	1056.	687.	86.4	0.01056	29.
126	IDLE	PZ SEQUN RK 1	2.28	55.2	370.	1060.	690.	85.8	0.01047	29.
127	IDLE	PZ SEQUN RK 2	2.26	55.2	370.	1050.	680.	85.1	0.01046	29.
128	IDLE	PZ SEQUN RK 3	2.28	55.6	368.	1039.	670.	86.5	0.01055	29.
129	IDLE	EXHAUST CHEM	2.29	55.3	368.	1054.	685.	85.1	0.01033	29.
130	IDLE	ND CHEMISTRY	2.29	55.0	3,7.	1029.	662.	84.2	0.01021	29.
133	ALT	EXHAUST CHEM	2.60	78.2	696.	1896.	1199.	189.9	0.02028	25.
134	ALT	ND CHEMISTRY	2.61	78.6	684.	1852.	1168.	190.1	0.02023	25.
135	ALT	EXHAUST CHEM	2.60	78.9	682.	1878.	1196.	189.3	0.02025	25.
136	50%	EXHAUST CHEM	3.66	99.0	545.	1557.	1012.	207.1	0.01570	26.
137	50%	ND CHEMISTRY	3.67	98.6	538.	1530.	992.	205.6	0.03557	26.
138	803	NO CHEMISTRY	4.57	129.6	614.	1829.	1215.	321.7	0.01958	25.
139	80%	EXHAUST CHEM	4.57	130.0	615.	1872.	1257.	321.3	0.01955	25.
140	80%	PZ SEQUN RK 1	4.56	129.8	606.	1750.	1144.	321.2	0.01956	25.
141	80%	PZ SEQUN RK 2	4.56	130.5	606.	1752.	1146.	321.3	0.01956	25.
142	80X	PZ SEQUN RK 2	4.54	131.4	606.	1755.	1150.	321.0	0.01963	25.
143	80%	PZ SEQUN RK 3	4.55	128.6	604.	1747.	1143.	320.8	0.01959	25.
144	80%	PZ SEQUN RK 3	4.56	129.0	603.	1737.	1134.	321.3	0.01958	25.

and the second second

OF POOR QUALITY

PAG	E 2											
	DATA L	ISTING	FOR CO	NCEPT	II BA	SELINE	NASA	PRIMAR	Y ZOP	E ST	JDY	1
				DATE	TABUL	ATED:	9 FEB 82	2				
RDG	JOND	F1	ACD	0P/P	HQT SKIN	AVG SKIN	TH/TA	PATRN	тĮР	THID	RM1D F	RODT
116	100%	1.186	5.67	3.63	1283.	1111.	1.134	0.216	7.	18.	21.	-44.
117	100%	1.169	5.67	3.52	1330.	1098.	1.137	0.220	6.	19.	20.	-45.
124	IDLE	1.196	5.69	3.66	809.	553.	1.113	0.175	20.	24.	5.	-49.
125	IOLE	1.177	5.63	3.63	812.	561.	1.110	0.170	19.	22.	۹.	-43.
126	IDLE	1.187	5.67	3.64	832.	565.	1.106	0.162	21.	22.	2.	-45.
127	IDLE	1.178	5.60	3.67	855.	567.	1.115	0.178	18.	21.	4.	-43.
128	IOLE	1.179	5.63	3.63	853.	565.	1.060	0.093	22.	22.	2.	-45.
129	IDLE	1.190	5.64	3.70	854.	566.	1.094	0.145	20.	21.	3.	-43.
130	IDLE	1.198	5.65	3.72	852.	565.	1.109	0.169	20.	23.	4.	-47.
133	ALT	1.131	5.55	3.45	1411.	1126.	1.122	0.193	29.	32.	18.	-78.
134	ALT	1.123	5.56	3.38	1395.	1111.	1.131	0.208	25.	36.	21.	-82.
135	ALT	1.113	5.53	3.35	1391.	1105.	1.132	0.208	27.	31.	17.	-76.
136	50%	1.173	5.70	3.52	1086.	834.	1.142	0.218	24.	29.	9.	-62.
137	50%	1.175	5.71	3.51	1081.	826.	1.154	0.237	19.	30.	13.	-61.
138	80X	1.155	5.49	3.67	1272.	1018.	1.235	0.354	14.	30.	12.	-56.
139	80X	1.151	5.50	3.63	1282.	1023.	1.170	0.254	18.	28.	8.	-54.
140	80%	1.148	5.51	3.60	1222.	997.	1.026	0.039	-7.	10.	25.	-27.
141	803	1.141	5.53	3.53	1197.	977.	1.030	0.045	-6.	11.	25.	-28.
142	80%	1.128	5.51	3.47	1199.	975.	1.025	0.039	-5.	12.	23.	-29.
143	80%	1.154	5.52	3.63	1199.	974.	1.037	0.056	-6.	14.	20.	-27.
144	80%	1.151	5.51	3.61	1215.	988.	1.042	0.064	-9.	8.	30.	-27.

r t

بيه ليط بالمعطية غروق الأطار بطالية المحاصل والمحارية المراري

K.K.M

ŝ

OF POOR QUALITY

PAGE 3 -- DATA LISTING FOR CONCEPT II BASELINE -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 9 FEB 82 RDG AT SHOKE LBD EFF CHEM F/A CD5 CD CHX PPH CHX NOX NDX 116 117 124 125 EX 0.0097 1.95 406. 52.8 12. 98.26 40.8 8.3 1.9 126 PZ 6. 0.0139 2.79 543. 54.5 25. 98.53 38.4 6.1 2.9 127 PZ 10. 0.0201 3.98 903. 151.2 30. 97.87 44.3 11.7 2.5 128 PZ 0.0129 2.51 942. 215.1 6. 95.93 71.4 25.6 0.8 0. 129 EX 389. 43.7 7. 98.42 39.4 7.0 1.2 0.0096 1.94 130 133 EX 0.0176 3.60 28. 1.8 148. 99.89 1.6 0.2 13.6 134 135 EX 0.0212 4.33 0.9 139. 99.91 1.5 0.1 10.7 32. 136 EX 0.0162 3.32 35. 0.6 84. 99.91 2.1 0.1 8.4 137 138 139 EX 0.0205 4.19 26. 0.2 136. 99.92 1.2 0.0 10.8 140 PZ 34. 1.8 185. 99.73 0.0345 6.91 339. 9.8 0.1 8.8 141 PZ 61. 0.0462 8.79 3927. 88.5 0.3+++++ 7.1++++++++++ 142 PZ 66. 0.0343 6.80 1070. 8.9 210. 99.20 31.3 0.4 10.1 143 PZ 0. 0.0266 5.36 6.7 137. 99.62 13.4 0.4 8.4 359. 144 PZ 0.0244 4.96 58. 1.6 116. 99.90 2.4 0.1 7.7

and a standard state of the sta

OF POOR OUALITY

PAGE 1 -- DATA LISTING FOR CONCEPT II MOD 1 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 2 MAR 82 FLOW ROG COND MEASUREMENT **B1P** MA 811 BOT RISE MF F/A 179 IDLE NO CHEMISTRY 2.35 56.4 360. 1044. 684. 87.5 0.01035 28. 180 80% ND CHEMISTRY 4.58 130.8 611. 1897. 1286. 322.2 0.01952 23. 181 BOX EXHAUST CHEM 4.58 131.4 612. 1931. 1319. 322.8 0.01959 23. 183 80% PZ SEQUN RK 1 4.60 131.1 609. 1852. 1243. 322.1 0.01946 23. 184 80% PZ SEQUN RK 2 4.61 132.7 608. 1846. 1238. 320.7 0.01935 23. 185 80% PZ SEQUN RK 3 4.60 130.0 61C. 1862. 1252. 322.0 0.01946 23. 186 100% ND CHEMISTRY 4.92 145.3 753. 2007. 1254. 344.3 0.01943 23. 187 100% EXHAUST CHEM 4.93 146.0 75C. 2013. 1263. 343.6 0.01935 23. PAGE 2 -- DATA LISTING FOR CONCEPT II MOD 1 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 2 HAR 82 RDG COND HOT F1 ACD DP/P TH/TA PATRN TIP THID RHID ROOT SKIN 179 IDLE 1.191 5.87 3.41 828. 593. 1.113 0.172 11. 23. 9. -42. 180 80% 1.147 5.76 3.29 1161. 980. 1.186 0.274 -5. 18. 16. -29. 181 80% 1.141 5.75 3.26 1162. 991. 1.140 0.204 -4. 15. 11. -23. 183 80% 1.147 5.75 3.29 1171. 978. 1.035 0.052 -11. 10. 9. -8. 184 80% 1.134 5.75 3.23 1165. 972. 1.064 0.095 -9. 13. 5. -5. 185 80% 1.156 5.74 3.36 1167, 976, 1.068 0.101 -7. 14. 4. -6. 186 100% 1.180 5.69 3.57 1292. 1124. 1.135 0.216 4. 26. -7. -21. 187 100% 1.175 5.65 3.59 1292. 1123. 1.079 0.126 -3. 17. -3. -14. PAGE 3 -- DATA LISTING FOR CONCEPT II HOD 1 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 2 MAR 02 ROG AT SHOKE LBC BBY CHEW CQ2 -58 EFF eð chr 684 NDX 179 0.0050 180 0.0040 181 EX 0. 0.0217 4.42 32. 2.0 151. 99.90 1.5 0.1 11.4 183 PZ 0.0372 7.46 272. 0.2 190. 99.79 7.4 0.0 8.4 7. 184 PZ 0.0270 5.43 1.2 174. 99.49 20.0 0.1 10.5 16. 542. 185 PZ 21. 0.0322 6.47 351. 0.9 202. 99.70 10.9 0.0 10.3 186 21. 187 EX 5. 0.0025 0.0209 4.27 0.1 201. 99.90 23. 1.1 0.0 15.6

CONCERNENT PAGE IS

PAGE 1 -- DATA LISTING FOR CONCEPT 11 MOD 2 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 5 APR 82 FLOH RDG COND MEASUREMENT F/A WA BIP BIT BOT RISE WF 205 80% ND CHEMISTRY 4.64 130.3 610. 1869. 1259. 325.5 0.01947 23. 209 80% EXHAUST CHEM 4.64 132.0 609. 1890. 1281. 325.4 0.01947 23. 210 80% PZ SEQUN RK 1 4.66 130.8 605. 1873. 1268. 325.5 0.01938 23. 211 80% PZ SEQUN RK 2 4.65 131.6 603. 1880. 1277. 325.7 0.01947 23. 212 80% PZ SEQUN RK 3 4.66 130.9 601. 1854. 1253. 324.9 0.01938 23. 213 100% NO CHEMISTRY 5.00 145.9 757. 2004. 1247. 352.5 0.01960 23.

 PAGE 2

 -- DATA LISTING FOR CONCEPT 11 MOD 2 -- NASA PRIMARY ZONE STUDY -- DATE TABULATED: 5 APR 82

 RDG COND
 F1
 ACD
 DP/P
 HOT AYG SKIN
 TM/TA
 PATRN
 TIP
 THID RHID RDT F

 208
 80%
 1.165
 5.62
 3.57
 1360.
 1058.
 1.160
 0.237
 -5.
 22.
 35.
 -52.

 209
 80%
 1.165
 5.63
 3.46
 1345.
 1057.
 1.143
 0.210
 3.
 25.
 32.
 -59.

 210
 80%
 1.164
 5.66
 3.51
 1317.
 1049.
 1.140
 0.207
 4.
 25.
 33.
 -60.

 211
 80%
 1.151
 5.67
 3.41
 1317.
 1050.
 1.142
 0.209
 3.
 27.
 35.
 -65.

 212
 80%
 1.158
 5.68
 3.44
 1300.
 1043.
 1.148
 0.219
 3.
 26.
 35.
 -62.

 213
 100%
 1.194
 5.66
 3.69
 1453.
 1214.
 1.148
 0.238
 4.
 28.
 36.
 <

PAG	E 3											
	DAT	LIST	ING FOR	CONCEPT	11 MOD	2 1	IASA PI	RIMARY	ZONE 51	UDY -	-	
				DATE	TABULA	TED: 5	APR E	32				
RDG	AT	SMOKE	195	chèn	CQ2	PPH	бру	NDX PPH	EFF	ÊŶ	CHX	NDX E Î
208			0.0020									
209	EX	8.		0.0212	4.33	27.	0.8	140.	99.92	1.2	C+1	10.7
210	PZ	27.		0.0282	5.70	265.	1.0	147.	99.74	9.4	0.1	8.5
211	PZ	33.		0.0371	7.33	1313.	4.8	218.	99.13	35.6	0.2	9.7
212	PZ	29.		0.0280	5.66	282.	2.0	182.	99.71	10.0	0.1	10.6
213			0.0015									

PAGE	PAGE 1													
(DATA LISTING FOR CONCEPT II MOD 3 NASA PRIMARY ZONE STUDY													
				DATE 1	TABULATED	: 26	MAY 82				EL DM			
RDG	COND	MEASURE	MENT	HA	BIP	BIT	BOT	RISE	WF	F/A				
227			ISTRY	2.3	55.3	381.	1030.	649.	87.4	0.01041	26.			
228	1015	ETMANCT	CMEN	2.3	5 54.4	369.	1027.	659.	87.6	0-01047	26.			
229	BOT	NO CHEN	15781	4.5	130.4	615.	1902.	1287.	317.4	0.01944	23.			
220	807		CHEN	4.50	129.3	621.	1920-	1299.	317.2	0.01960	23.			
221	807	D7 SEALIN	DE 1		129.0	624.	1895.	1270.	317.4	0.01962	24.			
222	804	D7 CEALN			130.2	624.	1915.	1292	318.9	0.01976	23.			
222	807	D7 SEDUN		A.5	5 130.1	609.	1865.	1257.	324.5	0.01980	23.			
224	807	D7 SEGUN		4.59	130.9	607.	1868.	1261.	321.4	0.01944	23.			
235	1005	NO CHEM	1 C T D 1	A.01		755.	1974	1219.	352.4	0.01965	23.			
235	1004		16101		5 147700	383	874.	491	85.2	0.01036	25.			
243			131N1	2.24	58.7	408.	1366.	971.	117.9	0.01459	25.			
244	1010	NO CHEM	10701	2 2 21	·	300	940	5500		0.01043	25.			
247	IDLE	NO CHEM	TCTDY	2.2		377.	740. 84.9	404	84 G	0.01035	27.			
240	IDLE		15161			384	1161	770.	107.7	0.01242	24			
24/	TOLE		12 IK	2.3	5 77+1 5 54 7	304.	677	507.	103.0	0.01242	201			
290	INCE	PZ SEWUN				383	7//.	271.	103.0	0.01242	20.			
299	IDLE	PZ SEQUA	6 KK 4			303.	1042.	405	103.7	0.01242	20.			
250	IULE	PZ SEQUN	. KK 3	2.30		367.	1071.	361	103.9	0.01240	20.			
251	IOLE	PZ SEQUN		2.3	2 33•1	307.	1130.	(21.	104.5	0.01252	20.			
PAG	E 2													
(DATA L	ISTING FO	R CO	NCEPT	II MOD 3	NA	SA PRIM	ARY ZON	E STUDY					
				DATE	TABULATED	: 26	MAY 82							
RDG	COND	F1 /	CD	DP/P	HOT AV Skin ski	G TI	M/TA PI	ATRN T	IP THID	RMID RO	OT F			
227	IDLE	1.224	.91	3.56	72.	0. 1	.124 0	.197 1	2. 21.	154	7.			
228	IDLE	1.225 5	.91	3.57	76.	0. 1	.153 0	238 1	7. 25.	135	4.			
229	80%	1.139	5.54	3.51	83.	0. 1	.122 0	.180 -	8. 15.	263	2.			
230	80%	1.143 5	.78	3.25	85.	0. 1.	.102 0	150 2	5. 45.	3210	1.			
231	80%	1.147 5	5.75	3.29	89.	0. 1	.050 0	075 1	. 37.	358	7.			
232	80%	1.133	.73	3.24	90.	0. 1	.049 0	.073 1	9. 41.	349	۹.			
233	8 C X	1.144 !	5.77	3.26	92.	0. 1	.055 0	082 2	3. 44.	3410	1.			
234	803	1.146 5	.81	3.22	94.	0. 1.	.053 0	.078 2	2. 48.	3610	4.			
235	100%	1.175 5	5.84	3.35	99.	0. 1	.122 0	.198 2	1. 43.	3710	2.			
243	IDLE	1.200 5	.99	3.32	75.	0. 1.	.374 0.	.666	5. 15.	163	5.			

 244 IDLE
 1.126
 5.75
 3.18
 82.
 0.
 1.109
 0.156
 0.
 17.
 24. -43.

 245 IDLE
 1.212
 5.93
 3.46
 84.
 0.
 1.305
 0.530
 -0.
 12.
 16. -28.

 246 IDLE
 1.176
 5.82
 3.38
 90.
 0.
 1.326
 0.569
 -1.
 7.
 12. -18.

 247 IDLE
 1.224
 5.72
 3.80
 91.
 0.
 1.178
 0.757
 -1.
 12.
 20.
 -31.

 248 IDLE
 1.230
 5.70
 3.86
 93.
 0.
 1.205
 0.336
 8.
 10.
 11.
 -28.

 249 IDLE
 1.226
 5.71
 3.82
 95.
 0.
 1.184
 0.291
 12.
 14.
 11.
 -37.

 250 IDLE
 1.215
 5.68
 3.79
 96.
 0.
 1.100
 0.156
 10.
 13.
 10.
 -34.

 251 IDLE
 1.212
 5.63
 3.84
 94.
 0.
 1.185
 0.280
 13.
 19.
 10.
 -43.

172

the second se

CLICHTER FACE IS OF FOOR QUALITY

PAG	Е Э											
••	DATA	LIST	ING FOR	CONCEPT	II MOD	3	NASA P	RIMARY	ZONE S	TUDY -	-	
				DATE	TABULA	TEDI	26 MAY	82				
RDG	AT	SMOKE	LBO F/A	CHEM F/A	CO2	CO PPM	CHX PPM	NOX PPM	EFF	CO E I	CHX EI	NDX E I
227			0.0050									
228	EX	0.		0.0109	2.02	1356.	340.3	14.	92.70	121.3	47.8	2.1
229			0.0020									
230	EX	0.		0.0219	4.46	26.	5.9	162.	99.88	1.2	0.4	12.0
231	PZ	55.		0.0323	6.42	1074.	10.1	191.	99.15	33.3	0.5	9.7
232	PZ	27.		0.0251	5.07	382.	5.4	180.	99.57	15.1	0.3	11.7
233	PZ	8.		0.0336	6.77	169.	8.5	193.	99.81	5.0	0.4	9.4
234	PZ	29.		0.0270	5.42	711.	10.1	159.	99.30	26.2	0.6	9.6
235			0.0017									
243			0.0060									
244												
245												
246			0.0065									
247												
248	PZ			0.0222	4.34	1390.	209.4	32.	97.19	62.2	14.7	2.4
249	₽Z			0.0254	5.00	1320.	197.4	36.	97.67	51.6	12.1	2.3
250	PZ			0.0199	3.99	712.	45.1	33.	98.85	35.5	3.5	2.7
251	PZ			0.0272	5.25	2012.	301.0	36.	56.68	73.7	17.3	2.2

and a second second

Ē

PAGE 1 -- DATA LISTING FOR CONCEPT II MOD 4 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 26 MAY 82 FLCH RDG COND NEASUREMENT WA 81P BIT BOT #1SE MF F/A 252 IDLE NO CHEMISTRY 2.32 56.3 377. 1022. 644. 86.2 0.01031 13. 55.9 400. 253 IDLE ND CHEMISTRY 2.33 1215. 815. 105.3 0.01257 13. 54.8 376. 1126. 750. 86.7 0.01045 13. 254 IDLE EXHAUST CHEM 2.30 54.9 374. 1305. 255 IDLE EXHAUST CHEN 2.02 931. 104.7 0.01253 13. 54.7 373. 1209. 836. 103.9 0.01251 256 IDLE PZ SEQUN RK 1 2.31 13. 257 IDLE PZ SEQUN RK 2 2.30 54.6 376. 1211. 835. 104.2 0.01261 13. 258 IDLE PZ SEQUN RK 3 2.35 55.3 375. 1197. 622. 104.3 0.01236 13. 259 IDLE PZ SEQUN RK 4 2.33 55.2 374. 1198. 825. 104.4 0.01243 13. PAGE 2 -- DATA LISTING FOR CONCEPT II HOD 4 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 26 MAY 82 TH/TA PATRN TIP THID RHID ROOT DP/P HOT AVG ROG COND F1 ACD ٥. 0. 1.340 0.539 20. 32. 19. -70. 252 IDLE 1.194 6.02 3.26 0. 1.338 0.504 18. 31. 21. -72. 253 IDLE 1.220 5.80 3.67 0. 254 IDLE 1.215 5.85 3.58 0. 0. 1.263 0.395 32. 39. 13. -83. 0. 1.244 0.342 38. 48. 17.-103. 255 IDLE 1.220 5.82 3.65 0. 256 IDLE 1.218 5.81 3.65 0. 0. 1.169 0.244 33. 38. 13. -83. 34. 38. 14. -86. 257-10LE 1.216 5.78 3.66 0. 0. 1.168 0.244 0. 1.165 0.239 34. 39. 12. -84. 258 IDLE 1.224 5.82 3.67 0. 0. 1.181 0.263 34. 39. 13. -85. 259 IDLE 1.220 5.81 3.65 0. PAGE 3 -- DATA LISTING FOR CONCEPT 11 MOD 4 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 26 MAY 82 ROG AT SHOKE LED EÓ CÂX CD2 EFF NQX CHEN PER SHX. NOX. 252 0.0038 253 254 EX 0.0120 2.42 468. 68.9 30. 98.28 38.1 8.8 4.1 0. 449. 74.5 40. 98.60 29.0 7.6 4.2 0.0152 3.06 255 EX 0. 0.0284 5.56 1325. 224.6 63. 97.75 46.5 12.4 3.7 256 PZ 8. 0.0374 7.08 3788. 133.4 108. 97.11 102.0 5.6 4.8 257 #2 69. 32. 98.84 29.0 5.1 4.3 355. 39.6 0.0120 2.43 258 PZ 0. 0.0359 6.31 6413. \$26.8 51. 92.43 179.9 36.4 2.4 259 PZ 18.

OF POOR QUALITY

PAGE 1

Sector States and the state of the states

1

-- DATA LISTING FOR CONCEPT 11 MOD 5 -- NASA PRIMARY ZONE STUDY --

			DATE	TABULATED:	28 MAY 82	2			F . O.
RDG	COND	MEASUREMENT	WA	BIP BI	T BOT	RISE	WF	F/A	FLUM #
267	IDLE	ND CHEMISTRY	2.3	1 55.8 36	4. 1055.	. 686.	86.3	0.01037	13.
268	IDLE	EXHAUST CHEM	2.3	1 56.1 36	2. 1028.	. 665.	86.0	0.01036	13.
269	IDLE	PZ SEQUN RK 1	2.3	1 56.2 35	4. 950.	. 595.	86.0	0.01037	12.
270	IDLE	PZ SEQUN RK 2	2.3	1 56.2 35	0. 950	. 600.	86.3	0.01040	12.
271	IDLE	PZ SEQUN RK 3	2 . 3	0 56.1 34	y. 955.	. 606.	86.1	0.01039	12.
272	IDLE	PZ SEGUN RK 4	2.3	0 56.3 34	5. 945	. 600.	86.2	0.01040	12.
273	IDLE	ND CHEMISTRY	2.3	1 54.6 36	4. 1200.	. 836.	104.1	0.01250	12.
274	IDLE	EXHAUST CHEM	2.3	2 55.5 36	1. 1176.	. 815.	104.2	0.01250	12.
275	IDLE	PZ SEQUN RK 1	2.3	2 56.0 35	3. 1070	. 718.	104.2	0.01248	12.
276	IDLE	PZ SEQUN RK 2	2.3	3 56.1 34	B. 1323.	702.	104.0	0.01239	12.
277	IDLE	PZ SEQUN RK 3	2.3	5 55.2 34	4. 1048.	. 704.	105.2	0.01243	12.
278	IDLE	PZ SEQUN RK 4	2.3	3 55.0 34	2. 1053	. 711.	105.5	0.01258	12.

PAGE 2 -- DATA LISTING FOR CONCEPT 11 MOD 5 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 28 MAY 82 TH/TA PATRN TIP THID RHID ROOT HOT ROG COND F1 ACD DP/P SKIN 267 IDLE 1.190 5.68 3.64 0. 0. 1.240 0.366 5. 16. 14. -36. 0. 1.137 0.212 15. 248 IDLE 1.178 5.68 3.56 ٥. 20. 6. -43. 269 IDLE 1.172 5.71 3.49 0. 0. 1.145 0.231 12. 16. 6. -35. 270 IDLE 1.169 5.69 3.49 0. 1.150 0.238 12. 16. 0. 7. -33. 271 1DLE 1.166 5.70 3.47 ٥. 0. 1.170 0.269 14. 16. 5. -35. 272 IDLE 1.161 5.69 3.44 0. 1.152 0.240 16. 3. -37. ٥. 18. 273 IDLE 1.217 5.61 3.91 0. 1.242 0.348 8. 21. 17. -47. c. 274 IDLE 1.196 5.62 3.76 0. 0. 1.200 0.289 22. 29. 8. -59. 275 IDLE 1.182 5.62 3.67 0. 1.092 0.137 18. 21. 0. 5. -44. 0. 1.082 0.123 18. 22. 276 IDLE 1.181 5.63 3.64 6. -47. 0. 277 IDLE 1.207 5.64 3.80 0. 0. 1.128 0.190 19. 20. 7. -47. 278 IDLE 1.200 5.62 3.78 0, 1.110 0.162 20. 24. ٥. 6. -50.

175

PAG	E 3											
	DAT	LIST	ING FOR	CONCEPT	II MOD	5	NA SA PR	IMARY	ZONE ST	UDY -	•	
				DATE	TABULA	TED:	28 MAY	82				
RDG	AT	SMOKE	₽ ₽/A	CHEM F/A	CD2	CO PPH	СНХ Ррм	NÛX Pêm	EFF	CD €1	CHX E I	NDX E I
267			0.0040									
268	EX	0.		0.0105	2.07	558,	129.8	18.	97.00	52.2	19.1	2.7
269	PZ	0.		0.0138	2.69	944.	211.8	22.	96.22	67.3	23.7	2.6
270	PZ	0.		0.0190	3.76	895 .	182.9	39.	97.52	46.5	14.9	3.3
271	PZ	0.		0.0102	2.03	424.	87.5	18.	97.81	40.9	13.2	2.8
272	PZ	0.		0.0106	2.08	666.	161.1	15.	96.39	61.4	23.3	2.2
273												
274	EX	0.		0.0126	2.54	412.	50.6	24.	98.67	32.2	6.2	3.1
275	PZ	з.		0.0232	4.57	1389.	90.9	36.	98.06	59.4	6.1	2.5
276	PZ	22.		0.0388	7.50	2708.	80.9	79.	98.07	70.4	3.3	3.4
277	PZ	0.		0.0131	2.66	331 -	36.4	25.	99.02	24.7	4.3	3.1
278	PZ	0.		0.0180	3.55	1123.	98.6	22.	97.78	61.7	8.5	2.0

inin a set the state of the sta

1 JUNE 8	2 T	ABULATIC	n N	F DATA F	ROM PRIM	ARY ZON	E PROB	ES C	ONCEPT II	
RDG COND	CUNCE	PT MOD F	AKE	LOCATIO	N \$74	AVER	AGE RA	KE YALU	NOX SHOKE	ł
126 IDLE	U	BASLNE	1	11.25	0.0139	x 98.53	2.79	PP11 542%	25. 6.	
127 IDLE	11	BASLNE	2	22.50	0.0201	97.87	3.98	903.	30. 10.	
128 IOLE	11	BASLNE	3	15.50	0.0129	95.93	2.51	942.	6. 0.	
140 88%	11	BASLNE	1	11.25	0.0345	99.73	6.91	339.	185. 34.	
141 80X	11	BASLNE	2	22.50	0.04624	*****	8.79	3927.4	**** 61.	
142 80%	11	BASLNE	2	22.50	0.0343	99.20	6.80	1070.	210. 66.	
143 805	11	BASLNE	3	15.50	0.0266	99.62	5.36	359.	137. 0.	
144 80%	11	BASLNE	3	15.50	0.0244	99.90	4.96	58.	116.	
183 80%	11	1	1	11.25	0.0372	99.79	7.46	272.	190. 7.	
184 80%	11	1	2	22.50	0.0270	99.49	5.43	542.	174. 16.	
185 80%	11	1	3	15.50	0.0322	99.70	6.47	351.	202. 21.	
210 80%	11	Z	1	11.25	0.0282	99.74	5.70	265.	147. 27.	
211 001	11	2	2	22.50	0.0371	99.13	7.33	1313.	218. 33.	
212 00%	11	2	3	15.50	0.0280	99.71	5.66	282.	182. 29.	
231 80%	11	3	1	11.25	0.0323	99.15	6.42	1074.	191. 55.	
232 80%	11	3	2	22.50	0.0251	99.57	5-07	382.	180. 27.	
233 80%	11	3	3	15.50	0.0336	99.81	6.77	169.	193. 8.	
234 80%	11	3	4	7.50	0.0270	99.30	5.42	711.	159. 29.	
248 IDLE	11	3	1	11.25	0.0222	97.19	4.34	1390.	32.	
249 IOLE	11	3	2	22.50	0.0254	97.67	5.00	1320.	36.	
250 IDLE	11	3	3	15.50	0.0199	98.85	3.99	712.	33.	
251 IOLE	11	3	4	7.50	0.0272	96.68	5.25	2012.	36.	
256 IDLE	11	4	1	11.25	0.0284	97.75	5.56	1325.	63. 8.	
257 IDLE	11	4	2	45.00	0.0374	97.11	7.08	3788.	108. 69.	
258 IDLE	11	4	3	38.00	0.0120	98.84	2.43	355.	32. 0.	
259 IDLE	11	4	4	7.50	0.0359	92.43	6.31	6413.	51. 18.	
269 IBLE	11	5	1	11.25	0.0138	96.22	2.69	944.	22. 0.	
270 IDLE	11	5	2	45.00	0.0190	97.52	3.76	895.	39. 0.	
271 IDLE	11	5	3	38.00	0.0102	97.81	2.03	424.	18. 0.	
272 IOLE	11	5	٩	7.50	0.0106	96.39	2.08	666.	15. 0.	
275 IBLE	11	5	1	11.25	0.0232	98.06	4.57	1389.	36. 3.	
276 IDLE	11	5	2	45.00	0.0388	98.07	7.50	2708.	79. 22.	
277 10LE	11	5	3	38.00	0.0131	99.02	2.66	331.	25. 0.	
278 IOLE	11	5	4	7.50	0.0180	97.78	3.55	1125.	22. 0.	

Maria Strategica State

	PAGE 2	2										
1 JI	JNE 82	T/	ABULATIO	N DI	F DAT	A FROM	PRIN	ARY	ZONE P	ROBES -	- CONCE	PT 11
RDG	COND	CONCE	PT MOD R	AKE	PORT	LBERT	fon ⁽	F/A	-INDIVI	DUAL	RT VALU	ES)
126	IDLE	11	BASLNE	1	1	\$-97	8.8	2112	28.79	- 	399.	38.
1 2 7	101 5		BACINE	3	3	5.44	ö.ö		98.31 98.50	3.45	739. 469.	26.
121	1955 1955	II NECTEI	DAJLHE Dajlhe	2 N R	•	2.12	<u> 0</u> .0	180	98.69	3.61	533.	22.
1 38	1015	11	BACINE	3	ž	5.75	8.č	269	97.31 97.36	5.24	1429. 741.	46. 36.
120	INCE		BASLNE	3	1	6.67 5.75 2.99	0.0		92.07 96.79 26.24	2.03	1230. 896. 1068.	4 .
140	80%	11	BASLNE	1	•	2.12	0.0	147	70.00	4 4 7	5/0.	10.
+SONE	E PORT	S PLU	GED			5.44	0.0	344	99.71 99.81 99.81	6.90	358. 215. 269.	184. 189. 180.
141	803	11	BASLNE	2	4	5.12	0.0	343	99.17	6.80	1153.	208.
+POR1	IS BAC	KWARD	S E PLUG	GED	3	5.75	0.0	608 560 347	••••• 97.87 98.84	10.53	8103.+ 4964 145	**** 316. 224.
142	80%	11	BASLNE	2	•	5.12	Q.Q	337	99.35	6.70	870.	-24.
+POR 1	IS BAC	KNARD	S & PLUG	GED	Ì	5.12 6.07 6.07		311	99.39 98.84 99.32	6.23 8.23 6.06	739. 1869. 802.	191. 258. 188.
143	80%	11	BASLNE	3	123	6.07 5.75 5.44 5.12		319 306 269	98.99 99.89 99.89 99.87	6.31 6.18 5.45 3.51	1261. 70. 59.	185. 143. 132. 90.
144	80%	11	BASLNE	3	1	6.07	0.0	263	99.90 99.91 99.90 99.88	5.34	61. 58. 57.	121.
103	80%	11	1	1	1	6.07 5.75 5.44 5.12	0.0	338 399 423	99.79 99.85 99.75	6.80 7.99 8.43	259. 177. 363. 291.	186. 248. 114. 211.
184	80 %	11	1	2	123	6.07 5.75 5.44	0.0	0085	99.00 99.48 99.50 99.61	1.72	355. 552. 728.	55. 160. 239. 2*1.
185	80%	11	1	3		6.07 5.75 5.44 5.12	0.0		99.56 99.79 99.68 99.80	6.91 6.76 9.98 5.53	589. 239. 394. 182.	222.
210	80%	11	2	1	1	6.07 5.75 5.44 5.12	0.0		99.88 99.85 99.65 99.70	3.11	55. 128. 504. 373.	75. 117 193 201
211	808	11	2	2	1	6.07 5.75 5.44 5.12	0.0	8402 9476 9443	98.66 98.73 99.10 99.69	3.36 7.86 9.31 8.79	955. 2073. 1729. 495.	105. 238. 282. 247.
212	80%	11	2	3	1234	6.07 5.75 5.44 5.12	0.0	311 270 309 232	99.48 99.90 99.64 99.90	6.23 5.49 6.21 4.73	594. 64. 416. 53.	221. 176. 193. 138.

and the second secon
.

	PAGE 2	CONTIN	UED								
1 J	UNE B	2 TAB	ULAT	ION OF	DAT	A FROM	PRIMARY	ZONE PI	ROBES -	- CONCE	PT 11
RDG	CONU	CONCEPT	MOD	RAKE	PORT	LBERT	ION F7A	-INDIVIC EFF S	NAL POI	RT VALU CD PPM	ES) NDX PPM
231	BCX	11	3	1	3	\$:97 \$:97		29-8 2 99-82	\$:}}	116. 1559.]]]]]]]]]
232	80%	11	3	2	1	5.12 6.07 5.75	0.0377	98.48 99.12 79.39	7.34 2.05 5.34	2247. 360. 612.	231. 76. 194.
233	80%	11	3	3	3	5.12	0.0304	99.67 99.76	6.75	327.	2222
324	807			•	234	5.75 5.44 5.12	0.0327 0.0327 0.0328 0.0347	99.90 99.90 99.78	6.60 6.62 6.97	273.	179.
237		••	3	•	1	6.07 5.75 5.44 5.12	0.0075	97.29 99.15 99.39 99.74	1.47 5.20 7.53 7.46	824. 876. 837. 306.	35. 128. 229. 244.
248	IDLE	11	3	1	1	\$:97	0.0201 0.0210 0.0239	87:73 97.46	3:03	1706:	36.
249	IDLE	11	3	2	1	5.12 6.07 5.75	0.0237	98.10 99.10 98.97	4.69	1129. 781. 827.	36. 57. 37.
250	IDLE	11	3	3	3	3:12 \$.97	8:8217	\$4.61 \$9.11	4:69 4.21	2092. 575.	21. 36.
251	IDLE	11	3	٠	3 4 1	5.12	0.0163 0.0267	48.97 98.11 94.85	4.20 3.24	705. 888. 3072.	26.
256		11	•	1	234	5.75	0.0321 0.0264 0.0237	97.29 97.15 97.40	6.23 5.13 4.65	2003. 1743. 1230.	50. 35. 28.
			•	•		6.07 5.75 5.44 5.12	0.0318 0.0284 0.0285 0.0285	98.46 98.74 98.13 95.30	6.25 5.63 5.61 4.75	1494. 979. 1185. 1641.	69. 65. 55.
257	IDLE	11	4	2	123	6.07 5.75 5.44	0.0529 0.0392 0.0348	94.98 97.84 98.74	9.39 7.53 6.85	9703. 3096. 1432.	152. 121. 90.
258	IDLE	11	٩	3	1	5.12 6.07 2.72	0.0230	98.16 99.06 98.47	4.26 3.41 2.07	922. 414. 354.	60. 51. 29.
259	IDLE	11	٩	٩	₹ 1	3:12 6-97	8:8661	78:52 10-10	f:83 5-17	311: 10519.	26: 31.
269	IDLE	11	5	1	\$	3:42	0.0349	77:13 97:13	7:22 4.07	1265.	37.
			-	•	34	5.13	0.0149 0.0162	47:18 97:91 95:67	2:52 2:97 3:13	924 805 1188	18. 26. 29.
2 10	IULE		7	۵	1234	\$.07	0.0152 0.0188 0.0210 0.0211	96.35 98.08 99.02 96.36	2.97 3.76 4.23 4.09	901. 693. 554. 1431.	28. 37. 48. 42.

	PAGE	2 CONTIN	UED								
1 J	UNE 8	2 TAB	ULAT	ION OF	DAT	A FROM	PRIMARY	Z'UNE PR	OBES -	- CONCEI	PT II
RDG	COND	CONCEPT	MOD	RAKE	PORT	LOCAT	ION F/A	-INDIVIO EFF X		RT VALUI ČŪ PPM	ES+) NOX PPM
271			2	3	1	\$.97 5.44 5.12	0.0093 0.0100 0.0109 0.0104	97.04 97.13 98.40 98.51	1.84 2.20 2.11	434. 487. 397. 379.	17. 18. 18.
272	IOLE	11	2	•	1234	6.07 5.75 5.44 5.12	0.0076 0.0091 0.0120 0.0138	94.71 95.53 97.26 97.14	1.46 1.78 2.38 2.72	540. 611. 657. 857.	8. 12. 19. 19.
212	INCE		7	1	1234	6.07 5.75 5.49 5.12	0.0186 0.0219 0.0257 0.0257	96.83 97.97 98.47 98.60	3.61 4.32 5.07 5.28	1404. 1348. 1384. 1418.	29. 32. 43.
273			7	6	1234	6.07 5.75 5.44 5.12	0.0383 0.0387 0.0425 0.0357	97.25 98.98 98.69 91.22	7.32 1.62 8.27 6.79	3191. 1528. 2255. 3857.	71. 78. 90. 74.
271	IULE	**	2	3	1234	6.07 5.75 5.44 5.12	0.0140 0.0130 0.0150 0.0155	98.5 1 99.26 9 9.21 9 9.12	2.83 2.64 3.06 2.13	446. 289. 326. 262.	29. 24. 28. 19.
218	INCE	11	2	•	123	6.07 5.75 5.44 5.12	0.0066 0.0174 0.0236 0.0246	96.23 98.27 97.76 97.88	1.30 3.45 4.64 4.82	463. 973. 1558. 1606.	10. 13. 31. 33.

PAG	E 1										
(DATA L	ISTING FO	R CONC	EPT 11	I BASEL	INE	NASA P	PRIMARY	ZONE	STUDY	
			٥	ATE TA	BULATED	1 9 F	EB 82				FLOW
RDG	COND	MEASURE	HENT	WA	8 I P	BIT	BOT	RISE	WF	F/A	¢
118	100%	NO CHEM	ISTRY	5.03	148.6	747.	2005.	1258.	355.3	0.01960	19.
119	100%	NO CHEM	ISTRY	5.03	1+7.6	751.	2018.	1267.	355.0	0.01959	19.
149	IDLE	ND CHEM	ISTRY	2.25	54.0	359.	1033.	673.	82.8	0.01021	20.
150	IDLE	EXHAUST	CHEM	2.25	53.8	355.	1059.	704.	82.6	0.01019	20.
151	IDLE	EXHAUST	CHEM	2.24	53.8	358.	1071.	713.	83.4	0.01035	20.
152	50%	ND CHEM	ISTRY	3.72	100.3	544.	1590.	1046.	208.5	0.01537	18.
153	50%	EXHAUST	CHEM	3.72	100.6	540.	1593.	1054.	208.5	0.01557	18.
154	80X	ND CHEM	ISTRY	4.61	131.2	624.	1896.	1273.	323.7	0.01949	18.
155	80X	NO CHEM	ISTRY	4.62	130.6	612.	1892.	1280.	322.6	0.01938	18.
156	80%	EXHAVST	CHEM	4.62	131.0	610.	1967.	1357.	323.5	0.01946	18.
157	80%	PZ SEQUN	RK 1	4.62	136.8	609.	1988.	1379.	322.9	0.01941	17.
158	80%	PZ SEQUN	RK 2	4.64	131.4	607.	2016.	1409.	322.7	0.01930	17.
159	80%	PZ SEQUN	RK 3	4.63	129.3	604.	1997.	1393.	323.2	0.01941	17.

PAGE 2

• •	DATA	LISTING	FOR CO	NCEPT	III B	A SEL INI	E NAS	A PRIMA	RY Z	DNE ST	TUDY
				DATE	TABUL	ATED:	9 FEB 8	2			
RDG	COND	F1	ACD	0 P /P	HOT Skin	AVG Skin	TH/TA	PATRN	TIP F	THID F	RHID ROOT
118	100%	1.177	5.46	3.85	1337:	1054.	1.126	0.200	7.	30.	1956.
119	1007	1.188	5.46	3.93	1377.	1079.	1.119	0.189	3.	29.	2151.
149	IDLE	1.195	5.41	4.04	930.	585.	1.130	0.200	9.	19.	938.
150	IDLE	1.193	5.43	4.00	906 -	581.	1.109	0.164	14.	21.	643.
151	IDLE	1.190	5.41	4.01	913.	584.	1.100	0.150	17.	24.	1051.
152	503	1.175	5.69	3.53	1274.	807.	1.138	0.210	6.	27.	1851.
153	503	1.169	5.67	3.52	1279.	811.	1.114	0.172	12.	-31.	3717.
154	80%	1.157	5.76	3.35	1583.	968.	1.144	0.215	-0.	34.	2759.
155	80%	1.159	5.75	3.37	1547.	953.	1.148	0.218	-2.	33.	2760.
156	807	1.153	5.73	3.36	1471.	928.	1.103	0.150	1.	34.	2659.
157	80%	1.154	5.73	3.37	1435.	906.	1.079	0.114	-2.	41.	2764.
158	803	1.154	5.77	32	1512.	932.	1.051	C.073	5.	40.	2571.
159	803	1.167	5.72	3.45	1559.	915.	1.085	0.122	11.	47.	2351.

PAG	AGE 3													
	DAT	A LIST	ING FOR	CONCEPT	111 84	SELINE	NAS	A PRIM	ARY ZOI	NE STU	DY			
				DATE	TABULA	TED: 9	FEB 8	2						
RDG	AT	SHOKE	LBO F/A	CHEM F/A	CD2 #	CO PPH	CHX PPM	NOX PPH	EFF	ÊD	CHX E1	NDX E I		
118														
119														
149			0.0030											
150	EX			0.0113	2.28	379.	29.3	27.	98.85	32.9	4.0	3.9		
151	EX			0.0114	2.32	368.	15.5	20.	99.07	31.5	2.1	2.8		
152			0.0018											
153	EX			G.0171	3.50	84.	1.4	77.	99.84	4.8	0.1	7.3		
154			0.0024											
155														
156	EX	6.		0.0229	4.66	43.	0.7	135.	99.91	1.9	0.0	9.6		
157	PZ	48.		0.0283	5.72	271.	1.6	171.	99.73	9.5	0.1	9.9		
158	PZ	87.		0.0545	7.36	6639.8	573.9	92.	72.81	126.52	256.7	2.9		
159	PZ	42.		0.0170	3.47	130.	44.4	72.	99.42	7.5	4.0	6.8		

- Second

تسغيا بالمتعاميكين

PAGE 1 -- DATA LISTING FOR CONCEPT III MOD 1 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 22 FEB 82 FLOW ROG COND MEASUREMENT WA BIP BIT BOT RISE MF F/A 160 80% ND CHEMISTRY 4.62 130.7 615. 1945. 1330. 324.2 0.01949 19. 161 80% EXHAUST CHEM 4.63 132.8 611. 1978. 1367. 322.7 0.01937 18. 162 80% PZ SEQUN RK 1 4.58 131.3 603. 1918. 1315. 323.9 0.01965 18. 163 80% PZ SEQUN RK 2 4.59 129.8 603. 1934. 1331. 324.2 0.01962 18. 164 80% PZ SEQUN RK 3 4.59 130.2 602. 1903. 1301. 323.0 0.01955 18.

 PAGE 2

 --- DATA LISTING FOR CONCEPT III HOD 1 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 22 FEB 82

 RDG COND
 F1
 ACD
 DP/P
 HOT AVG SKIN
 TM/TA
 PATRN
 TIP
 THID RHID RODT F

 160
 80%
 1.159
 5.62
 3.53
 1219.
 921.
 1.143
 0.209
 -13.
 35.
 31.
 -52.

 161
 80%
 1.160
 5.61
 3.42
 1219.
 913.
 1.065
 0.094
 -36.
 30.
 43.
 -38.

 163
 80%
 1.153
 5.64
 3.46
 1225.
 917.
 1.070
 0.102
 -26.
 31.
 37.
 -43.

 164
 80%
 1.148
 5.64
 3.44
 1220.
 913.
 1.056
 0.082
 -63.
 27.
 57.
 -22.

PAGE 3 -- DATA LISTING FOR CONCEPT III MUD 1 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 22 FEB 87 ROC AT SHOKE LOO CHEM CO2 EFF CO CHY NOX NOX 160 0. 0.0234 4.77 5.2 114. 99.85 3.2 0.3 7.9 161 EX 76. 162 PZ 82. 0.0458 7.89 7893.1325.5 117. 91.57 175.6 46.3 4.3 163 PZ 29. 0.0388 7.67 1064. 39.6 156. 99.18 27.6 1.6 6.6 164 PZ 95. 0.0493 8.49 8986.1147.0 130. 92.17 186.5 37.4 4.4

PAG	E 1										
1	DATA L	ISTING FOR	R CONC	EPT II	I MOD 2	NA	SA PRIM	IARY ZOI	NE STUD	¥	
			0	ATE TA	BULATED	1 9 A	UG 82				FLOW
RDG	COND	MEASUREI	4ENT	MA	8 I P	BIT	BOT	RISE	WF	F/A	
220	208	NO CHEMI	ISTRY	4.59	130.5	621.	1895.	1275.	323.3	0.01958	17.
221	80%	EXHAUST	CHEM	4.59	131.4	625.	1924.	1299.	323.2	0.01957	16.
222	805	PZ SEQUN	RK 1	4.57	130.8	610.	1950.	1340.	323.4	0.01965	16.
223	8 OX	PZ SEQUN	RK 2	4.58	131.3	610-	1952.	1342.	323.2	0.01959	16.
224	80%	PZ SEQUN	RK 3	4.58	131.6	610.	1941.	1331.	322.8	0.01958	16.
225	80%	PZ SEQUN	RK 4	4.60	129.1	609.	1940.	1332.	323.0	0.01952	16.
226	100%	NO CHEM	ISTRY	4.97	147.1	753.	2023.	1270.	352.1	0.01969	16.

PAG	E 2											
••	DATA L	.ISTING	FOR CO	NCEPT	III M	00 2	NASA P	PRIMARY	ZONE	STUD	Y	
				DATE	TABUL	AT= 1 1	9 AUG 8	2				
RÐG	COND	F1	ACD	DP/P	HD SKI/	1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TH/TA	PATRN	тр	THID	RHID	RODT
220	80%	1.155	5.23	4.04	1467.	29. Pi	1.304	0.452	-43.	40.	66.	-62.
221	803	1.150	5.20	4.06	1490.	1503-	1.218	0.323	-40.	39.	67.	-65.
222	80%	1.143	5.15	4.09	1476.	1055.	1.197	0.287	-19.	55.	52.	-88.
223	80X	1.142	5.16	4.06	1478.	1057.	1.201	0.292	-12.	60.	50.	-99.
224	80X	1.138	5.16	4.03	1482.	1058.	1.186	0.271	-18.	56.	52.	-90.
225	80X	1.163	5.15	4.24	1471.	1053.	1.183	0.266	-17.	61.	52.	-95.
226	100%	1.176	5.29	4.11	1660.	1228.	1.147	0.234	-56.	39.	73.	-55.

PAGE 3											
DAT	A LIST	ING FOR	CONCEPT	111 MC	D 2	NASA	PRIMARY	ZONE	STUDY		
			DATE	TABULA	TED: 9	AUG	82				
RDG . AT	SMOKE	₽ F/A	CHEM F/A	C02	CO PPM	CHX PPM	NDX PPM	EFF	CO E I	CHX E I	NDX E I
220											
221 EX	5.	0.0020	0.0233	4.74	41.	0.8	126.	99.91	1.7	2.1	8.8
222 PZ	28.		0.0383	7.61	815.	14.6	173.	99.42	21.4	0.6	7.4
223 PZ	33.		0.0307	6.18	426.	2.8	161.	99.63	13.5	0.1	8.6
224 PZ	35.		0.0347	6.82	1727.	18.1	153.	98.75	49.9	0.8	7.3
225 PZ	6.		0.0320	6.45	29.	1.6	156.	99.89	2.8	0.1	8.0
226		0.0015									

PAG	E 1												
(DATA L	ISTING FOR C	ONCEPT 1	III MOD 3	NA	SA PRIM	ARY ZO	NE STUD	Y				
DATE TABULATED: 26 MAY 82													
RDG	COND	MEASUREMEN	AM TI	BIP	BIT	BOT	RISE	WF	F/A	FLUW #			
260	808	NO CHEMIST	IRY 4.5	5 130.4	612.	1915.	1303.	322.4	0.01968	17.			
261	80X	EXHAUST CH	IEN 4.57	131.2	610.	1923.	1313.	322.6	0.01962	17.			
262	80%	PZ SEQUN RH	1 4.6)	132.7	602.	1950.	1348.	323.5	0.01949	17.			
263	80X	PZ SEQUN RK	2 4.61	128.5	598.	1936.	1337.	323.2	0.01947	17.			
264	80X	PZ SEQUN RK	3 4.62	2 128.7	597.	1915.	1318.	323.6	0.01947	17.			
265	80%	PZ SEQUN RK	4 4.57	128.2	597.	1967.	1370.	323.6	0.01969	17.			
266	3008	NO CHEMIST	RY 5.03	146.9	755.	2017.	1263.	352.9	0.01539	17.			

PAG	E 2												
••	DATA	LISTING	FOR	CONCEPT	111)	100 3		NASA	PRIMARY	ZONE	STUD	Y	
				DATE	TABUL	ATED	: 2	6 MAY	82				
RDG	CON) F1	ACD	DP/P	HOT SKIN	AV G SK I N	į	TH/TA	PATRN	ΥIΡ F	THID F	RMID F	RODT
260	801	1.142	5.5	8 3.48	1080.	924	•	1.162	0.238	12.	45.	37.	-94.
261	808	1.139	5.5	3 3.51	1066.	915	5.	1.080	0.118	15.	48.	32.	-97.
262	801	1.133	5.5	4 3.46	1098.	940).	1.071	0.103	44.	63.	18	123.
263	803	1.167	5.5	0 3.74	1076	923		1.067	0.096	43.	62.	17	-124.
264	803	1.167	5.5	0 3.74	1095.	923		1.078	0.113	38.	59.	20	117.
265	801	1.157	5.4	9 3.69	1115.	926		1.049	0.070	48.	64.	20	133.
266	100	1.193	5.6	5 3.69	1382.	1099).	1.132	0.212	1.	51.	46.	-97.

PAG	E 3											
••	DAT	A LIST	ING FOR	CONCEPT	III MO	03	NASA P	RIMARY	ZONE S	TUDY	• •	
				DATE	TABILLA	TED: 2	26 NAY	82				
RDG	AT	SMOKE	190	CHEH F/A	C02	PPM	CHX PPM	NÜX PPM	EFF	Ç0 E1	EI CH (NOX E I
260			0.0015									
261	EX	7.		0.0211	4.33	67.	8.1	125.	99.83	3.2	0.6	9.6
262	₽Z	61.		0.0296	6.00	270.	21.2	164.	99.65	9.1	1.1	5. 1
263	₽Z	74.		0.0422	ī.97	274.1	1620.4	197.	94.08	6.6	61.3	7.8
264	PZ	44 .		0.0215	4.39	203.	9.8	116.	99.68	9.4	0.7	8.8
265	PZ	74.		0.0485	9.63	331.	145.8	153.	99.37	7.0	4.8	5.3
266			0.0012									

÷.

PAGE 1 -- DATA LISTING FOR CONCEPT III MOD 4 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 26 MAY 82 FLOW 81P 81T 801 RISE MF F/A RDG COND HEASUREMENT MA 279 80% ND CHEMISTRY 4.58 131.3 616. 1912. 1296. 323.1 0.01961 17. 280 80% EXHAUST CHEM 4.58 131.3 608. 1962. 1354. 323.9 0.01964 17. 281 80% PZ SEQUN RK 1 4.57 131.3 609. 1941. 1332. 322.7 0.01960 17. 282 80% PZ SEQUN RK 2 4.63 130.4 605. 1958. 1353. 322.1 0.01933 29. 131.9 605. 1942. 1337. 322.2 0.01940 39. 283 80% PZ SEQUN RK 3 4.61 284 80% PZ SEQUN RK 4 4.58 131.1 607. 1942. 1335. 323.2 0.01960 32. 285 190% ND CHEMISTRY 4.97 147.6 752. 2041. 1288. 352.0 0.01966 0.

PAG	IGE 2													
••	DATA	LISTING	FOR	CONCEPT	111)	100 4 -	- NASA (PRIMARY	ZONE	STUD	Y			
				DATE	TABUL	ATED:	26 MAY	82						
RDG	COND) F1	ACD	DP/P	HOT Skin	AVG Skin	TH/TA	PATRN	ТĮР	THID	RM IG F	ROOT		
279	807	1.143	5.6	4 3.41	1136	. 964.	1.162	0.239	-19.	43.	44.	-69.		
280	807	1.140	5.6	3 3.39	1164	. 952.	1.102	0.147	-5.	46.	42.	-83.		
281	801	1.138	5.6	2 3.40	1250	. 972.	1.073	0.106	-15.	45.	47.	-77.		
282	801	1.159	5.7	0 3.43	1245	. 1002.	1.121	0.175	-23.	48.	53.	-76.		
283	8 07	1.142	5.6	8 3.36	1260	. 947.	1.088	0.127	-20.	53.	53.	-86.		
284	801	1.142	5.7	0 3.33	1247	. 973.	1.046	0.067	-31.	43.	56.	-70.		
285	1007	1.173	5.8	9 3.29	1301	. 1121.	1.147	0.233	-11.	51.	50.	-90.		

PAG	E 3											
••	DAT	A LIST	ING FOR	CONCEPT	111 MC	D 4	NASA P	PRIMARY	ZONE	STUDY	••	
				CATE	TABULA	TED:	26 MAY	82				
RG	١T	SMOKE	180 ₽/8	CHEN F/A	C02	CO PPM	СНХ Ррм	NOX PPM	EFF	CO E I	CHX E1	NOX EI
279			0.0015									
280	EX	36.		0.0220	4.43	160.	10.9	109.	99.73	7.2	0.8	8.1
281	PZ	160.		0.0347	6.61	3119.	201.2	136.	97.04	90.3	9.2	6.5
282	PZ	95.		0.0485	7.40	8525.0	331.0	98.	82.24	180.6	144.2	3.4
283	P2	80.		0.0290	5.69	1765.	65.7	81.	98.26	60.7	3.6	4.6
284	Pž	53.		0.0406	8.04	957.	21.2	110.	9 9.36	23.8	0.5	4.5
285			0.9024									

Î

PAGE 1 -- DATA LISTING FOR CONCEPT III HOD 5 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 14 JULY 82 FLOW ROG COND NEASURGHENT MA 81P BIT BOT RISE MF F/A 294 ---- NO CHEMISTRY 4.30 116.7 489. 993. 504. 110.6 0.00715 20. 295 IDLE ND CHEMISTRY 2.29 54.9 285. 1031. 747. 85.9 0.01041 21. 296 IDLE EXHAUST CHEM 2.28 1079. 793. 85.7 0.01044 55.1 286. 21. 297 IDLE #2 SEQUN RK 1 2.28 55.2 284. 1005. 721. 85.7 0.01042 21. 298 IDLE PZ SEQUN RK 2 2.29 55.4 288. 998. 710. 85.7 0.01042 21. 299 IDLE PZ SEQUE RK 3 2.29 55.6 286. 985. 699. 85.9 0.01044 21. 300 IDLE PZ SEQUN RK 4 2.30 55.6 283. 989. 706. 85.8 0.01037 21.

PAC	JE 2											
	DATA	LISTING	FOR	CONCEPT	111 M	100 5 -	NASA	PRIMARY	ZONE	STUD	Y	
				DATE	TABUL	ATED:	14 JUL	Y 82				
RDO	G CON	D F1	ACD	DP/P	HOT Skin	AVG Skin	TH/TA	PATRN	T I P F	THID F	RHID F	RODT
299		- 1.134	5.8	8 3.09	1888.	783.	. 1.179	0.353	2.	24.	-7.	-21.
29!	S IDLE	E 1.139	5.5	8 3.46	831.	525.	1.233	0.322	-5.	14.	2.	-9.
296	5 IDLE	1.130	5.5	7 3.41	646.	502.	1.112	0.153	-9.	11.	2.	-4.
21.7	IDLE	1.129	5.5	7 3.41	648.	500.	1.139	0.194	٥.	18.	٥.	-18.
298	IDLE	1.128	5.5	3 3.45	663.	509.	1.146	0,205	-3.	16.	2.	-14.
299) IDLE	1.122	5.5	5 3.39	650.	497.	1.163	0.230	-6.	11.	0.	-5.
300	10LE	1.127	5.5	4 3.43	675.	509.	1.155	0.217	-6.	11.	0.	-6.

PAG	E 3											
••	DAT	A LIST	ING FOR	CONCEPT	111 MO	0 5	NASA P	RIMARY	ZONE	STUDY		
				DATE	TABULA	TED:	14 JULY	82				
RDG	AT	SHOKE	LBC F/A	CHEM F/A	C D5	CO PPM	CHX PPM	NOX PPM	EFF	CO E I	CMX EI	NDX E I
294			0.0025									
295			0.0030									
296	EX			0.0119	2437	621.	136.9	22.	97.16	50.9	17.7	3.0
297	₽Z	60.		0.0283	5.34	2551.	485.4	47.	95.38	89.9	27.1	2.7
298	₽Z	68.		0.0.50	4.73	2639.	298.3	41.	95.83	105.0	18.7	2.7
299	₽Z	42.		0.0141	2.71	1179.	248.9	23.	95.53	82,4	27.3	2.7
300	PZ	42.		0.0158	2.96	1701.	380.3	22.	94.05	106.1	37.3	2.2

•

٠

......

9 A	UG 82	TA	BULATION	OF	DATA FR	DH PRIMA	RY ZONE	PROBE	s co	NCEPT 111
RDG	COND	CONCE	PT MOD R	AKE	LOCATIO	N \$74	EF	AGE RA	KE VALU	NOT SHOKE
157	803	111	BASLNE	1	3.75	0.0283	99.73	5.72	271.	171. 48.
158	893	111	BASLNE	2	22.50	0.0545	72.81	7.36	6639.	92. 87.
159	803	111	BASLNE	3	0.50	0.0170	99.42	3.47	130.	72. 42.
162	80%	111	1	1	3.75	0.0458	91.57	7.89	7893.	117. 82.
163	80%	111	1	2	22.50	0.0388	99.18	7.67	1064.	156. 29.
164	80%	111	1	3	0.50	0.0493	92.17	8.49	8986.	130. 95.
222	801	111	2	1	3.75	0,0383	99.42	7.61	815.	173. 28.
223	803	111	2	2	22.50	0.0307	99.63	6.18	426.	161. 33.
224	801	111	2	3	0.50	0.0347	98.75	6.82	1727.	153. 35.
225	803	111	2	4	15.00	0.0320	99.89	6.45	89.	156. 6.
262	80%	111	3	1	3.75	0.0296	99.65	6.00	270.	164. 61.
263	80%	111	3	2	22.50	0.0422	94.08	7.97	274.	197. 74.
264	80%	111	3	3	0.50	0.0215	99.68	4.39	203.	116. 44.
265	80%	111	3	4	15.00	0.0485	99.37	9.63	331.	153. 74.
281	80%	111	4	1	3.75	0.0347	97.04	6.61	3119.	136.100.
282	101	111	٩	2	22.50	0.0485	82.24	7.40	8525.	98. 95.
283	803	111	4	3	0.50	0.0290	98.26	5.69	1765.	81. 80.
284	801	111	٩	4	15.00	0.0406	99.36	8.04	957.	110. 53.
297	IBLE	111	5	1	3.75	0.0283	95.38	5.34	2551.	47. 60.
298	IOLE	111	5	2	22.50	0.0250	95.83	4.73	2639.	41. 68.
299	IDLE	111	5	3	0.50	0.0141	95.53	2.71	1179.	23. 42.
300	IDLE	111	5	4	15.00	0,0158	94.05	2.96	1701.	22. 42.

...

OF POOR COLLTY

1	PAGE 2	2									
9 AI	UG 82	TA	BULATION	OF	UATA	FROM P	RIMARY Z	ONE PRO	BES	CONCEP	7 111
RDG	COND	CONCE	PT MOD R	AKE	PORT	LBERH	DN "F7A"	INDIVIC		RT VALU PPM	ES) NOX PPH
157	BUX	111	BASLNE	1	1	\$. 97 5 . 15	0.0211	99.74 99.81 99.71	* .29 6.49 6.89	185. 187. 363.	152.
158	801	111	BASLNE	2	1	5.12 5.75 5.44	0.0663	70.85 73.71 62.57	5.21 8.30 9.70 6.76	399. 12744. 12437. 1181.	142. 132. 93. 75.
159	80%	111	PASLNE	3	4	5.12 6.07 5.75 5.44	0.0233 0.0058 0.0259 0.0122	98.80 99.10 99.57 99.10	4.69 1.18 5.24 2.50	195. 66. 198.	69. 24. 120.
162	803	111	1	1	4 1 2	5.12 6.07 8.75	0.0157 0.0659	98.53 89.26	4:97 3.14 18:23	159: 895. 3287.	96: 62. 133:
163	80%	111	1	2	i j	5.12 5:97	8:8369	9 6.94 9 9.63	**:62 \$:81	3084: 1400:	123: 187:
164	803	ر 111	1	3	34	5.44 5.12 6.07	0.0486	98.90 99.32 97.46	9.45 6.33 .7.64	1903. 659. 4169.	192. 121. 135.
222	80%	111	2	1	23 4 1	5.44 5.12 6.07	0.0439 0.0506	94.67 90.10 98.63	7.87	7397. 10929.	122. 125.
223	80%	111	2	2	234	5.75	0.0452 0.0373 0.0244	99.70 99.76 99.85	6.97 4:95	490 320 116	226. 101:
224	805		2	3	1234	6.07 5.75 5.44 5.12	0.0341 0.0370 0.0318 0.0201	99.68 99.43 99.67 99.84	6.84 7.37 6.40 4.10	412 815 380 97	180. 200. 164. 101.
			•	,	1234	6.07 5.75 5.44 5.12	0.0535 0.0281 0.0372 0.0207	97.69 99.66 98.93 99.83	10.06 5.67 7.32 4.23	4832. 344 1637. 95.	227. 125. 166. 94.
225	80X	111	2	4	123	6.07 5.75 5.44	0.0372 0.0373 0.0305	99.90 99.90 99.90	7.47 7.50 6.18	94. 89. 77.	192. 177. 138.
262	80%	111	3	1	1	6.07	0.0427 0.0337 0.0258	99.65 99.60 29.69	8.55	319. 308. 266.	240. 187. 134.
263	80%	111	3	Z	1	6.07	0.0601	\$5.10 \$7.11	10.02	338. 329. 271.	202
264	80%	111	3	3		5.12 5.97 5.44	0.0248 0.0122 0.0248 0.0295	99.78 99.74 99.71 99.69	5.06 2.52 5.06 5.99	158. 234. 245.	70.
265	80%	111	3	•	4 12374	5.12 6.07 5.75 5.44 5.12	0.0196 0.0494 0.0466 0.0545 0.0436	99.60 99.18 99.17 99.45 99.69	4.00 9.77 9.25 10.77 8.73	234. 335. 333. 330. 326.	107. 130. 64. 234. 182.

OF POOR QUALITY

	PAGE	2 CONTIN	UED											
9	AUG 8	2TABU	LATION	I OF	DATA	FROM	PRI	HARY	ZONE	PR	DBES		CONCEP	T 111
RDC	COND	CONCEPT	NOD F	RAKE	PORT	LOCA	110N	(F/)	A-IND	ŧţŗ	DUAL	င္စဥ္	RT VALU CO PPM	ES) NOX PPH
281	80%	111	٠	1	1	6.07 5.7 5.4		042 043 031 021		• 66 • 86 • 28 • 30	8. 7. 4.	07 82 21 35	3548. 6675. 1649. 602.	170. 146. 139. 88.
282	2 80%	111	•	2	1234	6.0 5.7 5.4 5.1		070	2 56 5 94 9 97 1 98	• 05 • 03 • 10 • 38	6. 9. 8. 5.	10 57 91 01	23998. 6652. 2964. 484.	43. 168. 122. 59.
283	3 80X	111	•	3	1234	6.0 5.7		026 030 045	7 98 1 98 4 97 4 98	12 60 90	5. 5. 2.	25 94 65 90	1336. 1453. 3796. 473.	87. 76. 123. 38.
2.			•	•	1234	6.0 5.4 5.1		051 042 039 029	5 99 8 99 0 99 2 99	-10 -39 -50	10. 8. 7. 5.	03 77 87	1759. 953. 678. 439.	149. 122. 101. 69.
29	7 IU.2		2	1	1234	6.0 5.7 5.4		032 023 014	5 98 7 98 1 92 4 84	.20 .59 .15	8. 6. 2.	37	2520 2383 2917 2382	81. 61. 31. 15.
291	B IDLE		,	2	1234	6.0 5.7 5.4 5.1	7 0	.033 .034 .019 .012	3 97 4 96 7 93 9 91	• 60 • 99 • 77 • 43	6. 53. 2	44 54 64 32	2391. 3607. 2524. 2032.	61. 59. 28. 15.
29	9 10LE	111	7	3	1234	6.0 5.7 5.4 5.1	7 0	015 013 017	2 98 3 94 8 96 0 90	•11 •80 •50	3.	02 53 46 81	818. 1282. 1311. 1306.	29.
30	D IOLE	111	2	٩	123	6.0 5.7 5.1		.021 018 013 .013	1 96 5 93 6 92	.81 .42 .08 .15	32	10 38 94	1341. 2001. 1842. 1618.	34. 22. 16. 13.

OTHER DE CONTRACTOR CO

PAG	E 1									
(DATA L	ISTING FOR CONC	CEPT 1	A DOM IL	-1	NASA P%	IMARY 2	LONE ST	UDY	
		C	DATE T	ABULATED	: 23	NDV 82				
RDG	COND	MEASUREMENT	WA	SIP	81 T	BOT	RISE	WF	F/A	FLUH
327	IDLE	EXMAUST CHEM	2.35	57.8	370.	1069.	699.	86.8	0.01026	23.
328	IOLE	NO CHEMISTRY	2.36	57.7	370.	1039.	669.	86.2	0.01016	23.
329	80%	NO CHEMISTRY	4.58	130.0	602.	1953.	1352.	326.9	0.01982	21.
330	803	EXHAUST CHEM	4.58	130.7	611.	1996.	1385.	325.4	0.01972	21.
331	80%	PZ SEQUN RK J	4.59	129.4	603.	2026.	1423.	322.7	0.01955	19.
332	80%	PZ SEQUN RK 1	4.60	131.0	615.	2051.	1436.	323.2	0.01952	19.
333	80%	ND CHEMISTRY	4.58	124.2	617.	1925.	1307.	321.9	0.01954	21.
334	80X	PZ SEQUN RK 1	4.56	129.6	614.	2034.	1420.	321.9	0.01960	21.
335	80%	PZ SEQUN RK 2	4.56	129.6	612.	2014.	1401.	320.3	0.01951	21.
336	80%	PZ SEQUN RK 3	4.55	130.1	613.	2007.	1394.	322.1	0.01965	21.
337	80%	PZ SEQUE RK 4	4.54	130.2	612.	2050.	1438.	320.9	0.01962	21.
338	80%	NO CHEMISTRY	4,56	129.2	612.	1943.	1331.	320.7	0.01956	21.
339	80%	EXHAUST CHEM	4.56	130-0	607.	1967.	1359.	320.1	0.01952	21.

٩

. . . .

and the second second

PAG	E 2											
••	DATA	LISTING	FOR CO	NCEPT	III M	DD A-1	NASA	A PRIMA	RY ZO	NE ST	LDY -	•
				DATE	TABUL	ATED :	23 NOV	82				
RDG	COND	F1	ACD	OP/P	HOT SKIN	SKIN	TH/TA	PATRN	TIP	тијо	RMID	ROOT
327	IOLE	1.172	5.62	3.60	842.	594.	1.132	0.202	-10.	11.	4.	-6.
328	IDLE	1.177	5.65	3.60	842.	592.	1.157	0.244	-8.	11.	4.	-6.
329	803	1.148	5.65	3.43	1432.	919.	1.345	0.499	-27.	21.	10.	-3.
330	801	1.148	5.69	3.37	1447.	936,	1.200	0.288	-25.	27.	9.	-13.
331		1.156	5.68	3.44	1473.	938.	1.134	0.191	-19.	35.	10.	-26.
332	803	1.151	5.67	3.43	1490.	953.	1.121	0.173	-12.	42.	7.	-38.
333	803	1.209	5.62	3.84	1393.	939.	1.314	0.462	-29.	19.	10.	-2.
334	803	1.154	5.67	3.43	1415.	960.	1.130	0.186	-10.	39.	6.	-36.
335	803	1.153	5.66	3.43	1422.	958.	1.135	0.195	-15.	39.	8.	-33.
336	803	1.146	5.68	3.38	1516.	974.	1.163	0.235	-13.	37.	8.	-31.
537	803	1.143	5.65	3.39	1500.	971.	1.136	0.194	-11.	41.	5.	-35.
538	801	1.154	5.69	3.41	1533.	764.	1.327	0.478	-29.	23.	10.	~5.
339		1.145	5.64	3.42	1547.	966.	1.170	9.246	-19.	24.	6.	-13.

OWNERSAL PACE IS OF POOR QUALITY

PAG	E 3											
••	DAT	A LIST	INC FOR	CONCEPT	III MC	1-A DE	NASA	PRIMA	RY ZONE	STUD	Y	
				DATE	TABULA	TED:	23 NOV	82				
RDG	AT	SMOKE	LBC F/A	CHEN F/A	CQ2	CO PPM	СНХ Ррм	NOX PPM	EFF	CD El	CHX E1	NOX E I
327	EX		0.0058	0.0117	2.29	554.	5.5.3	23 -	91.64	46.3	77.2	3.2
328												
329			G.0010									
330	EX			0.0231	4.65	504.	73.6	135.	99.00	21.6	5.0	9.5
331	PZ			0.0334	6.53	1949.	72.6	60.	98.33	58.4	3.4	3.0
332	PZ			0.0252	5.05	681.	57.6	89.	99.02	26.8	3.6	5.8
333												
334	PZ	40.		0.0278	5.52	861.	127.2	128.	98.58	30.8	7.2	7.5
335	PZ	78.		0.0337	6.57	1824.	128.1	139.	98.16	54.3	6.0	6.8
336	PZ	4.		0.0238	4.84	145.	5.1	129.	99.79	6.0	0.3	8.8
337	PZ	18.		0.0200	4.00	896.	16.7	51.	98.84	44.2	1.3	4.1
33U		1.										
339	EX			0.0221	4.44	593.	30.1	65.	99.15	26.6	2.1	4.8

ORIGINAL POLICE

PAG	E 1										
(DATA L	ISTING FOR	CONCEP	111	MOD A-	-2 1	NASA PRI	IMARY 2	ONE ST	UDY	
			DAT	E TAB	ULATED	: 3 J/	N 83				
RBG	COND	MEASUREME	NT I	A	81P	81T	801	RISE	WF	F/A	FLOW
340	IDLE	NO CHENIS	TRY 2	.28	54.4	367.	902.	536.	83.2	0.01015	36.
341	IDLE	EXHAUST C	HEM 2	.27	54.7	373.	946.	574.	83.4	0.01021	35.
342	80X	NO CHEMIS	TRY 4	.58	130.7	611.	1953.	1342.	324.8	0.01970	27.
343	80X	EXHAUST C	HEM 4	.55	130.4	609.	2019.	1409.	324.4	0.01981	27.
344	80X	PZ SEQUN RI	K 1 4	.58	130.0	610.	2012.	1402.	322.3	0.01957	27.
345	80X	PZ SEQUN RI	K 2 4	.57	131.1	506.	2033.	1427.	322.2	0.01959	27.
346	80X	PZ SEQUN RI	K 3 4	.56	129.2	610.	2043.	1433.	320.6	0.01952	27.
347	80%	PZ SEQUN RI	K 4 4.	.56	129.8	610.	2054.	1443.	324.0	0.01972	27.
348	8 0X	ND CHEMIS	TRY 4	.58	127.5	610.	1940.	1329.	323.4	0.01963	17.
349	80X	EXHAUST C	HEM 4	.58	126.8	614.	1945.	1331.	320.0	0.01943	17.
350	803	PZ SEQUN RI	K 1 4	.58	127.5	612.	1953.	1341.	320.9	0.01948	17.
351	80X	PZ SEQUN RI	K 2 4	.57	128.1	611.	1987.	1376.	322.0	0.01955	17.
352	80%	PZ SEQUN RI	K 3 4.	.57	128.1	612.	1980.	1368.	322.0	0.01959	17.
353	80X	PZ SEQUN RI	K 4 4	.58	128.6	611.	1958.	1347.	319.9	0.01940	17,

PAGE 2 -- DATA LISTING FOR CONCEPT 111 HOD A-2 -- NASA PRIMARY ZONE STUDY --DATE TABULATED: 3 JAN 83 ROG COND F1 ACD DP/P HOT Skin AVG SKIN TH/TA PATRN TIP THID RHID ROOT 340 IDLE 1.203 5.58 3.85 796. 517. 1.323 0.544 -0. 13. -0. -12. 341 IDLE 1.196 5.58 3.81 799, 524. 1.264 0.436 2. 16. -1. -16. 342 80% 1.147 6.04 2.99 1273. 951. 1.212 0.309 -68. 9. 27. 33. 343 80% 1.141 5.99 3.00 1289. 955. 1.212 0.304 -75. 13. 29. 31. 314 303 1.151 6.05 3.00 1271. 950. 2.110 0.158 -76. 17. 29. 30. 345 80% 1.138 6.05 2.94 1244. 939. 1.128 0.183 -72. 22. 27. 21. 346 80% 1.155 6.06 3.01 1233. 944. 1.111 0.159 -72. 23. 28. 20. 347 803 1.150 6.06 2.99 1240. 948. 1.105 0.150 -69. 26. 29. 15. 348 80% 1.174 5.60 3.65 1079. 1009. 1.202 0.294 -4. 38. 0. -35. 349 808 1.182 5.62 3.66 1042. 988. 1.216 0.316 -16. 29. 4. -18. 350 80% 1.175 5.63 3.61 1077. 998. 1.180 0.262 8. 52. -5. -53. 351 80% 1.169 5.63 3.58 1037. 990. 1.251 0.362 14. 58. -8. -64. 352 80% 1.146 5.63 3.55 1044. 1005. 1.231 0.334 10. 57. -8. -60. 353 80% 1.166 5.65 3.53 1044. 94). 1.186 0.270 2. 49. -3. -09.

_

PAG	E 3											
••.	DAT	A LIST	ING FOR	CONCEPT	111 MC	DD A-2	NASA	PRIMA	RY ZONE	STUD	Y	
				DATE	TABULA	TED:	3 JAN 8	3				
RDG	AT	SMOKE	₽ 7 4	CHEM F/A	C02	CO PPM	CHX PPM	NOX PPH	EFF	ÇD E I	CHX EI	NOX E1
340			0.0050									
341	EX			0.0103	1.80	567.	922.3	2.	85.78	53.8	137.6	0.3
342												
343	EX		0.0004	0.0230	4.67	194.	12.4	156.	99.68	8.4	9.8	11.0
344	PZ	79.		0.0368	7.11	2443.	134.0	190.	97.89	66.8	5.8	8.5
345	PZ	74.		0.0438	8.30	4147.	59.1	287.	97.55	95.9	2.1	10.9
346	PZ	29.		0.0211	9.31	89.	5.1	170.	99.81	4.2	0.4	13.1
347	PZ	33.		0.0270	5.38	1015.	36.6	127.	98.91	37.3	2.1	7.7
348			0.0008									
349	EX			0.0215	4.38	65.	0.8	130.	99.88	3.0	0.1	9.8
350	PZ	53.		0.0346	6.75	2107.	79.9	149.	98.23	61.1	3.6	7.1
351	PZ	37.		0.0305	5.99	1598.	74.6	154.	98.40	52.4	3.8	8.3
352	PZ	32.		0.0222	4.52	218.	2.0	129.	99.72	9.7	0.1	9.5
353	PZ	76.		0.0392	7.14	3660.	1153.5	104.	93.41	94.3	46.7	4.4

-

PAG	E 1		500 50									
(DATA L	.1.51186	FUR LU	DATE	111 1	UU A-3	+- NA5/	A PRIMA	RY ZUI	NE STUD	Y	
RDG	COND	MEAS	UREMENT	UATE W/		ATEUT IP BI	3 JAN 8	55 [R1	SE	WF	F/A	FL TH
354	80X	NO C	HEMISTR	¥ 4.0	51 12	9.2 61	5. 193	97. 13	22. 32	22.4 0	.01942	17.
355	80%	EXHAU	ST CHE	H 4.6	51 13	1.8 61	4. 197	76. 13	62. 32	22.3 0	.01942	17.
356	80%	PZ SE	QUN RK	4 4.6	50 13	1.6 61	7. 192	25. 13	09. 32	22.9 0	.01950	17.
357	803	PZ SE	QUN RK	1 4.5	58 13	1.6 61	4. 192	21. 13	06. 32	20.7 0	.01944	17.
358	80%	PZ SE	QUN RK	2 4.6	52 13	1.5 61	3. 190	. 12	94. 32	22.9 0	.01940	17.
359	80%	PZ SE	QUN RK	3 4.6	52 13	2.3 61	3. 190	9. 12	97. 32	22.4 0	.01938	17.
360	100%	ND C	NEMISTR	Y 4.9	97 14:	3.3 74	6. 206	57. 13	21. 39	52.0 0	.01967	17.
PAG	E 2											
+- (DATA L	ISTING	FOR CO	NCEPT	111 M	DD A-3	NASA		RY ZOI	NE STUD	Y	
				DATE	TABUL	ATED:	3 JAN 8	13				
RDG	COND	F1	ACD	OP/P	HOT Skin	AVG Skin	TF 114	PATRN	TIP	TMID R	MID RD F	OT F
354	80%	1.171	5.78	3.40	1263.	1106.	1.211	0.309	6.	42.	-44	4.
355	80%	1.146	5.77	3.27	1250.	1103.	1.158	0.229	10.	42.	-64	7.
356	803	1.147	5.79	3.25	1269.	1116.	1.15	0.227	30.	52	156	6.
357	8 0 X	1.141	5.80	3.22	1249.	1110.	1.176	0.259	28.	51	146	5.
358	80%	1.152	5.80	3.27	1241.	1101.	1.145	0.214	33.	52	166	8.
359	\$0X	1.144	5.79	3.24	1249.	1107.	1.149	0.220	32.	53	156	7.
360	100%	1.204	5.84	3.53	1360.	1241.	1.213	0.333	4.	43.	-4, -4	5.
	_											
PAGE	: 3		500 60									
(JATA L	131 ING	FUR CU		111 90		MASA	N PRIMA	KT 201	NE SIUU	,	
				UAIE	TABUL	AIEDI	J JAN 8				.	
KVG	AI 38		74	FZA	LU2	PPH	PPA	PPH	EFF	ĔΫ	ÊÎ	ĔĨ
354		0.0	0005									
355	EX		0	.0254	5.16	49.	1.9	149.	99.9(1.9	0.1	9.6
356	PZ 3	14 .	0	.0257	5.18	428.	9.4	122.	99.53	3 16.6	0.6	7.7
357	PZ 8	.0.	0	.0399	7.83	1689.	38.7	221.	98.84	42.6	1.5	9.2
358	PZ 7	14.	0	.0372	7.28	1810.	39.8	208.	98.68	49.0	1.7	9.2
359	PZ 4	8.	0	.0328	6.50	1284.	16.1	159.	99.00	39.1	0.8	8.0
360												

3 J	AN 83	TAB	ULAT	ION OF	DATA P	ROM PRIM	ARY ZON	E PROB	ES A	DDENDUM
506 331	COND	CONCEPT	M00 A-1	RAKE	LOSALS	No.6534	AYER 98.53	AGE RA C 02 6.53	KE VALU 1949.	ES
332	80%	111	A-1	1	3.75	0.0252	99.02	5.05	681.	89.
334	805	111	A-1	1	3.75	0.0278	98.58	5.52	861.	128. 40.
335	80%	111	A-1	Z	22.50	0.0337	98.16	6.57	1824.	139. 78.
336	80X	111	A-1	3	0.50	0.0238	99.79	4.84	145.	129. 4.
337	80X	111	A-1	4	15.00	0.0200	78.84	4.00	896.	51. 18.
344	805	111	A-2	1	3.75	0.0368	97.89	7.11	2443.	190. 79.
345	80X	111	A-2	2	22.50	0.0438	97.55	8.30	4147.	287. 74.
346	80%	111	A-2	3	0.50	0.0211	99.81	4.31	89.	170. 29.
347	80%	111	A-2	4	15.00	0.0270	98.91	5.38	1015.	127. 33.
350	80%	111	A-2	1	3.75	0.0346	98.23	6.75	2109.	149. 53.
351	208	111	A-2	2	22.50	0.0305	98.40	5.99	1598.	154. 37.
352	80%	111	A-2	3	0.50	0.0222	99.72	4.52	218.	129. 32.
353	80X	111	A-2	٠	15.00	0.0392	93.41	7.14	3660.	104. 76.
356	80X	111	A-3	4	15.00	0.0257	99.53	5.18	428.	122. 34.
357	80%	111	A-3	1	3.75	0.0399	78.84	7.83	1689.	221. 80.
358	80%	111	A-3	2	22.50	0.0372	78.68	7.28	1810.	208. 74.
359	80X	111	A-3	3	0.50	0.0328	99.00	6.50	1284.	159. 48.

والمتحقق والتنسير الاستلاف والالانتسارية

الكاكم محافظتها أسرف مناقد المكالكل حصاقت وحمار الالاركاف كالمساط

and the second se

والأحمد فالمقاملة فالمتحاط فأندامه والمحمومة والمحمد والمتعادة

PAGE 2											
3 J	AN 83	TAB	ULAT	ION OF	DATA	FROM	PRIMARY	ZONE PP	OBES -	- ADDEN	NUM
RDG	COND	CONCEPT	M00	RAKE	PORT	185811	10N 1774	-INDIVIC		RT VALUE	S) NDX PPM
331	80%	111	A-1	1	3	\$:97 5:45	0.0474 0.0302 0.0413	28:39 28:39	7.00 6.03 7.98	3535. 802. 2911.	3) 36: 133:
332	8 OX	111	A-1	1	1	6.07 5.75 5.44	0.0300 0.0237 0.0231	98.77 99.86 29.87	7.62	1996. 95. 80.	105. 106. 105.
334	803	111	A-1	1	ł	\$:97		28:33 28:33	7.46	1615. 656. 568.	126.
335	80%	111	≜ -1	2	Ì	\$ - 97 \$ - 77	0.0486	27-30 22-11	2.15 7.78 5.86	4865. 1152. 680.	
336	80%	111	A-1	3	4	\$ • 97 5 • 95 5 • 44 5 • 12	8-8219 0-0254 0-0254	77:83	3.05 5.15	220.	135.
337	80%	111	A-1	•	1234	\$.07 5.75 5.44 5.12	0.0139 0.0253 0.0239 0.0173	78:47 78:45 77:08 78:81	2.77 5.03 4.73 3.47	921 1199 839 630	32. 67. 53.
344	80%	111	A-2	1	1	6.07 5.75 5.44 5.12	0.0428 0.0428 0.0451 0.0322	98.53 95.87 98.49 99.15	5.36 7.93 8.73 6.40	1621. 4744. 2538. 870.	149. 206. 240. 165.
345	80%	III	A-2	2	1	6.07 5.75 5.44 5.12	0.0417 0.0628 0.0467 0.0248	28 • • • • • • • • • • • • • • • • • • •	8.09 11.18 8.90 5.03	2530 10184 3781	330. 412. 263. 143.
346	80%	111	A-2	3	123	9 .07 5.75 5.44 5.12	0.0259 0.0203 0.0203 0.0240	99.7 2 99.90 99.80 99.86	5.24 4.16 4.89 2.93	248. 32. 40. 36.	191 - 165 - 198 - 126 -
347	803	111	A-2	•	123	6.07 5.75 5.44 5.12	0.0277 0.0372 0.0271 0.0271	99.74 98.73 98.44 98.68	5.60 7.27 5.34 3.30	258. 1866. 1512. 425.	134 . 170 . 121 .
350	80%	111	A-2	1	1	\$ - 07 \$ - 75 \$ - 12	8 · 06 • 2 0 · 03 76 8 · 02 39 0 · 01 32	28:23 \$3:78	11.71 7.49 5.98 2.12	7369 - 747 - 108 -	201 - 201 - 135 -
351	80%	111	A-2	2	17834	\$ -07 \$ -75 \$ -12	0.0355 0.0384 0.0296 0.0185	9 5.77 9 9.06 9 9.86	6.59 7.57 5.75 3.75	•723 1369 223	131 179 102
352	101	111	A-2	3	1	\$ - 97 \$ - 12	0 - C261 0 - O208 0 - O233 0 - O188	77:3 3 77:5 8	2.23 4.76 3.85	720. 70. 40.	133 145 118
373	80%	111	A-5	•	3	\$.07 5.75 5.44 5.12	0.020) 0.0430 0.0558 0.0388	77.33 66.33 86.36 74.02	4.06 8.42 8.99 7.09	553. 1787. 8226. 4074.	64. 141. 92. 118.

State of the second second

OF POOR QUALITY

	PAGE 2	2 CONTIN	UED								
3 J	AN 83	TAB	ULAT	ION O	DAT	FROM	PRIMARY	ZONE PI	ROBES -	- ADDEN	DUM
RDG	COND	CONCEPT	MDD	RAKE	PORT	LBERT	16H (F7A)	-INDIVI		RT VALU PPH	ES) NOX PPM
356	80X	#11	A-3	•	1	\$:97 5:75 5:12	0.0086 0.0238 0.0392 0.0317	99.77 99.73 99.42 99.45	1:77 1:73 7.78 6.34	186 186 785 682	34 - 113 - 213 - 126 -
371	603		A-3	1	1234	\$.07 5.75 5.44 5.12	0.0598 0.0468 0.0343 0.0198	98.15 98.91 99.48 99.56	11.32 9.11 6.85 4.03	3902. 1863. 672. 317.	324. 279. 185. 97.
370			A-3	2	1234	6.07 5.75 5.12	0.0219 0.0397 0.0536 0.0320	99.65 99.20 97.71 98.99	4.45 7.84 10.48 6.33	290. 1254 138 1259	148. 240. 285. 159.
377	-04		¥-3		1	6.07 5.12	0.0314 0.0335 0.0379 0.0287	99.54 98.82 98.78 98.89	6.29 6.60 7.43 5.68	562. 1542 1800 1233	169. 155. 175. 138.

ORIGINAL PAGE IS

REFERENCES

- 1. "Component Theory of Gas Turbine Combustors," Vol I, Northern Research and Engineering Corporation, Woburn, Massachusetts, 1980.
- 2. H. Mongia, R. Reynolds, E. Coleman, and T. Bruce, "Combustor Design Criteria Validation: Vol II," Final Report, USARTL-TR-78-55B, March 1979.
- 3. "Aircraft Gas Turbine Engine Exhaust Smoke Measurement," Aerospace Recommended Practice, ARP 1179, May 1970.