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ABSTRACT 

A detailed description of spectral multigrid methods is 

provided. This includes the interpolation and coarse-grid 

operators for both periodic and Dirichlet problems. The spectral 

methods for periodic problems use Fourier series and those for 

Dirichlet problems are based upon Chebyshev polynomials. An 

improved precondi tioning for Dirichlet problems is given. 

Numerical examples and practical advice are included. 
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I. INTRODUCTION 

The motivation for applying a pseudospectral discretization 

to elliptic problems is to obtain an highly accurate app·oxi-

mation with a small number of collocation points. The major 

advantage that this sort of discretization often offers over 

standard finite difference or finite element techniques is 

greatly reduced storage requirements. At the NASA Ames Symposium 

on Multigrid Methods, we proposed a spectral multigrid approach 

to solving the discrete equations which arise. from applying 

pseudospectral . approximations to variable-coefficient, self-

adjoint elliptic equations [1]. The focus of that preliminary 

report was on problems with periodic boundary conditions. We 

demonstrated that the number of multigrid iterations necessary to 

achieve convergence was independent.of the size of the problem. 

The tenta ti ve results given in [1] for problems with Dirichlet 

boundary conditions were not so satisfactory because the required 

number of multigrid iterations increased with the number of grid 

points. The purpose of this paper is to fill in some of the 

details omitted from [1] because of page constraints, to describe 

an improved version of spectral multigrid for Dirichlet problems, 

and to offer some practical advice for implementation. 

II. SPECTRAL MULTIGRID ON A SIMPLE MODEL PROBLEM 

The fundamentals of spectral mul tigrid (SMG) are perhaps 

easiest to grasp for the simple model problem 

(1 ) 
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on (O,21T) with periodic boundary conditions. We will examine 

this trivially-solvable problem in detail for the benefit of 

those unfamiliar with either spectral or mu1tigrid methods. The 

standard collocation points are 

j = O,1, ••. ,N-1 • (2) 

Let fj = f(xj) and let Uj be the approximation to u(Xj). The 

discrete Fourier. coefficients of Uj are 

1 
= N 

N-1 / L u.e-21Tijp N 
j=O J 

N 
P = - ",' 

N '2"+1, ••• , 

The inverse relationship can be written 

N - 1 '2" 
u. = L " ipx. 

U e J 
J N P 

P = - '2 

N .,-1. (3) 

(4) 

Thus, a sensible approximation to the left-hand side of Eg. (1) 

at the collocation points is 

N 
'2" - 1 

L 
N 

P = - '2 

" ipx. p2 U e J 
p 

(5) 

The pseudospectra1 approximation to Eg. (1) may be represented by 

LU = F, (6) 

where 

(7) 
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(8) 

and 

L = c-lnc • (9) 

The matrix C represents the discrete Fourier transform; its 

elements are 

(10) 

Clearly~ 

(11 ) 

The diagonal matrix D represents the second derivative in trans-

form space: 

n = p 2 0 pq p,q (12 ) 

In Eqs. (5), (10) , (11), and (12) the indices p and q have the 

range indicated in Eq. (3); refer to Eq. (2) for the range of j. 

A Richardson's iterative scheme [2] for solving Eq. (6) is 

v + V + w{F - LV), (13 ) 

where V is the current approximation to U and w is a relaxation 

parameter. The eigenfunctions of L are 
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(14) 

with the corresponding eigenvalues 

A(p) = p2 • (15) 

The ranges of j and p are the same as above. The index p has a 

natural interpretation as the frequency of the eigenfunction. 

The error at any stage of the iterative process is V - U: it 

can be resolved into an expansion in the eigenvectors of L. Each 

iteration reduces the pith error component to \I (A ) times its 
p 

previous value, where 

\I ( A) = 1 - toA • (16) 

The optimal choice of to results from minimizing 

I \I ( A) I for A e: [A . ,A ], 
m~n max where 

(One need not worry about the p = 0 eigenfunction since it corre-

sponds to the mean level of the solution, which is at one I s 

disposal for this problem.) The optimal relaxation parameter for 

this single-grid procedure is 

(J.JSG = 
2 (17) x + X . max m~n 

It produces the spectral radius 

PSG = Amax - Amin 
A + A • max m~n 

(18) 

Unfortunately; PSG ~ 1 - 8/N2, which implies that O(N2) iter

ations are required to achieve convergence. 

This slow convergence is the outcome of balancing the 
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damping of the lowest-frequency eigenfunction with that o"f the 

highest-frequency one in the minimax problem described after Eq. 

(16) • The multigrid approach takes advantage of the fact that 

the low-frequency modes (I pI' < N/4) can be represented just as 

well on coarser grids. It settles for balancing the middle

frequency eigenfunction (I pi = N/4) with the highest-frequency 

one (I pi = N/2), and hence damps effectively only those modes 

which cannot be resolved on coarser grids. In Eqs. ( 17) and 

(18), )., is replaced with). 'd = )'(N/4). m1n m1 
The optimal relax-

ation parameter in this context is 

lLtMG = 
2 (19) 

x + X 'd max m1 

The multigrid smoothing factor 

llMG 
).max - ).mid 

= X + X 'd max m1 
(20) 

measures the damping rate of the high-frequency modes. In this 

example llMG = 0.60, independent of N. The price of this 

effective damping of the high-frequency errors is that the low-

frequency errors are hardly damped at all. However, on a grid 

with N/2 collocation points, the modes for I'pl € [N/B, N/4] are 

now the high-frequency ones. They get damped on this grid. 

still coarser grids can be used until relaxations are so cheap 

that one can afford to damp all the remaining modes, or even to 

solve the discrete equations exactly. 

The spectral multigrid approach requires the use of a 
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sequence of grids (or levels). Denote these levels by the index 

k where k = 2,3, ... , K. Level k consists of Nk collocation 

points, where Nk = 2k. Equations (2) to (12) apply on each level 

wi th Nk replacing N. Throughout this paper the symbol k will be 

used solely to denote a multigrid level. 

On each level we must define a discrete problem, a relax

ation scheme, and interpolation operators. The discrete problems 

will be denoted by 

(21) 

On the finest level, Lk = L, Fk = F, and Vk = U, the solution to 

Eq. (6) • The relaxation scheme will be confined here to be 

Richardson iteration 

(22) 

where vk is the approximation to Vk and wk is the relaxation 

parameter. The interpolation operator Rk represents the fine-to

coarse restriction of residuals from level k to level k - 1: 

(23) 

The interpolation operator pk represents the prolongation of 

corrections from level k-l to level k: 

(24) 
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Appropriate choices for the coarse-grid operators Lk and the 

interpolation operators are discussed in the next section. Many 

choices are possible for the scheduling algorithm which controls 

the transfer between grids. We will return to this issue in the 

section on numerical examples. 

III. INTERPOLATION AND COARSE GRID OPERATORS 

We will focus on the one-dimensional problem 

~ {a(x) ~} = f(x) (25) 

on either (O,2~), as in the periodic case or on (-1,1), as in the 

Dirichlet case. We will occasionally refer to equations from 

[1], denoting them by the prefix I, e.g. Eq. (1.5). 

Fourier Series 

The natural interpolation operators represent trigonometric 

interpolation. They were defined in r 1] by Eqs. (1. 31) and 

(1.32) • Useful explicit representations of the restriction and 

prolongation operators (with the superscript k suppressed) are 

and 

1 
N 

N _ 1 
zr 
L 

q=- ~+l 

- B -

(26) 



N - 1 4 
PjR. 

2 
L = N" 

q=- N+l 
4 

e21Tiq(j - 2R.)/N (27) 

These summations may be performed in closed form to yield 

1 
= N S2j - R. (28) 

and 

(29) 

where 

N 
'Z - 1 r :: 0 (mod N) 

. 1Tr (1Tr) (1Tr) s1n(-Z)cot ~ - cos -Z 
(30) 

otherwise 

In analyzing the coarse-grid operator, Eqs. (26) and (27) are 

more useful than Eqs. (28)-(30). Moreover, as noted in [1], the 

interpolation can be implemented efficiently by Fast Fourier 

Transforms rather than by using Eqs. (28)-(30) in matrix-vector 

multiplications. By the way, the definition of C given here in 

Eq. (10) differs slightly (by a factor IN) from the definition 

used in [11. Note that except for a factor of 2, P and Rare 

adjoint. 

The pseudospectral evaluation of the left-hand side of Eq. 
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(25) can be expressed as 

MAM U, (31 ) 

where 

M = C-1 DC , (32) 

(33) 

and in a slight change of notation the diagonal matrix D which 

represents the first derivative in wavenumber space is given by 

ip 
(34) 

o 

The reason for setting Dpp = 0 for p = - N/2 is given in [1]. 

Equation (31) costs only O(N R.n N) operations to evaluate when 

the Fast Fourier Transform is used. A simple ~ efficient, and 

effective choice for the coarse-grid operator Lk-1 is 

(35) 

where Ak is the diagonal matrix given by 

(36) 

with aK(x.) = a(x.), and for k = 3,4, ••• ,K, 
J J 
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(37) 

In other words, the variable coefficient to be used on the 

coarser grid k-lis a filtered version of the coefficient on 

level k. Otherwise, the coarse-grid operators are the natural 

pseudospectral approximations on those levels. 

As has been stressed especially by Nicolaides [3], Hackbusch 

[4], and Wesseling [5], it seems desirable to use 

k-l 
L (38) 

with Rk the adjoint of pk. The choice made above in Eqs. (35)

(37) does not satisfy Eq. (38), except for special a(x) such as 

a(x) :: 1. Indeed, one can show that the coarse-grid operator so 

produced is equal to the right-hand side of Eq. (38) plus some 

addi tional terms which are due to aliasing effects. This is a 

simple, but lengthy calculation. Here one should be sure to use 

Eqs. (26) and (27) as well as orthogonality relations such as 

p :: 0 (mod N) 
(39) 

otherwise 

One can achieve a better approximation to the property of 

Eq. (38), Le., the aliasing terms are far fewer, by a rather 

simple modification of the pseudospectral method. This technique 

is known as the two-thirds rule. It consists of discarding the 

upper third of the frequency spectrum. 

collocation points Eq. (34) is replaced with 

- 11 -
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{ O

iP 
D = pp 

I pi < N/3 

N/3 (Ipl ( N/2, 
(40) 

and the interpolation operators become 

and 

RjR. = 

2 
= N 

1 
N 

N 
"6' 
L 

q=-

- 1 
e21Tiq(2j - R.}/N (41) 

N+l 
'0 

21Tiq(j - 2R.}/N e • (42) 

The price of this modification is that one-third of the collo-

cation points are wasted. Thus the two-thirds rule version of 

SMG would have to produce a sUbstantial improvement in the 

convergence rate in order to compensate for its reduced 

accuracy. Al though no such examples have yet emerged from our 

numerical experiments~ the two-thirds rule option may eventually 

prove to be of some use. 
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Chebyshev Series 

The cosine transform matrix C and the Chebyshev 

differentiation matrix D as given in Eqs. (r.45) and (r.47) will 

be left unchanged from [1]. The analogs to Eqs. (26)-(30) are 

C -1 cos(2njq) cos (ntq) 
q N N 

(43) 

and 

.... -1 cos (~) c q l~ cos (44) 

where 

- { 21 c = 
q 

q = 0 or N 

1 < q < N - 1 
(45) 

q = 0 or N/2 
(46) 

1 < q < N/2 - 1 

and 

Rjt = 2 
(02j-t + °2j+t) 

NC j 

(47) 

P jt = 4 
(OJ-2R. + °j+2R.) .... , 

Nc R. 

(48) 

where 
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4' + 4 r :: 0 (mod N) 
(49) 

{

N 1 

= 1 1 1 1 nr). nr (nr 4' + ~ cos(~ + N) ~ s1n(~)csc~) otherwise 

r::O(mod N) 
= {N~/_4 i cos(~)+ ~ cos(~ + ~) ~)sin(~)csc(~) otherwise 

(50) 

Equations (43) and (44) represent the "obvious" restriction 

and interpolation operators~ Both may be implemented efficiently 

by Fast Cosine Transforms. Unlike the Fourier series case, 

however, Rand P are not adjoint (even aside from a constant 

multiple) unless the boundary conditions happen to be homogeneous 

Dirichlet. A common choice in finite difference mu1tigrid 

algorithms and a natural one in finite element cases is to force 

R to be adjoint to P. Our own computational experience with 

Chebyshev SMG leads us to endorse this strategy. For residual 

transfers~ then~ we recommend 

2 NL2 
L c

q
- 1 cos(2n~q)cos(n~q). 

q=0 
, (51) ,.. 

Nc. 
J 

which reduces to 

(52) 
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However, the construction of the filtered-coefficient version of 

the coarse-grid operator via Eqs. (35)-(37) should still be based 

on the restriction· formula in Eq. (43). 

IV. AN IMPROVED PRECONDITIONING FOR DIRICm.ET PROBLEMS 

Consider the self-adjoint elliptic equation 

~x [a(x,y) ~~] + ~y [b(x,y) ~~] = f (53) 

on (-1,1) x (-1,1) with Dirichlet boundary conditions. The 

appropriate pseudospectra1 approximation employs Chebyshev po1y-

nomia1s~ The collocation points (xj'Yt) satisfy 

x. = cos(1Tj/N) 
J 

j, t = 1, 2,. • ., N-1 ( 54) 

Let JY = (N-1) 2 denote the total number of degrees of freedom. 

The pseudospectra1 approximation leads to a discrete set of 

equations like Eq. (6). A detailed description of the matrix L 

representing the Chebyshev discretization of Eq. (53) is given in 

[1]. 

It is apparent from Eq. (18) that the convergence rate of 

Richardson's iteration on a single grid is governed by the ratio 

of the 1argest-to-sma11est eigenvalues of L. This ratio will be 

referred to below as the single-grid condition number. The 

mu1tigrid condition number, on the other hand, is the ratio of 

- 15 -
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the largest eigenvalue to the smallest high-frequency 

eigenvalue. It controls the smoothing rate (see Eq. (20». The 

estimates given in [1] for these eigenvalues are Amax = 0(N4), 

A 'd = 0(N2), and A, ~ ~2/2 ml mln The implication is that 

effective preconditioning is essential for multigrid as well as 

for single-grid iterative schemes. 

Preconditioned Richardson iteration can be expressed as 

v + v + WH-l(F - Lv) (54) 

where H is a preconditioning matrix. An obvious choice for H is 

a finite difference approximation HFn to the differential 

operator in Eq. (52). In more than one dimension, these finite 

difference approximations are themselves costly to invert. An 

attractive alternative is to use instead an approximate LU-

decomposition of HFn, i.e., H is taken as the product of a lower

triangular matrix!l! and an upper-triangular matrix au. In one 

such type of preconditioning (originally proposed by Buleev [6J 

and Oliphant [7] for finite difference discretizations of Eq. 

(53», denoted by HLU ' !l is identical to the lower-triangular 

portion of HFn andqvis chosen so that the two super diagonals of 

LU agree with those of HFn • In [1J, a similar decomposition, 

denoted by HRS ' was proposed in which the diagonal elements of!l 

were altered from those of HFn to ensure that the row sums of HRS 

and HFn are identical. Incomplete LU-decompositions have been 

used by Wesseling and Sonneveld [8] for multigrid solutions of 

finite difference discretizations. 

Both types of preconditioning can be computed by a simple 

recursion. Let (xj'Yt) be an interior point of the grid. 

- 16 -
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Suppose that the finite difference approximation to Eq. (53) at 

this point is given by 

b j ,1U j,1_l + d j ,1U j_l,1+ e j ,1u j,1 + f j ,1U j+l,1 + h j ,1 U j,1+ 1=f j1 • 

(56) 

The lower-triangular matrix~has the non-zero elements 

b. 0' d. 0' and e. 0 and the upper-triangular matrix ott has unit J,h J,h J,h 

diagonal plus the non-zero elements f. 0 and h. 0 where J,h J,h 

b. 1 = b. 1 J , J , 

d. 1 = d. 1 J , J, 

d. nf'_l 0 - a(b. of. n_l + a. nh'_l 0) J,h J,h J,h J,h J,h J ,h 

f. n = f. ore. 0 
],h ],h J,h 

h. 0 = 11. n Ie. n J,h J,h J,h 

The HLU result uses a = 0 and HRS uses a = 1. 

modifications are made near the boundaries. 

(57) 

Straightforward 

The eigenvalues of the iteration matrices H-IL corresponding 

to these three types of preconditioning have been computed 

numerically by the OR algorithm [9]. The extreme ones are given 

in Table I. In all cases, the region between 1 and 2.4 is fairly 

- 17 -
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uniformly populated with eigenvalues. In the HLU version there 

are a few (roughly 15%) eigenvalues between A. and 1: likewise, 
m~n 

about 20% of the eigenvalues of the HRS preconditioning fall 

between 2.4 and A. max 

small imaginary parts. 

A few of the smaller eigenvalues have 

The remaining eigenvalues are real. In 

order to assess the effectiveness of these preconditionings in 

multigrid calculations, one also needs to know the smallest high-

frequency eigenvalue. The numerical results indicate that this 

is 1.22 for HFD and HLU and 1.45 for HRS ' essentially independent 

of N. The relevant condition numbers are given in Table II. 

Both HLU and HRS require only OW) operations to invert. Thus, 

we reach the striking conclusion that although HRS is more 

effective for single-grid iterations, HLU is noticeably superior 

in multigrid applications. 

N 

4 
8 

16 
24 

Extreme 

-1 
HFDL 

A min 

1~000 
1.000 
1.000 
1.000 

Eigenvalues 
Operator 

Amax 

1.757 
2.131 
2.305 
2.361 

TABLE I 

for Preconditioned Chebyshev 
in Two-Dimensions 

H-IL 
LU 

H-IL 
RS 

A . 
m~n Amax Amin Amax 

0.929 1. 717 1.037 1.781 
0.582 2.273 1.061 2.877 
0.224 2.603 1.043 4.241 
0.111 2.737 1.031 5.379 
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N 

4 
8 

16 
24 

TABLE II 

Condition Number for Preconditioned Chebyshev 
Operator in Two-Dimensions 

Single-grid 
-1 

HLUL 

1.85 
3.91 

11.62 
24.66 

1. 72 
2.71 
4.07 
5.22 

Multigrid 
-1 

H LUL 

1. 79 
2.12 
2.26 

2.07 
2.92 
3.79 

Beyond N = 24 computations of the complete eigenvalue 

spectra are impractical since the full two-dimensional matrix 

then takes over a million words of storage. The multigrid 

condition numbers and smoothing rates given in Table III are 

based on iterative calculations of the extreme eigenvalues 

of H~~L for N = 32 and N = 64 and the empirical formulae~ 

A ~ 1.381 Nl / 8 
max 

(58) 

A min 
~ 28.37 N-7 / 4 

for N > 64. 

The more important of these is the former and it is accurate 

to better than 1% for N ) 16. These results suggest that 

OJf17 / l6 tnvtl operations are required for convergence of the SMG 

method based on the HLU preconditioning. This is only slightly 

worse than the best possible result of oeJl"!nJY> . The 1-

parameter smoothing rates are based on a stationary Richardson 

iteration, whereas the 3-parameter smoothing rates are based on 
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nonstationary Richardson iteration employing 3 district 

parameters. Comparing the present smoothing rates with those 

given in [1] for the HRS preconditioning it is apparent that the 

use of the HLUpreconditioning reduces the number of SMG 

iterations for N ) 32 by at least a factor of 2. 

TABLE III 

N Multigrid I-Parameter 3-Parameters 
Condition No. Smoothing Rate Smoothing Rate 

8 1.863 0.301 0.194 
16 2.134 0.362 0.236 
32 2.324 0.398 0.262 
64 2.525 0.433 0.287 

128 2.763 0.469 0.313 

V. COMPUTATIONAL EXPERIENCE 

The global character of pseudospectral approximations 

sharply distinguishes them from local approximations such as 

finite difference ones. Admittedly, this character makes 

spectral methods more complicated to implement, but it also is 

responsible for their superior approximation properties. One 

should expect that somewhat different considerations are 

important in SMG codes than in finite difference ones. Here we 

report on the performance we have obtained with several variants 

of SMG on two-dimensional problems and offer some general advice 

on their use. 

The operation count for a single relaxation sweep is funda-

mentally different for SMG--OvYtnJll) rather than 0I./Y). Thus, 

the standard multigrid accounting device of assessing the cost of 

a coarse-grid relaxation as one-fourth of the work on a grid with 
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half the mesh size is inappropriate. We prefer to make our 

comparisons in terms of actual machine time rather than Brandt's 

work units [10]. This choice has the virtue of including all 

auxiliary effort such as the various interpolations, but it also 

has the disadvantage of depending on the quality of the 

programmer and the computer. 

The specific measure to be used is the equivalent smoothing 

rate, denoted by Pe and defined as follows. In some preliminary 

calculations, the average time '0 required for a single fine-grid 

relaxation is determined. For an actual mul tigrid calculation 

let rl and r2be the residuals after the first and last fine-grid 

relaxations, respectively, and let. be the total CPU time. Then 

lle 

• • o 

1 

1 
(59) 

In all the runs reported here, the finest level K = 5. The 

four types of schedules that were examined are described in Table 

IV. In schedules A and B, the problem was first solved on level 

2; then that solution was interpolated to level 3 as the initial 

guess for a multigrid iteration involving levels 2 and 3; then 

the converged level 3 solution was interpolated to level 4 as its 

initial guess, etc. The other two schedules simply began on 

level 5. Most schedules were run in the so-called accommodative 

mode, Le., the anticipated smoothing rates (e.g., Table III) 

were used in a dynamic determination of when to shift between 

levels. Schedule D used the simple fixed schedule of performing 
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just one sweep through the parameter sequence on a given level 

before interpolating to another one. All runs employed the cor-

rection scheme [10] and used random numbers for the initial 

guess. The difference between schedules A and B lies in the 

right-hand side used to define the lower-level problems. In the 

unfiltered version the pointwise values of f(x) were used, but in 

schedule B, the lower-level right-hand sides were obtained by 

applying the appropriate restriction operator to the finest-level 

right-hand side. 

TABLE IV 

Description of Multigrid Schedules 

Schedule 

A 
B 
C 
D 

First Level 

2 
2 
5 
5 

Periodic Prob1ems 

Control Mode 

accommodative 
accommodative 
accommodative 

fixed 

Lower-Level 
Problem 

unfiltered 
filtered 

N/A 
N/A 

The test problems have the form of Eq. (53) with the coef-

ficients 

a(x,y) = b(x,y) = 1 + eecos(e(x+y» (60) 

and the exact solution 

u(x,y) = sin(an cos x + n/4) sin(an cos y + n/4) - u
OO

' (61) 
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where 

(62) 

guarantees that the mean value of u(x,y} vanishes. The source 

term f(x,y} is adjusted accordingly. The parameters of several 

test problems are listed in Table V. The last column relates the 

relaxation parameter actually employed to the optimal parameter 

for the € = 0 problem as given in Eq. (I.37). 

TABLE V 

Parameters of the Periodic Test Problems 

Problem # € a e w/w* 

1 0.00 1 1 1.00 
2 0.10 1 1 0.75 
3 0.20 2 2 0.50 

The influence of the coarse-grid operator is indicated in 

Table VI. The filtered coarse-grid operator is defined by Eqs. 

(35) (37). The unfiltered one replaces Eq. (37) with the 

pointwise values of a(xj}. Schedule C was used for all runs. 

The filtered operator presents essentially no improvement. 

Although we find this result puzzling in light. of the corre-

sponding results for Dirichlet problem, we did not pursue it 

further because there are few applications for purely periodic 

boundary conditions. 
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TABLE VI 

Influence of Coarse-Grid Operator on Fourier SMG 

Coarse-Grid 
Operator 

unfiltered 

filtered 

Equivalent Smoothing Rate 
Problem 1 Problem 2 

0.76 0.78 

0.76 0.78 

Problem 3 

0.81 

0.81 

The dependence upon scheduling is given in Table VII. These 

runs used nonstationary Richardson iteration with three distinct 

relaxation parameters as described in [1]. The filtered coarse-

grid operators were also employed. The most striking result is 

the distinct superiority of schedule B on problem 1. The expla-

nation for this behaviour lies in the very special relationship 

that exists for the constant-coefficient problem between the 

interpolation operators Rk and pk and the operators Lk: The 

eigenfunctions of Lk - l are a subset (in fact precisely the low

frequency subset) of the eigenfunctions of Lk. The prolongation 

operator pk leaves the eigenfunctions of Lk - l unchanged. Thus, 

this interpolation introduces no spurious high-frequency com-

ponents. A similar relationship holds for the restriction 

operator. 
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TABLE VII 

Influence of Scheduling on Fourier SMG 

Equivalent Smoothing Rate 
Schedule Problem 1 Problem 2 Problem 3 

A 0.56 0.70 0.82 

B 0.50 0.70 0.82 

C 0.61 0.70 0.80 

D 0.70 0.76 0.83 

In order to get the full benefit of this property, however, 

the lower-level problems (used for obtaining initial guesses on 

the higher-level problems) must have alias-free right-hand 

sides~ Consider how the simple model problem described by Eq. 

(1) behaves in transform space for an elementary multigrid scheme 

which uses only levels 2 and 3. The (transformed) level 3 

equations are 

p = -4,-3, •• ,3. (63) 

Suppose that a fully-converged level 2 solution is used for the 

initial guess on level 3. If the level 2 problem is defined by 

the restricted values of f( Xj) (as in schedule B), then its 

equations are 

A 

= f 
P 

p = -2,-1,0,1. (64) 

The resulting interpolated initial guess for the level 3 problem 
A A 

will have up for p = -2,-1,0,1 precisely correct and up for p = 
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-4,-3,2,3 will be 0. Thus, the only errors in the level 3 

solution will be in the high-frequency modes and there will be no 

need to make any coarse-grid corrections, i. e., no true multi-

gridding will occur. On the other hand, suppose that the level 2 

problem is defined by the pointwise values of f(xj) (as in 

schedule A). Then the level 2 equations will be 

p = -2,-1,0,1 (65) 

where 

f 
,. 

-2 = f -2 + f2 

f 
,. 

= f_l + f3 -1 

fo = fO + f_4 (66) 

fl = fl + f -3 

The last term in each of these equations is, of course, the alias 

of its preceding term. When this converged level 2 solution is 

interpolated to level 3 for use as the fine-level's initial 

guess, there will be errors in the low-frequency modes. Hence 

coarse-grid corrections will have to be made. Consequently, 

schedule A consumes more computer time than schedule B. 

The superiority of schedule B does not extend to non-trivial 

cases, as represented here by problems 2 and 3. Since the 

eigenfunctions of the discrete operators are no longer simple 

trigonometric functions, they are not preserved by the interpo-

lation operators. 
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Schedule D is clearly marked as inferior to schedule c. 

Although schedule C operates in the accommodative mode, in nearly 

every case there are 6 relaxations on a' level before restriction 

to a coarser level occurs. Schedule D uses only half as many 

relaxations before restriction occurs. (Recall that 

nonstationary Richardson iteration with 3 parameters is employed, 

so that the number of relaxation is necessarily a multiple of 

3.) Part of the increased efficiency of schedule C arises from 

the less frequent use qf interpolations. 

A Fourier SMG program has some subtleties that deserve 

mention. They are connected with the zero eigenvalue of the 

discrete operator that arise from the p = 0 and p = - ~ diagonal 

entries of the Fourier differentiation operator (see Eq. (34)t. 

The associated mean-value and highest-frequency eigenfunctions 

are undamped by the iterative scheme. For the constant-coef-

ficient case, a sufficient precaution is to filter these com

ponents out of the right-hand side and the initial guess. In 

variable-coefficient problems one must ensure that none of the 

highest-frequency component 

relaxation. 

enters the solution during 

'Dirich1et Prob1ems 

The test problems are specified by 

a(x,y) = b(x,y) = 1 + € e cos(~n(x+y» (67) 

u(x,y) = sin(anx + n/4) sin(any + n/4). (68) 
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The parameters of the test problems are given in Table VIII. 

Problem 1 not only has constant coefficients but it is also so 

well-resolved by the Chebyshev pseudospectral method that its 

discretization errqr on level 5 is well below the round-off error 

of the CDC Cyber-175 (14 digits). Problem 3 is at the other 

extreme. The coefficients of the equation oscillate so rapidly 

that the level 5 grid cannot resolve them. Instead the converged 

solution of the level 5 collocation equations has an error of 

order 1. This case is included as a test of whether the 

Chebyshev SMG method is robust enough to converge on such a 

problem. 

TABLE VIII 

Parameters of the Dirichlet Test Problems 

Problem # € a a w/w* 

1 0.00 1 1 1.00 
2 0.20 2 2 1.00 
3 1.00 5 10 0.90 

The difference between the two choices of the coarse-grid 

operators is shown in Table IX. Both versions are identical on 

problem 1. The unfiltered coarse-grid operators produce a slow 

method on problem 2. The extra work occurs on the coarser levels 

where the smoothing is less effective. On problem 3 the 

unfiltered coarse-grid operators lead to a divergent method. We 

find it curious that the filtered coarse-grid operator failed to 

produce a similar improvement in Fourier SMG. Perhaps the 

difference lies in the use of preconditioning for Chebyshev 
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SMG. (The filtered coefficients are, of course, used in the 

finite difference preconditioning as well.) Note that the 

variable coefficients of problem 3 are extremely oscillatory. 

Our unprecondi tioned Fourier SMG method cannot handle anything 

remotely as difficult. 

TABLE IX 

Influence of Coarse-Grid Operator on Chebyshev SMG 

Coarse-Grid 
Operator 

unfiltered 

filtered 

Equivalent Smoothing Rate 
Problem 1 Problem 2 Problem 3 

0.62 0.66 divergent 

0.62 0.62 0.76 

The scheduling dependence is given in Table X. The filtered 

coarse-grid operator was used along with nonstationary Richardson 

iteration. The same trends are apparent here as for the periodic 

case, except that schedule B is now only slightly better than 

schedule A on problem 1. In the Chebyshev method the 

eigenfunctions of the discrete, constant-coefficient operator are 

not preserved by the interpolation procedures. As before 

schedule D nearly always produces 6 relaxations prior to 

restriction. We again see that it is not a good strategy to 

relax the minimum number of times before restricting. 
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TABLE X 

Influence of Scheduling on Chebyshev SMG 

Equivalent Smoothing Rate 
Schedule Problem 1 Problem 2 Problem 3 

A 0.26 0.58 0.77 

B 0.25 0.57 0.75 

C 0.51 0.59 0.70 

D 0.60 0.67 0.74 

At the end of the third section, we recommended the 

restriction operator defined by Eq. (51) for the residual 

transfer. Two al ternati ves have been tested. The II obvious II 

restriction operator of Eq. (43) fails miserably. It doesn It 

even work for the constant-coefficient problem. In the 

accommodative mode the algorithm rapidly settles into a "limit 

cycle" involving levels 2 and 3: it alternates between these two 

levels, always arriving on either level with the solution in the 

same state as at the start of its last visit. The second 

alternative is to "homogenize" the restrictions and prolongations 

by forcing the boundary values of the corrections to be zero both 

before and after the interpolation. Although this bizarre choice 

was made by accident, it actually works. However, since it has 

uniformly been slightly less effective than the adjoint choice, 

there is no good reason to resort to it. 

VI. PERSPECTIVE 

Together with [1] this paper represents a comprehensive 

description of the fundamentals of the spectral multigrid method 
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for solving pseudospectral discretizations of self-adjoint 

elliptic equations. The key elements of the coarse-grid 

operators and the interpolation operators have been described in 

detail and their efficacy demonstrated in the numerical 

examples. No doubt the spectral multigrid method will prove as 

amenable to improvements in the relaxation scheme and precon

di tioning aspects as have finite difference and finite element 

multigrid methods. The next big step is the demonstration of the 

power of this method on a difficult, nonlinear problem of 

engineering interest. 

reported in [llJ. 

This has already been achieved and is 
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