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ABSTRACT 

The problem of preconditioning the pseudospectral Chebyshev approximation 

of an elliptic operator is considered. The numerical sensitiveness to 

variations of the coefficients of the operator are investigated for two 

classes of preconditioning matrices: one arising from finite differences, the 

other from finite elements. The preconditioned system is solved by a 

conjugate gradient type method, and by a DuFort-Frankel method with dynamical 

parameters. The methods are compared on some test problems with the 

Richardson method [12] and with the minimal residual Richardson method [17]. 
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Introduction 

Spectral approximations of elliptic boundary value problems lead to full 

and very ill-conditioned matrices. In the special case of constant 

coefficient operators, efficient direct methods have been proposed, [8], [9]. 

For nonconstant coefficient problems, considerable attention has been devoted 

after Orszag's paper [12] to the simultaneous use of iterative methods and 

preconditioning techniques. 

In the present paper, we present and discuss the results of a number of 

numerical tests on the iterative solution of preconditioned systems arising 

from Chebyshev approximations. The first part is devoted to the analysis of 

the preconditioning of spectral matrices. The sensitiveness to variations of 

the coefficients, to lea.ding and lower order terms is investigated. 'Besides 

the standard finite difference matrix proposed in [12], we consider a finite 

element matrix, which essentially retains the same preconditioning properties, 

being moreover symmetric. 

Wong's type [16] is used. 

In both cases, an incomplete factorization of 

Two iterative methods are considered next. A preconditioned conjugate 

gradient method (which has been recently used in fluid dynamics and transonic 

flow calculations via finite elements, see [5] and the references therein) 

resulted to be rather slow on the tested problems, although it may be very 

robust in more complicated situations. The DuFort-Frankel method (first 

applied by Gottlieb et. al. [6], [7] to spectral calculations and here 

considered as a two-parameter preconditioned iterative method) yields good 

results when the optimal parameters are used. In order to overcome the 

difficulty of finding such parameters, we propose a modified version of the 

DuFort-Frankel method, devised according to a "minimal residual" strategy. 

The new method, compared with other iterative techniques in the literature, 

was the fastest in terms of speed of convergence. 
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No attempt is made in this report to give theoretical justifications to 

the methods, nor to consider nonlinear problems. Both the aspects are, 

however, under investigation. 

Part of this work has been made while the authors were visiting lCASE. 

The numerical results reported here were obtained on the Honeywell 6040 at the 

the University of Pavia. Programs were written in double precision. The 

eigenvalues of Section 2 were obtained by EISPACK routines. 

2. The Preconditioning of Spectral Matrices 

Let L be a smooth second-order elliptic partial differential operator 

over the interval 1 n = (-1,1) or the square 
2 2 n = (-1,1) • We consider 

homogeneous Dirichlet boundary conditions for L, i.e., functions on which 

L acts will be assumed to vanish identically on the boundary. Lsp will 

denote the Chebyshev pseudospectral approximation of L of order N. This 

means that the approximate solution is a polynomial of degree N and 

derivatives are computed after interpolating the function by a polynomial of 

degree N at the Chebyshev nodes 

1 n = n ; {xi,xj }, 0 < i,j < N if 

{ _ .!.1} 
( Xj - cos N' j=O,···,N 

2 n = n ). We identify 

if 

with a matrix 

which maps the set of values of a polynomial u at the interior Chebyshev 

nodes into the set of values of the spectral approximation of Lu at the same 

nodes. 

It is known that Lsp has a full structure. Moreover, its condition 

number is O(N4). These are considered negative aspects of spectral Chebyshev 

approximations versus finite difference and finite element methods. However, 

a tremendous improvement in the computational efficiency of spectral methods 

comes from the observation that Lsp can be easily approximated by a sparse 



matrix A, such that the condition number K(A-1 L ) 
sp 

is close to 1 (see 

Orszag [12]). Throughout the paper, we refer to the ratio 

K = K(M) = p\ma)IIAmin' as to the "condition number" of the matrix M, even 

when M is not symmetric. 

In the following, A will denote any matrix having these properties, and 

it will be called a preconditioning matrix. A is assumed to be related to 

some discretization of the operator L, usually by finite differences or 

finite elements. Sometimes we shall relate A to some other elliptic 

operator ~,with the same principal part as L. 

In one space dimension, the simplest way of building a preconditioning 

matrix is to use non-equally spaced finite differences at the Chebyshev nodes. 

The resulting matrix is tridiagonal, and it can be factorized in O(N) 

operations. If Lu = -uxx ' the corresponding preconditioning matrix is given 

by A = {aij}' where 

(2.1) 

In Table 2. l, the operator Lu = -uxx is considered. The smallest and the 

largest eigenvalue A and A 
max' and the ratio K = A max/Amin are 

min 

reported for both the matrices Lsp and A- l L sp' 

3 
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Table 2.1. Lu = -uxx 
Au = finite differences at Chebyshev points for Lu. 

N 
Lsp 

A A K A 
min max min 

4 2.46 .20 E2 .80 El 1. 

8 2.47 .21 E3 .87 E2 1. 

16 2.47 .32 E4 .13 E4 1. 

32 2.47 .50 E5 .20 E5 1. 

64 2.47 .80 E6 .32 E6 1. 

128 2.47 .13 E8 • 52 E7 1 • 

As expected, the largest eigenvalue of Lsp grows 

eigenvalues of the preconditioned matrix A-I Lsp 

A-I Lsp 

A K 
max 

1.75 1.75 

2.13 2.13 

2.30 2.30 

2.38 2.38 

2.43 2.43 

2.45 2.45 

like N4, while the 

lie in the interval 

[1., 2.5]. The spectrum of exhibits a similar behavior even if the 

elliptic operator L contains lower order terms (see [12]). 

The preconditioning properties of the matrix A seem to be rather 

insensitive to the lower order terms of L. The following table shows that 

the condition number K (A -1 Lsp) is kept small when A is just the finite 

difference approximation of the second-order 'term of L, and the lower order 

terms are not prevailing. This implies that the preconditioning matrix can be 

kept fixed in solving nonlinear problems in which the lower order terms only 

change during the iterations. In all the cases considered below, the smallest 

eigenvalue Amin is close to 1, and it converges to 1 from above as N 

increases. 



N 

4 

8 

16 

32 

64 

128 

Table 2.2. Condition number K(A-1 L ) sp 
Lu = -u + ou + Yu xx x 
Au = finite difference;Eor ~u = -u • xx 

o = O. o = O. 0 = 1. o .. 10. 
Y = 1. Y = 10. Y = o. Y = O. 

1.38 2.25 1.45 2.29 

1.87 3.45 1.90 2.01 

2.16 4.30 2.15 2.28 

2.32 4.73 2.31 2.47 

2.40 4.92 2.38 2.85 

2.44 4.99 2.43 3.08 

o .. 10. 
Y = 10. 

1.61 

1.96 

2.41 

2.82 

3.25 

3.54 

When the magnitude of the lower order terms is exceedingly large, the 

condition number of A-I Lsp deteriorates. However the spectrum is still 

uniformly bounded in N. 

Table 2.3. 

0 
N Y 

4 

8 

16 

32 

64 

128 

Condition number K(A-1 L ) 
sp 

Lu = -u + ou + Yu xx x 
Au = finite differences for ~u = -u • xx 

= O. 0 = 100. o .. 1000. 
= 100. Y = O. Y = O. 

3.95 21.76 217.43 

17.70 19.55 195.39 

28.90 18.08 181.05 

35.89 19.18 177.83 

39.17 21.55 176.24 

40.57 24.32 204.05 

5 
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A family of variable ~oefficient operators Lu = -(aux)x' with 

o < aO " a(x) " aI' is considered in the next table. The eigenvalues of the 

matrix are bounded independently of N, although the bound is larger 

than for the constant coefficient operator. The condition number K is close 

to the one in Table 2.1 when a moderate perturbation is applied, otherwise it 

grows slowly and linearly with the total variation of a. 

Table 2.4. 

v = 0 
N 

A 
min 

K 

4 1.04 2.49 

8 1.01 3.04 

16 1.00 3.27 

32 1.00 3.38 

64 1.00 3.43 

128 1.00 3.46 

Lu = - (1 + 10vx2)u ) 
x x 

Au = finite differences for Lu. 

v = 1 

A 
min 

K 

1.11 5.03 

1.10 7.11 

1.00 7.70 

1.00 7.94 

1.00 8.06 

1.00 8.12 

v = 2 

A min 
K 

1.13 7.09 

1.01 14.77 

1.00 21.65 

1.00 24.03 

1.00 24.44 

1.00 24.61 

When the coefficient a depends itself on the solution u (as in the 

full potential equation) one would not change the preconditioning matrix at 

each iteration, in order to save factorization time. This situation is 

simulated to a certain extent in the next table. The effects of 

preconditioning the spectral matrix of a variable coefficient operator by a 

constant coefficient operator matrix are reported. 

J-



Table 2.5. Lu = -(1 + 10vx2)u ) 
x x 

Au = finite differences for ~u = -u • xx 

N 
v = 0 v = I 

A 
min 

K A 
min 

K 

4 1.74 2.23 8.51 3.70 

8 1.48 3.07 4.70 7.61 

16 1.27 3.79 2.71 12.79 

32 1.16 4.27 1.83 18.46 

64 1.10 4.60 1.43 23.29 

The spec trum of is bounded independentlY of N. K is comparable 

with the one of Table 2.4 when the perturbation is moderate, but it becomes 

noticeably worse when the distance between the preconditioning and the 

spectral operators increases. In this case, if the factorization is carried 

out in O(N) operations only (in one dimension or with an incomplete 

factorization), the worsening of the condition number may not be balanced by 

the saving in factorization time (unless the computation of the entries of 

A is particularly eKpensive). 

The matrices A we considered so far arose from a finite difference 

approximation of the operator ~ at the Chebyshev points. Even if ~ is 

7 

formally self-adjoint, A is not symmetric, as well as Lsp' Actually A 
~ ~ 

spl its up as A = D' A, with D diagonal and A symmetric. Some iterative 

techniques require the symmetry of the preconditioning matrix (see, e.g., the 

next section). This can be accomplished by discretizing a suitable 

variational formulation of the elliptic operator via finite elements as 

follows. 
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If Pu 

(2.2) 

-(au) , the bilinear form associated to P is 
x x 

a(u,v) ex u (vw) dx 
x x 

where 2 -liz 
w(x) = (1 - x) • 'The form a(·,·) is continuous and coercive on 

the weighted Sobolev space (cf. [2]), but it is not symmetric. 

However the "reduced" form 

(2.3) ;(u,v) = Il ex u v W dx 
n x x 

is still coercive and continuous on Hl (n1) 
O,w ' and trivially symmetric. 

Assuming u and v continuous and piecewise linear between contiguous 

Chebyshev knots, we associate a matrix A = {aij } to (2.3) by setting 

,(2.4) 

where ~k is continuous piecewise linear and ~k(Xt) = 0kt· For instance, 

if Pu = -uxx ' we have after dropping the common factor 

(2.5 ) -1 
a j ,j_l = -2-

h
j

_
1 

1T 
i: 

-1 
a j ,j+l = h 2 

j 

(compare with (2.1». The spectrum of A behaves like the spectrum of the 

corresponding finite difference matrix, and the preconditioning properties are 

only slightly worse, as shown in the next table. 



N 

4 

8 

16 

32 

64 

128 

Table 2.6. Lu = -uxx 
Au = finite elements at the Chebyshev 

points for Lu (see(2.5». 

A (A -1 L ) 
min sp 

A (A -1 L ) 
max sp 

K(A-1 L ) 
sp 

1.25 3.29 2.63 

1.16 4.10 3.55 

1.13 4.53 3.99 

1.13 4.74 4.19 

1.13 4.84 4.29 

1.13 4.89 4.33 

9 

Up to now we considered one-dimensional problems. In 2D one can still use a 

finite difference or finite element matrix, say '8, in the preconditioning. 

The corresponding results are similar to those in ID. However, the exac t 

"inversion" of such a matrix is more expensive, since the factors in its LU 

decomposition have a bandwidth of order O(N) instead of 0(1). In order to 

overcome this drawback, different techniques of incomplete factorization have 

been successfully proposed (cf., e.g., [10], [11], [16]). The idea is to 
~ 

replace the exact factors Land U by some approximations Land U of 
~ ~ 

them, which retain a very sparse structure. Land U are computed by 

incomplete steps of Gaussian elimination, under the condition that certain 
~ 

quantities depending on the product L U agree with the corresponding 
.......... 

quantities for B. The matrix A = LUis then used in the preconditioning. 

In our computations, the in~,omplete factorization was done according to 

" 
Wong's row-sums agreement condition ([16]). Namely, let b(O) and b(k) 

denote the diagonal and the off-diagonals of a ~th order matrix B, i.e., 
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If R is the finite difference matrix for a 

second-order operator at the Chebyshev points in the square, then only b(O), 

b(±I), and b(fN) are not identically zero. The incomplete factors L 

and U of B have 
~(O) ~(-1) ~(-N) 
£ ,£ ,£ and 

~ (0 ) ~ (1 ) ~ (N ) 
u ,u ,u respectively 

as nonzero (off)-diagona1s. 
~(O ) 
u is chosen to be == 1., while the off-

diagonal elements are easily determined by the condition that a(±l) == b(±l) 

~ 

and a(±N) == b(±N), where A = L U. Finally, 1(0) is such that the sum of 

each row in A equals the corresponding sum in R. 

Henceforth, we list some results about the preconditioning hy an 

incomplete factorized finite difference matrix (for other results see [17]). 

Table 2.7 refers to constant coefficients operators. The different ratios 

between the coefficients of uxx and U yy are supposed to mimic the effect 

of the stretching of coordinates in a mapping process. The spectral matrix of 

a variable coefficients operator was preconditioned by the finite differences 

representation of the same operator (Table 2.8), or by that of a constant 

coefficient operator (Table 2.9). 

Table 2.7. Lu = -au - u xx yy 
Au = incomplete factorized finite 

difference matrix for LU. 

N 
a = 1. a = 10. a = 100. 

A 
min 

K A 
min 

K A 
min 

K 

4 1. 08 1.72 1.01 1.75 1.00 1. 76 

8 1.06 2.72 1.03 2.43 1.01 2.13 

16 1.04 4.06 1.03 5.34 1.01 3.27 



Table 2.8. 

Lu = (au) - (au) x x y y 
a = a = 1 + 10x2y2 

Au = incomplete factorized finite 

difference matrix for Lu. 

N A 
min 

K 

4 1.09 3.29 

8 1.08 4.92 

16 1.04 9.33 

Table 2.9. 

Lu as in Table 2.8 

Au = incomplete factorized 

finite differences for 

~u = -uxx - Uyy ' 

N A 
min 

4 1.48 

K 

6.89 

8 1.44 10.94 

16 1.23 19.90 

Unlike the case of complete factorization, the condition number grows linearly 

with the number of unknowns. However, it ranges within moderate bounds 

{except when a different operator is used in the preconditioning}. This gives 

evidence to the convenience of using incompletely factorized preconditioning 

matrices in spectral calculations. 'Better results can be achieved, with 

slightly more computational effort, by a higher order incomplete factorization 
~ ~ 

in which Land U have one more nonzero off-diagonal {see [16] for more 

details} • 

3. A Conjugate Gradient Method 

Even if the differential operator L is self-adjoint, the matrix arising 

from a Chebyshev spectral approximation is not symmetric. Thus, one can apply 

the standard conjugate gradient method {CG} to the normal equations of the 

preconditioned system; or one can use CG-type methods for nonsymmetric 

systems, like those proposed by Vinsome [13], Young and Jea [14], Axelsson 

11 
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[1], or those by Concus and Golub [3], Widlund [15]. The methods of the first 

class may require the storage of back steps of the solution (see however, Wong 

[17] for an application of a truncated version of [1] to spectral 

calculations), while the methods of the second class need that the symmetric 

part of the system be easily solvable. 

In the previous section it has been pointed out that the spectral matrix 

can be preconditioned using a symmetric positive definite matrix, connected 

with some finite element approximation of the elliptic operator. This 

suggests the use of the following preconditioned version of the CG method 

(see, e.g., [5]): Minimize 

(3.1 ) r=L u-f sp 

by CG iterations in nP equipped with the inner product 

(3.2 ) T ( (u , v)} = u Av. 

The corresponding algorithm is as follows. 

Given uo E: "R1, compute a A-1 (f - L uo) z = sp 

a -1 LT a 0 a g = A z , w = g . sp 

Then set for k 0,1, ••• : 

k+l k ak k k 
(zk, L wk) 

(3.3) u = u + w , where a = sp 

(L wk A-I L wk) 
sp' sp 

k+l k ak A-I L k z = z w sp 

k+1 A-I LT k+1 g = z sp 

k+l k+l + yk+l k where yk+1 = 
«gk+l _ gk lgk+l» 

w = g w , k k 
«g ,g » 



Here (u,v) = uTv denotes the Euclidean product in nP. T k+l The product L z 
sp 

can be executed through Fast Fourier Transforms, and the entries of the matrix 

Lsp need not to be computed. Actually, assume that L u = -[p (au)] be sp c x x 

the Chebyshev pseudospectral approximation of Lu = -( aux)x' where P Cw is 

We the N-th degree polynomial interpolating w at the nodes xj,j=O,···,N. 

identify a N-th degree polynomial vanishing at x = ±l with the vector of its 

values at x j=l··· N-l. j' , , Recall that 

13 

(3.4) 
1 ~l ~ 

J u(x) vex) w(x) dx = ~ I u(xj ) v(xj ) + -- {u(-l) v(-l) + u(l) vel)} 
-1 N j=l N 

for any u,v such that uv e: lP2N- l • lben 

(u,LT v) 
N 1 

= (L u,v) = - - J [p (au)] v w dx. 
sp ~-l sp ~-l 1T 

-1 
c x x 

Integration by parts and several applications of (3.4) yield 

tv = -(p z) + az sp c x 
(3.5) w 

where a( v + av) , a(x) x (x) = 
x z = = --x w 

1 -
2 x 

Similar expressions hold in two dimensions. 

Algorithm (3.3) was used to compute the spectral solution for the test 

problems: 

-1 < x < 1 

(3.6) 
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and 

(au) - (au) = f 
x x y y 

-1 < x,y < 1 

(3.7) or a(x,y) = 1 + 10x2y2 

== sin lTx sin lTy. 

In the following tables, we report the minimwn number NIT of iterations 

required to get RES < 10-8 , where the relative residual is defined by 

(3.8) = (r.r) 
(f , f) , r = f - L sp u. 

The initial guess was o 
u - O. ERR is the corresponding relative error on 

the solution 

(3.9) ERR = 
lIu - u II 

sp exact 
lIu II 

exact 

where lIuli = (u,u) 112 is the discrete t 2-norm on the grid. 

Table 3.1. CG Method for Problem (3.6) 

Au = finite element matrix for Lu. 

N 
a :: 1. a = 1 + 10x2 

NIT RES ERR NIT RES ERR 

4 1 .31 E-17 .18 EO 1 .90 E-17 .11 E-1 

8 3 .12 E-16 .31 E-3 3 .19 E-13 .40 E-3 

16 7 .53 E-14 .27 E-ll 8 .13 E-15 .61 E-11 

32 14 .58 E-8 .12 E-9 16 .60 E-12 .88 E-14 

64 20 .52 E-8 .84 E-10 24 .24 E-8 .18 E-10 

128 26 .52 E-8 .47 E-ll 29 .35 E-8 .13 E-10 



Table 3.2. CG Method for Problem (3.7) 

Au = incomplete factorized finite element matrix for Lu. 

N ex :: 1. ex = 1 + 10x2y2 

NIT RES ERR NIT RES ERR 

4 21 .31 E-8 .18 EO 32 .88 E-8 .10 E-1 

8 44 .75 E-8 .31 E-3 72 .99 E-8 .15 E-3 

16 80 .99 E-8 .89 E-9 70 .13 E-2 .56 E-4 

It is seen that the number of iterations NIT to match the stopping criterion 

RES < 10-8 increases sub linearly in 1D and linearly in 2D with the degree N 

of polynomials. This seems qualitatively in accordance with the behavior of 

the condition number of the matrix A-I L 
sp· However, we are unable to find a 

satisfactory explanation to the slow convergence properties of the method in 

2D. 

4. '!be DuFort-Frankel (DF) Method 

The DuFort-Frankel method can be applied to the numerical solution of 

steady-state equations 

(4.1) Bu = g, 

(the eigenvalues of B having positive real parts) as an iterative procedure 

depending on two parameters 0 and y: 

15 
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(4.2) 
k+1 k-1 

u - u 
20 

k ( k+1 k k-1) = g - Bu - Y u - 2u + u • 

This can be written as a one-step method in the form 

(4.3) [:~1] G(.",y) [::-1] + 1 + 20y 

[:] = 20 

with proper definition of the matrix G. 

The D'F scheme was studied in connection with spectral methods by Gottlieb 

and Gustafsson [6 ] and by Funaro [4] • If B has real strictly positive 

eigenvalues (the largest and the smallest eigenvalues being denoted by ). 
max 

and ).min respectively), then it is seen that the method is convergent if 

(4.4) 

). 
max 

Y > Y
LIM 

= -4- • 

Moreover, Funaro [4] proves that the spectral radius peG) as a function of 

o and Y has a curve of local minima (with respect to increments in the 0 

or in the y direction separately) given by the branches of hyperbola 

(4.5) 
1 + (2 ).2 

y max 
= 

4(2). 
if 

). + ). 
y < min max 

4 
max 

1 + 02).2 
y min 

= 
4( 2). 

min 

(4.6) if 
). + ). 

y > min max 
4 

peG) attains its absolute minimum at the intersection of the two branches, 

i.e., at the "optimal parameters" 

(4.7) 0* = 1 
I). ). 

min max 

* y 
). + ). 
min max = 4 

'. 



where 

(4.8) * P (G) t" P op 

The DF method with the optimal parameters (4.7) was applied to the 

solution of the test problems (3.6) - (3.7) by a preconditioned spectral 

method. Hence, we set in (4.2) Bu = A-I L u and g" A-I f, where A is sp 

the finite difference matrix associated to L, incompletely factorized in 

2D. One DF iteration requires one multiplication 

forward-backward substitution Aw = z. The optimal parameters were computed 

using the exact values of A and A 
min max obtained in the previous 

section. The initial guess was u O :: 0, while u 1 was computed by a step of 

the Modified Euler method for the preconditioned system. NIT, RES, ERR are 

defined as in Section 3, formulae (3.8) - (3.9). 

Table 4.1. 

N 

NIT 

4 9 

8 12 

16 12 

32 14 

64 14 

128 14 

DF Method with optimal parameterffor Problem (3.6) 

Au = finite differences for Lu. 

a :: 1. a = 1 + 10x2 

RES ERR NIT RES ERR 

.33 E-8 .18 EO 19 .41 E-8 .11 E-l 

.19 E-8 .13 E-3 24 .97 E-8 .40 E-3 

.98 E-8 .39 E-8 26 .52 E-8 .56 E-8 

.25 E-8 .14 E-8 29 .37 E-8 .79 E-8 

.29 E-8 .29 E-8 28 .83 E-8 .75 E-8 

.57 E-8 .56 E-8 28 .88 E-8 .86 E-8 

17 
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Table 4.2. DF Method with optimal parameters for Problem (3.7) 

Au = incomplete factorized finite differences for Lu. 

N a == 1. a = 1 + 10x 2y2 

NIT RES ERR NIT RES ERR 

4 9 .70 E-8 .18 EO 15 .20 E-8 .10 E-1 

8 14 .97 E-8 .13 E-3 20 .84 E-8 .15 E-3 

16 20 .56 E-S .11 E-S 30 .98 E-8 .64 E-S 

32 59 .S6 E-8 .4S E-8 49 .82 E-8 .92 E-9 

It is seen that the number of iterations needed to satisfy the stopping test 

is bounded as a function of N in the 1D tests, while it is linearly growing 

in 2D. This corresponds to the behavior of the condition number of the matrix 

A-I Lsp ' as reported in Tables 2.4 and 2.8. 

Moreover, NIT is comparable with the one relative to the CG method in 1D, 

and definitely smaller in 2D. Since one DF iteration is faster than one CG 

iteration (by a factor of 1.7 both in 1D and in 2D) we conclude that the DF 

method with optimal parameters exhibits a globally better behavior than the CG 

method on the tested problems. 

The speedup in the convergence due to the use of a preconditioning 

technique is particularly impressive for the DF method. This is suggested by 

formula (4.8), which shows the dependence of the optimal spectral radius on 

the condition number of B. Table 4.3 reports the performance of the DF 

method with optimal parameters without preconditioning (i.e., Bu = Lsp u) for 

problem (3.6) with a == 1. (compare with Table 4.1) 



.. 

. , 

Table 4.3. DuFort-Frankel method without preconditioning 

N 4 8 16 32 64 

NIT 23 84 327 >400 »400 

The practical interest of formulae (4.7) relies on the explicit knowledge 

of * A i and A , which is rarely the case. Approximate values of 0 m n max 

and * y may be obtained in different ways, for instance by estimates on the 

~* y* eigenvalues of 'B or by extrapolation of correct values of u and 

computed on coarser grids. It was found that linear extrapolation on the 

* parameters as functions of N may lead to negative values of y. Instead, 

linear extrapolation on the ratios of contiguous values of the parameters 

gives accurate answers. Actually, the case N = 32 in Table 4.2 was run with 

extrapolated "optimal" parameters. 

Unfortunately, the method appears to be rather sensitive to the choice of 

parameters, especially around the curve of optimality_ The qualitative 

behavior of peG) as a function of Y for fixed 0 (or conversely) is 

similar to the one encountered in a SOR method. Table 4.4 shows the values of 

NIT for problem (3.6) with a = 2 2 1 + lOx y , N = 32 and finite differences 

preconditioning, as a function of Y and o • 
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Table 4.4. NIT as function of Y and O. 

4 »400 193 438 »400 »400 

2 >400 98 162 416 »400 

1 >400 49 97 183 392 

112 >400 87 61 134 196 

1/4 »400 147 145 86 151 

YL1M/Y * 1 2 4 8 * xY 

The previous considerations suggest that the DF method, although in 

principle very powerful, may be poorly efficient in applications if the user 

attempts to fix the constants 0 and Yonce for all. 

However, it is possible to transform the DF method into a completely 

parameter-free iterative scheme follOwing a "minimal residual" strategy which 

has been proven successful in connection with other iterative schemes. The 

parameters Y and 0 are computed at each iteration in order to minimize the 

t
2-norm of the residual r = f - L u. sp 

uk+1 and rk+1 are defined according to (4.2) 

-1 rk + uk + = c 1 A c 2 c 3 
(4.9 ) 

k+l -1 k k 

I"~I 
r = -c1 L A r + c2 r sp 

where 

(4.10) c1 = 1 + 20Y , 
40Y 

c2 = 1 + 20y , 

then 

k-1 u 

k-1 + c3 r 

c = 3 
1 - 20y 
1 + 20Y • 



( k+l k+l) r ,r is minimized if one setsin (4.10) 

k-l 
1 (g, r - as) 

= '2 (q,q - Bs) 

(4.11) 

where p = rk - r k- 1 , q = Lsp A-I rk, s = rk + p, a = (p,rk-l)/{p,s) and 

B = (p,q)/(p,s). 

This algorithm can be called ''Minimal Residual DuFort-Frankel" (MRDF) 

Method. One MRDF iteration requires one forwar4,backward substitution 

Az = rk and one multiplication w = L z; moreover, r k- l needs to be stored sp 

with k-l Note that if u l uO but rO :I: 0 the algorithm cannot u • .-

converge. Hence u l should be chosen in such a way that u l - uO and rO 

be roughly comparable. For instance u l can be computed from uO by one 

step of the Minimal Residual Richardson method {see Section 5 (b». 

Tables 4.5 and 4.6 are analogous of Tables 4.1 and 4.2, except that the 

MRDF method was used instead of the DF method with optimal parameters. 

In lD, the gain in the speed of convergence over the DF method with optimal 

parameters is spectacular, although this may depend on particular 

circumstances. In 2D, the improvement of the performances is less impressive. 

However, one must not forget that the main improvement of the MRDF over 

the DF method relies on the complete automatization in the choice of 

parameters. 
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Table 4.5. 

N et :: 1. 

NIT RES 

4 1 .11 E-17 

8 5 .48 E-9 

16 7 .71 E-8 

32 4 .56 E-9 

64 3 .10 E-9 

128 2 .33 E-9 

MRDF Method for Problem (3.6) 

Au = finite differences for Lu. 

et = 1 + 

ERR NIT RES 

10x2 

.18 EO 1 .70 E-17 

.13 E-3 8 .55 E-8 

.38 E-9 11 .46 E-S 

.13 E-9 9 .4S E-8 

.20 E-I0 3 .45 E-S 

.68 E-I0 2 .10 E-8 

Table 4.6. MRDF Method for Problem (3.7) 

ERR 

.11 E-l 

.40 E-3 

.35 E-S 

.22 E-S 

.IS E-S 

.56 E-9 

Au = incomplete factorized finite difference matrix for Lu. 

et :: 1. ex = 1 + 10x 2y2 N 

NIT RES ERR NIT RES ERR 

4 7 .23 E-S .18 EO 10 .84 E-S .10 E-l 

8 13 .47 E-8 .13 E-3 20 .77 E-8 .15 E-3 

16 19 .63 E-8 .80 E-9 29 .90 E-S .79 E-S 

32 36 .50 E-8 .96 E-9 46 .7S E-S .S6 E-9 

5. Comparisons with Other ~thods 

The preconditioned CG and DF methods were compared with two other 

iterative techniques recently suggested for spectral calculations: the 

Richardson iteration proposed by Orszag [12], and the Minimal Residual 



Richardson method proposed by Wong [17]. We briefly review these techniques 

and we report for the sake of completeness their behavior on the test problems 

used throughout this paper. 

(a) Richardson Method ([12J): 

Given uO, compute uk+1 from uk by solving 

(5.1 ) Auk+1 = k 
u - f), 

where ° < a. < 2/). ,). and). being the smallest and the largest max min max 
-1 eigenvalue of A Lsp. The optimal value of a., 

(5.2) a. 
opt 

2 = 7).-----'-+--:").--

min max 

was computed exactly and used in the following tests. One iteration requires 

one multiplication z = L wand one forward-backward substitution Ax = b. 
sp 

Table 5.1. Richardson Method for Problem (3.6) 

Au = finite differences for Lu. 

N a. :: 1. a. = 1 + 10x2 

NIT RES ERR NIT RES ERR 

4 8 .90 E-8 .18 EO 33 .63 E-8 .11 E-1 

8 17 .81 E-8 .13 E-3 62 .95 E-8 .40 E-3 

16 20 .77 E-8 .54 E-8 71 .82 E-8 .68 E-8 

32 21 .70 E-8 .64 E-8 73 .96 E-8 .88 E-8 

64 22 .70 E-8 .41 E-8 74 .97 E-8 .94 E-8 

128 22 .42 E-8 .51 E-8 75 .87 E-8 .86 E-8 
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Table 5.2. Richardson Method for Problem (3.7) 

Au = incomplete factorized finite difference matrix for Lu. 

N a :: 1. a = 1 + 10x2y2 

NIT RES ERR NIT RES ERR 

4 12 .87 E-8 .18 EO 23 .84 E-8 .10 E-l 

8 24 .71 E-8 .13 E-3 45 .69 E-8 .15 E-3 

16 39 .92 E-8 .92 E-8 90 .99 E-8 .21 E-8 

(b) Minimal Residual Richardson (MRR) Method ([17]): 

In the previous scheme, compute a = ak at each iteration in order to 

minimize the residual (rk+1,rk+1). Hence one gets: 

Given 
0 0 

f - L 
0 0 -1 0 

u compute r = u , z = A r , sp 

then set 
(rk,L zk) 

k+1 k ak k k u = u + z where a = sp 

(L zk,L zk) 
, 

(5.3) sp sp 

k+1 k ak L k r r z sp 

k+1 -1 k+l 
z = A r 

The computational effort per iteration is comparable with that of the 

Richardson method. Note that this method is obtained from the previous one by 

the same strategy used in deriving the MRDF from the pure DF method. 



Table 5.3. MRR Method for Problem (3.6) 

Au = finite differences for Lu. 

N 
a :: 1. 0=1 + 10x2 

NIT RES ERR NIT RES ERR 

4 1 .12 E-17 .18 EO 1 .15 E-17 .11 E-l 

8 10 .32 E-8 .13 E-3 13 .22 E-I0 .40 E-3 

16 8 .78 E-8 .29 E-9 13 .76 E-8 .28 E-8 

32 5 .56 E-9 .19 E-ll 10 .62 E-8 .37 E-8 

64 4 .14 E-9 .12 E-10 4 .58 E-8 .15 E-8 

128 3 .34 E-9 .48 E-10 3 .16 E-8 .12 E-8 

Table 5.4. MRR Method for Problem (3.7) 

Au = incomplete factorized finite difference matrix for Lu. 

a :: 1. a = 1 + 10x 2y2 
N 

NIT RES ERR NIT RES ERR 

4 9 .98 E-3 .18 EO 18 .96 E-8 .10 E-1 

8 18 .11 E-8 .13 E-3 22 .29 E-8 .15 E-3 

16 23 .90 E-8 .53 E-8 32 .14 E-8 .60 E-9 

32 58 .88 E-8 .19 E-8 58 .89 E-8 .43 E-9 

(c) Comparisons 

The speed of convergence of the methods previously discussed was compared 

on the basis of the number of iterations and the CPU time. Two significant 

cases were considered. 
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CASE 1: Problem (3.6) with a = 

N = 128, i.e., 127 grid points in the interval (-1,1). 

CASE 2: Problem (3.7) with a = 1 + 10x2y2 

N = 32, i.e., 31 x 31 grid points in the square (-1,1)2. 

Define for the sake of simplicity the following labels: 

A Richardson method (5.1) with optimal parameter (5.2) 

B Minimal residual method (5.3) 

C Conjugate gradient method (3.3) 

D DuFort-Frankel method (4.2) with optimal parameters (4.7) 

E Minimal residual DuFort-Frankel method (4.9) 

We used the standard finite difference (finite element for method C) 

preconditioning matrix on the spectral grid, incompletely factorized in Case 2 

according to Wong's method described in Section 2. The optimal parameters 

were computed with the exact values of , d' uO-_-O 1\ an 1\ • 
min max 

was the 

initial guess. 

The results in Figure 5.1 and in Figure 5.2 are in a sense machine- and 

programmer-independent. The relative performances of the methods can be 

analyzed according to the global CPU-time consumption, using the following 

table. 

Table 5.5. CPU-time per iteration in hours 

METHOD A B C D E 

CASE 1 .272 E-3 .280 E-3 .467 E-3 .273 E-3 .285 E-3 

CASE 2 .128 E-Z .128 E-2 .217 E-2 .127 E-2 .130 E-2 
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Hence, Figure 5.1 and Figure 5.2 also summarize the relative performances of 

the methods in terms of cost, except for method C which io roughly 1.7 times 

slower than the others. 
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Comments 

Globally, the results confirm the utility of preconditioning techniques 

in spectral calculations: few iterations are needed to reach the spectral 

accuracy, which corresponds in the test problems to a relative residual of 

10-18 • 

Methods A and D behave exactly like predicted by the theory: the error 

is reduced at each iteration by a factor K-l 
K+l for method A, and 

method B (K is the condition number of the preconditioned matrix). 

for 

The conjugate gradient method gives contradictory answers in terms of 

speed of convergence: in lD the factor of reduction of the error is smaller 

than that for method D, while in 2D it is comparable with that of method A. 

In both cases, the method turns out to be not competitive in terms of computer 

time. 

The "minimal residual" strategy is always winning over the "optimal 

parameter" strategy, also where the exact optimal parameters can be used. In 

particular, the MRR method is superior even to the Richardson method with 

Chebyshev acceleration, proposed in [12] (according to [12], p. 86, the 

Chebyshev acceleration increases the speed of Richardson method by a factor of 

2, although it requires the extra-storage of the vector uk-I). 

The MRDF method requires the storage of u k-l and r k- 1 , being a two-

step method. However, the extra memory required results in a better accuracy, 

and the MRDF method appears in all cases the fastest method among those tested 

in this report. 
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