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ABSTRACT 

This paper describes preconditioned conjugate gradient methods for 

solving sparse symmetric and positive definite systems of linear equations. 

Necessary and sufficient conditions are given for when these preconditioners 

can be used and an analysis of their effectiveness is given. Efficient 

computer implementations of these methods are discussed and results on the 

CYBER 203 and the Finite Element Machine under construction at NASA Langley 

Research Center are included. 
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Introduction 

In this paper we are concerned with the solution of a sparse N x N 

system of symmetric and positive definite linear equations 

(1.1) 

by preconditioned conjugate gradient (PCG) methods. For a detailed 

description of these methods see Concus, Golub, O'Leary [1976] and Chandra 

[1978]. 

The PCG method solves the system, ~ = ~, where 

(1.2) 

Q is a nonsingular matrix, and the symmetric and positive definite 

preconditioning matrix is given by M = QQT. The algorithm for the solution 

of u directly is described in Chandra [1978] and is given below where u, r, 

r, and p are vectors and (x,y) denotes the inner product xTy. 

(1) Choose 

(5) k = 0 

o 
u 

(6) For k = 0 1 ••• k . " 'max 



2 

(1) 

(2) 
k+1 k k u .. u + ap 

(3) If nuk+1
_U

k nm < E then stop, otherwise continue. 

(4) 

(5) 

(6) 

(7) 

Algorithm 1. 

k+1 k 
r = r 

k aKp 

Preconditioned Conjugate Gradient Algorithm. 

We note that the standard conjugate gradient algorithm results by choosing 

M = I. 

In the next section preconditioners that are based on taking m steps of 

an iterative method are described, conditions for their applicability to and 

effectiveness for symmetric and positive definite systems are given, and their 

relationship to the preconditioners of Dubois, Greenbaum, Rodrique [1979] and 

Johnson, Mlcchelli, and Paul [1982] is discussed. In Section 3, the 

implementation of the m-step SSOR preconditioner on parallel machines is 

discussed and results of this preconditioner on the CYBER 203/205 and the 

Finite Element Machine are included. 



2. m-Step Preconditioners 

2.1. Choosing M 

Algorithm 1 of the last section requires a symmetric and positive 

definite preconditioning matrix M to be specified or computed. The question 
,. 

arises as how to choose M so that the condition number of K, 

where ~i are the eigenvalues of M-1K, is as small as possible. 

The best choice for M in the sense of minimizing K(i) is M - K but 

this gains nothing since Kr - r is just as difficult to solve as Ku a f. 

One approach that has been taken in the literature is to choose M to be an 

incomplete Cholesky factorization of K, (Manteuffel [1979] ). Another 

approach is to choose M to be a symmetric and positive definite splitting 

of K that describes a linear stationary iterative method (refer to Concus, 

Golub, O'Leary [1976] and the references therein). 

The question of interest here is whether it would be beneficial to take 

more than one step of a linear stationary iterative method to produce a 

preconditioner M that more closely approximates K. We begin by deriving an 

expression for M. Let K - P - Q be a splitting of K that is associated 

with the linear stationary iterative method with iteration matrix 

Then the m-step iterative method applied to Kr = r is 

By choOSing 
,. (D) 
r - Q, (2.1) yields 

-1 G ... P Q. 

(2.1) 

3 
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( tlI.-l)-1 M = P I+G+ ••• +G • (2.2) 

Before we establish the necessary and sufficient conditions for M to 

symmetric and positive definite, we prove the following lemma. 

Lemma 1. 

If A = Be is a symmetric positive definite matrix, B is symmetric, 

and e has positive eigenvalues, then B is positive definite. 

Proof 

Let e-1x = ~x or equivalently 

(2.3) 

Multiply both sides by A 112 to get 

(2.4) 

or 

The proof is now by contradiction. Assume that B has a non-positive 

eigenvalue. Then, since (2.4) is a congruency transformation of B, it 

follows that R has a nonpositive eigenvalue (see Gantmacher 

[1959]). But the spectrum of R is identical to that of e-1 and by 

hypothesis can not have a nonpositive eigenvalue. Hence B is 

positive definite. 



The necessary and sufficient conditions for M to be positive definite are 

given in Theorem 1. 

Theorem 1. 

Let K - P - Q be a symmetric positive definite matrix and let P be 

a symmetric nonsingu1ar matrix. Then 

(1) the matrix M of (2.2) is symmetric. 

(2) for m odd, M is positive definite if and only if P is 

positive definite. 

(3) for m even, M is positive definite if and only if P + Q is 

positive definite. 

Proof 

To prove symmetry, we write ~1 as 

M-1 = p-1 + p-1QP-1 + p-lQP-lQP-l + ••• + t-lQP-lQ ••• p-l~-1 
v 

m -1 terms 

(2.5) 

Now since P and K and hence Q are symmetric, each term in (2.5) is 

symmetric. Thus M is symmetric. 

The matrix G = p-lQ can be expressed as G = K- 112 (I-K 1/2 p-lK 1/2 )K 112 • 

Since p-l is symmetric with P, the eigenvalues of the congruence 

transformation K 1/2 P-1K 1/2 are real. Hence, the eigenvalues of G are 

real. 

To prove (2), let m be odd. If g is any eigenvalue of G other 

than 1, the corresponding eigenvalue of 

5 



J 

t 
i 
I 
! 

6 

is 

m-l 
1 + g +"""+ g 

= 1 _ gm 

1 - g 

which is positive since m is odd. If g - 1, the corresponding 

eigenvalue of R is equal to m and is also positive. Now, since 

P = MR and l1: is symmetric and R has positive eigenvalues, it 

follows from Lemma 1 that if P is positive definite then M must 

also be positive definite. Conversely, M can be written as M = PR-l. 

Since R-1 has positive eigenvalues and P is symmetric, we conclude 

from Lemma 1 that if M . is positive definite then P is also 

positive definite. 

Next, to prove (3) let m be even. It is sufficient to consider Mrl 

since any conclusions about the definiteness of M-1 will apply to 

M. Since m is even, Mrl from (2.5) can be written as 

or 

Now, since PG=Q, Mrl can be written as 

(2.6) 

Since P is nonsingu1ar and symmetric, M-1 is positive definite if 

and only if the symmetric matrix 



(2.7) 

is positive definite. 

Assume P + Q is positive definite. Since S is symmetric and the 

matrix (I~~2~4+ ••• +G~2)-1 h iii 1 S iii TU TU as pos t ve e genva ues, s pos t ve 

definite by Lemma 1. Conversely, if S is positive definite, since 

P + Q is symmetric and the series IfG2fG4+ ••• +G~2 has positive 

eignevalues, P + Q is positive definite by Lemma 1. 

Dubois, Greenbaum, and Rodrique [1979] considered a truncated Neumann 

series for K-1 as a preconditioner. Their preconditioner is equivalent to 

that of (2.2) if K = P - Q corresponds to a Jacobi splitting where P = 

diag(K), but they do not consider more complicated splittings that result from 

other iterative methods. Theorem 1 extends their main result. Under the 

hypothesis that K and P are both symmetric and positive definite matrices 

and peG) < 1, they prove that M is symmetric and positive definite for 

all m. Note that for odd m the condition that p (G) < 1 is not needed. 

The relationship between the condition peG) < 1 and the positive 

definiteness of P + Q is given in Theorem 2. 

Theorem 2. 

Let K - P - Q be a symmetric positive definite matrix and let P be 

symmetric and nonsingular. Then p(p-lQ) < 1 if and only if P + Q 

is positive definite. 

7 
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Proof 

First, assume P + Q is positive definite. Since K is symmetric 

positive definite and P is nonsingular, K = P - Q is a p-regular 

splitting. Hence, from Ortega's p-regular splitting theorem, Ortega 

[1972], p(p-1Q) < 1. 

Now, assume that p(G)<l. Then (I-G)-l exists and since G has real 

eigenvalues, it easily follows that the matrix H defined by 

has real eigenvalues. But we know from Young ([1971], p. 82) that H 

is N-stable. Hence H has positive eigenvalues. Now, we can write 

H as 

H K-1 (P+Q) (2.9) 

or equivalently, 

K (P+Q)H-1 (2.10) 

Finally, since K is symmetric and positive definite and H-1 has 

positive eigenvalues and P + Q is symmetric, we conclude from Lemma 1 

that P + Q is positive definite. 

We note that the Jacobi Convergence Theorem given in Young [1971] is a 

specific case of Theorem 2. 

Theorem 1 and Theorem 2 are helpful in choosing a splitting of K that 

will produce an m-step preconditioner that is symmetric and positive 



definite. For example, if the Jacobi splitting of K (P = D and Q = D - K 

where D is the diagonal of K) were considered, part (3) of Theorem 1 says 

that if m is even, P + Q must be positive definite, and by Theorem 2 this 

is only true when the Jacobi method is convergent. However, for problems of 

interest to us, the Jacobi method is not guaranteed to be convergent since we 

only know that K will be symmetric and positive definite; therefore, for 

these problems, only odd values of m will yield m-step Jacobi 

preconditioning matrices that are guaranteed to be positive definite. 

2.2. Analysis of the Condition Number 

In the last section, we gave conditions for M to be symmetric and 

positive definite and hence to be considered as a preconditioner for the 

conjugate gradient method. In this section we determine if increasing m 

will, in fact, produce a better conditioned system. For this purpose, we now 

denote by M 
m 

the matrix of (2.2). 

As a first step towards answering this question, we derive an expression 

for K(~). Recall from (1.2) that K is similar to M;IK so that K(Km) 

is the same as the ratio of the largest to smallest eigenvalue of An 

expression for as a po1ynomina1 in G is 

(2.11) 

or 

M-1K = I - G
m 

m 

where -1 G = P Q. 

We wish to compare K(~) to K(~l)' when both M and m Mm+1 are 

symmetric and positive definite. By Theorem 1, this implies that P and 

P + Q are positive definite and thus by Theorem 2, p (G) < 1. Under the 

9 
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hypothesis of Theorem 1 the eigenvalues ).i of G are real, and can be 

ordered as 

Furthermore, let 0 be the eigenvalue with the smallest absolute value. Then 

" the condition number of ~ is 

1 
_ ).m 

1 

1 _ ).m ).1 ) 0 or ).1 < 0 and m odd 

n 

" 1 - om 
K(K ) m 1 _ Am 

(2.12) 

n 

1 _ om 

1 _ ).m 
1 

As can be seen from (2.12), the conditions for K(~l) < K(~) depend upon 

the distribution of the eigenvalues \ of G. We note that for both odd and 

even m if Al < 0 and IA11 ) IAnl' it is impossible to decide whether 

K(~l) < K(~) without knowledge of the values of A1,An' and o. The 

conditions for the remaining two cases are stated below: 

If AI) 0, K(Km) is a decreasing function for all m. (2.13a) 

If An) 1).11 and Al < 0, 

(a) for m odd, K(Km+1) < K(Km). 

(2.13b) 



As an application of (2.13a) consider the SSOR splitting of a symmetric 

and positive definite matrix. Recall from the basic convergence theorem for 

SSOR that if K is a symmetric matrix with positive diagonal elements, the 

SSOR method converges if and only if K is positive definite and 0 < w < 2. 

Therefore, peG) < 1 for this splitting and from Young [1971] we know that all 

the eigenvalues of G are real and nonnegative. Since P is symmetric, it 

follows from Theorems 1 and 2 that ~ is symmetric and positive definite and 

from (2.13a) it follows that is a decreasing function of m. 

Results of the m-step SSOR preconditioned conjugate gradient method on a 

1536 x 1536 symmetric and positive definite matrix derived from a finite 

element discretization (triangles with linear basis functions) of a plate in 

plane stress are given in Table I and the results on a 768 x 768 matrix 

derived from the 5-star discretization of Laplace's equation are given in 

Table II. For these problems, results are given for both the natural rowwise 

ordering and the Multi-color ordering (see Adams and Ortega [1982]) of the 

grid. The convergence criterion was n k+l kn u -u 
co 

< e:, where -6 e: = 10 for 

both problems. The conjugate gradient results with no preconditioning are 

indicated by m = O. 

11 
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Table I. ~step SSOR PeG for 1536 x 1536 Plane Stress Problem 

R/B/G Natural 

m II Iterations 11 Iterations II Iterations 

(w=l) (w=1 ) (w=1.6) 

0 363 363 363 

1 139 111 93 

2 99 80 66 

3 82 65 54 

4 71 57 47 

Table II. m-step SSOR PeG for 768 x 768 Laplace's Equation 

RIB Natural 

m 11 Iterations 11 Iterations II Iterations 

(w=1) (w=1) (w=1.8) 

0 56 56 56 

1 30 28 17 

2 22 21 13 

3 18 17 10 

4 16 15 9 

The results in Tables I and II show that the number of iterations is a 

decreasing function of m as was predicted by (2.13a) •. The results also 

indicate that there will be an optimal value of m, say mopt ; since for 

m > mopt, the reduction in the number of CG iterations is not enough to 

balance the increase in the time required for the iterations of the SSOR 

preconditioner. The actual relative cost of the CG and SSOR iterations on a 

computer will be a function of the amount of arithmetic and communication 



operations in each algorithm as well as the times to perform these operations 

on the machine. Therefore, the optimal value of m will depend on the 

architecture of the machine and the problem size as indicated by the results 

in Section 3. 

As an example of an application of (2.13b) we consider the Jacobi 

splitting of any symmetric and positive definite matrix K that has Property 

A (see Young [1971]). For this splitting, P = D where D is the diagonal 

of K and therefore P is symmetric and positive definite. Now, since K 

has Property A, the eigenvalues ~i of G occur in ±~i pairs and 

~n = 1~11 and 0 = O. From (2.13b) we conclude that going from m (even) to 

m + I (odd) is advantageous if and only if 

or equivalently, (2.14) 

~m+1_2~ + 1 > O. 
n n 

As m increases the inequality in (2.14) reduces asymptotically to 

~ 
n 

1 < -. 2 
(2.15) 

For m = 2 and m = 3, the exact conditions are 

respectively, but for problems of interest to us, 

~ < .62 and ~ < .53 

~ 
n 

n n 

will be closer to 1 

and we can conclude that it is not advantageous to increase m from m 

(even) to m + 1 (odd). This fact has been verified by numerical experiments 

for the m-step Jacobi preconditioner on an 89 x 89 symmetric and positive 

definite system that had Property A. The results are given in Table III. 

13 
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Table III. ~step Jacobi Results 89 x 89 

m f1 Iterations 

0 45 

1 45 

2 23 

3 36 

4 21 

5 30 

6 18 

7 26 

8 16 

Note from Table III that increasing m from 2 to 3, from 4 to 5, and from 

6 to 7 also increases the number of iterations from 23 to 36, from 21 to 

30, and from 18 to 26 respectively. On the other hand, observe that 

increasing m from an odd to a consecutive even number always reduces the 

number of iterations. Dubois, Greenbaum, Rodrique [1979] reported similar 

results for Poisson's equation. Their results may also be explained by 

(2 .13b) • Also note from Table III that the number of iterations is a 

decreasing function of m if we restrict m to be even. In fact this can 

easily be shown to be true for all three cases in (2.12). 

So far we have only addressed the question of whether a better 

conditioned system results by increasing m. We now turn to the question of 

how much improvement over m = 1 can be made by taking m > 1 steps of the 

preconditioner. Dubois, Greenbaum, and Rodrique [1979] proved that the m­

step PCG method can only reduce the number of iterations needed by the 1-

step PCG method by a factor of m. In practice, this theoretical bound may 



not be reached and for a given distribution of eigenvalues it may be sharper 

for some values of m than for others. The results of Dubois, et.al. [1979J 

show this for the m-step Jacobi peG for Laplace's equation. Tables I and II 

show for the m-step SSOR peG method applied to both the plane stress problem 

and Laplace's equation that the bound is best for m = 2. Table III shows 

that for the m-step Jacobi peG applied to a problem with Property A that the 

bound is extremely sharp for m = 2 and extremely poor for odd values of m. 

In order to determine the conditions under which the m-step peG method 

gives the most improvement over the I-step peG method, we examine the ratio 

K(K1 ) 
K(Km) 

for both odd and even 

distribution of the eigenvalues 

calculated from the equations of 

various cases. 

m with different assumptions about 

of G which are assumed to be ordered 

minF\r· This ratio can easily 
i 

(2.12 ) and is summarized below for 

the 

as 

be 

the 

15 
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+ A + A2 + ••• + Am-I 
n n n 

(l+IAI P (l+An +A!+ ••• +A:-
1

) 

1 + 1\lm 

(1+!An !m)(I+IA1 1) 

(1+IA 1I
m

)(I+IAn l) 

(1+IA11)(I+An+A!+ ••• +A:-
1

) 

(1-1 15 1m) 

(1+IA11)(I-IA1 I
m

) 

(I-A )( 1-1 15 1m) 
n 

Al < O,An > 0, m odd 

Al < O,An < 0, m odd 

Several observations can be made from (2.16): 

(1) 

(2) 

(3) 

If Al ) 0, the maximum value of occurs as Al + 0 

A + 1 and is equal to m. (This is the case for the SSOR 
n 

splitting.) 

If Al < ° and A > 0, and m is odd, the maximum value n 
K(K1) 

occurs when A +1 and is equal to m( 1+IA 11 ). 
K(~) n 1+IAlim 

The m-step peG method (m>l) is more effective if A > 0. n 

(2.16 ) 

and 

of 



(4) If Al 

K(K1) 

K(~) 
occurs when A +1 and 

n 

and m is even, the maximum value of 

and is equal to 2m 

Note that the larger 15, the larger this ratio will be. Hence to 

achieve the maximum performance in this case, we would like the value 

of 15 to be as close to Al as possible. For K matrices with 

Property A, this is not possible since 15 = 0 and the maximum ratio 

of the two condition numbers is 2m. 

In summary, the ~step PeG method gives more improvement over the 1-

step PCG method when an even number of steps of the preconditioner 

are taken and the eigenvalues of the· matrix G are distributed as 

described in (4) above. This implies that for the SSOR iteration 

matrix which has AI) 0, the ~step SSOR preconditioner will not be 

extremely effective as m increases. However, by parametrizing this 

precondi tioner the method is more effective. This is the topic of 

the next section. 

2.3 Parametrizing the m-step PCG Method 

Johnson, Micchelli, and Paul [1982) have suggested symmetrically scaling 

the matrix K to have unit diagonal and then taking m terms of a 

parametrized Neumann series for as the val,ue for -1 M • This 

corresponds to a symmetric preconditioning matrix that is a polynominal of 

degree m-1 in G, 

(2.17) 

derived from the Jacobi splitting, 

17 
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K I - G 

of K; hence, the solution to M r = r 
m-

can be implemented by taking 

of the Jacobi iterative method applied to Kr = ~ with initial guess 

"(0) 
r O. 

Now, M-1K can be written as a polynominal in K, 
m 

[ 2m-I] = aOI+a1 (I-K)+a2 (I-K) + ••• +am_1 (I-K) K 

and Johnson, et.al., choose the so that the eigenvalues of 

(2.18) 

m steps 

(2.19) 

and 

hence those of ~,are positive on the interval [A1,An] that contains the 

eigenvalues of K and are as close to 1 as possible in some sense such as 

the min-max or the least squares criteria. Clearly, if m = 

and the condition number of M~lK is the same for all a O * O. Hence, we are 

only interested in m > 1. 

We now generalize this idea for any splitting of the matrix K, 

K = P - Q. (2.20) 

If G = P-1Q, then by parametrizing (2.2), the inverse of the m-step 

preconditioner becomes 

(2.21) 

and will be symmetric if P is symmetric. The expression for is given 

by 

-1 [ (-1 ) (-1 ) m-1] -1 Mm K = aOI+a1 I-P K + ••• +am_1 I-P K P K (2.22 ) 



and is seen to be a polynominal in p-1K rather than in K as in (2.19). We 

now choose the values of so that the eigenvalues of M-1K are positive 
m· 

on the interval [A1,An] that contains the eigenvalues of p-1K and are as 

close to 1 as possible in some sense such as the min-max or least squares 

criteria. 

When the eigenvalues of G are on the interval [0,1), the eigenvalues 

of p-1K are on the interval (0, 1] and from (2.22), in the least squares 

sense, we wish to find the ai's that minimize 

I I [ m-1 ] 2 a Ox+«l (l-x)X+ ••• +am-1 (I-x) x-I dx. 
o 

The appropriate values of the a· i = 0 1 ••• m-1 
i' '" 

for the SSOR splitting are 

given in Adams [1983]. In the next section we discuss the efficient 

implementation of the m-step SSOR preconditioner and the choice for the 

relaxation parameter w for the SSOR method if the grid points are ordered by 

a Multi-color ordering. 

3. Implementation and Results 

3.1. Implementation Considerations 

In order to efficiently implement the m-step SSOR .preconditioner on 

parallel computers, the equations at the grid points of the problem domain 

must be colored, see Adams and Ortega [1982], so that any two equations at 

points on the same grid point stencil are different colors. The equations are 

then ordered by colors with the equations of the same color being ordered left 

to right, top to bottom (for a rectangular grid). In particular, if three 

colors are used, the system K£ = £ has the decoupled form, 

19 



20 

Dn B12 B13 ';:1 ';:1 
T 

D22 B23 
(3.1) B12 £2 = £2 

T T 
B13 B23 D33 £3 £3 

where Dii , i = 1 to 3 are diagonal matrices. 

The m-step SSOR iteration is implemented as a forward followed by a 

backward Multi-color SOR iteration (Adams and Ortega [1982]) but care is taken 

to save results from the forward pass in an auxilary vector to be used in the 

reverse pass so that the cost of one SSOR iteration is no more expensive than 

the cost of one SOR iteration (Conrad and Wallach [1979]). Specific details 

on this implementation (in conjunction with Algorithm 1) for the CYBER 203 and 

the Finite Element Machine can be found in Adams [1983]. 

In addition to the computational work saved by using the auxilary.vector, 

the MUlti-color ordering permits even more savings. To explain this, we begin 

by writing a 3-color SOR iteration matrix, !i!w' in the following factored 

form: 

~ = G B R w w w w (3.2) 

where Rw,Bw' and Gw are the matrix operators for the Red, Black, and Green 

equations respectively. Nicolaides [1974] discussed the factorization of an 

n x n SOR iteration matrix ~ into n operator matrices, one for each 

equation, and then showed how these factors combine for matrices with Property 

A into two factors, ~ =. BwRw' corresponding to the red and black equations 

respectively. Young [1971] also gives the factorization of ~ for these 2-

colored matrices. Equation (3.2) is a straightforward continuation of these 

ideas. To be precise, if the matrix K is given by 



II -X12 -X 13 

K 
T 

12 -X23 = -X12 

T 
-X13 

T 
-X23 13 

with no loss in generality by assuming D = I on the diagonal, the 

R ,B , and Gw matrices in (3.2) are w w 

(1-w)I 1 WX12 WX13 

Rw = 0 II 0 

0 0 12 
and 

II 

G 0 w 

0 

12 

T WX12 
T WX 23 

respectively. 

II 0 

B 
T (l-W)I2 = WX
12 w 

0 0 

0 

0 

(l-w)I3 

(3.3) 

0 

WX
23 

13 

(3.4) 

Similarly, the backward Multi-color SOR iteration matrix may be written in the 

factored form 

where R ,B,G are the same as those of (3.2). w w w 

iteration matrix may be written as, 

9'=RBGGBR. w wwwwww 

(3.5) 

Now, the Multi-color SSOR 

(3.6) 

A trivial calculation shows that GwGw = Gw(2_w) and RwRw = Rw(2-w). Hence, 
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!Jlw = R B G (2 )B R • www -W WW 
(3.7) 

From (3.7), we see that the green equations only need to be calculated on the 

forward pass with relaxation factor w" = w(2-w). Likewise, the 

operators combine from the backward pass and the next forward pass so that the 

red equations should be updated on the first forward pass with relaxation 

factor wand on the last backward pass with relaxation factor w. For the 

intermediate forward passes, the red equations should be updated with 

w" = w(2-w). The black equations, however, must be updated on both the 

forward and backward passes with relaxation parameter w but part of this 

calculation can be saved by the use of the auxi1ary vector mentioned 

earlier. By organizing the computation in this fashion, 2m(c-1)+1 rather 

than 2mc operation matrices need to be applied. Also, this computational 

organization is not affected by the introduction of a
i
,i=1,2,···,m since the 

parameter a
i 

multiplies only the right hand side vector r on step m-i+1 

of the preconditioner. 

We now briefly discuss the choice for w. From Young's [1971] theory of 

matrices with Property A (2-co10red) we know that the optimal w for SSOR is 

w = 1. In fact, Young's proof shows that 

(3.8) 

and 

9!""B R =!£ w w(2-w) w(2-w) w(2-w) (3.9) 

and for matrices with Property A, ~(2-W) has the smallest spectral radius 

whenever w = 1. In particular, fli .... !£ 1 • Now, for 'Hu1 ti-co10r 

matrices, ~ is not necessarily similar to !£W(2-W) since from (3.7) with 3 



colors, we see that 

fI,,---BG 'BR w w w(2-w) w w(2-w) 

and for w = 1, 

In general when the number of colors is equal to 

the matrix associated with color k, 

and for w 1, 

c and C (k) 
w 

(3.10) 

(3.11) 

denotes 

(3.12) 

(3.13) 

Assume that (3.12) represents an equal number of equations of each color and 

let w > 1 so that w (2-w) < 1. For two colors, (3.9) shows that all 

equations are underrelaxed. For three colors, (3.10) shows that we can regard 

only the black equations as being overrelaxed (once on the forward and once on 

the reverse pass). In general, (3.12) shows that the equations of c-2 

colors can be regarded as overrelaxed and the equations of 2 colors as 

underrelaxed. When the number of colors approaches the number of 'equations, 

all but two equations can be regarded as being overrelaxed. Although not a 

proof, this observation suggests that overrelaxation becomes more worthwhile 

as the number of colors increases and choosing w = 1 when a small number of 

colors is used is a good choice. This was the case for the results in Table 

I, where for the R/B/G ordering of nodes (really six colors -- two unknowns 

per node) w = 1 was optimal for m-step SSOR PCG. Results in Adams [1982] 

show that w = 1 was also optimal for the SSOR method (used alone) for this 

same problem. 
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3.2. Results on Parallel Computers 

We now give results of the ~step SSOR PCG method for a square plate in 

plane stress on both the CYBER 203 and the Finite Element Machine. These 

results were discussed in detail in Adams [1983] and are only included here to 

show that the method is effective on these machines. Table IV gives the 

number of iterations, I, and the time, T, in seconds to solve this problem 

using m = 0,1,2,3,4,5,6,7,8,9, and 10. The parametrized preconditioner 

results are denoted by P, the number of rows in the plate by a, and the 

maximum vector length by v. 

Table IV. CYBER. 203 Iterations and Timings m-step SSOR PCG 

v = 22 v = 41 v = 132 v = 561 v = 1282 v = 2134 

a = 8 a = II a = 20 a = 41 a = 62 a = 80 

m I T I T I T I T I T I T 

0 ll2 .133 157 .213 271 .565 536 3.293 788 1l.845 929 22.780 

1 52 .129 66 .184 111 .454 214 2.373 311 7.832 395 17.194 

2 38 .143 50 .208 79 .478 152 2.428 221 7.773 280 17.380 

2P 31 .ll6 40 .167 61 .369 ll8 1.885 172 6.052 218 13.534 

3 31 .155 39 .216 65 .520 124 2.585 181 8.174 229 18.469 

3P 24 .121 30 .167 46 .369 88 1.836 129 5.828 163 13.151 

4P 22 .138 24 .166 35 .350 67 1.726 99 5.471 124 12.306 

5P 19 .143 20 .167 29 .347 56 1. 716 82 5.345 104 12.260 

6P 18 .159 18 .175 25 • 348 47 1.670 70 . 5.263 88 12.011 

7P 26 .413 43 1.739 64 5.451 80 12.'410 

8P 21 .375 36 1.634 54 5.139 69 1l.985 

9P 33 1.660 48 5.056 61 ll.731 

lOP 31 1.709 44 5.070 55 1l.594 



We now give the Finite Element Machine results. The same problem with 6 

rows and 6 columns of nodes (60 equations) was solved on a 1, 2, and then on a 

5-processor Finite Element Machine using the m-step SSOR peG method (as more 

processors become available on this machine the solution of larger problems 

will be possible). Each processor was assigned equations at an equal number 

of R, B, and G nodes. Therefore, in the absence of communication time and 

any differences in processor speeds, a speedup of 2 (5) over the one processor 

case should be realized Whenever 2 (5) processors are used respectively. The 

number of iterations, I, and the time, T, in seconds as well as the respective 

speedups are given in Table V. 

Table V. FEM Iterations, Tbrlngs, Speedups m-step SSOB. PCG 

P = 1 P = 2 P = 5 
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m I T I T Speedup I T Speedup 

0 48 63.35 49 33.70 1.92 48 17.70 3.58 

1 19 47.90 19 25.85 1.85 19 14.85 3.23 

2 13 48.75 13 26.65 1.83 13 15.50 3.15 

2P 11 41.95 11 22.95 1.83 11 13.30 3.15 

3 11 54.95 11 30.15 1.82 11 17.65 3.11 

3P 8 41.25 8 22.75 1.81 8 13.25 3.11 

4 10 62.40 10 34.30 1.82 10 20.20 3.09 

4P 6 39.80 6 22.00 1.81 6 12.90 3.09 

5P 5 40.60 5 22.50 1.80 5 13.25 3.06 

6P 5 47.05 5 26.20 1.80 
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4. Summary and Conclusions 

Preconditioners for a symmetric and positive definite system of linear 

equations based on taking m steps of an iterative method that is derived 

from a symmetric splitting of the coefficient matrix have been described. 

Necessary and sufficient conditions were given for these preconditioners to be 

symmetric and positive definite for both m odd and even in Theorem 1, and 

the relationship between a splitting and its associated iteration matrix was 

given in Theorem 2. 

The m-step SSOR preconditioner was shown to lead to a system whose 

condition number was a decreasing function of m; however, for small problems, 

the actual decrease in the number of iterations is not enough to balance the 

extra work involved in the preconditioner as shown in Tables IV and V. By 

parametrizing this preconditioner, the number of iterations is reduced enough 

so that larger values of m should be used for smaller problems as well. The 

optimal number of steps of the preconditioner is seen from Tables IV and V to 

be a function of the architecture as well as the problem. The more expensive 

the inner products of the outer CG iteration become, the more likely m 

should be increased. 

We noted that although a theoretical optimal value of w, the relaxation 

parameter for the SSOR method, can not be found, the choice w = 1 (when the 

nodes are ordered by the Multi-color ordering) was optimal for our plane 

stress test problem (6 colors). It is well known that w = 1 is optimal for 

SSOR for matrices that have Young's Property A (Red/Black), but in general 

this theory does not extend beyond two colors. However, we conjectured that 

if the number of colors is small, choosing w = 1 is a good choice. 

A problem still remains in applying the method to irregular regions since 

the grid must be colored and for array machines must also be distributed to 

the processors in light of this coloring. 
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