
NASA Technical Memorandum

DECISION-MAKING AND PROBLEM SOLVING

METHODS IN AUTOMATION TECHNOLOGY

83216 NASA-TM-8321619830020606

W. W. HANKINS) J. E. PENNINGTON) AND L. K. BARKER

MAY 1983

: "J' ,. (,lqir;
'.I '. .' I _ \ i !- ,(~, .

NI\SI\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

L!\NGLEY F~I:~~~:r..r~CH (TN! El~

L1B!(,!\,f(,(, NA~;I\

I-J!'.~!.:}',-~)N, Vifm:nU\

TABLE OF CONTENTS

Page

SUMMARY •• 1
INTRODUCTION • • .,... •• 2
DETECTION AND RECOGNITION •• 3
T,ypes of Sensors
Computer Vision

CONSIGHT-1 S,ystem
SRI Vision Module

Touch and Contact Sensors
PLANNING AND SCHEDULING •• 7
Operations Research Methods
Linear Systems
Nonlinear S,ystems
Network Models
Queueing Theory
D,ynamic Programming
Simulation
Artificial Intelligence (AI) Methods
Nets of Action Hierarchies (NOAH)
System Monitoring
Resource Allocation
Robotics

LEARNING ••••• •• 13
Expert Systems
Learning Concept and Linguistic Constructions Through English Dialogue
Natural Language Understanding
Robot Learning
The Computer as an Intelligent Partner
Learning Control

THEOREM PROVING •• 15
Logical Inference
Disproof by Counterexample
Proof by Contradiction
Resolution Principle
Heuristic Methods
Nonstandard Techniques
Mathematical Induction
Analogies
Question-Answering Systems
Man-Machine Systems
Other Comments

DISTRIBUTED SYSTEMS •• 20
Decentralized Control
Distributed Computer Systems
Hierarchical Systems

i

.

KNOWLEDGE BASES •
Relational Data Bases
Frames
Common Sense Algorithms and the Bypassable Casual Network
Knowledge Representation Language (KRL)
Expert Systems
Hierarchically Ordered Knowledge Bases

SEARCH •••••••••••••
Graph Searches

Breadth First Algorithm
Uniform Cost Search
Ordered Search
Depth First Search
Heuristic Search
Minimax Search
N Step Look Ahead
Alpha-beta Procedure
Means-end Analysis
Common Sense Algorithm
Dynamic Programming

Control Formulation of Artificial Intelligence Problems
HEURISTICS ••• •
EVOLUTIONARY PROGRAMMING •••••• •
CONCLUDING REMARKS •••••••• • • • • • • • • • • • • • • • • • • •
REFERENCESe.........................

ii

22

28

30
33
34
35

DECISION-~1AKING AND PROBLEM-SOLVING METHODS IN AUTOMATION TECHNOLOGY

By

Walter W. Hankins, Jack E. Pennington, and L. Keith Barker
Langley Research Center

SUMMARY

It is a never-ending process to automate to a higher level than that which
presently exists. Current thinking on automation is to design machines to have more
decision-making and problem-solving capability, especially in tasks for which they
have not been explicitly programmed. In this respect, technology is needed to allow
machines to use "human-like" reasoning in their operations. This will free man from
routine mental operations so that he can dedicate his full potential to other
unsolved problems (in which the reasoning machines may be of further assistance).
This technology will enhance man's control over large and complex problems and will
aid him in making quick, real-time decisions which are mission critical.

The state-of-the-art in decision making and problem solving is reflected in the
problems being solved; that is, the pertinent concepts are problem specific. At this
point, no taxonornlf of generic concepts exists; therefore, this report presents brief
synopses on some major topics related to decision making and problem solving. These
topics are: (1) detection and recognition; (2) planning and scheduling; (3)
learning; (4) theorem proving; (5) distributed systems; (6) knowledge bases; (7)
search; (8) heuristics; and (9) evolutionary programming.

For space missions, computers represent a tool which can be directed by man to
achieve greater goals. In many cases (for example in the first Shuttle flight into
Earth orbit and back), the response times for certain actions are too short to be
handled by man and, therefore, ll'D.lst be accomplished by computer directed machines.
As computers are given more reasoning ability, they will be of greater assistance in
problem solving. There are computer programs which search over databases, logically
putting facts together, in formulating a response to an interrogator's questions. If
its program is of a medical nature, the computer may ask the interrogator to measure
another of the patient's functions in order to rule out or converge on a prognosis.

For advanced automation by computer, basic questions arise, such as: How
should knowledge be structured in a computer? How can information be accessed
promptly and efficiently? What is the hierarchical structure for machine decision
making? How can a machine learn? What are generic concepts associated with auto
mated decision making and problem solving? How does man go about solving a problem?
What is the best man-machine interface? How can a machine generate its own goals?

This paper is not a compendium on automated decision making and problem solv
ing, but is rather a presentation of some of the interesting topics being examined in
this exciting and difficult area.

INTRODUCTION

In the last 20 years, with the rapid advances in electronics and computer
science, it has become possible to automate, partially or completely, many manual
tasks. Industrial automation has taken over many repetitious tasks, freeing the
worker for more challenging tasks (refs 1 to 6). Automation promises to improve the
efficiency and productivity of man-intensive activities. Also, large-scale, small
size, high-speed computing capability makes it possible to attack very large, complex
problems which otherwise would be beyond man's capabilities to solve in a reasonable
manner and time. Along with the rapid increase in computer capabilities has been a
growth in the discipline of "Artificial Intelligence" which involves enabling a
computer to perform tasks, (including decision-making and problem solving) which, if
performed b,y a human would be considered intelligent (refs r to 9).

NASA's automation program is directed towards supporting research to develop
technology applicable to future missions requiring advanced automation. As part of
this program, the authors were tasked to determine the "state of the art" in auto
mated problem solving and decision making. The goal was to develop a taxonorrw of
methods or techniques, including the problems to which they are applicable, and their
availability and maturity. Such scientific classifications of the field of
automation is complicated by several factors:

1. Several different disciplines, including Artificial Intelligence, Operations
Research, and Controls Theory, are involved in work related to problem solving
and decision making.

2. New or improved methods are constantly being developed and applied. The volume
of reports and articles related to problem solving and decision making could be
overwhelming.

3. Publications often lack sufficient detail on methods employed.

4. Many current problems are so complex that they need to be attacked by multi
disciplinary application of several techniques.

Thus, this report is more realistically scoped to discuss decision-making and
problem-solving methods which are related to automation technology. The intent is to
discuss specific problems or programs as well as the applicable methods, with the
assumption that the state of the art in problem solving is reflected in the problems
being solved.

Sources of information included a survey of available literature, visits to
universities, visits to government agencies performing and f~nding related work, and
results of a conference on "Automated Decision Making and Problem Solving" (ref 10)
held at Langley in May 1980. As a result of the survey and review, problem-solving
and decision-making methods have been identified in the following areas:

1. Detection and Recognition

2. Planning and Scheduling

3. Learning

4. Theorem Proving

2

5. Distributed Systems

6. Knowledge Bases

7. Search

8. Heuristics

9. Evolutionary Programming

These subject areas are broad enough so that many problem-solving methods are
included, but narrow enough to be useful to those interested in an overview of auto
mation.

DETECTION AND RECOGNITION

In order to learn, adapt, or accomplish tasks in a changing environment, a
robot must (1) have sensors to obtain information about its environment; and (2) be
able to process this information in a meaningful way.

TYpes of Sensors

There are numerous types of sensors, for example: (See ref 11)

1. Light sensors such as photodiodes, phototransistors, or photocells for computer
vision or proximity detection

2. Strain gages in which the electrical resistance changes with stress to indicate,
fqr example, pressure or force exerted

3. Piezoelectric crystals which sense pressure on themselves by changes in fre
quency

4. Capacitors for pressure feedback

5. Light or radio beams for "homing in" on target

6. Wheel rotations or conveyer belts for distance or location measurement

7. Vidicon cameras, and charge coupled devices (CCD) for sensing shades of gray for
computer vision

8. Gyroscopes for measuring orientations and accelorometers for accelerations

9. Color sensors for vision

10. Voice recognition systems for receiving commands

11. Fiber optics for proximity sensors in the robot's hand

12. Infrared radiation sensors for heat detection

3

13. Potentiometers and optical encoders to measure angular orientation

Reference 12 is a tutorial overview of sensors in manipulation control. In
general, industrial robots represent "hard automation"; that is, they are pre
programmed to follow a pattern of sequenced operations. These robots are extremely
useful; however, sensors are needed to provide the robot with the capability of
adapting to its environment. One of the most important sensors available for a robot
to perceive its environment is vision.

As a mathematician would say, having a sensor is necessary but not sufficient
to have an intelligent robot. Just having sensor information is not enough. The
robot must be able to process this information, draw conclusions about the environ
ment, and deduce corresponding actions to be taken to accomplish some task or
purpose. For example, a TV camera pointed at an obj ect conceptually provides a
checkerboard type of image in which the blocks are various shades of gray. The
robot's task is to uncover the object from these shades of gray.

Computer Vision

The amount of literature on the various aspects of computer V1Sl0n is quite
extensive. For example, reference 13 is the ninth in a series of bibliographies on
computer processing of pictorial information, covering primarily items published dur
ing 1978, and lists over 800 references alone. Hence, only a few highlights of
current research on computer vision are practical for presentation in this brief
synopsis.

To have a robot view the three-dimensional world as man views it is, at pre
sent, only a dream; however, much headway has been made in this direction and current
research efforts are attacking this problem. In 1977, a survey (ref 14) was
pUblished on current techniques for computer vision with particular emphasis on the
description, analysis, and reconstruction of scenes from single or multiple views.
In 1974, a Russian survey article (ref 15) was published on visual information pro
cessing by robots. Current status reports appear in references 16 and 7, for exam
ple. Commercially, the state-of-the-art in computer vision with respect to manipula
tor systems is represented by systems such as CONSIGHT - 1, which is a General
Motors' vision-controlled robot system for transferring parts from conveyer belts
(ref 18) and the SRI Vision Module (ref 17).

CONSIGHT - 1 system - In this system a light source and cylindrical lens are
used to project a narrow and intense line of light across a conveyer belt. This line
is viewed from above by a linear array camera. As an object on the conveyer belt
crosses this line of light, the part of the line which hits the object is deflected
from the remaining parts of the line which are not intersected. The deflected part
of the line is not visible to the camera. This break in the light is used to obtain
an outline of the object for recognition and orientation.

SRI Vision Module - This system uses a solid state TV camera to view an
object. A light source and the camera are angled for illumination of the object and
image reception, or the camera views the object placed on a back-lighted surface to
highlight the object's silhouette. Dark image areas in the latter case correspond to
the object; whereas, light image points correspond to the background. Thresholding is
used to classify all areas as either black or white. Dark areas are treated as
"blobs" and numerous identifying characteristics are computed from this data, such as
centroid, perimeter length, center of bounding rectangle, number of holes, moments of

4

inertia, and angle of the maximum and minimum radius vector from the center of
gravity to points on the perimeter. The various descriptors are used to identify
the obj ect as the one stored in memory which gives the "closest II fit to the unknown
object.

A computer V1Slon system which can operate in the three-dimensional world is
required for general applications, such as space construction. "Almost all the
nianipulator systems in present use in industry and also those under development
extract the required information about object recognition from the "Olalysis of two
dimensional pictures (r~f 19)."

A stereo pair of TV cameras has been used to extract three dimensional measure
ments (refs 20 and 21). Correlation is one of the basic drawbacks of the stereo
system, that is, identifying corresponding points in the two images. This operation
requires complex and lengthy computations which hinders real-time operation. After
the correlation process, the object must still be identified by some pattern recogni
tion method. Another problem is missing data because some points can be seen by only
one camera.

Shirai and Suwa (ref 22) developed the idea of using a single camera and a
plane of light to recognize polyhedrons in three-dimensional space. A series of
light lines are cast across an object. By changes in slope and displacements, these
light lines indicate the planes of the polyhedra. To reduce processing time only the
end points of lines are determined. Then, lines are classified into planes. There
after, the three-dimensional position of each plane is calculated and the object is
recognized by the relationship between the planes. This type of system has been
investigated by others (refs 23 and 24) and has been used in a real-time robot arm
experiment at the National Bureau of Standards (G.J. Vanderburg, J.S. Albus, and E.
Barkmeyer) to acquire an object randomly placed on a table.

Agin and Binford (ref 23) consider more complex objects which are considered to
be a composite of a number of cylinders. It is difficult to determine the relation
ships of parts of an object to each other.

Will and Pennington (ref 25) describe some experiments in which a rectangular
type of grid is proj ected toward an obj ect. By the distortions in the grid that
falls upon the object, planer areas are extracted so that the object can be identi
fied.

In general it appears that some type of parallel processing will be needed to
speed up these methods for real-time operation.

Work at the Rensselaer Polytechnic Institute has dealt with computer V1Sl0n by
reconstructing the surface of an object from noisy measurements obtained from a laser
ranging system. Range measurements are used to compute surface gradients. A recur
sive algorithm for smoothing data and reducing the computational complexity has
recently been developed.

Marking parts to aid robot V1Sl0n has been considered in reference 26. This
work is only preliminary and further analysis is needed to determine under what
conditions the procedure is feasible.

It has been suggested that the solutions to the difficult problem of computer
vision may reside in hardware rather than software, or a combination of both (ref

5

16). Furthermore, rather than repeatedly reconstructing a visual scene, it appears
more economical to perform a detailed analysis of a visual pattern only when it has
changed in some important way from the previously seen pattern (ref 27). In other
words, examine only that portion of the scene which is changing.

Humans have the ability to infer three-dimensional surface structure from a
two-dimensional line drawing. Yet, there is an infinitude of space curves which can
be projected onto the same image boundary. A conjecture (supported by psychological
experiments at MIT) is that humans perceive that curve having the (llost uniform
curvature and least torsion (planar) consistent with the boundary conditions. To
capitalize on this, investigators at SRI International are considering a cost
function which, when minimized, tends to produce this type of interpretation. A
computer model is being developed to interpret two-dimensional line drawings (assumed
to be obtained from gray-level imagery) as three-dimensional space curves and then to
compute the three-dimensional surfaces bounded by these space curves (refs 28 and
29), where the final interpretation should correspond to that inferred by humans.

Touch and Contact Sensors

There are numerous types of touch and contact sensors. A few examples are
mentioned in this section. Examples of proximity sensors, electro-optical imaging
sensors, and range-imaging sensors that are used in robot systems are presented in
reference 30.

The logic strategy associated with a sensor varies with the task to be accom
plished. At the Naval Research Lab, the use of a touch sensor to essentially "feel"
the three-dimensional shape of an obj ect for recognition has been investigated in
connection with an underwater robot.

An intelligent industrial arm, designed and built at the University of
Virginia, used four point sensors located on the inner surfaces of each of two jaw
like fingers to indicate any slippage of a grasped object (ref 30). The hand, which
could exert 11 levels of force, tightened 'when slippage was detected. Very quickly
responding needles (slippage sensors) were thrust forward to make contact with the
object grasped by the hand. If the object slipped, causing one of the needles to be
deflected, then a signal was sent to the hand to tighten its grip. Meanwhile, the
deflected needle quickly withdrew and was thrust forward again in the undeflected
position. This process was automatically repeated until the grasp was sufficient to
disallow slippage of the object from the hand.

As noted in reference 6, the functions of contact sensors in controlling
manipulation may be classified into searching, recognition, grasping, and moving.
Furthermore, there are three basic methods for sensing forces and torques for
controlling a manipulator. In the first method, the force and torque on each manipu
lator joint can be obtained in a direct manner. In the case of an electrically
driven joint, these parameters are proportional to the armature current. Force
sensing has been used in inserting a peg into a hole and in assembly tasks. In the
second method, the three components of force or torque between the hand and the
terminal link of a manipulator can be measured by a wrist force sensor. A typical
strain gage wrist force and torque sensor is illustrated in reference 28, along with
other examples. In the third method, a pedestal force sensor measures the three
components of force and torque applied to a workpiece mounted on a pedestal.

Reference 12 describes joint torque sensing and wrist force sensing as a means
of detecting contact force at a manipulator's hand. A device is described which
"••• performs chambered pin-hole insertions by rocking the pin back and forth within
the geometrically determined wobble angle range, detecting when the limit of rocking
has been reached by means of limit switches that detect compression of springs in the
device's wrist." In another example, torques in an arm's shoulder joint are used to
sense contact in the process of "poking" for a hole. Sometimes sensitive elements
attached to a structure at various points (for example, strain gages) detect deforma
tions and are used to obtain a vector output.

Touch sensors, which can be mounted on the outer and inner surfaces of each
finger of a manipulator hand to indicate contact between the fingers and objects in
the workspace, are described in reference 12. The outer sensors can be used (1) to
avoid damaging movements caused by forcing the mechanical hand against an obstacle in
its search for an object, (2) to possibly identify the object, and (3) to determine
the position and orientation of the obj ect. The inner sensors provide information
about an object before it is grasped and also slippage information when it is
grasped. A combination of computer vision and "feel" sensors allows the manipulator
to handle more complex tasks.

PLANNING AND SCHEDULING

In general, planning can be defined as a process of preparing and selecting a
set of actions or decisions, from alternative options, in order to achieve a goal.
Methods used to develop a plan will depend upon the nature of the problem, namely:

1. Well-defined or ill-structured

2. The goal and possible subgoa1s

3. Number of independent variables

4. Qualitative and/or quantitative variables

5. Constraints

6. Uncertainties

A schedule is a plan in which time is an independent variable. Planning or
scheduling is closely related to search. Search can be described as the exploration
of a tree of possible action sequences with the goal of finding a path between an
initial and goal state. A number of search methods are discussed in a separate
section. Scheduling problems are often studied in operations research, but recently
AI techniques have been applied to planning and scheduling problems. The following
sections explore some of the work in both areas.

Operations Research Methods

Operations Research involves the construction of mathematical descriptions of
economic and statistical models of decision and control problems to treat situations
of complexity and uncertainty. It also involves analyzing the relationships that
determine the probable future consequences of decision choi~es, and devising

'7

appropriate measures of effectiveness in order to evaluate the relative merit of
alternative actions. Operations research offers many tools including linear and
nonlinear optimization, qynamic programming, queueing theory, combinatorial theory,
network theory, and scheduling theory.

Linear Systems

Linear optimization is concerned with finding an extremal of a linear perfor
mance index

Z = Cl*Xl + C2*X2 + ••• + Cn*Xn subject to constraints

All*Xl + A12*X2 +

AmI*Xl + Am2*X2 + ...

+ Aln*Xn < Bl

+ Amn*Xn < Bm

Such problems occur in product-mix or blending schedules, resource scheduling
and allocation, transportation, distribution, and production levels (ref 30). Tech
niques for solving linear optimization problems include the Simplex method , networks
and decision trees, sensitivity analysis, integer programming, decomposition, and
duality. Markov chains can be used to model a physical or economic process when the
set of possible outcomes (states) is finite, and the probabilities of state transi
tion are constant over time. In problems consisting of discrete outcomes which
depend on a prior result, Markov chains can be used in both modelling and analysis.

Nonlinear Systems

Nonlinear optimization is concerned with finding an extremal of a performance
index Z = F(Xl,X2, ••• ,Xn) subject to constraints, such as Ai(Xl,X2, ••• ,Xn) ~ Bi for
i=1,2, ••• ,n where F and Ai may be nonlinear functions.

Such problems arise in real-time operations, when a specific cost (objective)
function to be maximized cannot be defined, or when a linear model approximation is
not accurate enough. Techniques or methods for solving nonlinear optimization
problems include steepest ascent (or descent), quadratic programming, Newton-Raphson
method, modified gradient techniques, subrelaxation, and qynamic programming.
Bellman (refs 33 and 34) notes that dynamic programming is actually the stuqy of
multistage decision processes. This interpretation yields an approach which is
useful for both analysis and computational purposes.

Network Models

Network modelling techniques are used in many problems, including transporta
tion, resource allocation (assignment), and manpower planning. An example is a
transportation network in which modes represent sources (factories), sinks (markets),
or transhipment point (warehouses) and; arcs represent shipping routes subject to
constraints such as availability, cost, or capacity. These problems are among the
easiest, since they are polynomially bounded; that is, in the worst case, the maximum
number of steps required to solve such a problem can be constrained by a polynomial
function of the amount of input data needed (ref 35). Despite an upper bound on the
number of steps, the number can be, and usually is, very large. Even with the speed

8

•

of modern computers, exhaustive search can be prohibitively costly and time con
suming. Reference 35 also discusses the single (sole) source transportation problem,
having the constraint that all the demand at a market must be supplied from a single
warehouse. This problem is not polynomially bounded. Two methods are discussed for
avoiding an exhaustive traversal of the search tree. The first is the use of a
heuristic, a methodology or rule which will produce a feasible solution, although not
necessarily an optimal solution. An example is the "regret" heuristic which at each
step selects the market having the largest regret - the largest difference between
the smallest and second smallest cost. In many cases heuristics G = combined and
perform better than any single heuristic. The second method is the use of an
algorithm, a method or procedure, which will produce an optimal solution if given
sufficient time. An example is the branch and bound algorithm which can "prune" the
search tree by prohibiting search below a node at which the lower bound is greater
than a known upper bound. Heuristic search is a major part of AI problem solving
methods as well as Operations Research.

Queueing Theory

Reference 36 notes that of all concepts dealt with by basic operations
research techniques, queueing theory appears to have the widest potential application
and yet is perhaps the most difficult to apply. The theory of queues is the stuqy of
phenomena of waiting lines, which occur as customers needing service arrive at a
service facility. Classically, customers arriving at the queueing system for service
wait in line until service is provided or are served immediately if there is no
line. Examples of queueing phenomena can be seen at banks, machine shops, a doctor's
office, supermarkets, and in computer processing. A queueing system can be com
pletely characterized by:

1. The number of customers

2. The arrival pattern of the customers

3. The service mechanism

4. The queue discipline

Customers may come from a finite or infinite population and may arrive singly
or in groups. If the customer arrivals are completely random, then the number of
arrivals per unit time can be modeled by a position distribution.

Reference 37 distinguishes three aspects of the servicing mechanism: (1) the
availability of service (2) capacity (the number of customers that can be serviced
simultaneously) (3) duration of service which can be constant or a random variable.
Queue discipline describes the priority given customers in receiving service. First
in first-out is common, but other priorities are possible, such as last-in first-out
or highest priority ror shortest required service time •

Frequently, the cost of providing service must be balanced against the costs
incurred by delay. Reference 38 cites a number of cases where queueing theory has
been used to model physical processes and to predict the effects of altering system
characteristics.

9

Dynamic Programming

The basic idea of dynamic programming is usually introduced by considering a
discrete multistage decision process. For example, consider a square partitioned
into nine smaller squares with hypothetical towns located at each corner of the
small squares. (Common corners are associated with the same town). Let the lower
left-hand corner of the original square represent town A and the upper right-hand
corner represent town P. Furthermore, let each line connecting two seque~tial towns
be labeled with a cost (perhaps, distance or travel time). The problem is to find
the optimal path (minimal cost) from town A to town P. A brute force solution would
be to simply list all the possible paths from A to P, along with the total costs, and
then select the path with minimal cost. A more intelligent approach is to use
dynamic programming which can reduce the required computational effort tremendously
as the number of towns increase. The dynamic programming strategy- is to proceed
sequentially away from the end point P. At each sequential point (town) away from P,
a decision is made about which path to take to reach P in an optimum manner from that
sequential point, taking advantage of the previously computed costs from the preced
ing sequential points. This process is continued until point A is reached. The for
ward optimal solution is then obtained by moving forward and noting the costs com
puted at each point in the backward solution process.

Practical applications of discrete dynamic programming occur in transportation
and scheduling problems. Bellman applied dynamic programming to the solution of
continuous optimization problems in control.

Unlike linear programming, which refers to a specific mathematical model that
can be solved by a variety of techniques, dynamic programming (ref 34) is an analyt
ical technique which can be applied to a variety of mathematical models (ref 32). It
is suited for Il'DJ.ltistage decision processes, where decisions Il'DJ.st be made in a se
quence and can influence future decisions in the sequence.

D,ynamic programming attacks the optimization problem by splitting the problem
into a sequence of stages in which lower order optimization takes place, rather than
attempting to consider all constraints simultaneously. Reference 39 presents a
dynamic programming computer program and applies it to a space program scheduling
example. The maj or problem with dynamic programming is computer storage require
ments • With a large number of stages, control options and states, the storage
requirements can be more restrictive than the computation requirements.

Simulation

Despite the large number of analysis techniques offered by Operations Research,
they are not sufficient or powerful enough to encompass all decision problems requir
ing analys is. Uncertainty , nonlinearity, nonstationarity , and a large number of
states, possibly with interactions is characteristic of many actual problems.
Frequently, simulation is used to describe current systems, to determine the effect
of modifications, or to examine hypothetical systems. With the advances in
electronics and high speed computers, large systems (such as power distribution
networks, spacecraft, and industrial processes) are being simulated. Through time
scaling, very fast processes can be "slowed down" for scrutiny, or slow processes can
be speeded up. Other simulations are run in "real time" to obtain human
participation and interaction. Real-time, man-in-the-loop simulation is used to
train the operator of complex systems and to involve man as part of the total

10

•

system. Large scale, high fidelity simulation is used extensively by airlines, NASA,
and in the power industry.

As automation technology advances, man is being moved away from direct control
into the role of systems supervisor with many decisions being made by computer.
Simulation will be needed to define the role and the interface of man and machine in
the decision-making process.

Reference 40 notes that planning is one of nine core topics in Artificial
Intelligence. Specific accomplishments cited include the development of hierarchical
planning systems to allow the top-down generation of plans at various levels of
detail, and the development of ways to represent plans so the plans themselves can be
manipulated. Hart (ref 41) distinguishes between planning using AI techniques and
conventional methods, noting that the planning function in conventional computer pro
grams ordinarily amounts to following a rigid, inflexible algorithm specified by the
programmer; standard numerical computations are an example of this, and are not
usually thought of as "planning" at all. By contrast, AI systems can generate plans
to meet situations that have been foreseen in only broad outline by the system
designer; planning a sequence of database accesses to answer an unanticipated query
from a user is an example of this. The following sections describe some areas in
which AI planning techniques have been used.

Networks of Action Hierarchies (NOAH)

An early successful application of AI was Sacerdoti's development of NOAH
(ref 42). This set of programs used a "procedural net" to develop problem-solving
strategies. A procedural net is a network of actions (nodes) at varying levels of
detail, structured into a hierarchy of partially-ordered time sequences. Nodes are
linked to form hierarchical descriptions of operations and to form plans of action.
NOAH was built to serve as the problem solver and execution monitoring component of
the computer based consultant. The key to NOAH's ability to intermix planning and
execution is that both the planner and the execution monitor use the same data
structure: the procedural net. Demonstrations of planning using NOAH included: (1)
sequencing painting a ladder and ceiling; (2) removing and stacking blocks in
requested order; and (3) assembling an air compressor.

System Monitoring

Chien and others have been developing the concept of an on-board intelligent
system for monitoring and diagnosis of aircraft systems using AI concepts of problem
solving, planning, and knowledge engineering (ref 43).· The knowledge base model
abstracts a functional description of an aircraft using a Common Sense Algorithm (ref
44). The Common Sense Algorithm is a semantic net adapted to describe cause and
effect relationships inherent in physical mechanisms. The knowledge base is divided
into four levels; the highest level being overall flight plans and goals, and the
lowest level being the aircraft subsystems description. Top-down monitoring can
detect error through indirect evidence, and generate corrective procedure
recommendations. Bottom-up monitoring interprets consequences of abnormal events.
The long range goal is a system which can detect abnormal operation, diagnose the
problem, and plan possible courses of action.

11

A precursor to the systems monitoring effort was the recognized need for
deduction mechanisms which can construct plans in a dynamic environment, where data
may not be "known" to the planner or may be changing (ref 45). Such a mechanism
should have the knowledge that certain relevant information may not be known at all
stages of planning, and should be able to modify a plan when new information is
received. Reference 45 discusses the consequence of missing data to some current AI
planning programs, including PLANNER, QA4 (ref 46), CONNIVER (ref 47), and STRIPS
(refs 48 and 49).

Resource Allocation

Work is in progress to develop a knowledge base and model driven system to
support a manager or commander in planning and scheduling resources (ref 50). The
system exhibits inferential capability, yet the user can intervene to interact or
take over. The system is being developed in the context of mission and resource
planning for a naval air squadron. Part of the problem that is addressed is possible
interaction among and between plans. These interactions occur through competition
for limited resources. There are two types of modules in the program: a planner,
that generates and monitors plans; and a scheduler, that coordinates resources with
competing demands. Instead of trying to minimize a cost function the program is con
cerned with the maintenance of plans as potentially disrupting events occur. Hart
(ref 41) notes that the ability of a commander to interrogate, in ordinary English, a
set of distributed, computerized databases to form an assessment of his own assets or
to test the feasibility of a contingency plan is one of a number of areas in which AI
can increase the effectiveness of defense systems.

Robotics

Planning and scheduling is a higher order process and one of the distinctive
differences between industrial robots and autonomous robotic systems. Industrial
robots can be preprogrammed or trained for a task, but the industrial robot does not
recognize the goal or obj ective of the task. An autonomous system would accept
general objectives and develop a plan or sequence of actions to accomplish the
objective. Often this plan involves navigation, obstacle avoidance, and manipula
tion. A major consideration is the manner in which the "robot's world" is defined,
and the method used to develop and execute a plan. One planning system, called
STRIPS (ref 48), maintains a collection of statements in first order predicate
calculus to model the world, then conducts a heuristic search for an acceptable
plan. After SCRIPTS creates an acceptable plan, a program called PLANEXl (ref 51)
carries out the plan by executing the actions. PLANEXl will initiate replanning if
the plan is unable to succeed.

Another approach to robot planning is a model called RECOGNIZER (ref 52) which
was developed for the JPL rover. It is programmed using Common Sense Algorithros
(CSA). RECOGNIZER uses CSA in several nets: (1) a causal (action) net for describ
ing each action in the repertoire; (2) an outcome net with a measurable prediction of
the result of an action; and (3) a decision net in which pattern matching (expected
outcomes versus actual) takes place. Two strategies are used for correcting errors:
(1) "failure reason analysis," a knowledge base of possible operational precondition,
constraint, and information errors; and (2) "multiple outcome analysis ," perturbing
an action to get additional information about the error.

12

Reference 53 discusses three advantages of utilizing a distributed planning
system for sophisticated robot systems: (1) a software structure similar to the
hardware structure provides efficiency and robustness; (2) task-specific (domain
dependent) planning systems have less generality but can be tailored to the task; and
(3) program size is directly dependent on problem complexity. Task-specific planning
has been demonstrated in a blocks-world experiment (ref 54) which combined automated
planning with hardware implementation to accomplish specified construction. Path
trajectory planning is performed by a version of Lee's algorithm (ref 55) in a pro
gram called ZPLAN. ZPLAN uses the concepts of "difference" (distancL from goal) and
evaluation functions (ref 56), and can select short-term or long-term strategies. A
four-degree-of-freedom manipUlator and vision system execute the plans by performing
identification and pick-and-place operations on a group of blocks on a planar
surface.

LEARNING

Generally, learning can be considered as knowledge, understanding, or skill
acquired by study, instruction, or experience. The concept of knowledge and under
standing implying discernment and direct cognition may be too broad for automated
systems. A more useful definition may be the modification of a knowledge base, world
model, or control structure as a result of instruction or experience. This definition
is general enough to include analogy to both the mental learning process and to
acquisition of physical skills. Winston (ref 57) notes that there is a hierarchy of
learning; from learning by being programmed, to learning by being told, to learning
by seeing examples, to learning by discovery.

This progression is one in which more of the work is done by the student and
less by the teacher. Knowledge representation and learning are major areas of
research in Artificial Intelligence (AI). Knowledge can be represented as an ordered
network of links (relations) and nodes consisting of symbolic concepts. Organization
of such networks is discussed in the section on Data Bases. Learning, then, involves
building and appropriately modifying the network structure. The concept of learning
is involved in Control Theory also. Saridis (ref 58) defines a learning system as
one in which information pertaining to the unknown features of a process or its
environment is learned, and the obtained experience is used for future estimation,
classification, decision, or control such that the performance of the system will be
improved. Learning, in both the AI sense and the Controls sense, is discussed sub
sequently.

Expert Systems

One of the major successes in AI has been the development of "Expert Systems."
Feigenbaum (ref 59) defines an expert system as an Intelligent Computer Program that
uses knowledge and inference procedures to solve problems that are difficult enough
to require significant human expertise for their solution. The knowledge base,
consisting of facts and heuristics, was based on the expertise of practioners in that
field. Expert systems bring together a large body of knowledge in a particular
domain, and then draw conclusions from input data. Expert Systems have been
developed for diagnosis and treatment of infectious diseases (MYCIN, ref 60),
analysis of pulmonary function (PUFF), mass spectrometry (DENDRAL, ref 61), and
proton magnetic reasonance spectroscop,y (APSIS, ref 62).

13

A widely used form of knowledge representation is the "Product ion Rule," an
If-Then statement, often with an associated "certainty factor." The knowledge base
structure can be changed by introducing new production rules. Reference 63 notes
that a great deal of time and cooperation between the human expert and the computer
scientist or knowledge engineer is required to develop such rules. Recently, an
induction program called Meta-DENDRAL (ref 64) has been developed which examines the
data, and then does automatic rule-formation; discovering for itself rules for
determining molecular structure from both nuclear magnetic resonance and mass spec
trometry data.

Learning Concepts and Linguistic Constructions
Through English Dialogue

A promising area of AI research, described in reference 65, is a system that
can acquire new concepts and linguistic constructions through interactive English
dialogue. The system, called KLAUS (Knowledge Learning And Using System), is prepro
grammed with deduction algorithms, a set of syntactic/semantic rules, and a seed
vocabulary to support effective tutorial interaction. The knowledge acquisition
process used is "learning by being told." The system supports interactive, mixed
initiat ion, natural-language dialogues. A concept-defining syntactic structure is
recognized, then an acquisition procedure is invoked to acquire the new concept and
generate new entries in the system lexicon. Finally, the system can apply its
acquired knowledge in a prescribed range of problem solving situations. Although
still in an early development stage, this appears to be an interesting approach to
knowledge acquisition.

Natural Language Understanding

An effort that is related to both pattern recognition and learning is the
program SAM (ref 66), which understands stories. SAM can answer questions about
English language stories, and can paraphrase and summarize them in English and
Chinese. The program, which was developed by the Yale AI group, creates a linked
causal chain of concepts that represents what took place. In order to fill in gaps
in the causal chain which cannot be inferred directly SAM (Script Application
Mechanism) uses "scripts". A script (ref 67) is a preformed, stereotyped sequence of
actions that define a well-known situation. When a script becomes applicable SAM
makes inferences about events that must have occurred between events about which it
was specifically told. SAM is an important advance in computer understanding of
natural language.

The METAL system (ref 68) is an example of an advanced machine language trans
lation system. The system is used to translate German science and technology docu
ments into English. The translation process is entirely autonomous in the computer.
The METAL system has three parts: lexicon, grammar, and computational rules; and the
latter can be used with the lexicon and grammar of any natural language.

Robot Learning

A system called RECOGNIZER (ref 52) has been developed to provide autonomous
learning for the JPL robot rover. RECOGNIZER employs Common Sense Algorithms (CSA)
language (ref 69) to construct causal networks. For each action in the robot's
repertoire there is an "outcome" net which predicts a recognizable, measurable state

14

as a consequence of an action. The system learns from discrepencies between
predicted consequences and experience. Two types of learning are possible: (1)
learning how to categorize specific unknown situations through modification of the
template at a node of a semantic net, and (2) learning how to avoid future errors as
a result of error correction and acquisition of new stimulus-response pairs.

The Computer as an Intelligent Partner

Reference 70 discusses the possibilities of reducing human errors and workload
by employing a computer to support an operator's intelligence. A symbiotic relation
ship is proposed whereby the computer assumes the role of an intelligent associate.
In this man-computer team each partner assumes the most fitting task. This differs
from partial automation where only routine work is done by the computer, and the
operator makes decisions without help. It also differs from complete automation
because the computer is used to support the man's intelligence. Consequences of
designs of future man-machine systems resulting from cooperation between human and
artificial intelligence are discussed in four areas: (1) computers capable of learn
ing and adapting; (2) computer support in preparation and evaluation of information;
(3) computer support in decision making; and (4) computer assistance in search and
problem solving. The report cites examples of methods useful for assisting in the
latter three areas. In the learning area the computer can be trained to exhibit
intelligent behavior by explicit programming or by implicitely constructing a model
based on continuous observation of human behavior (learning by example). If the
operator behaves consistently for an extended period of time, a descriptive model of
ever increasing reliability can be created, and can be used from simulating the human
and predicting his action. Once the computer is trained, cooperation can occur at
several levels. Tasks can be delegated to the computer for autonomous processing,
the computer can wait and act only if the operator does not, or the system can act as
a monitor and advise the operator.

Learning Control

Learning and hierarchical intellgent control systems is a regime common to both
Artificial Intelligence and Control Theory. Fu (ref 71) defines a learning system as
"a system that],earns the unknown information about a process and uses it as an
experience for future decisions or controls, so the performance of the system will be
gradually improved." Several mathematical schemes have been used for the study of
learning processes (refs 58, 71, 72): (1) trainable systems using pattern classifi
cation; (2) reinforcement learning; (3) Bayesian estimation; (4) stochastic
approximation; (5) fuzzy automata; (6) stochastic automation; and (7) linguistic
methods. Saridis discusses each of these in reference 58. Adaptive control,
adaptive-learning control, and self-organizing control are a~tive areas of Controls
Theory research, which are addressing complex problem areas (eg, ref 73 through 77).

THEOREM PROVING

In theorem proving, one starts with a set of true statements (axioms or
premises) and, by application of an allowable set of inference rules or operators,
proceeds to expand these statements so as to include the theorem to be proved (ref
78). The theorem to be proved is at the onset a statement whose truth is unknown.
In state-space terminology, the question is whether or not one can proceed from an

15

initial state (premises) to some goal state (theorem) using the allowable operators
or controls (inference rules).

It is natural for man to consider the use of computers to carry out lengthy
routine steps in theorem proving to avoid careless errors associated with this
tedious task (ref 1). The fatigable effort accompanying straight forward
manipulations (which must be done carefully to avoid introducing mistakes) is averted
to allow man to concentrate his efforts at a higher level in the theorem-proving
process.

Logical Inference

Hunt (ref 79) discusses an exhaustive technique which is ~laranteed to provide
a proof of a provable theorem; however, it may take a long time. Essentially, the
technique (called the British Museum Algorithm) starts with a set of true statements
and begins to expand the statements by logical inferences. The new statements are
added to the list and further inferences are made. This process is repeated until
the theorem to be proved appears in the process. Clearly, this is not the way to go,
although one might discover some interesting statements along the way.

Hence, in theorem proving there are just too many possibilities that evolve,
and methods are needed to alleviate this so-called combinatorial explosion problem.

Disproof by Counterexample

Only one counterexample is needed to disprove a theorem--if one is lucky enough
to find it. The computer generation of counterexamples in topology has been examined
by M. Ballantyne at the University of Texas.

Proof by Contradiction

A favorite approach used by mathematicians and logicians in theorem proving is
proof by contradiction. If the theorem to be proved is assumed to be true and if, by
logical inference, a contradiction is reached, then the assumption must be wrong.
Hence, the theorem must actually be false. This is a fruitful approach if the
theorem is false because it appears that there should be paths leading to contra
dictions.

If the theorem to be proved is true, then a lot of time can be spent looking
for contradictions - which do not exist. Generally, the theorem to be proved is felt
to be true so the approach in using proof by contradiction is to assume the negation
of the theorem to be true and search for a contradiction. A contradiction means that
the negated theorem cannot be true. If the negated theorem is false, then the
theorem itself must be true. In other words, the theorem is shown to be true by
showing that its negation is false.

Although the proof by contradiction is an improvement on the British Museum
Algorithm, there is still need for guidance in the search for a contradiction.

16

Resolution Principle

The resolution principle has been around since the 1960's and is attributed to
J.A. Robinson (ref 80). Cooper (ref 78) notes that it is specially suited for
mechanical proof finders and for reducing the amount of search time required in
proofs. Robinson's work, which was a shift away from trying to mimic human solutions
to that of machine-oriented solution methods, brought about a renewed interest in
mechanical theorem proving and information retrieval (ref 79). An advantage of the
resolution principle is that it only involves a single rule of inference, which makes
the expansion of statements by inference more manageable.

Hunt (ref 79) expresses the single rule of inference, which is the basis of the
resolution principle, as follows: (A or B) and (not A) implies (B or C). Thus, if
the left-hand side of the implication is true, then so is the right-hand side. If (B
or C) is the theorem, it is proved.

Usually, one assumes the negation of the theorem to be proved
reach a contradiction by application of the resolution principle.
statements in the theorem-proving process by the resolution principle,
reach a contradiction such as:

(A) and (not A) implies (null clause or contradiction)

and tries to
By combining
one hopes to

With the resolution principle, there is still a need for guidance in choosing
the proper statements to resolve.

Heuristic Methods

A heuristic is a rule-of-thumb which appears to work most of the time but
which may occasionally fail. The fact that a solution to a problem is attained by
using a particular heuristic (which may not work in another problem) does not
invalidate the solution. A solution is a solution regardless of how it is found.

Cooper (ref 78) notes that the Logic Theorist (LT) of Newell, Shaw, and Simon
(1957) was the first computer program to prove theorems, and he proceeds to describe
several heuristic devices used. Working backwards is the main heuristic. Suppose
the objective is to prove theorem T. The computer program recognizes that T would
follow if other expressions could be proved. Another heuristic is used to choose
which of these expressions is probably the easiest to prove. Additional heuristics
are used to reject the expressions not likely to be theorems.

Four basic methods used in the LT to prove theorems are (1) detachment, which
says that if it is desired to prove T and if it is known that A implies T, then
attempt to prove A; (2) forward chaining, which says that if it is desired to prove
that A implies B, and if it is known that A implies C, then attempt to prove C
implies B; and (3) backward chaining, which says that if it is desired to prove A
implies B and if it is known that C implies B, then try to prove that A implies C
(ref 78).

The LT was successful in proving 38 out of 52 theorems of Chapter 2 in
Whitehead and Rusell's, Principia Mathematica; and, later, on a larger computer
managed to prove all 52 theorems (ref 80). The LT was the predecessor of the General
Problem Solver (GPS) program, perhaps the most famous program in Artificial

17

Intelligence (ref 79). The GPS used "means-end" analysis, which means trying to
reduce the difference between what one has now and what one wants to show. Insights
into the structure of the GPS and LT are given by Minsky (ref 81) to reveal the basic
ideas in these programs.

Cooper notes that the LT served an important purpose as an early test bed for
heuristics but that heuristic methods are needed at a higher level in theorem prov
ing.

The Geometry-theorem-proving machine of Gelernter (1959) is anot~.er theorem
proving program which uses a heuristic, namely the suggestive features of a diagram.
Although done computationally, the computer in essence draws a geometric diagram and
attempts to prove facts (subproblems). Particular coordinates are needed to
construct a diagram; however, the heuristic tries to extend the resulting features to
the general case (ref 78).

Also , splitting and reduction heuristics have been used to divide a theorem
into smaller pieces that are more easily proved in order to speed up an automatic
theorem proving routine (ref 82).

Nonstandar~ Techniques

Balantyne and Bledsoe (ref 83) have developed a procedure for automatically
proving theorems in analysis using the methods of nonstandard analysis. In non
qtandard analysis, the real field is extended so that a set of infinitesimals is
clustered around zero, and out beyond the infinitesimals and finite numbers, are the
infinitely large numbers (positive and negative). The infinitesimals are nonzero but
smaller than any ordinary positive real number except zero. They are analogous to
the differential elements dx and dy in calculus. This is an attempt to define
infinitesimals to aid automatic theorem provers. For example, an element e is
defined as an infinitesimal if e < lin for any integer n. For more details, refer
to reference 83.

Balantyne and Bledsoe describe their successful attempts in proving theorems on
the computer with nonstandard analysis. They also point out their failures. They
note that nonstandard methods appear only to aid in searching for the proofs of a
certain class of theorems, and in other cases, offer no assistance.

Mathematical Induction

Two approaches to overcome the lack of computer theorem-proving power are (ref

1. Proof checking program directed by user

2. Weak theorem-proving program with axioms introduced freely

Boyer and Moore (ref 84) have found that proof-checking programs are frustrat
ing and require too much attention.

One reason for the difficulty with theorem-proving systems is that the
researchers have not implemented the principle of mathematical induction. If
induction is not used in a problem involving an inductive concept, then one must

18

ultimately assume that which is to be proved. The computational logic of Boyer and
Moore (ref 84) includes the concept of mathematical induction.

Analogies

There are well-known analogies or correspondences between problems in electri
cal engineering and mechanical engineering. \<1hereas, for example, a mechanical
engineer has a "good feel" at getting solutions in his domain, he may not relate
readily to an electrical-type problem. However, by making certain associations, the
mechanical engineer can transform the electrical problem into an analogous mechanical
one, which, based on his experiences, may be solved immediately. For speed and
economy, mechanical systems are regularily simulated by electrical systems.

In theorem proving, a
problem A and a solved problem
Of course, creative insight is
different formats.

correspondence is established between an unsolved
B in hopes that this may assist in solving problem A.
often required to recognize analogous problems cast in

An example of analogy used in Artificial Intelligence is Gelernter' s program
which solved axiomatic geometry problems by making use of a geometric diagram (ref
79) •

Question-Answering System

Theorem proving is applicable to question-answering systems in that the world
knowledge i terns stored in the computer (data base) represent axioms, and a question
to the system corresponds to a theorem to be proved (ref 85).

In question-answering systems, a table of relations is stored in the computer.
Then, by a set of axioms superimposed upon this structure, one can deduce facts which
are implicit in the data base (ref 86). For example, suppose that the table lists
the mothers and fathers of children and that it is desired to know who is the grand
father of a certain child. An illustrative axiom useful in this respect is: Father
(x,y) and Father (z,x) implies Grandfather (z,y) where x is the father of y, together
with z is the father of x, imply that z is the grandfather of y, although the grand
fathers are not specifically stored in the data base.

A comprehensive data base system (MRPPS 3), developed at the University of
Maryland, is described by Minker (ref 86). The system is based on mathematical
logical and, in response to a question, has natural language and spoken output. A
query to the system is first negated (Le., an opposite query is assumed true) and
then, consistent with the data base and knowledge axioms, a contradiction is reached
by theorem-proving techniques (resolution, etc). Relational data bases per se are
discussed in a separate section.

Man-Machine Systems

Man may roughly sketch the likely steps in the proof of a theorem, while the
computer fills in the missing details or even suggests other lines of attack (ref
78) • Man could provide sophisticated guidance to a theorem-proving machine, for
computers sometimes spend too much effort in pursuing dead-end paths, which are

19

obvious to man at first sight (ref 2). A cooperative effort between man and machine
systems requires a language of communication. Hunt (ref 79) doubts that any pre
sently known computing language is satisfactory. Theorem proving is a non-numeric
process and, as such, requires a symbol manipulation language. The Artificial
Intelligence community heavily emphasizes the importance of the programming language
LISP (ref 10). MACYSMA is a large computer programming system written in LISP for
performing symbolic as well as numerical mathematical manipulations.

A man-machine, theorem-proving system has been used by Bledsoe an0 Bruell (ref
87) to prove theorems in topology. The steps in the theorem are presented on a scope
in an easily understood form to a user. A feature called DETAIL allows the human to
interact at any point that he deems necessary and only to the extent that he desires
in the proof of a theorem. Hopefully, the system will evolve into a useful tool for
researchers in topology. So far, only well-known theorems have been handled, and. the
mathematicians get very annoyed when they have to intervene in the proof in a trivial
way.

Ot her Comment s

A great deal of progress has been made in the area of theorem proving by compu
ter; but, despite this, theorem proving by resolution generates too many fruitless
paths. Consequently, some investigators use more restrictive methods, specifically
depending on their particular problem area (ref 79).

The development of a higher-order calculus which can handle complex relation
ships better than the current language (which is limited to conjunctions of disjunc
tions) is another alternative which has been suggested in theorem proving (ref 79).

The more a theorem-proving system knows, the more difficulty it has in proving
a theorem, because the system is often tempted to use irrelevant information. Boyer
and Moore (ref 84) note that their system tends to avoid being confused by what it
knows.

As with most aspects of Artificial Intelligence, advances in theorem proving
are hampered by the fact that man does not know much about how man thinks.

DISTRIBUTED SYSTEMS

A distributed system is a structure or architecture in which elements are not
centrally located, but which all contribute in a task. For example, elements could
be sensors, controls, resources, computers, facilities, or people. Accomplishing the
task with such a system is addressed by a number of methods.' A single text would be
inadequate to address all the methods, but the following sections illustrate typical
problems and some applicable methods.

Decentralized Control

Decentralized control problems involve: (1) multiple decision makers (control
lers); (2) either a single objective for all controllers (team theory), or multiple
objectives (hierarchical control); and (3) decentralized information, where each

20

..

controller's information might depend not only on its own private observations, but
also on the observations and actions of the other controllers (ref 88). Decentral
ized statistical decision making (team theory) is concerned with the problems of
multiple decision makers having access to different information having uncertain
ities. Ho (ref 89) notes that the main ingredients of a theory of team decisions are
(1) the presence of different but correlated information for each decision maker
about some underlying uncertainty, and (2) the need for coordinated actions on the
part of all decision makers in order to realize a "payoff". Team theory was origi
nally developed by economists to model economic problems under the constraint of
imperfect information. Reference 90 discusses similarities in team theory, market
signaling, and information theory, and illustrates how problems in one discipline can
sometimes be posed as related problems in another discipline, resulting in insight
and alternative solution methods. For example, team theory may assume n distinct
team members, each making one decision, while control theory may assume one control
ler making a sequence of n decisions. Reference 89 notes several variations in
problem structure, such as whether each controller has knowledge of all previous
information, and the extent to which the information of later decision makers depends
on decisions (or controls) of earlier decision makers. Reference 91 develops an
optimal control logic for a system having a variable time interval between infor
mation updates, and with the controllers knowing only the past history of the update
intervals. A recent paper by Sandell (ref 92) presents a thorough survey of the
control theoretic literature on decentralized and hierarchical control, and methods
of analysis of large scale systems. The survey looks at techniques for simplifying
model descriptions, procedures for testing stability, techniques for decentralized
control problems, and techniques for hierarchical control problems.

Many current and potential applications are so large and complex as to preclude
analytical modeling of the entire system. Efforts to develop a theory of optimal
control for decentralized stochastic problems have been difficult and frustrating.
Very often, an implementable suboptimal control is preferred to an optimal control
solution which might be too complex or sensitive to be useful (ref 93). Conse
quently, researchers have tried decomposition, reduced order modeling, and
heuristics. Reference 94 presents a method of parameter reduction by an orthogonal
projection of the exact generalized vector onto a subspace of lower dimension based
on minimization of the error norm for a chosen scalar product. Reference 92
discusses aggregate methods and singular and nonsingu1ar perturbation methods for
reducing the order of large systems.

Distributed Computer Systems

A large and fast-moving area of computer science involves developing architec
ture and communications for networks of distributed computer facilities. Many
excellent references are available. An example of a di~tributed microprocessor
system is presented in reference 95, which describes the computer network used to
control the Shiva laser facility at Lawrence Livermore Laboratory. It is a
hierarchical network with one large computer controlling four smaller system
controllers which in turn control 50 small computers acting as front-end processors.
A parallel communications link, a serial asynchronous link, and shared common memory
interconnect various parts of the system.

21

Hierarchical Systems

Hierarchies abound in nature and in human organizations. The reasons for
hierarchic structuring are (1) the components at each level of the hierarchy are
themselves stable entities, (2) the hierarchic systems require much less information
transmission among their parts than other types of systems of the same size and
complexity, and (3) the complexity of an organization, as viewed from any particular
position within it, becomes almost independent of its total size (ref 96). A hierar
chical structure has several advantages: (1) deci s ions are made throughout the
system, so the rate of decision-making at any point can be consistent with the time
required to collect data and analyze a problem; (2) the type of decision and the
detail involved can be made at the point or level having the most relevant data and
with direct awareness of the result; and (3) authority for implementing a decision
can be delegated to the level at which it is made. Generally, decisions in a hier
archical structure have increasing precision with decreased overview. That is, goals
and policies are set at the highest levels based on the "big picture," and detailed
decisions are made at lower levels but with a limited field of view. Hierarchical
structures for control of distributed systems and for the architecture of distributed
computers have already been mentioned. Barbara (ref 97) describes a robot control
system with a five-level hierarchical structure. The highest level assigns tasks to
a group of robots and manages the data base, and the lowest level controls individual
servos. Saridis (ref 98) suggests that hierarchical control structures for robot
control represent a systhesis of several disciplines; with Artificial Intelligence at
the highest level for goal selection and interface with man, Operations Research
methods in the middle for planning and scheduling, and Control Theory at the lower
level for optimal task execution.

KNOWLEDGE BASES

There seems to be a widely held belief among those who are attempting to dis
cover the underlying principles and essentials for the synthesis of intelligent
systems that one of the most fundamental breakthroughs in the field will be discover
ing how to organize knowledge. Although a considerable number of innovative
approaches to the problem have been tried with varying degrees of success, there
appears to be consensus that the problem remains unsolved. References 8, 9, 35, 86,
99, 100 through 106 provide material on knowledge bases related to the discussion in
this section.

In this brief discussion of knowledge bases, the intent is not to comment on
data bases in general but only on those which are specifically designed for use in
implementations of Machine Intelligence or Artificial Intelligence. For the most
part, approaches to knowledge representation differ primari,ly in what they empha
size. Some emphasize relationships such as those among primary objects (parts) which
make up a more complex object. Others emphasize procedures and some do little more
than minimal organization of facts. The latter tend to rely heavily on the program
which uses the knowledge base to extract relationships which could have otherwise
been stored explicitly.

A characteristic which underlies most schemes is organization by sets or clas
sifications. Members of the top level set are broken each into a subset etc. Sub
division into subsets continues until further decomposition is impossible. For
example, the residence of person X might be stored as planet Earth, North American

22

Continent , United States, Los Angeles, 201 Anywhere Street. More or less, this is
just putting elemental units of information (facts) in the right boxes so that they
can be retrieved in a quick, orderly, consistent way. Even though procedural knowl
edge as well as that of states of being may be encoded and stored in this manner,
some of a system's (computer program) knowledge must be considered to reside in the
program which manipulates the data base. The program "knows" what to do with the
data.

The list processing computer language, LISP, and its derivatives constitute the
single most powerful tool used by Artificial Intelligence Research. LISP is much
more of a symbol manipulation language than it is a number crunching language. Of
particular importance to A.I. researchers is its characteristics of treating both
data and instructions exactly the same. Thus, a program may readily modify its own
instructions. Some programmers regard LISP as a language just one level above
machine code. Practically all Artificial Intelligence programs use LISP-like lan
guages to contain their static representations (construct the data base) as well as
to encode the procedures which process the information. In a sense, therefore, LISP
might be said to remain one of the foundational aspects of the state-of-the-art in
knowledge base construction.

Among the more common forms or ways of thinking about the organization of data
bases are tables, network graphs, tree-structures, and frames. Tabular structures
are probably the simplest of these. Often they are called relational tables because
data are related in predefined ways according to their positions in the table.
Network and tree representations are much the same in appearance and may in some
applications be exactly the same. They both consist of nodes with interconnecting
links. Trees usually depict a space of alternative sequences from which paths of
actions or paths from state-to-state may be evaluated and chosen. Examples of these
range from ordinary highway maps with cities being the nodes and highways the links
to outlines of potential moves and resulting game states in a game like chess.
Networks, on the other hand, are more often used to merely express definite proper
ties of some object and how they are related in more of an existential sense than in
a path finding sense. Winston (ref 8) shows how a simple children's blocks arrange
ment to form an arch may be depicted by a network. The arch consists of a rectangu
lar block resting on top of two other rectangular blocks. These blocks are
represented by nodes connected by tagged links. These tags tell how the blocks are
to be arranged with respect to each other.

Having had very little success in research aimed at discovering the essence of
intelligence in a very general sense and from it defining general algorithms for use
in intelligent systems, AI research has turned to more domain-specific applications.
Current research operates on the premise that specific problems should be solved but
the generation of their solutions should be done in an atmosphere of sustained aware
ness of the need to generalize. This approach as a natural consequence has been
applied to knowledge base development as well. It is useful to remember that while
this section of this paper is devoted specifically to knowledge bases that they and
their development are not distinctly separate from the rest of AI research. Quite
the contrary is actually the case. In fact, it is often difficult to break out the
knowledge base of an intelligent system as a separate entity.

In the remainder of this section, some specific approaches taken b,y particular
researchers and research teams will be treated one at a time through very brief
discussions.

23

Research in this area is going on at several institutions world-wide. The
authors of this paper are most aware, however, of the work being done by Jack Hinker
(ref 86) at the University of Maryland. Relational data bases consist of tabulated
facts whose relationships are expressed by the structure of the table. The objective
is to merge these data bases with program implementations of mathematical logic
(formal logic, predicate calculus) along with appropriate axioms to permit new facts
to be derived. (The principles of mathematical logic are discussed in another
section of this paper). Minker and his students have put together a fascinating
small computer program to demonstrate how these systems operate. The data base
contains the family relationships of several generations of hypothetical family
members. Each person is identified b,y an integer. The explicitly stored information
is in the form of 3 is the mother of 5, 2 is the grandfather of 4, etc. The axioms
(intensional data base) contains more general relationships and assumptions. An
axiom could state, for instance, that the father of an individual is the husband of
the mother of that same individual. The computer program might be asked to determine
the paternal great grandmother of person 62. Through a series of self-initiated
proofs of theorems the answer would be produced along with a explanation of how it
was derived. Minker is presently extending this work to apply formal inference
mechanisms to large systems of relational, databases so that complex queries can be
decomposed into more conventional queries which can be readily handled by the compo
nent relational data bases.

Frames

The idea of representing knowledge in structures which he calls "frame" was put
forth by Marvin Minsky at the Massachusetts Institute of Technology in 1974. Frames
are descriptive outlines or general structures of complex objects or events espe
cially ones that commonly recur. An event frame for "eating out at a nice
restaurant" would likely include expectations of such things as making reservations,
being served by waiters or waitresses, tipping, paying after the meal, etc. A given
frame will contain a set of descriptors at one level. Unit constituents of this
frame may also be described by their own subf'rames at another lower level. For
example, a frame could contain a general expectation of an executive office at the
top level. Its units would be such objects as a wooden desk, a conference table,
windows, chairs, a telephone and the like. In turn the table might have a subframe
whose units are four legs which support a flat surface etc. Thus, the frame not only
retains sets of facts, but makes explicit how they are related as well. The example
of the table subframe would make clear that the table's legs are attached to the flat
surface in a more or less particular way. Minsky suggests that humans use a
mechanism such as the 'frame to store and provide a framework for processing
information. By noting the aspects of the real situation which differ from the
expectation, a human is able to acquire an awareness of a new instance of a
stereotyped situation to the level of detail required fpr his needs. Frame
transitions can be used to describe cause-effect relations and the like. In a sense
somewhat different from the examples cited, the frame could also be used to store the
parsed parts of a sentence. To the authors' knowledge the "Frame Theory" has not
been applied in specific computer programs thus far. It is an elaborate theory which
will likely undergo extensive applications testing and much additional research.

24

•

Common Sense Algorithms and the Blfpassable Casual Network

At the University of Maryland, Chuck Riegor has devised a theory for
qualitatively describing causality and functional relationships. He and his students
are actively expanding, applying, and testing this theory that includes a formalism
within which to express algorithmic knOWledge. Especially in simple mechanical
devices built by humans, cause and effect relationships are definite, repeatable, and
often easily understood qualitatively. To capture this qualitative understanding,
Reigor has devised a set of symbols and conventions for interconnecting them.
Descriptions which use these have an appearance similar to that of a flow chart and
emphasize such qualities as enablement, gating, and the prescence or absence of
particular preconditions. These graphical descriptions can, beyond some minimum,
have almost as much detail as their user wants. Let's imagine that a nightwatch
person wants to turn on the lights in a particular office during the night when the
building is unoccupied. The common sense algorithm (CSA) for this process would be
relatively simple. First the correct circuit breaker to enable the lighting circuit
in the required bank of offices would be activated. The effectiveness of this action
would be subj ect to the precondition that no interruption of electricity from the
power company existed. Activation of the light switch in the particular office would
permit electricity to flow through the filaments in the overhead light bulbs. The
resistence of the filaments to the flow of electricity would generate heat which
would cause the filaments to glow and give off light. More detailed preconditions
could have been added such as a requirement that the filaments in the light bulbs be
intact. Of course, CSA's are applicable to the description of other dynamic behavior
involving cause and effect, state changes, etc. which are different and perhaps more
complex than the functioning of simple mechanical or electrical devices.

Riegor proposes that the eSA could be used as a unit in a large network for
containing organized knowledge. The knowledge in this network, which he calls a
bypassable causal network, would be organized to include and express knowledge of
what other knowledge is useful or required to solve particular kinds of problems. The
system would have the capacity to, in a sense, iterate on relevance and context in
such a way as to play them off against each other to sort out the knowledge or
algorithm applicable to the solution of the problem at hand. The use of context and
relevance in antagonistic feedback is based on Reigor's almost axiomatic contention
that "relevance seeks context" and context restricts that which is relevant. The
term "bypass" is used to indicate "going around" a system node whose information
requirements have already been satisfied indirectly by shared information obtained
from previous system requests of information for other system nodes. This parallel
information use improves the efficiency with which the system can assimilate and
construct a model to use for solving the problem. The "short cuts" which come about
can be combined by the system into longer sequences of bypasses which may be
remembered for use in new environments in which they may again be applicable. Reigor
argues that these systems would have an advantage in flexibility because their
bypasses would be context sensitive. Collectively or on an individual basis bypasses
could change or cease to exist depending on context. Reigor compares his causal
selection network to "a mother who asks all the right questions before choosing which
son will be the best for which job."

Knowledge Representation Language (KRL)

The term KRL refers to a Knowledge Representation Language under development at
the Stanford Artificial Intelligence Laboratory. Daniel G. Bobrow and Terry Winograd
have been responsible for much of the basic KRL research. On the surface the

25

language appears to be very similar to other schemes for encoding and containing
knowledge in the sense of having the characteristic of organizing information
directly through multilevel sets of classifications. In fact, however, the underly
ing organization concepts that it uses are quite different. Since humans tend to
often use the framework of telescoping sets to classify themselves and entities
within their environment (management structures, filing systems), it seems somewhat
logical to assume that knowledge organization within the human mind is of a similar
structure. This assumption may, however, not be true; and even if it were, might
not indicate that intelligence mechanizations for information processing should use
that type of knowledge organization.

Bobrow and Winograd have based KRL on a different premise which they believe
more nearly duplicates human knowledge organization. They maintain that generally
human knowledge of particular entities (be they physical objects, concepts, or
procedures) does not exist in the form of explicit definitions. Rather, humans store
knowledge of a new obj ect in the form of comparisons and contrasts with what is
already known about similar objects. The new object is considered from several
perspectives giving perhaps a richer description of the object than would be obtained
through explicit definitions. The basic i~ea is to match the new object to a proto
type and further specify the prototype until a suitable match is obtained. The
prototype might be thought of as a collection of general characteristics of members
of some class to which the new object may belong. The prototypical knowledge may be
viewed as default characteristics which are true of a class stereotype. The
prototype acts as a standard with respect to which the comparative knowledge is
acquired. The KRL attempts to describe from a wholistic point of view, rather than
from a reductionistic one.

The actual implementation of KRL uses essentially LISP and catagorized descrip
tions. Chunks of knowledge are contained in what are called units. Units fall into
one of seven primary categories called basic, abstract, proposition, manifestation,
individual relation, and specialization. These are considered mutually exclusive in
that a given "chunk" of knowledge cannot be fitted into more than one unit.
Although, the descriptors within a unit might be construed to be devised to telescope
information into its most basic primatives, they are actually intended to provide
several different ways of viewing the information. It seems that the categories are
organized in more of an ordered parallelism than in telescoping sets. It also
appears that KRL and Minsky frames have very much in common.

Expert Systems

There is a whole class of computer programs which attempt to capture the very
specialized knowledge of experts in very narrow fields. Probably the best known of
these is MYCIN which has resulted from the heuristic programm~ng research at Stanford
University. MYCIN is very effective (on a competitive level with human physicians)
in diagnosing infectious disease of the blood. The program operates from an elabo
rate set of rules determined from exhaustive interviews with human experts who
specify conditions and preconditions under which certain inferences are appropriate.
Both expert systems and production rules on which they depend are discussed several
places within this review of intelligent systems; thus, no more detail will be pre
sented here. The few statements at this point are intended simply to convey the idea
that expert systems are an important form of storing knowledge.

26

•

Hierarchically Ordered Knowledge Bases

At least two examples of systems which use explicit hierarchical knowledge
structures may be cited. These are Carnegie-Mellon's Hearsay II speech understanding
system and the Automated Inflight Monitoring System of the University of Illinois.

At the Coordinated Science Laboratory of the University of Illinois, R.T. Chien
and his students are putting together programs for automated, inflight monitoring and
diagnosis of aircraft systems and subsystems. The primary research objective is to
uncover key methods of organizing intelligent knowledge bases. It is presently
believed by this research team that knowledge at several hierarchical levels is a
very significant aspect of the solution. They have divided the domain of aircraft
systems knowledge into four levels. At the top level are overall flight goals
(destination, takeoff parameters, cruise parameters, landing parameters etc.). The
second level contains basic aerodynamic information in force diagram form. At this
level, the system knows about lift, drag, angle of attack, etc., and how they inter
act. On the third level, is knowledge of aircraft controls, where the effects of
control surface deflections, throttle settings and other similiar variables on the
aerodynamic forces of level 2 are stored. At the fourth level, which is the lowest,
is subsystem knowledge at the component level. Level 4 is concerned on a functional
relationship basis with things like fuel pumps, valves, electrical generators, and
circuit breakers. The qualitative, functional model of the subsystems can be
analyzed to determine the consistency of sensor information, the presence of propa
gated failures, and the most probable source of component failures through
dependency-based backtracking. The combined result of these analyses should deter
mine first whether a sensor or a component has failed. Second, it should specifY the
particular failed device.

The four knowledge levels described represent knowledge at different kinds and
degrees of abstraction. Together they form a composite knowledge that will permit
information processing which might have been impractical with other forms of organi
zation because of combinatorial difficulties. The monitoring process can be propaga
ted through the knowledge base from either the top or bottom. In top down monitor
ing, inadequate progress toward achievement of overall flight goals triggers analysis
at the lower levels. Out of this might come a result such as the desired altitude
has not yet been obtained because the rate of climb has been low because thrust has
been low because engine No. 2 has failed because its fuel filter is clogged.
Bottom-up monitoring is just the opposite. In that case, the consequences at the top
level of failures which occur at the bottom level are determined. Internal simula
tions can be performed to explore "what-if" actions and situations. This capability
is especially important to the maintenance of a prioritized set of flight parameters
and goals.

The Hearsay II speech understanding program developed at Carnegie-Mellon
University uses knowledge hierarchies as a part of its overall scheme for organizing
knowledge. Pattern recognition and systems of supporting hypothesis of the meaning
and correct interpretation of various patterns are the under~ing principles on which
the system is based. Speech patterns to be recognized are grouped in several hierar
chical levels which are designated as knowledge sources. Some example levels, are
phonemic, phonetic, syllabic, lexical, and phrasal. These knowledge sources (levels)
each monitor incoming data for patterns applicable at its level. When these occur,
the knowledge source will respond. One important benefit of this organization is
that it facilitates a great deal of parallelism in the pattern search.

27

SEARCH

Suppose a father wants to drive into town, but does not have the car key. His
son, who is asked to find the key, goes through some search process to locate the
key. The son may recognize the correct key when it is found, or he may have to give
his father a ring of keys, which hopefully contains the car key, which his father can
subsequently identify. In this situation, the father does not care how the son found
the key, only that he found it. Had the son returned with no key, or with a set of
wrong keys, then the father might have suggested other places to look. In general,
search involves a strategy (which may be very crude) to move from one point to
another to seek out possible solutions to a problem, and a method of recognizing an
acceptable solution, either at points along the search path or at the end of one or
more paths.

In some cases, under certain conditions, a search may be guaranteed to find a
solution; whereas, in other cases, the search may be unsuccessful because the solu
tion does not exist, or the search strategy simply overlooks the answer.

Search is associated with any type of problem solving where one is "looking"
for a solution or desired goal. Hence, it is only natural that similar search
techniques can be applied in a variety of disciplines such as Control Theory,
Operations Research, and Artificial Intelligence. Only graph searches which are
applied in Artificial Intelligence are mentioned here.

Graph Searches

A good representation aids in understanding a problem and in finding a solu
tion. Graphs are one means of displaying the structural relationships in a problem.

Breadth first algorithm (refs 27 and 9) - The basic idea in this algorithm is
to start at the beginning point (or points) and expand or draw lines from this point
to all other reachable points. Then, each of these reachable points is treated in a
similar fashion, and the process continues until a destination point is reached which
is identified as the goal or solution. Once the goal is attained, one simply back
tracks to find a solution path from the beginning point to the end goal point.
Finding the solution by this "brute force" manner may take a lot of expansions,
thereby being expensive in money and time.

Uniform cost search (ref 27) - This algorithm expands
ing point according to the distance from the starting point
a shorter solution path than the breath first algorithm.
expansion of the point closest to the starting point.

the graph from the start
and, in general, produces

The graph grows by the

Ordered search (ref 27) - The breadth first and uniform cost methods are
special cases of the ordered search. Let f(n) = g(n) + h(n), where the cost f(n) to
go from start to finish (goal) is equal to the sum of the cost g(n) to go from start
to node (town) n and cost h(n) to go from node n to goal. In the ordered search, the
next node to expand is based partially on an estimated solution path of f(n). This
estimate depends on the problem and ingenuity of the investigator.

Depth first search (refs 9 and 27) - In this method the search follows one path
to its end, then the next path to its end and so forth. If the goal is attained on

28

one of these paths, then that path will not in general be the least cost solution.
Humans are disposed to this type of search.

Heuristic search (refs 9 and 27) - The search is said to be heuristic in that
knowledge about a problem is used to aid the search. The problem is structured as a
graph using knowledge about the problem. Production rules are used in "expert
system" programs in Artificial Intelligence to move through a graph in search of an
answer to an inquiry.

Minimax search (refs 9 and 27) - Relative to game theory, one tries to
minimize his maximum loss to an opponent. It is assumed that the opponent will
always counter with his best move.

N step look ahead (ref 27) - For example, in chess or checkers, one considers
all possible situations which can be reached in n moves. Current computerized chess
programs have the option of varying n to increase the program's competence.

Alpha-beta procedure (refs 9 and 27) - This is a logical procedure that simply
says not to explore a set of paths any further if, at any point, they can be shown to
be worse that some other path already explored.

Means-end analysis (refs 9 and 27) - Operators for moving from one point to
another are defined, then the difference between the present point and the desired
finish point is used to select the appropriate operator to reduce this difference.
This has the flavor of feedback in Control Theory.

Common sense algorithIn (ref 104) - A graph is constructed
effect" manner which aids in searching for failures in a system.
discussed in another section of this paper and reference 3.

in a "cause-and
The algorithm is

Dynamic programming (ref 39) - The idea in this method is to start at the end
or desired goal and work backwards to the starting point. Moving away from the goal,
step-by-step, one asks the question: From this point, which path should one take to
reach the goal? Continually backing up and asking this question, the investigator
finally encounters the starting point. Meanwhile, enough information has been gained
to get the forwarded solution. The basic fact used in this method is that the
optimum path to the goal from any point along the optimum path from start to goal is
this same latter optimum path. A drawback of this method is the enormous amount of
computer storage required even for a moderately complicated problem.

There are numerous optimization procedures which are applied in Operations
Research, Control Theory, and Artificial Intelligence to search for a solution to a
problem.

Control Formulation o~ Arti~icial Intelligence Problems

The following example used by Nilsson (ref 9) indicates the application of
methods used in Control Theory to Artificial Intelligence. Consider a checkerboard
type structure with 9 spaces. Number chips from 1 to 8 and place these chips on 8 of
the 9 spaces. Now, the problem is to move the blank space around until the chips are
in some desired positions. This is an Artificial Intelligence type problem, but it
is easily formulated in the language of the control engineer. Nilsson defines a
control law for this problem as follows. Move the blank space so as to minimize the

29

error in location, which is defined as the number of chips out of place. Other types
of control laws could also be used. This type of formulation is comfortable to the
control engineer.

Nilsson (ref 107) states that "the problem of efficiently searching a graph has
essentially been solved and, thus, no longer occupies AI researchers. This one core
area, at least, seems to be well under control."

Having the basic idea of a search method and knowing enough to implement it are
two different matters. For a detailed discussion of the search methods, refer to the
appropriate references.

HEURISTICS

Webster's Seventh New Collegiate Dictionary defines a heuristic as that which
"serves to guide, discover, or reveaL" It further qualifies it to be "valuable for
empirical research but unproved or incapable of proof." Various aspects of
heuristics can be found in references 8, 9, 35, 108 through 113. Herbert Simon (ref
110) defines a heuristic as a "rule for exploring a reasonable or proper set of
choices." Similarly, Feigenbaum (ref 111) calls heuristics "rules for plausible
reasoning or good guessing." From these definitions it would seem to follow that
heuristics are weak, imprecise and not suited for inclusion in systems of mechanized
intelligence. Yet, human intelligence makes extensive use of heuristics.

The number of variables associated with many problems is so large that strict
systematic procedures to account for their effects in all combinations are not
practical. The solution either takes too much time to obtain or the computational
and memory requirements are excessive. Thus, to deal with these problems in a
timely, efficient manner, devices which permit the choices to be explored to be
redued to a smaller set of the more promising ones are needed. Heuristics fill this
requirement, but they provide no guarantees. Solutions obtained may not be the best
or even good. In a sense using heuristics is a gamble which trades processing time
for an answer which is probably acceptable but not likely optimal.

Heuristics are most often used to reduce the complexity and effort of search
through "trees" or graphs of organi.zed or related units of information. For
instance, consider the problem of finding the best route from point A to point B
through a given network of highways. Knowing that a certain bridge is out will
eliminate part of the network as containing possible sections of the desired route,
thus, simplifying the problem. Here, the heuristic does not have the probalistic
character with which heuristics are generally associated. If, on the other hand, the
bridge which is out is replaced by a drawbridge with some probability of being open,
the heuristic becomes more conventional. The point is that in addition to reducing
the space of available choices the application of the heuristic mayor may not int~o

duce the possibility, however small, that good optional paths will also be
eliminated. Although some general characteristics of heuristics and the nature of
their application may be found, specific heuristics usually apply to a very narrow
set of problems.

On a larger scale elements of domain-specific information may be organized to
form more comprehensive units of heuristic information called Expert Systems. These
systems contain rule-of-thumb knowledge usually obtained from human experts in a

30

particular field and are constructed to deal in a useful way with problems of a
narrow set or type within that field. Computer programs like Stanford 's MYCIN (ref
60) for analyzing bacterial infections of the blood interact with a human user to
acquire and analyze data. Usually they question the human, becoming more and more
specific in their questioning as evidence supplied by the responses narrows the
number of possible conclusions. Some of these programs are very sophisticated and
useful. MYCIN, for instance, is actively used to identify sources of blood infec
tions and to suggest treatment. Most expert systems also have an explanation capa
bility which may be used by the operator to determine to the desired level of detail
the reasons that the system drew specific conclusions.

Many of these expert systems are "rule-based systems." That is, they consist
of production rules which are heuristics having a particular form. Winston (ref 8)
calls the two elements of this form situation-action pairs. There is a set of pre
conditions (things to watch for), which when satisfied, trigger certain actions
(things to do). The information in expert systems is more appropriately thought of
as embodied in productions of the form Winston calls premise-conclusion pairs. In
these production specified combinations of facts (evidence) lead to the assertion of
particular facts as having been deduced.

Production rules are much more than simply an elemental format for cataloging
heuristic information. They may, for instance, be used to implement the "and" and
"or" logic functions in a tree or graph of related facts. Once developed, these
trees may be used to go from basic facts to logical conclusions through a process
called "forward chaining." Conversely through "backward chaining" conclusions can be
used as the starting point from which supporting facts may be obtained (ref 112).

A system of productions may be used to operate on data associated with a
problem to be solved such that through nondeterministic interaction between the
productions and the data base the problem state evolves from its initial condition to
the desired termination condition. When productions whose preconditions are satis
fied by the data base are triggered the resulting actions of the productions modify
the data base. The changed data base may now satisfy the preconditions of other pro
ductions, etc. Thus, unplanned behavior can result. According to Winston (ref 8)
some psychologists as well as designers of smart computers believe that the mechanism
humans use to solve problems can be well modelled by a production system.

Production systems offer the advantage of flexible structure. Individual pro
ductions can be easily added to or deleted from the system as required. But these
systems can also grow so large that the nature of the interaction among the produc
tions is not understood or controlled. One possible solution to this problem is to
organize the productions into subsystem units.

Gerald Thompson (ref 35) is developing techniques which employ heuristics to
quickly obtain solutions in operations research to problems which have extremely
large numbers of variables. He is dealing with problems so large as to have millions
of variables and thousands of constraints. Thompson defines a heuristic simply as "a
quick and dirty way to get a feasible solution." A heuristic called "regret" is
being applied to problems whose objective is minimizing the maximum shipping time
from factories to markets. Regret is a measure of the amount of goods which cannot
be obtained from the supplier with the least shipping cost and thus, must be procured
in order from the next least costly suppliers. Candidate solutions are grouped
according to computed values of regret. From groups with the largest regrets, solu
tions with smallest costs are chosen at random. The resulting solutions are

31

regrouped according to regret as before and a new set of solutions are found. The
process is applied iteratively until a single solution is found. The solution
obtained is generally within 3 to 5 percent of the optimum.

The "rubber band" heuristic is being applied to the classic traveling salesman
problem. The objective is to find the route through N cities that goes through each
city exactly once and minimizes the total mileage. The heuristic gets its name from
the analogy of nails in a board intertwined with a rubber band. The nails represent
cities and the rubber band a possible intercity route. The idea is to start with
three cities. Find the optimum path for them. Then, continue to add cities until •
solution for the required number of cities is found. Dr. Thompson states that
solutions generally require about 100 iterations of the heuristic. For problems with
less than 35 cities, the optimum path is generally found.

Thompson has also been experimenting with using probablistically combined sets
of heuristics to reduce the amount of search in problems with a large number of
variables. Although he has not proved that this technique is more effective, he
states that his experience to date indicates that it is.

The state of the art in heuristics is, perhaps, most importantly its
increasing acceptance as a viable and useful problem solving tool. Even now, though,
scientists and engineers tend to regard heuristics as merely guessing, not compatible
with their accustomed, disciplined mathematical procedures and physical laws. Two
situations seem to be altering this view, however. The digital computer is providing
the computational power to carry out brute force searches through many combinations
of large sets of variables to find ones satisfying particular criteria. However, as
the capability to exhaustively search through larger and larger trees of data devel
opes, even larger search problems arise. It seems likely that for the foreseeable
future, the problem size will stay ahead of the current computing capacity. Thus,
techniques which reduce the amount of search within available computing capacity must
be utilized. Heuristic paring of the search tree is frequently all that is avail
able. Not only that but as evidenced by the work of Thompson (ref 35) the optimum
(or very near it) is often found through the heuristic search anyway.

The second situation which is causing acceptance is the growing belief that
much of the human problem solving process consists of trial and error application of
heuristics. It is difficult for the scientist or mathematician to dismiss heuristics
as an unhealthy contaminant of his vigorous mathematics and established physical laws
when he realizes that these tools were devised by clever human application of
heuristic information.

The state of the art, otherwise, is probably represented by current research
and development in expert systems. At Stanford University, Ed Feigenbaum (ref 111)
and Bruce Buchanan (ref 108) are extending from their background in developing expert
systems, such as DENDRAL for analyzing mass spectrograms and MYCIN for diagnosing
blood infections, to research for understanding and using meta-rules and meta
knowledge. An intelligent expert system should be aware of what it knows and under
stand how to use what it knows. It also needs knowledge acquisition strategies to
obtain particular facts in a particularly good sequence to solve specific problems.
Buchanan (ref 108) is studying how to use heuristics to exploit redundancy in the
problem data to reduce the uncertainity associated with particular bits of that
data. If the same conclusion is implied by several alternative paths from several
pieces of uncertain data, the validity of the conclusion is strengthened in propor
tion to the number of paths and the certainty of the data from which they originate.

32

The Stanford computer program called Emycin contains the inference procedures
of the MYCIN expert in a general form which accepts expert knowledge from fields
other than only medicine as input. Thus, the program can be utilized to produce a
new expert system in a new field. In addition, the previously human task of acquir
ing the human expert's knowledge and coding it' in the form required for use in an
expert computer program has been automated. Programs have been written which hold
dialogue directly with the human experts to generate the needed knowledge base.

At M.LT Gerald Sussman (ref 109) is studying expert systems which deal with
engineering problems. In contrast to most other expert systems, the knowledge base
for these consists of more rigid and precisely known information and relationships.
Even so, these systems must do more than play back information taught in formal
engineering courses. The expert program IlDJ.st capture, understand, and utilize the
essence of that facility which the expert engineer has acquired from practical expe
rience. The engineer can often quickly analyze a system through trial and error
application of informed guesses based on typical system characteristics and config
urations. An evaluation of design alternatives at the beginning of a synthesis
process, for instance, may require only an expected range of system values. Deter
mining these likely ranges may involve IlDJ.ch less time-consuming computation than
determining precise limits of particular system variables. Not only can experimental
knowledge shortcut analysis computations, but also it can provide good guesses of
what system configurations should be evaluated. Sussman, then, is studying how to
best blend precise knowledge of certain physical relationships with educated
engineering guesses to form more effective engineering expert systems. The value of
these systems was dramatically demonstrated, recently, by a very complex microproc
essor chip which was built from a design produced in a very short period of time
using one of Sussman's electrical design experts (ref 4).

In control theory, Hsu and Meyer (ref 114) are very aware of the usefulness of
heuristics in their statement (with respect to conj ectures by Aizerman (1949) and
Kalman (1957) to infer global asymptotic stability of a certain class of nonlinear
systems from the stability of an associated linear system): "The conj ectures have
been proven wrong in general; however, as they usually only fail in extraordinary
situations, they can sometimes provide useful rules of thumb for an engineer."

EVOLUTIONARY PROGRAMMING

Finite-state machines are used in evolutionary programming. A finite state
machine produces an output, sequence of symbols in response to an input sequence of
symbols from its environment in an effort to minimize a certain cost function.
Mutation of the machine is influenced by its performance, along with some randomness
and transformation logic. The evolution proceeds to find a better and better finite
state machine for the task at hand. Unsuccessful machines tend to become extinct
(refs 115 and 116).

Evolutionary programming is concerned with prediction (what will be the next
output from the environment?) and with control (what should be the next control
action based on the predicted next input and cost function?).

In evolutionary programming, a finite-state machine is used to mathematically
represent the problem. It does not matter that some function is not differentiable,
that the system is nonlinear, or that not enough information exists to model the

33

system by conventional means. This generality, of course, has its price. In refer
ence 116 evolutionary programming is compared to quasilinearization in a system
identification problem. Approximation of the problem by a system of linear differ
ential equations favored the later method significantly. Solutions by the quasiline
arization method required about 1 minute of computer time (CDC 3600) and 5 itera
tions; whereas, evolutionary programming used 6 minutes of computer time and yielded
a cost function still about twice the size of the true minimum value. However, if no
other method is available, this may not be so bad for a simulated smart computer
program.

In evolutionary programs (which have been written in FORTRAN computer lan
guage), an initial state machine is specified. Thereafter, the current three best
machines are retained for generating offspring. Modes of nlltation include (1) adding
a state, (2) deleting a state, (3) randomly changing the next state, and (4) randomly
changing the initial state. The probability for the selection of the next machine to
be mutated is made proportional to the inverse of its error score.

CONCLUDING REMARKS

Automation is a matter of degree. As technology advances, man continues to
automate at a little higher level than before. With advances in the electronic com
puter, automation has become more sophisticated, and there is a continuing effort to
use the computer in solving problems and making decisions to as great a degree as
possible. Making computers take over some of the more complicated thinking is an
impetus to understanding that process by which humans do this task. How do humans
solve problems and make decisions? At this point, this process is not understood
well enough to be automated. There are examples of automation which appear very
intelligent and flexible relative to earlier automation. This has been brought about
by the tremendous advances in the computer world. There is no set of algorithms
which represent a taxonornlf of generic human problem solving methods, although work is
proceeding in this direction.

Automating a facet of life, which usually requires human functioning, gener
ally takes a great deal of effort, time and money; however, once the automation tech
nology is completed and is in use, it allows for faster and more economical decision
making. This fast decision capability can be a critical factor in an actual, real
time situation. The econornlf brought about by the automation can allow NASA to pursue
endeavors which might otherwise have to be delayed or reduced for economic reasons.

Automation up to a certain level permits man to operate more intelligently
above that level. For example, computer graphics, databases, and subroutines for
scientific calculations permit the problem solver to concen.trate his efforts at a
higher level in attacking a problem. The president of a corporation bases his deci
sions, which decide the fate of the business, on inputs to him from a select
committee (expert systems). The mathematician in trying to prove a difficult theorem
or uncover new results may employ a computer to generate thousands of logical
deductions in different directions and to refer back to him with anything interesting !

or for further help in resolving a conflict.

Some basic items in future automation are: (1) how to structure knowledge in a
computer; (2) how to efficiently retrieve and modifY information; (3) how to formu
late goals; (4) how to design a. machine to learn in an unfamiliar environment; and

•

(5) how to discover and formulate generic concepts associated with automated decision
making and problem solving.

This paper is not a compendium on automated decision making and problem solv
ing, but is rather a presentation of some of the interesting topics being examined in
this exciting and difficult area.

REFERENCES

1. Lerner, E.J.: Computers That See. In IEEE Spectrum, October 1980.

2. "Robots Ready to March into Industry." Electronic Engineering Times, April
23-30, 1979, pp 19-21.

3. Industrial Robots. Vol 2: Applications. Society of Manufacturing Engineers,
1979.

4. Albus, J.E.: People's Capitalism - The Economics of the Robot Revolution. New
World Books, College Park, MD, 1976.

5. Redman, C.; Simpson, J.; and Friedrick, 0.: "The Robot Revolution." Time
Magazine, December 8, 1980, pp 72-83.

6. Rosen, C.A.; and Nitzan, D.: Use of Sensors in Programmable Automation.
COMPUTER, December 1977, pp 12-23.

7. Duda, R.O.; Nitzan, N.J.; and Raphael, B.: State of Technology in Artificial
Intelligence. In Research Directions in Software Technology, The MIT Press
1980, pp 729-749.

8. Winston, P.H.: Artificial Intelligence. Addison-Wesley, Inc., 1977.

9. Nilsson, N.J.: Principles of Artificial Intelligence. Tioga Publishing Co.,
1980.

10. Automated Decision-Making and Problem Solving, Vols. I and II, NASA Conference
Publication 2180, 1981.

11. Safford, E.L., Jr.: The Complete Handbook of Robotics, TAB Books no. 107 1,
1978.

12. Whitney, D.E.; Watson, P.C.; Drake, S.H.; and Simunovic, S.N.: Robot and
Manipulator Control b,y Exteroceptive Sensors. In: Joint Automatic Control
Conference, June 22-24, 1977.

13. Rosenfeld, A.: SURVEY Picture Processing: 1978. Computer Graphics and Image
Processing, 9, 1978, pp 354-393.

14. Chakravarty, I.: A Survey of Current Techniques for Computer Vision.
Rensselaer Polytechnic Institute Technical Report CRL-51, January 1977.

35

15. Vainshtein, G.G.; Zavalishin, N.V.; and Muchnik, I.E.: The Processing of
Information by Robots - A Review Automation and Remote Control, vol. 35, no.
6, June 1974, pp 959-986.

16. Lerner, E.J.: Computers That See. IEEE Spectrum, October 1980.

17. Agin, G.J.: Computer Vision Systems for Industrial Inspection and Assembly.
IEEE Computer, May 1980.

,.

18. Holland, S.W.; Rossol, L.; Ward, Mitchell, R.: CONS!GHT - 1: A
Vision-Controlled Robot System for Transferring Parts from Belt Conveyors
General Motors Research Laboratories, GMR-2790, August 1978.

19. Shen, C.N.: Data Acquisition and Path Selection Decision Making for an
Autonomous Roving Vehicle, Rensselaer Polytechnic Institute Technical Report
MP-66, March 1980.

20. Yakimovsky, Y.; and Cunningham, R.: A System for Extracting Three-Dimensional
Measurements from a Stereo Pair of TV Cameras. Computer Graphics and Image
Processing, 7, 1978, pp 195-210.

21. Sutro, L.L.; and Larman, J.B.: Robot Vision. In: Remotely Manned Systems:
Exploration and Operation in Space Proceedings of the First National Conference
in Pasadena, California, Sept. 13-15, 1972, pp 251-282.

22. Shirai, Y.; and Suwa, M.: Recognition of Polyhedrons With a Range Finder.
Proceedings Second International Joint Conference on Artificial Intelligence,
1971, pp 80-87.

23. Agin, G.A.; and Binford, T.O.: Computer Description of Curved Objects.
Proceedings Third International Joint Conference on Artificial Intelligence,
1973, pp 624-635.

24. Popp1estone, R.J.; and Ambler, A.P.: Forming Body }1odels from Range Data.
Research Report, Department of Artificial Intelligence, University of Edinburg,
1975.

25. Will, P.M.; and Pennington, K.S.: Grid Coding: A Preprocessing Technique For
Robot and Machine Vision. Artificial Intelligence, 2, 1971, pp 319-329.

26. Bales, J.W.; and Barker, L.K.: Marking Parts to Aid Robot Vision. NASA
TP-1819, 1981.

27. Hunt, E.B.: Artificial Intelligence. Academic Press, Inc., 1975.

28. Barrow, H.G.; and Tenenbaum, J.M.: Interpreting Line Drawings as
Three-Dimensional Surfaces. Artificial Intelligence, vol. 17, 1981.

29. Barrow, H.G.; and Tenenbaum, J.M.: Computational Vision. Proceedings of the
IEEE, vol. 69, no. 5, May 1981, pp. 542-595. •

30.

36

Goksel, K.; Knowles, K.A., Jr.; Parrish, E.A., Jr.;
Intelligent Industrial Arm Using a Microprocessor.
Industrial Electronics and Control Instrumentation,
August 1975, pp 309-314.

and Moore, J.W.: An
IEEE Transactions on
vol. IECI-22, no. 3,

31. Conference on Automated Decision-Making and Problem Solving, Volume I:
Executive Summary. May 19-20, 1980, NASA Langley Research Center.

32. Wagner, H.M. :

33. Bellman, R. :
1980.

34. Bellman, R. :
1957.

Principles of Operations Research. Prentice-Hall, Inc., 1969.

Introduction to Matrix Analysis. McGraw-Hill Book Company, Inc.,

Dynamic Programming. Princeton University Press, Princeton, NJ,

35. Thompson, G.L.: Recent Research in Network Problems with Applications:
Automated Decision Making and Problems Solving, NASA CP 2180, Volume II,
1980, p. 169.

36. Shamblin, J.E. and Stevens, G.T., Jr.: Operations Research, A Fundamental
Approach. McGraw-Hill Book Company, Inc., 1974.

37. Sivazilan, B.D. and Stanfel, L.E.: Analysis of Systems in Operations Research.
Prentice-Hall, Inc., Englewood Cliff, NJ, 1975.

38. White, D.; Donaldson, W. and Lawrie, N.: Operational Research Techniques.
Volume 1: An Introduction. Business Books Limited London 1969.

39. Nahra, J.E.; and Odle, M.P.: A Dynamic Programming Computer Program. NASA
CR-121350, 1971.

40. Duda, R.O.; Nilsson, N.J.; and Raphael, B.: "State of Technology in
Artificial Intelligence, In "Research Directions in Software Technology," Edited
by Peter Wegner, pp 729-749, The MIT Press, 1979.

41. Hart, P.E.: "Artificial Intelligence and National Security." SRI International
Menlo Park, CA, March 1978.

42. Sacerdoti, E.D.: A Structure for Plans and Behavior. Elsevier, New York, 1977.

43. Chien, R.T.; Brew, W.; Chen, D.; and Pan, Y.C.: Artificial Intelligence and
Human Error Prevention: A Computer Aided Decision Making Approach. University
of Illinois Coordinated Science Laboratory Report T79, July 1979.

44. Rieger, C. and Grenberg, M.: The Causal Representation and Simulation of
Physical Mechanisms. University of Maryland TR495, 1976.

45. Hewitt, C.: Description and Theoretical Analysis (Using ,Schemata) of PLANNER:
A Language for Proving Theorems and Manipulating Models in a Robot. Ph.D.
Thesis, Department of Mathematics, MIT, 1972.

46. Rulifson, J.; Derkson, J.; and Waldinger, B.: QA4: A Procedural Calculus
for Intuitive Reasoning. Artificial Intelligence Technical Note 73, Stanford
Research Institute, November 1972.

47. McDermott, D. and Sussman, G.: The CONNIVER Reference Manual. Artificial
Intelligence Memo No 259, MIT, May 1972.

37

48. Fikes, R. and Nilsson, N.: STRIPS:
Theorem Proving to Problem Solving.
4, 1971.

A New Approach to the Application of
Artificial Intelligence, vol. 2, nos 3 and

49. Fikes, R.; Hart, P.; and Nilsson, N.: Learning and Executing Generalized
Robot Plans. Artificial Intelligence, vol. 3, no. 4, 1972.

50. Pease, M.C., III: ACS.l: An Experimental Automated Command Support System,
IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-8, no. 10, pp
725-735, October 1978.

51. Fikes, R.E.: Monitored Execution of Robot Plans Produced by STRIPS.
Information Processing 71: Proceedings of the Congress. Ljubljana, Yugoslavia
August 23-28, 1971 , vol. 1, North-Holland Publishing Co., Amsterdam, 1971,
pp 189-194.

52. Friedman, L.: Robot Learning and Error Correction. NASA CR-153202, 1977.

53. Prajous, R.: "Robotics Research in France." In Robotics Age, Spring 1980, pp
16-26. Human Error Prevention: A Computer Aided Decision Making Approach,
University of Illinois Coordinated Science Laboratory Report T79, July 1979.

54. Prajoux, R.; Sobek, R.: Laporte, A.; and Chatila, H.: A Robot System Utilizing
Task-specific Planning in a Blocks-world Assembly Experiment." Proc. 10th Int.
Symp. Industrial Robots, Milan, March 1980.

55. Lee, C.Y.: An Algorithm for Path Connections and its Applications. IRE Trans.
on Electronic Computers, vol. EC-10, September 1961, pp 346-365.

56. Ernst, G.W. and Newell, A.: GPS: A Case StuQy in Generality and Problem
Solving. Academic Press, Inc., 1969.

57. Winston, P.H.: Artificial Intelligence. Addison-Wesley Publishing Co, Inc.,
1979.

58. Saridis, G.N.: Self-Organizing Control of Stochastic Systems. Marcel Dekker,
Inc., 1977.

59. Feigenbaum, E.A.: "Expert Systems in the 1980's." Computer Science Dept.,
Stanford University, Stanford, CA, 1980.

60. Davis, R.; Buchanan, B.G; and Shortliffe, E.H.: Production Rules as a
Representation for a Knowledge-Based Consultation System. Artificial
Intelligence, 8, pp 15-45, 1977.

61. Lindsay, R.K.; Buchanan, B.G.; Feigenbaum, E.A.; and Lederburg, J.:
Applications of Artificial Intelligence to Chemistry: The DENDRAL Project.
McGraw-Hill, Inc., 1980.

62. Lefler, R.M.: Automated Interpretation of lH NMR Spectroscopy. 1977
Proceedings of Int Conf on Cybernetics and Society, pp 605-610.

63. "Heuristic Programming Project 1980." Heuristic Programming Project, Computer
Science Dept, Stanford University.

38

•

64. Buchanan, B.G. and Mitchell, T.: Model Directed Learning of Production Rules.
In D.A. Waterman and F. Hayes-Roth (Eds), Pattern Directed Inference Systems,
Academic Press, Inc., 1978.

65. Haas, N. and Hendrix, G.G.: An Approach 'to Acquiring and Applying Knowledge.
AAAI First Annual National Conference on Artificial Intelligence, August 1980,
pp. 235-239.

66. Schank, R.C.; and the Yale AI Project: SAl~ - A Sto~ Uderstander. Yale
Computer Science Research Report 43, August 1975 •..

67. Schank, R.C. and Abelson, R.P.: Scripts, Plans, and Knowledge. Proceedings of
the Fourth International Joint Conference on Artificial Intelligence, Tbi1isi,
USSR, 1975.

68. Lehmann, W.P.; Bennett, W.S.; Stocum, J.; Smith, H.; Pfluger, S.M.V; and
Eveland, S.A.: The METAL $ystem. RADC-TR-80-374, vol. I and II, Janua~ 1981.

69. Riegor, C.J.:
Comprehension.

An Organization of Knowledge for Problem Solving and Language
Artificial Intelligence, vol. 7, no. 2, 1976.

70. Kraiss, F.: Decision Making and Problem Solving with Computer Assistance.
NASA TM-76008, 1980. Translation of "Entscheiden und Problemlosenmit
Rechnerunterstuetzung," Forschungsinstitut fuer Anthropotechnik, Heckenheim,
West Germany, Report no. FB-36, Februa~ 1978, pp 1-75.

71. Fu, K.S.: Learning Control Systems - Review and Outlook. IEEE Trans on
Automatic Controls, April 1970, pp 70-72.

72. Fu, K.S.: Learning Control Systems and Intelligent Control Systems: An
Intersection of Artificial Intelligence and Automatic Control. IEEE Trans on
Automatic Control, Februa~ 1971, pp 70-72.

73. Thau, F. and Montgomery, R.: An Adaptive-Learning Control System for Large
Flexible Space Structures. JACC Joint Automatic Control Conference, San
Francisco, August 13-15, 1980.

74. Saridis, G.N. and Graham, J.: Linguistic Decision Making Schemata for General
Purpose ManipUlators. ASME Joint Automatic Control Conference, San Francisco,
August 13-15, 1980.

75. Elliott, H. and Wolovich, W.A.: A Parameter-Adaptive Control Structure for
Linear Multivariable Systems. ASME Joint Automatic Control Conference, San
Francisco, August 13-15, 1980.

76. Anbumani, K.; Patnaik, L.M.; and Sarma, I.G.: Multivariable Self-Tuning
Control of a Distillation Column. ASME Joint Automatic Control Conference, San
Francisco, August 13-15, 1980.

• 77. Gupta, M.M.: Fuzzy Logic Controllers. ASME Joint Automatic Control Conference
San Francisco, August 13-15, 1980.

78. Cooper, D.C.: Theorem-Proving in Computers. In Advances in Programming and
Non-numerical Computation (L. Fox, Ed.), Pergamon Press, 1966.

39

79. Hunt, E.B.: Artificial Intelligence. Academic Press, 1975.

80. Robinson, J.A.: Building Deduction Machines. In: Artificial Intelligence and
Heuristic Programming (Findler, N.V.: and Meltzer, Bernard, Eds.) American
Elsevier Publishing Company, 1971.

81. Minsky, M.: Steps Toward Artificial Intelligence, In Computers and Thoughts,
edited by Edward A. Feigenbaum and Julian Feldman, MCGraw-Hill, Inc., c. 1963,
pp 406-450.

82. Bledsoe, W.W.: Splitting and Reduction Heuristics in Automatic Theorem Proving
Artificial Intelligence, Vol. 2, 1971, pp 55-77.

83. Ballantyne, A.M; and Bledsoe, W.W.: Automatic Proofs of Theorems in Analysis
Using Nonstandard Techniques. Journal of the Association for Computing
Machinery, vol. 24, no. 3, JUly 1977, pp 353-374.

84. Boyer, R.S.; and Moore, J.S.: A Computational Logic. Academic Press, Inc.,
1979.

85. Green, C.: Theorem-Proving by Resolution as a Basic for Question-Answering
Systems. In: Machine Intelligence (Meltzer, Bernard; Michie, Donald; and
Swann, Michael, Eds.) American Elsevier Publishing Co., Inc., 1969.

86. Minker, J.: An Experimental Relational Data Base System Based on Logic. In:
Logic and Data Bases (H. Gallaire and J. Minker, Eds.) Plenum Press, 1978,
pp 107-147.

87. Bledsoe, W.W.; and Bruell, P.: A Man-Machine Theorem-Proving System.
Artificial Intelligence, vol. 5, 1974, pp 51-72.

88. Kastner, M.P.: A New Look at Large Scale Systems and Decentralized Control.
Recent Graduates Speak Out. Proceedings of 1978 IEEE Conference on Decision and
Control, San Diego, CA, January 1979, pp 472-473.

89. Ho, Y.:
68, no.

Team Decision Theory and Information Structures.
4, June 1980, pp 644-654.

Proc of IEEE, vol.

90. Ho, Y.; Kastner, M.P.; and Wong, E.: Teams, Signaling, and Information
Theory. IEEE Trans on Automatic Control, vol. AC-23, no. 2, April 1978, pp
305-312.

91. Montgomery, R.C.; and Lee, P.S.: Information Distribution in Distributed
Microprocessor Based Flight Control Systems. 1977 IEEE Conference on Decision
and Control, New Orleans, LA, December 6-9, 1977. '

92. Sandell, N.R., Jr.; Varaiya, P.; Athans, M.; and Safonov, M.G.: Survey of
Decentralized Control Methods for Large Scale Systems. IEEE Trans on Automatic
Control, vol. AC-23, no. 2, April 1978.

93. Walrand, J.: On Decentralized Stochastic Control. Proceedings of 1978 IEEE
Conference on Decision and Control, San Diego, CA, January 1979,

40

•

94. Kabama, P.T.: An Euclidean Approach to the Problem of Parameter Reduction in
Large 9ystems. Proceedings of Second VPI SU/AIAA Symposium on Dynamics and
Control of Large Flexible Spacecraft, June 21-23, 1979, pp 459-474.

95. Greenwood, J.R.; Holloway, F.W.; Rupert, P.R.; Ozarski, R.G.; and Suski,
G.J.: Hierarchically Structured Distributed Microprocessor Network for Control.
Third Rocky Mountain Symposium Fort Collins, Colorado, August 19-21, 1979.

96. Heer, E., ed.: Conference on Automated Decision ~~king and Problem Solving, vol
I - Executive Summary, vol II - Conference Presentations. NASA CP-2180, 1981.

97. Barbera, A.J.: Architecture for a Robot Hierarchical Control System. National
Bureau of Standards SP 500-23, December 1977.

98. Saridis, G.N.: Intelligent Controls for Advanced Automated Processes. NASA
CP-2180, 1981, pp 39-75.

99. Bobrow, D.G.; Winograd, T.: An Overview of KRL, A Knowledge Representation
Language, Stanford Artificial Intelligence Laboratory Memo AIM-293, Stanford
University, November 1976.

100. Chien, R.T.: Multilevel Semantic Analysis and Problem Solving in the Flight
Domain. NASA CR-169282, August 1982.

101. Gallaire, H.; Minker, J.; Nicolas, J.: An Overview and Introduction to Logic
and Data Bases. In: Logic and Data Bases (H. Gallaire and J. Minker, eds.),
Plenum Press, 1978, pp 3-32.

102. Hayes-Roth, F.: Knowledge Representation, Organization and Control in Large
Scale Pattern-Based Understanding Systems, IEEE Computer Society, June 1976.

103. Minker, J.: Logical Inference as an AID to Analysis in Large Data Bases,
University of Maryland, College Park, Maryland, February 1980.

104. Riegor, C.: The Common Sense Algorithm as a Basis for Computer Models of
Human Memory, Inference, Belief, and Contextual Language Comprehension.
Technical Report 373, University of Maryland, College Park, Maryland, May 1975.

105. Smith, R.G.; Davis, R.: Distributed Problem Solving: The Contract Net
Approach. Stanford Heuristic Programming Project, Stanford University,
Stanford, CA., 1978.

106. Wolf, J.J.: Knowledge, HYpothesis, and Control in the WHIM Speech
Understanding System. 1976 Joint Workshop on Pattern Recognition and Artificial
Intelligence, IEEE Computer Society, June 1976.

107. Nilsson, N.J.: Artificial Intelligence. Appendix D in Machine Intelligence
and Robotics: Report of the NASA Study Group. Jet Propulsion Laboratory
Report 715-32, March 1980.

108. Buchanan, B.: Problem Solving With Uncertain KnOWledge. Automated
Decision-Making and Problem Solving, NASA CP 2180, vol. II, 1980, p. 245.

41

109. Sussman, G.J.; and Stallman, R.M.: Heuristic Techniques in Computer Aided
Circuit Analysis. IEEE Trans. on Circuits and Systems CAS-22, no. 11, 1975.

110. Simon, H.A.: Overview of Artificial Intelligence. ONR A.I. Lecture Series
Naval Research Labs, Washington, DC 1979.

Ill. Feigenbaum, E.A.: Expert Consulting Systems. ONR A.I. Lecture Series,
George Washington University, 1980.

112. Wagner P. (Ed.) 1979. Research Directions in Software Technology. MIT Press,
1979.

113. Duda, R.O. et Al: Development of the Prospector Consultation System for
Mineral Exploration. Final Report, Grant AFR 77-04499, SRI International,
Menlo Park, CA, 1979.

114. Hsu, J.C.; and Meyer, A.: Modern Control Principles and Applications.
McGraw-Hill, Inc., c. 1968.

115. Fogel, L.J.; Owens, A.J.; and Walsh, M.J.: Artificial Intelligence Through
Simulated Evolution. John Wiley and Sons, Inc., c. 1966.

116. Burgin, G.H.:
Programming.

42

Systems Identification by Quasilinearization and by Evolutionary
Journal of Cybernetics, vol. 3., no. 2, 1973, pp 56-76.

1. Report No.
NASA TM-83216

2. Government Accession No.. 3. Recipient's Catalog No.

4. Title and Subtitle

Decision-Making and Problem-Solving Methods :th
Automation Technology

5. Report Date

MR.v 1 qRl
6. Performing Organization Code

506-54-63-01

8. Performing Organization Report No.7. Author(s) Walter W. Hankins
Jack E. Pennington

1- -:::L::.:.-:::K.::.:e:::i:..t:::..:h~B:::;a:::r:.:k::.:::e::.r __i 10. Work Unit No.

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

, 15. Supplementary Notes

16. Abstract

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum
14. Sponsoring Agency Code

This report presents a brief review of the state of the art in the automation
of decision making and problem solving. The information upon which the report is
based was derived from literature searches, visits to university and government
laboratories performing basic research in the area, and a 1980 Langley Research Center
sponsored conference on the subject. It is the contention of the authors that the
technology in this area is being generated by research primarily in the three
disciplines of Artificial Intelligence, Control Theory, and Operations Research.
Under the assumption that the state of the art in decision making and problem solving
is reflected in the problems being solved, specific problems and methods of their
solution are often discussed to elucidate particular aspects of the subject. Synopses
of the following major topic areas comprise most of the report: (1) detection and
recognition; (2) planning; and scheduling; (3) learning; (4) theorem proving; (5)
distributed systems; (6) knowledge bases; (7) search; (8) heuristics; and (9) evolu
tionary programming.

17. Key Words (Suggested by Author(s))

Artificial Intelligence
Decision Making
Control Theory
Operations Research
Problem Solving

18. Distribution Statement

Unclassified - Unlimited

Subject Category 59

,

19. Security Oassif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified
21. No. of Pages

43
22. Price

A03

N-305 For sale by the National Technical Information Service, Springfield, Virginia 22161

