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I. SUMMARY

The DOE Office of Conservation, Division of Transportation Energy Conservation,

has established a number of broad programs aimed at reducing highway vehicle

fuel consumption. The DOE Stirling Engine Highway Vehicle Systems Program is

one such program. This program is directed at the development of the Stirling

engine as a possible alternative to the spark-ignition engine.

Project Management responsiblity for this project has been delegated by DOE to
the NASA-Lewis Research Center. Support for the generation of this report

was provided by a grant from the Lewis Research Center Stirling Engine Project
Office.

For Stirling engines to enjoy widespread application and dcceptance, not only

must the fundamental operation of such engines be widely understood, but the
requisite analytic tools for the simulation, design, evaluation and optimization

of Stirling engine hardware must be readily available.

The purpose of this design manual is to provide an introduction to Stirling cycle

heat engines, to organize and identify the available Stirling engine literature,

and to identify, organize, evaluate and, in so far as possible, compare non-
proprietary Stirling engine design methodologies. As such, the manual then

represents another step in the long process of making available comprehensive,

well verified, economic-to-use, Stirling engine analytic programs.

Two different fully described Stirling engines are presented. These not only

have full engine dimensions and operating conditions but also have power outputs

and efficiencies for a range of operating conditions. The results of these

two engine tests can be used for evaluation of non-proprietary computation

procedures.

Evaluation of partially described Stirling engines begins to reveal that some

of the early but modern air engines have an interesting combination of simplicity

and efficiency. These show more attractive possibilities in today's world

of uncertain fuel oil supply than they did 20 years ago when they were developed.

The theory of Stirling engine is presented starting from simple cycle analysis.
Important conclusions from cycle analysis are: l) compared to an engine with

zero unswept gas volume (dead volume), the power available from an engine with

dead volume is reduced proportional to the ratio of the dead volume to the max-

imum gas volume, and 2) the more realistic adiabatic spaces can result in as

much as a 40% reduction in power over the idealized isothermal spaces.

Engine design methods are organized as first order, second order and third
order with increased order number indicating increased complexity.

First order design methods are principally useful in preliminary systems
studies to evaluate how well-optimized engines may perform in a given heat

engine application.

Second order design methods start with a cycle analysis and incorporate engine

loss relationships that apply generally for the full engine cycle. This method

assumes that the different processes going on in the engine interact very little.



A FORTRAN program is presented for both an isothermal second-order design

program and an adiabatic second-order design program. Both of these are

adapted to a modern four-piston Siemens type of heat engine.

Third-order methods are explained and enumerated. This method solves the

equations expressing the conservation of energy, mass and momentum using

numerical _ethods. The engine is divided into many nodes and short time

steps are required for a stable solution. Both second- and third-order

methods must be validated by agreement with measurement of the performance

of an actual engine.

in this second edition of the Stirling Engine Design Manual the references

have been brought up-to-date. There is a continual rapid acceleration of

interest in Stirling engines as evidenced by the number of papers on the sub-

ject. A revised personal and corporate author index is also presented to aid

in locating a particular reference. An expanded directory lists over 80 in-

dividuals and companies active in Stirling engines and details what each
company does within the limits of the contributed information. About 800

people are active in Stifling engine development worldwide.



2. INTRODUCTION

2.1 Wh_' Stirling?

Development of Stirling engines is proceeding world-wide in spite of

their admittedly higher cost because of their high efficiency, particularly

at part load, their ability to use any source of heat, their quiet operation,

their long life and their non-polluting character.

For many years during the last century, Stirling engines occupied a
relatively unimportant role among the kinds of engines used during that period.

They were generally called air engines and were characterized by high reliability
and safety, but low specific power. They lost out in the dollars-per-horsepower

race with other competing machines. In the 1930's some researchers employed

by the Philips Company, in Holland, recognized some possibilities in this old

engine, provided modern engineering techniques could be applied. Since then,
this company has invested millions of dollars and has created a very commanding

position in Stirling engine technology. Their developments have led to smooth

and quiet-running demonstration engines which have very high efficiency and

can use any source of heat. They may be used for vehicle propulsion to produce

a zero or low level of pollution. A great variety of experimental Stirling

engines have been built from the same general principles to directly pump

blood, generate electricity, or directly generate hydraulic power. Many are

used as heat pumps and some can be used as both heat pumps and heat engines

depending upon the adjustment. With a few notable exceptions of independent
individuals who have done very good work, most of the work on Stirling engines

has been done by teams of engineers funded by the giant companies of the world.

The vital details of this work are generally not available. The United States

government is beginning to sponsor the development of an open technology on

Stirling engines and is beginning to spend large sums of money in this area.

As part of this open technology, this design manual is offered to review all

the design methods available in the open literature.

Consider the following developments which show that interest in Stirling

engines is growing not just as a popular subject for research, but as a product

that can be sold at a profit.

United Stirling of Sweden is committed to quantity production of their

P-75, 75 kw truck engine.

Mechanical Technology, Inc., United Stirling and American Motors have

teamed up to develop and evaluate Stirling engines for automobiles.

The sponsor is the U.S. Department of Energy, via NASA-Lewis, at 4

million dollars per year.

The Harwell thermo-.mechanical generator, a type of super-reliable

Stirling with three times the efficiency of thermo-electric generators

has now operated continuously for four years.

A Japanese government-industry team is designing and building a 800 hp

marine engine. Funding is 5 million dollars for 5 years. A lO kw and

a 50 kw engine of reasonable performance have been built independently

by Japanese firms.
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Work has started by three organizations using the talents of long time

Dutch, Swedish and German Stirling engine developers to design and

eventually build a 500 to 2000 horsepower coal-firad Stirling engine

for neighborhood heat and power generation.

Stirling Power Systems has equipped eight Winnebago motor homes with

an almost Silent and very reliable total energy system based upon a

6.5 kw Stirling engine generator. These systems are now ready for
manufacture and sale.

• Solar Engines of Phoenix, Arizona, have sold 20,000 model Stirling engines.

• Sunpower of Athens, Ohio, has demonstrated an atmospheric air engine

that produces 850 watts instead of 50 watts for an antique machine.

2.2 What Is A Stirling Engine._?

Like any heat engine, the Stirling engine goes through the four basic

processes of compression, heating, expansion, and cooling (See Figure 2-I). A

couple of examples from every day life may make this clearer. For instance,

Figure 2-2 shows how an automobile internal combustion engine works. In this

engine a gas-air mixture is compressed using work stored in the mechanical

flywheel from a previous cycle. Then the gas mixture is heated by igniting it

and allowing it to burn. The higher pressure gas mixture now is expanded
which does more work than was required for the compression and results in net

work output. In this particular engine, the gas mixture is cooled very little.

Nevertheless, the exhaust is discarded and a cool gas mixture is brought in
through the carburetor.

'|| HEAT SOURCE EXPANSION NET
L WORK, I

I WORK

' I
THERMAL

HEATING
REGENERATION

COOLING

COMPRESSION HEAT SINK

HEAT LEAK

Figure 2-I. Common Process for all Heat Engines.
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Another example of the general process shown in Figure 2-I is the closed
cycle gas turbine engine (See Figure 2,_). The working g_s is compressed,

then it passes through a steady-flow regenerative heat exchanger to exchange
heat with the hot expanded gases. More heat is added in the gas heater. The

hot compressed gas is expanded which generates more energy than i, required

by the compressor and creates net work. To complete the cycle, the expanded

gas is cooled first by the steady flow regenerative heat exchanger and then

the additional coolinfy to the heat sink.

In the first example (Figure 2-2), the processes occur essentially

in one place, one after the other in time. In the second example (Figure 2-3),

these four processes all occur simultaneously in different parts of the machine.
In the Stirling machine, the processes occur sequentially but partially over-

lapping in time. Also the processes occur in different p_rts of the machine

but the boundaries are blurred. One of the problems v,nich has delayed the

realization of the potential of this kind of thermal machine is the difficulty

in calculating with any real degree of confidence the complex processes which

go on inside of a practical Stirling engine. The author has the assignment
to present as much help on this subject as is presently freely available.

A heat engine is a Stirling engine for the purpose of this book when:

I. The working fluid is contained in one body at nearly a common

pressure at each instant during the cycle.

. The working fluid is manipulated so that it is generally com-

pressed in the colder portion of the engine and expanded
generally in the hot portion of the engine.

. Transfer of the compressed fluid from the cold to the hot

portion of the engine is done by manipulatin_ the fluid

boundaries without valves or real pumps. Transfer of the

expanded hot fluid back to the cold portion of the engine is
done the same way.

4. A reversing flow regenerator (regenerative heat exchanger) may
be used to increase efficiency.

The general process shown in Figure 2-I converts heat into mechanical

energy, The reverse of this process can take place in which mechanical energy
is converted into heat pumping. The Stirling engine is potentially a better

cycle than other cycles because it has the potential for higher efficiency, low
noise and no pollution,

Figure 2-4 shows a generalized Stirling engine machine as described above.

That is, a hot and a cold gas space is connected by a gas heater and cooler and

regenerator. As the process proceeds to produce power, the working fluid is

compressed in the cold space, transfei'red as a compressed fluid into the hot

space where it is expanded again, and then transferred back again to the co!_

space, Net work is generated during each cycle equal to the area of Lhe enclosed
curve.

6



Figure 2-4.
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2.3 Major Types of Stirling Engines

In this plblication the author would like to consider the classification

of Stirling engines from a more basic standpoint. Figure 2-5 shows the various

design areas that must be addressed before a particular kind of Stirling engine

emerges. First some type of external heat source must be determined. Heat
must then be transferred through a solid into a working fluid. There must be

a means of cycling this fluid between the hot and cold portion of the engine
and of compressing and expanding it. A regenerator is needed to improve

_ffi_iency, Power control is obviously needed as are seals to separate the

working gas from the environment. Expansion and compression of the gas creates

net indicated power which must be transformed by some type of linkage to create

useful power. Also the waste heat from the engine must be rejected to a suitable

sink.
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Stirling Engine Design Option Block Diagram.

ENGINE CONTROL

A wide variety of Stifling engines have been manufactured. These old

engines are described very well by Finkelstein (59 c) and Walker (73 j, 78 dc).
Usually these involve three basic types of Stirling engines. One, the alpha
type, uses two pistons (See Figure 2-4 and 2-6). These pistons mutually
compress the working gas in the cold space, move it to the hot space where it is
expanded and then move it back. There is a regenerator and a heater and cooler
in series with the hot and cold gas spaces. The other two arrangements use a
piston and displacer. The piston does the compressing and expanding, and the
displacer does the gas transfer from hot to cold space. The displacer arrange-
ment with the displacer and the power piston in line is called the beta-
arrangement, and the piston offset from the displacer, to allow a simpler
mechanical arrangement, is called the gamma-arrangement. However, all large
size Stirling engines being considered for automotive applications employ what
is variously called the Siemens, Rinia or double-acting arrangement. (See
Figure 2-7.) As explained by Professor Walker (90 d, p. 109), Sir William Siemens
is credited with the invention by Babcock (1885 a). (See Figure 2-8.) However,
Sir William's engine concept was never reduced to practice. About 80 years later
in 1949, van Weenan of the Philips company re-invented the arrangement complete
with wobble plate drive. Because of the way the invention was reported in the
literature, H. Rinia's name was attached to it by Walker (78 j).

Note in Figure 2-8 there are 4 pistons attached to a wobble plate which

pivots at the center and is made to undergo a nutating motion by a lever attached
to a crank and flywheel. This is only one way of getting these 4 pistons to

undergo simple harmonic motion. Figure 2-7 shows these same 4 cylinders laid

out. Note that the top of one cylinder is connected to the bottom of the next
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by a heater, regenerator and cooler, as in the alpha-type of Figure 2-6. In

the Siemens arrangement there are 4 alpha-arrangement working spaces with each

piston double-acting, thus the name. This arrangement has fewer parts than any

of the others and is, therefore, favored for larger automotive scale machines.
Figure 2-9 shows an implementation of the Siemens arrangement used by United

Stirling. United Stirling places 4 cylinders parallel to each other in a

square. The heater tubes are in a ring fired by one burner. The regenerators
and coolersare in between but outside the cylinders. Two pistons are driven

by one crank shaft and two pistons are given by the other. These two crank

shafts are geared to a single drive shaft. One end of the drive shaft is used

for auxiliaries and one for the main output power.

H C

C

ALPHA-TYPE BETA-TYPE

H = HEATER

R = REGENERATOR

C = COOLER

I = EXPANSION SPACE
2 = COMPRESSION SPACE

GAMMA-TYPE

Figure 2-6. Main Types of Stirling Engine Arrangements.

11 "

t!!

Figure 2-7. A Rinia, Siemens or Double-Acting Arrangement.
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Figure 2-8. Four-Cylinder Double-Acting Engine Invented by Sir William

Siemens in 1863 (after Babcock (1885 a)).

i •

2.4 Overview of Report

The chief aim of this design manual is to teach people how to design

Stirling engines, particularly those aspects that are unique to Stirling
engines. To this end in Section 3, two engines have performance data and
all pertinent dimensions given (fully described). In Section 4 automotive

scale engines, for which only some information is available, are presented.

Section 5 is the heart of the report. All design methods are reviewed. A

full list of references on Stirling engines to April 1980 is given in

Section 7. Sections 8 and 9 are personal and corporate author indices to

the references which are arranged according to year of publication. Section

10 is a directory of people and companies active in Stirling engines.

Appendix A gives all the property values for the materials most commonly
used in Stirling engine design. The units employed are international units

because of the worldwide character of Stirling engine development. Appendix B
gives the nomenclature for the body of the report. The nomenclature was

changed from the first edition to fit almost all computers. Appendicies C, D
and E contain three original computer programs. Appendix F presents a discus-

sion of non-automotive present and future applications of Stirling engines.

L

I0
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3. FULLY DESCRIBED STIRLING ENGINES

Definition of Tenll "Ful_ly Described"

Fully described does not mean that there is a complete set of prints and
assembly instruction in hand so that an engine can be built just from this

information. However, it is a lot more than is usually available which is power
output and efficiency at a particular speed. Sometimes the displacement of the

power piston and the operating pressure and the gas used in the engine are also

given. What is meant by "Fully Described" is that enough is revealed so that the

dimensions and operating conditions that the calculation procedure needs for

input can be supplied. Also required is at least the reliably measured power
output and efficiency for a number of points. If experimental n_easuren_ents are

not available, then calculated power output and efficiency are acceptable if

they are done by an experimentally validated method. It is not necessary that
this method be available for examination.

Two engines are presently well enough known in the open literature and of
general interest to be "fully described." These are:

l) The General Motors GPU-3

2) The General Motors 4L23

All the necessary infonllation for each engir_e will now be given.

3.1 The GPU-3 Engine

General Motors Research Corporation built the Ground Power Unit #3 (GPU-3)

as a culmination of a program lasting from !960 to 1966 with the U.S. Ari1_.

Although the program met its goals, quantity production was not authorized. Two

of the last model GPU-3's were preserved and have now been tested by NASA-Lewis.

One of the GPU-3's as delivered to the An_ is shown in Figure 3-I.

3.1.1 Engine Dimensions

Figure 92 shows a cross section of the entire engine showing how the parts

all fit together. The measurements for this engine (78 ad, pages 45-51; 78 o)

have been superceded by later information (79 a). The following tables and figures

are from this latter source. Table 3-I gives the GPU-3 engine dimensions that

are needed to input the computer program. Since dead volume is not only in the

heater and cooler tubes and in the regenerator matrix, but is also in many odd
places throughout the engine, the engine was very carefully measured and the

dead volumes added up (see Table 3-2.) The total volume inside the engine was

also measured accurately by the volume displacement method. By this method
Table 3-2 shows an internal volume of 236 cc. Measurements accounted for

232.3 cc. In addition to the information given in Table 3-i and 3-2, more

info_m_ation is needed to calculate heat conduction. This is given in
Figure 3-3.
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Figure 3-I. The General Motors GPLI-3-2 Stirling Electric Ground Power klnit
for Near Silent Oper,ltion (ref. 68 p.) Picture courtesy General

Motors res_a:,'ch.

Figure 3-4 defines tilegeometric relationship between piston position and

crankshaft angle, which occurs in a rhombic drive machine.

Besides engine dimensions, a fully described engine has information avail-

able on engine perforllk_nce. Tile original performance data was obtained from

NASA-Lewis by private conmlunication (78 q) to meet the operating point published

in the first edition (78 ad, page 47.) Table 3-3 shows the measured perfov_llance

for these eight points. In addition, NASA-Lewis did some additional tests which

were compared with t:heNASA-Lewis computation method. Tabular

.... •.... .,...



¢,_>.

E¢,,I-I

...in,.'
"_0
ZO

O0

E

¢...
°r-

e-

l

q-
o

o ..-._
or,.-"_

u

o

oJ
!

(M

°r,-.

i

!
g

• i



Table 3-1 GPU-3-2 Engine Dimensions

and Parameters (79 a)

Cyllnder bore at llner, cm (in.) ............... 6.99 (2.751)
Cyli_er bore above liner,* cm (in.) ............. 7.01 (2.76)

Cooler
Tube l_gCh, cm (in.) ................... 4.61 (1.813)

Heat transfer length, cm (in.) ............... 3.53 (1.399)
Tube inside diameter, as (in.) .............. 0.108 (0.0625)

Tube outside diameter, cm (in.) ............. 0.159 (0.0625)

Humber of tubes per cyllnder

(or number of tubes per regenerator) ............ 312 (39)

Heater
Hean tube length, cm (in.) ................ 24.53 (9.658)

Beat transfer length, cm (in.) ............... 15.54 (6.12)

Cylinder tube, cm (in.) ................. 11.64 (4.583)

Regenerator tube, cm (in.) ................ 12.89 (5.075)

Tube inside diameter, cm (in.) .............. 0.302 (0.119)

Tube outside diameter, cm (in.) .............. 0.483 (0.19)

Number of tubes per cylinder

(or n._nber of tubes per regenerator) ............. 40 (5)

Cold end connectln S ducts
Length, cm (in.) ..................... 1.39 (0.625)
Duct inside diameter, cm (in.) .............. 0.597 (0.235)

8
Number of ducts per cylinder .....................

Cooler end cap, an 3 (in 3) ................ 0.279 (0.0170)

Regenerators
Length (inside), cm (in.) ................. 2.26 (0.89)

Dim_eter (inside), cm (in.) ................ 2.26 (0.89)
8

1_omber per cylinder .........................
Hater/el .................. Stainless steel wire cloth

Number of vires, per c_ (per in.) ........... 79x79 (200X200)
Wire diameter, cm (in.) ................. 0.004 (0.0016)

308
Number of layers ...................... 30.3
Filler factor, percent ......................

Angle of rotation between adjacent screens, deg ........... 5

_r/ve

Connecting rod length, cm (in.) .............. 4.60 (1.810)
Crank - radius, cm (in.) ................. 1.38 (0.543)

Eccentricity, cm (in.) .................. 2.08 (0.820)

Nlscellameoo_
Displacer rod diameter, cm (in.) ............. 0.952 (0.375)
Pisto_ rod dlameter, cm (in.) ............... 2.22 (0.875)

Displacer diameter, em (in.) ................ 6.96 (2.760)

Displacer wall thickness, cm (in.) ............ 0.159 (0.0625)

Displacer stroke, cm (in.) ................. 3.12 (1.23)

Expansion space clearance, cm (in.) ........... O.163 (0.064)

Compression space clearance, an (in.) .......... 0.030 (0.012)
_ffer space maxie_ volu_e, cm3 (In 3) ........... 521 (31.78)

Total vorking space minimum volume, cm (in) ...... 233.5 (16.25)

*Top of displacer seal is at top of llner at displacer TDC.

Table 3-2 GPU-3 Stirling Engine Dead

Volumes (79 a)

Volumes are given in cu cm (cu in.)

I. Expansion space clearance volume

Displacer clearance (around displacer) 3.34 (0.204)
Clearance volume above displacer 7.41 (0.452)

Volume from end of heater tubes into cylinder 1.74 (0.106)
Total 12.5 (0.762)

II. Heater dead volume

Insulated portion of heater tubes next to 9.68 (0.391)

expansion space
Heated portion of heater tubes 47.46 (2.896)

Insulated portion of beater tubes next to 13.29 (0.811)

regenerator

Additional volume in four heater tubes used for 2.74 (0.167)
instrumentation

Volume in header 7.67 (0.468)
Total 80.8 (4.933)

III. Regenerator dead volume

Entrance rolL, me into regenerators 7.36 (0.449)

Volume within matrix and retaining disks 53.4 (3.258)

Volume between regenerators and coolers 2.59 (0.158)
Volume in snap ring grooves at end of coolers 2.18 (0.133)

Total 65.5 (3.998)

IV. Cooler dead volume

Volume tn cooler tubes 13.13 (0.801)

V. Compression in space clearance vol_e

Exit volume from cooler 3.92 (0.239)

Volume in cooler end caps 2.77 (0.169)
Volume In cold end connecting ducts 3.56 (0.217)

Power piston clearance (around power piston) 7.29 (0.645)
Clearance volum_ between displacer and power piston 1.14 (0.070)

Volume at connections to cooler end caps 2.33 (0.142)

Volume in piston "notches" 0.06 (0.004)
Volume around rod in bottom of displacer 0.II (0.007)

Total 21.18 (1.293)

Total dead volume 193.15 (11.787)
Hinir_ live volume 39.18 (2.391)

Calculated mininmm total working space

Volume 232.3 (14.178)

Measured value of minimum total working space volume 232.5 (14.25)

(by volume displacement)

Change in vorking space volume due to minor engine 2.5 (0.15)

modification
.36.0 (14.60)
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space

r Heater

.._L
0._08(0.20)

--_, r Regenerator

1.016(0.40)_/_,1.194(0.4/)
Endplate
O.07938cm
(1132in.)thick-_

Cooling
water Cooler

Compression
space

Figure 3-3.
Schematic Showing Dimensions of GPU-3 Needed for Calculating Heat
Conduction. (Regenerator, housing, cylinder, and displacer are

310 stainless steel. Dimensions are in cm (in.).)

information as in Table 3-3 has not been released Tables 3-4 to 3-_ give

approximate and.incomplete information by reading'the graphs (79 a If

efficiency ibut Is determlned bY reaai_ _ _..... _g__heLbra_ power.by th_heat input, s glven, it isnotcalculated by dividin t ). , brake

- ": _ _=w-=_: yv_pn. _Ince tnls work was
done, a complete test report was published (79 bl) which includes 7 microfiche
sheets of all the test data. The reader is referred to this report (79 bl) formore exact information.

NASA-Lewis also determined mechanical losses due to seal and bearing

friction and similar effects, Figure 3-4 shows these losses for hydrogen work-
ing gas and Figure 3-6 shows the same losses for helium.

Percival (74 bc) gives two sets of curves for the power output and effici-

ency for the "best" GPU-3 engine tested in late 1969 (see Figures 3.-7and 3-8).
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/- Expansion space

Displacer

Rod length, L _,

Eccentricity, e 1

Crank angle

Crank radius -'"

Figure 3-4

.- Compression space

• P Power piston

Buffer space

....- Power-piston yoke

I

I t
I

..-- Projection of

rod length on

y-axis, Ly

.. -- Position of power-

i- piston yoke, Y2

',-y

Position of

displacer

yoke,Yl

I

i_
l

_- Displacer yoke

Schematic Showing Geometric Relations Between Piston
Positions and Crankshaft Angle

Table 3-3 Measured Performance of the GPU-3 Engine Under Test at NASA-Lewis

Heas_e=en_s I_ork_n_ FluLd* H2 R2 H2 , H_ Ha
Engtne Speed, Ha* 2_.9 33.12 _].75 50.1B 50.0
COOLL_K _aCer _lew,&/sec. _ [J6 13_ ' [_] 13} 13A
Cool_n_ Wa=er _I, C 5.B 7.0 8.2 9.6 19.3
Cooling _a:er _nle:, K* 281.1 2S;.1 281.1 :_1,1 281.6
Mean Gas Press, _a_ 2.179 2.179 2.165 2.213 _.27_
Brake Power, wa:=s 1036 1291 1560 171_ 251_

Average Temperatures, K
Hea:er :=be* 991.7 997.8 1008.9 1020 I0_8.3

£xpans£on Space wall 876.1 888,9 905.6 920 929._
Gas be:veen hea=er 891.7 897.8 91;.$ 931.6 950.6

a_d exp, space
Ga_ _ldwa% =hru hea_er 9_7.8 9}2.2 961.7 970 97_.7
Gas be=wesn cooler the

compression space 320.6 325,6 j3;.L 33_.? 378.3
Brake Zf_LcLency _ 23.9 2_.7 :=._ 2-.3 15.8

I

He Be ae
2_._0 _9.97 2_.9_
132 126 L_L
9.6 11.9 5.9
28L.L 280.0 280.0
_.260 2.820 2.868
1853 i_08 1208

1023.9 1026.7 1007.8
886.L 911.1 870.6
912.8 917.2 887.8

961.L 96_.0 950.8

3_8.g 360.0 33}.6
25.9 18.3 2},7

*used in CALCULATIONS.
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_--------__7 --_ ....

CO

Pt

3

4

5

6

7

8

9

10

11

12

13

Mean Press

MPa I PSIa

1.38 200

1.38 200

1.38 200

1.38 200

].38 200

1.38 200

2.76 400

2.76 400

2.76 400

2.76 400

2.76 400

2.76 400

4.14 600

• i

Table 3-4 Measurements of GPU-3 Engine Performance
by NASA-Lewis - Part I (79a)

Hydrogen Gas, 704C (1300F) Heater Gas Temperature,
15C (59F) InleL Cooling Water Temperature

Engine SP

,Z I RPM

16.67 1000

25 1500

33.33 2000

41.67 2500

50 3000

58.33 3500

16.67 1000

25 1500

33.33 2000

41.67 2500

50 3000

58.33 3500

58.33 3500

Ind. Power

KW l HP

1.57

2.05

2.57

3.13

3.47

3.65

2.1

2.75

3.45

4.2

4.65

4.90

Brake Power

KW I liMP
0.39 0.52

O. 58 O. 78

0.71 0.55

O.78 I.05

0.82 ] .lO

O. 56 O. 75

1.13 1.52

1.49 2.00

1.95 2.62

2.39 3.20

2.61 3.50

2.70 3.62

4.47 6.0

Heat Input*

KW HP

2.46

3.06

3.69

3.97

4.51

4.83

4.47

5.64

7.08

8.58

9.88

11.00

16.18

3.30

4.]0

4.95

5.32

6.05

6.48

6.0

7.57

9.50

11.50

13.25

14.75

21.70

Brake Eff.*

%

15.6

17.5

18.1

19.1

17.2

ll.O

24.4

25.7

27.2

27.0

25.7

23.9

27.0

7J _

._L-.

*Based upon energy balance at cold end.
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Table 3-5 Measurements of GPU-3 Engine Performance

by NASA-Lewis - Part II (79a)

Hydrogen Gas, 15C (59F) Cooling Water Inlet Temperature,
2.76 MPa (400 psia) Mean Pressure

Hea_er Gas _mp.
"C I

704

704

704

704

704

704

649

649

649

649

649

649

593

593

593

593

593

593

1300

1300

1300

1300

1300

1300

1200

1200

1200

1200

1200

1200

II00

llO0

llO0

llO0

II00

llO0

Engine Speed

HZ I RPM

16.67 lO00

25 1500

33.33 2000

41.67 2500

50 3000

58.33 3500

16.67 lO00

25 1500

33.33 2000

41.67 2500

50 3000

58.33 3500

16.67 lO00

25 1500

33.33 2000

41.67 2500

50 3000

58.33 3500

. i i

Brake Power

KW

1.13

1.49

1.95

2.35

2.61

2.70

0.89

1.34

1.85

2.24

2.42

2.44

0.86

].36

1.72

2.07

2.13

2.09

1 HP

1.52

2.00

2.62

3.15

3.50

3.62

1.20

1.80

2.48

3.O0

3.25

3.27

1.15

1.82

2.30

2.77

2.85

2.80

C)_ C__

Z."
mm_...

c i)T

"_.
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Table 3-6 Measurements of GPU-3 Engine Performance

by NASA-Lewis - Part III (79a)

Helium Gas, 704C (130OF) Nominal Heater Gas Temperature

13C (56F) Cooling Water Inlet Temperature

Mean Press

MPa I Psia

2.76

2.76

2.76

2.76

2.76

2.76

1.38

1.38

1.38

1.38

4.14

4.14

4.14

4.]4

5.52

5.52

400

_00

400

400

400

400

200

200

200

200

600

600

600

600

800

800

Engine Speed
HZ RPM

16.67 I000

25 1500

33.33 2000

41.67 2500

50 3000

58.33 3500

16.67 1000

25 1500

33.33 2000

41.67 2500

33.33 2000

41.67 2500

50 3000

58.33 3500

50 3000

58.33 3500

Ind. Power

KW I HP

l. 34

1.83

2.15

2.42

2.50

2.10

1.8

2.45

2.88

3.25

3.35

2.82

Brake Power

KW HP

0.88 1.18

I.21 I.62

1.40 1.88

].53 2.05

1.42 1.90

0.89 I.20

O.25 O.34

O.26 O.35

O.37 O.50

0.15 0.20

2.35 3.15

2.65 3.55

2.55 3.42

2.01 2.70

3.77 5.05

3.39 4.55

O0
"n:_

r"- : ,'I
L_
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Table 3-7 Measurements of GPU-3 Engine Performance
by NASA-Lewis - Part IV (79a)

Helium Gas, 395C (]IOOF) Nominal Heater Gas Temperature
13C (56F) Cooling Water Inlet Temperature

Mean Press

MPa I PSIa

2.76 400

2.76 400

2.76 400

2.76 400

2.76 4O0

2.76 400

5.52 800

5.52 800

5.52 800

5.52 800

Engine Speed

HZ ! RPM16.67 1000
!

25 1500

33.33 2000

41.67 2_00

50 3000

58.33 3500

33.33 2000

41.67 2500

50 3000

58.33 3500

Brake Power

KW I HP

0.69 0.93

0.93 1.25

1.01 1.35

0.94 1.26

0.70 0.94

0.27 0.36

2.59 3.47

2.96 3.97

2.73 3.66

1.80 2.42

oo

I _

C'I _
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Table 3-8 Measurements of GPU-3 Engin_ Performance
by NASA-Lewis - Part V (79a)

Helium Gas, 649C (120OF) Nominal Heater Gas Temperature,
13C (56F) Cooling Water Inlet Temperature

1

?

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Mean Pressure Engine Speed

HZ I RPM

I000

1500

2000

2500

3000

3500

1500

2000

2500

3000

3500

2500

3000

3500

3000

3500

16.67

25

33.33

41.67

50

58.33

25

33.33

41.67

50

58.33

41.67

50

58.33

50

58.33

MPa I PSla

2.76 400

2.76 400

2.76 400

2.76 400

2.76 400

2.76 400

4.14 600

4.14 600

4.14 600

4.14 600

4.14 600

5.52 800

5.52 8O0

5.52 80O

6.9 I000

6.9 1000

Brake Power

KW I HP

0.82

1.12

1.21

1.21

I.04

0.56

1.79

2.20

2.42

2.35

1.73

3.28

3.28

2.76

3.93

3.37

1.I0

1.50

1.62

1.62

1.40

0.75

2.4O

2.95

3.25

3.15

2.32

4.40

4.40

3.70

5.27

4.52

Heat Input*
KW

3.95

5.41

6.64

7.64

8.95

9.88

7.23

9.17

11.33

12.83

14.32

14.69

17.45

19.18

20.88

23.15

I HP

5.3

7.25

8.9

10.25

12.00

13.25

9.70

12.30

15.20

17.20

]9.20

]9.70

23.40

25.72

28.0

31.05

*Based upon energy balance at cold end.

Brake Eff.*

%

20.5

20.7

18.0

15.2

II .8

5.4

24.8

23.9

21.3

18.2

12.0

22.5

18.8

14.2

18.7

14.2

O0

C _

mr_

...................... _ ................ ill' _',------
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Figure 3-5 Mechanical Loss As a Function

of Engine Speed for Hydrogen Working Gas

(Determined from Experimental Heat Balance)

Figure 3-6 Mechanical Loss As a Function

of Engine Speed for Helium Working Gas
(Determined from experimental heat balance.)
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Later in the General Motors papers on Stirling engines released in 1978, a graph

giving the calculated performance for the GPU-3 engine was published (7B bh,
section 2.116, page 6, March 1970). (See Figure 3-9.) Furnace and mechanical

efficiency are stated so the indicated power and efficiency calculated by most

design methods can be compared with the unpublished method used by General

Motors. Examinations show that Figures 3-7 and 3-8 agree well and are probably

different plots of the same experimental measurements. Figure 3-9 agrees fairly

well with measurement near the design point of 3000 rpm 1000 psia.

G.M. Calculation

Figure 3-9

G.M. Measurement

Figure 3-8

Output BHP 11.6 11

Overall Efficiency 29.8 26

However, at 3000 rpm and 250 psi, the calculated power is 3.3 hp, but the

measured is only 1.5 hp.

The GPU-3 engine now has considerable data on it. It is not completely

understood but the engine has been thoroughly measured and carefully run. A

full test report on this is available (79 bl).

3.2 The 4L23 Engine

According to Percival (74 bc), design for a four-cylinder double-acting

engine was started in 1968. Eventually, the goal was to demonstrate an advanced
Stirling engine of about 150 hp. The engine became known as

the 4L23 because of the piston displacement of 23 cubic inches and having four

cylinders in a line. A single crankshaft was used with cross heads and only
one piston per cylinder was needed. Figure 3-I0 shows a cross section through

one of these cylinders. In this Rinia, or Siemens, arrangement, the gas leaves

the hot space and goes through a series of tubes arranged in a circle similar to

the way the GPU-3 engine is designed. The tubes go from the hot space up to a

manifold at the top and then other tubes come down and enter one of six

regenerator cans grouped around each engine cylinder. Figure 3-II shows a top

view of this engine showing the four cylinders and the 24 regenerator cans that

were used. Below each porous regenerator is the tubular gas cooler. As in the

GPU-3, the regenerator and gas cooler were made as a unit and slipped into place.

From the bottom of the gas cooler the gas is not inducted into the same cylinder
as in the GPU-3, but into another cylinder in the line. Figure 3-II and 3-12

show the arrangement of these conducting ducts. Figure 3-II shows how the cold

space of cylinder l is connected to the gas coolers of cylinder 3. The cold

space of cylinder 3 is connected to the gas coolers of cylinder 4. The cold

space of cylinder 4 is connected to the gas coolers of cylinder 2; and finally,

the cold space of cylinder 2 is connected to the gas coolers of cylinder 1 to

complete the circuit. This particular arrangement is done for the purpose of

balancing the engine. In addition to this "firing order" arrangement and the
counter-weights shown in Figure 3-.10, engine 4L23 had two balance shafts on

either side of the main crankshaft which has weights on them that rotated in

such a way as to attain essentially perfect balance. This made the crankcase
wider at the bottom. Also from the drawings sent to NASA-Lewis from General

Motors (1978 dk) the crankcase was much less compact than that shown in Figure

3-I0. Also the cqrregated metal air preheater sketched in Figure 3-10 turned

2?



OF pOOR

.L
=....a

D

1

\
\

Figure 3-10. Cross Section of Single Crank In-Line Engine.



"I

• ,,L,_ IS
OF POOR QUALITY

CONN(CTINGDUCTS

Figure 3-11.

t

Arrangement of Regenerators and Hold Down Studs for In-Line

Crankcase.

29



I - E - 17- E-I . _3Ci_10 9N I_11_-I
II

gl D/X7 __77OO D



out to be a shell and tube heat exchanger about three times as large. No

report quality cross sections or artists' renderings or pictures of hardware

were ever released on this engine. Nevertheless this engine is important

today because it is of a very modern design and has an adequate description

as to dimensions and calculated performance. It is very similar to the P-40

or P-75 engine that United Stirling is now building and testing. In order to
provide for future engine upgrading, the combustion system and crankcase,

crankshaft and bearings were designed to accept 3000 psi mean pressure. The

4L23 was General Motors Research's first computer design (optimized engine.)

The 4L23 was the first engine with the sealed piston. In other engines a

small capillary tube allowed the inside of the piston to be pressurized at the
mean pressure of the engine working gas. This was done in order to minimize

the inventory of hydrogen gas and also to reduce heat leak by having air instead
of hydrogen in the piston dome. The 4L23 was optimized for the use of Met Net

regenerator material which was found by General Motors to be considerably less

expensive to produce than the woven wire regenerator material which had been used
up until that time.

Table 3-9 gives all the engine dimensions necessary to calculate the power

output and efficiency of the 4L23. Most of these numbers come from GMR-2690

section 2.115 (78 bh) report dated 19 January 1970. Some come from additional

drawings sent to NASA-Lewis from General Motors Research (78 dk). The list

given by Martini (79 ad) has been revised somewhat. The final list is given
in Table 3-9.

3.2.2 Ep_ine Performance

Insufficient data is given in the General Motors reports to calculate

static heat loss through th_ engine. Second order theory indicates that if

the engine heat inputs are plotted against frequency the extrapolation to zero

frequency should give the static heat loss. This process was done for the
datagivenby Diepenhorst (see Figures 3-13 to 3-15.) It was found that the

heat inputs were exactly proportional to frequency, but that the zero intercept
was not consistent (see Figure 3-16.) Since the heat input was so perfectly

proportional to frequency of operation, it was a shock that the zero intercepts
did not follow any particular pattern. One would expect that the zero inter-

cepts for hot tube temperature of 1400 F would be always higher than those for
1200 F, which would always be higher than those for I000 F. There is also no

reason for a dependence on average pressure because metal thermal conductivity

is not affected by this, and gas thermal conductivity is almost not affected.
This problem is only discussed in this section because there should be some

information given from which the static thermal conductivity can be calculated.
Table 3-I0 gives the information needed to calculate static thermal conduc-

tivity. The engine cylinder and the regenerator cases are tapered to have a

smaller wall thickness at the cold end. However, at this level of detail only

an average wall thickness and an average thermal conductivity for the entire
wall is desired.

Percival gives a somewhat different calculated performance for the 4L23

engine (see Figure 3-17.) Figure 3-15 and Figure 3-1l have the same operating

conditions and engine specifications, but the power output and efficienc X ale
slightly different. Figure 3-17 quotes 25 GPM cooling water flow wnicn is Tor
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Table 3-9 - Specifications for the General Motors 4L23 Stirling Engine Type:

4 cylinder, single crank drive with double acting pistons

Working Fluid:

Design Speed:

Design Pressure:
Cylinders per engine:
Bore:

Stroke:

Displacement (per cyl):
Diameter of roll sock

seal

Piston end clearance

Cooler (per cyl.)

Tube Length
Heat Transfer Length
Tube I. D.

Tube O. D.

Number of Tubes

Water Flow

Water Inlet Temp.

Heater (per cyl.)

Tube Length

Heat Transfer Length
Tube I.D.

Tube O.D.

Number of Tubes

Inside Wall Temp.

Hydrogen
2000 RPM

1500 psia
4

lO.16 cm (4.0 in.)

4.65 cm (I.83 in.)

377 cu. cm (23 c. in.)

4.06 cm (I.6 in.)

0.0406 cm. (0.016 in.)

12.9 cm (5.08 in.)

12.02 cm (4.73 in.)

.I15 cm (0.045 in.)

.167 cm (0.065 in.)

312

25 GPM

135OF

41.8 cm (16.46 in.)

25.58 c_ (lO.18 in.)

.472 cm (0.18 in.)

.640 cm (0.25 in.)

36
1400°F

Cold End Connecting Ducts (per cyl.)

Length 71 cm (27.95 in.)
I.D. .76 cm (0.30 in.)

Number 6

Isothermal Volume 5 percent

Adiabatic Volume 95 percent

Regenerators (per cyl.)

Length
Diameter

Number

Material

Filler Factor
Wire Diameter

Drive

Connecting Rod Length
Crank Radius

Cooling Water
Flow

Inlet Temperature

Mechanical Efficiency

For Bare Engine

Furnace Efficiency

Burner + air preheater

Hot Cap

Length

Gap

Fhase Angle

Velocity Heads due to
Entrance and Exit and Bends

Heater

Cooler

Connecting T.

2.5 cm (0.98 in.)

3.5 cm (I.38 in.)
6

Met Net .05-.20

20 percent

.00432 cm (.0017 in.)

13.65 cm (5.375 in.)

2.325 cm (0.915 in.)

25 GPM/cyl. @2000 RPM
135OF

90 percent

80 percent

6.40 cm (2.52 in.)

0.0406 cm (0.016 in.)
900

oo
-n:Ii

4.4 _
15 o_,
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Table 3-I0. 4L23 Engine Dimension for the Purpose of Calculating Static
Heat Conduction

Engine Cylinder

OD = _12.7 cm (5 in.)
ID = ~10.2 cm (4 in.)

Length = 22.6 cm (8.9 in.)

Number per engine = 4

Hot Cap.

OD =

IO =

AT Length =
Number of Radiation

Shields

lO.211 cm (4.020 in.)

9.45 cm (3.72 in.)

I0.03 cm (3.95 in.)

-- 3

Regenerator

Number per cylinder = 6
Case Length (AT) = 2.79 cm (l.l in.)

Case ID = 3.5 cm (I.38 in.)

Case OD (avg.) = 4.32 cm (I.7 in.)

Matrix = Met Net .05 - .20

Thermal Conductivity of Matrix = 0.017 w/cmC*

*78 bm, Section 6.006, page 7.

each cylinder. Figure 3-16 quotes 100 GPM cooling water flow which is for

all 4 cylinders and is proportional to speed.

The same data given in Figures 3-13 to 3-15 are replotted in the form of

"muschel" diagrams in Figures 3-18 to 3-20. These are included because this is

the common way engines are described today.
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4. PARTIALLY DESCRIBED STIRLING ENGINES
(_. " 't_ .,L,,_.I}(

In this section will be given as much information as available on complete well-

engineered engines which have some information on displacement, operating speed,

operating temperatures, power and efficiency, but not enough data so that they
can be classified as fully described engines. Information given elsewhere in

the Design Manual will be referred to instead of being duplicated. This infor-
mation will inform the readers what the state-of-the-art of Stirling engines is.

4.1 The Philips 1-98 Engine

About 30 Philips engines of this type have been built. They are the Rhombic

drive type with a single power piston and displacer. The power piston displace-
ment is 98 cm3, and there is one power piston. Thus the name 1-98. The design

of the heater, cooler and regenerator have not been disclosed. Probably there are

many different kinds of 1-98 engines depending upon the intended use. Michels

(76 e) has calculated the performance of the 1-98 engine for a variety of condi-

tions. In each condition the heat exchangers of the engine are optimized for

the best efficiency at each power point. Michels showed that for these optimized

engines the indicated efficiency depends upon the heater temperature and cooler
temperature and not upon the working gas used. Figure 4-I shows this curve

correctly labeled. Another way of describing the performance of the 1-98 engine
is to relate the indicated efficiency to the Carnot efficiency for the particular

heater and cooler temperature employed. Table 4-I gives such information for

the 1-98 engine. Table 4-2 gives similar computed information for the brake

(shaft) efficiencies for the 1-98 Rhombic drive engine. These are correlated

in Figure 4-2 in a way that might be applicable to other.well-designed Stirling

0.6

0.5

0.4

r_0.3

0,2

0.1

0.0
0

!

Tc = O°C

! I

TC : 100°C

I

200 400 600 800 1000

T °C--_
H

Figure 4-1. Indicated Efficiencies for Philips 1-98 Engine Vs. Heate_ Temperature

TH at Two Different Cooler Temperatures Tc. E_gine Displacement 98 cm_.
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Table 4-I
0,. L'I" .... ' +'J

Indicated Efficiencies of a
1-98 Rhombic Drive Philips Engine

(Reference 76 e)

Working Heater
Fluid Temp. C

Cool er Indi cated

Temp. C Power at
Maximum

Efficiency
KiIowatts

H2 850 I00 8

H2 400 I00 1

H2 250 I00 .35
He 850 I00 6

He 400 lO0 l

He 250 lO0 .18

N2 850 lO0 1.5

N2 400 lO0 .35

N2 250 lO0 Negative

H2 850 0 lO

H2 400 0 2.8

H2 250 0 l

He 850 0 8

He 400 0 2

He 250 0 .7

N2 850 O 2

N2 400 0 .48

N2 250 0 .18

Indicated

Efficiency
%

50

32

18

50

30

17

49

31

_m

57

45

34

58

42

32

55

42

33

Percent of

Carnot

Efficiency

75

72

63

75

67

59

73

70

m_

75

76

71

77

71

67

73

71

69
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engines. Note that when the efficiency is related to the Carnot efficiency

for the temperatures over which the engine operates, this fraction of Carnot goes

from 65 ± 6 percent at 250 C heater temperature to 75 ± 2 percent at 800 C heater
temperature for the indicated efficiency. Lower numbers are shown for the brake

efficiency which shows that the mechanical efficiency for this machine is
generally about 80 percent (See Table 4-2).

4.2 Miscellaneous Engines

The size, weight, power and efficiency for a number of other engines mentioned

in the literature are presented in Tables 4-3 and 4-4. It should be emphasized

that the powers given are the maximum efficiency operating point, not the maximum

power operating point. Note thatthe brake efficiencies range from 46 to 69
percent of Carnot.

Finegold and Vanderbrug (77 ae) used the data from the Philips 4-215 engine to

conclude that the maximum brake efficiency is 52 percent of the Carnot efficiency.

This factor is based upon 1975 data. Improvements have been made since then.

Net brake efficiency--the information presented in Tables 4-3 and 4-4 is for

engines without auxiliaries. In Table 4-5 the performance and efficiencies are

given for the engine powering all auxiliaries needed to have the engine stand
alone. This includes cooling fan, the blower, the atomizer, the fuel burner and

the water pump for the radiator. Table 4-5 shows that the maximum net brake

efficiency is 38 to 65 percent of Carnot.

4.3 .Early Philips Air Engines

The early antique Stirling engines, which were called air engines, were very

ponderous, operated at a slow speed and were very heavy for the amount of power

that they produced. They were operated at or near l atm pressure. In the late

forties and early fifties, Philips developed a high speed air engine which was

very much better than the old machines, but still was not competitive for the

times. Philips never published any information on their early air engines.

However, quite a number of these early machines were made and they were submit-

ted for evaluation by at least one external laboratory. Even though they were

not considered by Philips to be competitive, in today's world where the multi-

fuel capability of the Stirling is much more keenly appreciated, the simplicity,

the reasonable size for small scale stationary power using solid fuel and the

reasonable efficiency of these early Philips air engines are attractive. The
best documented account of one of these early air engines is given by Walker,
Ward and Slowley (79 ao).

In the early Philips program, development of Stirling engines was concentrated

on small engines of 1KW or less. One machine was sufficiently developed to be

made in quantities of several hundred. It was never put into regular production,

however, and in the late 1950's, Philips disposed of the entire stock, largely

to universities and technical institutes throughout Europe. A cross section
of this engine is shown in Figure 4-3. Scaling of this drawing shows that the

power piston has a diameter of about 4.8 cm and a _troke of about 3 cm, giving

a displacement for the power piston of about 50 cm_. Twin connecting rods run
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Engine Working

Table 4-3

Maximum Brake Efficiencies for

Various Stirling Engines

(Reference 1975 t)

Mean Heater Cooler
Dimension EngineDesignation

Manufacturer

Fluid Pressure

MPa

psia

Maximum Efficiency

Temp Temp Operatin 9 Point

C C KW RPM Brake* % of

F F BHP Eff. % Carnot

cm

wt, kg No. of cylinders

Prototype
United

Stirling

4-235

Prototype

Phi Iips

40 NP

Prototype

Philips

Anal. Ph. I

United Stirling

4-400

MAN-MWM

H2

He

H2

14.5 691 71 35

2100 1275 167 2_ 2000 30 47

22.1

3200
683 43 175
1260 108" 130 1800 31 46

14.2 649 16 23
2058" 120_ 60 17 725 38 55

H2 14.5 719 71 76
1325 160 57 1200 35 54

10.8 633 41 88
1570 1170" I0---5 6--5 1000 32 49

u e

125 x 52 x 110

2 Piston

4

557 4

113 x 82 x 95

651

153 x 70 x 131

Piston-Displ.

Piston-Disp1.
4

2 Piston

8

Piston-Displ.

*without auxiliaries
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Table 4-4

Maximum Brake Efficiencies for

Various Stirling Engines

Engine Working
Designation Flutd

Hanufacturer

GPU-3 H2General

Motors H2Research

(Ref. 69 f)

H2

H2

Mean Heater Cooler

Pressure Temp Temp

MPa C C KW

psl"-- F F B-FFF

6.9 816 10 8.1

4.1 816 10 6.0
6-56 -8-

2.8 816 10 4.5

1.4 816 10 2.2
3

Maximum Efficiency

Operatin 9 Point

RPM Brake* % of

Eff. % Carnot

Dimensi on Engine

cm _Type

wt, kg No. of cylinders

2000 39 53

2500 38.5 52

3000 37 50

3400 32.5 49

Piston-Di spl.
28 x 29 x 27 I

Piston-Di spl.
28 x 29 x 27 I

Piston-Displ.
28 x 29 x 27 1

Piston-Di spl -
28 x 29 x 27 1

30-15 10.3
P"_lTps H2 150"---0

(Ref. 69 f) 8.3
H2

6.2
H2 90_

4.1
H2

2.1
H2 300

* without auxiliaries

816 I0 19.4

816 10 17.2
1TC6

816 10 14.9

816 10 11.2

816 10 6.0

1100 51 69

1200 50 68

1400 49 67

1450 48 65

1800 45 61

Rinia
44 x 43 x 86

O0
Rinia _n _a

44 x 43 x 86 _- "a
OZ

Ri nla o :_;or-
44 x 43 x 86

Rinia _ __

44 x 43 x 86 4 --r-r_
-4_.

Rinia
44 x 43 x 86



Engine Working Bean
Designation Flutd Pressure

Manufacturer MPa

psla

150 HP 10.3 816
General H2 150_ 1500

Motors 8.3 816

Research H2 1200 1500
(Ref. 69 f)

6.2 816
H2 90--'-0

4.1 816
H

2 60_

2.1 816
H2 _ 150---"0

Table 4-4 (continued)

Heater Cooler

Temp Temp

C C

F
KW

BHP

Maximum Efficiency Dimension Engine

Operating Point cm Type

RPM Brake % of wt, kg No. of cylinders

Eff. % Carnot

10 97

50 130

10 78
_ 1o---_

10 75
50 100

10 52
?-6

10 30
T6

Rin;a
1400 44 60 94 x 50 x 84 4

Rinia
1500 44 60 94 x 50 x 84 4

Rinia
1800 44 60 94 x 50 x 84 4

Rinia
2000 43 59 94 x 50 x 84 T

Rinia
2000 40 54 94 x 50 x 84 4

10-35
General Motors 6.9 760 24
Research H2 _000 _400

(Ref. 74 C)

451210

General Motors 10.3 650 33
Research for H2 1500 _ 9-0"

Na,vy (Ref. 74 c)

1-$1050

General Motors H2 9.9 688 38
E]ectro Motive 143---6 _ 10---0
Div. (Ref. 74 c)

1800 26.3 28
36 x 36 x 72

58* 1

750 35 52
188 x 102 x 193

2300** 4

91 x 70 x 165 ---
1200 28 30 1000"* ]

O0
-_o

CZ

_r-

c_

r-r._

_m
_ClJ}

_0

2W17A

General Motors H2 7.6Electro Moti ve 1100

Div. (Ref. 74 c)

*Bare engine with preheater.

593
1100

38 900 28.4 31 92 x 158 x 215 ---
10-0 -- 1700"* 2

** Without flywheel.
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Table 4-5

Maximum Net Brake Efficiencies for
Various Stirling Engines

Working Mean Heater Cooler Maximum Efficiency Dimension Engi ne
Designation

Manufacturer-

Flutd Pressure Temp Temp

MPa C C

psl-- F F
KW

BHP"

Operatin 9 Point

RPM Brake* % of

Eff. % Carnot

cm

wt, kg

Type
No. of cylinders

4-215
PfiTITps
(Ref. 75 t)

H2 19.6 705 80 561300 _ 7-5 1100 32 50
340

Rinia

Anal. Opt. Des.
Phi I _ps He
(Ref. 75 T)

22.1 -760 71 75
500 43 65 !49 x 131 x 67 Piston-Displ.

4

GPU-3

General Motors H2
(Ref. 75 t)

6.89 760

1oo--- 
83 ~5.2

1900 26.5 40
40 x 40 x 73

75
Piston-Di sp1.

I

P-LO

United
Stifling
__Ref. 77 b,j)

H2
15.2 721 52

1330 1250 35 52 Double Acting
Dual Crank

4

Free Piston

Free Displo

Model IV

_FI/Sunpower He

_Ref. 77 s)

TMG(D3)
karwe11 He
(Ref. 75 1)

5.0 594 23
ilOO

0.1 594 40
1101 ]-O_]F

960 25 38

0.0375 6000

cycles
per
min.

16.9 26.5
Oscillating

diaphragm:

sprung

displacer
1

* with auxiliaries

O0
-n_
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WATER COOLER

COMPRESSION SPACE

PISTON

Figure 4-3. Cross-section of Philips Type MP I002 C Stifling Cycle Air Engine.

from the power piston to the crank shaft. In between these rods a flexible con-

necting rod drives the displacer through a bell crank linkage to a connecting rod

radiating from thecrank at about 90° from the main power crank (See Figure

4-3). This bell crank also operates an air compressor needed to keep the engine

pumped up. Figure _4 shows the same engine installed in an electric power

generating package which was made in a self-contained unit designed for 200

W (e) output. This unit incorporated a gasoline or kerosene fuel tank, a cooling

fan, and engine controls by mean pressure. In the tests done by Walker, Ward

and Slowley at the University of Bath in Somerset, England, the engine was
removed from the frame of the generator set and was mounted on a test rig. The

engine was coupled to an electric swing-field dynomometer capable of acting as

a generator or as a motor. The combustion equipment was modified to allow the

use of liquified petroleum gas and air rather than the normal liquid kerosene

or gasoline as fuels. Provision was made for accurate measurement of the gas-

air consumption and engine shaft speed and brake power input or output of the

engine.

The principle modification of the engine was to substitute water cooling for

the original air cooling around the compression space of the cylinder. The
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temperature and flow rate of cooling water was measured. Chromel-alumel thermo-

couples were brazed to the engine cylinder head to measure the nominal cylinder

heater head temperature. In normal practice the air acting as a working fluid

is compressed by a small crank-driven air compressor before delivery to the

working space. For the tests reported here provision was made for the air pres-

sure to be supplied and controlled from laboratory air supplies.

In the motoring tests the working space was connected to a large tank thereby

increasing the internal dead volume of the engine by a large factor. Therefore,

during operation there was no substantial change in the pressure level of the

working fluid throughout the cycle. Therefore, the work absorbed by the engine
during these motoring tests was due to fluid friction and mechanical friction,

the thermodynamic work being made essentially neglible by virtue of the large

dead volume. Tests were run with this engine at 1200, 1400, 1600 and 1800 rpm.

At each speed the engine performance was observed with cylinder head tempera-

tures of 600, 700, 800 and 900 C with mean working space pressures of 4.14,
5.52, 6.90, 8.28, 9.66 and 12.41 bar. In the motoring tests measurements were

made at 800, lO00, 1200 and 1400 rpm. Mean working space pressures of l.O0,

5.25, 8.28, If.03 and 12.41 bar were made with the engine in all cases at

ambient temperature. The results of some engine power tests are shown in

Figures 4-5 and 4-6. The maximum power observed during these tests was approxi-

mately .48 KW. The specific fuel consumption was based upon the combustion of

"Calor-Gas" with a lower heating value of 46,500 KJ/KG. A specific fuel con-

sumption of 1Kg/KW-hr is equivalent to an efficiency of 7.75 percent. It was

claimed by the authors that at high cylinder head temperature, high working

space pressure and low operating speed, an efficiency of about lO percent was
obtained. This efficiency was obtained with no attempt to preheat the incoming

air with the hot exhaust gases. They felt that in many applications for small

engines, efficiency is rarely as important as size, weight, reliability or

capital costs.

The results of the motoring tests are given in Figure 4-7. This shows the motor-

ing power required to drive the engine as a function of operating pressure at

four different speeds. Figure 4-8 separates the data into mechanical friction

loss, which is taken to be that at 0 operating pressure, and gaseous pumping

power loss, which is seen to be proportional to gas pressure and only mildly

dependent upon engine speed. By separating the losses in this way much of the

seal drag which is dependent upon engine pressure is lumped with gaseous

pumping power. Since the flow friction of the gas is proportional to the engine

speed for laminar flow and to the engine speed squared for turbulent flow, much

of the so-called gaseous pumping power is seal drag.

Tests of an even earlier Philips air engine are reported by Schrader of the U. S.

Naval Experimenting Station (51 r). The engine is identified as a Philips
model I/4D external combustion engine, equipped as a portable generator set

rated at 124.5 W or more. The engine was operated as continuously as possible

for l,Ol5 hours The engine had a bore of 2.5" and a stroke of the power_piston
Of 1-7/32" and of the displacer 3/4". This gives a displacement of 98 cm _ for

the power piston (the same as the later Philips 1-98 engine.) An external

belt-operated air compressor was utilized. Sealing was with cast iron piston
rings. Average specific fuel consumption was 4.66 Ib/KW-hr (2.12Kg/KW-hr).

The fuel was lead-free gasoline and the crank case was oil lubricated. The

engine operated almost silently. A microphone installed 24 feet directly above
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the engine gave a rating of 58.9 db with the engine operating under load and
54.4 db with the engine off. The engine design was, as far as could be deter-

mined, similar to the one previously described in that the heat exchangers were

multi-finned pressure vessels with many fins on the outside of the pressure
vessel as well as on the inside. During the l,Ol5 hour endurance test the oil

was scheduled to be changed and was changed every 150 hours. Chrome-plated

piston rings were used for the l,O00 hour test. However, unplated rings had

been used for a 600-hour test earlier and were also in good shape at the end of

that period. Immediately prior to the pos_trial disassembly inspection, a

measurement of maximum power output was made. The heater head temperature was

increased to llSO F (nominal I050 to 1075) and the crank case pressure was

raised to I08 psi (nominal 85 to 88 psi). Under these conditions, the engine

developed 185W output as compared to the nominal 124.5 W rating. This was

considered to be proof of the excellent condition of the engine at the time of

the post-trial inspection. During the l,Ol5 hour test the engine had to be
secured (stopped) many times for minor problems. Problems detailed in Reference

51 r were heater head flameout, burner pressure cutout, air leaks, gasoline

tube breakage, compressor suction valve failure, compressor discharge valve
failure, crank case pressure regulator failure. These are all normal shake-

down problems that could be fairly well eliminated with experience. The

important thing to note is that the internal parts did not foul with decomposed

oil deposits. Possibly these deposits burned off because of the pressurized
air working fluid.
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4.4 The P75 Engine

United Stirling of Sweden (USS) plans to initiate limited production of
their 75 kilowatt P-75 engine by 1981-82. They plan to reach production of

15,000 engines per year by the late 1980's (79 i). Figure 4-9 shows this engine.
This engine has been installed in a light truck (78 aa). (See Figure 4-10.)
The installation has been successful.

4.5 The P40 Engine

USS is planning a group of related engines--the P40, a 40 kw four cylinder

double acting engine; the P75 (just mentioned), and the P150 which is a double

P75. The P40 is not now scheduled for serial production; however, production of

at least fiveis part of the DOE sponsored automobile engine programs administered
by NASA-Lewis. Figure 4-11 shows the first one of these engines. Figure 4-12

shows this engine as it was installed in an Opel (78 cu). It has been a success

as an initial demonstrator. Its drivability is good. It is quiet, but it shows

no advantage in fuel economy because the engine, transmission and vehicle were

not designed for one another (78 dt).

The second P40 engine has been tested by NASA-Lewis.

The third P40 is installed in a 1979 AMC Concord sedan. The sedan was

modified by AMC. Installation of the engine was done by USS. The fourth
P40 has been delivered to MTI for familiarization and evaluation. The fifth

P40 is a spare.

POWEF_

IkW)

TO

eO

4O

_0

FULLY EOUtPPED INCLUDING ALL AUXlt IARtES

SPECIF IC FU[[ CONSUMPTION iN G XWH

Figure 4-9. The Llnited Stirling P75 Engine.
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INSTALLATION IN VEHICLE

I

Figure 4-I0. The P75

Engine Installed in a

Light Truck.

Figure 4-11. The P40

Engine.

Figure 4-12. The P40

Engine Installed in an
Opel.
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5. REVIEW OF STIRLING ENGINE DESIGN METHODS

Other sections in this design manual describe what is going on in Stirling

engines today. This section outlines the mathematics behind the Stirling
engine process itself. Stirling engine cycle analysis will first be dis-

cussed. This subsection discusses what really goes on inside a Stirling

engine starting out with the most simple assumptions and then progressing to
more and more realistic assumptions. This subsection is the basis for the

subsequent three subsections that discuss first-order design methods, second-

order design methods and third-order design methods.

First-order design methods start with limited information and calculate power

output and efficiency for a particular size engine. Use of the first-order

method assumes that others have or will actually design the Stirling engine.

First-order analysis is for systems engineers who want to quickly get a

feeling for the capability of a Stirling engine.

Second-order design methods take all aspects of the Stirling engine into
account and are for those who intend to design a new Stirling engine. A

wide spectrum of methods falls under the heading of second-order analysis.
In second-order analysis it is assumed that a relatively simple Stirling

engine cycle analysis can be used to calculate the basic power output and

heat input. It further assumes that various power losses can be deducted

from the power output. These power losses are assumed to be calculable by

simple formulas and do not interact with other processes. It is further
assumed that the separate heat losses can be calculated by simple formula

and are addable to the basic heat input. It is further assumed that each

one of these heat losses is independent of the others and there is no
interaction.

Third-order design analysis is what is generally called nodal analysis. The

engine is simulated by dividing it up into a number of sections, called

nodes. Equations are written which express the conservation of heat, mass,
momentum for each node. These equations are programmed into a digital com-

puter and the engine is simulated starting with an arbitrary initial condition

and going until the cycle repeats with a desired degree of accuracy. For
those designers who are embarking on the original design of a Stirling engine,

the choice must be made between second- and third-order design methods.

Generally, as the complexity and therefore the cost of computation increases,
the accuracy and general applicability of the result should also increase.

However, the state of information on Stirling engine design is still highly

incomplete. One cannot draw a graph of computation costs versus accuracy of

result and place the different computation methods upon it.
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5.1 Stirling Engine Cycle Analysis
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In this subsection on cycle analysis the basic thermodynamics of a Stirling

engine will be explained and the effect of some necessary complications will

be assessed. The thermodynamic definition of a Stirling cycle is isothermal

compression and expansion and constant volume heating and cooling, I, 2, 3,
4, I in Figure 5-I.

The thermodynamic definition of an Ericsson cycle is isothermal compression

and expansion and constant pressure heating and cooling, I, 2', 3, 4', 1 in

Figure 5-1. This Ericsson cycle encompasses more area than the Stirling cycle

and therefore produces more work. However, the volumetric displacement is

larger, therefore, the engine is larger. There is a modern pumping engine
concept which approximates this cycle (73 p). The early machines built by

John Ericsson used valving to attain constant pressure heating and cooling
(59 c), thus the cycle name.

The thermodynamic definition of the Otto cycle is adiabatic compression and

expansion and constant volume heating and cooling, 1, 2", 3, 4", 1 in Figure

5-1. The reason this cycle is mentioned is that the variable volume spaces in

a Stirling engine are usually of such size and shape that their compression

and expansion is essentially adiabatic since little heat can be transferred

to the walls during the process of compression or expansion. An internal com-

bustion engine approximates the Otto cycle. In real Stirling machines, a

large portion of the gas is in the dead volume which is compressed and ex-

panded nearly isothermally so the loss of work per cycle is not as great as
shown.

LLJ

IJ.J

C_C

Figure 5-1.

\
\
\

T c

TOTAL VOLUME

Theoretical Stirling, Ericsson and Otto Cycles.

!
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In Section 5.1 discrete processes of compression, heating, expansion and

cooling will be considered first. Numerical examples will be used to make the

processes clearer. The section starts with the simplest case and proceeds

through some of the more complicated cases. In the later parts of Section 5.1

cycles will be considered where the discrete processes overlap as they do in

a real engine.

I

62

5.1.1 Stirling Cycle, Zero Dead Volume, Perfect Regeneration

The Stirling cycle is defined as a heat power cycle using isothermal compres-

sion and expansion and constant volume heating and cooling. Figure 5-2 shows

such a process. Specific numbers are being used to make the explanations
easier to follow and allow the reader to check to see if he is really getting

the idea. Let us take 100 cm_ of hydrogen at 10 MPa (~100 arm) and compress

it isothermally to 50 cm3. The path taken by the compression is easily

plotted because (P(N))(V(N)) is a constant. Thus, at 50 cm3 the pressure is
20 MPa (~200 atm). The area under this curve is the work required to com-

press the gas and it is also the heat output from the gas for _he cycle. If
the pressure is expressed in Pascals (Newton/sq. meter)(1 arm = IQs N/m 2) and
if the volume is expressed in m_, then the units of work are (N/m_)(m 3) =

N,m = Joules = watt seconds. For convenience, megapascals (MPa) and cm 3 will

be used to avoid very large and very small numbers.*

The equation of the line is

(P(N))(V(N)) = 100 x I0s Pa (100 x 10-6 m3) = 1000 Joules

= 10 MPa (100 cm 3) = 1000 Joules

The work increment is

1000
d(W(N)) = P(N)(d(V(N)) : _ d(V(N))

Integrating

w(z): 1ooo : IOOO n V(N)
V(1) (I)

 ooo
Thus

(50)W(1) : I000 In _ = -693.14 Joules

The answer is negative because work is being supplied.

gas law,

P(N)(V(N)) = M(R)(TC(N))

(5-I

( 5-2

Also by the perfect

*Note that the nomenclature is defined as it is introduced. A full list of

nomenclature is given in Appendix B.
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where

Thus

ORIGINAL PAG_' _
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P(N) = gas pressure at point N, Nlm 2 or MPa

V(N) gas vo'lume at point N, m_ or cms

M = number of moles, g tool

R = universal gas constant

= 8.134 Joule/K (g tool)

TC(N) = cold side temperature at point N, K

(10 MPa)(IO0 cm 3) = M(8.314)(300)

M = 0.4009 g mol

Therefore, the formula for work normally given in text books is:*

(M)(R)(TC(1))*ln(_--_)= -693.14 Joules (5-3W(1)

This quantity is also the negative of heat of the compression of the gas or

the heat removed from the cycle.

Next from state 2 to 3 the gas is heated at constant volume from 300 to, say,

900 K. Assume for the moment that the regenerator that supplies this heat
has no dead volume and is 100% effective. The heat that must be supplied to

the gas by the regenerator matrix is:

QR(2) = M(CV)(TH(3) - TC(2)) (5-4

where

CV = heat capacity at constant volume, j/K (g mol)

For hydrogen

CV = 21.030 at 600 K average temperature

Therefore

QR(2) = 0.4009 (21.030)(900 - 300)

= 5059 Joules

Note that the heat transfer required in the regenerator is 7.3 times more than

the heat rejected as the gas is compressed.

The pressure at state 3 after all gas has attained 900 K is:

P(3) = M(R)(TH(3))IV(2)

= 0.4009(8.314)(900)/50

= 60 MPa

64
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Isothermal expansion of the gas from state 3 to state 4 (Figure 6-1) is

governed by the same laws as the compression.

W(3)= M(R)(TH(3))ln(_-_-)

I00 2079.4 doul'es
= .4009(8.314)(900) In _=

This quantity is also the heat input to the engine. The expansion line is

easily plotted when it is noted that P(N)(V(N)) = (60 MPa)(50 cm3)

- 3000.0 Joules

Finally the return of the expanded gas from state 4 to state I back through

the regenerator finishes the cycle. The same formula applies as for heating.

QR(4) : M(CV)(TC(1) - TH(4))

= .4009(21.030)(-900 + 300) Joules

---5059 Joules

Note that since heat capacity of the gas is not dependent on pressure and
since the average temperature is the same, the heat transferred to and from

the regenerator cancel.

The net work generated per cycle is:

wl -- w(1)+ w(3)

= W(in) + W(out) = -693.14 + 2079.4

= 1386.3 Joules

The efficiency of the cycle therefore is:

net work W1 1386.3

EF = heat in - _= 2079.4 = 0.6667

In general the efficiency is:

EF = work in + work out
heat in

M(R) (TC (1)(ln(_-_l +M(R)(TH(3))l n(_-X_ )

= M(R) (TH(3))IR(_) (5-5

EF = TH(3) - TC(1) = 900 - 300 _ 0.6667
TH(3) 900

(5-6

This efficiency formula is recognized as the Carnot efficiency formula. There-

fore, the limiting efficiency of the Stirling cycle is as high as is pqssible.
We will consider the other cycles represented on Figure 5-2 after cons_aer_ng

the effect of the regenerator.
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5.1.2 Stirling Cycle, Zero Dead Volume, Imperfect Regenerator

Stirling engines require highly efficient regenerators. Consider an annular

gap around the displacer which acts as gas heater, regenerator and cooler (see

Figure 5-3). Assume that this engine operates in a stepwise manner and that

this annular gap has negligible dead volume. Let E be the regenerator effect-

iveness during the transfer, For the transfer from cold space to hot space:

POWER
,PI;TON

k

i/,'

Figure 5-3. Simple Stirling Engine with Annular Gap Regenerator.

Let TL = temperature of gas leaving regenerator

TC = TC(N) for any N

TH = TH(N) fc.rany N

E - TL - TC
TH - TC

Now during transfer the heat from the regenerator is:

QR = M(CV)(TL - TC)

and the heat from the gas heater is:

QB = M(CV)(TH - TL)

Therefore, the efficiency becomes:

EF=
(R)(TH )l,;(,',--_-(-JM(CV)(TH TL)M

which reduces to:

(5-7

( 5-8

(5-9

(5-10
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TH - TC
EF =

CY (_TH - TC)(1 - E) \
TH +"R \ ln(_-_) )

For the numerical example being used here:

900 - 300

EF = 21.030 1900-300)
9OO + IO0 (I - E)

8.314 In -_

(5/ ',_C:, : ',-

(5-11

Z

6O0

900 + 2189,5 (I---ET

Figure 5-4 shows how the engine efficiency is affected by regenerator effec-

tiveness for this numerical example. Some of the early Stirling engines

worked with the regenerator removed. Figure 5-4 shows that at low regenerator

effectiveness, the efficiency is still reasonable. How close it pays to

approach 100% effectiveness depends on a trade-off which will be discussed
under Section 5.3.

0.7

0.6

I I I I I I I I I

GAS: HYDROGEN . V% /-

i

VOLUME RATIO : 2 V_'_ : 2

- TH : 900 K 2 / --0.5

Z
L_J,_0.4

L_
I,

0.3
Z

0.2

0.1

I I I I I i I I i
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

REGENERATOR EFFECTIVENESS

Effect of Regenerator Effectiveness on Efficiency.Figure 5-4.

Rallis (77 ay) has worked out a generalized cycle analysis in which the com-

pression and expansion is isothermal but the heating and cooling can be at
constant volume or at constant pressure or a combination. The heating process
does not need to be the same as the cooling process. He assumes no dead volume,

but allows for imperfect regeneration. For a Stirling cycle he derives the
formula:
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(KK - I)(T.A - II In VR
EF = "(I - E)(TA - I) +'TA(KK - 1) In VR (5-12

where

EF --cycle efficiency
KK = CP/CV

TA = TH/TC

VR - V(1)/V(2)

ORIQrNAL ,_AC1_ f,_
OF POOR Q'U/_LIT7

Equations 5-12 and 5-11 are the same, just different nomenclature. Note that

for E = I, both Equations 5-11 and 5-12 reduce to the Carnot equation,

Equation _-6.

Rallis (77 ay) also derived a formula for the Ericsson cycle efficiency:

{KK- 1){TA- 11 In VR
EF =KK(I - E)(TA - 1) + TA{KK - I) In VR (5-13

Equation 7-13 also reduces to Equations-6 when E = 1, that is, for perfect

regeneration. To attain Carnot efficiency, the compression and expansion ratio

must be the same. Rallis shows this using cycles which will not be treated here.

Rallis also gives a useful formula for the net work per cycle for the Stirling
cycle:

WI VR(TA- 1_ In VR
(v(1))-v(2))(P(1))-- VR - I (5-14

For instance, for the numerical example being used here:

WI : (50 cc)(10 MPa)2(3- I) In(2/(2- I))

= 1386.3 Joules

which is the same as obtained previously.

5.1.3 Otto Cycle, Zero Dead Volume, Perfect or Imperfect Regeneration

The variable volume spaces in Stirling engines are usually shaped so that there

is little heat transfer possible between the gas and the walls during the time
the gas is expanded or compressed. Analyses have been made by Rallis (77 az)

and also by Martini (69 a) which assume adiabatic compression and expansion

with the starting points being the same as for the Stirling cycle. For instancP
for the numerical example in Figure 5-2, compression goes from I to 2" instead

of from I to 2. Expansion goes from 3 to 4" instead of from 3 to 4. It appears
that considerable area and therefore work per cycle is lost.

However, this process is not correct because the pressure at point 3 is not

the same as for the isothermal case. For the numerical example after compres-

sion to point 2" the pressure of the gas is 26.39 MPa and the gas temperature
is 396 K. As this gas moves into the hot space through a cooler, regenerator

and heater,all of negligible dead volume, it is cooled to 300 K in the cooler,

heated to 900 K in the heater. As the gas is transferred at zero total volume
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change from the cold space to the hot space the pressure rises. This pressure

rise results in a temperature increase in the gas due to adiabatic compression.

Therefore, at the end of the transfer process the mixed mean gas temperature

in the hot space will be higher than 900 K. Point 3 is calculated for all the

gas to be exactly go0 K. Adiabatic expansion then takes place. Then by the

same process as just described, the transfer of the expanded gas back into the

cold space results in a lower gas temperature than 300 K at the end of this

stroke. The computational process must be carried through for a few cycles
until this process repeats accurately enough. This effect will be discussed
further in Section 5.1.6.

5.1.4 Stirling Cycle, Dead Volume, Perfect or Imperfect Regeneration

An inefficient regenerator backed up by an adequate gas heater and gas cooler

will not change the work realized per cycle but will increase the heat required
per cycle. It will now be shown that addition of;dead volume which must be

present in any real engine decreases the work available per cycle.

Assume that the annulus between displacer and cylinder wall (see Figure 5-3)
has a dead volume of 50 cm3, that the temperature gradient from one end of

the displacer to the other is uniform and that the pressure is essentially
constant. The gas contained in this annulus is:

X=LR

M =P(1) Idv_L (5-1S
R J TZ

X=O

where

M = moles of gas
VA = total volume of annul us

d(VA) = _-_dX = differential volume of the annulus

X = distance along annulus

LR = total length of annular regenerator

TZ = temperature along regenerator
Now

TZ = TH - _R (TH - TC)

By substituting and integrating one obtains:

(5-16

M P(I_(VA)In(TH/TC)"- (TH - TC) (5 -17

Thus the effecti,,e gas temperature of the regenerator dead volume is:

TR = (TH- TC)/In(TH/TC) (5-18

which is the loI mean temperature. Thus for the numerical example:

go0 - 300
TR = 900 = 546.1 K

In
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Quite often it is assumed that TR = TH + TC _ 900 + 300 _ 600 K.
2 2

For the large dead volumes which will almost always result, it is important

to have the right gas temperatures for the regenerator and heat exchangers.

Assume for the moment that the hot and cold gas spaces can be maintained at

900 K and 300 K and that the pr,.ssQre at the end of the expansion stroke,

(Point 4 of Figure 5-2) 30 MPa (~300 atm), is maintained. The gas inventory
must b_ Jncreased. It now is:

[w w]M = _+_

30 F1oo 54_ .z]M -8.314 L9-CC+

(5-19

= 0.7313 g mol.

The equation for the gas expansion is:

(R)
P(N) =_M?VR

(0.7313)(8.314)
- HL(N) 50

900 ÷ 5-_

(5-20

where

A
P(N) = HL(N) + B where A = 5472;

HL(N) = hot live volumes at point N

B = 82.4

The work output by expanding from HL(1) = 50 cm3 to HL(2) = 100 cm3 is:

HL(2)
P

W(3) =/P(N)d(HL(N)) =
,J

HL(1)

HL(2)

A d(HL(N))

HL(N) + B

HL(1)

(5 -21

= A In HL(1 + B

I00 + 82.4)= 5472 In \ 50 + 82.4

= 1753 Joules

The equation for gas compression is:

(M)(R)

P(N) = CL(N), VR
TC - TR

= (0.7313)(8.314)

SO
300 546. I
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where CL(N) = cold live volume at point N

C

P(N) =CL(N) + D where C = 1824.02, O = 27.4

Analogously, the work of compression is:

W(1) = C In(Cc_(2) +_)(I)+

/ 50 + 27_4_
= 1824.02 In \100 + 27.4/

= -908.37 Joules

Therefore the net work is:

w1 ; w(3)+  I(I)

= 1753.08 - 90B.37 = 844.71 Joules

Figure 5-5 shows how dead volume as % of maximum total gas volume affects the

work per cycle. For more generality the work per cycle is expressed as a %

of the work per cycle at zero dead volume. Note that the relationship is
almost linear. This curve differs from that published by Martini (77 h) in

that in Figure 5-5 the pressure at the end of the expansion stroke was made

the same (average pressure). In the previous Figure 2 of reference 77 h,

the minimum pressure was made the same. This caused the average pressure to
decrease more rapidly as dead volume increased. Figure 5-5 is more truly

representative of the effect of dead volume on work per cycle.

5.1.5 Schmidt Cycle

The Schmidt cycle is defined here as a Stirling cycle in which the displacer

and the power piston or the two power pistons move sinusoidally. It is the

most complicated case that can be solved analytically. All cases with less

restrictive assumptions have had to be solved numerically. The cycle gets its

name from Gustaf Schmidt (1871 a) who first published the solution.

The assumptions upon which the Schmidt analysis is based are as follows:
1. Sinusoidal motion of parts.

2. Known and constant gas temperatures in all parts of the engine.

3. No gas leakage.

4. Working fluid obeys perfect gas law.
5. At each instant in the cycle the gas pressure is the same throughout

the working gas.

Since Gustaf Schmidt did the analysis, a number of others have checked it

through and re-derived it for specific cases. A more accessable paper for
those who want to delve into the mathematics was written by Finkelstein (60 J).

In this manual the Schmidt cycle will first be evaluated numerically because
it is easier to understand this way. Also, the numerical method is easy to

generalize to more nearly fit what a machine is actually doing. Piston-

displacer engines will be discussed first and then dual-piston engines.
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Effect of Dead Volume on Work Per Cycle for Isothermal Spaces
and Constant Average Pressure.

5.1.5.1 Piston-Displacer Engines

5.1.5.1.1 Engine Definition

The nomenclature for engine internal volumes and motions is described in

Figures 5-6 and 5-7. The following equations describe the volumes and pressures.
The maximum hot, live volume is:*

VL = 2(RC) (DB)2 (m/4)

The maximum cold, live volume associated with the displacer is:

VK = 2(RC)[(DB) 2 - (DO)2] (-/4)

(5-22

( 5.-23
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*In Equations 5-20 and 5-21, HL(N) is defined as an array of hot live volumes at
N points duri_ the cycle. VL is the maximum hot live volume.



T
DC
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ORIGINAL D^,_ =.
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HD OF POOR QUALITY-/ _ RD _ CI _IDRIVE ROD

1 I I I ',
' I _ i J

L_ _ L__

HEATER REGENERATOR COOLER

MIDPOINT OF MIDPOINT
DISPLACER TRAVEL OF POWERPISTON

= diameter of displacer TRAVEL
DD = diameter of displacer drive rod
DC : diameter inside engine cylinder
HD hot dead volume, cm _

2(RC) = stroke of displacer
RD = regenerator dead volume, cm 3
CD = cold dead volume, cm 3

2(R2) = stroke of power piston, cm

TH = effective hot gas temperature, K
TR = effective regenerator gas temperature, K

TC : effective cold gas temperature, K

M = engine gas inventory, g mol

R = universal gas constant 8.314 J/g mol'K

P(N) = common gas pressure at particular point in cycle, MPa

F = angle of crank, degrees
AL = angle of phase, degrees

Figure 5-6. Piston Displacer Engine Nomenclature.

The maximum cold, live volume associated with the power piston is:

VP = 2(R2) [(DC) 2- (DD) 2] (_/41

For any ahble F, the array of hot volumes is:

H(N) = VL [I- cos(F)] + HD

For any angle F, the array of cold volumes is:

C(N) = _[1+ cos(F)] + CD+ VP[1-cos(F-AL)]

Therefore, the total gas volume at any crank angle is:

V(N) = H(N) + C(N) + RD

Therefore, by the perfect gas law the pressure at any crank angle is:

P(N) = RD

H(T- H+ "+ TC

(5-23a

(5-24

(5-25

(5-26

(5-27
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Figure 5.7. Phasing of Displacer and Power Piston.

The volume CD includes the dead volume in the cooler as well as the dead volume

between the strokes of the displacer and the power piston. According to the

classification of engines given in Figure 2-6, the gamma type machine must

have some volume between the strokes to allow for clearance and the flow pas-

sages between. In the beta type engine the strokes of the displacer and the

power piston should overlap so that they almost touch at one point in the

cycle. This overlap volume is subtracted from the dead volume in the cold
heat exchanger. For a beta type engine with this type of stroke overlap and
AL = 90 ° and VP = VK, then CD = VM - (VP/2)(2 -vr2-) = VH - VP(1 - (I/_-/2))

where VM = cold dead volume in heat exchanger and clearances and ducts. For

the more general case, one should determine the clearance between the displacer

and power piston and adjust it to be as small as practical.
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5.1.5.1.2 S_mpleEngine Specifications

In order to check equations which look quite different, it was decided to
specify a particular engine and then determine if the work integral checks.
The specification decided upon was:

M(R) = 10.518 J/K
TH = 600 K
TC = 300 K
VL = VK : VP = RD= 40 cm3
HD= CD= 0
AL = 90o

TR is defined a numberof ways, depending how it is defined in the analytical
equation that is being checked. It may be:

(I) Arithmetic mean(WalKer)
TR= (TH + TC)/2 = 450 K

(2) Log mean, most realistic
TR = (TH - TC)/In(TH/TC) = 432.8 K

(3) Half volume hot, half volume cold (Mayer)
I 1 I

=' +
TR = 400 K

The above sample engine specification is for a gamma engine.
assume in addition that VM = O. Then:

For a beta engine

CD = 0 - 40(I - _2 ) = -11.715 cm

5.1.5.1.3 Numerical Analysis

Using the numbers given in Section 5.1.5.1.2, Equations 5-22 to 5-27 can be
evaluated for F = O, 30, 60 ... 360, P(N) can be plotted against V(N) and the

resultant closed curve can be integrated graphically and the maximum and mini-

mun gas pressure can be noted. The author's experience with a number of dif-

ferent examples gives a result which is 4.5% low when compared with valid

analytical equations and with numerical calculations with very small crank

angle increments. If the reader has access to a programmable calculator or a

computer then the computation can be made with any degree of precision desired.

Figure 5..8 shows the flow diagram which was used for programming. The author
has used both an HP-65 and an HP-67 for this purpose. He has also used this

method as part of a larger second-order calculation written in FORTRAN and in
BASIC.

Using the 400 K effective regenerator temperature the following results were
obtained for the numerical example.

Angle Increment, Work Integral % Error

ND, degrees _P(N)dV(N)

30 314.36 Joules -4.5

20 322.56 -2.0
I0 327.53 -0.50

5 328.78 -0.13

0.25 329.1994570 -0.0003

Mayer Equation 329.2005026 0
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The Mayer equation will be given in Section b.1.5.1.4 and discussed more fully

there. It uses the same assumptions as were employed in the numerical analysis.

One can see from the above table that the result by numerical analysis approaches

the Mayer equation result as ND approaches zero. The two check.

If the arithmetic average is used TR = 450 K, then:

NB _PdV Maximum Pressure,
PX

Crank Angle
F at PX

I degree 360.45 Joules 68.10 MPa 117 deg.

If the log mean average is used TR = 432.8 K, then:

ND _PdV PX

I degree 350.04 Joules 56.99 MPa

F at PX

117 deg.

For the case of the beta engine _ith essentially touching displacer and power

piston at one point in the cycle, CD : -11.715 cm3. For the arithmetic average

dead volume temperature TR = 450 K, then:

ND PX F PX
i degree 616.32 Joules 74.0862 MPa 117 deg.

Precision in calculating this work integral is mainly of academic interest

because the result will be multiplied in first-order analysis by an experience

factor like 0.5 or 0.6 (one figure precision). Even in second- or third-order

analysis, no more than two figure accuracy in the final power output and

efficiency should ever be expected. Thus errors less than I% should be con-
sidered insignificant. Therefore, ND = 15° would be adequate for all practical

purposes. This error in evaluating the work integral by using large angle

increments seems to be insensitive to othRr engine dimensions. Therefore, one
could evaluate the work integral using 30_ increments and then make a

correction of 4.5%.

5.1.5.1.4 Schmidt Equations

The literature was searched to find all the different Schmidt equations. Quite

a large number were found which looked to be different. In this section and in
Section 5.1.5.2.3 for the dual piston case these equations will be given and

evaluated by determining whether they agree with the numerical analysis just

described.

At McDonnell Douglas, Mort Mayer reduced the Schmidt equation to the following

relatively simple form (68 c):

WI: M(R)ITC)(_)Y(VP) [ X ]yz + Zz (X2 . y2 . Z2)½" I
(b-28

where:
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WI = work per cycle, J 0;: pC,ci[_QLI/_LITY

M = gas inventory, g mol

R = gas constant = 8.314 J/g mol .K

TC - effective cold gas temperature, K

TH = effective hot gas temperature, K
TC

X = XX +_ (XY)

XX = -Y-_.+ CD + VK+ RD2

RDXY = HD +

. TC
y = V._ (I ?-E) sin (AL)

Z= [VP-VL(I-_H ) cos(AL)]/2

AL = phase angle between displacer and power piston, normally 90o

From the sample engine specifications:

XX= -_- +0+ _-._-+-_-= 60 cm3 = 60 x 10 .6 m3

,_4o,,_ = 40 cm3 = 4ox lo -6 m3XY 0
¢,, (.,,

300 (40 x I0 "6)X = 60 x 10"S + _ - 8 x I0 "sm3

y _ 40 x 10"6 300_ -5 3
2 (I -_j = I x 10 m

Z - 40 x 10-6
2 = 2 x 10 "s m 3

Using these inputs the Mayer equation gives:

W = 329.2005026 Joules

The Mayer equation evaluates the integral exactly given the assumptions that

were used in its derivation, like sinusoidal motion and half the dead space

at hot temperature and half at cold temperature. The numerical method (Section

5.1.5.1.3) approaches this same value as the angle increment approaches zero.
The Mayer equation must have VP = VK.

J. R. Senft (76 n) presents a Schmidt equation for finding the energy generated

per cycle. He assumes that the temperature of the dead space gas has the
arithmetic mean between the hot and cold gas spaces. This equation is for a

beta type engine with the displacer and power piston essentially touching at
one point during the cycle. His equation is:

W1 = _(I - AU)PX(VL)(XY) sin(AL} FY - _]_
Y+ LF;- J ( 29

where:

!



[(AU-i)2+2(AU-I)(XY)costAL)+ (XY)21%7X I

Y : AU + 4(XX)(AU)/(I + AU) + Z

Z = (I + (XY)2 - 2(XY) cos(AL)) ½

AU = TC/TH ri::'., i. _ .... ,, _
(.,i.... .- ;.

XX = RD + HD + C0
VL

VL = VK

XY : VP/VL

In order to illustrate and check this equation it is evaluated for a specific

case previously computed by numerical methods. (See Section 5.1.5.1.3 for
TR = 450 K and CK = -11,715 cm 3.)

AU - 300 _ 0.5
600

XX = 40/40 = I

XY = 4O/4O : I

AL = 90 o

PX = maximum pressure attained during each cycle = 74.0862 MPa

Z = (I + 1 - 2(I) cos 900) %=

Y : 0.5 +4(1)(0.5) + V_-= 3.247547
1.5

x-[(05- i)2+2(0.5-1)(1)(cos_0°)+11%:1.118034

Y " X]½ : 0.698424
y+xJ

y + (y2 . X2)½ = 6.296573

W1 _(1- 0.5)(74.08326)(40)(I)sin (900)(0.698424)
= 6,296573

= 516.33 Joules

This answer agrees very well with results obtained by numerical methods of
516.32 Joules. Senft (77 ak) also has adapted his equation for a gamma type

engine (without stroke overlap). In this case the equations for WI and X are

the same and the equation for Y is:

4(XX)(AU) + I + AU + XY
Y = (I+ AU)

(5-30
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Therefore:

y 4(I)(0.5)
= 1.5

FY" xl_
LY + xj " 0.740518

y + ( y2. X2)__ 7.5000,

(._F_iG!I'4AL PAGE iS

OF POOR QUALITY

+ 1 + 0.5 + 1 = 3.833333

To agree with the numerical analysis of Section 5.1.5.1.3 for TR = 450 K,
PX = 55.I0 MPa.

Thus:

n(l - 0.5)(58.10)(40 ) sln (900)(0.740518)
WI B

7.50000

WI = 360.45 Joules

This result agrees exactly with the numerical analysis for ND = 10 , TD = 450 K

and PX - 58.10 MPa. (See Section 5.1.5.1.3.)

This new Senft equation is also correct.

Cooke-Yarborough (74 i) has published a simplified expression for power output

which makes the approximation that not only the volume changes but also the

pressure changes are sinusoida]. The regenerator is treated as being half at

the hot volume temperature and half at the cold volume temperature. His

equation is:

(VL)(VP)(TH- TC) sin (AL)
WI t

4-- XY
xx[TC._R_(TH- TC)]

( 5-31

where:

= mean pressure of working gas, or pressure with both displacer

and power piston at mld-stroke. (With the approximations

used, these two pressures can be regarded as identical.) If

the mean pressure is known, it can be used directly in

Equation 5-31. Otherwise, the mid-stroke pressure can be
calculated as follows:

m

p-
(M)(R)

VL RD VK VP

_RT +TC+ 2-T_ +2-(TCT

Substituting the assumed values,

10.518
P" 20 40 20 20
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= 40.59 MPa
VL = 40 cm3
VP = 40 cm3

XX = total gas volume of system when output piston is at midstroke
= VL + RD + (VP/2)

s= 40 + 40 + 20 = 100 cm

TH - TC = 600 - 300 = 300 K

AL = 90°

XY - cold gas volume with both piston and displacer at midstroke
and regenerator volume split between hot and cold volumes

RD ._ VP-- +
4O 40 4O

= -_+ -_+ "_" = 60 cm _

Therefore, substituting into Equation 6-31 we have:

100 ( 300 )

= 318.79 Joules

Because of how XY is determined this result should be compared to the Mayer

equation, that is, to 329.20 Joules. Therefore, the Cooke-Yarborough equation

appears to be a reasonably good approximation (3.2% error). The accuracy

improves as the dead volume is increased because the pressure waveform is then

more nearly sinusoidal.

5.1.5.2 Dual Piston Engines

5.1.5.2.1 Engine Definition and Sample Engine Specifications

The nomenclature for engine internal volumes and motions are described in

Figure 5-9. Also given in Figure 5-9 are the assumed values for the sample
case. The following equations describe the volumes and pressures.

Hot Volume

H(N)= [I-sin(F)]+HD

Col d Volume

C(N) = V__ [1 - sin (F - AL)] * CD

Total Volume

(5-32

(5-33

V(N) - H(N) + C(N) + RD (5-34

B1
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HD
RD
CO
VL
VK
TH
TC
TR
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R

MCR)
P(N)

F
ND
AL

Figure 5-9.

Definition Units Assumed Values

hot dead volume

regenerator dead volume
cold dead volume

hot piston live volume

cold piston live volume
effective hot gas temperature

effective cold gas temperature

effective regenerator gas temp.

engine gas inventory

gas constant

common gas pressure
crank angles

crank angle increment

phase angle

cm3 0
cm 3 40
cm 3 O
cm 3 40
cm3 40
K 600

K 300

K 450

g mol 1.265
j/g mol'K 8.314

J/K I0.518
MPa to be calculated

degrees
degrees (ND)(N) = 360

degrees N = interger

Dual Piston Engine Nomenclature and Assumptions for Sample Case.
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Engine Pressure

(M)(R)

P(N) : _ _ RD
TH + _ +'T"R"

• :.:flyCL _,, ,:t ;.

(5-35

5.1.5.2.2 Numerical Analysis

Using the assumed values given in Figure 5-9, Equations 5°32 to 5-35 were

evaluated for F = O, 30, 60 ... 360. The results were:

F V(N), P(N)

Degrees cm _ MPa

0
30

60

90
120

150
180

210

240

270
300

330

360

100.0

87.3

72.7

600
527

52 7
600

727

873

I00 0

107.3

107.3

100.0

41.2

45.7

54.4

67.6

83.0

91.9
86.1

71.2

57.0

47.3

41.9

39.9

41.2

These data were graphed in Figure 5-10 and graphically integrated. A value of

695.3 J was obtained. As before, a numerical integration was carried along as

the points were calculated. This was 668.8 Joules, a 3.8% error which indicates
the accuracy of the graphical integration procedure. To approach the answer

that should be obtained by valid Schmidt equations, ND should be reduced toward
zero. The results obtained were:

Angle Work Maximum Effective
Increment, Integral, Pressure, Regen. Temp. Error

de_rees Joules MPa K %

30 668.8 91.87 450 -4.5

I0 696.8 450 -0.5

1 700.324 91.98 450 0

30 641.284 89.121 432.8 -4.5

1 671.517 89.220 432.8 0

30 587,9 400 -4.5

1 615.619 83.831 400 0

Note the difference in the result depending on what is used for the effective

temperature of the gas in the regenerator. If the regenerator has a uniform

temperature gradient from hot to cold, which it usually does, then the log

mean temperature (TR = 432.8 K) is correct, The arithmetic mean (TR = 450 K)

gives a result for this numerical exampie 4,3% high. The assumption that the

regenerator is half hot and half cold (TR = 400 K) gives a result g.1% low.

B3
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Figure 5-10. Work Diagram for Dual Piston Sample Case (ND = 300).

5.1.5.2.3 Schmidt Equations

Walker (73 j, 78 dc) gives a Schmidt equation most adaptable to the two piston

engine.

. ._(AU -I)/,I - _L)_½)) DL sin (ET)W1 = (PX)(VT} (K + I) _11 + 1 + (I - (DL)2)½ (5-36

where

W1 = work per cycle, Joules

PX = maximum pressure during cycle, MPa
VT = VL + VK = (I + K)VL

VL = swept volume in expansion space

VK = swept volume in compression space

K swept volume ratio = (VK)/(VL)

AU = TC/TH

TC = compression space gas temperature

TH = expansion space gas temperature
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TR = dead space gas temperature
= (TC + TH)/2 .

DL = ((AU) 2 + 2(AU)(K) cos (AL} + K2)½/(AU + K + 25)
AL = _ngle by which volume variations in expansion space lead those

in compression space, degrees

S = 2(RV)(AU)/(AU + I) (This is where the arithmetic average

temperature for the regenerator enters.)
RV = VD/VL, dead volume ratio

VD = total dead volume, cm 3 = HD + RD + C[

ET = tan "I (K sin (AL) /(AU + K cos (AL)) (Note that ET is defined

incorrectly in Walker's table of nomenclature and on page 36,
but is right on page 28 of reference 73 j.)

Now in order to check this equation against numerical analysis, it should give a

work per cycle of slightly greater than 700.324 Joules when 91.98 MPa is used as

the maximum pressure. TR = 450 K is the same assumption for both (see Section
5.1.5.2.2).

Therefore to evaluate:

VT = 40 + 40 = 80 cm 3

K = VK/VL = 40/40 = 1
PX = 91.98 MPa

AU = TC/TH = 300/600 = 0.5

RV = VD/VL = 40/40 = I

S = 2(1)(0.5)/]0.5 + 1) = 2/3
DL (0.52+ 12)_/(0.5 + 1 + 2(2/3)) = 0.39460

ET = tan "I (I/0.5) = 63.43 °

W1 = -700.37 Joules

Thus the formula checks to 4 figure accuracy except for the sign.

Walker obtained the above equation along with most of the nomenclature from the

published Philips literature. Meijer's thesis contains the same formula (see

page 12 of reference 60 c), except Meijer uses (1 - AU) instead of (AU - I) and

a positive result would therefore be obtained.

In Meijer's thesis (60 c), the quantity S is defined so that dead spaces in

heaters, regenerator and coolers and clearance spaces in the compression and

expansion spaces, all of which have different temperatures associated with them,
can be accommodated.

Thus:

s=n

s_ V(S) TC
S = VL T(S) (5-37

where V(S) and T(S) are the volumes and absolute temperatures of the dead spaces.

Using this formula it would be possible to use the more correct log mean tempera-

turo for the regenerator. Thus:
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S = _) -- 0.693

The above equation then evaluates to:

P = 671.537 Joules

This is wi.thin 0.003% of the value of 671.517 computed numerically for 1 degree
increments (see Sectinn 5.1.5.2.2).

Finkelstein (61 e, 60 j) independently of Meijer derived the following formula

for the work per cycle:

WI = {2_){K)(1 - AU){sin {AL))(M){R)ITC ) (5-38

{AU + K + (2)(S))2/I - (DL)2(1 + /I - (DL) z)

This equation looks quite different from Equation 5-36. It is somewhat simpler

but requires the amount of gas in the engine to be specified instead of the

maximum pressure.

Using the last numerical example:

40{300) : 0.693
S = 40(432.8)

AU = 0.5

K=I

AL = 90o

(N)(R)(TC)= 10.518(300)= 3155.4

DL = _/(I.5 + 2S) = 0.38735

Therefore, the work per cycle is:

WI = 671.55 Joules

This result compares with 671.537 by the Meijer formula and with 671.517 by

numerical analysis with I degree increments. Therefore, the above formula is

correct and is also useful in computing the work output per cycle.
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5.1.6 Finkelstein Adiabatic Cycle

The next step toward reality in cycle analysis beyond the Schmidt cycle is to

assume that the hot and cold spaces of the engine have no heat transfer capability

at all. That is, they are assumed to be adiabatic. For all but miniature

engines this is a better assumption than assuming they are isothermal as the

Schmidt analysis does. It is still assumed that the heat exchangers and the

regenerator are perfect. The cycle has been named by Walker (78 dc) the

Finkelstein adiabatic cycle because it was first calculated by Finkelstein

(60 v) who was the first to compute it using a mechanical calculator (one case

took 6 weeks). The assumptions Finkelstein used are as follows:

1. The working fluid is a perfect gas and the expression pv=wRt applies.

2. The mass of the working fluid taking part in the cycle remains constant,

i.e., there is no leakage.

3. The instantaneous pressure is the same throughout the system, i.e., pressure

drops due to aerodynamic friction can be neglected.
4. The volume variations of the compression and expansion spaces are sinusoidal,

and the clearances at top dead center are included in the constant volume

of the adjacent heat exchangers.

5. The regenerator has a heat capacity which is large compared with that of the

working fluid per pass, so that the local temperatures of the matrix remain
unaltered. Its surface area and heat transfer coefficient are also

assumed to be large enough to change the temperature of the working fluid

passing through to the terminal value. Longitudinal and transverse heat
conduction are zero.

6. The temperature of the boundary walls of each heat exchanger is constant

and equal to one of the temperature limits. The heat exchangers are efficient

enough to change the temperature of the working fluid to that of the boundary

walls in the course of one complete transit.

7. The temperature of the internal surfaces of the cylinder walls and cylinder

and piston heads _ssociated with each working space is constant, and equal

to one of the temperature limits. The overall heat transfer coefficient of
these surfaces is also constant.

8. Local temperature variations inside the compression and expansion spaces

are neglected--this assumes perfect mixing of cylinder contents at each
instant.

9. The temperature of the respective portions of the working fluid in each of

the ancillary spaces, such as heat exchangers, regenerators, ducts and
clearances, is assumed to remain at one particular mean value in each case.

10. The rotational speed of the engine is constant.

11. Steady state conditions are assumed for the overall operation of the engine,

so that pressures, temperatures, etc. are subject to cyclic variations only.

The analysis outlined by Finkelstein is very complicated (60 v). The results of

this pioneering analysis are given below because they give some understanding of

the effect the nearly adiabatic spaces of a real engine has on engine performance.
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Finkelstein evaluated a specific case which happened to be a heat pump with a

two-piston configuration (see Figure 5-9). The specific parameters were specified
in dimensionless form as follows:

K = I = V_KK= swept volume ratio
VL

2S = I = temperature corrected clearance ratio

AL = 900 = phase angle

AU = 2 = temperature of heat rejection
temperature of heat reception

Finkelstein gives results based upon a dimensionless heat transfer coefficient
which is also called a number of transfer units. Where:

where

_HY)IAH)
TU = L(O_I)(M)(MW)(Cp)

HY = heat transfer coefficient, watts/cm2K

AH = area of heat transfer, cm 2

OM = speed of engine, radians/sec
(M)(MW) = mass of working gas, grams

CP = heat capacity at constant pressure, j/g K

(5-40

Real engines can be built where TU in the hot and cold space is very low all

the time. Also real engines can be built where TU is very high all the time.

However, real engines can probably not be built where TU has a constant inter-

mediate value during the cycle. Nevertheless, the results at these inter-
mediate values calculated by Finke]stein are instructive to show where the

breakpoint is between adiabatic-like and isothermal-like operation. Table
5-I shows the results of this analysis. All the mechanical and heat energies

are non-dimensionalized by dividing each by M(MW)(R)(TH). Note that for this

particular numerical example the adiabatic cycle is only about half as efficient
as the isothermal cycle in pumping heat. However, this example is for a lower

than usual temperature corrected clearance ratio, S, of ½. It is not uncommon

for S to be much larger. For instance, in the GPU-3 engine, S could be

evaluated as follows: (see Table 3-2)

s-TC- V--L H(_H RD+T-R+ C_) (5-41

330 /93.3 65.5+ 34.3_

= + 300/

= 0.84

The larger S is,the less dramatic the effect of the adiabatic spaces.

Note that a small amount of heat transfer in the hot and cold space is worse

than none at all. This gas spring hysterisis effect has been noted by others

(78 as, 78 at). It also shows that if you want to gain all the advantages of

heat transfer in the variable volume spaces, the heat transfer coefficient mu_t

be hi gh.
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Dimensionless

quantities

Transfer units, TU

Mechanical Energy Input

to Expansion Space

Mechanical Energy Input

to Compression Space

Net Mechanical Energy
Input

Heat to Gas in

Expansion Space

Heat to Gas in Heat

Exchanger Next to

Expansion Space

Total Heat In

Heat from Gas in

Compression Space

Heat from Gas in Heat

Exchanger Next to
Compression Space

Total Heat Out

Heat In

Mech. Energy In

Table 5-I

FINKELSTEIN ADIABATIC ANALYSIS

Isothermal

Regime

= 1 0.5

Limited Heat Transfer

Adiabatic

Regime

0.1 0

-0.518 -0.455 -0.435 -0.443 -0.481

1.036 1.107 1.166 1.310 1._67

0.518 0.652 0.731 0.867 0.886

0.518 0.478 0.438 0.228 0

0 -0.023 -0.003 0.215 0.481

0.518 0.455 0.435 0.443 0.481

1.036 0.998 0.880 0.410 0

0 0.109 0.278 0.900 1.367

1.036 1.107 1.158 1.310 1.367

1.000 0.698 0.595 0.511 0.543

Finkelstein also shows how the engine pressure changes during the cycle for the

cases shown in Table 5-I. (See Figure 5-11,) Note that the swing is largest as

would be expected for the adiabatic case and least for the isothermal case and

the other cases are inbetween, Figure 5-12 shows how the expansion space

gas temperature varies during the cycle. The bottom curve is for n or TU = O.

The labeling on the left-hand side of curve 5-12 is incorrect. Note that as the

heat transfer increases, the temperature generally gets close to the infinite

heat transfer case which does not vary from 1; that is, the expansion space

temperature remains inflntesimally close to the heat source temperature. For

zero heat transfer in the expansion space there has to be a discontinuity at a
crank angle of 1800 because this is the point when the expansion space becomes

zero in volume. After 1800 the expansion space begins to fill again with gas

which is, by definition, at the heat source temperature, In Figure 5-13 the
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same calculated information is given for the compression space. Here again the

more the number of heat transfer units, _, or TU, the closer the gas temperature

curve approaches to the perfect heat transfer curve which stays at a temperature
ratio of I. Here the compression space volume becomes zero at 270o crank angle.

Th_s, the discontinuity at this point for an entirely adiabatic case.

In reality the heat transfer coefficient in the compression space and the ex-

pansion space will get to be quite large when these spaces almost disappear

each cycle. Then the number of transfer units will smoothly get to be very

small during the rest of the cycle providing the engine is built in the conven-
tional way.

Most of the design methods of first-, second- and third-order designs start

out with some sort of cycle analysis to determine the basic power output and

basic heat input and then make the necessary corrections to get the final

prediction. One highly regarded method of doing this was published by Rios

(69 am). The author spent a considerable amount of time getting this program
which originally was supplied in punch card form to the author by Professor

J. L. Smith of MIT into working order on his own computer. The Rios analysis

uses the same assu.nptions as Finkelstein did but he does not require that the

two pistons move in sinusoidal motion. He starts with arbitrary initial con-

ditions and finds that the second cycle is convergent, that is, it starts at

the same point that it ends at, providing the dead volumes are defined so that

the clearance volume in the hot and cold spaces is lumped with the heat ex-

changers. Therefore, these volumes in these spaces go to zero at which point
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the gas temperature in these spaces can be re-initialized. Appendix D presents

the Rios program which has been modified by the author to be for a heat engine

instead of a heat pump as the original thesis gave it. By the nature of the

assumptions the temperature of the gases in all parts of the engine except the

hot and cold spaces is known in advance and it is also assumed that the

pressure is uniform throughout the engine each instant of time. As in the
Finkelstein solution just described the temperatures of both the hot and cold

spaces are allowed to float. Also, similar to the Finkelstein analysis

there are four possible cases. Each case requires a separate set of
equations. The four cases are: 1) mass increasing in both hot and cold spaces,

2) mass decreasing in both hot and cold spaces, 3) mass decreasing in cold space

and increasing in hot space and 4) mass increasing in cold space and decreasing

in hot space, The program employs a simplified Runge-Kutta integration approach.

For each of the four cases it calculates a pressure change based upon the con-

ditions at the beginning of the increment. Based upon this pressure change it

calculates the pressure at the middle of the increment and using this pressure,
it calculates a better approximation of the pressure change for the increment

using volumes that are true for the middle of the increment. This final

pressure change Cs used to determine the pressure at the end of the increment

and the mass changes during the increment. Based upon these mass changes the

decision matrix is set up so that for the next increment the proper option will

be selected of the four that are available. The analysis in Appendix D was

done for one degree increments. Many modifications to the program would be

necessary to do anything different than one degree increments.

Martini has checked the Finkelstein adiabatic analysis for the particular case

published by Finkelstein (60 v). The computation procedure is quite different

than any others and is explained in detail in Appendix E. It was found that

the pressure wave as sho_n _n Figures 5-11 and 5-14 could be dupl?cated for the
adiabatic case with fairly large time steps, as large as 30o, However, at the

point of maximum curvature the curve is not really too well defined. Using the

Martini method the adiabatic curve from Figure 5-12 is duplicated on a larger
scale in Figure 5-15. The calculated points for 15°, 300 and 20 angle increments

are plotted. Note that degree increments of 150 and 300 , although adequate for

determining the pressure-volume relationship, are not adequate for determining

the temperature in the expansion space of the engine. However, 20 angle in-

crements do determine the temperature almost exactly, prub_i_,# as closely and

as accurately as Figure 5-12 was drawn. Figure 5-16 gives a similar evaluaLiqn

for the adiabatic temperature curve duplicate from Figure 5-13. Note that 15°

angle increments an_ 300 angle increments give substantial errors in comparison
to the more exact 2 angle increments. Appendix E gives the method of cal-
culation and shows how accurate it is.

5.1.7 Philips Semi-Adiabatic Cycle

Extremely little has been published by the Philips Company on how they calculate

their engines. However, one of their licensees, MAN/MWM, discussed quite

generally their process in a lecture at the Yon Karmen Institute for Fluid

Dyna_ics (73 aw). Mr. Feurer discloses that one of the Philips processes for

calculating a Stirling engine starts out with a semi-adiabatlc cycle and then

adds additional corrections in a second-order design method. This second-

order method will be discussed in Section 5.3 and the seml-adiabatic cycle it
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is dependent upon will be discussed here. As opposed to the more ideal Finkelstein

adiabatic cycle, the Philips semi-adiabatic cycle is an adiabatic process that

allows for the fact that the gas properties and the heat transfer are not ideal,

that is, 1) the compressibility factor must be taken into account and 2) both

the heat exchangers and the cylinders have finite heat transfer coefficients.

These heat transfer coefficients result in different gas temperatures throughout

the cycle than were calculated in the Finkelstein adiabatic cycle. Taking these

effects into account the Philips licensee people arrive at what they call the

semi-adiabatic cycle. Feurer (73 aw) presents a number of efficiencies and

power outputs for the cycle for the conditions given in Table 5-2. In addition
he varied the phase angle from zero to 180v and gave results for additional

dead volumes of 40, 100 and 200 cm and diameters for the connecting spaces

which these additional dead volumes represented of 100, 50 and 20 mm. However,

this information is not judged to be of general utility because the description
of the heat exchangers and cylinders are not given and the heat transfer coef-

ficients that pertain to these parts of the engine are not given. All of this

information along with the compressibility factor which is known for a parti-

cular gas is needed to calculate the Philips semi-adiabatic cycle results.

It was surmised by Walker (78 dc, p. 4.16-4.17) that the Philips semi-adiabatic

cycle is the same as the Finkelstein adiabatic cycle. Further investigation by

Martini presented herein shows that that is not the case. The Martini formula-

tion of the Finkelstein adiabatic cycle given in Appendix E was used to generate

the information shown on Figure 5-17. Note that the indicated power or the

indicated efficiency is plotted versus the phase angle between the two pistons

of a dual piston Stirling engine. The Schmidt power given by Feurer is the same

as that calculated by Martini using the applicable computer program. Also, the

ideal efficiency is, of course, checked. Note that the Philips semi-adiabatic

Table 5-2

ENGINE CONDITIONS FOR THE

NUMERICAL EXAMPLE OF FEURER (73 aw)

Helium working gas

1500 rpm

120 arm mean pressure
75 C inside cooler tubes

750 C inside heater tubes

130.5 cm 3 heater tube gas volume

56.5 cm3 cooler tube gas volume

145.3 cm_egenerator gas volume
0 cm3 additional dead volume

100 mm pistons diameter
50 mm stroke

100 mm connecting rod length
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efficiency is the same as the ideal efficiency at a phase angle^of 0 and 1800 ,

but drops down to only 50% instead of the ideal 67% at about 70u phase angle.

The cycle efficiency using the Finkelstein adiabatic a,lalysis cycle is given

by the squares on Figure 5-17. There is a small difference depending upon

whether purely sinusoidal motion is assumed or whether the crank motion spec-

ified in Table b-2 is employed. It is interesting to note that the Philips

semi-adiabatic eff!ciency and the Finkelstein adiabatic efficiency agree in

the region from 800 to 1300 in phase angle. Beyond this region of agreement,

which may be fortuitous, the Philips semi-adiabatic efficiency tends toward

the ideal efficiency and the Finkelstein adiabatic efficiency tends toward

zero efficiency.

Concerning the power, Figure 5-17 shows that the Finkelstein adiabatic power

is usually less than the Schmidt power. In both cases the crank geometry tends

to have the power peak at a lower phase angle than for the sinusoidal aeometry.
However, the effect at this particular c_.'ankratio is not pronounced. "Note

that the Phiiips semi-adiabatic power is lower generally than the Finkelstein
adiabatic power and that the Philips power goes to 0 at 0 and 1800 phase angle.

whereas the Finkelstein adiabatic power for this particular case goes to 0 at
100 and 180o phase angle.

It should be emphasized that this is not by any means a full disclosure of the

Philips semi-adiabatic cycle, but it does give all the information that is
available on it in the open literature.

5.2 First-Order Design Methods

5.2.1 Definition

A first-order design method is a simple method that can literally be done on

the back of an envelope. It relates the power output and efficiency of a

machine to the heater and cooler temperature, the engine displacement and the

speed. There is no need to specify the engine in any more detail than this.
Therefore, this method is good for preliminary system analysis. It is assumed

that an experienced Stirling engine design and manufacture team will execute

the engine. First-order methods are used to predict the efficiency as well as

the power output.

5.2.2 Efficiency Prediction

Efficiency of a Stirling engine is related to the cycle efficiency of a Stifling

engine which is the same as the Carnot efficiency, which of course is related
to the heat source and heat sink temperatures specified. Section 4 gives all

the information available on well-designed Stirling engines which have not

beevl fully disclosed and shows how the quoted efficiencies of these engines

relate to the Carnot efficiency.

Carlqvist, et. al (77 al) give the following formula for well optimized engines

operating on hydrogen at their maximum efficiency points.
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(5-42

nef f : overall thermal or effective efficiency

Pnet = net shaft power with all auxiliaries driven

EF = fuel energy flow

TC, TH = compression - expansion gas temperature, K

C = Carnot efficiency ratio of indicated efficiency to Carnot

efficiancy, normally from 0.65 to 0.75. Under special con-
ditions 0.80 can be reached.

nH = heater efficiency, ratio between the energy flow to the
heater and the fuel energy flow. Normally between 0.85
and 0.90.

_M = mechanical efficiency, ratio of indicated to brake power.
Now about 0.85 should go to 0.90.

fA= auxiliary ratio. At maximum efficiency point fA: 0.95.

Thus the most optimistic figures:

Tc Tc

nef f = (1 -_H)(0.75)(.90)(.90)(.95) = (1- _H)(0.58)

5.2.3 Power Estimation by First-Order Design Methods

Some attempts have been made to relate the power actually realized in a Stirling

engine to the power calculated from the dimensions and operating conditions of

the engine using the applicable Schmidt equation. Usually, the actual power
realized has been quoted to be 30-40% of the Schmidt power (78 ad, p.lO0).

However the recommended way of e_timating the Stirling engine power output is
to use the Beale number method as described by Walker (79 y). To quote from

Walker, "William Beale of Sunpower, Inc. in Athens, Ohio, observed several years

ago that the power output of many Stirling engines conformed approximately to

the simple equatioL__

P = 0.015 p x f x Vo

where .

P = engine power, watts

p = mean cycle pressure, bar
f = cycle frequency of engine speed, hertz

Vo displacement of power piston, cm3

"This can be rearranged as P/(PfVo) = constant. The equation was found by
Beale to be true approximately for all types and sizes of Stirling engines for

which data were available including free piston machines and those with crank

mechanisms. In most instances the engines operated with heater temperatures

of 650 C and cooler temperatures of 65 C.
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"The combination Pl(pfVo) is a dimensionless group that may be called the Beale
number. It is self-evident that the Beale number will be a function of both

heater and cooler temperatures. Recent work suggests the relationship of Beale
number to heater temperature may be of the form shown in Figure 5-18 by the

full line. Although for the sake of clarity the relationship is shown as a

single line, it must of course be understood that the relationship is a gross

approximation and particular examples of engines that depart widely may be cited.

Nevertheless, a surprisingly large number of engines will be found to lie within

the bounds of the confidence limits (broken lines) drawn on either side of the

proposed relationship. Well designed, high efficiency units with low cooler

temperatures will be concentrated near the upper bound. Less well designed

units of moderate efficiency with high cooler temperatures will be located at

the lower extremity.

"It should be carefully noted that the abcissa of Figure 5-18 is absolute tem-

perature, degrees Kelvin; engines with the hot parts made of conventional stain-

less steels (say 18-8) will be confined to operate at temperatures limited to

the region indicated by the line A-A. High alloy steels for the hot parts will

permit the elevation of heater temperature to the limit af B-B. Above this

temperature ceramic components would likely be used in the heater assembly."

Figure 5-18 is the best information generated by Walker and his students based

upon information available to them, both proprietary and non-proprietary.
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Figure _18. Beale Number as a Function of Heater Temperature. %

5.2.4 Conclusion for First-Order Methods

First-order design methods are recommended for those who would like to evaluate

the possibility of the use of a Stirling engine.

Ioo



5.3 Second-Order Design Methods

5.3.1 Definition

Second-order design methods are relatively simple computational procedures that

are particularly useful for optimizing the design of a Stirling engine from

scratch. An equation or brief computational procedure is used to determine

the basic power output and heat input. The basic power output is then degraded

by various identifiable loss terms and the heat input is added to by evaluating

a variety of additional heat losses that are known to exist in real engines.

Consequently, an estimate is made of the real power output and real heat input

using relatively simple means and not resorting to full-blown engine simulations

which are the domain of third-order design methods. In second-order analysis

one of the Stirling engine cycles described in Section 5.1 is used as a basis.

What is known about the Philips second-order analysis (73 _w) will be given because

although very little is known about this analysis procedure, very much has been

done with it. Because of the practical successes of the P,,ilips engines, any

information that is known about their engine design methods is of importance.

Next the equations that have been used to evaluate power losses and heat losses

will be given in two separate subsections. It will be left for the designer

to decide what power losses and what heat losses pertain to his particular

design and to add them to the cycle analysis which is most realistic for this

engine to come up with his own second-order design method.

5.3.2 Philips Second-Order Design Method

This method starts with the Philips semi-adiabatic cycle as its basic power

output and efficiency and then makes corrections. The corrections in the
order that they are applied are shown in Table 5-3. Feurer (73 aW) shows the

effect of the non-sinusoidal motion of the crank by Figure 5-19. Note that

this is essentially identical to a portion of Figure 5_17 for the white and

black triangles. In Figure 5-20 the line labeled "0" is for the power output
of the semi-adiabatic cycle. The curve labeled "I" is not drawn because it is

so close to the curve labeled "0" and this is for the power output based on the semi-

adiabatic cycle less the correction due to the crank motion. The curve labeled
"II" has the additional correction of adiabatic residual losses. Note that this

has a very large correction at low phase angles but none at phase angles

approaching 1800 . The final curve labeled "Ill" in Figure 5-20 shows the
additional correction due to flow losses. Note that this correction is small

at low phase angle and maximum at a phase angle of 1BO°. Note that for this

case the phase angle of 90° is not necessarily optimum, but is reasonably close.

Figure 5-21 shows the adiabatic residual losses that are subtracted from

curve I in Figure 5-20 to get curve II. Figure 5-21 _!_o shows the flow losses

which are subtracted from curve II in Figure 5-20 to get curve Ill. In

Figure 5-21 it is shown what happens to the efficiency of the engine as the
various losses are considered. At the top of Figure 5-21 is the Carnot

efficiency which of course only depends on the temperature input and output of

the machine. By going from a strictly Schmidt cycle to a semi-adiabatic cycle

the bow-shaped curve labeled "I" which has a minimum at 50% efficiency is

obtained. Going from sinusoidal to crank motion apparently has little effect
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Table _3

OUTLINE OF PHILIPS SECOND-ORDER
POWER OUTPUT CALCULATION

i

Start with basic power output computed by semi-adiabBtic cycle (Section 5.1.7).

Less: loss due to non-sinusoidal motion of cranks.

Less : adiabatic residual losses which is the difference between the

ideal temperature in the cylinders, heat exchangers and con-

necting spaces on the one hand and the actual temperature in

these components on the other which results in an additional
power loss.

Less: flow losses due to flow friction and entrance and exit losses and

additional losses.

Equals: indicated output.

Less: mechanical losses, seals, bearings, etc.

Less: power for auxiliaries.

Equals: net shaft output

on the efficiency. However, in adding in the effect of the adiabatic residual

losses the efficiency curve becomes the one labeled "II" which is much different

in shape which peaks at about 150o phase angle. (Compare curve II with the

Finkelstein adiabatic efficiency shown in Figure 5-17.) Curve Ill is the effici-

ency after the addition of flow losses and curve IV is the final efficiency

after the addition of heat conduction losses. Note that the maximum efficiency

point when all losses are considered is at a larger phase angle than is the

maximum power point. It would seem reasonable for this machine to settle on a

phase angle of about 1200 because this would be nearly the high point of the

power curve as well as nearly the high point of the efficiency curve.

This gives about all that is known about the workings of the Philips second-
order design program. There is probably a number of good second-order as well

as third-order design programs available to Philips as well as speciality

programs for particular parts of the machine. It should be pointed out that all

this information is from one paper by Feuer of MAN/MWM, a Philips licensee.

Nothing like this has been published directly from Philips.

5.3.3 Power Losses

It would sPem reasonable that when isolated groups wrestle with the problem of

analyzing a Stirling engine in a practical way, they would consider the various
identifiable losses in different orders. The work that follows is chiefly
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the result of the United States Air Force-sponsored work on cooling engines (70 ac,
75 ac) as well as HEW-sponsoredwork on the artificial heart machine (68 c). This
work starts out usually with a Schmidt c_.le analysis and then applies a numberof-
corrections. Somework has started out with a Finkelstein adiabatic analysis and
then applies the corrections to that. (See Section 5.3.5.) This section iden-
tifies a numberof power losses and presents the published equations which
describe them. Power losses fall under two headings: flow friction and
mechanical friction. The adiabatic residual losses which were so important in
the Philips second-order method described just previously have been either
included in this cycle analysis at the start of the evaluation or have been

added on the end as an experience factor.

5.3.3.1 Flow Friction Losses

The basic power is computed as if there is no fluid friction. Energy loss due
to fluid friction is deducted from the basic power as a small perturbation on

the main engine process. If fluid friction consumes a large fraction of the

basic power the following methods will not be accurate but then one would not

choose a design to be built unless the fluid friction were less than 10% of

the basic power.

Fluid friction inside the engine can be computed by published correlations for

fluid flow through porous media and in tubes. These flow friction correlations

are applicable for steady, fully developed flow. If the fraction of the gas

inventory found in the hot spaces and in the cold spaces is plotted against

crank angle, it is apparent that to a good approximation this periodic flow can

be approximated by (1) steady flow, in one direction, (2) no flow for a period
of time, (3) then steady flow back in the other direction and (4) then no flow

to complete the cycle. The mass flow into and out of the regenerator is not

quite in phase due to accumulation and depletion of mass in the regenerator.
Note that the mass flow at the cold end is much more than the mass "Flow at the

hot end mostly due to gas density change. The average mass flow rate and the

average fraction of the total cycle time that gas is flowing in one direction at
the hot end of the regenerator is used for the heater flow friction and heat

transfer calculations. The average mass flow rate and the average fraction of

the total cycle time flowing in one direction at the cold end of the regenerator
is used for the cooler flow friction and heat transfer calculations. For the

regenerator the mean of the above two flows and of the above two fractions

has been used successfully. (See Appendix C and 79 ad, 79 o,)

Although the above approximation has been found to work, in each case graph the

fractions of the mass of gas in the hot and the cold space during the cycle to

determine if the approximations listed above of a constant flow rate, a stationary
time and another constant flow rate are really approximated. One should also be

certain that the computer algorithm for determining the flow rates and the times

of the assumed constant flows are properly evaluated.

It would be more certain to divide the regenerator aFd even the heater and

cooler spaces into a number of sections and evaluate the mass flow rates and

the temperatures in each one of these sections for each time step. Then if one

carl assume that steady-flow friction coefficients apply, the pressure drop and

finally the flow loss in each element can be computed and summed to find the
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total flow loss for that increment. The flow friction correlations for each

part of the engine taking into account the different geometries will now be

given. The regenerator will be given first since it is the most important in

terms of pressure drop and then the heat exchangers second.

5.3.3.1.1 Regenerator Pressure Drop -- Screens

Kays and London (64 l, p. 33) give the formula for pressure drop through a

matrix as would be used for a regenerator:

DP = 2(G1)(RO(I')) \AM//\RO(2) .... (HR)(RM)

Flow Acceleration Core Friction

where

DP = pressure, difference of, MPa

GR = velocity, mass, in regenerator, g/sec cm 2
G1 constant of conversion = 107 MPa sec2.cm

• gl( " 3 )
RO(1), RO(2) gas densitiies at entrance and exit, g/cm

AF = area of flow, cm'

AM = area of face of matrix, cm2

CW = factor of friction for matrix

LR = length of regenerator, cm

HR = radius, hydraulic, of matrix = PO/AS

RM = density of gas at regenerator, g/cm3
PO = porosity of matrix

AS = ratio of heat transfer area to volume for matrix, cm"I

(5-43

The flow acceleration term can be ignored in computing windage loss for the

ful___]lcycle because the flow acceleration for flow into the hot space very
nearly cancels the flow acceleration for flow out of the hot space. However,
the difference may be significant. One should really leave in the flow accel-

eration term until experience shows that it does not make any difference.

Nevertheless, with this simplifying assumption, the pressure drop due to regen-
erator friction is:

(CWXGR)2 (LR)
DP : 2(GI)(HR)(RN)

(5-44

In the above equation the friction factor CW is a function of the Reynolds

number RR = 4(HR)(GR)/MU . Figure A4 shows the correlation for stacked screens

usually used in Stirling engines. Note that the relationship is dependent

somewhat upon the porosity. Since this calculation is already an approximation,

it is recommended that a simpler relationship be used more adpated to use in

simple computer programs (see Figure A4). To use this correlation the Reynolds

number must be evaluated correctly.

HR = PO/AS

= hydraulic radius for matrix, cm

PO = porosity of matrix
AS = heat transfer area per unit volume, cm"I

(5-45
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GR = WRI (PO) (AM)
= mass velocity in matrix, g/sec cn_

WR : flow through matrix, g/sec

(5-46

AM = frontal area of matrix, cm R

Finally, the viscosity is evaluated at tile gas temperature in the matrix.
Table A-6 for data on working gas viscosities.)

(See

5.3.3.1.2 Heater and Cooler Pressure Drop

5.3.3.1.2.1 Tubular

Heater and cooler pressure drops are usually small in comparison with the regen-
erator. Heaters and coolers are usually small diameter,round tubes although an
annular gap is practical for small engines. Pressure drop through these heaters
and coolers is determined by Equations 5-47 or 5-48 with CW determined from the
Fanning friction factor plot (see Figure A5) and densities DH or DK being evaluated
at heat source or heat sink temperature and at average pressure. The length to
diameter ratio is usually very large so for simple programs the equations shown
with Figure A5 are:

DP : 2(CW)(GH)_(LH)
(G1)(IH) (DH) for heater (5-47

2(C!_)(GC)2(LC)
DP : (G1)(IC)(DK) for cooler (5-48

where in addition

CW = factor of frictions for tubes

GH : velocity, mass, in heater, g/sec cm2

GC = velocity, mass, in cooler, g/sec cm2

LH = length of heater tubes, cm

LC = length of cooler tubes, cm
IH = diameter, inside, of heater tubes, cm

IC = diameter, inside, of cooler tu_es, cm

DH density of gas in heate_, g/cm_
DK density of gas in cooler, g/cm a

5.3.3.1.2.2 Interleaving Fins (See Reference 77 h)

One of the advantages of this type of heat exchanger is that the gas flows into

it rather than through it. Also, it is rather complicated because the flow_

passage area changes with the stroke. Experimental data are needed. One of

the best types of interleaving fins is the nesting cone because the cone like

the tube can have a thin wall and heat can be added and removed directly from

the outside of the cone. In this type of filling and emptying process the flow
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goes from maximum at the entrance t,_Jzero at the farthest point. This situa-
tion is equivalent to having all the flow flow half the dis cance volume-wise.

Note that the equivalent diameter for this geometry is two ti_r,es the separation

distance between the cone surfaces. If the cone surfaces come close together
and if the equivalent length along the cone is quite large, the flow resistance

in a nesting cone isothermalize;, can be large. There is no sure way of

designing a Stirling engine. Each design concep_ has its good and bad points.

5.3.3.1.3 Heater, Cooler and Regenerator Windage Loss

Once the pressure drops are calculated, it should be noted that the product of

the pressure drop in MPa and the volumetric flow rate in cm3/sec is the flow

loss in watts. Increment by increment, as the engine is calculated, the in-

stantaneous flow loss as well as the average for the cycle should be calculated.

A peak in the flow loss during the cycle may slow down or stop the engine
depending upon the size of the effective flywheel.

5.3.3.2 Mechanical Friction Loss

Mechanical friction due to the seals and the bearings is hard to compute reliably.

It essentially must be measured. However, if the engine itself were used, the

losses due to mechanical friction would be combined with power required or

delivered by the engine. If indicated and brake power are determined, then
mechanical friction loss is the difference. The friction loss should be measured

directly by having the engine operate at the design average pressure with a
very large dead volume so that very little engine action is possible. The

engine need not be heated but the seals and bearing need to be at design temp-
erature.

5.3.4 Heat Losses

Power losses which need to be subtracted from the basic power output have just
been discussed. In this next section heat losses are defined which must be

added to the basic heat input. These are: reheat, shuttle, pumping, temperature
swing, internal temperature swing and flow friction credit.

5.3.4.1 Reheat Loss

One way that extra heat is required at the heat source is due to the ineffi-

ciency of the regenerator. The regenerator reheats the gas as it returns to

the hot space. The reheat not supplied by the regenerator must be supplied

by the heater as extra heat input. Figure 5-22 shows how the gas temperatures

vary in the heater, regenerator and cooler during flow out of the hot space as

well as flow into it. Note that at inflow, the gas attains cooler temperature,

then is heated up in the regenerator part-way. The temperature difference, A,

between the heat source temperature and the gas entering from the regenerator
is then multiplied by the heat capacity, the effective flow rate and the

fraction of time that this gas is flowing to obtain the reheat loss. The
methods derived from the literature and from the author's own practice are

given below; The formula for reheat once used by the author is:
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Effective Regenerator
Flow .Rate Ineffectiveness

2

RH = F_R(WR)(y)(TH_- TC)(NT + 2)

Fraction Heat Temp

Time Capacity _%T
Flowing
Into Hot A

Space
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(5-49

Each element in Equation 5-49 is a type of an approximation. The fraction of

time flowing into the hot space is estimated by extrapolating the maximum cycle

time that this process would occupy if the flow rate were always at its maxi-
mum value. This fraction, FR, turns out to be about one-third. FR will be

taken as I/3 if an analytical Schmidt equation is used. If a numerical pro-

cedure is used, FR may be computed when the flow resistances are calculated
providing the approximation "is found valid that regenerator flows can be apprQxi-

mated by two steady flows interspersed by two per$ods of no flow. The effective

flow rate then is determined by the flow through the regenerator, WR. If these

two periods of constant flow approximation are not used, then for every time

step when flow is from the regenerator to the heater a partial reheat loss must
be calculated for each such increment and summed for the cycle.

REGENERATOR
i;fHEATER COOLER

TH

Figure 5-22. Reheat Loss.
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Neither heat capacityCVor CP is strictly correct. More complicated analyses

can take into account more rigorously the effect of pressure change during gas

flow through the regenerator (75 ag, 77 bl). The rationale for using CV in

Equation 5-49 is that the transfer of gas takes place when the total volume is

relatively constant. However only a small amount of the total volume is in the
regenerator at any one time, An equation suggested by Tew of LeRC (7_ ad, p. 123) is:

RH = [FR(WR)(CP)(TH- TC)RD(CV)(PX " PN)(NU)(MW)] ( 2 1" (R) NT + 2 (5-50

Flow Heat Pressure Change Ineffec-
Heat tiveness

where
RH = loss, reheat, watts

FR = fraction of cycle time flow is into hot space

WR = flow, mass, through regenerator, g/sec

CP = capacity of heat of gas at constant pressure, j/g K

TH = temperature, effective, of hot space, K

TC = temperature, effective, of co_d space, K
RD Volume, regenerator, dead, cm_

CV = capacity of heat of gas at constant volume, j/g K

PX = maximum pressure, MPa

PN = minimum pressure, MPa

NU = frequency of engine, Hz

MW = molecular weight of gas, g/g mol

R = constant, gas, universal = 8.314 j/g mol K
NT = number of transfer units in regenerator

= (HY)(AH)/((CP)(WR))

HY = coefficient of heat transfer, watts/cm2K
AH area of heat transfer, cm_

In Equation 5-50, the flow heat is watts needed on a continuous basis to raise the

temperature of the gas passing into the hot space. The pressure change heat rec-

ognizes the fact that some of the heat required to raise the gas temperature can
come from increasing the gas pressure which happens at nearly the same time. How-

ever, it can happen that the pressure change heat can be larger than the flow heat.

In this case a more exact analysis should be employed. The net of the flow heat

and the pressure change heat is multiplied by the ineffectiveness of the regenera-

tor to obtain the reheat loss. Equation 5-50 is used in Appendix C to calculate

reheat loss.

The temperature difference A in Figure 5-22 is represented by the total temp-
erature difference between the hot metal and the cold metal times the regen-

erator ineffectiveness. This ineffectiveness is one minus the effectiveness

of the regenerator material (see Equation 5-7). This formula for ineffective-

ness agrees with the simple equations in earlier standard references on regen-
erators such as Saunders and Smoleniec (51 q).

The idea of separating power output and the heat losses into a number of super-

imposed processes has been used by a number of investigators of the Vuilleumier

cycle. The details of this analysis have been given in a number of government

reports. The Vuilleumiercycle isa heat operated refrigeration machine which
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uses helium gas and regenerators very slmilar to the way the Stirllng engine is

constructed. This superposition analysis has worked well in VM cycle machines.

In an RCA report (69 aa, pp. 3-37) the measured cooling power using this method
of analysis was found to be within 8.9% of that calculated. Croutham_.l and

Shelpuk (75 ac) give the following formula for the reheat loss after It is

translated into the nomenclature used in this section.

RH = (_)(WR)(CP)(TM- TW)(_--_-) (5 -51

Equation 9-51 is written in the same order as Equation 5-49 and therefore can

be directly compare_. The first term,one quarter, is specific for their

particular machine and therefore needs to be evaluated for another type of

machine. The flow rate is evaluated in the same way, but the heat capacity

is different. Probably this can be justified to be CP instead of CV because

the VM cycle machine undergoes a relatively small change in pressure during

its cycle. Also, the distinction between metal temperatures and gas tempera-

tures is also relatively small at this stage of analysis.

More elaborate equations for the calculation of reheat loss have been given in

the literature. These are at least 10 times more complicated than those already

given and no studies have yet been made to show that they are better. Bjorn

Qvale (69 n, 78 ad, pp. 126-127) developed a formula which takes the pressure

wave into account. He tested his equation against some experimental results from

Rea (66 h) and found it to agree within +_20%.

Rios (69 ar, 69 am) employed quite a different formulation to calculate reheat

loss. It is also very complicated. It is included in the listing of the Rios

program in Appendix D. The reheat loss is calculated on Line 430, but many

lines preceeding this line are required to calculate values leading up to this
line.

i
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5.3.4.2 Shuttle Conduction

Figure 5-23 shows how shuttle conduction works. Shuttle conduction happens

anytime a displacer or a hot cap oscillates across a temperature gradient. It

is usually not frequency-dependent for the speeds and materials used in

Stirling engines. The displacer absorbs heat during the hot end of its stroke

and gives off heat during the cold end of its stoke. Usually neither the

displacer nor the cylinder wall change temperatures appreciably during the

process. Shuttle conduction depends upon the area involved, the thickness

of the gas filled gap, G, the temperature gradient (TH-TW)/LB, the gas thermal

conductivity, KG, and the displacer stroke, SD. It is also dependent on the
wave form of the motion and in some cases, upon the thermal properties of the

displacer and of the cylinder wall. All formulas in the literature are of
the form:

QS- (YK)IZK)ISD)21KG)(TH"TW)(DC)
(G)(LB)

(5 -52
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QS = shuttle heat loss (in this case for one cylinder)

YK = wall properties and frequency factor

ZK = wave form factor

SD = stroke of displacer or hot cap, cm

KG = gas thermal conductivity, w/cm K
TH = effective temperature of hot space, K

TW = temperature of inlet cooling water, K
DC = inside diameter of engine cylinder

G = clearance around hot cap or displacer, cm

LB = length of displacer or hot cap, cm

The quantity ZK depends upon the type of displacer or hot cap motion, and YK

depends upon the thermal properties of the walls and the frequency of opera-
tion. Table 5-4 shows the results of a literature survey for ZK. Note that

there is a substantial disagreement about what ZK should be for the sinusoidal

case. The author has derived the lower value and he would recommend it. This

value, _/8, agrees with Rios but does not agree with Zimmerman. However,

there are no data that would lay the matter to rest.

_- SD >! , DISPLACER J

--- , INi ,

..
"_I __i-'-. k____ KG = GAS THERMAL CONDUCTIVITY

/ "._-. _.-_ DISPLACER AT BOTTOM OF STROKE

DISPLACER AT TOP _ _ ""_.

". i'-..

TW

Figure 5-23. Shuttle Conduction.
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Table 5-4

COEFFICIENT FOR SHUTTLE

HEAT CONDUCTION EQUATION
(Ignoring Effect of Walls)

14otion Inves ti9ator Ref. ZK

Square wave ½

time at one end,

½ time at other

Zimme rma n

Crouthamel & Shelpuk

71 be _/4 = 0.785

75 ac v/4 = 0.785

Sinusoidal

(effect of walls

ignored )

Martini (I) x/8 = 0.393

Zimmerman 71 be _/5.4 = 0.582

Rios 71 an _/8 = 0.393

_Jhite 71 l .186_ = 0.584

-- 69 aa .186_ = 0.584

(I) McDonnell Douglas Reports, never published.

Rios has published values for YK to take into account the effect of frequency

or wall thermal properties which are sometimes important. The most general

Rios theory takes into account the thermal properties of the cylinder wall as well

as the displacer or hot cap wall (71 an). H_s new theory gives:

I + XB

YK = I + (XB) 2 (6-53

where in addition:

XB = 1+ I KG(L4 ._)2_ G E +_

L4 = temperature wavelength in displacer, cm

L4 = 2_/-_E--

D4 = thermal diffusivity in displacer, cm2/sec
OM = engine speed, radians/sec

D4 = KI/((E4)(M4))

E4 = density of displacer wall, g/cm 3

M4 = heat capacity of displacer wall, j/g K

K1 = thermal conductivity of displacer, w/cm K

L5 = temperature wavelength in cylinder wall, cm

L5 = 2_20_MD_
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I<2= thermal conductivity of cylinder wall, w/cm K
D5 thermal diffusivity of cylinder wall, cm2/sec

D5 = KZ/((ES)(M5)
E5 = density of cylinder wall, g/cm 3

M5 = heat capacity of cylinder wall, j/g K

The above factor applies for simple harmonic motion and for engines in which

D4 is smaller than the thickness of the displacer wall and D5 is smaller than

the thickness of the cylinder wall. Rios gives equations for solving the pro-

blem for any periodic motion by using Fourier series expansion. To help deter-
mine whether the above factor applies, Rios gives some typical values of

temperature wavelength at room temperature (see Table 5-5).

Table 5-5

TYPICAL TEMPERATURE WAVELENGTHS

AT ROOM TEMPERATURE CONDITIONS

Reference: Rios, 71 an
Centimeters

Frequency, HZ
_laterial I 2 5 10 20 50

Mild Steel 1.21 0.86 0.54 0.38 0.27 0.17

Stainless Steel 0.74 0.53 0.33 0.24 0.17 0.11

Phenolic 0.85 0.60 0.38 0.27 0.19 0.12

Pyrex Glass 0.26 0.18 0.11 0.08 0.06 0.04

If the wall thickness is considerably smaller than the temperature wavelength,

then it may be assumed that radial temperature distribution in the walls is

uniform. Rios (71 an) proposes the following definition of YK for this case:

where

and

I

YK : i + ('SG)2 (5-54

Koli i]SG = (G)(OM) (E4)(M4)(SC) + (E5)'(M5)(SE)

E4 : density of displacer wall, g/cm _

E5 = density of cylinder wall, g/cm 3

SC = wall thickness of displacers, cm

SE : wall thickness of cylinder wall, cm

M4 = heat capacity of displacer wall, j/g K

H5 = heat capacity of cylinder wall, j g K

115

'6



116

OF POOR (_UAI.ITY

Note that when the thermal properties of the wall do not matter, YK, whether
evaluated by Equation 5-53 or 5.-54, would evaluate to nearly I. There is not
any published formula that treats the case of cylinder and displacer wall thick-
ness on the order of the temperature wavelength. There are also no published
formulas for the case of a thick cylinder wall and a thin displacer or visa-
versa. For horsepower size engines Equation _53 will apply. For model engines
or artificial heart engines Equation _54 will apply. Therefore, for horse-
power size, high pressure engines the recommended equation for shuttle heat
conduction is:

I + XB _ (SD)2(KG)(TH- TC)(DC)
QS : i + (XB)2 8 G(LB) (5-55

For model size engines using low gas pressure and very thin walls:

I x (SD)2(KG)(TH - TC)(DC)
qs : I + (SG)2 8 G(LB) (5-56

It also should be emphasized that Equation 5-55 and 5-56 are for nearly sinu-

soidal motion of the displacer or hot cap. Square wave motion would double

this result. Ramp motion should reduce this result some.

5.3.4.3 Gas and Solid Conduction

This heat loss continues while the engine is hot, independent of engine speed.

It is simply the heat transferred through the different gas and solid members

between the hot portion and the cold portion of the engine. Heat can be trans-

ferred by conduction or radiation. In the regenerator the gas moves, but under

this heading the heat loss is computed as if the gas were stagnant. In

Section 5.3.4.1, the reheat loss is computed assuming there is no longitudinal
conduction.

The uncertainty about what thermal conductivities and what emissivities to use

to evaluate this loss makes its measurement with the engine desirable. In

some engines the hot and cold spaces are heated and coO_ed directly. In this

case measuring the heat absorbed by the cooling water with the engine heated

to temperature but stopped will give this heat lass. However, all the horse-

power-size engines described in Sections 3 and 4 have indirectly heated and

cooled hot and cold gas spaces. For this case the sum of the gas and solid

conduction and the shuttle conduction can be determined by measuring the heat

absorbed by the cooling water for a number of slow engine speeds with the

engine heater at temperature and then extrapolating to zero engine speed.

Usually the following conduction paths are identified and should be evaluated
for each engine:

Path No.

1.
2.

3.

4.

.

6.

Description

Engine cylinder well.

Displacer or hot cap wall.

Gas annulus between cylinder and hot cap.
Gas space inside displacer or hot cap.

a. gas conduction
b. radiation

Regenerator cylinders.

Regenerator packing.



The engine cylinder, the displacer and regenerator cylinders must be designed
strong enough to withstand the gas pressure for the life of the engine without
changing dimension appreciably. However, extra wall thickness contributes
unnecessarily to the heat loss. For this reason the cylinder walls of most
high poweredengines are much thinner at the cold end where the creep strength
is high than they are at the hot end. This, of course, complicates evaluation
of this type of heat loss.

The following types of heat transfer problems need to be solved to evaluate
these heat losses:

1. Steady, one dimensional conduction, constant area, variable thermal
conductivity.

2. Steady, one dimensional conduction, variable area, variable thermal
conductivity.

3. Steady, one dimensional conduction through a composite material
(wire screens).

4. Radiation along a cylinder with radiation shields.

Solutions to each one of these problems will now be given.

5.3.4.3.1 Constant Area Conduction

Heat loss by conduction of this type is computedby the formula:

KG(AH)(TH- TC) (5-57
CQ = LB

where the thermal conductivities areas and lengths are germain to Path 3 and 4a

above, KG is evaluated at mid-point temperat_e. (See Table A2.)

5.3.4.3.2 Variable Area, Variable Thermal Conductivity

For one dimensional heat conduction where the heat transfer area varies con-

tinually and the thermal conductivity changes importantly, the heat conduction

path is divided into a number of zones. The average heat conduction area for
each zone is calculated. The temperature in each zone is estimated and from

this estimate a thermal couductivitiy is assigned. Figure A-2 gives the thermal

conductivities for some probable construction materials in the units used in

this m_nual. It should be noted that there is quite a variability in some
common materials like low carbon steel. Measured thermal conductivity different

by a factor of 3 is shown. Differences are due to heat treatment and the exact

composition. With commercial materials having considerable variability, it is

strongly recommended that the static heat loss be checked by extrapolating the
heat requirement for the engine to zero speed. This number would then need to

be analyzed to determine how much shuttle heat loss is also being measured and
how much is static heat loss.

For purposes of illustration, assume 3 zones are chosen along a tapered cylinder

wall. (See Figure 5-24.) Temperatures MT(2) and MT(3) must be estimated
between MT(1) and tiT(4) to start. MT(1) is the hot metal temperature and MT(4)
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x(2)-

Thermal Conductivity

AK(1)

I
AK(2 )

_AK(3)

_AK(4)

Area Temperature

AT(1)

LEVEL(l) MT(1)

AT(2)

_& LEVEL(2) MT(2)

LEVEL(3) MT(3)

LEVEL(4) MT(4)

Figure 5-Z4. Computation of Tapered Cylinder Wall Conduction.

is the cold metal temperature. The heat transfer areas AT(1) to AT(4) are com-

puted based upon engine dimensions. The heat through each segment is the same.
Thus:

CQ = (AK(1) 2 2 I X(1) (5-58

= iAK(3) +2AK{4))(AT(3) 2+AT(4>) /MTC3)'X(4) " MT(4>X.(3)_)

Let:

<( + AK(3))(AT(2)+ AT(3) )>Y(2) = (X(3) - X(2))/ AK(2) 2 2

Y(3) = (X(4) - X(3))/_ "AK(3}'+2AK(4)\,./(AT(3) +2AI(4))>

(5-59

( 5-60

(5-61
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Then:

MT(1) - MT(4)

CQ = Y(1) ÷ Y(2) + Y('3)

Once CQ is computed then:

MT(2) = MT(1) - (Y(1))(CQ)

MT(3) = MT(2) - (Y(2))(CQ)

ORIGIND_L P_;G_ t$
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(5-62

MT(2) and MT(3) are compared with the origiilal guesses.

different so that the thermal conductivities would be different, then new

thermal conductivities based upon these computed values of MT(2) and MT(3)

would be determined and the process repeated. Once more is usually sufficient.

The same procedure is used for the engide cylinder and the displacer if the

walls are tapered.

(5-63

(5-64

If they are appreciably

5.3.4.3.3 Conduction Through Regenerator Matrices

Usually the regenerator of e Stirling engine is made from many layers of fine

screen that are lightly sintered together. The degree of sintering would have

a big bearing on the thermal conductivity of the screen stack since the con-

trolling resistance is the contact between adjacent wires. Some cryogenic

regenerators use a bed of lead spheres.

In the absence of data, Gorring (61 n) gives, the following formula for conduc-

tion through a square array of uniformly sized cylinders.

I( I +qKX= +1KG "_,1"

]:- q
KM/KG) )
KM/KG)) " FF

_/KG)
KM/KG) ) + FF

(5-65

where

KX = thermal conductivity of the matrix, w/cm K

KG = thermal conductivity of the gas in the matrix, w/cm K
KM = thermal conductivity of the metal in the matrix, w/cm K
FF = fraction of matrix volume filled with solid

The thermal conductivity of the gas KG and the metal _ are evaluated at TR.

The heat loss through the screens is then determined using an equation like
Equation 5-57.

Sometimes the regenerator is made from slots in which metal foils run continu-

ously from hot to cold ends. The conductivity of the matrix in this ca_e is:

KX = (KG)(G) , (KM)(DW)
G +DW ( 5-66

Then the heat loss through the matrix is then determined using an equation like
Equation 5-57.

I
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Radiation Along a Cylinder with Radiation Shields

The engine displacers or the hot cap for a dual piston machine is usually
hollow. Heat transport across this gas space is by gas conduction and by

radiation. Radiatio_ heat transport follows the standard formula;

where

CQ = (FA)(FM)(FN)(_/4)(DB)2(Sl)((TH) 4 - TC) h.)

CQ = heat loss by radiation, watts
FA = area factor

FM = emissivity factor
FN = radiation shield factor

DB = diameter of cylinder, cm
LB = length of cylinder, cm
Sl = Stefan-Boltzman constant

= 5.67 x 10"12 w/cm 2 K4

TH = hot surface temperature, K

TC = cold surface temperature, K

(5-67

The area factor, FA, is usually determined by a graph computed by Hottel

(McAdams, Heat Transmission, 3rd Ed., p. 69). For the case of two discs

separated by non-conducting but reradiating walls, his curve is correlated

by the simple formula:

FA = 0.50 + 0.20 In DB (5-68
LB

Equation 5-68 is good for values of DB/LB from 0.2 to 7. for (DB/LB) < 0.2 use:

FA = D._BB (5-69
LB

Emissivity factor, FN, is the product of the emissivity at the hot end and at
the cold end. Thus:

FM = (EH)(EK) (5-70

The hot and cold emissivities can be obtained from any standard text on heat

transfer. This emissivity depends upon the surface finish, the temperature and

the material. There is a large uncertainty in handbook values.

If the emissivity of the radiation shields is intermediate between the emissivity
of the hot and cold surfaces, then from the number of radiation shields, NS, the

radiation shield factor, FN, is calculated approximately.

FN = 1/(1 + NS) (5-71

5.3.4.4 Pumping Loss

A displacer or a hot cap has a radial gap between the ID of the engine cylinder

and the OD of the displacer. The gap is sealed at the cold end. As the engine

is pressurized and depressurized, gas flows into and out of thi_ gap. Since
the closed end of the gap is cold, extra heat must be added to the gas as it

comes back from this gap. Leo (70 ac) gives the formula:
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QP : 2__LIL__C__O'6(L_(PX - pN)I'6(NU)I_'_CP)I"B(TH - TC)(G) 2'6

1.5(ZI) (R>Mw)I'6(I<G)O'6((TH + TC)>2) 1'6

QP = pumping heat los_., watts (one cylinder)
DC = diameter of cylinder, cm

LB = length of hot cap, cm

PX = maximum pressure, MPa

PN = nlininlun)pressure, MPa

NU = engine frequency, Hz

CP = heat capacity of gas at constant pressure, j/g K

TH = effective temperature of hot space, K

TC = effective temperature of cold space, K

G = clearance around hot cap, cm

Zl = compressibility factor of gas

R = universal gas constant = 8.314 j/g mol K .

MW = molecular weight of the gas, g/g tool /",,.
KG = thernlal conductivity of the gas/ j/g K

(5-72

5.3.4.5 Temperature Swing Loss

In computing the reheat loss (see Section 5.3.4.1) it was assumed that the regen-
erator matrix temperature oscillates during the cycle a negligible amount. In

some cases the temperature oscillation of the matrix will not be negligible.

The temperature swing loss is this additional heat that must be added by the

gas heater due to the finite heat capacity of the regenerator. The temperature
drop in the regenerator hlatrix temperature from one end to the other due tca

single flow of gas into the hot space is:

TS: M6) ( 5-73

where

TS = matrix temperature swing during one cycle, K

WR = mass flow through regenerator, g/sec

CV = gas heat capacity at constant volume, j/g K

FR = fraction of cycle time flow is into hot space
TH = effective llot space temperature, K

TC = effective cold space temperature, K

NU = engine frequency, Hz

MX : mass of regenerator matrix, g

M6 = heat capacity of regenerator metal, j/g K

Half of this, (TS)/2, is equivalent to A in Equation 5-49 and Figure 5-22 since

TS starts at zero at the start of the flow and grows to TS. Thus the temperature
swing loss is:

SL = FR(WR)(CV)(TS)/2 (5-74

Crouthamel and Shelpuk (75 ac) point out this loss but their equation is:

SL = FR(WR)(CP)(TS) (5-75
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Their equation substitutes CP for CV as was done also in Section 5.3_4.1. The

reason for division by 2 seems to be recognized in their text but is not

reflected in their formula. Based upon the discussion in Section 5.3.4.1, it

is now recommended that an effective gas heat capacity based upon Equation 5-50

be used in Equations 5-73 and 5-74.

5.3.4.6 Internal Temperature Swing Loss

Some types of regenerator matrices could have such low thermal conductivity (for

example, glass rods) that all the mass of the matrix would not undergo the same

temperature swing. The interior would undergo less swing and the outside addi-
Crouthamel and Shelpuk

where

tional swing would result in an additional heat loss.
(75 ac) give this loss as:

QI : internal temperature swing loss, watts

SL : temperature swing loss, watts

C3 = geometry constant (see below)

E6 = density of matrix solid material, g/cm3

M6 = heat capacity of regenerator metal, j/g K

KM = thermal conductivity of regenerator metal, watts/cm K

DW = diameter of wire or thickness of foil in regenerator, cm

NU = engine frequency, Hz

FR = fraction of cycle time flow is into hot space

(5-76

The geometry constant C3 is given as 0.32 by Crouthamel and Shelpuk (75 ac) who
refer to page 112 of Carslaw and Jaeger (59 o). This constant is for a slab.

The constant for a cylinder or a wire is 0.25 (59 o, p. 203).

5.3.4.7 Flow Friction Credit

The flow friction in the hot part of the engine is returned to this part of the

engine as heat. It is assumed that

FZ : RW
-_-+ HW (5-76a

where
FZ = flow friction credit, watts

RW = flow friction in regenerator, watts
HW = flow friction in heater, watts
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5.3.5 First Round Engine Oerformance Summary

At this point it is necessary to take stock of the first estimate of the net

power out and the tota', heat in based upon the first estimate of the effective
hot and cold gas temperature. The total heat requirement will be used along
with the characteristics of the heat exchangers to compute the effective hot



and cold gas temperatures. These new computed temperatures w111 be used to
determine a better estimate of the basic output power and basic heat input.
Heat losses and power losses will remain the same. The net power output is:

NP = BP - CF - HW - RW

The net heat input is:

QN = BH + RH + QS + CQ + QP + TS + QI - FZ

(5-77

(5-78

5.3.6 Heat Exchanger Evaluation

Once the first estimate of the net heat input, _, is computed, the duty of
the gas heater and gas cooler are determined:

QB = QN (5-7g

qc = QN - NP (5-80

Next, the heat transfsr coefficient for the gas heater and gas cooler is com-

n,,,^,_..=_.The most common type is the tubular heat exchanger. Small machines can

use an annular gap heat exchanger. Isothermalizer heat exchangers are possible.

5.3.7 Martini Isothermal Second-Order Analysis

So far in Sections 5.1.5 and 5.1.6, means for calculating the basic power output,

BP, apd the basic heat input, BH, have been given. Means for calculating flow
losses CF, HW, and RW in the cooler, heater and regenerator are reviewed in

Sections 5.3.3. Means for calculating heat losses which add to the basic heat

input have been discussed in Section 5.3.4. Section 5.3.5 shows how the net heat
input and power outputs are calculated, and Section 5.3.6 shows how the amount

of heat that must be transferred by the heat exchangers is determined.

To bring this all together there must be a calculation procedure that will allow

the performance of a particular engine design to be predicted. The Martini iso-
thermal analysis uses the following method:

I. Using the given heat source and heat sink temperatures and the engine

dimensions, find the basic power using a Schmidt cycle analysis.
2. Using the heat source and heat sink temperatures, calculate the basic

heat input from the power output using the Carnot efficiency.

3. Evaluate net power, NP, by Equation 5-77, net heat input, QN, by Equation

5-78, gas heater duty by Equation 5-79, and gas cooler duty by Equation
5-80.

4. Using the flow rate and duration during the cycle of gas flowing through

the heater, determine the temperature drop needed to allow the gas

heater duty to be transferred. Deduct a percentage of this temperature

drop based upon experience from the heat source temperature to obtain

a first estimate of the effective hot space gas temperature.

5. Using the flow rate and duration during the cycle of gas flowing through
the cooler, determine the temperature drop needed to allow the gas

cooler duty to be transferred. Add a percentage of this temperature

drop based upon experience to the heat sink temperature to obtain the
effective cold space gas temperature.
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. Recalculate steps 1, 2, 3, 4 and 5 using _ne effective hot space tempera-

ture for the heat source temperature an_ the effective cold space temper-

ature for the heat sink temperature. Oo this several times till there

is no appreciable change in these effective temperatures.

This method is very similar to that published previously by Martini (78 o, 78 ad,

79 ad). A FORTRAN computer program of this method is given in Appendix C.

5.3.8 Rios Adiabatic Second-Order Analysis

P.A. Rios (69 am) developed a computer code for cryogenic coolers which is

highly regarded. This has been adapted to heat _:Igine analysis. A full discus-

sion and a FORTRAN listing are included as Appendix D. An outline of this method

is now given.

1. Using the given heat source and heat sink temperatures and the engine
dimensions, find the basic power using a Finkelstein adiabatic analysis.

(The Rios equations are different and more general than Finkelstein

used but the assumptions are the same.)

2. Use the adiabatic analysis to calculate basic heat input.

3. Evaluate net power, NP, by Equation 5-77, net heat input, QN, by

Equation 5-78, gas heater duty by Equation 5-79 and gas cooler duty by

Equation 5-80.

4. Calculate heater and cooler ineffectiveness. Based upon these, modify

heat source and heat sink temperatures. Re-do steps I, 2, 3 and 4 with

new temperatures. Three iterations were always found to be enough for

convergence.

5.3.9 Conclusion for Second-Order Methods

Second-order methods have the ability to take all engine dimensions and operating

conditions into account in a realistic way without getting involved in much more

laborious computer simulation routines employed in third-order analysis. The

principles employed in second-order analysis have been described. Whether these

principles are useful in real life design depends upon their accuracy over a broad

range of applications.

!
q
i

!

5.4 Third-Order Design Methods

Third-order design methods start with the premise that the _ny different pro-

cesses assumed to be going on simultaneously and independently in the second-

order design method (see Section 5.3) do in reality importantly interact.

Whether this premise is true or not is not known and no papers have been pub-

lished in the open literature which will definitely answer the question.
Qvale (68 m, 69 n) and Rios (70 z) have both published papers claiming good

agreement between their advanced second-order design procedures and experi-

mental measurements. Third-order design methods are an attempt to compute the

complex process going on in a Stirling engine all of a piece. Finkelstein
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pioneered this development (62 a, 64 b, 67 d, 75 al) and in the last year or so

a number of other people have taken up the work. If the third-order method is

experimentally validated, then much can be learned about the workings of the
machine that cannot be measured reliably.

Third-order design methods start by writing down the differential equations

which express the ideas of conservation of energy, mass and momentum. These

equations are too complex for a general analytical solution so they are solved
numerically. The differential equations _re reduced to their one dimensional

form. Then depending on just what author's formulation is being used, addi-

tional simplifications are employed.

In this design manual the non-proprietary third-order design methods will be

discussed. In this section it will not be possible to describe these methods in

detail. However, the basic assumptions that go into each calculation procedure
will be given.

5.4.1 Basic Design Method

In broad outline the basic design method is as follows (see Figure 5-25):

I, Specify dimensions and operating conditions, i .e., temperatures, charg_
pressure, motion of parts, etc. Divide engine into control volumes.

2. Convert the differential equations expressing the conservation of mass,

momentum and energy into difference equations. Include the kinetic

energy of gas. Include empirical formulas for the friction factor and
the heat transfer coefficient.

3. Find a mathematically stable method of solution of the engine parameters

after one time step given the conditions at the beginning of that time
step.

4. Start at an arbitrary initial condition and proceed through several engine

cycles until steady state is reached by noting that the work output per
cycle does not change.

5. Calculate heat input.

5.4.2 Fundamental Differential Equations

Following the explanation of Urieli (77 d), there are 4 equations that must
be satisfied for each element. They are:
I. Continuity
2. Momentum

3. Energy
4. Equation of state

These relationships will be given in words and then in the symbols used by

Urieli using the generalized control volume shown on Figure 5-26.

%
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The continuity equation merely expresses the fact that matter can neither be
created nor destr.Jyed. Thus:

I rate of decrease of I [net mass flux convected I
mass in control volumel = 1outwards through surface (5-81I II of control volume

Urieli (77 d) expresses this relationship as:

where:

---_ +v _g =0 (5-82
@t Bx

m = m/M

= mass of gas in control volume, Kg

M = mass of gas in engine, Kg
t = time, seconds
v = _/vs
V = volume of control volume, m3

Vs = total power stroke volume of machine, m3

_.= g/MV_-_IVs)
g = mass flux den:iity, kg/m2sec

R = gas constant for working gas, J/Kg.K
Tk = cold sink absolute temperature, K

x = _/(vs ) 1/3
R = distance, meters

5.4.2.2 Momentum Equation

Rate of changes of 1
momentum within the

control volume V

Net momentum flux con-

vected outwards through
control surface A

Net surface force acting on 1
the fluid in the control I

volume V

Urieli (77 d) expresses this relationship as:

@ @ @P +F-O
-_ (gV) + V_ (g2v) + V Bx

where in addition:

v • Gl(Vs/M)

- specific volume, m3/Kg

p : #/(M(R)Tk/Vs)_
p pressure, N/m =

F - F'/M(R)Tk/(Vs) d 3

• frictional drag force, N

( 5-83

( 5-84
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5.4.2.3 Energy Equation

Rate of heat transfer
to the working gas
from the environment

through control surface A
I Rate of energy I

accumulation
within the control

volume V !

Net energy flux convected)
outwards by the working

gas crossing the control
surface A

+

Net rate of flow work I

in pushing the mass of|
working gas through |
the control surface A I

+

Net rate of mechanical work done by

the working gas on the environment

by virtue of the rate of change of
the magnitude of the control volume V

Urieli (77 d) expresses this relationship finally as:

@t = _t- + V_ - g(v) CVBx d_

where in addition:

Q = Q/(MR(Tk))

Q = heat transferred, J

y = ratio of specific heat capacity of working gas = CP/CV
T = T/Tk

t = working gas temperature in control volume, K

W = W/(M(R)Tk)

= mechanical work done, J

( 5-85

(5-86

5.4.2.4 Equation of State

Due to the normalizing parameters Urieli uses the equation of state merely as:

p(V) = m(T) (5-87

5.4.3 Comparison of Third-Order Design Methods

A number of third-order design methods will be described briefly.

5.4.3.1 Urieli

This design method is described fully in Israel grieli's thesis (77 af). A

good short explanation is given in his IECEC paper (77 d). He applies his

method to an experimental Stirling engine of the two-piston type. The hot

cylinder is connected to the cold cylinder by a number of tubes in parallel.
Sections of each one of these tubes are heated, cooled or allowed to seek their
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own temperature level in the regenerator part. This type of engine was chosen

because of ease in programming, and because heat transfer and fluid flow cor-
relations for tubes are well known. Also, an engine like this is built and is

operating at the University of Witwatersrand in Johannesburg, South Africa.
The intention is to obtain experimental confirmation of this design method.

Urieli converts the above partial differential equations to a system of
ordinary differential equations by converting all differentials to difference -

quotients except for the time variable. (See Appendix A.) Then he solves

these ordinary differential equations using the fourth order Runge-Kutta
method starting from a stationary initial condition. The thesis contains the

FORTRAN program. The first copies of this thesis has three errors in the

main program. Urieli applied this program to the JPL test engine (78 ar).

However, no data have yet come out to compare it with. lhe program is
further discussed in general (79 ac).

5.4.3.2 Schock

Al Schock, Fairchild Industries, Germantown, Maryland, presented some results of

calculations using his third-order design procedure at the Stirling Engine Seminar
at the Joint Center for Graduate Study in Richland_ Washington, August 1977.

His calculation started with the same differential equations as Urieli but his

method of computer modeling was different but undefined. He confirmed what

Urieli had said at the same meeting that the time step must be smaller than the
time it takes for sound to travel from one node to the next through the gas.

Al Schock's assignment was to develop an improved computer program for the free

displacer,• free piston Stirling engine built by Sunpower for DOE. The engine

had a very porous regenerator. Although the pressures in the expansion and

compression space of the engine were different, they were not visibly different

when the gas pressure versus time was plotted.

This program is as yet not publicly documented. Schock is awaiting good experi-
mental data with which to correlate the model. Many results were presel_ted at

the 1978 IECEC (78 aq) and in the Journal of Energy (79 eh). Schock makes good

use of computer-drawn graphics to show what is going on in a free piston machine
that was simulated. The last reference states that a listing can be obtained by

contacting Al Schock. The author has contacted Dr. _chock but has yet to receive

the listing. The program is fully rigorous, but for economy it can be cut down

to notinclude the effect of gas acceleration.

5.4.3.3 Vanderbrug

In reference 77 ae, Finegold and Vanderbrug present a general purpose Stirlin@

engine systems and analysis program. The program is explained and listed in a

42-page appendix.

129

_±/ ......L/i..... ..............



One paper (79 aa) presents some additional information on this program and shows

how SCAM agrees with one experimental point so far published. Table 5-6 shows

the comparison. Note that the simple Schmidt cycle predicts almost as well as

the SCAM prograh1. Many more data points are needed before SCA)4 will have a
fair evaluation.

5.4.3.4 Finkelstein

Ted Finkelstein has made his computer analysis program (75 al) available

through Cybernet. Instructions and directions for use are obtainable from

TCA, P. O. Box 643, Beverly Hills, California 90213. One must become skilled

in the use of this program since as the engine is optimized it is important to

adjust the temperature of some of the metal parts so that the metal temperature

at the end of the cycle is nearly the same as at the beginning.

Table 5-6

SUMMARY OF EXPERIMENTAL AND

ANALYTICAL TEST RESULTS (79 aa)

Englne Temp.,
UF, of

Cooler Heater

Working Press Indicated Power System Power

Avg. Psia IHP

Expand Comp Expand Comp IHP BHP**

Experimental* 105 1300 326 310 8.98 -4.33 4.65 -1.9

Schmidt Cycle 105 1300 318 318 7.26 -2.33 4.93 --

SCAM 105 1300 326 310 7.64 -2.93 4.70 -1.3

* Test number 8 16-I0

**Dynamometer measurement

I

i

4

Urieli and Finkelstein use the same method in handling the regenerator nodes

in that the flow conductance from one node to the next depends upon the

direction of flow. Finkelstein solves the same equations as Urieli presents

but he neglects the kinetic energy of the Rowing gas. By so doing, he is

able to increase his time step substantially. Neglecting kinetic energy will

cause errors in predicting pressures during the cycle. However, it is not

clear what effect this simplifying assumption has upon power output and

efficiency calculations. To make a comparison one would have to use the same
correlations for friction factor and heat transfer coefficient and be certain

that the geometries are identical.

Finkelstein claims that his program has been validated experimentally but the

results are proprietary.
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5.4.3.5 Lewis Research Center (LeRC)

The author has attempted to formulate a design procedure based upon some com-

putation concepts originally used by M. Mayer at McDonnell Douglas. A simplified

version was presented (75 ag). However, an attempt failed to extend the method

to include a real regenerator with dead volume and heat transfer as a function

of fluid flow. The procedure was computationally stable and approached a

limiting value as the time step decreased. But when the heat transfer coeffi-

cients were set very high, there should have been no heat loss through the

regenerator, but the computation procedure did not allow this to happen

because gas was always entering the hot space at the temperature of the hottest

regenerator element. There was also the problem of finding the proper metal

temperature for the regenerator elements.

Parallel and independently of the author, Roy Tew, Kent Jefferies and Dave Miao

at LeRC have developed a computer program which is very similar to the author's

(77 bl). In addition, they have found a way of handling the regenerator which

gets a_ound the problem the author encountered.

The LeRC method assumes that th_ momentum equation need not be considered along

with the equations for continuity, energy and equation of state. They assume

that the pressure is uniform throughout the engine and varies with time during
the engine cycle. LeRC combines the continuity, energy equation and equation

of state into one equation.

dT hA wi wo V _.E (5-88
d_ = m-_(Tw- T) + _ (Ti - T) + _ (To - T) + _ dt

heat transfer flow in flow out pressure

change

This equation indicates that the temperature change in a control volume depends

upon heat transfer, flow in and out and pressure change. Equation 5-88 could

be solved by first-order numerical integration or by higher order techniques

such as 4th order Runge Kutta_ LeRC did not use this approach.

LeRC used an approach of separating the three effects and considering them suc-

cessively instead of simultaneously. From a previous time step they have the

masses, temperature and volumes for all 13 gas nodes used. From this they cal-

culate a new common pressure. Using this new pressure and the old pressure and

assuming no heat transfer during this stage, they calculate a new temperature

for each gas node using the familiar adiabatic compression formula. Next, the

volumes of nodes 1 and 13, the expansion and compression space, are changed to

the new value based upon the rhombic drive. New masses are calculated for each
control volume. Once the new mass distribution is known, the new flow rates

between nodes are calculated from the old and new mass distributions. The new

gas temperature is now modified to take into account the gas flow into and out

of the control volumes during the time step. During this calculation it is

assumed that each regenerator control volume has a temperature gradient across

it equal to the parallel metal temperature gradient and that the temperature of
the fluid that flows across the boundary is equal to the average temperature of

the fluid before it crossed the boundary; heater and cooler control voluk_es are

at the bulk or average temperature throughout. Next, local heat transfer coef-
ficients are calculated based upon the flows. Temperature equilibration with
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the metal walls and matrix is now calculated for the time of one time step and

at constant pressure. An exponential equation is used so that no matter how

large the heat transfer coefficient, the gas temperature cannot change more

than the AT between the wall and the gas. Heat transfer during this equili-

bration is calculated. In the regenerator nodes heat transfer is used to change

the temperature of the metal according to its heat capacity. In the other
nodes where the temperature is controlled, the heat transfers are summed to

give the basic heat input and heat output. This final temperature set after

temperature equilibration along with the new masses and volumes calculated

during this time step are now set to be the old ones to start the process for
the next time step.

The model is set up to take into account leakage between the buffer space and
the working gas volume. LeRC has developed an elaborate method of accelerating

convergence cf the metal nodes in the regenerator to the steady state temperature.

On the final cycle LeRC considers the effe_ of flow friction to make the

pressure in the compression and expansion space different from each other in a

way to reduce indicated work per cycle.

To quote Tew (77 bl):

Typically it takes about 10 cycles with regenerator temperature

correction before the regenerator metal temperatures steady out.

Due to the leakage between the working and buffer spaces, a
number of cycles are required for the mass distribution between

working and buffer space to settle out. The smaller the leakage
rate, the longer the time required for the mass distribution

to reach steady-state. For the range of leakage rates considered

thus far it takes longer for the mass distribution to steady out
than for the regenerator metal temperatures to settle out.

Current procedure is to turn the metal temperature convergence
scheme on at the 5th cycle and off at the 15th cycle. The

model is then allowed to run for 15 to 25 more cycles to allow
the mass distribution to settle out. When a sufficient number

of cycles have been completed for steady operation to be
achieved, the run is terminated.

Current computing time is about 5 minutes for 50 cycles on a
UNIVAC 1100 or 0.1 minute per cycle. This is based on 1000

iterations per cycle or a time increment of 2 x lO-S seconds

when the engine frequency is 50 Hz. The number of iterations

per cycle (and therefore computing time) can be reduced by at
least a factor of 5 at the expense of accuracy of solution.

On the order of 10% increase in power and efficiency results
when iterations per cycle are reduced to 200 from 1000.

The agreement between the NASA-Lewis model and experiment is discussed in
(79a). They got agreement between calculated results and measurements

only after they multiplied the computed friction factor for the regenerator by
a factor of 4 for hydrogen and by a factor of 2.6 for helium. In a different

way this is the same order of maonitude correction that the best second-order
an_lysis requires.
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5.4.4 Conclusions on Third-Order Design Methods

I. A number of well constructed third-order design methods are
available.

2. A choice is available between rigorous third-order (Urieli, Schock,

Vanderbrug), third-order ignoring fluid inertia (Finkelstein), third-
order assuming a common pressure (LeRC).

3. There is a spectrum of design methods reaching from the simplest first-

order through simple and complex second-order culminating in rigorous third-

order analysis. However, all these methods depend upon heat transfer and

fluiu flow correlations based upon steady flow instead of periodic flow,
because correlations of periodic flow heat transfer and flow friction which

should be used have not been generated.
4. Third-order analysis can be used to compute flows and temperatures inside

the engine which cannot be measured in practice.

5. Third-order analysis can be used to develop simple equations to be used in

second-order analysis.

6. Eventually when all calculation procedures are perfected to agree as well as

possible with valid tests of Stirling engines, third-order design methods

will be the most accurate and also the longest. The most rigorous formu-

lations of third-order will be much longer and more accurate than the least

rigorous formulations.
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6. REFERENCES

6.1 Introduction

The references in this section are revised and extended from the first edition

(78 ed). The authors own accumulation has been cataloged. Also extensive biblio-

graphies by Walker (78 dc) and Aun (78 eb) were checked for additional references.

Cataloging of references continues. The following list is as of April 1980.*

Each entry in the following reference list corresponds to a file folder in the

author's file. If the author has an abstract or a copy of the paper an asterisk

(*) appears at the end of the reference.

All personal authors are indexed (see Section 7 ).

All known corporate authors are indexed (see Section 8).

The subject index included in the first edition has been deleted because it was

found not to be very useful. Possibly some day an index to the Stirling engine
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78 ap, 79 z, 79 ab, 79 ae, 79 cf

Shaker Research Corp.

78 v, 78 da, 79 1

Sigma Research Inc.

78 m, 79 ay, 79 bk

Purdue University Space Power Systems, Corp.

RCA

68 m, 68 r, 69 n, 70 m, 71 aj,
71 ak, 74 br

72 af, 74 y, 75 ac

R & D Associates

79 be

Reactor Centrum Nederland

66 d

Reading University - U.K.

75 k, 78 ay

Recold Corp.

60 s

Research Corp.

38 b, 39 a, 71 aq, 72 x

60 b, 60 f

Stanford University

50 a, 52 a, 53 a, 76 ak

Stirling Technology Inc.

80 x

Stirling Power Systems

78 ci, 78 cj, 79 ap, 80 p

Solar Energy Research Institute

79 cu

Stone & Webster Engineering Corp.

71 ak

Sunpower

75 n, 75 s, 75 cf, 76 bd, 78 e,

78 as, 78 dr, 78 du, 79 ar, 79 bf

Rider-Ericsson Engine Co. Syracuse University

06 a, 06 c 64 d, 65 d, 66 i

Rocketdyne

64 c, 65 c, 67 c, 67 d

Roesel Lab

74 s

TCA Stirling Engine Research and

Development Co.

70 f, 70 g, 72 u, 75 al, 78 al

Technical University of Denmark

77 cd
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Texas Instruments, Inc.

67 l, 72 am

Thermo Electron Corp.

71 b, 72 d, 74 ba, 75 ai, 76 bc,

78 ac, 78 cx, 79 cy

Thermo-Mechanical Systems Co.

72 ap

Tokyo Gas Company, Ltd.

78 ed, 79 t

Union Carbide Corp.

75 an

United States Congress, OTA

78 n

United States Department of Army

66 e, 67 q, 73 q, 73 as, 77 ab

United States Environmental Protection

Agency

73 ak, 74 an

United States Naval Post-Graduate-School

64 a, 64 e

United Stirling of Sweden

70 o, 71 m, 71 ah, 73 a, 73 s,

74 z, 75 j, 75 az, 75 bk, 75 by,

71 i, 77 j, 77 al, 77 am, 77 bj,

77 cl, 78 aa, 78 cu, 79 r, 79 bv,

80 t, 80 v

United Technologies Research Center

79 s

Universite Paris X

74 cc

University of Bath

68 af, 71 ae, 72 aj, 72 ax, 73 bd,

74 bu, 78 f, 78 bs, 79 ao

University of Birmingham

70 k, 71 u

University of Calgary

68 n, 68 ad, 69 p, 69 q, 70 g,

71 k, 71 n, 71 o, 72 j, 73 i, 73 j,

73 m, 73 u, 73 v, 74 ao, 74 bx,

76 ax, 76 bl, 77 cg, 78 f, 78 bs,

78 dc, 79 y, 79 ao, 80 c, 80 d,

80 n, 80 o

University of California at Berkeley

75 am

University of California at

Los Angeles

79 m

University of California at San Diego

79 bx, 79 by

University of Dakar - Senegal

77 cu

University of Florida

69 o, 70 q

University of London

52 b, 53 c, 61 q, 67 f

University of Michigan

61 n, 68 b

University of Texas

74 bt
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University of Tokyo

61 m, 69 m, 78 ed, 78 ee, 79 t,

79 u, 79 aw, 79 ax, 79 bh

University of Toledo

78 ai

University of Utah

75 ba, 76 au

Wright Patterson AFB

62 o, 73 au, 73 av, 74 l

Wolfe &Holland, Ltd.

79 ae

Zagreb University

68 k

University of Wisconsin

60 j, 60 v, 60 x, 61 b, 71 h

University of Witwatersrand

75 w, 76 i, 76 x, 76 y, 77 c,

77 d, 77 e, 77 g, 77 af, 77 bq,
78 s, 78 am, 79 g, 79 af, 79 ah,

79 bb, 79 bg, 79 bt, 79 cx

Utah University

74 az

Washington State University, Medical
College

77 x, 78 bz, 79 an

Wayne State University

71 q, 72 r, 73 ar

Westinghouse

73 ax, 74 w, 74 ax, 74 ay, 75 ab,
75 cb, 76 am, 76 ao, 76 ap, 77 cb

West Pakistan University of Engineering

and Technology

65 i

Winnebago Industries, Inc.

78 ch
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9. DIRECTORY

This section gives as complete list as possibly of the people and organi-

zations involved in Stirling enginesin 1979. Eighty-two organizations responded to

the questionnaire that was sent out or are mentioned in the recent literature

as being currently active in Stirling engines. These questionnaires are given

in Section 9.5 in alphabetical order by company. For the convenience of the

reader, the questionnaires were analyzed to obtain as far as possible a ready
index to this information. The following indexes are given:

I. Company

2. Contact Person

3. Country and Persons Working

4. Service or Product

9.1 Company List

Even though the questionnaires in Section 9.5 are given in alphabetical
order by organization, it is sometimes difficult to be consistant about the

organization. Therefore, for the convenience of the reader, the organizations

are given with the entry number in Table 9-I.

9.2 Contact Person

The person or persons mentioned in the questionnaires as the contact
person are given in alphabetical order in Table 9-2.

9.3 Country and Persons Working

This information is not as informative as was hoped as many of the large

efforts in Stirling engines like Phillips and United Stirling did not answer

this question.* Table 9-3 shows the country, gives the number used in Section

9-5 and in Tables 9-I and 9-2, and gives the number of workers if it was

given. Otherwise a number is estimated, The number is preceeded by ail approxi-

mation sign (). The total number of organizations and workers for each country

is giv@n in Table 9-4.

9.4 Service or Product

In order for the imformation contained in this survey to be of maximum

use, Table 9-5 has been prepared which gives the service or product offered
or being developed. The numbers in Table 9-5 refer to entry mumbers in
Section 9-5.

9.5 Transcription of questionnaires

The Questionnaire set out was somewhat ambiguous so the answers came

back in different ways. Also to keep from repeating the questions the follow-
ing format is followed:

*However, estimates were made from other sources.
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Table 9-I

ORGANIZATIONS ACTIVE IN STIRLING ENGINES

I. Advanced Mechanical Technology, Inc.

2. Advanced Energy Systems Division, Westinghouse Electric Corporation

3. Aefojet Energy Conversion Company

4. AGA Navigation Aids Ltd.

5. AiResearch Company

6. Aisin Seiki Company, Ltd.

7. All-Union Correspondence Polytechnical Institute

8. Argonne National Laboratory

9. Boeing Commercial Airplane Company

lO. British Oxygen Company

l!. Cambridge University, Engineering Department

12. Carnegie - Mellon University

13. CMC Aktiebolag

14. Cryomeck, Inc.

15. CTI-Cryogenics

16. G. Cussons, Ltd.

17, Daihatsu Diesel Compny

18. Eco Motor Industries Ltd.

19. Energy Research & Generation, Inc.

20. Fairchild Industries

21. Far Infra Red Laboratory

22. F. F. V. Industrial Products

23. Foster-Miller Associates

24. General Electric Space Division

25. Hughes Aircraft Company

26. Japan Automobile Research Institute, Inc.

27. Jet Propulsion Laboratory

28. Joint Center for Graduate Study

29. Josam Manufacturing Company

30. Leybold Heraeus

31. M.A,N, - AG

32. Martini Engineering

33. Martin Marietta Inc.

34. Massachusetts Institute of Technology

266



35. Mechanical Engineering Institute

36, Mechanical Technology Incorporated

37. Meiji University

38. Mitsubishi Heavy Industries

39. N. V. Philips Industries

40. N. V. Philips Research Laboratories

41. National Bureau of Standards

42. National Bureau of Standards Cryogenics Laboratory

43. NASA-Lewis Research Center

44. Nippon Piston Ring Company, Ltd.

45. Nissan Motor Company, Ltd.

46. North American Philips Corporation

47. Wm. Olds and Sons

48. Ormat Turbines

49. Alan G. Phillips

50. Radan Associates Ltd.

51. Ross Enterprises

52. Royal Naval Engineering College

53. Schuman, Mark

54. Shaker Research Corporation

55. Shipbuilding Research Association of Japan

56. Ship Research Institute

57. Solar Engines

58. Starodubtsev Physicotechnical Institute

59. Stirling Engine Consortium

60. Stirling Power Systems Corporation

61. Sunpower Inc.

62. TCA Stirling Engine Research and Development Company

63. Technical University of Denmark

64. Texas Instruments

65. Thermacore, Inc.

66. Tokyo Gas Company

67. Tokyo Institute of Technology

68. United Kingdom Atomic Energy Authority

69. United States Department of Energy

70. United Stirling

71. Urwick, W. David
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72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

Late

82.

83.

University of

University of

University of

University of

University of

Calgary

California, San Diego

Tokyo

Tokyo, Department of Mechanical

Tokyo, Faculty of Engineering

University of Witwatersrand

Weizmann Institute of Science

West, C. D.

Yanmar Diesel Company

Zagreb University

Insersions:

Thomas, F. Brian

Clark Power Systems Inc.

Engineering
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Table 9-2

ALPHABETICAL LIST OF CONTACT PERSONS

Allen, Paul C. (73)

Anderson, Niels Elmo (63)

Beale, William T. (61)

Beilin, V. I. (7)

Benson, G. M. (19)

Billett, R. A. (50)

Bledsoe, J. A. (24)

Blubaugh, Bill (3)

Carlquist, Stig. G. (!3)

Chellis, Fred F. (15)

Chiu, W. S. (24)
Clarke, M. A. (52)

Cooke-Yarborough, E. H. (68)

Curulla, J. F. (9)

Dc_.:els, Alexander (46)

Derderian, H. (18)

Didion, David (41)

Doody, Richard (25)

Ernst, Donald M. (65)

Finkelstein, Ted (62)

Fujita, H. (55)

Fuller, B. A. (16)
Gifford, William (14)

Goto, H. (17)
Griffin, John (57)

Hallare, Bengt (70)
Haramura, Shigenori (6)

Hayashi, H. (26)
Hirata, Masaru (75)

Hoagland, Lawrence C. (1)
Hoehn, Frank W. (27)

Holtz, Robert E. (8)

Hoshino, Yasunari (45)

Hughes, William F. (12)
Hurn, R. W. (69)

Ishizaki, Yoshihiro (76)

Isshiki, Naotsugu (67)

Johnston, Richard P. (28)

Kolin, Ivo (81)
Krauter, Allan I. (54)

Kushiyama, T. (38)

Lampert, William B. (60)

Leo, Bruno (25)

Marshall, W. F. (69)

Martini, W. R. (32)

Marusak, Tom (36)

Miyabe, H. (37)
Moise, John (3)

Nakajima, Naomasa (74)

Ogura, M. (66)
Olds, Pet_," (47)

Organ, Allan J. (ll)
Paulson, Douglas N. (73)

Perciv{.l, Worth (70)

Phillips, Alan G. (49)
Polster, Lewis (29)

Pouchot, W. D. (2)

Pronovost, J. (18)
Qvale, Bjorn '_3)

Ragsdale, Robert (43)

!77)Reader, . I. (52)
Rice, Graham (59)
Ross, Andrew (51)
Schaaf, Hanno (31)
Schock, A. (20)

Schuman, Mark (53)

Shtrikman, S. (78)

Smith, Joseph L., Jr. (34)

Spigt, C. L. (40)
Stultie._s, M. A. (39)

Sugawara, E. (44)
Sutton-Jones, K. C. (4)

Syniuta, Walter D. (1)
Toscano, William M. (23)

Tsukahara, Shigeji (56)

Tufts, Nathan, Jr. (30)
Umarov, G. Ya (58)

Urielli, Israel (48)

Urwick, W. David (71)

Walk_r, G. (72)
West, C. D. (79)

Wheatley, John C. (73)
White, Maurice A. (28)

Yamada, T. (80)
Yamashita, I. (35)

Thomas,DF. B. (82)Clark, . A. (83)
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Netherlands

Org. No. Workers

39 _50
40 ~100

Table 9-3. COUNTRY AND PERSONS WORKING (continued)

U.S.S.R. Germany Canada

0rg. No. Workers 0rg. No. Workers 0rg. No. Workers

7 12 30 6 18 4

58 ~ 5 31 _50 72 2

Israel

Org. No. Workers

48 1
78 ,-,1

South Africa

0rg. No. Workers

77 3

Denmark Australia Malta

Org. No. Workers 0rg. No. Workers 0rg. No. Workers

Yugoslavia

0rg. No. Workers

63 1 47 ~l 71 0 81 1

oo
-_:xl

0_

C: "-_
.,

I',J,

.,.J

I,.J

ii,



Table 9-4

WORLDWIDE BREAKDOWN IN STIRLING ENGINE

Nation Number of

Organizations

United States 40

Japan 16

United Kingdom 9

Sweden 3

Netherlands 2

West Germany 2

U.S.S.R. 2

Canada 2

Israel 2

South Africa l

Denmark l

Australia 1

Malta l

Yugoslavia 1

INDUSTRY

Number of
Known Workers

~307

~44

~2B

~176

~150

~56

~17

6

~2

~3

I

~I

1

l

TOTAL 83 ~793
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Table 9-5

STIRLING ENGINE PRODUCTS AND SERVICES

(Numbers refer to entry numbers in Section 9.5)

Artificial Heart Power - 2, 3, 28, 75

Automobile Engines - 6, 26, 29, 36. 43, 70

Ceramic Materials - 19

Coal-fired Engines - I, 8, 23, 31, 70
Combustors - 38

Cooling Engines - 5, I0, II, 14, 15, Ig, 21, 25, 33, 39, 40, 42. 62, 64, 76

Cryo Engines - 35, 76

Demonstration (Model) Engines - 16, 18, 30, 47, 51, 53, 57, 71, 82

Diesel-Stirling Combined Cycle - 75

Electric Generator Engines - 6, 7, 18, 19, 22, 83

Engine Analysis - II, 20, 32, 37, 52, 56, 59, 61, 62, 63, 74, 75, 77, 78

Engine Plans - II

Free Piston Engines - 19, 36, 40, 61
Fuel Emissions - 69

Gas Bearings - 19

Gas Compressors - 19, 34, 36

General Consulting Services - 13, 32, 62, 72

Heat Exchangers - 38, 59, 72, 74, 81

Heat Pipes - 52, 59, 65

Heat Pumps - 19, 24, 40, 41, 62, 63, 66, 76

Hydraulic Output - 19, 83

Isothermalizers - 19, 32

Linear Electric Generators - 19, 36, 61

Liquid Piston Engine - 52, 77, 79

Liquid Working Fluid Engines - 73

Mechanical Design - II, 13, 17
News Service - 32, 49, 50

Regenerators - 19, 37, 59, 72

Remote, Super-reliable Power - 4, 60, 68
Rotary Stifling Engine - 76

Seal Research - 9, 12, 19, 44, 54, 56

Ship Propulsion - 52, 55
Solar Heated Engines - 27, 36, 57, 58, 61

Test Engines,-18, 24, 27, 30, 45, 51, 59, 67, 77, 80, 81

Wood Fired Engines - 18, 51, 67, 74

j,
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(Entry No. ) Company Name (Persons Emploj_ed*)
Company Address
Attn: Persons to Contact

Tel ephone
*on Stirling work

indicates that the question was not answered and number was estimated by
author.

(I) Advanced Mechanical Technology Inc. (AMTI) (3)
141 California St.

Newton, Mass. 02158

Attn: Dr. Lawrence C. Hoagland or Dr. Walter D. Syniuta
Telephone: (617) 965-3660

Department of Energy (Argonne National Laboratories) sponsored program

on large stationary Stirling engines (500-3000 hp) for use in Integrated
Community Energy Systems (ICES).

AMTI is prime contractor for DOE program and United Stirling (Malmo,

Sweden) is subcontractor on Stirling engine design/development. Ricardo

Consulting Engineers Ltd. (England) will serve as consultants to USS. Emphasis

is on burning coal and coal-derived fuels and biomass in large engines for ICES.

Program is just getting underway. We are under contract for phase I only
which is an 8-month conceptual design study.

(2)

Stirling engine.

Advanced Energy Systems Div., Westinghouse Electric Corp. (0)
P. O. Box I0864

Pittsburgh, Pa. 15236
Attn: W. D. Pouchot

Had worked on System Integration for artificial heart power using a

Program was phased out in 1978. No current activity.

(3) Aerojet Energy Conversion Co. (5)
P. O. Box 13222

Sacramento, Ca. 95813

Attn: John Moise or Bill Blubaugh

Telephone: (916) 355-2018

Have developed thermocompressor with potential for lO-year high relia-

bility life for driving fully implantable left heart assist system. The unit

has demonstrated over 17 percent efficiency with 20 watts input, weighs 0.94

kg and has a volume of 0.43 liters. Over 120,000 hours of endurance testing

has been accomplished on thermocompressors for heart assist application.

(4) AGA Navigation Aids Ltd. (,_3)

Brentford, Middlesex, TW 80 AB, England
Attn: K. C. Sutton-Jones

Telephone: 01-560 6465 Telex: 935956

We have reached the stage of preparing production drawings following
full evaluation of the prototype thermo-mechanical generator. It is our

intention to commence production early in 1980 and expect to have this machine

on the market by the middle of next year (viz. June 1.980.) It is anticipated

!
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that the selling price for this unit will be approximately _II,000 and the
unit we provide will be capable of delivering 60W 24V continuously into a

battery for the consumption of approximately 450 KG. of pure propane gas per
annum.

We hope to undertake further development fo ascertain that the machine

will also operate from less refined fuel, but this will take some time yet to
perfect.

(B) AiResearch Co.

Cryo/Cooler Div.

Murray Hill, N. J.

No Response

<,.,IO)

(6) Aisin Seiki Co., Ltd. (~7)
l, Asahi-machi 2-chome

Kariya City, Aichi Pref., Japan
Attn: Shigenori Haramura

Telephone: 0566 24 8337 Telex: 4545-714 AISIN J

The development of the Stirling engine has been started from October,

1975, by Aisin Seiki Co., Ltd., a member of Toyota Motor Group of Companies.

We are at present developing a 50 KW Stirling engine for automobile and genera-

tor use. This is in cooperation with Tokyo University and under a grant from

M.I.T.I. We are trying to achieve the max shaft power of 50KW/3000 rpm and
the thermal efficiency of 30 percent/1500 rpm. We have recently achieved

41 KW/2000 rpm and 27.80 percent/lO00 rpm. Furthermore we are also developing

a lO hp engine and are conducting research into heat pump systems in coopera-

tion with Tokyo Gas Co.

(7) All-Union Correspondence Polytechnical Institute (12)
USSR, Moscow, 129278

ul, Pavla Korchagina, 22
Attn: Docent Beilin V. I.

Telephone: 283 43 87

Developing nf highly effective device with the 20 KW power engine,
using gaslike hydroge as fuel.

(Martini comment: This probably means hydrogen working gas.)

(8) Argonne National Laboratory (6)

Components Technology Division

Building 330

Argonne, Illinois 60439
Attn: Robert E. Holtz

Telephone: (312) 972-4465 Telex: 910-258-3285

The goal of this program is to develop and demonstrate large stationary

Stirling engines, in the 500 to 3000 hp range, that can be employed with solid
coal, coal-derived fuels, and other alternate fuels. Included in this effort

are engine design, integration of the heat source with the engine, component
testing, prototype construction and testing, and implementation.

Accomplishments: Three industrial teams have initiated a conceptual design
study of alternate engine configurations. This effort will be followed by

the industrial based final design and construction efforts. Studies concerned
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with the integration of the engine with various combustor options are under-

way. Also, experimental efforts dealing with both seals testing and the

measurement of the heat transfer and fluid mechanics during oscillating flow

conditions are underway.

(9) Boeing Commercial Airplane Co. (1)
P. O. Box 3707 M.S. 4203

Seattle, Wa. 98124
Attn: John F. Curulla

Telephone: (206) 655-8219

Evaluation of Reciprocating seals concepts has shown that no seal to

date (1) Footseal, (2) NASA Polyimide Chevron Seal, (3) Bell Seal or (4)

Quad Seal can meet the stringent requirements of 1500 fpm surface speed with
1750 psig gas pressure and 275VF ambient.

(IO) British Oxygen Co.
Cryocooler Division

Wembley, London, England.

No Response

(~5)

(ll) Cambridge University Engineering Department (1)

Trumpington St.

Cambridge CB2 IPZ
U. K.

Attn: Allan J. Organ
Telephone: Cambridge 66466 Telex: 81239

Development of computer simulations of Stirling cycle machines. Design

of miniature Stirling cryogenic coolers. Design of Stirling engines I/4 -

5 KW. Preparation of facsimile manufacturing drawings of Stirling engines no

longer commercially available (KYKO, Philips 200 Watt (1947) etc.)

(12) Carnegie-Mellon University (1)

Pittsburgh, Pa. 15213

Attn: William F. Hughes

Telephone: (412) 578-2507

Study of seals for Stirling engine (reciprocating dry and lubricated.)

We have been interested in temperature calculations and development of

criteria for operation below deleterious temperatures.

Presently we have been able to estimate temperature rises in these

seals and hope to extend work to include elasto-hydrodynamic and pumping

effects. This program is sponsored by NASA.

(13) CMC Aktiebolag (1)

Sanekullavagen 43
S-21774 Malmo
Sweden

Attn: Stig G. Carlqvist

Telephone: 040-918602 Telegrams: Cemotor

Engineering consulting activity based on 30 years of development experi-

ence on advanced heat engines; 12 years on turbo-charged Diesel engines and

12 years on Stirling engines. Current program on Stirling engines is in

the power range of I0 - 3000 HP, direct as well as indirect heat transfer and

is mainly based on a new simplified engine concept and on improved components.
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Accomplished in earlier activity the build-up of major Stirling engine company

in Sweden (including advanced Stirling engine R & D laboratory.)

(14) Cryomeck, Inc.
Syracuse, New York, Attn, Dr. William Gifford (~5)

No response
(Martini comment: Dr. Gifford is also Professor Mechanical Engineering

at the University of Syracuse. Cryomeck is a cooling engine company.

(15) CTI-Cryogenics (~20)
266 Second Ave.

Waltham, MA 02154
Attn: Fred F. Chellis

Telephone: (617) 890-9400

Design, development and manufacture of cryogenic coolers operating on

the Stirling cycle, Vuilleumier cycle, and other regenerative cycles.

Presently in production manufacture of the Stirling cycle Army Common Module

Cooler. We are the American builder and supplier for the Philips designed

Model B Stirling cycle machines for production of liquid nitrogen or liquid

oxygen at about 25 liters per hour.

(16) G. Cussons Ltd. (~2)
I02 Great Clowes Street

Manchester, M7 9RH

England
Attn: B. A. Fuller

Telephone: Telex: 667279

Supply of Stirling cycle hot air engine to universities, technical

colleges and vocational training centres worldwide.

(17) Daihatsu Diesel Co. - Japan (~2)
Mr. H. Goto

No response
Involved in design and construction of an 800 hp Stirling engine for a

sea craft (79a, 79bj).

(18) Eco Motor Industries Lid (4)
P. O. Box 934

Guelph NIH 6M6

Ontario, Canada
Attn: J. Pronovost or H. Derderian

Telephone: (519) 823-1470

I/4 HP instrument test bed. Wood fired commercial model under develop-

ment. I/2 and l KVA. commercial generating set propane fired under

development.

(19) Energy Research & Generation, Inc. (lO)
Lowell & 57th Street

Oakland, Ca. 94608
Attn: G. M. Benson

Telephone: (415) 658-9785
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ERG has been developing for over ten years resonant free-piston Stirling
type machines (Thermoscillators) including hydrostatic drives, linear alter-

nators, heat pumps, cryogenic refrigerators and gas compressors. In addition,

development has continued on a cruciform variable displacement crank-type

Stirling engine having a Rinia arrangement. ERG is performing R & D on heat

exchangers, ,teat pipes, isothermalizers, regenerators, gas springs, gas

bearings, seals, materials (including silicon nitride and silicon carbide), and

computer modeling as well as on linear motors and alternators, hydraulic

drive components and external heat exchangers and heat sources (including
combustors and solar collectors.) ERG has built and tested several test

engines and presently has separate electro-mechanical, hydraulic, engine and

heat exchanger test cells. ERG sells heat exchangers, regenerators, linear

motor/alternators, linear motoring dynamometer test stands, gas springs/

bearings, dynamic seals and hydraulic components. ERG plans to sell soon an
oil-free isothermal compressor with linear motor drive and small Thermoscilla-

tors and laboratory demonstrators. The current status on ERG Stirling

engines is given in references 77 a and u.

Current work involves both corporately funded and Government sponsored

R and D programs. The Government contracts include: Advanced Stirling Engine
Heat Exchangers (LeRC DEN-3-166); 15 KW(e) Free-Piston Stirling Engine Driven

Linear Alternator (JPL 955468); Free-Piston Stirling Cryogenic Cooler (GSFC
NAS 5-25344); Free-Piston Stirling Powered, Accumulator Buffered, Hydrostatic

Drive (LeRC NAS 3-21483), Duocel, Foilfin and Thermizer Heat Exchangers

(ONR N00014-78-C-0271), Hydrogen/Hydridge Storage (Argonne 7-895451). Pend-

ing contracts include Reciproseals, Large Linear Alternators, and Hydrostatic
Drive Components.

(20) Fairchild Industries (~l)

Germantuwn, Md.
Attn: Mr. A. Schock

No response

Martini comment: Al Schock has written a fully rigorous Stirling engine
computer program under DOE sponsorship.

(21) Far Infra Red Laboratory (~l)

U. S. Army Engineer Research and Development Lab.

Fort Belvior, Virginia

No response

(22) F. F. V. Industrial Products (~50)

Linkoping, Sweden

No response

Martini comment: FFV makes the engine the Stirling Power Systems uses.

They also are 50 percent owner of United Stirling. They are a Swedish

National Company.

(23) Foster-Miller Associates (4)
350 Second Avenue

Waltham, Mass. 01254

#ttn: Dr. William M. Toscano

Telephone: (617) 890-3200 ............
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"Design and Development of Stirling Engines for Stationary Power Genera-

tion Applications in the 500 to 3000 Horsepower Range". Program funded by

DOE/ANL. FMA has been Phase I entitled Conceptual Design. Work has just been

initiated; no accomplishments to date.

(24) General Electric Space Division (_20)
P. O. Box 8661

Philadelphia, Pa. 19101
Attn: Mr. J. A. Bledsoe

No response

Martini comment: G. E. has been building in cooperation with North

American Philips a StCrling engine originally designed for radioisotope space

power (79 aq), G. E. has also been building a free-piston Stirling engine for

powering a three-ton capacity heat pump. (79 as). G. E. has also designed
with North American Philips a test engine for LeRC.

(25) Hughes Aircraft Company (45)

Cryogenics and Thermal Controls Department

Culver City, Ca. 90230

Attn: Dr. Bruno Leo or Mr. Richard Doody

Telephone: (213) 391-0711 Telex: 67222

Hughes Aircraft Company is continuing its research and development work

on Stirling and Vuilleumier cryogenic refrigerators. Currently, emphasis is

being placed upon various modified designs of these units for special appli-

cations where maintenance-free life is the most important parameter.

(26) Japan Automobile Research Institute Inc. (~I)

Jap_

Mr. H. Hayashi
o rgspgn_e
nvolvea in feasibility study of a Stirling engine for an automobile

(79 u).

(27) Jet Propulsion Laboratory (3)
4800 Oak Grove Drive

Pasadena, Ca. 91103
Attn: Frank W. Hoehn

Telephone: (213) 354-6274 Telex, etc: FTS 792-6274

The Jet Propulsion Laboratory is currently working on a program to

develop a Stirling Laboratory Research Engine which can eventually be produced
commercially and be made available to researchers in academic, industrial,

and government laboratories. A first generation lO KW engine has been designed,
fabricated, and assembled. The preprototype engine is classified as a

horizontally-opposed, two-piston, single-acting machil.e with a dual crank-

shaft drive mechanism. The test engine, which is designed for maximum

modularity, is coupled to a universal dynamometer. Individual component and
engine performance data will be obtained in support of a wide range of ana-
lytical modeling activities.

(28) Joint Center for Graduate Study/University of Washington (7)
lO0 Sprout Road

Richland, Wa. 99352
Attn: Richard P. Johnston or Maurice A. White

Telephone: (509) 375-3176
270

t
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Fully implantable power source for an artificial heart. Accomplishments:

I. Demonstrated engine lifetime of four years without maintenance before

heater lead failure. 2. Current engine performance: Up to 7.7 watts hy-

draulic power output with 20.I percent overall efficiency at 5 watts output
from 200 cc engine volume. 3. Engine concept produces pumped hydraulic

output with no mechanical linkages or dynamic seals. Capable of total

hermetic seal welding for long term containment of working fluids.

(29) Josam Manufacturing Co. (0)

Michigan City, Indiana 96360
Attn: Lewis Polster

Telephone: (219) TR2 5531

A working model has been built to demonstrate the self-starting,

torque control. It is on display at the Ontario Science Centre in Toronto.
Controlled heating, cooling with hydrogen as working fluid was added by Dr.

William Martini who made preliminary studies.

An optimized design has been made for a car and a testing prototype

for'power and efficiency testing. A proposal is being made for funding.

Componant suppliers and a consultant have been found.

(30) Leybold-Heraeus (6)
lOl River Road

Merrimac, Mass. 01860
Attn: Nathan Tufts, Jr.

Telephone: (617) 346-9286

Stirling engine offered by Leybold is a demonstration engine, permitting

students and researchers to perform basic efficiency tests, and to observe

through the glass cylinder the function. Pressure/vacuum relationships can be

dynamically measured and indicated, or the machine may be mechanically

driven as a heat/refrigerator pump. In the U.S. & N. America, contact Mr.

Tufts--Internationally, production and _a_es from Bonnerstrasse 504, Post-
fach 510 760, 5000 Koln (Cologne), W. Germany. Over 400 sold.

(31) M.A.N. - AG (~50)

Maschinenfabrik Augsburg-Nurnberg AG
Postfach lO O0 80

D-8900 Augsburg l
West Germany
Attn: Hanno Schaaf

Telephone: 0821 322 3522 Telex: 05-3751

Comment by Martini: M.A.N. is a liscensee to Philips. They have worked

for many years in Stirling engine developments, some of it sponsored by the

German government and related to military hardware. Publications from this

company are very few. The latest is 1977 bt. They seem to be developing

four-cylinder Siemans engines like United Stirling but differing in the arrange-

ment of parts. They have agreed to assist Foster-Miller Associates in design-

ing a 500 to 2000 HP Stirling engine for Argonne National Laboratory.

%
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(32) Martini Engineering (2)
2303 Harris

Richland, Wa. 99352

_ttn: W. R. Martini

Telephone: (509) 375-0115

•Preparation of First and Second Edition of Stirling Engine Design
Manual for NASA-Lewis.

•Publish Quarterly Stirling Engine Newsletter.

•Evaluate isothermalized Stirling engines for Argonne National Lab.

•Offers Stirling engine computation service for all types of Stirling
engines.

(33) Martin Marietta Inc.

Cryogenics Division

Orlando, Florida

No response

(~10)

(34) Massachusetts Institute of Technology (I)
Room 41-204

Cambridge Mass. 02i39

Attn: Joseph L. Smith, Jr.

Telephone: (617) 253-2296

Ph.D. Thesis research on heat transfer inside reciproc=ting expander and

compressor cylinders as in Stirling engines. Special emphasis on the thermo-

dynamic losses resulting from periodic heat transfer between the gas and the
walls of the cylinder

(3S)

(36)

Mechanical Engineering Institute

Agency of Industrial Science and Technology
Japan

Mr. I. Yamashita

No response

Martini comment: Involved in cryo-engine development (79 u).

Mechanical Technology Incorporated (52)
Stirling Engine Systems Division

968 Albany-Shaker Road
Latham, New York 12110

Attn: Tom Marusak

Telephone: (518) 456-4142 ex. 255 Telex, etc. Telecopler (518)
785-2420

TWX 710-443-8150

Automotive Stirling Engine Development Program development of United

Stirling, Sweden, kinematic engines for automotive applications; Free-piston

Development Engine Programs include: (I) I Kwe Fossil-Fueled Stationary
Electric Generator (Hardware), (2) I Kwe Solar Thermal Electric Generator

(Hardware) (3) 3 Kwe Fossil-Fueled Heat Pump (Hardware), (4) 5 Kwe Fossil-

Fueled Hybrid Electric Vehicle Propulsion System (Design), and (5) 15 Kwe.

Advanced Solar Engine Generator (Design). In addition to these engine programs

MTI is developing linear machinery loading devices for free-plston engines.

Included are linear alternators, hydraulic and pneumatic motor systems, and
resonant piston compressors.

%
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(37) Meiji University (~l)

I-I, Kanda-Surogadai

Chiyoda-Ku

Tokypc I01

Japan
Mr. H. Miyabe

Involved in experimental analysis and regenerator research for the

800 hp seacraft engine (79 u, 79bj).

(38) Mitsubishi Heavy Industries (~2)
5-I Maronouchi 2 Chrome

Chiyoda-Ku

Tokyo, Japan

Mr. T. Kushiyama

No response

Involved in heat exchanger and combustor work on an 800 hp Stirling

engine for a seacraft (79 u, 79 bj).

(39) N.V. Philips Industries

Cryogenic Department

Building TQ III-3
Eindhoven - The Netherlands

Attn: M. A. Stultiens

Telephone: ++31 40 7.83774

-Minicooler MCSO/IW at 80K

Telex, etc._

(~so)

51121 phtc nl/nphetq

-Liquid Air Generator PLAI07S/7-8 I/hr.

-Liquid Nitrogen plants PLNIO6S and PLN430S, resp. 7 and 30 I/hr.

-Liquifiers (80 - 200 K) PPGI02S and PPG4OOS/O, 8kW and 3,2kW at 8OK.

-Two stage cryogenerator K20 for Cryopumping IOW/20K + 80W/80K.

-Two stage recondensors PPHIIO and PPH440/lO I. and 40 I. H2 reconden-
sation.

-Two stage transfermachines PGHIO5S and PGH420 for targetcooling,
cryopumping, etc.

-Helium liquefier lO-12 I/hr.

Physical Lab., where much research is being done with regard to Stirling

engines, heat-pumps and solar energy systems.

(40) N.V. Philips Company (~lO0)

Philips Research Laboratories

Eindhoven, The Netherlands

Attn: C. L. Spigt

Telephone: 040-43958

Free piston Cryogenerator

Free piston Stirling engine

3kW Stifling engine as heat pump driver

Vuilleumier Cycle

Comments by Martini: This organization is the pioneer of all modern

Stirling engine technology. All the leading companies in Stirling engines
have licenses from this company.

(41) National Bureau of Standards

Room B126, Big. 226

(o)



, j', , , •

Washington, D. C. 20234
Attn, David Didion

Telephone: (301) 921-2994

Active program terminated
Comments by Martini: NBS did obtain a 1-98 engine from Philips and did

test it as the prime mover in a heat pump-air conditioning system. The tests
were generally successful. (See 1977 ad).

(42) National Bureau of Standards (~2)

Cryogenics Laboratory
Boulder, Colorado

No response

(43) NASA - Lewis Research Center (~I£)

Stirling Engine Project Office
Lewis Research Center

21000 Brookpark Rd.
Cleveland, Ohio 44135

Attn: Robert Ragsdale

Telephone: (216) 433-4000

No response
Comments by Martini: NASA -Lewis administers most of the DOE program

on automotive Stirling engines. The major program is with MTI and United

Stirling. Many much smaller programs are sponsored including this design

manual. Internally, NASA-Lewis has developed a third order analysis (79a)

and has tested the GPU-3 engine (79 bl). Testing is now proceeding on the

United Stirling P-40 engine.

(44) Nippon Piston Ring Co., Ltd. (4)

No. 1-18, 2-Chome

Uchisaiwaicho, Chiyoda-ku

Tokyo, Japan

Attn: Mr. E. Sugawara
Telephone: Tokyo 503-3311 Telex, etc.: (0222) 2555 NPRT TOJ

Cable address: NPRT TOKYO

I. Development of material capable sliding under absence of lube oil.

2. Basic test and analysis of various piston rings and piston rod

_eals for pressure, sliding speed, selection of suitable gas, determination

of number of seals required, and leakage of gas.

3. Analysis of frictional behaviour during sealing.

4. Development of gas recirculation system.

5. Development of liquid seal and of sealing-liquid recirculation

system.
6. Design and manufacturing of piston ring and piston rod seal system

for Stirling Engine of 800 PS (HP).

(45) New Power Source Research Dept. Central Engineering Laboratories (2)
l Natsushima-cho

Yokosuka 237 Japan
Attn: Yasunari Hoshino

Telephone: (0468) 65-I123 Telex: TOK 252-3011

Purpose: To evaluate the characters of Stirling Engine



:

Actual State: An experimental two-piston single acting engine was

trial made and the fundamental study is being carried out using helium as

working gas. Recently gas leakage analysis across piston rings and regenera-
tor tests are mainly conducted. Also a comparison between our test results

and the calculated data by means of yours Manual (The first edition of the

Stirling Engine Design Manual) is being tried.

(46) North American Phi_ips Corp. (2)
Philips Laboratories

345 Scarborough Rd.

Briarcliff Manor, N. Y. 10510
Attn: Alexander Daniels

Telephone: (914) 762-0300

.SIPS (Stirling Isotope Power System) - l KW electric output engine

was designed, fabricated and assembled; currently awaiting performance tests.

.In-house studies of Stirling cycle.

(47) Wm. Olds and Sons (~I)
Ferry Street

Maryborough, Queensland
Australia

Attn: Peter Olds

Production Model - Horizontal type.
Detachable piston, reversable lever.

15 inches long and 6 inches high.
Production model is approximately

(48) Ormat Turbines (1)
P. O. Box 68

Yaune, Israel

Attn: Dr. Israel Urielli

Comments by Martini: Dr. Urielli continues his interest in Stirling

engines started in his important Ph.D. thesis (77 af) which fully discloses
and explains an entirely rigorous third order analysis method.

(49) Alan G. Phillips (0)
P. O. Box 20511

Orlando, Florida 32814

Atth: Alan G. Phillips

284

Research and History of Pre 1930 Hot Air Engines.
logs on Hot Air Water Pumping Engines from 1871 to 1929.

Publications on Request.

Reprinting of Cata-
List of Available

(50) Radan Associates Ltd. (1)
19 Belmont, Lansdown Road

Bath, United Kingdom BA l 5DZ

_t_sp_eR. A. Billett

Comments by Martini: Mr. Billett teaches at the School of Engineering,

University of Bath and is involved in Demonstration Stifling engines and
teaching aids. He conducts a Stirling engine course each year.
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(51) Ross Enterprises (I)

37 W. Broad St. #630

Columbus, Ohio 43215

Attn: Andrew Ross

Telephone: (614) 224-9403

Current work includes development of two fractional horsepower Stirling

engines; one of medium pressure, and one of low pressure. The low pressure

engine is part of a small DOE appropriate technology grant.

The aim on the medium pressure engine is to provide, in time, a source

of small (lO0 to 200 watts) Stirling engines for the independent researcher,

graduate student, hobbyist, etc.

(52) Royal Naval Engineering College (7)

RNEC Manadon, Stirling Engine Research Facility

Crownhill, Plymouth

Devon, England PL53AQ
Attn: Lt. Cdr. G. T, Reader or Lt. Cdr. M. A. Clarke

Telephone: Plymouth 553740 Ext. RNEL 365

The Royal Naval Engineering College are part of an industrial-university
consortium investigating the design and manufacture of Stirling engines. An

assessment of Stirling cycle machines in a naval environment is also in hand.

Although some experimental work has been done the main effort at present is

the development of a general design and simulation algorithm. It _s envisaged

that a 15-20 KW twin-cylinder engine employing a sodium heat pipe will be

on test by December 1979.

Work on the Fluidyne and a tidal flow regenerator test rig is also in

progress.

(53) Schuman, Mark (1)
"lOlG Street S.W. #516

Washington, D. C. 20024
Attn: Mark Schuman

Telephone: (202) 554-8466

Free piston, modified Stirling cycle heat engine invention available

for licensing and development. U. S. and foreign patent protection. Two

thermally driven partial models demonstrate key novel features.

(54) Shaker Research Corporation (2)

Northway I0 Executive Park

Bellston Lake, N. Y. 12019
Attn: Allan I. Krauter

Telephone: (518) 877-8581

This work, which started in February 1978, is directed at applying

hydrodynamic and elastohydrodynamic theory to a sliding elastomeric rod seal

for the Stirling engine. The work is also concerned with the experimental

determination of film thickness, fluid leakage, and power loss. Finally, the

work entails correlating the experimental and theoretical results.

The analytical effort consists of two analyses: an approximate analysis

of rod seal behavior at the four extreme piston position / piston velocity

points and a detailed temporal analysis of the seal behavior during a complete

piston cycle.
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The experimental effort invoives designing, constructing, and running

an apparatus. The apparatus contains a moving transparent cylinder and the

stationary elastomeric seal. A pi_essure gradient of lO0 psi can be applied

across the seal. Frequencies from lO Hz to 50 Hz with a one inch total stroke

can be employed. Film thickness will be measured with interferometry, fluid

leakage by level and pressure chan_es, and power loss by force cells.

At present, the approximate and detailed analyses are complete, and the

experimental apparatus is starting to produce quantitative results.

(55) The Shipbuilding Research Association of Japan (JSBA) (~2)

Senpaku Shinko Bldg., 1-15-16
Toranomon, Minato-ku

Tokyo, Japan
Attn: Mr. H. Fujita

We are researching and developing the marine Stirling engine (double

acting 4 cylinders 800 ps) on six years project from 1976.
Items of basic research are cycle simulation, heat exchangers, burner,

sealing apparatus, and control system. Performance test of a 2 cylinders
experimental engine will be also carried out.

These researches and tests are performed cooperatively by Research

Panel No. 173 (SRI73) which is consisted of universities, institutes, and

companies.

(56) Ship Research Institute (5)

6-38-I, Shinkawa, Mitaka

Tokyo 181, Japan

Attn: Mr. Shigeji Tsukahara

Telephone: 0422-45-5171

(1) The effect of engine elements such as materials in the regenerator

and the dimensions of piston rings on the Stirling engine performance was

studied using the Inverted-T type Stirling engine.
It was obtained that the effect of these elements was apparently great.

Especially, the effect of the dimension of the piston ring on the net output

was very remarkable. For example, the net output was improved in 2.5 times
when 15 thin (l mm) piston rings for a piston were employed instead of 4

thicker (6 mm) piston rings.

In future, amount of leakage of working fluids through piston rings

and friction force by piston rings will be measured using the testing machine

for Stirling engine elements.

(2) A dynamic mathematical model simulating a Stirling engine is now

under development.

(57) Solar Engines (~15)
2937 W. Indian School Rd.

Phoenix, Arizona 85017

Attn: Mr. John Griffin

Telephone: (602) 274-3541

No response

Comments by Martini: Solar Engines has built 20,000 of their Model l

engine and 7000 of their Model 2 (See Figure 2-7). Solar Engines plans to

build six models of their demonstration scale engines.
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(58) Starodubtsev Physicotechnical Institute (~5)
UL. Observatorskaya 85
Tashkent

Uzbek SSR, U.S.S.R.
Attn: G. G. Ya Umarov

No response

Comments by Martini: Mr. Umarov and his group are very regular contri-

butors to the Soviet Solar Energy Magazine. Quite often the subject is
Stirling engines. Mr. Umarov either does not receive or does not answer his
mail.

(59) Stirlin9 Engine Consortium (8)

Department of Engineering

University of Reading

Whiteknights, Reading, Berkshire, RG6 2AY, United Kingdom
Attn: Dr. Graham Rice

Telephone: Reading 85123 Ext. 7325

I. Design of 20 kW helium charged research (Consortium) Engine

2. Re-building of 200 watt Air Charged engine with integral heat pipe

cylinder heater head

3. Gas flow test rigs for steady-state and dynamic testing of consortium

engine components, namely: heater, regenerator and cooler

4. Cycle analysis

(60) Stirling Power Systems Corporation (19)
7101 Jackson Road

Ann Arbor, Michigan 48103

Attn: William B. Lampert

Telephone: (313) 665-6767 Telex: 810-223-6010

SPS is responsible for market development on the St_rling engine being
produced by FFV in Sweden. The Recreational Vehicle market is the first market

being addressed, as the attributes of the Stifling cycle engine are important,
i.e.., quiet, low vibration, low emissions, etc. The Stirling engine genera-

tor set and system installed in a Winnebago Motor Home was introduced to the

RV Industry at the National RVIA Show in November, 1978. The innovative

system was very well received. Winnebago Industries is planning on limited

production beginning in Spring, 1980. The product consists of a 6.5 KW

Stirling engine generator set with an integrated total system to provide

electricity, hydronic heating and air conditioning that is automatic in opera-

tion; thus, providing home-like comfort for the customer.

(61) Sunpower Inc. (16)

6 Byard St.

Athens, Ohio 45701
Attn: William T. Beale

Telephone: (614) 594-2221

Small electric output free piston engines --I00-I000 watt--solar and

solid fuel heat-water pumps in same power range using free cylinder mode of

the free piston engine, hermetically sealed.
Sunpower sells both the alternator and tile water pump with full guaran-

tee for one year.
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Sunpower does analysis, computer simulation design, construction and

test on all types and sizes of Stirling engines, but specializes in free

piston engines.
Late Information: The Sunpower SD IO0 engine produced 62 w(e) at an

overalT fuel-to-electric energy efficiency of 7.5 percent. Hot end tempera-
ture was 425C, cold 40C. At 475C hot end temperature power was 80 w(e) and

heat-to-electric efficiency was 13 h_rcent.

(62) TCA Stirling Engine Research & Development Company (3)
POB 643

Beverly Hills, Ca. 90213
Attn: Ted Finkelstein

Telephone: (213) 279-I186, 474-8711

I.
2.

3.

Development of a gas-fired heat pump and air conditioner.

Development of an oilwell gas liquefier.
Maintenance and support of TCA Stirling Analyzer Program.

(63) Laboratory for Energetics (I)

Technical University of Denmark

Building 403 DK-2800

Lyngby, Denmark
Attn: Niels Elmo Andersen or Bjorn Qvale

Development of a total energy system composed of a Stirling engine and

a Stirling heat pump. The prototype is designed to produce 2 kW of electricity

and 8 kW of heat. The total energy utilization is expected to vary from lOO

percent at maximum power output to 190 percent at maximum heat output.

Development of a third-order analysis program for Stirling machines.

The model is composed of separate models for each of the components of the

machine. The cylinder spaces are assumed adiabatic. The heat exchangers and

the regenerator models take into account both heat transfer and flow friction.

(64) Texas Instruments (~lO)

Cryogenics Division
Dallas, Texas

No response

(65) Thermacore, Inc. (1)
780 Eden Road

Lancaster, Pa. 17601
Attn: Donald M. Ernst

Telephone: 569-6551

At the present time, Thermacore is negotiatir? _ contract for a support-

ing role in the Argonne National Laboratory Program for the Design and

Development of Stirling Engines for Stationary Power Generati*m Applications

in the 500-3000 horsepower range. This effort is directed at the use of

liquid metal heat pipes for integrating the heat source with the engine
heater-head.

Thermacore's personnel are credited with the current state-of-the-art in
terms of life for liquid metal heat pipes: 41,000 hnurs @ 600oc for nickel-

potassium; 35,000 hours @ 800°C for Hastelloy X - sodium.
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(66) Tokyo Gas Co., Ltd OI i'C0c,(k '-:,,_',"

Tokyo, Japan I05 (~I)

Attn: Mr. M. Ogura

No response

Involved in a feasibility study of a Stirling engine heat pump (79 u).

(67) Tokyo Institute of Technology (4)

Naotsugu ISSHIKI (Laboratory)

2-12-I Ookayan_ Meguroku

ToKyo 152 Japan
Attn: Naotsugu Isshiki

Telephone: 03 420 7677

I. Experimental study of Stirling engines using several test engines of

small size, such as (1) 20 I_l diameter & 14 i_i_stroke swash plate type t_.!o
cylinder engine of I/3 kW; (2) the same type of 40 nwl_diameter and 26 iIwll

stroke engine intended power of 2 kW. The results will be reported in the
future.

2. Experimetltal and theoretical study to know the smallest te:_Iperature

difference by which the Stirling engine can operate, for future power recovery

from waste heat from industry and conventional engines.

(68) United Kingdom Atomic Energy Authority (0)
AERE Ha_vel l

Oxfordshire OXll ORA

England

Attn: E. H. Cook-Yarborough
Telephone: (0235) 24141 Telex: 83135

Three development and four field-trial thermo-mechanical generators

(TMG) constructed. Radio-isotope heated development TMG has run continuously

since Nov. 1974. UK National Data Buoy has been powered by propane-heated
25 w TMG (while at sea) since first installation in 1975. Major lighthouse

off Irish coast powered by 60 w TMG since Aug. 1978. Fluidyne liquid-piston

Stirling engine originally invented at Harwell.

(69) United States Department of Energy (I)
P. O. Box 1398

Bartlesville, OX. 74003
Attn: R. W. Hurn or W. F. Marshall

Telephone: (918) 336-2400

Fuels tolerance, emissions, and power delivery characteristics of lO hp

Philips Stirling.

(70)
United Stirling (Sweden) AB & Co. (~125)

Box ,%6

S-201 80 MaIillo
Sweden

Attn: Mr. Bengt Hallare (also Mr. Worth Percival, Washington D. C. office)

Telephone: (202) 466-7286 in Washington, D. C.

No response
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Comments by Martini: United Stirling is a licensee of N. V. Philips and

is the world leader in producing automotive scale Stirling engines. They have
a 40 Kw, 75 kw and 150 kw machine. They have installed one in a truck and

several in automobiles. They plan serial production of the P-75 (75 kw)

engine. They are sub-contractor to MTI on the DOE sponsored automobile program

through NASA-Lewis. They are sub-contractor to Advanced Mechanical Technology

on the 500-3000 hp design study contract let by Argonne National Laboratories.

(71) Urwick, W. David (0)

85/2 St. Anthony St.
Attard, Malta
Attn: W. David Urwick

Telephone: 40986

Retired engineer living in Malta since 1970. Since that date I have

built in my small workshop a series of model Stiriing engines, as a piece of
amateur research, and I take an intense interest in Stirling engine develop-

ments throughout the world. I have had two articles published in "Model

Enp_neer" describing what I have done. Last year at the M.E.E. exhibition in

Lond)n I was awarded a trophy for a 12-cylinder wobble plate Rider engine of

unusual design. A further article is now awaiting publication, which will
describe this machine.

(72) University of Calgary (2)

Department of Mechanical Engineering

Alberta, Canada
Attn: G. Walker

Telephone: (403) 284-5772

Energy Flow in Regenerative Systems

Stirling Cycle Cryocoolers

Heat Exchangers for Stirling Cycle Systems

(73) University of California, San Diego (4)

Physics B-Ol9
U.C.S.D.

La Jolla, California 92093

Attn: John Wheatley or Paul C. Allen or Douglas N. Paulson

Telephone: (714) 452-24q0

Scientific, non-hardware oriented, studies of Malone type heat engines

and appropriate working fluids.

(74) University of Tokyo (2)

Dept. of Mechanical Engineering
HONGO 7-3-I, BUNKYO-KU

Tokyo, 113 Japan
Attn: Naomasa Nakajima

Telephone: (03) 812-2111 ext. 6138

I. Measurements of unsteady flow heat transfer rate at heat exchangers

Stirling engines.

2. Development of computer simulation programs for Stirling engine

design.

3. Design of Stirling engine driven with wood fuel.

%
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(75) University of Tokyo, Dept. of Mechanical Engineering (2)

7-3-I Hongo, Bunkyo-ku

Tokyo, Japan
Attn: Masaru Hirata

Telephone: Tokyo 03-812-2111 ext. 7133

I. Diesel-Stirling combined cycle analysis
2. Artificial heart

3. Computer simulation of Stirling cycle

(76) The University of Tokyo, Faculty of Engineering, (4)

Dept. Nuclear Eng.

7-3-I, llongo, Bunkyo-ku

Tokyo, Japan ll3
Attn: Yoshihiro Ishizaki

Telephone: (03) 812-2111, ext. 3163, 7565

.Rotary Stirling engine and rotary Stirling refrigerator.

.Multi-phase Stirling refrigerator.

.Cryo-Stirling engine for the LNG power station.

.Conceptual design for the application of the Stirling cycle machines.

(77) University of Witwatersrand (~3)

Dept. of Mechanical Eng.
I Jan Smuts Ave.

Johannesburg 2001, South Africa
Attn: Prof. C. Rallis

Telephone: 39-4011

No response

Comments by Martini: Programs:

Telex: 8-7330 SA

experiment (78 s).

(77 af). Have evaluated liquid piston engines (79 af).

Have built and tested a Stirling engine

Have developed a rigorous third order computer code

(78) Weizmann Institute of Science i~l)

Dept. of Electronics
Rehovot, Israel
Attn: Professor S. Shtrikman

Telephone: (054) 82614 Telex:

Studies of second order design methods.

31900

(79) West, C.D. (~l)
If4 Garnet Lane

Oak Ridge, Tennessee 37830
Attn: C. D. West

Telephone: (615) 483-0637

Theoretical and experimental investigations of liquid piston engines.

Past accomplishments include invention and development of "Fluidyne" liquid

piston energy.

(80) YAN MAR Diesel Co. - Japan
Mr. T. Yamada

No response
Involved in a Stirling test engine (79 u). (~3)
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(81) Zabreg University (I)

Faculty of Technology

Mose Pijade 19

41000 Zagreb, Yugoslavia

Europe
Attn: Dr. Ivo Kolin

Telephone: 33-242

The current program on the Stirling engin_ is developed under the general

title which may be called: The new performance of the Stirling cycle. It
includes two main lines of improvement on kinematic and thermodynamic field.

The work continues beginning with the first experimental engine from 1972

having new working mechanism which produces a more appropriate movements of

both pistons. That leads to the new indicator diagram closer to Stirling than

to the Schmidt cycle. The further program is conceived in such a way as to

connect the advantages of improved working mechanism with the new methods of
heat transfer. That is now the main line for the future experimental and
theoretical research in this field.

Late Insertions:

(82) F. Brian Thomas (1)
Putson Manor

Hereford HR2 6BN

United Kingdom
Attn: F. Brian Thomas

Telephone: Hereford 65220

My opposed twin rhombic drive motor won first prize at Model Engineer

Hot Air Engine Competition Jan. 1979. Butane gas fired. 15cc pistons swept

volume. Pressurized to 40 psia. Developed 8 watts (mechanical) at 3,000 rpm.

Drives its own water cooling circulation pump and a bicycle dynamo!

Currently engaged in building the second of a series of "Swing Beam

Engines."

(83) Clark Power Systems, Inc. (7)
916 West 25th Street

Norfolk, VA. 23517
U.S.A.

Attn: David A. Clark

Telephone: (804) 625-5917

Doing design work on a new form of Stirling cycle engine which will be

used to generate hydraulic or electric power.

%



Appendix A

PROPERTY VALUES

Property values for the gases and the solids and liquids used in designing

Stirling engines are given in this appendix, both in the form of tables and

charts as well as equations which are used as subroutines in computer programs.

Also included are heat transfer and fluid flow correlations commonly used in

Stirling engine design.
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Table A-1

Common Conversion Factors
(Standard Units for this Manual are Underlined)

To Convert

inches

pounds/sq, in.

atmospheres

megapascals (MPa)

megapascals (MPa)

centimeters

BTU/hr

calories

BTU

watts

_oules

_oules

Viscosity

g/cm.sec

centipoise

Thermal Conductivity

watts

BTU/hr ft °F

BTU/hr ft2(°F/in)

Heat Transfer Coefficient

w/cm 2 K

BTU/hr ft2 F

To

centimeters

megapascals (MPa)

megapascals (MPa)

atmospheres

psia

inches

watts

_oules

_oules

BTU/hr

calories

BTU

poise

g/cm.sec

BTU/hr ft°F

w_/cm °K

_cm °K

BTU/hr ft 2 F

w/cm 2 K

Multiply By

2,540

0.006894

O.lOl3

9.872

145.05

0.3937

0.2931

4.1868

I055

3.412

0.2388

9.479 E-4

l

O.Ol

57.79

0.01731

1.443 E-3

1761

5.678 E-4
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Table A-2

Thermal Conductivity of Gases

OF POG;_ C_.!.'U.ITy

KG : exp(A + B In (T))

KG = Thermal Conductivity of gas, w/cmK

T = Temperature, K

Gas

Helium, l arm

Hydrogen, l arm

Water vapor, l atm

Carbon dioxide, I arm

Air, l arm

A

-lO.1309

-lI.0004

-15.3304

-16.5718

-12.6824

B

+0.6335

+0.8130

+I.1818

+1.3792

+0.7820

Table A-3

Thermal Conductivity of Liquids

Equation

KL = exp(A + B In (T))

KL = Thermal Conductivity of Liquid, w/cm K

T = Temperature, K

Liquid A B

Sodium 2.3348 -0.4113

Engine Oil -5.2136 -0.2333

Freon, CCI2F 2 -7.3082 0

295



v

Table A-4

Thermal Conductivity of Solids

Equations

KM = Thermal Conductivity w/cmK

T = Temperature, K

= exp(A + B In T)

Material

300 series Stainless Steel

Lucalox Alumina

Commercial Silicon Carbide

Pyrex Glass

Low Carbon Steel

70 w/o Mo, 30 w/o W

Rene 41

A B

- 4.565 +0.4684

+12.45 -2.440

+ 2.661 -0.6557

- 7.207 +0.4713

+ 1.836 -0.4581

+ 4.990 -0.7425

- 5.472 +0.5662
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Figure A-2 .. Thermal Conductivlties of Probable Construction Materials for

Stirling Engines.
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Figure A-3o
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Typical Curves Showing Temperature Dependence of Thermal Conductivity

(From American Institute of Physics Handbook, 2nd Ed., pp. 4-79).
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Table A-5

Heat Capacities for Working Gases,

Temperature Hydrogen I Hel iumI

K CP CV CP CV

J/g K

Air 2

CP CV

298.15 14.31 10.18 5.20 3.12 1.0057 0.7188

400 14.50 10.37 5.20 _.12 1.0140 0.7271

500 14.52 10.39 5.20 3.12 1.0295 0.7426

600 14.56 10.43 5.20 3.12 1.0551 0.7682

700 14.62 10.49 5.20 3.12 1.0752 0.7883

800 14.70 10.57 5.20 3.12 1.0978 0.8109

1000 14.99 10.86 5.20 3.12 1.1417 0.8548

1200 15.43 11.30 5.20 3.12 1.179 0.892

1500 16.03 11.90 5.20 3.12 1.230 0.943

2000 17.03 12.90 5.20 3.12 1.338 1.051

2500 17.86 13.73 5.20 3.12 1.688 1.401

3000 18.40 14.27 5.20 3.12 ......

1From American Institute of Physics Handbook, Sec.

2From Holman, J. P., "Heat Transfer," Fourth Ed.,

Ed., pp. 4-49.

p. 503, McGraw Hill, 1976.
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Table A-6

Viscosity of Workinq Gases

g mass/cm sec at
PAVG = I0 MPa

Hydrogen Helium
MU MU

ORIG_I_AL Pi_. [L,

OF pOOR Q_JALITY

3GO 9.131 x i0"s 1.984 × 10-4

400 1.113 x 10-4 2.498 × 10-4

500 1.313 x 10-4 2.913 x 10-4

600 1.513 x 10-4 3.377 x 10-4

700 1.713 x 10-4 3.840 × 10-4

800 1.913 × 10-4 4.304 x 10-4

1000 2.313 x 10-4 5.232 × 10-4

1200 2.713 x 10-4 6.160 × i0-4

1500 3.313 x 10-4 7.552 x 10-4

2000 4.313 x 10-4 9.872 x 10-4

2500 5.313 x 10-4 1.219 x 10-3

3000 6.313 x 10-4 1.451 × 10-3

Air

MU

1.979 x 10-4

2.515 x I0"W

3.051 x 10 -4

3:587 × 10-4

4.123 × 10-4

4.659 × 10-4

5.731 × 10-4

6.803 x 10-4

8.411 × I0"h

1.109 × 10-3

1.377 × 10-3

I.645 × 10"3

J

Ref: American Institute ot Physics Handbook, 2nd Edition, pp. 2-227.

The above data are based upon the following equations:

For helium:

For air:

For hydrogen:

MU : 88.73 x 10-6 + 0.200 x IO'6(TR - 293)

+ 0.118 x IO'6(PAVG)

MU = 196.14 x 10-6 + 0.464 × IO'6(TR - 293)

- 0.093 x IO'6(PAVG)

MU = 181.94 × 10-6 + 0.536 × IO'6(TR - 293)

+ 1.22 × IO'6(PAVG)
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Prandtl

Prandtl

Table A-7

Numbers for Working Gases

Number, PR, dimensionless

(I01 atm pressure)

Temperature Hydrogen Helium Air

K PR PR PR

300 0.720 0.688 0.761

400 0.730 0.709 0.772

500 0.744 0.717 0.795

600 0.757 0.711 0.830

700 0.771 0.718 0.864

800 0.781 0.729 0.899

lO00 0.810 0.749 0.974

1200 0.846 0.770 1.057

1500 0.890 0.795 1.189

2000 0.923 0.828

2500 0.858

3000 0.8_7

tl 0 2
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Flow Irtction Characteristics; a Correlation of lxperimental
ilala from Wire Screens and Crossed Rods Simulating Wire

Screens. Perfect St.ackiny, i.e., Screens louchiny, is

Assumed. (b4 I, p. 130)

lhe do(ted Line is the recommended relat.iov_ship.

Its equation is:

lor RR, _iO let:

loy CW , 1.73 - 0.:'3 loy(RR)

lot 00.- RR "- 1000:

loy t'IJ 0.714 - O.:q_t, lo_](RR)

lot RR --I000:

Io,,lCW _ O.Olh- O.l'?h Ioy(RR)
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Figure A-5. Gas Flow Inside Circular Tubes with Abrupt Contraction Entrances;
a Summary of Experimental and Ana'l,yt'ical Data. (64 l, p. 123)

For Fr.ict.ion 'Factor the recommended correlation "is:

For RE _< 2000:

CW = 16/RE

For RE > 2000:

log(CW) = -1.34 - 0.20 log(RE)

For heat transfer coefficient the recommended correlation is:

if RE < 3000 then ST = exp(.337 - .812 In(RE))

if 3000 < RE < 4000 then ST = 0.0021

if 4000 < RE < 7000 then ST = exp(-13.31 +.B61 In(RE))

if 7000 < RE < lO000 then ST = 0.00,34

if lO000 < RE then ST = exp(-3.37 - .229 In (RE))

where ST = NST (Npr)2/3

t
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Figure A-6.

I i I0 | 4 • II | 4 II 8 It 4 I 8 | 4 I II I0 I

Gas Flow Through an Infinite Randomly Stacked Woven-Screen
Matrix, Heat Transfer Characteristics; a Correlation of

Experimental Data from Wire Screens and Crossed Rods

Simulating Wire Screens. Perfect Stacking, i.e., Screens

Touching, is Assumed (64 l, p. 129).

The recommended equation to use for this correlation is:

log (PR) = -0.13 - 0.412 log (RR)

In / II ,._,2131= .412 In (RE)

l

ST = -"exp(-0.299 - 0.412 In(RE))
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APPENDIX B

NOMENCLATURE FOR BODY OF REPORT

In this design manual it was decided to use a nomenclature that would be com-

patible with all computers right from the start so that there would be no need

for translating the nomenclature later on. This means that Greek letters and

subscripts which have traditionally been part of engineering notation will not

be used because no computer can handle them. All computers employ variable

names with no distinction between capital letters and small letters. Restric-

tions for the three main engineering languages are:

FORTRAN - First character must be a letter. Other characters may be

letters or numbers. Limit is usually six.

PASCAL - Same as FORTRAN but usually there is no limit to the length

of the variable name as long as letters and numbers are used

with no punctuation or spaces.

BASIC - First character must be a letter. Second character may be

a letter or number. Additional characters may be carried

along but are ignored in differentiating variables.

In order to be compatible with all these computer languages and in order to use a

reasonably compact nomenclature, the restrictions imposed by the BASIC language

will be adopted. This limits the number of variables to 936, which is adequate.
Those who program in PASCAL or FORTRAN might want to add to the two letter

variable name given here to make it more descriptive.

In PASCAL the type of each variable must be declared in advance.
are:

integer

real

character (string)

boolean

Arrays are also declared in advance.

The categories

In FORTRAN there are only real or integer variBbles. Without specific type
declaration variables beginning with I, J, K, L. M and N are integers and the

rest are real. This convention is not supported in this nomenclature table.

In programming in FORTRAN one should declare all the variables real or integer

at the start. If a variable name is used to identify an array (i.e. A(X,Y,Z))

it cannot also be used to identify a variable (i.e. A). Words are handled with
format statements.

In BASIC variables beginning with any letter can be declared integers. Other-
wise, all variables are assumed to be real numbers. For instance, if I is

declared an integer all variables such as IN, IX, IA etc, are made integers

also. If a statement evaluates IA as 3.7, the computer will use it as 3, the
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integer part. lhis nonlenclature does not group the integers, lllerefore, all
numbers in the nomenclature are assumed real.

BASIC uses suffixes to identify what type of variable o|' de_jree of lu'ecision is
desired. The suffixes are:

%

!

$

integer

single precisioI|

double precision

string (letters, number, punctuation, spaces)

A1thougll integers compute faster than sill{lle precisi on nulnbers, alI variabl es in

this llomenclature are presented as single precision real numbers. BASIC

assumes this if no suffi× is given.

BASIC handles arrays as an additional suffix. For instance, AX can be used as
a variable. In addition, AX(A, B, C) can be used as a three-dimensional array
without being confused with AX. Since FORTRAN cannot do this, a variable name
in this nomenclature will be either an array name or single real number, but not
both.

String variables are useful in BASIC or PASCAL programs but will not be defined
in this nomenclature.

lhe explanation of each variable starts out with a noun. For instance, "heat
transfer area" becomes "area of heal transfer". This is done so that when the

meanings are alphabetized, similar meanings will be together, lable [1 1 gives
the nomenclature alphabetized by symbol. Table Ix 2 gives the nomenclature
alphabetized by ii_aning.



Table B-I

NOMENCLATUREFORBODYOF DESIGNMANUAL
(Alphabetized by Symbol)

A Counter for finding right average pressure.

AA Factor of correlation, power with pressure.

AB V(CR)2- (EE-RC)2
AC Area of heat transfer for cooler, cm2.

AF Area of flow, cm2.

AH Area of heat transfer for heater, cm2 (or in general).

AK ( ) Array of themnal conductivities, w/cm K.

AL Angle of phase, degrees.
AM Area of face of matrix, cm2.

AS Ratio of heat transfer area to volume for matrix, cm-I .

AT ( ) Array of area of metal for heat conduction.

AU Ratio to TC to TH = TC/TH, commonlycall tau.

B Constant for Table Spacing

Bl _/(CR)2- (EE + RC) 2

BA Exponent of correlation of power with pressure.

BF Factor of correlation of power with standard.

BH Heat, basic input, watts.

BP Power, basic, watts.

C ( ) Array of cold volumes, cm3.

C3 Constant in internal temperature swing loss equation.

C4 Length of connecting rod to cold space, cm.

CA Option on cooler type l = tubes, 2 = annulus, 3 = fins.

CC V(CR-RC)2 . EE2

CD Volume, cold, dead, cm3.

CF Loss, flow, cooler, watts.

CL ( ) Array of cold space live positions.

CM

CN

CP

CQ

Factor, conversion = 2.54 cm/inch

Minimum of array.-.FC().

Capacity of heat of gas at constant pressure, j/gK.

Loss of heat by conduction, watts, individually and collectively.

3Og
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CR

CV

CW

CX

CY

D1

D2

D3

D4

D5

DB

DC

DD

DH

DI

DK

DL

DM

DN

DP

DT

DU

DV

DW

E

E2

E4

E5

E6

EC

EE

EF

EH

EK

310

Length of connecting rod, cm (if two cranks to hot space).

Capacity of heat of gas at constant volume, j/gK.

Factor of friction for matrix or tubes.

Volume, cold, dead outside, cooler tubes,

Maximum of Array FC().

Diameter, effective or real, of power duct, cm.

Diameter of power piston in gamma engine, cm.

Diameter of power piston dri,_e rod if in working space, cm.

Diffusivity, thermal in displacer, cm2/sec.

Diffusivity, thermal in cylinder wall, cm2/sec.

Diameter at seal in cold space or diameter of displacer, cm.

Diameter inside of engine cylinder, cm.

Diameter of displacer or piston rod (if in working space), cm.

Density of gas in heater g/cm 3.

Diameter, inside of annular regenerator, cm.

Density of gas in cooler, g/cm 3.

Factor in Schmidt equation =_(AU) 2 + 2(AU)(K) cos(AL) + K2

Diameter of hot space manifold tubes, cm.

Diameter of heater manifold tubes, cm.

Pressure, difference of, MPa.

Diameter of each regenerator or OD of annular regenerator, cm.

Temperature, increase of in cooling water, K.

Temperature, increase of in cold space, K.

Temperature, increase of in hot space, K.

Diameter of wire or sphere in matrix, or thickness of foils, cm.

Effectiveness of regenerator, fraction.

Clearance, end in gamma type power piston, cm.

Density of displacer wall g/cm 3.

Density of cylinder wall, g/cm 3.

Density of matrix solid material, g/cm 3.

Clearance, piston end, cm.

Eccentricity in a rhombic drive, cm.

Efficiency of cycle, fraction.

Emissivity of hot surface.

Emissivity of cold surface.
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Emissivity of radiation shields.

Angle used in Schmidt equation (see equation 6-36).

F

Fl

F2

F3

F4

FA

Angle of crank, degrees.

Fraction of cycle time gas is assumed to leave hot space at constant rate.

Fraction of cycle time gas is assumed to enter hot space at constant rate.

Fraction of cycle time that flow out of the cold space is assumed to
occur at constant rate.

Fraction of cycle time gas is assumed to enter cold space at constant
rate.

Factor for area effect in radiation heat transfer.

FC ( ) Array of gas mass fractions in cold space.

FE Efficiency of furnace, %.

FF Fraction of matrix volume filled with solid.

FH ( ) Array of gas mass fractions in hot space.

FM

FN

FQ

FR

FS

FW

FX

FZ

Factor for emissivity effect in radiation.

Factor for number of radiation shields in radiation.

Factor, conversion = 60 Hz/RPM.

Fraction of cycle time flow is into hot space.

Loss, mechanical due to seal friction, watts.

Flow of ceoling water, g/sec.

Flow of cooling water per cylinder, GPM or liters/minute.

Credit for flow friction, watts.

G

Gl

GC

GD

GH

GR

Clearance around hot cap, cm.

Constant of conversion = !07 g/(MPa • sec 2 • cm).

Velocity, mass, in cooler, g/sec cm2.

Velocity, mass, in connecting duct, g/sec cm2.

Velocity, mass in heater, g/sec cm2.

Velocity, mass, in regenerator, g/sec cm2.

H ( ) Array of hot volumes, cm 3.

HI Option for heater, l = tubes, 2 = fins, 3 = single annulus heated one
side.

HC Coefficient of heat transfer at cooler, w/cm2K.

HD Volume, hot dead, cm3.

HH Coefficient of heat transfer in heater, w/cm2K.

HL ( ) Array of hot space live positions, cm.

311



HN

HP

HR

HW

HX

HY

I

IC

ID

IH

II

Minimum of array FH ().

Factor, conversion - 1.341E-3 HP/watt.

Radius, hydraulic, of matrix = PO/AS.

Loss, flow in heater, watts.

Maximum of array FH ( )

Coefficient of heat transfer, watts/cm2K.

Counter for _terations.

Dialneter inside of cooler tubes of space between fins or annular
clearance, cm.

Diameter, inside of cold duct, cm.

Diameter, inside, of heater tubes or space between fins or gap in
annul us, cm.

Power, indicated, watts.

K Swept volume ratio = VK/VL

K3 Constant in reheat loss equation.

KA Coefficient in gas thermal conductivity formula.

KB Coefficient in gas thermal conductivity formula.

KG Conductivity, thermal, gas, w/cmK.

KK CP/CV

F_ Conductivity, thermal, metal, w/cmK.

KS Option for enclosed gas inside of hot cap, l = H2, 2 = He, 3 : air.

KX Conductivity, thermal, composite of matrix.

L ( ) Array of gas inventories times gas constant at each increment during
cycle.

Ll Length of Power Duct, cm.

L4 Length of temperature wave in displacer.

L5 Length of temperature wave in cylinder wall.

LB Length of ilotcap, cm.

LC Length of cooler tubes, cm. (total).

LD Length, coole_, of cooler tubes, cm.

LE Length of cold dL;ct (pressure drop), cm.

LF Length of cold duct (dead volume), cm.

LH Length of heater tube or heater fin, cm.

LI Length, heated, of heater tubes, cm.

LK Coefficient of leakage of gas, frac/MPa sec.

LL Length of regenerator, cm.

.112
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LM

LN

LO

LP

LR

LX

LY

Length of hot space nw_nifold tubes (for dead volume), cm.

Length of heater manifold tubes (for dead volun_), cm.

Length of hot space manifold tubes (for press drop), cm.

Length of heater n_nifold tubes (for pressure drop), cm.

Length of regenerator, cm.

Coefficient of gas charge leaking per time increment per pressure

difference, frac/MPa.

Sui111w_tionof M*R.

k

M Moles of working fluid, g n_1.

M1 Coefficient to calculate gas viscosity.

M2 Coefficient to calculate gas viscosity.

M3 Coefficient to calculate gas viscosity.

M4 Capacity of heat of displacer wall, J/gK.

M5 Capacity of i_eat of cylinder wall, j/gK.

M6 Capacity of heat of regenerator metal, j/gK.

MD(X,Y,Z) Array for efficiency data, %.

ME Efficiency, mechanical, %.

MF Loss due to mechanical friction in seals, watts.

ML ( ) Array of compression space live positions for galmla engine, cm.

MP(X,Y,Z) Array for power data, HP.

MR Product of gas inventory and gas constant, J/K.

MS Mesh of screen or foils, number/length.

MT ( ) Array of metai temperatures, K.

MU Viscosity of gas, g/cm ;ec.

MW Weight, molecular, of gas, g/g n_l.

MX Mass of regenerator matrix, g.

N

Nl

N3

N4

N5

NC

ND

NE

Number of cylinders per engine.

Number of power ducts per cylinder.

Option for engine cylinder naterial - l = glass or alumina,

steel, 3 - iron, 4 = brass, 5 = aluminum, 6 - copper.

Option on regenerator n_trix n_terial (see N3).

Option on regenerator wall naterial (see N3).

Number of cooler tubes per cylinder or spaces between fins.

Angle of increment, degrees.

Number of cold space manifold tubes per cylinder.

2 = stainless
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NH

NM

NN

NO

NP

NR

NS

NT

NU

OC

OD

OG

OH

OM

Number of heater tubes or fin spaces per cylinder.

Number of hot space manifold tubes per cylinder.

Number of tubes per cylinder in heater tube manifold.

Number of cold ducts per cylinder.

Power, net, watts.

Number of regenerators per cylinder.

Number of internal radiation shields in displacer or hot cap.

Number of transfer units in regenerator.

Frequency of engine, Hz.

Diameter, outside of cooler tubes or fin height, cm.

Diameter, outside, of cold space manifold, cm.

Option of operating gas - l= hydrogen, 2 = helium, 3 = air.

Diameter, outside of heater tube or height of fins, cm.

Speed of engine, radians/sec.

P ( ) Array of pressure during cycle first with MR = l, then at average pressure.

P4 _/4 = 0.785398

PG Pressure, average gas, MPa.

PI 3.14159 :

PM Pressure, mean, for all P's, MPa or dimensionless.

PN Minimum of P().

F_ Porosity of matrix.

PP Factor, conversion : 0.006894 MPa/psia.

PR Prandtl Number of the 2/3 power = (Pr)2/3.

PX Maximum of P().

QB

Qc

QI

QN

qP

Heat supplied by heater, watts.

Heat absorbed bw cooler, watts.

Loss due to internal temperature swing, watts.

Heat, net required, watts.

Loss, pumping for all N cylinder, watts.

QR ( ) Array of heat transferred in regenerator, joules.

QS Loss, shuttle, for all N cylinders, watts.

R

Rl

314

Constant,gas, universal = 8.314 j/(g mol (K)).

Option on regenerator type - l = screen, 2 = foam metal, 3 = spheres,
4 = slots.



R2

RA

RC

RD

RE

RH

RM

Radius of (;rank to cold space, cm.

Factor, conversion : 0.0174533 radians/degree.

Radius of crank (if two cranks to hot space), cm.
Volume, regenerator, dead, cm3.

Reynolds number,heater or cooler.

Loss, reheat, watts.
Density of gas at regenerator, g/cm 3.

RO ( ) Array of gas density, g/cm3.

RR

RT

RV

RW

RZ

Reynolds number for regenerator.

Reynolds number, heater.

Ratio of dead volume to expansion space volume = VD/VL.

Loss, flow in all regenerators of engine, watts.

Reynolds number, cooler.

S

SC

SD

SG

SI

SL

SP

SR

SS

ST

Ratio of dead volume mass to maximum expansion space mass.

Thickness of hot cap wall, cm.

Stroke of di3placer or hot cap : 2RC, cm.

Factor in shuttle heat loss.

Constant, Stefan Boltzman : 5.67 x 10-12 w/cm _ K4

Loss due to matrix temperature swing, watts.

Speed of engine, RPM.

Thickness of wall of regenerator housing, cm.

Thickness of inside regenerator wall if annular regenerator, cm.

Stanton number times (Pr) 2/3

TA

TC

TF

TH

TL

TM

TR

TS

TU

TW

TX

TY

,Z

THITC

Temperature, effectiv_ of cold space, K.

Temperature of inside heater tube wall, F.

Temperature, effective, of hot space, K.

Temperature of gas leaving regenerator, K.

Temperature of inside heater tube wall, K.

Temperature of regenerator, K.

Temperature, swing of, in matrix, K.

Number of transfer units.

Temperature of inlet cooling water, K.

Temperature of cooler tube metal, average, K.

Temperature of inlet cooling water, F.

Temperature along regenerator, K.
)15



V ( ) Array of total gas volume at each increment during cycle.

Vl Number of velocity heads due to entrance, exits and bends in hot space

mani fold.

V2 Number of velocity heads due to entrance, exits and bends in heater
tubes or fins.

V3 Number of velocity heads due to entrance, exits and bends in heater

mani fold.

V4 Number of velocity heads due to entrance, exits and bends in cooler.

V5 Number of velocity heads due to entrance, exits and bends in cold duct.

V6 Number of velocity heads due to entrance, exit and bends in power duct.

VA Volume, total of annulus.

VC Velocity through gas cooler or connecting duct, cm/sec.

VD Volume, total dead, cm3.

VH Velocity of gas through gas heater, cm/sec.

VK Volume, cold, live (associated with displacer), cm3.

VL Volume, hot live, cm.

VM Volume, cold dead, actually measured in beta engine, cm3.

VN Minimum of V().

VP Volume, live, associated with the power piston, cm3.

VR Ratio of volumes, maximum/minimum.

VT Volume, total, sum of compression and expansion space live volumes, cm3.

VX Maximum of V().

W ( ) Array of works, joules.

W1 Work for 1 cycle and one cylinder, joules.

WC Flow, mass, into or out of cold space, g/sec.

WH Flow,mass, into or out of hot space, q/sec.

WR Flow, mass,through regenerator, g/sec.

X

XB

XX

Temporary variable.

Factor to calculate shuttle heat loss.

Factor, correction:for large angle increments.

Y

YK

YY

Temporary variable.

Factor in shuttle heat loss equation relating to wall properties and

frequency.

Temporary variable.
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Z

Zl

ZA

ZB

ZH

ZK

ZZ

Temporary variable.

Factor of compressibility of gas.

Flag for iteration method, 0 for rapid iteration, l for slower method
that is sure.

Counter for number of iterations.

Loss, static, heat conductor, specified, watts.

Factor in shuttle heat loss equation relating to wave-form of motion.

Flag for heat conduction method, 0 for specified, l for calculated.
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TABLE B-2 ORIG_AL PAGE I$

NOMENCLATURE FOR BODY OF DESIGN MANUAL ,OF.POOR QUALITY

(Alphabetized by Meaning)

Angle of crank degrees

Angle of increment per time step degrees

Angle of phase degrees

Angle used in Schmidt equation (6-36) degrees

Area of flow cm2

Area, frontal, of matrix cm2

Area of heat transfer for cooler cm2

Area of heat transfer for heater or in general cm2

Array of areas of metal for heat cond. cm2

Array of cold space live positions cm

Array of cold volumes cm3

Array of compression space live positions for gamma cm

engine

Array for efficiency data %

Array of fraction of gas mass to the total in the

cold space --

Array of gas densities g/cm 3

Array of gas inventories x gas constant at each j/K

increment during cycle

Array of gas mass fractions in hot space --

Array of heats transferred between gas and solid in joules

regenerator

Array of hot space live positions cm

Array of hot volumes cm3

Array of metal temperatures K

Array for power data HP

Array of pressures during cycle, first at M * R = l, MPa

then at average pressure

Array of thermal conductivities w/cmK

Array of total gas volumes during cycle cm3

Array of works joules

Capacity of heat of cylinder wall

Capacity of heat of displacer wall
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F

ND

AL

ET

j/gK M5

j/gK M4

AF

AM

AC

AH

AT( )

CL()

C( )

MC()

MC(X,Y,Z)

FC( )

RO( )

L()

FH( )

QR( )

HL()
H()

MT( )
MP(X,Y,Z)

P()

AK()
V()

W()

.............. --"I _ _i ......... - ........ # tit .....



Capacity of heat of gas at constant pressure

Capacity of heat of gas at constant volun_,

Capacity of heat of regenerator uw_tal

Clearance arouud displacer in annular gap heater

Clearance a1_und displacer in anuular gap cooler

Cleara'nce arouud hot cap

Clearance, end, in ganlllatype power piston

Clearance piston end

Cm.,fficieut to calculate gas viscosity

Coefficient to calculate gas viscosity

Coefficient to calculate gas viscosity

Coefficient of gas leakage

Coefficient of gas leakage

ORIGINAL PAGE IS

OF POOR Q:IALITY

j/gK CP

JIgK CV

j/gK M6

cm IH

cm IC

cm G

cm E2

cm EC

-- M|

-- M2

-- M3

frac/MPa sec LK

frac/ LX

Coefficient in gas thenllal conductivity formula

Coefficient in gas thernml conductivity for111ula

Coefficient of heat: transfer

Coefficient of heat transfer at cooler

Coefficient of heat transfer in heater

Conductivity, thenllal, composite of matrix

Conductivity, thermal, gas

ConductivitLv, thenllal, nlet.al

Constant of conversion '- 107

Constant in internal temperature swing loss equation

Constant in reheat loss equation

Constant SttHan-l_olt;-man _ 5.67 x lO -12

Constant for table spacing

Counter for finding right average l_1'essul'e

Counter for Iterat|ons

Counter for 11unlber of iterations

Credit of heat for flow friction

(increment) (MPa)

-- KA

-- K_
,.)

watt/cm_K HY

w/cm _K HC

w/cm_K HIi

wlcmK KX

w/treK KG

w/treK KM

91 (Mra •sec_cm) G1

-- C3

-- K3

w/cm 2K4 SI

-- I]

-" A

-- ZB

watts rz

Density of cylinder wall

Density of displacer wall

Density of gas In cooler

Deusity of gas |11 heater

llens|ty of 9as regt'lleralor

glcm 3 E5

g/on|3 E4

glcm 3 DK

glcm 3 DII

glcm 3 RM

i
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OF POOR QLh_,L_I',Density of matrix material

Diameter oC displacer

Diameter of displacer drive rod

Diameter, effective or real of power duct

Diameter of hot space manifold tubes

Diameter, inside of annular regenerator

Diameter of inside of cold duct

Diameter, inside of cooler tubes

Diameter, inside of engine cylinder

Diameter, inside of heater manifold tubes

Diameter, inside of heater tubes

Diameter, outside of annular regenerator

Diameter, outside of cold space manifold

Diameter, outside of cooler tubes

Diameter, outside of heater tube

Diameter of power piston drive rod if in working space
(gamma engine)

Diameter of power piston in gamma engine

Diameter of each regenerator

Diameter of wire or sphere in matrix

Diffusivity, thermal in displacer

Diffusivity, thermal in cylinder wall

g/cm 3

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cmZ/sec

cm2/sec

E6

DB

DD

Dl

DM

DI

ID

IC

DC

DN

IH

DR

OD

OC

OH

D3

D2

DR

DW

D4

D5

Eccentricity in a rhombic drive

Effectiveness of regenerator

Efficiency of cycle

Efficiency of furnace

Efficiency, mechanical

Emissivity of cold surface

Emissivity of hot surface

Emissivity of radiation shields

Exponent of correlation of power with pressure

Factor to calculate shuttle heat loss

Factor to calculate shuttle heat loss

Factor of compressibility of gas
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_m

ml

II

m_

EE

E

EF

FE

ME

EK

EH

ES

BA

XB

SG

Zl



OF PC)OR _UA',.ITY
Factor, conversion = 2.54

Factor, conversion = 60

Factor, conversion = 1.341E-3

Factor, conversion = 0.006894

Factor, conversion = 0.174533

Factor, correction to work diagram for large angle increments

Factor of correlation, power with pressure --

Factor of correlation of power with standard --

Factor for effect of areas in radiation --

Factor for emissity effect in radiation

Factor of friction for matrix or tubes --

Factor for number of radiation shields in radiation

Factor in Schmidt Equation (see Eq. 6-36) --

Factor in shuttle heat loss equation --

Factor in shuttle heat loss equation

Flag for heat conduction method

Flag for iteration method

Flow of cooling water per cylinder

Flow of cooling water

Flow, mass into or out of cold space

Flow, mass into or out of hot space

Flow, mass through regenerator

Fraction of cycle time gas is a_sumed to leave hot

space at constant rate

Fraction of cycle time gas is assumed to enter hot

space at constant rate

Fraction of cycle time gas is assumed t_; leave cold

space at constant rate

Fraction of cycle time gas is assumed to enter cold

space at constant rate

Fraction of matrix volume filled with solid

Fraction of time flow is into hot space

Frequency of engine

cm/inch CM

Hz/RPM FQ

HP/watt HP

MPa/psia PP

rad/degree RA

-- XX

AA

BF

FA

FM

CW

FH

DL

YK

ZK

-- ZZ

-- ZA

GPM or liter/ FX
min.

g/sec FW

g/sec WC

g/sec WH

g/sec WR

-- Fl

F2

F3

F4

-- FF

-- FR

Hz NU

Heat absorbed by cooler

Heat, basic input

Heat, net required

watts QC

watts BH

watts QN
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Heat supplied by heater

Height of fins in cooler

Height of fins in heater

Length _ regenerator

Length of cold duct (dead volume)

Length of cold duct (pressure drop)

Length of connecting rod

Length of connecting rod to cold space

Length, cooled, of cooler tubes

Length, of cooler tubes, total

Length, heated, of heater tubes

Length of heater manifold tubes (for dead volume)

Length of heater manifold tubes (for pressure drop)

Length of heater tube oK heater fin

Length of hot cap or displacer

Length of hot space manifold tubes (dead volume)

Length of hot space m_nifold tubes (pressure drop)

Length of power duct

Length of temperature wave in cylinder wall

Length of temperature wave in displacer

Loss, flow, cooler

Loss, flow in heater

Loss, flow in all regenerators of engine

Loss of heat due to conduction, calculated

Loss due to internal temperature swing

Loss due to matrix temperature swing

Loss due to mechanical friction except seals

Loss, mechanical, due to seal friction

Loss, pumping, for all N cylinders

Loss, reheat

Loss, shuttle, for all N cylinders

Loss, static heat conduction, specified

joules

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

cm

watts

watts

watts

watts

watts

watts

watts

watts

watts

watts

watts

Watts

QB

OC

OH

LR

LF

LE

CR

C4

LD

LC

LI

LN

LP

LH

LB

IM

LO

Ll

L5

L4

CF

HW

RW

CQ

ql

SL

MF

FS

QP

RH

QS

ZH

Mass of regenerator matrix

Maximum of array FC( )

g

ml

MX

CY
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L_

Maximum of array FH( )

Maximum of P( )

Maximum of V( )

Mesh of screen or foils

Minimum of array FC( )

Minimum of array FH( )

Minimum of P( )

Minimum of V( )

Moles of working fluid

ml

MPa

cm3

number/cm

MPa

cm 3

g 11101

Number of cold ducts per cylinder --

Number of cold space n_nifold tubes per cylinder --

Number of cooler tubes per cylinder or spaces between fins --

Number of cylinders per engine --

Number of heater tubes or fin spaces per cylinder --

Number of hot space n_nifold tubes per cylinder --

Number of internal radiation shields in displacer or --

hot cap

Number of power ducts per cylinder

Number of regenerators per cylinder --

Number of transfer units --

Number of transfer units in regenerato_ ....

Number of tubes per cylinder in heater tube manifold --

Number of velocity heads due to entrance, exit and --
bends in cold duct

Number of velocity heads due to entrance, exit and --
bends in cooler

Number of velocity heads due to entrance, exit and --
bends •_n heater n_nifold

Number of velocity heads due to entrance, exits and --
bends in heater tubes

Number of velocity heads due to entrance, exit and --

bends in hot space manifold

Number of velocity heads due to entrance, exit and

bends in power duct

HX

PX

VX

MS

CN

HN

PN

VN

M

NO

.....NE

NC

N

NH

NM

NS

Nl

NR

TU

NT

NN

V5

V4

V3

V2

V1

V6
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Option on cooier type: 1 = tubes
2 : annulus, cooled one side
3 = fins

Option for enclosed gas inside of hot cap: l = H9
2 H_
3 = air

Option for engine cylinder material: 1 : glass or alumina
2 = stainless steel, super

alloy or SiC
3 = cast iron or carbon steel
4 : brass
5 = aluminum
6 = zopper

Option for heater: 1 = tubes
2 = fi ns
3 = single annulus heated one side

Option of operating gas: l = hydrogen
2 = helium
3 -- air

Option on regenerator matrix material (Sameas N3)

Option for regenerator type: l = screens
2 = foam metal
3 = spheres
4 = slots

Option on regenerator wall material (Same as N3)

_m

mm

CA

KS

N3

HI

OG

N4

Rl

N5

Porosity of matrix

Power, basic

Power, indicated

Power, net

Prandtl, nunlbe__ to 2/3 power

Pressure, average

Pressure, average gas

Pressure, difference of

Pressure, mean

Product of gas inventory and gas constant

Radius of crank to cold space

Radius of crank (if 2 cranks then to hot space)

Radius, hydrauli_of r_generator matrix

Ratio of dead volume to expansion space volume

Ratio of dead volume mass to expansion space mass

--. PO

watts BP

watts IP

watts NP

-- PR

psia PS

MPa PG

MPa DP

-- PM

j/K MR

cm R2

cm RC

cm HR

-- RV

"- S



Ratio of heat transfer area to volume of matrix

Ratio of TH to TC

Ratio of TC to TH

Ratio of volumes, maximum/minimum

Reynolds number, cooler

Reynolds number, heater

Reynolds number, heater or cooler

Reynolds number, regenerator

cm"l AS

-- TA

-- AU

-- VR

-- RZ

-- RT

-- RE

-- RR

Space between fins in cooler

Space between fins in heater

Speed of engine

Speed of engine

Stanton, number x (Pr)2/3

Stroke of displacer or hot cap

Summation of M * R

Temperature of cooler tube metal, average

Temperature, effective, of cold space

Temperature of gas leaving regenerator

Temperature, effective,of hot space

Temperature of inlet cooling water

Temperature of inlet cooling water

Temperature of inside heater tube wall

Temperature of inside heater tube wall

Temperature, increase of, in cold space

Temperature, increase of, in cooling water

Temperature, increase of, in hot space

Temperature along regenerator

Temperature of regenerator, effective

Temperature, swing of, in matrix

Thickness of expansion cylinder wall

Thickness of foils in slot type regenerator

Thickness of hot cap wall

Thickness of inside regenerator wall if annular

regenerator

Thickness of wall of regenerator housing

cm IC

cm IH

Radians/sec OM

RPM SP

-- ST

cm SD

j/K LY

K TX

K TC

K TL

K TH

K TW

F or C TY

F or C TF

K TM

K DU

K DT

K DV

K TZ

K TR

K TS

cm SE

cm DW

cm SC

cm SS

cm SR
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Velocity of gas through gas cooler or connecting duct

Velocity of gas through gas heater

Velocity, mass, in connecting duct

Velocity, mass, through cooler

Velocity, mass, in heater

Velocity, mass, in regenerator

Viscosity of gas

Volume, cold, dead

Volume, cold, dead actually measured in beta engine

Volume, cold, dead outside cooler tubes

Volume, cold, live (with displacer)

Volume, hot, dead

Volume, hot, live

Volume, live (with power piston)

Volume, regenerator, dead

Volume, total, of annulus

Volume, total, dead = HD + RD + CD

Volume, total, live = VL + VK

cm/sec VC

cm/sec VH

g/sec cm2 GD

g/sec cm 2 GC

g/sec cm2 GH

g/sec cm2 GR

g.cm sec MU

cm3 CD

cm3 VM

cm3 CX

cm 3 VK

cm 3 HD

cm 3 VL

cm3 VP

cm3 RD

cm3 VA

cm3 VD

cm3 VT

Weight, molecular of gas

Work for one cycle and one cylinder

g/g mol MW

joules Wl
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APPENDIX C

Isothermal Second Order Design Program

In this appendix the Isothermal Second Order Design Program is explained. A

nomenclature is given which pertains only to Appendix C. Two BASIC programs

were prepared--one for design purposes and one to compare the General Motors
data with predictions. From the design program written in BASIC, a program

written in FORTRAN was prepared and validated. A listing of the FORTRAN

program is given in this appendix. This program takes a file of data for

input, and prints the input quantities and the results. Finally, a sample of

the design program output and the final results of the comparison program are

presented.

C.l Description

The program described in this appendix is an outgrowth of the calculation pro-

cedure presented at the 1978 IECEC (78 o) and also in the authors 1979 IECEC

paper (79 ad). The following major changes have been made over the previous

publications.

I. Corrections have been made to the program particularly the effect

of multiple cylinders had not been taken into account consistently.

). Property values for hydrogen, helium, or air can be used. In addi-
tion, the effect of temperature on thermoconductivity has been taken

into account when previously only the effect of temperature on

viscosity was written into the program.

. For the cases that are non-convergent, the program adopts a more

cautious method so that the process would be convergent no matter

what design had been chosen. The process shown in reference 78 o

for selecting the effective hot gas and cold gas temperature was

found to be non-convergent in some cases.

4. All flow resistance including losses due to bends and entrances and
exits are included.

So Temperature difference between the effective gas temperature and

the adjacent heat exchanger can be set at any specified fraction

of the log mean temperature difference.

6. Static heat leak can be calculated from dimensions or specified

in advance.

The basic assumption in the isothermal second order desig_ program des-
cribed herein is that there exists an effective hot space and cold space

constant temperature that can be used to compute the power output per cycle

for a Stirling engine. This effective gas temperature is assumed not to change

during the cycle, although, in fact, it really does to an important degree. It
is assumed that the effective temperature can be calculated by determining the
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amount of heat that must be transferred through the heat exchanger during a

particular cycle and thls should determine the offset between metal temperature
and the effective gas temperature. For instance, the hot space temperature is

less than the heat source temperature by a fraction of the log mean temperature

difference in the gas heater that is needed to transfer the heat to the hot

space from the heat source. In the same way, the effective cold space tempera-

ture is hotter than the heat sink water temperature by _ fraction of the log

mean temperature difference for that heat exchanger.

The method of zeroing in on the effective hot and cold gas temperatures is most

critical in determining how long the calculation takes per case. The original

computational procedure determines the temperature difference required from the

present heat requirement and the heat transfer capabilities of the heat exchanger.

For well designed engines, with large heat exchangers, this iteration method for

the effective temperatures is rapidly convergent. However, when only a small

amount of heat exchange surface is specified in the engine the original method

leads to completely uncontrolled oscillations or very slow damping of the sol-
ution. For these cases the program switches to a more cautious iteration pro-

cedure. In the first iteration, the effective hot space temperature is assumed

to be the same as the hot metal temperature and tAe effective cold space tem-

perature is assumed to be the same as the inlet cold water temperature. Then

the error between the amount of heat that must be transferred in the gas heater

compared with the amount of heat that is transferred _ue to the temperature

difference is computed. Another error is com_uted for the amount of heat that

must be transferred in the gas cooler compareJ to the amount of heat that can be

transferred due to the temperature difference. Next, these two temperature

differences are changed by an amount input into tlle program, in this case, 64 ° K,

that is the hot space temperature is decreased by 64 degrees and the cold space

t_iperature is increased by 64 degrees. The calculation is repeated and the

heat transfer errors for both the hot and the cold space are again computed.

This error is usually less because the heat required is somewhat less but the

heat that can be transferred is a lot mere and they are beginning to get into

balance. At this point, we have two temperatures and two errors for the hot

space and two temperatures and two errors for the cold space. It would seem

reasonable then to apply a secant method to extrapolate what the temperature
would be for zero error in both the hot and cold space. This was tried and found

to be calculationaliy unstable because the two iteration processes strongly

interact. Therefore, it w&s found necessary to be more cautious about approach-

ing the roots of these two equations. The procedure used here makes successive

corrections of 64 degrees until the heat transfer error changed sign. Then it

makes successive corrections of 16 degrees until another sign change is noted,

and then 4 degrees, and then l degree and so on. This iteration procedure has

been found to be unconditionally stable for all cases that have been tried, but

it is time consuming. For very small heat transfer areas and a specified

constant heat leak the calculated effective gas temperatures can be wrong. The

program stops and the error is indicated. If static heat losses are calculated

from the dimensions then this problem does not occur.

The first convergence method requires 45 sec/case. The second method requires

between six and seven minutes to compute using the Radio Shack TRS-80 and the

Microsoft BASIC computer program. Using the Prime Interim 750 CPU cmlputer with

FORTRAN, the first convergence method requires two seconds per case to compute.
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C.2 NomenclaLure

A

A1

AA

AC

AF

AH

AL

AS

B

BA

BF

BH

BP

c()
CD

CF

CM

CN

CP

CR

CRT

CV

CW

CX

CY

DC

DD

DN

DP

DR

DT

N/RM

Counter for finding right average pressure

.435 correlation of power with pressure

Heat transfer area for cooler, cm2

Area of flow, cm2

Heat transfer area of heater, cm2

Phase angle alpha = 90 degrees

Area to volume ratio for regenerator matrix = 179 cm2/cm 3 for Met Net
0.05-0.20

Table spacing constant

.1532 = exponent of correlation of power with pressure

Bugger factor to convert power outputs to nearly what GM says they
should be

Basic heat inpiit, watts (BHI)

Basic power, watts

Cold volumes at 360/ND Points/cycle

Cold dead volume, cm 3

Cooler windage, watts

2.54 cm/inch

Minimum FC( )

Heat capacity of hydrogen at constant P = 14.62 j/g K @ 700 K (assumed
not to vary importantly with temperature)

Length of connecting rod, cm

Logical Unit no. for input file

Heat capacity of hydrogen at constant volume = I0.49 j/g K @ 700 K

Friction factor for Met Net and others

Cold dead volume outside cooler tubes, cm3

Maximum FC( )

Diameter engine cylinder, cm

Diameter of piston drive rod, cm

360/ND

Pressure drop, MPa

Diameter of regenerator, cm

Temperature rise in cooling water, K
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DU

DV

DW

EC

F

FCl

FC( )
FE

FF

FHI

FH( )

FQ
FR

FW

FX

Fl

F2

F3

F4

G

GC

GD

GH

GR

H()
HC

HD

HH

HN

HP

HX

I

IC

Temperature change for cold space, K

Temperature change fcr hot space, K

Diameter of "wire" in regenerator, cm = .0017(2.54) = 0.00432 cm

Piston end clearance, cm

Crank angle, degrees

(F3 + F4)/2

Fraction of gas mass in cola spaces at 360/ND Points/cycle

Furnace efficiency, %

Filler factor, fraction of regenerator volume filled with solid

(FI+ F2)/2
Fraction of gas mass in hot spaces at 360/ND Points/cycle

60 Hz/rpm

(FH + FC)/2

Flow of cooling water, g/sec

Cooling water flow GPM @ 2000 rpm per cylinder

Fraction of cycle time gas is assumed to leave hot space at constant
rate

Fraction of cycle time gas is assumed to enter hot space at constant
rate

Fraction of cycle time that flow out of cold space is assumed to occur
at constant rate

Fraction of cycle time that flow into cold space is assumed to occur
at constant rate

Gap in hot cap, cm = 0.56 cm

Mass velocity through cooler, g/sec cm2

Mass velocity in connecting duct, g/sec cm2

Mass velocity in heater, g/sec cm2

Mass velocity in regenerator, g/sec cm2

Hot volumes at 360/ND Points/cycle

Heat transfer coefficient at cooler, w/cm 2 K

Hot dead volume, cm3

Heat transfer coefficient in heater, w/cm 2 K

Minimum FH( )

1.341E-3 HP/watt

Maximum FH( )

Iteration counter

ID of cooler tube, cm
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ID

IH

IP

J

KA

KB

KG

KM

K3

Ll

L()
LB

LC

LD

LE

LH

LI

LP

LR

LX

LY

M

ME

MF

MR

MU

MW

MX

M2

M

N

NC

ND

NE

NH

Inside diameter of connecting duct, cm

ID of heater tubes, cm

Indicated power, watts

Iteration counter

Coefficient for gas thermal conductivity calculation

Coefficient for gas thermal conductivity calculation

Gas thermal conductivity, watts/cm K

Metal thermal conductivity, w/cm K

Constant in reheat loss equation

Fraction of total gas charge leaking per MPa P per second

Gas inventory x gas constant, j/K (changes due to leak)

Length of hot cap, cm

Length of cooler tube, cm

Heat trans'Fer length of cooler tube, cm

Length of connecting duct, cm

Heater tube length, cm

Heater tube heat transfer length, cm

Logical unit No. for output file

Length of regenerator, cm

Fraction of gas charge leaking per time increment per _P

Accumulation of MR's

Number of moles of gas in working fluid,g mol

Mechanical efficiency, %

mechanical friction loss

Gas inventory times gas constant, j/K

Gas viscosity, g/cm sec

Molecular weight, g/g mol

Mass of regenerator matrix

Coefficients in viscosity equation

Number of cylinders per engine

Number of cooler tubes per cylinder

Degree increment in time step (normally 30 degrees)

Number of connecting ducts per cylinder

Number of heater tubes per cylinder
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NP

NR

NT

NU

N$

OC

00
OG

OH

P()

PG

PI

PM

PN

PP

PR

PS

PX

P4

Qc

QN

QP

Qs

332

R

RA

RC

RD

RE

RH

RM

RP

RQ

RR

RT

RW

RZ

Net power, watts

Number of regenerators per cylinder

Number of transfer units in regenerator, NTUP

Engine frequency, Hz

"Name"

OD of cooler tubes, cm

Outside diameter of connecting duct, cm

Operating gas, 1 : hydrogen, 2 : helium, 3 : air

Heater tube OD, cm

Pressures first with MR : I, later at average pressure

Average gas pressure, MPa

3.14159

Mean Pressure, of all P's

Minimum pressure, MPs

0.006894 MPa/psia

Prandtl number to the 2/3 power : (Pr) 2/3

Average pressure, psia

Maximum pressure, MPa

_/4 : .785398

Heat absorbed by cooler, watts

Net heat required, watts

Pumping loss for all N cylinders

Shuttle loss, watts

Gas constant, 8.314 j/g mol K

0.0174533 radians/degree

Crank radius, cm

Regenerator dead volume, cm3

Reynolds number, heater or cooler

Reheat loss, watts

Gas d_nsity for regenerator, g/cm 2

Sum and average of power ratios

Sum and average of efficiency ratios

Regenerator Reynolds number

Reynolds number, heater

Regenerator windage, watts, for all cylinders in engine

Reynolds number, cooler
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Fq T_

it"

SC

SE

SL

SP

SR

ST

TC

TF

TH

TM

TR

TS

TW

TX

TY

v()

VC

VH

VN

VX

v$

WC

WH

WR

Wl

X

XX

Y

YY

Z

ZA

ZB

ZH

ZZ

Wall thickness of hot cap, cm

Wall thickr_ess of expansion cylinder wall, cm

lemp swing loss, watts = QTS

Engine speed, RPM

Wall thickness of regenerator housing, cm

Stanton number x(Pr) 2/3

Effective cold space temperature, K

Inside heater tube wall temperature, F

Effective Hot space temperature, K

Inside heater tube wall temperattlre, K

Regenerator temperature, K

Matrix temp swing, K = DELTMX

Inlet cooling water, K

Cooler tube metal temperature average, K

Inlet cooling water temperature, F

Total gas volume at 360/ND Points/cycle

Velocity through gas cooler or connecting duct, cm/sec

Velocity through gas heater, cm/sec

Minimum total colume, cm3

Maximum total volume, cm3

"Value"

Flow rate into or out of cold space, g/sec

Flow rate into or out of hot space, g/sec

(WH + WC)/2 = g/sec through regenerator = WRS

Work for one cycle and one cylinder, joules

Temporary variable

Correction factor to work diagram for large angle increments

Temporary variable

Temporary variable

Temporary variable

0 for rapid iteration method, = l for slower iteration method when
rapid method does not work

Iteration counter

Specified static heat conduction loss, watts

0 for' specified static conduction, 1 for calculated static conduction



.NULL.

C ISOTHERMAL SECOND ORDER CALCULATION
C PROGRAM ISO -10 OCT 1979-

C WRITTEN BY WILLIAM R. MARTINI

C PROGRAM WRITTEN WITH THE PRIHOS OPERATING SYSTEM
C PROGRAM MUST HAVE ACCESS TO BOTH THE INPUT FILE AND AN OUTPUT FILE

C SEE ATACHED REFERENCE FOR LIST AND DESCRIPTION OF NOMENCLATURE

C SETS UP ARRAYS (DIMENSIONS)
DIMENSION H(13),C(13),P(13),FH(13),FC(13),V(14)

C SETS UP INTEGERS
INTEGER A1,0G,ZA,ZB,ZZ,CRT,TRH

C SETS UP REAL NUMBERS
REAL IC,ID,IH,IP,KA,KB,KG,KH,K3,L1,LB,LD,LE,LI,LR,LX,LY,M,ME'MF'

1MR_MU,MW,HX,Ml,M2,M3,NP,NU,LC,LH,L(14),NT,ND

C SETS UP LOGICAL UNIT NUMBERS. "CRT" IS THE LOGICAL UNIT NUMBER FOR

C THE INPUT FILE, AND "LP" IS THE LOGICAL UNIT NUMBER FOR THE OUTPUT

C FILE.
DATA CRT/5/,LP/6/

C PROGRAM READS IN ENGINE DIMENSIONS, OPERATING CONDITIONS, AND
C CONVERSION CONSTANTS FROM THE INPUT FILE. ALSO THIS IS THE RETURN

C POINT AFTER A CASE HAS BEEN COMPLETED. IF THERE ARE NO MORE CASES TO

C RUN (I.E. AN END OF FILE OCCURS), THE PROGRAM CALLS EXIT.

300 READ(CRT,_,END=45) DC,LC,LD,IC,OC,NC,PI

READ(CRT,_) P4,DW,FX,ME,FE,OG,ZZ

READ(CRT,$) ZH,LH,LI,IH,OH_NH,DD
READ(CRT,_) RA,G,LB,PS,KM,SC,SE

READ(CRT,_) SR,LR,DR,NR,FF,CR,RC

READ(CRT,_) N,AL,TF,TY,SP,AA,BA

READ(CRT,_) ID,LE,NE,BF,PP,CH,F_

READ(CRT,_) R,HP,EC,L1,AS

C THE DEGREE INCREMENT IS SET AT 30 DEGREES.
NO=30

C A CORRECTION FACTOR IS CALCULATED WHICH INCREASES THE ACCURACY IN

C CALCULATING THE WORK INTEGRALS WITH 30 DEGREE INCREMENTS.
XX=1.÷5.321E-5_ND_1.9797

C TEMPERATURE CHANGE FOR COLD SPACE (DU) AND TEMPERATURE CHANGE FOR HOT

C SPACE (DV) ARE SET.
DU=64,
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L,J

U1

DV=64,
C THE FIRST THINS THE PROGRAM DOES IS TO COMPUTE A LIST OF ENGINE
C VOLUMES.
C
C CONVERSION TO KELVIN DEGREES FROM INPUT FAHRENHEIT DEGREES+,

TN=(TF+460.)/1,G
TW=(TY÷460.)/1.8

C CONVERSION TO HERTZ AND TO MPA.
NU=SP/60.
PG=.OOGB94_PS

C DETERMINES GAS PROPERTY VALUES FROM "OG" (IF "OG" = lfTHE PROPERTY
C VALUES FOR HYDROGEN ARE USED. IF "00" = 2, THE PROPERTY VALUES FOR
C OXYSEN ARE USED', IF "OG" = 3, THE PROPERTY VALUES FOR AIR ARE USED.)
C PROPERTY VALUES FOR ADDITIONAL GASES MAY BE ADDED IF DESIRED.

IF(OG.EQ,1) SOTO 20
IF(OG.EQ.2) GOTO 21
KA=-12.6824
KB=,7820
CP=1,0752
CV=,7883
Ml=l.B194E-4

M2=5.36E-7

N3=1.22E-6

MW=29,
PR=.9071
GOTO 22

20 KA=-11,0004
KB=,8130

CP=14,62
CV=10,49

M1=S.873E-5

M2=2,E-7
H3=1.18E-7

HW=2.02

PR=.8408
GOTO 22

21 KA=-10,1309

KB=.6335
CP=5,2
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ca)

ta)

o_

CU=3.12

M1=l.6614E-4
M2=4.63E-7

M3=-9.3ES

MM=4,
PR=.8018

C CONVERSION OF COOLING WATER FLOW TO GRAMS/SECOND. INITIALLY COOLER

C TUBE METAL TEMPERATURE IS MADE THE SAME AS THE INLET COOLING WATER
C TEMPERATURE, THE TOTAL HEAT TRANSFER AREASFOR ALL THE ENGINES

C COOLERS AND ALL THE ENGINES HEATERS ARE CALCULATED.

22 FM=&3.125FX
TX=TW

AC=PISIC_LD_NCSN
AH=PI_IHSLI_NHSN

C CALCULATES ENGINE DEAD VOLUMES AND INITIALIZES PRESSURES AND VOLUMES.
C INITIALIZES FOR DETERMINATION OF AVERAGE PRESSURE AND MAXIMUM AND
C MINIMUM VOLUMES,

HD=P4$IH_IHILH_NHTEC_DC_$2,_P4
CX=P4SID_LE_NE
RD=(1,-FF)_P4SDR_S2,_LRZNR÷PIZDC_G_LB
CD=CX÷P4_IC_S2.$LC_NC÷EC_P4_(DC_2o-DD_2,')
PM=O.
VX=O.
UN=I.E30

C INITIALLY SETS THE EFFECTIVE HOT SPACE TEMPERATURE TO THE HOT METAL
C TEMPERATURE AND THE EFFECTIVE COLD SPACE TEMPERATURE TO THE COOLING
C WATER TEMPERATURE FOR THE FIRST TIME AROUND, CALCULATES THE LOG MEAN
C TEMPERATURE FOR THE REGENERATOR. CALCULATES THE LEAKAGE COEFFICIENT
C FOR 30 DEGREE INCREMENTS.

TH=TM
TC=TM:
TR=(TM-TM)/ALOG(TM/TM)
LX=L18ND/(360.SNU)

C SINCE THE THERMOCONDUCTIVITY ENTER_ THE CALCULATION ONLY AT THE
C REGENERATOR • TEMPERATURE IT CAN BE CALCULATED BEFORE THE MAIN
C ITERATION LOOP,

KG=EXP(KA÷KBSALOG(TR))
C START OF DO LOOP 23 TO. CALCULATE ENGINE VOLUMES,

O0
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DO 23 1=1,13

C CALCULATES THE HOT VOLUME AND COLD VOLUME FOR EACH ANGLE INCREMENT FOR

C CRANK OPERATED PISTONS. SINCE A DOUBLE ACTING MACHINE HAS A PISTON
C DRIVE ROD (BD) AND A SINGLE ACTING MACHINE DOES NOT, "DD" IS USED AS

C AN INDICATOR OF WHETHER THE COLD VOLUME OF THE ENGINE IS ABOVE THE

C PISTON OR BELOW IT.
X=3Oo*(I-1)IRA

J=I

IF(DD.EO.O) GOTO 24
Y=(30.*(I-1)÷AL)ZRA

GOTO 25

24 Y=(ZO.*(I-1)-AL)$RA
25 H(J)=P4*BC**2*(RC-SORT(CR**2-(RC*SIN(X))**2)÷RC*COS(X)÷CR)÷HD

IF(DD.EO.O) GOTO 26

C(J)=P4,(DC**2-DB**2)*(SQRT(CR**2-(RC*SIN(Y))**2)-RC*COS(Y)-CR÷RC)

I÷CD
GOTO 27

26 C(J)=P4_DCI_2_(RC-SORT(CR**2-(RC*SIN(Y))**2)÷RC*COS(Y)÷CR)÷CD
C CALCULATES THE TOTAL GAS VOLUME AND FINDS THE MAXIMUM VOLUME.

27 U(J)=H(J)÷RD÷C(J)
IF(U(J).GT.UX) UX=U(J)

C FINDS THE MINIMUM VOLUME.
IF(U(J).LT.UN) VN=U(J)

C CALCULATES THE INITIAL GAS INVENTORY.
IF(J.EQ,3) L(1)=PG$(H(J)/TH÷RB/TR÷C(J)/TC)

C END OF LOOP TO CALCULATE ENGINE VOLUMES
23 CONTINUE

C "ZA" IS SET AT ZERO SO THAT THE FASTEST WAY OF ARRIVING AT THE PROPER
C EFFECTIVE. HOT SPACE AND COLD SPACE TEHPERATURE WILL BE TRIED FIRST.
C ALSO A COUNTER, "ZB', IS SET AT ZERO.

ZA=O

ZB=O

C INITIALIZATION
200 A=O

29 PM=O

LY=O

C START OF DO LOOP 28 (TO CALCULATE PRESSURES).

DO 28 I=1_13
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C CALCULATE PRESSURE

P(1)=L(I)/(H(I)/TH÷RD/TR÷C(I)/TC)

C CALCULATE GAS INVENTORY FOR NEXT INCREMENT DUE TO-LEAKAGE

L(I÷I)=L(I)t(I.-LXt(P(I)-PG))
C ACCUMULATE VALUES, MEAN PRESSURE AND MEAN GAS INVENTORY.

IF(I.EQ.1) GOTO 28

PM=PM÷P(I)
LY=LYFL(I)

C END OF DO LOOP 28 (TO CALCULATE PRESSURES FOR ONE ENGINE CYCLE)
28 CONTINUE

C INDEXES CYCLE COUNTER, CALCULATES MEAN PRESSURE, READJUSTS GAS
C INVENTORY TAKING INTO ACCOUNT GAS LEAKAGE.

A=A+I
PM=PM/12,

IF(A.LT.3) GOTO 30
L(1)=L(13)
GOTO 31

30 L(1)=L(13)_PG/PM
C CONVERGENCE CRITERIA: PRESSURE FROH BEGINNING TO THE END OF CYCLE
C MUST NOT CHANGE BY MORE THAN ONE HUNBRETH OF A PERCENT AND THE MEAN
C PRESSURE MUST BE WITHIN ONE PERCENT OF THE DESIRED GAS PRESSURE.
C USUALLY ONE OR TWO CYCLES ARE REQUIRED TO MEET THIS CRITERIA.

3I X=ABS(P(1)-P(13))
Z=ABS(PH-PG)
IF(X.GT..OOOI.0R.Z.GT..01) GOTO 29

C INITIALIZING
Wl=O

PX=O
PN=IO000.
MR=LY_ND/360

C START OF DO LOOP 32 (FINDS THE MAXIMUM AND MINIMUM PRESSURE).
DO 32 I=1,13

IF(P(I).GT.PX) PX=P(I)
IF(P(I).LT.PN) PN=P(I)

32 CONTINUE
C START OF DO LOOP 33 (FINDS THE WORK PER CYCIF _Y T_T_gPATT_ TW_
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C PRESSURE VOLUME LOOP).

DO 33 I=1,12

WI=WI÷(P(I)÷P(I÷I))Z(V(I÷I)-V(I)_)/2°
33 CONTINUE

C BASIC POWER FOR THE WHOLE ENGINE IS CALCULATED FROM THE INTEGRATED

C POWER USING THE CORRECTION FACTOR XX WHICH COMPENSATES FOR THE

C.TRUNCATXON ERROR OF USING ONLY A SMALL NUMBER OF POINTS TO INTEGRATE.
BP=NUSXX_WI*N

C INITIALIZING
HX:O
CY=O
HN=I

CN=I

C CALCULATES AN ARRAY GIVING THE FRACTION OF THE TOTAL GAS INVENTORY IN

C THE HOT SPACE AND IN THE COLD SPACE FOR EACH POINT DURING THE CYCLE.
DO 34 I=1,13

FH(I)=P(I)=H(I)/(MR_TH)
IF(FH(I).GT.HX) HX=FH(I)

IF(FH(I).LT.HN) HN=FH(I)

FC(I)=P(I)_C(I)/(MRITC)
IF(FC(I).GT.CY) CY=FC(I)

IFIFC(I).LT.CN) CN=FC(I)

34 CONTINUE

C IF FH(I) AND FC(I) ARE GRAPHED AS A FUNCTION OF THE ANGLE, IT IS SEEN
C THAT A GOOD APPROXIMATION OF THE GRAPH IS TO HAVE TWO PERIODS PER
C CYCLE OF CONSTANT MASS FLOW INTERSPERSED WITH PERIODS OF NO FLOW AT

C ALL. F1 TO F4 ARE THE FRACTIONS OF THE TOTAL CYCLE TIME WHEN

C DIFFERENT FLOWS ARE ASSUMED TO OCCUR (SEE NOMENCLATURE).
C WHEN 'FHI" AND "FCI" ARE CALCULATED, THE AVERAGE CYCLE TIME, WHEN FLOW

C IS ASSUMED TO OCCUR EITHER INTO _R OUT OF THE HOT SPACE AND EITHER

C INTO OR OUT OF THE COLD SPACE, IS CALCULATED.
FI=(HX-HN)/(61(FH(%)-FH(3)))

F2=(HX-HN)/(61(FH(IO)-FH(B)))

F3=(CY-CN)/(61(FC(B)-FC(IO)))
F4=(CY-CN)/(61(FC(3)-FC(1)))

FHI=(FI÷F2)/2

FCI=(F3÷F4)/2
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C EFFECTIVE MASS FLOW INTO OR OUT OF THE HOT SPACE IS CALCULATED.

M=NR/R

WH=(HX-HN)_MtHW_NU/FH1
C EFFECTIVE MASS FLOW INTO OR OUT OF THE COLD SPACE IS CALCULATED.

WC=(CY-CN)_H_MWtNU/FC1

C FRACTION OF THE TIHE THE FLOW IS ASSUMED TO PASS THROUGH THE
C REGENERATOR AND THE FLOW RATE OF THE REGENERATOR IS CALCULATED AS THE

C AVERAGE BETWEEN THE HOT AND COLD FLOWS.

FR=(FHI+FC1)/2
WR=(WH÷WC)/2

C REGENERATOR GAS DENSITY.
RN=.1202_MWSPG/TR

C CALCULATES REGENERATOR WINDAGE LOSS.
HU=M1÷M2_(TR-293.)÷M3_PG
GR=WR/(P4_DR_2_NR)

RR=DWSGR/MU

CW=2.7312_(1÷lO.397/RR)

DP=CWSGRt$2$LR/(2E÷7$DW_RM)

A=N/RN

RW=DP_WRt2otFR_A
C CALCULATES HEATER WINDAGE LOSS. IN THIS CALCULATION THE VISCOSITY FOR
C THE INPUT TEMPERATURE AND SUBROUTINE "REST" RETURNS THE FRICTION

C FACTOR FOR THE INPUT REYNOLDS NUMBER. THE CALCULATION TAKES INTO

C ACCOUNT FRICTIONAL LOSSES, AS WELL AS 4.4 VELOCITY HEADS FOR AN
C ENTRANCE AND AN EXIT LOSS, ONE 180 DEGREE BEND, AND TWO 90 DEGREE

C BENDS.
MU=MI÷M2_(TM-2Y3.)÷M3_PG
RM=.1202_MWSPG/TM
A=N/RH
GH=WH/(P4_IH$$2_NH)
RE=IHSGH/MU
RT=RE
IF(RE.LT.2000.) GOTO 35

X=ALOG(RE)

X=-3.0?--.2$X

CW=EXP(X)
GOTO 36

35 CW=I&./RE

3& AF=P4_IH_2_NH
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UH=WH/(RN_AF)
DP=2$CW$GH$$2$LH/(1E7$IH_RN)÷UH_$2$4*4$RH/2E7

HW=DPSWH_2_FHI_A
C THIS CALCULATES THE WINDAGE LOSS THROUGH THE GAS COOLER AND THE
C CONNECTING TUBE, THE SAHE COHHENTS FOR THE GAS HEATING WINDAGE LOSS
C APPLY HERE AS WELL. THE UELOCITY HEADS CHARGE TO THE GAS COOLER IS
C 1,5 FOR A SIMPLE ENTRANCE AND EXIT LOSS. IN THE CONNECTING HEAD LINE_
C THREE UELOCITY HEADS ARE CHANGED TO ACCOUNT FOR ENTRANCE AND EXIT LOSS
C PLUS TWO 90 DEGREE BENDS,

HU=Hl÷H2_(TX-293.)TM3_PG
RH=,_202_HWSPG/TX
A=N/RH
GC=WC/(P4_IC$$2$NC)
RE=ICSGC/HU
RZ=RE
IF(RE,LT.2000°) GOTO 37
X=ALOG(RE)
X=-3°O?-,25X
CW=EXP(X)
GOTO 38

37 CW=I&./RE

38 AF=P4_IC$$2_NC

VC=WC/(RH_AF)
DP=2$CW_GC$$2$LC/(1E7$ICSRH)+UC$$2_I.5$RH/2E7

GD=WC/(P4_ID$$2_NE)

RE=ID_GD/HU

IF(RE.LT°2000.) GOTO 39

X=ALOG(RE)
X=-3°O?-°25X

CW=EXP(X)

GOTO 40
39 CW=16,1RE

40 AF=P4$ID**2INE
UC=WC/(RM*AF)

DP=DP+21CW*GD$*2ILE/(IE7*IDIRH)+VC**2*3"0*RM/2E7

CF=DP_WC_2_FCI_A
C CALCULATES INDICATED POWER.

IP=BP-HW-RW-CF
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\ C CALCULATES MECHANICAL FRICTION LOSS.
NF=(1.-HE/IOO.)$IP

C CALCULATES NET POWER.

NP=IP-MF

C CALCULATES BASIC HEAT INPUT.

BH=BP/(1.-TC/TH)

C CALCULATES REHEAT LOSS FOR MET NET .05-.20 WHICH IS USED IN THE 4L23

C MACHINE. THIS SECTION IS SPECIFIC FOR THIS TYPE OF REGENERATOR

C MATERIAL.

IF(RR.LTo42,) GOTO 41
IF(RR,LT.140.) GOTO 42
X=EXP(1.78-o5044_ALOG(RR))

GOTO 43
41 ×=EXP(-.1826-.O5835ALOG(RR))

GOTO 43
42 X=EXP(.5078-,2435ALOG(RR))
43 NT=XILR/DW

X=WR_CP$(TH-TW)
Y=RD_CU_(PX-PN)_NU_HW/(R_FR)
K3=FR$(X-Y)
RH=K3/(NT÷2)$N_2

C CALCdLATES TEMPERATURE SWING LOSS.

MX=NR_P4*DR_$2_LR_FF*7.5

TS=K3/(HU$NX_I.05)
SL=K3STS_N/(2_(TH-TX))

C CALCULATES PUMPING OR APPENDIX LOSS,
X=(PI_DC/KG)_,6
Y=((PX-PN)IHW_NU_CP_2/((TH÷TX)_R))_I,6
Z=G_2o6
OP=NtX_2tLBt(TH-TX)tY_Z/1.5

C CALCULATES SHUTTLE HEATLOSS.
GS=2_P4_RC_RC_KG_(TH-TC)$DC/(GSLB)_N

C CALCULATES STATIC HEAT LGSS. THIS CAN BE EITHER SPECIFIED OR
C CALCULATED FROM THE BASIC DIMENSIONS,

IF(ZZoEG.1) ZH=(TH-TC)_(KN$((DR_2$P4_FF+PISDR_SR)/LR÷
1PI_DC_(SC÷SE)/LB)÷KG$(DR_2_P4_(1-FF)/LR÷DC$$2_P4/LB))

C SUMS ALL LOSSES TO CALCULATE NET HEAT DEMAND.
DN=BH÷ZH+SL÷RH-HW-RW/2÷QS÷QP
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C CALCULATES COOLER HEAT LOAD.
OC=ON-NP

C TEMPERATURE RISE IN COOLING WATER.
DT=OC/(FW_4.185)

C EFFECTIVE COLD METAL TEHPERATURE.
TX=TM+DT/2

C CALCULATES HEAT TRANSFER COEFFICIENT IN THE COLD HEAT EXCHANGER.
C

RE=RZ
J=l

C GOTO SUBROUTINE REST
GOTO 100

44 HC=ST_CPtGC/PR
C
C TWO DIFFERENT METHODS OF ARRIVING AT THE PROPER EFFECTIVE HOT SPACE
C AND COLD SPACE TEHPERATURE ARE INTERSPERSED. THE FASTEST WAY,
C WHICH IS USUALLY TRIEDFIRST, INVOLVES CALCULATING WHAT THE
C TEMPERATURE DIFFERENCE HAS TO BE BETWEEN THE HETAL TEHPERATURE AND
C THE EFFECTIVE GAS TEH?ERATURE CONSIDERING THE HEAT TRANSFER
C CAPABILITY OF THE HEAT EXCHANGER AND THE CORRECTION FACTOR.
C HOWEVER, IF THE HEAT EXCHANGER IS TOO SMALL, THE FIRST ITERATION
C METHOD GOES UNSTABLE AND A SECOND, MORE CAUTIOUS, METHOD MUST BE
C EHPLOYWED. THE "ZA" IS THE FLAG WHICH SHOWS THAT THE SECOND
C METHOD IS CALLED IN.

IF(ZA.EO.1) GOTO 46
C
C "X" IS USED AS A TEHPORARY VARIABLE FOR THE PREVIOUS COLD
C T_HPERATURE. THE COLD TEMPERATURE IS CALCULATED, ASSUMING THERE IS
C NO ERROR BETWEEN THE HEAT THAT CAN BE TRANSFERRED AND THE HEAT THAT
C SHOULD BE TRANSFERRED. CONTER "ZB" IS INDEXED. A TEST IS NOW MADE
C OF THE "TC" VALUE JUST C_LCULATED. IF THE EFFECTIVE COLD GAS
C TEMPERATURE IS GREATER THAN THE EFFECTIVE HOT GAS TEMPERATURE OR
C LESS THAN THE COOLING WATER TEHPERATURE THIS ITERATION METHOD HAS
C GONE UNSTABLE AND THE SECOND, MORE CAUTIOUS, METHOD IS BROUGHT IN.
C ALSO IF THE FIRST ITERATION METHOD HAS NOT CONE TO AN ANSWER WITHIN
C 10 ITERATIONS, ('ZB" GREATER THAN 10), THE SECOND ITERATION METHOD
C IS BROUGHT IN. THE INITIAL CHANGE IN THE HOT GAS TEMPERATURE, "DU',
C AND IH THE COLD GAS TEMPERATURE, "DU', ARE BOTH SET AT 64 DEGREES.
C THE FLAG "ZA" IS SET AT 1 AND "TC" AND "TH" ARE SET AT THE INITIAL
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C VALUES. CONTROL PASS TO 46 WHERE THE SECOND APPROACH BEGINS. IF

C THE VALUE OF "TC" DOES NOT INDICATE THE SECOND APPROACH IS NEEDED
C CONTROL PASSES TO 48 TO START CALCULATION OF THE EFFECTIVE

C TEMPERATURE IN THE HOT SPACE.

X=TC

YY=HCZFC11ACSN_BF

TC=OC/YY÷TX

E2=QC-YYZ(TC-TX)
ZB=ZB÷I

IF(TC.GT.TH.OR.TC.LT.TX.OR.ZB.GT.IO.) GOTO 47

GOTO 48

C ON THE FIRST TIME THROUGH "TC" = "TW" AND THE ERROR IN THE COLD SPACE,

C E2, IS MADE EQUAL TO THE REQUIRED HEAT TRANSFER THROUGH THE GAS
C COOLERS, "QC'. THEN THE NEXT ESTIMATE FOR "TC" IS MADE BY ADDING

C "DU', 64 DEGREES, TO "TX', THE AVERAGE TEMPERATURE OF THE GAS

C COOLER METAL. THE PROGRAM THEN GOES TO 48, SKIPPING OVER THE REST OF

C THE ADFUSrMENT PROGRAM FOR THE COLD SPACE.
46 IF(TC.EQ.TW) GOTO 49

C IF "TC" IS NOT EQUAL TO "TW', AS IT WILL BE FOR ANYTHING EXCEPT

C FOR THE FIRST TIME THROUGH, THE PREVIOUS ERROR IS SAVED AS "El".

C THEN "E2" IS CALCULATED AS THE DIFFERENCE BETWEEN THE HEAT IHAT

C SHOULD BE TRANSFERRED AND THE HEAT THAT CAN BE TRANSFERRED BY THE

C CAPABILITIES OF THE HEAT EXCHANGER.
El=E2
E2=QC-HCSFCI_AC_N_(TC-TX)ZBF

C IF THIS ERROR IS POSITIVE, THEN THE CORRECTION NUMBER, "DU _, IS

C ADDED TO IHE COLD TEMPERATURE, "TC', AND THE PROGRAM GOES ON _O THE
C HOT SPACE ANALYSIS.

IF(E2.GT.O) GOTO 50
C IF THIS ERROR IS NEGATIVE AND THE PREVIOUS ERROR WAS POSITIVE,

C THEN THE DEGREE INCREMENT, "DU', IS JUST DIVIDED BY 4, FOR FUTURE

C CORRECTIONS.
IF(E2.LT.O.AND.EloGT.O) _U=DU/4

C THE DEGREE INCREMENT IS SUBTRACTED FROM "TC'. IF "TC" BECOMES
C GREATER THAN "TH', THE HOT METAL TEHPERATURE, OBVIOUSLY THERE IS
C INSUFFICIENT COOLER HEAT TRANSFER AREA AND THE PROGRAM STOPS FOR

C THIS CASE. THIS CAN OCCUR FOR SMALL COOLER AREAS AND SPECIFIED HEAT

me
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C LEAKS,
TC=TC-DU
IF(TCoGT,TN) GOTO 5!

C CALCULATES HEAT TRANSFER COEFFICIENT FOR GAS HEATER. FLAG "ZA"
C INDICATES MHETHER THE FAST mETHOD OF CONVERGENCE AT 59 OR THE SLOW
C mETHOD AT 52 SHOULD BE USED.

48 RE=RT
J=2

C GOTO SUBROUTINE REST
GOTO 100

59 HH=_T_CP_GH/PR
IF(ZAoEG.1) GOTO 52

C THIS IS ANALOGOUS TO THE CONENT MADE AFTER 44 ON THE COLD SPACEp
C EXCEPT THIS IS FOR THE HOT SPACE.

Y=TH
YY=HH_FH18AH_NtBF
TH=TN-ON/YY
E4=ON-YV_(TN-TH)
IF(TH°GT.TN.OR.TH.LT.TC) GOTO 47
GOTO 53

C THIS IS ANALOGOUS TO 46 TO 48_ EXCEPT THIS IS FOR THE HOT SPACE,
52 IF(TH,EO,TN) GOTO 54

E3=E4
E4=GN-HHIFHI_AH_N_(TN-TH)_BF
IF(E4.GT.O) GOTO 55
IF(E4.LT.O.AND.E3.GT.O) DU=BU/4
TH=TH÷DV
ZF(TH.LT.TM) GOTO 56
GOTO 55

C CONVERGENCE CRITERIA FOR THE FIRST ITERATION mETHOD, THE ITERATION
C IS COMPLETE MHEN CHANGE IN THE EFFECTIVE HOT SPACE AND COLD SPACE
C TEMPERATURE IS LESS THAN ONE DEGREE KELVIN PER ITERATION,

53 XI=ABS(TH-Y)
X2=ABS(TC-X)
IF(X1.GT.loOR,X2,GTol) GOTO 200
GOTO 57

C CONVERGENCE CRITERIA FOR THE SLOWERp SECOND mETHOD OF _TERATION,
C CONUERGENCE IS COHPLETE MHEN THE AIR IN THE HOT SPACE AND THE AIR IN
C THE COLD SPACE ARE BOTH LESS THAN 1_ OF THE HEAT TRANSFERRED THROUGH
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C THE HEAT EXCHANGERS,

58 XI=ABS(E4)
X2=ABS(E2)
X3=QN/IO0
Xd=OC/iO0

IF(XI,OT.X3.0R,X2,GT.X4) GOTO 200
C COHPLETES PREPARATION FOR OUTPUT
57 A=-HW-RW/2

B=IOO.$IP/QN

CI=QN_(IOO./FE-I,)
D=FE_NP/QN
E=IOO,$QN/FE

C REINITIALIZING
I=I+1

ZA=O
ZB=O
GOTO 60

C LOCATION OF CONTROL FOR THE SECOND ITERATION METHOD,
47 DU=64

DU=64
ZA=I

TC=TW
TH=TM
GOTO 46

C LOCATION OF CONTROL IF "TC" EQUALS "TW',
49 E2=QC

TC=TX÷DU
GOTO 48

C LOCATION OF CONTROL IF "E2" IS GREATER THAN O.

50 TC=TC÷DU
GOTO 48

C BECAUSE OF INSUFFICENT COOLER AREA THE PROGRAM IS TERMINATED FOR

C THIS CASE.
5t WRITE(LP_I)

80TO 300
C LOCATION OF CONTROL IF "TH" EQUALS "TM'.
54 E4=QN

TH=TM-DU
60TO 58

O0
m

oz
O_
;or"

o 3
r-r:l

Im



,.3

C LOCATION OF CONTROL IF "TH" IS NOT LESS THAN "TW'.

55 TH=TH-DU
GOTO 58

C BECAUSE OF INSUFFICENT HEATER AREA THE PROGRAM IS TERHhTED FOR

C THIS CASE.

56 WRITE(LP,2)

GOTO 300
C THIS IS WHERE THE PRINTING OF THE OUTPUT STARTS. TO COMPRESS OUTPUT

C THE OPERATING CONDITIONS AND ENGINE DIMENSIONS ARE IDENTIFIED ONLY BY

C THEIR FORTRAN SYMBOL.

C
C PRINTS PROGRAM HEADING

60 WRITE(LP,IO)
C PRINTS CORRENT OPERATING CONDITIONS

WRITE(LP,3) SP,PS,ND,TF,L1,TY,FX,OG

C PRINTS CURRENT DIMENSIONS
WRITE(LP,4) DC,DR,IC,OC,DW,DD,IH,OH,G,LB,LR,CR,RC,LC,LD,LH

WRITE(LP,5) LI,NC,NR,N,NH,FF,AL,CX,HE,FE,EC,SC,SE,SR,ZZ,ZH,KM,ID,

1LE,NE,BF
C PRINTS POWER OUTPUTS AND HEAT INPUTS

WRITE(LP,6) BP,BH,HW,RH,RW,QS,CF,QP,IP,SL,MF,ZH,NP,A

WRITE(LP,7) QN,B,C1,D,E

WRITE(LP,8) TM,TW,TH,TC

C PRINTS WORK DIAGRAM FROM DATA

WRITE(LP,9)
DO 61 I=1,13

F=NB*I-30.

G=L(I)/R
WRITE(LP,11) F,H(I),C(I),V(I),P(I),G

61 CONTINUE

GOTO 300

C END OF MAIN PROGRAM

45 CALL EXIT

C
C SUBROUTIN REST
C CALCULATES STANTON NUMBER FROM REYNOLDS NUMBER

100 IF(RE.GE.IO000.) ST=EXP(-3.57024-.2294965ALOG(RE))
IF(REoLT.IO000.) ST=.0034

IF(REoLT.7000.) ST=EXP(-13.3071÷.B61016_ALOG(RE))
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C

IF(RE.LTo4000.)
IF(REoLTo3000.)
IF(J.EQ.1) GOTO
GOTO 59

ST=.0021
ST=EXP(.337046-.812212_ALOG(RE))

44

OUTPUT FORMAT!

I FORHAT(IO('t'),'INSUFFICENT COOLER AREA',IO('_'))

2 FORMAT(IO('_'),'I_SUFFICENT HEATER AREA',IO('_'))

3 FORMAT('CURRENT OPERATING CONDITIONS ARE:'/'SP=',F10.2,T17,'PS=',
1FIO.2,T33,'ND=',F10.2,T49,'TF=',F10.2/,'L1=',F10.4,T17_'TY=',
2F10.4,T33,'FX='F10.4,T49,'OG=',I2//)

4 FORHAT('CURRENT DIMENSIONS ARE_'/'DC=',F10.4,T17,'DR=',F10.4,T33,

l"IC=',F10.4,T4?,'OC=',F10.4/,'DW=',FlO.5,T17,'DD=',F10.4,T33,
2"IH=',F10.4,T49,'OH=',F10.4/,'G=',F11.5,T17,'LB=',FlO.4,T33,'LR=',

3F10.4,T49,'CR=',F10.4/,'RC=',F10.4,T17,'LC=',F10.4,T33,'LD=',F10.4,

4T49,'LH=',F10.4)
5 FORMAT('LI=',FIO.4,TI7,'NC=',I5,T33,'NR=',I3,T49,'N=',I3/,'NH=',I4,

1T17,'FF=',F10.4,T33,'AL=',F10.2,T4?,'CX=',F10.4/,'ME=',FlO.4,T17,

2"FE=',F10.4,T33,'EC=',F10.5,T4?,'SC=',F10.5/,'SE=',F10.5,T17,'SR=',

3F10.5,T33,'ZZ=',I3,T4?,'ZH=',F10.2/,'KM=',F10.4,T17,'ID=',F10.4,
4T33,'LE=',F10.4,T4?,'NE=',I3/,'BF=',F10.4//)

6 FORMAT('POWER, WATTS',T34,'HEAT REQUIREMENT, WATTS'/,2X,'BASIC',

1T20,F13.4,T36,'BASIC',T55,F13.4/,2X,'HEATER F.Lo',T20,F13.4,T36,

2"REHEAT',T55,F13.4/,2X,'REGEN.F.L.',T20,F13.4,T36,'SHUTTLE',T55,

3F13.4/,2X,'COLER F.L.',T20,F13.4,T36,'PUMPING',T55,F13°4/,2X,'NET',
4T20,F13.4,T36,'TEMP.SWING',T55,F13._/,2X,'MECH.FRIC°',T20,F13.4'

5T36,'CONDUCTION',T55,F13.4/,2X,'BRAKE',T20,F13.4,T36,'FLOW FRIC°',

6"CR','EDIT',T55,F13.4)
7 FORHAT(34('-'),T36,'HEAT TO ENGINE',T55,F13°4/,'INDICATED EFF.Z=',

1FIO.4,T3&,'FURNACE LOSS',T55,F13.4/,'OVERALL EFF._=',FlO.4,T36,

2"FUEL INPUT',T55,F13.4)
B FORMAT(54('-')/,'HOT METAL TEMP. K=',FlO.4,T34,'COOLING WATER ",

1"INLET TEMP., K=',FIO.4/,'EFFEC°HOT SP.TEMPoK=',F10o4,T34,'EFFEC. ",

2"COLD SP.TEMP.K.=',F10.4/54('-')//)
9 FORHAT('FINAL WORK DIAGRAM_'/'ANGLE',T11,'HOT VOL.',T23,'COLD VOL.

l_,T36,'TOT. UOL.',T50,'PRESSURE',T63,'GAS INV.')

10 FORMAT(/////'ISOTHERMAL SECOND ORDER CALCULATION--'/" PROG. ISO"
1/" 10 OCT 197?'/'WRITTEN BY WILLIAM R. MARTINI'//)

11 FORHAT(1X,I4,T8,F11.4,T21,F11.4,T34,F11.4,T47,F11.4,T60,F11.4)
END

0(3
"11;0

JO'O



C.4 Sample of Input File for FORTRAN Program

ORIGINAL P.q(?E IS

OF POOR QU/_I..iTY

.NULL.

10.16F12.9,12.02,.115,.167,312,3.14159

.7B5398,.00432,25.0,90.,80.0,1,0

9680.,41.8,25.58,.472,.640,36,4.06

.0174533,.0406,6.40,1400.,.2,.0635,.1016

.0510,2.500,3.500,6,.2,13.65,2._25

4,90.,1200.,135.,2000.,.435,.1532

0.76_71.,6,.4,.006894,2.54,60.

8.314,1.341E-3,.0406,0.,179.

BOTTOM

C.5 Sample of Output File Produced by FORTRAN Program

f:,t_ Il-.ft: I_1,>,1 ;.;_.(.liNt (]Rl)li:l.,_ C.,:'_L(.:Ill. r_l .I(]N .......

I¢i_" t'll:,N I_Y I,,I]l...I..IAh R, V,t,_I,,:TI,:J[

_.f.tI.,,k,riNI Il_.'F:.l:;'f:_l IN(; ('tiM1.[I I(]N!_ AF,'I..!
':i" P()O0 0,": '<".... ', • :!..,IO(_, (>() NIJ:::
I.. i 0 <_ ()(_ ")"Y::: i1.;': '_" '..... ,:.,.J,_..000 FX::::

:.ZJl.dcI.iH_li__fllN::_'[iIN)!_ARF t

i,l_l: 0 ,,',_0_:",:> 1313.... 4 o0 _)(.)O II'I'_

wi.. '.._0.,IO<iO I,.I,'_::: (C_,_,_(_()_,.) l...Fk:

!:i'(?:.: 2 _ _'.::2:':/(2 1.1?::: '12,9()()0 I..l.I ....

I I:. i._',.;. ::L.FI_)0 N( '-:.: ..._], 2 NR::

NI I. 3A _.b..... 0, :.'0 O0 AI. :_::

_1i : 90 _ ':)(_K)() i"li .:. flO. 0(.)00 _;('. ....

,_:i[.,: O o I0:I,,_0 !_FE':.: O, O_:iI.(>0 ZZ:_

I,__'I.. _,),2.<}00 I.I1:.: 0., 1/,')0 I..I:-:::
_F. . ',..,,1000

3O, O0
_') I;:"^.,.,..,.000 ()

0. I.:I.'60

0.4 12C

"::.'.5000

12.02. 00

_!_

90.00

O. 0406O

0

? I, 0000

T F:';:::

C)C:::

C R =:

t..I.l=

N:;_,

(.':X :_::

,S(; ....

;q'H ::::

N L .;::

:I.200, 00

I

O. 1670

O. 6400

t 3.65O0

41, EIO00

4

2 ',3,1,2 _:!04

O. 0635()

96_30 ,O0
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o C.5 (Continued)

POWER, WAFTS HEAT REQIJIREMENT,

BASIC 90420.2656 BASIC

HEATER F,i., 2656,5659 REHEAT
REGEW, F,I.. 4115,2744 SHLJTTL_E

COLER F,L., 2682,3604 F:'UMF:'I NG
NET 80966,0625 TEMF', SWING

MECH • FRIC • 8096. 6055 CONI)LJCF I ON

BRAKE 72869,4531 FLOW F'RIC, CREI)IT
....................................................... HEAT TO ENGINE

'[N][iICATED EF'F,%= 41,5837 FIJRNA['E I.OSS
a')_"OVERAL.L EFF,%= .-__,9403 FIJEL. INF'UI

WATTS

1641.59 •8750

3952,121]

1767,5664

1003 • 5267
18857.3164

9680. 0000

-4714.2031

J 94706. 1875

48676.5469

243382 .7188

HOT METAL. YEMF'. K= 9.-_-.-_."_'_'_'_..__-_,;_. COOI.ING WATER INL..EI TEMF'., K= 330.5555

EFFFC,IIOT SF',TEMF',K:= ,:........ -_.j:_ E.FiF'EC,'CC)I..D SF','/'EMP K,= 370,1363

FINAL WORK DIAGRAM:

ANGLE HOT VOL., COLD VOI.., TOT, VOL., PRESSURE GAS INV,

0 643.5826 443.6575 1210,9871 8.5046 2.2454

30 622.3497 526.2712 1272.3679 7.8026 2.2445

60 561.4412 591.0422 1276.2305 7.4862 2.2445

90 471.2589 615.6417 1210.6477 7.6176 2.2445

J20 372.9461 591.0422 1087.7354 8.2426 2.2445

150 295.8666 526.2711 945.8848 9.3518 2.2445

180 266.5925 443.6575 833.9971 10.7450 2.2445

210 295.8666 367.8761 787.4897 11.9049 2.2445

240 372.9462 316.6937 813.387,0 12.2546 2.2445

?70 471.2589 298.8514 893.8574 11.7079 2.2445

300 561.4412 316.6937 1001.8820 10.6541 2;2445

330 622.3497 367.8759 1113.9727 9.5029 2.2445

360 643.5826 443.6575 1210.9871 8.5046 2.2445

BOTTOM

F,P300

.NULL.
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C.6 Comparison Program Results

Table C-1 gives the final comparison between the isothermal second order anal-
ysis with a corrections factor of 0.4 and the General Motors validated predic-
tions of the performance of their 4L23 engine. Figures 3-I to 3-3 show the
graphs from R. Diepenhorst "Calculated 4L23 Stirling Engine Performance",
19 Jan. 1970, Section 2.115 of GMR-26go (reference 78 bh). These graphs were
read as accurately as possible with dividing calipers to obtain the power outputs
and efficiencies quoted in column 5 and 8 of Table C-l.
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ORIGINAL P_',':-',L'[_i

OF POOR QU,'_LFrY

Table C-I Comparison of Isothermal Second Order Analysis of the

4L23 Engine with the experimentally validated analysis by General Motors

C(t_CTI_ FRCTORIS. 4

TI_. _INE BVER_ C&C. (_'S (_.r_ I]_L_ _'S I_L_
INSIDE SPEED _6 NET _'T -- E_F. EFT, --
TUBES PRESSURE POWER PO_ _'S _'S

PEG.F RPIq PSlB BIP B_F X X

10@0 50@ 2(38 Z 62_76 1 5 .?48?88 9.66"371 13 .741_2
t_ 5_ C_ B.18_4 18 .91B_34 17.6t22 2& 5 .B_129

1B@0 50_ 18@0 17.029 15.5 1.09B65 24.t888 21.5 1.12506
iG@0 508 14@0 24.22_4 29 1.21182 25.8797 212 1.22_74

1808 5@8 18_ _B.9_03 24 1.28?5t 26.2991 20.7 £ 27849
1_ 568 2288 37.3246 28 L 33382 26.2454 28,4 L 28654
I[_) 50B 26_ 43._ 31 t, 4_446 25.9448 29.3 1.27_?
IB_ 500 3L_B 49.5_?t _ 1.41535 25.5016 19.2 L 32821
I_8 1_@0 288 4,49795 6.5 .69L993 L! 643 iB.6 ,679?33

iBBB IO_ 6@_ 2B.1074 21 .9613_? 25.5284 24.5 1.b1197

IB@0 10@8 I@_ 33.B8tt 3t. 6 1.06966 2?.5784 24,68 i tt744
tC_3 1000 14_ 46.4931 4?,2 L 19173 2?.7492 24.62 1.127t
_,BSO iBBO iBB_ 50.6614 53 L 1@682 27.378 24.4 1. 12285
_,808 18_ 22_ 78.2416 61.6 i 14829 26.7468 23.7 i 12856

1000 1800 2_0 _ 2223 69.i i 17543 25.9_Ifl 23.5 i 10_I
1800 18@0 3&._ _ 6151 BO i 14519 25.1629 2?.85 1.10122

10@0 t5@0 200 7.tL'_ lB.2 . 69?408 15.78t3 21 2 .7444
1BBB 150B 6_ 29.8916 _.8 . 944.208 .26.7_9 _ 05 1.0678?
IBm@ 15@0 100@ 47.?864 48 .995_ 27.672? 24.82 1.11494
IBBB 15_ 14BB 65.3724 6&2 1.BB264 2?.3434 24.? L 1_782
1080 1508 18OB 81.8567 B8 t. @2321 26.5??3 24.3 1._372
IE_B 1500 _200 9?.2645 93.4 £ _41__ _ 65i9 23.68 1.@8336
1_(_ 1_C_3 2_ _i_B48 iB4.6 L 8692_ 24.7968 2.3,3 L 868_
1088 1508 3900 12_.162 117.9 1. _05 23.784 22:92 1.8342
10@0 2008 L_) 10.234t 12.8 .799_8 18.5711 21.3% .868621

_8_ 2_ 6@@ 36.8744 48 .9@iB61 26.3485 24,68 L @6?6
1000 L_0 1000 58.8906 61.2 ,962"_ 26,66t8 24.25 _.@9946

1008 2@80 t400 80.1847 _ 2 . 975483 26._043 23.92 L 08713
1000 _@0 i_ 99.6717 l_ . _'?t7 25._74 21 5 t, _14
10@0 _ _ 117.447 117 1._382 23.912 22.9 1._4419
1001 _ 260_ 131615 130.4 1.82465 _ ?779 _ 26 1.B2,_
iOBB 2_ 3_ 148.1_9 14E6 1.61e3_ 21 64e_ 21 78 , _:V_
18_0 250_ _ 12 5t7 15 .$34464 19.4202 _O.68 . 93951?
18@0 25@0 6@8 41.9193 45 . S_i154 24.9972 215 1._6371

1_ 2508 1_ 66.56?8 _, 5 .944224 24.9i68 23 1.@8334
t@00 25_ 14@0 Bg.7166 96 •934548 23.9B49 22.52 1.06_5
1000 -'-,50_ 1_0 LiE 485 1t5.8 . 954i_ 22:_ 21 9 I. _4_4_
10@0 25@@ _ 12_ _ 135 . 955317 21 59t6 21 _ 1.91464

I0_@ _ 2_0 t45. 12 1_ 5 •964251 2&3362, 2_._ ._

lt._ 25,90 3800 t58.847 164 . 968581 t9. _;74 2_ . 9_,337_

_52

....../_.,.__.>'_,.._" ._ , . :.-:-.



Table C-I page 2

OR!CleAt. PAC_ IS

OF POOR QUALITY

C(_"_.CTIONFFICT_IS. 4

TB_. Ei'_If_ _ (3._, I_l'S CFLC. C_C. _'S CI::LC,
ll_l_ SPED [_ NEI NET --- EFT. ETT.
_'U_S PESSL_ PCER P0_ER _'S _4'S

588 2_ 3._ITJ 5 .664345 11.6456 t6. 2 .71_
L."_ 500 6_0 9.64861 12 .6_405t t9. 9t2 2t .948189
1200 5_8 t880 19.3385 t8 L 674_ 26.3574 22 i 19506
t260 5_ 1400 2'8.0_43 21 8 1. 1_t 28.5274 21 5 t, 2_393

500 1_0 36._ 29.8 L 2t27 29.te77 25,2 1.15507
t2_ b_8 2208 43.69'16 35.? 1.22_85 29.81_ 25.2 t. 1514
I_8 588 _88 5L_44 _L5 L 2299_ _.6662 24.8 t 15_89

_e@ T_ 3_88 58.i?8_ 46.2 1.2591 _8,1641 24.2 1.16_81
t2_ 1_ 2_ 5. 9946:5 9.6 .624443 15.9_58 29.5 .7773_
t_"_ 1808 6_ 23,5559 25.2 .93475? 29,4t36 26.4 t. _7_27
:121_ t_ 1_ _. ?536 ]3 1.i3932 33.75_ 27,t 1.13483
12_ 1_8 1488 54.8t_3 53.2 t.E._B8 39.9618 28,15 1, 89989

_.ee8 1_0 69.33t8 67.2 1. 83172 _ 5546 28.12 1.B8_58
12¢0 1_0 22_ 83.2575 79 1.05_ 29.86_3 27.9 1, _"_
:12_ 1_ 2F_0 96,_ 89.6 1.877?4 29.e436 2?.62 1. 05154
12ee 1888 _ t_9,245 t_ L 89245 28,15_3 27.2 t 63494
t2_ t508 L_ 8._ tl 2 .652241 t8. 3454 _. 15 :792458
t2_ t5_ 688 "M.541 _ .90_73 39.2907 28.42 1.86266
1,."_ 15_ 1_ 56.92_ ,.,:, . %4885 "3L2388 2&5 t. _1
_i_ 1508 14_ 78.t827 _a .977284 :}8._5 28.6t 1.8_6
1200 _.5_ 1_ 98.493/3 t_0 . _49_ _. _ 23.4 1.060_
:1,?.i_ 15(}8 2,._8 1t7.56t t18 .9962?8 29.:t_ 2_.09 1.e37_3
t,:"_ 15_ 260_ 135.512 J34.6 1._7_ 2_.(}?2? 27.72 L 6t272
t2[O 15(_ _ 152.27 t47 1.eT:x,_ 27._ 27.26 .998467
L_ Z_8 298 tZ _ 16.5 .7_.457 21.8913 73.92 .8%1743
1288 _88 608 43.5594 48,3 ._t85 _,2'tt4 28.27 1. 8686"7
12_ 2_ 1t_8 71.624 ?&8 .932(_4 _. 6477 28.27 t. B841t
12_ 200_ 140_ 97.8483 t83 .949983 29.9458 28.t5 1.86_79
120B _ 1_ 122.349 12? .96338 2_.888? 27.7 1._4291
120_ 20_ 2288 145.1_ 15t . %t.t_4 27.7176 27.22 t. 0182_
12_ _ 2606 l(>&11.9 171.8 .966931 26.5t85 26,8 .9894:_
12_ 20_ 30_ 135.433 t89. 9 .9?6476 25.354 2S.3 .%25_9
t_..'_ 25ti0 2_ t5. 834 29 .75t6.99 22.4t81 2185 .939962

120e 250e 668 5_.7294 57 .88999 29.3284 27.5 1.8662
12_ _ 1_ 82.95t _. 8 . _J3557 29.3326 2?.25 1,07_3

_ 14_ Lt2.663 1_ ._..3463 2_.366 27._5 1._4_
_'_ 25(}8 I_0B 1_. 982 15_ .933213 27.t4t2 26.5 t. _242
_'-,-,-,-,-,-,-,-,-_8L_ 22_ 1_4.81? 176.8 .932223 25,846t 25.85 .99_51

t,."q_ 2",_ _ 1_,7.3_I L_I .931844 24.52"c6 25,_ .968666
1,.'_0 _0 _ 2_7.336 222.5 .931647 23.217 24.?6 .937682

L; Z;...................................................
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Table C-I page 3

CO_CTIONFRCTORI5.4

TBIP. EI_IIE RVEP,RGE CR,C, Gli'S CPLC, CPLC. l_'$ CR.C.

IRS.TDE SPEED GRS _ET _ ---- EIF. EFT. ---
TUBES PR£SgJR£ I_ P_ Gli'S Gli'S

I>EG.F RPII P$1R BlIP BHP X X

14@0 508 2@0 3.8984 5 .T/9679 13.64@6 29.6 .633@39

14@0 508 68@ 11.i_42 13 .85263 _ 9642 22 .9983?2
14@0 5@0 tB_ _, 24B? 19 L t1?93 2?.9_4 21 5 1.L_91
1488 588 1488 3£3435 26.8 i 16953 39.5553 24.6_ i 2._357

14@0 5_8 t888 40.5026 34.6 1.t786 3L 25@3 25.5 1.2255
14@0 508 _8 49.1747 4B 1 22937 3£ 21_2 25.5 t 22424
14@0 586 2688 57.499 45.2 1 2721. 39,8423 25.5 i 2895
14@0 5@@ _ 5.6139 515 1 22643 39.3114 25.25 I.29@45

14¢B 1608 296 7.26227 iB •726227 18.3442 26,68 .68?565

14@0 1_ 688 26.872.3 28.2 •924549 39._ 28.62 1._045
14@9 1888 i_ 44.6622 44.8 .9%925 31 1791 29.5 1.12472
14@0 IBOB 14@0 61.911.9 62.5 .99_59 33.4_3 39. 1.11601

14@0 10@0 18@@ ?8.4B56 77.2 1._665 33.8664 39.2 1.@9491

14@0 1880 2288 94.4544 9"L5 1._2113 _2,3539 39 1.B7_46
14@0 i_ 2680 i_9.8_4 184 1.85581 31.5_7 29.?5 1.
14@0 108@ _ 124.516 t29 1.@3763 39,5?24 29.5 L _6_5
14_ i5_ 288 18._ 15 .6-/2431 29.6"355 29.i •?@9122

14(_ 1588 6_ 39.i_4 44.8 .8?2956 3,!_ 39.6 1.8?185

14@0 150@ 1_ 64.?5@8 68.t . 95_2 34._.54 31.39 1._364
14@0 t5_ 14@@ Bg.1473 92.B . 968639 33.68?9 31.?2 :L_4
14@0 t5@0 t888 11_622 11?.5 •958488 _L 9_? 31.8 1._3461
14@0 15@0 22_ 134._5 t4@ . 96_i79 3£ 874B 3L 5 i _tt9
14@0 i5@0 26_ i55. 933 16@ . 97458 39.?75 3L 21 . 9_61
!t4@0 i5_ 39_@ 175.B75 i@0 .9?7I_2 29.6553 39.92 .959@97

14@0 29@0 2_ 13.6(P.3 i8. 5 . ?35261 _L _ 29.75 . ?72617
t408 29@0 _ 49.9158 5?.8 . 863596 31 1715 3'1_5 1.06_32
14_ _ 1_ _ 3647 _9.B . _/T'_t 31 7_3 31.45 i _7t84
14@0 29_ 1400 ill 96? 1212 •5L_972 33.83t 3L 58 1._45_
14_ 298@ igi3@ i41. 831 t51.2 •938833 31.9458 3L 4 1.8t739
14@0 2_8 22_ t68. 96? 18@ . 9397_? 39.?36? 3L _5 .
14@0 28_ 26_ 194.259 295.5 . 945298 29.4964 _ 65 .
1488 29_ _ _17._5 _. 2 .946415 2_ 252 38._ .931794
14_ 25@8 29@ 1?.162 22 .78_J2 24.6463 29.5 .835469
14@0 25@0 _ 5E9921 67.9 . _ 32 6346 3_6 1._R9

14@0 25_ t_ 96.9_tt 1_6.8 •9073i4 3,! 7329 _ 73 1.86518
t4_ 2_ 14@0 _ 294 t45.2 •_Lt113 31.?'/54 39._ 1.e_672
14@0 25@8 1_ t65. 278 18@ . 91i_t. 39,5214 39,2 1._1_=4
140_ 25_ _ t_ 73? 213.3 . 917661 29.1_9 29.8 .979493
t4@0 25_ 2T_ 223,831 244.1 •_16%4 2?.8327 29.27 . _3
14@8 2_ _ 249.439 2?3.5 . 912923 2E4886 2E72 .922393

RVE_ RATIO .9?9iP6 1.e_'_
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APPENDIX D

ADIABATIC SECOND ORDER

DESIGN PROGRAM (RIOS)

D.I Description

D.l.l Introduction

As was stated in the first edition of the design manual the Rios method for

Stirling engine design is highly regarded by engineers at the Philips Company as

being almost equivalent to their proprietary codes. Dr. Glendon Benson has stated

that it is the basis for his proprietary code.

In his 1969 thesis, (69 am) P.A. Rios published a computer code for a Stirling

refrigerator. This code was somewhat verified through experimental data ob-

tained from his two piston-two cy,linder Stirling refrigerator.

Prof. J.L. Smith, Jr., of M.I.T. stated that this program was found to be re-

liable and useful by North American Philips engineers for designing cooling

engines. At the time the Philips engineers used this program they had no pro-

gram of their own but could get performance predictions for specific designs from

N.V. Philips, Eindhoven, Netherlands. Other comments made at a panel discussion

on Stirling engines at the 1977 Intersociety Energy Conversion Engineering Con-

ference in Washington D.C. indicated that the Rios program is as good as the pro-

prietary Philips program.

In order to verify these claims we obtained a card deck from Prof. Smith con-

taining a listing of the Rios program as found in his thesis. Then we added to

the Rios program equations to calculate the dimensionless numbers required by the

Rios program from engine dimensions. We also added equations to the end of the

program to calculate the losses for a real engine. These equations are given in

the Rios thesis but are not part of the Rios program. The program was installed

on the Amdahl 470/6 - II computer at Washington State University. It is ac-

cessed from the Joint Center for Graduate Study using a computer terminal con-

nected to the WYLBER system. The program executes in 0.91 seconds. Compiling

and linking requires 2.76 seconds.

Although the original Rios program is for a refrigerator, the program given in

SectiRn D.3 has been modified to apply to an engine. The author decided to apply
it tothe General Motors 4L23 engine, a four cylinder, double acting crank op-

erated engine with tubular heat exchangers since this engine is most similar to

present day automobile engines. %

This appendix contains a complete nomenclature list which Rios did not have.

Next is a listing of the FORTRAN program with many comments that make the program
understandable, The full numerical results of 18 test cases summarized in Table

D-l are on file at Martini Engineering. The comparison on Tabl_ D-l

shows that the pumping or appendix loss predicted by the Rios program is an order
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Case

COMPARISON OF
CALCULATION

Table D-I

RIOS AND GENERAL MOTORS
FOR THE 4L23 ENGINE

Temp. Ave Rios GM
Inside Engine " Rios
Tubes Speed Gas Brake Brake Rios Overall

oF rpm Press. Power Power GM Eff.
psia HP HP %

GM

Overall Rios

Eff. GM

%

I 1000 I000

2 1000 1000

3 1000 1000

4 1000 2000

5 1000 2000

6 1000 2000

7 1200 1000

8 1200 1000

9 1200 1000

10 1200 2000

11 1200 2000

12 1200 2000

13 1400 1000

14 1400 1000

15 1400 1000

]6 1400 2000

17 1400 2000

18 1400 2000

200 8.31

1400 57.62

2600 104.16

200 14.34

1400 103.63

2600 186.51

200 9.65

1400 67.79

2600 123.09

200 16.82

1400 123.83

2600 224.14

200 10.80

1400 76.70

2600 139.68

200 18.99

1400 142.03

2600 257.72

6.5 1.28 19.23 18.6 1.03

42.2 1.37 31 24.62 1.26

69.1 1.51 35.22 23.5 1.50

12.8 1.12 21.76 21.38 1.02

82.2 1.26 30 23.92 1.25

130.4 1.43 29.99 22.26 1.35

9.6 1.01 21.11 20.5 1.03

53.2 1.27 33.98 28.15 1.21

89.6 1.37 35.05 27.62 1.27

16.5 1.02 24.03 23.92 1.00

103.0 1.2_ 33.27 28.15 1.18

171.8 1.30 33.47 26.8 1.25

10. 1.08 22.50 26.68 0.84

62.5 1.23 36.24 30.0 1.21

104. 1.34 37.45 29.75 1.26

18.5 1.03 25.77 29.75 0.87

121.2 1.17 35.91 31.58 1.14

205.5 1.25 36.19 30.65 1.18

O0
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of magnitude larger than the same loss predicted by the isothermal second order

program. The equations used are entirely different for the two cases. The

equation used in the isothermal second order analysis was checked with the orig-
inal source and was found to be correct. Rios _erives his appendix loss equation

in his thesis. Then in other parts of the thesi_ the equation is quoted differ-

ently, Although the author does not understand the reasons for many assump-

tions Rios makes, it is clear that the equation must be substantially modified

for a heat engine. Rios ignores the temperature swing loss which for the 4L23

engine is quite large. The program presented in Appendix D should be modified to

use the correct appendix loss equation and include the temperature swing loss

equation. However since these two errors compensate and since they are rela-

tively small corrections it was not considered worthwhile repeating the 18

production cases.

D.l.2 The Rios Calculation Method Rios starts by calculating a perfect engine

and then makes corrections. His perfect engine obeys the following assumptions.

(69 am, pp. 24-26)

I. At each instant in time the pressure throughout the e_gine is uniform.

2. Hot and cold gas spaces are adiabatic - no heat transfer to or from either

the expansion or the compression space.

,

.

Heat transfer in the heater, cooler, and regenerator is perfect - zero

temperature difference between gas and neighboring wall.

The temperature at any point in a heat-exchange component is constant with

time.

5. Uniform temperature exists at any cross section perpendicular to the
direction of flow.

6. The gas in the cylinders is perfectly mixed.

7. The Ideal Gas Laws apply.

In broad outline the Rios calculation method proceeds as follows:

I. Calculate dimensionless quantities from the engine dimensions and operating
conditions.

2. Calculate engine volumes for the angle increment selected.

. Calculate engine pressure to go with the volumes and given operating con-

ditions. Start with an arbitrary initial pressure and traverse the cycle

twice. The second cycle will be correct.

. Calculate power losses:

a. heater windage

b. regenerator windage

c. cooler windage
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5. Calculate heat losses:

a. reheat
b. shuttle

c. pumping
d. heater ineffectiveness
e. cooler ineffectiveness

6. If 5d or 5e are appreciable, modify the heat source and heat sink temperature
then re-do parts I, 3, 4, and 5. Three iterations has been found adequate
for convergence.

D.2 Nomenclature for A)_pendix D

Rios did not give a nomenclature so the one given below has been tabulated to
the best of the authors knowledge and understanding.

AFC = Cooler free flow area, cm2

AFH = Heater free flow area, cm2
2

AFR : Regenerator free flow area, cm

ALF = 4.7123889 (270 degrees)

ARG = Sin (PV angle)

BDR : Regenerator diameter, cm

BEC = Piston end clearance, cm

BPD : Piston diameter, cm

BPL = Hot cap length, cm

BRC = Piston gap, cm

BRL = Regenerator length, cm

BRO = Regenerator density factor

BST = Piston stroke, cm

BTC = Effective cold temperature, K

BTCI = Cold metal temperature, K

BTR = Regenerator temperature, K

BTW -- llot effective gas temperature, K

BIWI : llot nletal temperature, K

BWD : Effective regenerator wire diameter, cm

C() = Cold space as fraction of the stroke amplitude at mid-increment

C() varies f_ .. 0 to 2 and back.

CALF() : Sin chang- per radian increment

CALFP : CALF()

CFI _ Cos of phase angle

I!_tl



CI() = Same as C() for beginning of increment

CMMAX = Largest cold dimensionless mass

CMU = Cold hydrogen viscosity

CNTU = Number of heat transfer units in cold space

COFI() = Cos values for cold space

CON = Conduction loss, watts

CPI = Hydrogen heat capacity

CRC =VZZC 2 - CALF() 2

CRW = CRC in hot space

CTD = Cooler tube inside diameter, cm

CTLL = Total cooler tube length, cm

CTLS = Cooled cool tube length, cm

CVl = Hydrogen heat capacity

DALF = 2_r/NDIV

DC() = Angle derivative of C()

DCI() : Angle derivative of CI()

DDD : Cooler duct diameter, cm

DLL : Cooler duct length, cm

DM : Sum of changes in mass (DMRE)

DMC : Cold dimensionless mass change XDMC()

DMRE = Sum of changes in mass (DM)

DMW : Hot dimensionless mass change XDMW()

DMX : Dimensionless change in mass relating to X, the fraction from
the cold end

DP : Change in pressure

DPR : DP array

DTC = Cooler metal temperature - effective temperature

DTH : Delta T H
3

DV : Dead volume, cm

DVC = DC()

DVCl : DCl()

DVW : DW()

DVWI : DWI()

DW() = Angle derivative of W()

DWI() = Angle derivative of WI()

ORIGINAL PAGV': i,_
OF POOR QUALITY
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DX = I/XNDS

EXl = 1 - XNHT

EX2 = 2 - XNHT

FC = Cold friction factor

FFF = Friction flow credit, watts

FH = Hot friction factor

FR() = Regenerator friction factors (3 pts.)

FI = Phase angle, rad.

FII : Phase angle in deg.

FIPV : PV angle (output) arcsin (ARG)

FR() : Regenerator friction factor

G1 = Y value subplot

G2 = Y value subplot

GDMS() : Calculated mass flow values
3

GGV : Dead volume at side of hot cap, cm

GINT() = Flow loss variable

GI2() = Pressure drop value

GI3() = Pressure drop value

GLH : Heater pressure drop integral

GLR : Regenerator pressure drop integral

GLS : Cooler pressure drop integral

H(1) : Fraction of total reduced dead volume from cold end to midway in cooler

H(2) = Fraction of total reduced dead volume from the cold end through the cooler

H(3) = Fraction of total reduced dead volume from the cold end through half the

regenerator

H(4) = Fraction of total reduced dead volume through the regenerator

H(5) = Fraction of total reduced dead volume through the middle of the gas

heater (l-H(5) includes the rest of the heater and clearance on the end

and sides of the hot cap)

HAC = Cold active volume amplitude, cm3

HAV = Hot active volume amplitude, cm 3

HCV = Reduced cooler and cold ducting dead volume, dimensionless

HEC = Reduced cold end clearance dead volume, dimensionless

HGV = Reduced hot cap gap dead volume, dimensionless

HHC = Reduced hot clearance dead volume, dimensionless

HHV = Reduced heater dead volume, dimensionless
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HMU = Hot hydrogen viscosity

HRV = Reduced regenerator dead volume, dimensionless

HT = Basic heat input, watts

HTD = Heater tube inside diameter, cm

HTE = Heat to engine, watts

HTLL = Total heater tube length, cm

HTLS = Heated heater tube length, cm

HTW = Hot end heat transfer integral, dimensionless

IND() = Array that shows if mass change is positive, or negative in
warm and cold sides

J = Temporary angle variable, radians

K = l if warm mass change is positive, 2 if negative

L = l if cold mass change is positive, 2 if negative

LUP = Iterational counter

M = X value for plot calculation

MBR = Number of regenerators

MCT = Number of cooler tubes per cylinder

MHT = Number of heater tubes for cylinder

MW = Dimensionless mass in hot space = (mass, grams)(R)(BTW)/(PMXI(HAV))

N = NDIV or x value for plot subroutine

NN = l up to phase angle, 2 after

NDIV = Number of divisions per crank rotation (must be a multiple of 4

so that the phase angle at 90 degrees can be an even number of divisions)
(Program must be revised if NDIV is not 360)

NDIVI = NDIV + l

NDS = Number of divisions in dead space

NE = NDIV/4 + l
+5 = metnet

NET : Regenerator filler option -5 = screen

NF = NDIV/4

NFF : NF + 1

NFI = (phase angle)(NDlV)/360

NFIN : Main loop final counter, for first part : phase angle, for second
part = end of cycle

NIN = NDS + 1

NITE = Cycle counter (counts to 15)

NL = (NDIV/2) + 1
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NLOP = Option counter limits changes in options to 7 (removed in final version)

NO = IND(K,L) - l, 2, 3, or 4 starts as l

NOC = Number of cylinders

NS = (NDIV/4) + 2

NST = Main loop initial counter, for the first part = l, for second part =

phase angle

NT = (NDIV/4) + 2

NWR = Governs printout, zero for overall results only, different from zero
added PV data

P = Pressure, dimensionless

PALF = Thermal diffusivitity of piston

PDR = Piston rod diameter, cm

PI4 =11"/4 = .78539816

PAVG = Dimensionless average pressure

PMAX = Maximum pressure, dimensionless

PMIN = Minimum pressure, dimensionless

PMX = Maximum pressure (MPa)

PMXI = Avg. pressure MPa

PR() = Pressure, dimensionless, fraction of maximum pressure

PO = Basic power, watts

POT = Net power, watts

PS = Dimensionless pressure from end of previous cycle

PW = Pressure at halfway point for increment

QB = Beta for shuttle heat loss calculation

QCP = Cooler windage, watts

QDK = Reheat factor

QFS = Pumping loss factor

QHC = Shuttle loss, watts

QHG = Pumping loss, watts

QHP = Heater windage, watts

QHR = Reheat loss, watts

QLM = Reheat factor, X
l

QLI = Shuttle factor, X l

QNPH = Reheat pressurization effect

QNTU = Regenerator transfer units, dimensionless

QP = Windage factor

OF POOR QUALITY
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QR() = Regenerator windage loss values, watts

QRP = Average regenerator windage, watts

R = Gas constant, joules/(gm)(K)

R2 = Constant = R(gc)2

RE() = Regenerator Reynolds number in cold, middle, and hot part

REC = Cold Reynolds number

REH = Hot Reynolds number

RER = Regenerator Reynolds factor

RMU = Rege:_erator hydrogen viscosity, g/cm sec.

RNTU = Regenerator heat transfer units

RP = Maximum pressure/minimum pressure

RVT = Displaced mass ratio

S = Pressure at halfway point, dimensionless

SALF() = Sin values for cold space

SALFP = Average sin values for cold space

SFI = Sin of phase angle

SHR = Specific heat ratio for working gas

SIFI() = SALF()

SIFIP = SALF(1)

SMC = Cold mass + ½ change in mass

SMW = Hot-mass + ½ change in mass

SPD = Engine speed, rad/sec

TEC() = Dimensionless cold gas temperature

TEST = Ensures that difference in dimensionless mass <.OOl

TESTI = Ensures that difference in dimensionless pressure <.005

TEW() = Dimensionless hot gas temperature

TMPC = Average TEC()

TMPW = Average TEW()

TCDM = Dimensionless average cold temperature for entire cycle

TWDM = Dimensionless average warm temperature for entire cycle

UD_() = Critical mass flow values from subplot

UIN() = Critical pressure drop integral values from subplot

U123, 24, 33, 34 - Critical pressure drop values

UPA : Power piston area, cm2

hot metal temp, K
UTR = Temperature ratio = co'Id metal temp, K

Oi"_ I'C,_'_ _L_Li_y

363



ORIGINAL PAGE IS
OF POOR QUALITYvc : c()

3
VCC = Cold volume cm

3
VCD : Cold dead volume, cm

VCl : CI()

VD = Reduced dead volume, dimensionless

VH = Hot volume, cm3

VHD = Hot dead volume, cm3

VRC = Regenerator dead volume, cm3

VT = Total volume, cm3

VW = W()

VWI = WI()

W() = Hot space as fraction of the stroke amplitude, calculated at mid
increment

WC = Dimensionless cold work

WI() = Same as W() for beginning of increment

WMMAX = Largest hot dimensionless mass

WW = Hot work, dimensionless

X = Short term variable

XDMC() = Change in cold mass, grams

XDHW() = Change in hot mass, grams

Xll = Pressure drop integral - accounts for the relationship between the

shapes of mass and pressure fluctuations

XI2 = Influence of mass flow time variation on the heat transfer

XI3 = XII/XI2

XINT = Basic pressure drop integral - for windage

xMC = Cold gas mass, relative to total inventory

XMCX() = Cold gas mass, grams

XMT() = Total mass, grams

XMW = Hot gas mass, relative to total inventory

XMWS = Hot dimensionless gas mass from previous cycle

XMWX() = Hot gas mass, grams

XND = NDIV

XNDS = NDS

XNHT = Value for exponent in heat transfer relation of regenerator matrix

XX = Short term variable

Y = IDMXl

%
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ZEF = Indicated efficiency, %

ZZC = Connecting rod length/½ stroke for cold piston

ZZW = Connecting rod length/½ stroke for hot piston

D.3 FORTRAN Listin_ with Full Comments
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1. U._:ai'i,: t:.3> ,,,C.;'0 i'i C!__ ......':f",,.) _,[31 i..,vT(,I,[!,;'),', .,,(.-,.1;2.( 20 ) r [.; .I.,.'>_,,,:._, ) :, I.,,I. ,, ,_ ) _,F F;,'( :J ..',_,[)F;: t,,..,".."",,

C t':.:'.F'll;[CTlF-]:!i:/i:i lii.i'.!['i;]:N!_: .'[ll:l'tli_ii'JC:}]:Oi',!._i; .¢..,NITI[)I:'ER_T]ZNC'] C[)NIIi]:TI[:)NS CH:;'E I:;C1_1,_I.!

C ]:i'.! F"I:;_C}_'IOC,T:-*.'_C,>,FCcTIS

"',.. l .:tiT:,",11'K',":;,.!:3;; ":"'C..'.<...... _.<:.,.IA ,, ".'.'N H T....... _.I"-'M,.'<:I. _,_:)1.):. :.,i1E"I" ,,,i'q.r.}r'

ITI: "..<..'>'.,..";'f'...',, .'.I,000 _.!_)j.1.]. ,, ...1.,:]:,.,,^ ,,,",

Id!i;r.*.i.T.)': t::;_..1.'710 ) B')"l]: ,, B'T'bl :.,i':'1:"1_:.'B(:;')" _,I:tF:'L _'.T.';'RC _,);;llli:C;

F:.'I}.':f_';) ( t:..;_,:11:',?'..');' F"].F;:.,..:(:IF'tO_..'{.':)';IF:::.,;C:L'.tI:- I.":1:::1._'i't._:d:;:.,,1"1C'l"

, ""' • ............. ', ...._. ','H'T'}"i:..H'T' I...I..._'I", T I...;.__'MH T
F: I [i i.!',.... i"'..... ,',l., .: ,:',l';t[: r.![_t,,1 !:;liLTt.IF:'

F:']1I1:;.::.';; 1.4 i. "3':' '" '
F' 1: i .... 7 ::.J';3_";'7_?>:1._!'.

(: I.iOl ,t:,itT{ ,C(:}L ).'.! i'.iE/f_h!.. 'Tlii.i".iF"i!:il';:f'..TUi::l!:;S ,:_F;,'II.'.SI:;:F r_l" C;:l[t,,l!!:i'._. l.IC)'l f.G!Ll CC)I..][_

C [;4f, :] '}'1}:[i-iF:'[i; i;, ,:_}"{)1:_;[i[ .".;
[7.'TW:1. . }" 'i' I,.!

;.: F"t ,IJlTiF:: F"11:T:T'[)_'.] riF;cE¢,

1.;1:'(; ::: }1_I:' .0:I':;E".I:' _[l, r:' T ",

.... ,,,,L r.,,_]._...I.-. II..!t.'lTF;".7',l:i (;)I" i'.lc)r;.:M_'.%l...," ('I;;HF"ILR,, l_'r' .... ,,,. ,,.

1.1TF_ £;i"l,,J.."_: FC

"' I.I(')T C'rL.I_'J[II;;t::: 'J[]'I...{U'.il-]; _'..%i'lF'l...];'TLll]'li:: 1S F;:I![ I:"Iii;F;:II;:N C E; q[;)L.Ui"llii: F'IIiF;,' f_l..I..

!; 1._l.Hl;iii::i;I:O_,q,..l:.:S!i_b'Ol...Lli'.ilil;,'.i;,.

l.l,:'ll,' "' LJI:'ih:I'l:;'.!;;I/'2

C;f:'.'". I..'l.l::.kl.".l"i:rl_.T:F"l....I<I(.;_I':'[

.,_..... _.... • i. I , . t ....., I t.' ;I T l _'_L. 11'' 1'.7;i ' _!' .. t.)t._r,, r !'2I:: .:._I.. Y F' (1]R 7; 1[ T"I'.;1F::('t,'1"111['.]i .!Ci;
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[ _ •" _ ,L_- L {

:.>

!

t

r

!, ()

5 I •
r-

IC" "_"

_" r'l

r- :"

I'T" "_
.,j .." _,

• ..0 ,[__ _.

, .> •

....

6L,

63+

64.
r-

(D ,.,,._ _,

66.
67,,

68.

70.

71 +

7,3.

7.4+

75+

77+
:78.

79.

_.0.

C
C

C

C

C

,"I,, [ .,!l_'.: ,_ii.'l i):il'!]::'iLli"i I.I'F 17F"i .IL'i: l:;.:'tS "YI: Vii",. Aiitl !t,_'-,'

, lti.; T :, ;t_'s. "t','.:f'L:l .,tl I i!....,. ;:i.:;fl, j .,. l .:"t , :. :, "

.... L.d...... t f..i' #" T "; ?;{;t.:i7..'{'::t I i'lt: .."l'h:']L I'17. F': ("il':i ," • i .... ." , .'}it . • ..-

. ,. ,d I. l-..., t..I£ .l: :[ #01: :ri, ::'T <!::t':01..!..'_I'iBF;: ' .I,.:iIiR .'l.J;:ll., i

,..! I: : F' i: _:I_£"]:lR :I,:B.CIF:::$H B F;"',::):.:Ri]
ili-;'L' A_F:I::."t_BF;:L. :._2::I.'.B 1" W-" (Ih'."iV::l: ( Bi- I.,.1_:f_":T C ) )

_ ' 11 : F:':[ ._;kl.IT£1:_H'l-):r:l,i":li 1

, h" I'1{::!I"lfL.I......t"h.I v

i.,,., $ GE[.'.fHAVt H'Ii:: I,".....
_ri :. HGVI't'II]'C';'HCV t'HRV"FHHV","'HHC

tIF'A i VOLUMI:-::.'.]._ :[i _1 CI.I._i:.:i'ITItE: FOI...LOI,.,I:[i,:G ARE I-.ll.-.)"2_,I:;,",7:GEi'.,IFJ:F;_ArOI7,.gi'l£i COL.[I i. :._-£

/IH [I :" if:iF:I-I:'lq I'1-L.I_ic UF' A::I(£11.-.7C

V I;"D :-:.GGV-I-A F R * B R I.

VCD= ( !.11::'(_.-F'[iR:$P OF;::.,_F' 14 ) :.$BI7i:[I-HC V:.Iq-.IAV/IJ T I::

(fin I-HE r:IR.'.-i-I [TF:R_:YI'I:Oi', I ONI...Y THI:Z :[i'-!l::'!JT VAI_.LJES ARE WRITTI-N OUT

:[F(I...IJF"- 1 ) :],"#3:343_'34,'_',

:]..I-L:-; Hl-"l{: ::: I!A H 'F" 7[ _I::IP£iI:;_*F'[iF;,':t£:STi'2

I-IRI IrE ( (.i, 1.ow ,.i )

WRITE(,'/, 1.8:[0) BTC,IITWrBF'.£1,BST

WRITE(6_ 1820) BF'I.. _ Br'.C : BEg, PDR

I:,IRl TE ( 6 .',1Eg30 ) BRO _ B£1R _ BW.O, BRI_

WRIFF(6,18.4:3) M£:R_,t'41::T,CTIi_'CTLL

WRITE(6,1850) CTLS,HTD,HTI-L,HTLS,MHT'XNHT

WI:'ITE(6, 1860) F'MX1,SF'D,t"IET,NOC
WRITE(6,2010) ZZ[', ZZW

THE REI'IUCED I'IEA1] VOLUME IS IIIVIDED INTO FRACTIONS, RE-EVALUATED
EACH" ITERATION BECAUSE OF CHANGE IN TEMPERATURES

:346 H(1) = (HEC-I.HCVI2+)/VD

Hi'2) = H(1)-I-HCV/(2.*VD)

1-I(3) = H (2)-I-HRV/(2 .*VD)

H(4) = H (2)-I-HRV/VD

H(5) :--. H,:4)-I-HHV/(2.*VD)
CALCULATIONS FROM 349 TO _.gJ ARE ON FIRST ITERATION ONLY. ENGINE

VOLUMES AND VOLUME DERIVA]'IVES ARE CAI_CULATED AND DECISION MATRIX

IS DEFINED

IF (LUP-'I) 349, _49,295

349 Xi"ID = NDIV

NDIVI .... NDIV -F :L

O0

0 _L.-:

_i -_

I-" i,1

4 k_

/



81,
82.

83.
84.

£5,

8&,

"-2.7.

88.

C)'_ t

90.

91.

93°

•.")4,

97,

98.>

.LO0 +

:tO1 +
102 •

104 ..
1 () 5

:LOL,

.i.07.
L (',':--I,.

:"0'?.

L10.,
11 :L,

[ L_.3.

[ 1.") :-

..... !r : ,i

C DAI_F-.:O. 0174 RA]['IANS/INCRIHENT
DAL.F" :_: &.2821185-3/XND

NT = NDIV/4+2
NE :-- NT - 1

C CC,L.CLJLATION STARTS AT 270 DEG:=4.71 RADIANS IN RADIANS IF THE

C FRONT SIDE OF THE: COLD PISTOl'! IS USED AND AT 90 DEG=l.57 RABIANS
C IN RADIANS IF THE BACK SIDE IS USE/, AND ROOM MUST BE ALLOWED FOR

C A PISTON DRIUE ROE'. THIS GIVES THE PROPER CURVE SHAPE.

C C_'IL.CLH.C.FFION ALWAYS STARTS WITH ZE-RO COLD LIVE VOLUME.

IF: (PDR) /lO&O., 40&O, 4070

4070 ALI-::'::L '="";_""'"-i....I/ .,/ _._ ,_,

GO T 0 4080

4C.L:.,.> r,I..l: = .-'_. 7t2S889

40E:O NI.: :-- NDIV/4

C ('ALL. SUBROLYFINE TO CAL_CLJL.ATE DUPLACABLE SPACE ABOVE OR UNDER COLD

C PISTON AT THE MIDPOINT AND AT THE BEGINNING OF EACH ANGLE

C INCR.TMENT AS A FRACTION OF THE PISTON STROKE AMPLITUDE.

C SUBROL!TINE AI_SO CAI_CULATES DERIVATIVES FO BE USED LATER.
CAl..L_ VOL.C ( DALF", NF, C, C I _"DC, DC I, ZZC, ND I V, S I F'][, COF I, SALF, CALF •

.LF'DR ."ALF')
..-7_ DIEG FORC FILE] F'IIr'_,SE ANGL.E MUST .i':_E 90 DE:G FOR A HI-:AT ENGINE_" AND " n

C C-, HIEAT F'L]i"iF'

C

F.

100 F'I :: [;ALF":.I'MFI 11_13
I'- I :L ::: F I .I<!. o .; •/F' .[ lii:

WF;:I TE , ,t".- I. I ; -; I-IF;:.,N.U I V -,I" .[ 1 .. iq 5 ,. C £d[' :. £ I L _ 1:-')

C F [ .... C OS ( F [[ ? _IDr-

l_0 W T l-II"_".I IOF S F:"C,('1{ F"F.'..--A,(. i _[(['N S ,"-i:.,.!0 D E I.; "[ '.),., 1"I '.2E .'.":_C_l:;:li.. C:;',1..C I..IL.[',TI::]D F"0 R _ .-_

E {; C l-l I i'! C I':.1]I[i'iiiT,i'-,I'F ... > [.._
, "" "().l.,J"[iI.:I]j_ I.'i_l::"I :-'...:,I"iI__ _'..-71:-I" i".!)-I'IL,'.-_i;]]F""I;"(i;01::"r,,..... •.... -',',"OC_I...I_ '..'O!..IA(!j.',_J.l.:, :: ............. .,;.-,L._ _'

•-I..,•I ]-._r.s,I...'- _

C:I-I01 C:E M,_,f R I X Z _:; )'_E I" I i'.!E 0 --.!:;Eli. i !0 T E II::_!

.[ i.!]O(:L :.,.I. ) :.: ;I.

I i-.!£_( I _,...::) :::.;;

I N 0 ¢ -" :, :I.) .....• . ¢

[i,_D (;2.--_:.::) ....;.?.

FIr;,'(!,"l GLIE_F;_i" ,',l' I[ t .;]I ; ',N L. C_l.!C,i".!fliF][[ii!i],
(i.[)l.li.vil.T..r,c _..!i'.._ I[C!_ J. PFT _!::fFd:_'T (if: !ii:"f_i<l..._:" -I"'F:i',[ ' ''_- (Z:i)l...!7_ './Ol..!liili_J Lf_ ....... _

] l" i'.ii':li:_!..l_]i"iI_.i:ii_"_ ,'_:,i'"Tr:l':: ' IL'E ' "_'" ! IM(II li:.C._i:.'i!'.!':: 7."i.!';( " "......... •:_. , L.'OI. (i: !" h'_:i ,: "_..'ifl " ,:;
• r' ..'- "Y " ". ' ":':. ..... C:E'.I* ,I::_i',"' _, lh::.,,, l:'!.liil:' ,",:_[.l ":.:",... l)liilb; I:01- _:", I'"'",:.._, _ F;'q I;!I:..

r.

C

_.JIII_ .... "IS



b_

Cm

!}2 ;!:.

122'.

123

;124o

.L_. ___.,

126,

127,

1._o ..

=Z'_ .

130,

131.

!32.,

;133>

:;3-I,
135 °

136o

137,
138,

i 40,

141

142.

Id3o

I ,:! '$.

145.

146,

149.
150.

151,

..L .J ." _,

153,

154.,

.[ _.J.,-;

157,

158,

i59,

160

295 NN = 1

C H()H[:" OF THE GAS MASS IS ASSIJME}] TO BI.Z I_.! THE CO[.D SPACE; TO START,
C VOLUME IS ZEF'O.

XMC --- O,
| r-" ' • 4"_'_ .IZ" -_ _ o_,r". --

C RELATI-):-. FREo_UR,_ I_ ,-fo.Jl]MED TO BE MAXIMUM., AF'F"ROXIMATION°
P = 1°

C AT START ALL GAS hASS IS .... I" ';,
,"l-:,_J141}. "[0 BE IN THE HOT SF'ACE, IGNORES

C DEAB VOLUfiE,

XMW = I°-CFI

C MASS F'ROil PREVIOUS CYCLE IS ASSUMED AT STAF'T TO BE ZERO. TO ASSURE
C AT LEAST 2 CYCLES TO CONVERGENCE.

XMWS = O-

C PREVIOUS CYCLE PRESSURE;
PS = i.

C INITIAL ASSUMPTION FOR VAL..UE OF I_!D(K_L.) IS CORRECT FOR HEAT
C ENGI_-!E WRONG FOR HEAT PUMP°

t,!O -= 1

C INITIALIZE DIMENSIONLESS WORf(S
WW = O.

WC = O.
NITE = 1

NSI-= 1

NFIN = NFI

C DISPLACED MASS RATIO

RVT = IiAC*UTR/HAV

CI (NDIVI) ---:CI (1 .)

WI (NDIVI)=WI (I)

C ***********************************************************************

C START OF MAIN DO I_.OOF'_ RETURN F'OINT AFTER EACH I_!CRIMENT
4.34 DO 102 I=NST,NFIN

C TRANFERS VOLUMES AND IERI.,,..,TIUES=.' _'" . FROM STORAGE
VW = W.'I)

VC = C(1)

VWI = WI(1)

VCI = Cl(I)

DVW = DW(I )

DVC = BE(1)

DVWI = DWI(I)

DVCI :-:: BCI(1)

C SPLITS TO 4 OF'TIO_'Y3

O0

O_

C* T,,_

•- f,1
-4 .,,,.
,,Kt_



L ,,_ .?...

1 .:'-.4 ..

.t ,._ ..J •

167

168,

t69 •

'?0

171 •

l;:"3 •
.I7 a..

17.'_..

i7.:'.

17S'.

179 +

I,:,1

18:2,

18 .:I.

186,

187

180.

189 •
01:-'0,

7 .[ •

192 •

1 #-,"77 ,,1)•

194.
•-I,i_

196 ..

19'7.

.L98.

200

_,z.ul,+_O.."2".)._--.:.z'+a)i,tOGO TO ....... , ":........,

.... r'.,..,.oING [N BOTH HOT AND COLrJ SPACES,,- INTEGRATION vrLGRAM FOR i-.-iASS ]l'.K"""t+"

C "'-" + -"r+tJ + (SEE NOTE 13>
t,rh.-,i'-!O_:.BASEB UF'Oi'-!INITI,'fi. CI:|i![|T'IIONS'7; t,Odr UTE,:, F'RL-]SSLIF.'E .... " -"'-

.... '.... ' ) .'}"OAI..F201 BF" = --SHF.'*F':-t_ (F;VT*DVCI _-/IVWZ[ )./(RV T:--',_:VC[4V!JI ;--.:::,HF-.+',,D
, • _LE?| I',I;_ FINDS FREUo.I,_E A'i- MIB Ii_!CI"::IMENr

S = P-I-DP/2.

(" CAL.ULATES FINAL_ F'RESSL;RE CI4ANGE B,.-,.:.,.I.L: UF'ON MID POINT VALUES

BF' ":.... SHI"::*S* ( RVT*DVC_DVW ) / ( RV'i"*_"C+VWFSHI _'*VD ) *BAt.F

C _.',LL;ULHTES MASS CHANGES

£+_W = S*BVW*I_ALF+VW*DF',:SFIR

BMC ::: - (BMW÷VD*DF')/RV'T

C ItE'IEF:tMINS CHOICE MATRIX

IF (I'MW) 302 ,301: 30.1.

301 K = I

GO TO 303

%0 ? I- = o

303 IF(BMC) 304,305,305

,.,'o,_,L_ ':. 1
GO i-0 306

304- L = 2

306 ;'-!C'= IND(IK,L.)
C IF CHOICE IS CHAi')GEO NEXT ITERATION WILl_ BE THROUGH A DIFFERENT

C OF'TI Oi'!

GO TO 400
C INTEGF:A'fION PROGF'AM FOR MASS DECREASIHG IN BOTH HOT AMB COLB SPACES,

C NO:-:2 (SEE OPTION 1 F'OR DETAIL.EB EXPLANATION)

202 IF(XMC) 803,801,801

803 XMC = 0.0

801 IF'(XMW) 805,802."80:2

805 "<i'iW-:: 0.0
8020DF" =-" -SF-IR* (XMC*RVT*DVCI/VC !-I, XMW*DVWI/UWI ) /

1 (XMC*RVT/F'4.XMI/MF'+SHR*VO )* D,."+L F
I r', #£,,I '-+,/" :, x]'IMC = XMC*(BVCI*DAL_F/VCZ,'D+", ,'>rlK,I-

DMW = -.RVT*D_C-V[_*BF"

S .... F'+BI_'/2 *

SMC = XMC4-DMC/2 •

SMW = XMW-FDMW/2.

ODP :....SI4R* (SMC*RLYf::{-DVC/VC LSMW*DVW/VW) /
•. , .... • _,_ -.+. r; ) *BAI..F1 (SMt:*RVT" 5't'-;i'il,.I; ' _.:', .=,141".._,.... I

0:_
"_.%j

-i

_ 3
r" _:I

,-I_,
_r,,_



r

201

202,

2:03 •

204.

20d.

207 •

208 •

_0"7 *

,_10,

211,

2 _

.-13,

214 ,-

-" m

216 •

._10+

219.

22,3,

222 •

223,

•-_._. ,_

2._L

-'" _tt I .

228,

229,

230 •

232 •

233.

234.

235.

236.

237.

238.

°39a-.

240,

1)H C .:. S _,iC."* ( O V C :¢:D i_',L [ ," V C _B i:' ," S ! IF;,'."S )

Dt'_W :...... I=:V1-*BMC.--VB:$:BP
IF" ,,Bi.iW ) 312 :. 312:,307

312 K = 2

GO TO 308

307 K ....1

308 IF(TJMC) 309,309r310

309 L =: 2

GO T O 3 :L:L

310 L.. := 1

311 NO = IN]B(I_,i..',

GO i-0 400
C INTEGRATIOH PROGRAM FOR MASS rqZCREASING IN COLD SPACE AND INCREASING

C IN HOT SPACE, NO=3 (SEE OF'TION 1 FOR DErAILEB EXF'LAi',JAT'[Oi'!)

2'33 IF(XHC) 704,703,703

704 XMC .-.-: O,

7030DP :.....SHR* (P*BVWI+XMC*I_:VT*BVCI/UCI )/ (VWI+XMC*RV i

1 / F'+SHR*VB ) ,DAL.. F
IIMC = XMC*(BVCI*BAI-F/VCI+DF'/SHR/I:')

BMW .....RVT*DMC-VB*BP

S := P'FBP/2.

SMC = XMC'|DMC/2,

SMW = XMW÷BMW/2.

OBP = -SHR* (S*9VWI-SMC*RVT*BVC/VC )/ (VW._SVC*RVT

i /S+SHR*VD ), DAL. F

DMC = SMC* (DVC*BAL.F/VC FBF'/SHR/S)

I,I-iW ..... RV'F*DMC--VD:_Bi::'
IF (DMW) 313,314,31.4

314 K = i

GO TO 315

313 K = 2

315 IF (BMC) 316,316,317

316 L. = 2

GO T[) 318

317L = 1

318 NO = INB(K,L)

GO TO .400

C INTEGRATION PROGRAM FOR MASS BECREASING IH COLD SPACE AND DECREASING

C IN HOT SPACE, NO=4 (SEE OPTION J. FOR I_ETAII. ED E_,I..LMr!_.,TIuI_

204 IF(XMW) 705,702,702

O0

-0m_
OZ
O_
;:or"

r-l_



J

241.

242.

243.

244.

245.

246.

247.

248,

249.

250.

251°

252.

253°

25,1.

255.

256°

257.

258.

259.

260°

261.

262.

263.

264.

265.

266.

267.

268.

269,

270.

271.

272°

273.

274.

275°

276,

277.

278.
279.

280.

C

C

C

C

705 XMW - O.

7020DP =..-SHR_ (F'._RVT_.DVC I+XMW*BVWI/VWI )/ (RVT,VC T
1 ÷XMW/F" t-SHR_VD ) _DALF

BMW = XMW_.(BVWI_BALF/VWI-IDP/SHI_:/p)
DMC = - (BMW+VD,BP)/RVr
S = F.F[FI._.
SMC = XMC+DNC/2.

SMW = XMW._DMW/2.

ODP = -SHR* (S*RVT_BVC.FSMW_DVW/VW) / (RVT_VC
1 +SMW,'S÷SHR:$VD )_;DAL F

DMW = SMW* (BVW_DALF/VW t DF'/SHF.:/S)
DMC = -(DMW÷VI,_.DP)/RVT
IF(DMW) 319,319,320

319 K = 2

GO TO 321

320 K = I

321 IF(DMC_ -:")")323 i-n

323 L = 1

GO TO 32_

3_,_ L. = 2

324 NO = INB(K,L)

INCRIMENTS F'RESSURE AN[I MASS

400 F" FrIF

XNC :: XMC+DMC

XMW = XMW_DMW

CALCULATES WORKS

PW = F'-DP/2_

WC = WC+PW_DVC:-kDALF

WW = WW-FPW_;DVW_DAI._F

RECORDS RESUI..rs INTO ARRAYS
PR(1) = P

BPR(I) = DP

XMCX(1) = XMC

×MWX(I) = XMW

XDMC(I) = DMC

XDMW(I) = DMW

• **:k:_END OF: ii_IN DO L OOP;I(_:_:_,*,

102 CONTINUE

GO TO (401,402),NN

RESET MAIN DO LOOP FOR LAST PART OF CYCLE

O0

,0



r .

_) ,%, ..+_

28.-_.,

284,

--'85

"_88

.a] 7, T

290,

2 91 +,

292,

2":?Z +

294,

+")i. +, ?

2":.?8 <,

-,:.Z99+

300 +

Z01 +

302 +
303 ,.

304 ..

305.

,306.

307+

•3(.0 +

309 .+

310_

311,

312.

.513,
314.

3:15+

Z18,

3 .t 7
318 +

319+

•"_01 NST = NF.r4-.1.

NF'IX! = NB.'[V

NN -.. 2

GO TO 404

C TESTS FOR CONVERGENCE AT EN£1 OF" CYCLE+ THE CHANGE IN THE FRACTION

C OF MASS IN THE HOT SPACE F'-F'..'OMONE CYC.LE 'TO THE NEXT MUST BE LESS

C rHAi'! 0+1%, AND rile CHANGE IN F.RE,,oUI-,E FROM ONE CYCL_E-: TO THE NE×T

C iiUST BE LESt; THAN O+,.-"5_,Z+ HOWEVER_ NO i_iORE THAN 15 CYCLES ARE
C ALLOWED +

402 -.rEST = SI]R-F((XMWS-XMW)*:$2)

TES'i'I ....SORT( (PS- P) _'2)

IF (NI'fE-15) ,'.t71..-..171,406

47'1 IF (TFST- +001 ",473 :.473,40L';

47Z !F'(TES'f'I..-.O05) 406...,40i-_:,40',.-;

C REINI)[ALIZE F'OR NEXT CYCLE
"_05 NN .... 1

XMC = O,

F'S .... P

XMWS ....XMW

WW = O+

W.C : O+

Nsr = 1

NFIN = NF!

NITE .... NITE-{-1
NO ::: 4
GO TO 404

C THE DIMENSIOi'.!L.ESS PRESSURES AND WORKS HAVE ]BEEN CALCULATED FOR ONE

C CYCLE, NOW THE AD.O:rr:[ONAL FII!_:AT APE, POWER LOSSES WILL BE CALCULATE1]+
C CALCULATE AVERf._GE DIMENSIONLESS I::'Rlii_SSi..IRE+

•-#06 PAVG:=O

DO 3000 I:.-=1_ NDIV
,-3000 PAVG::--.F'fWG+PR ( I )

F'AVG=PAVG/NDIV

C DETERMINE MAXIMUM ANO MINIMUM DIMENSIONLESS PRESSURE
F'MAX = Yl ,_r-"P",'PR,k_£_IV)- _ .- "| • x .;J _. ,.

F't'ili,! = SMALI_(F'R,,N£_![_)

C A.OJLIST I_liIENSION, LESS WORKS lO RELWTE TO NEWLY t_ETERI'ilNE.O MAXIMUM
C PRESSURE

!,,)C :: WC/PIfAX

W_,l = WW/I>MAX

d
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L_

-4

L_

-;2 i

322

m- _-; Ft-

326

327

37.:8.

329,

330

"'_'T( "1

-_- --:ff ..3

333 •

334.

335.

336 _.

.3-)/"

338 •

339' •

340.

3..i I.

342".

343.

344 o

345.
346,

3-47.
348,

349.

350.

351 •

352.

353.

354 ._

355.
•_i=" I
,;) J (.)

.-Z. E --_-_JJ _

358 •

359,

360.

C PRESSURE F'AT.[O

RF' = F'MAX-'F:'HIH.
C FIND L'i,-SXIfiUi"i RA'3SE'S ,.'.-,NO ADJUST THEM TO HAXIHUH PRESSURE,

CMHAX = XL..AI:;'I},E(XHCX ,_,IDIV)

W#MAX =-: XL..ARGE(XMWX,NDIV)

CMMAX = CMi_iAX/F'MAX

WHHAX = WHMAX/F'HAX

C CAL.C, MAX. F'RESSUPE, HI::'A

F'HX = I:'M A X'_ F'i'4X 1/F'AVG
C CALCL.II..ATES Ai'4GLE BETWEI.:.]"! PRESSUI::E WAVE AND VOLUME WAVE FOP A HEAl

C ENGINE •

APG = ._,"_*RP/( RF'-I, )*WW/._, 14".I.o"

IF:'(1,-ARG**2) 1807 ,1608 _1608

1608 FIPV = ARSIN(ARG)

XNDS ::: HDS
C CALCI..II..ATES VAL.UES USED IN FI...OW 1...OSS CALCUI..A.rlONS AND FLOW INTEGRhl_S

X .... 0,

DX .... 1 •/XNDS
NIN = Ni)S 4. 1

COR =': PMAX**(XNHT-2,):$DAI...F**(XNHT-1,)

DO 854 I=:I,NIN
CALL PBINT (X,XDHW,XT.IMC,RVT ,.DC,NDIV-[IMRE_PR_XINT,DPR_XII'XI2"XNHT)

XIRT = XINT/DALF/F'MAX

DMRE = DMRE/PMAX/6,2832

XI! = XIl*COR/(1,5708*DMRE)**(I.*-XNHT)

XI2 = XI_.*COR/(1_5708*DHRE)**"° -XNHT_.

XI3 = XII/XI2
GDMS(1) = DMRE

GINT(1) = XINT

GI2(I) = XI2

GI3(1) = XI3

X = X÷DX

854 CONTINUE

C INTERF'OLATES FLOW INTIGRALS

DO 910 I.:I,5

UIN(1) = F'LOT(GINT,H(1))

UDM(I) = F'L.OT(GOI_iS,H (I))

910 CONTINUE

UI23 .... F'I_OT (GI2,H(2) )

UI24 =: PL.OI(GI2,H('::');'
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ta)

361.

362.
363,

364.

365.

366.

367.

368.
369,

370.

371.

372.

373.

374°

375.

376°

377°
378.

379°

380.
381.

382,

383,

384.

385.

386°

387,

388.

389.

390.

391,

392.

393.

394,

395.

396.

397.
398.

399.

400,

UI33 := F'LOT(GI3yH(2>)

UI34 = PLOT(iSI3,1.1(4;)

C *****CALCULATION OF: COHSTANTS*****

C SPECIFIC FOR HYDROGEN GAS

HMU = .8873E-O4+.2E-O&*(BTW.-293.>

CHU = .S873E-O4+.2E.-O6*(BTC.---293.)

BTR = (BTW-BTC)/ALOG(BTW/BTC)

RNU = ,8873E-O4+.2E-O6*(BTR..-293.)

CP1 = 14o6

CV1 = 10o46

R2 = 82.3168E6

R = 4.116

C *****COLD EXCHANGER PRESSURE DROP*****

REC = UDM(1)*PMX*SPD*HAC*CTD/(BTC,AFC,CHU,R)

IF(REC-2000°) 1985,1985y1986

1985 FC = 16./REC

GO TO 1987

1986 FC= EXP(-l°34-o2*ALOG(REC))

1987 GLS = CTLL*SPD*SPD*HAC*HAC*FC*UIN(1)/(CTD*AFC*AFC*BTC*R2)
QP = NOC*SPD*PNX*HAC/(2°*PIE)

QCP = QP*GLS

C *****HOT EXCHANGER PRESSURE DROP*****

REH = UDM(5)*PHX*SPD*HAC*HTD/(BTW*AFH,HMU,R)

IF(REH-2000,) 1988,1988,1989

1988 FH = 16./REH

GO TO 1993

1989 FH = EXP(--l°34-°2*ALOG(REH))

1993 GL.H = HTLL*SPD*SPD*HAC*HAC*BTW*FH*UIN(5)/(HTD*AFH,AFH,BTC,BTC,R2)
QHP = QP*GLH

C *****SCREEN--HETNET OPTION*****

RER = PMX*HAC*SPD*BWD/(AFR*R)

RE(l) = RER*UDN(2)/(BTC*CHU)

RE(2) = RER*U_M(3)/(BTR*RHU)

RE(3) = RER*UDM(4)/(BTW*HMU)
DO 2030 I=1,3

IF(NET) 2015,2015,2022

2015 IF(RE(I)-60.) 2017,2017,2018

2017 FR(1) = EXP(1°73-.93*ALOG(RE(1)))

GO TO 2030

2018 IF(RE(1)-IO00,) 2019,2019,2021

_.73Y



401.

402.

403.

404.

405.

406.

407.

408.

409.

410.

411.

412.

413.

414.

415.

416.

417.

418.

419,

420,

421,

.423.

424.

.425 o

426 •

427°
428,

429.

430.

.431.

432.

433.

.434.

435.

436°

437.

438.

439,

440.

2019 FR(1) = EXF'(o'714-.365*ALOG(RF"(1)))

GO TO 2030

2021 FR(I) = EXP(,OI5-,125*ALOG(RE(I)))

GO TO 2030

2022 FR(I) :::" 2°73.(I.+I0.397/RE(I))

2030 CONTINUE

C *****REGENERATOR F:'RESSURE DROP*****

GLR = BRL*SPD,*SPD*HAC*HAC/(BWD*AFR*AI-R*R2*BFC)

QRI = OF'*GLR*UIN(2)_FR(1)

QR2 -= QP*GLR*I.IIN (3) "kFR (2 )"_BFR/BTC

QR3 = QP*GLR*LI.[N(4)*F:F_:(3;,*UfR
OF'F' = (QRI÷QR3÷4o*DR2)/6.

C CALCULATES EFFECTIVE: HOT AND COLD GAS TEMI::'ERATLIF:,'E-7.,BASED LIPON THE

C NUMBER OF" TRANSFER UNITS IN THE FIIZAT F:XCHANGEI":S_ SPECIF'IC FOR

C HYDROGEN

CNTU = .I12*CTLS/(CTD*REC**-,2)

DTC = WC*(SHR-I.)/(2.*UDM(1)*SHR*(EXP(2.*CF!TU)-'I.))

BTC = B'FCI*(I.-DTC)

HNTU = .1044*HTLS/(FITD*REH**. 2)

DTH =WW$(SHR-I)/(2*UDM(5)*SHR* (EXP(2.*HNTU)-I.) )

= BTWI* (I .-BTFI)

C NOTE, [EMPERATURE . TIO IS REDEFINED FOR NEXT ITERATION

UTR = BTW/BTC

C *****REHEAT LOSS*****

RNTE; = BRL.*4.37/(BWB*SQRT(F'I4*2.*RE(1)))

QNTU =- BRL.*4.031/(BWB*SQRT(F'In*2.*RE(3)))

ONF'H = AFR*BRL* • 1950/( F'I-.:_,*HAC*IJDM ( 2 ) * ( UTR... 1... ) )

QDK = QNPH*(UI33÷UI34*UDM(2)/LJDM(4;_)/2.

QLM :--- ( 1 •÷QDK )/ (RNTU/U 123-FE:,NfU*Ui'.JH(2 )/ (UBM (4 ) ::"LII2 :I) )

QHR := UDM (2 )*CPI* (B'FW'-BTC) *SF'D*PMX:_HAC-*QLr_*NOC./( R*BIC*2 ,_)

C *****SHUTTLE LOSS*****

QL1 = 231.2*.SQF(T(SF'D*.BRC*BRC _)

QB = (2**QI..I*QL.1-QI_I)/(2**QI_I*QLI--L.)

QHC = .00146*BST* (BTW-B FC )*F'I 4*BPD*BST*QB*NOC/( BRC*BPI_ )

C *****PLJMPING LOSS*****

QFS = (RP/(BTW/(BTW--2.,*BTC)-BST/BPL)).{,.(I_/(BTW/((BTW-2.*BTC)_-BST/

1BPL ) ) )

QHG = ABS (SPD*PMX*GGV*BST*SHR*QFS*ARG*NOC/( (SHR-1 )*BPL*RP*8 ,,)

C _****BASI C POWEI'_*****

PO := (WW*I-IAV-FWC*HAC )* (..F._50 ).F:PMX*SPD*NOC,"P IE

O0
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O_
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441,

442,

443.
444.

.445.

446.
447.

448,

449.

450.

451.

452.

453.

454.

.455.

456.

457.

458.

459.
Z

4O0.

461.

4&2.

463.

464.

465.

466.

467.

468.

46_.

470.

471.

472.

473.

47_.

475.

476.

477.

478.

479.

480.

C _**_,_NET F'OWER__>P:*

ROF = I:"O--I.1CP-QHI-:'--ORP

C GET READY TO REPORT ON ONE ITERATION AND PREPARE FOR ]'FIE NEXT.
C RESET HOT END DIMENSIONLESS NEAT TRANSFER INTEGRAL

HTW = O.

C THE PROGRAM TRIES TO KEEP F'MAX=I. THIS ADJUSTMENT OF THE PRESSURE

C AND MASSES DOES THIS

50 509 I=I:NDIV

F'R(I) = PR(1)/PKAX

XHCX(I) :--XMCX(I)/F'i'h%%

509 XNWX(I) .... XMWX(I)/PMAX

C DIMENSIONLESS }.lOT AND COLD GAS TEHPFRATURES FOP EACH INCRIMENT.

C IF" THEY ARE LESS THAN ZERO COF.:RECT TO z.ERu""'FI
WI(HDIVi) = WI(1)

CI(NDIVI) =-- CI(1)

DO 1031 I=I,NDIV

IF(XMCX(I)) I()03,!003,1002

1002 TEC(I) = PR(I)*CI,,I-:-J)/XMCX(I)

GO TO 1.006

1003 TEC(I) =: O.

1006 IF'(XMWX(I)) 1004,1004,1005

1005 TEW(I) = F'R(I):_WI',!.tl)/XMWX(I)

GO TO 1001

1004 TEW(I) = 0.

1001 CONTINUE

C DIMENSIONLESS AVERAGE HOT AND COLD GAS TEMPERATURES FOR FULL CYCLE.

TEW(NDIV1) = TEW(1)
TEC(NDIVI) = TEC(1)

PR(NDIVI) := PR(1)

XMCX(NDIVI) = XMCX(1)

k'" v • -I,MW,,(NLIVI) = XiiWX(1)

TWDM = O.

TCDM = O.

DO 573 !=I,NDI',"

DMW =" XMWX(I$i)-'XMWX(I)

=7 A '="=" 575IF(DMW) ,.,..'-_,.,IJ,

574 ]MF'W = (TEW(1)+TEW(I+I))/2.

TWDM = TWD_I" (rMPW-1.)*DMW

575 DMC = XMCX(I+I)-XMCX(I)

IF (][|MC) 576,573y573

00
-11::0
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• . ,_ r_ _ : -0, ,,

-.J
-.J

481.

482.
483.

484.

485.
486.

487.
48_.

489.

490.

q910
492.

493.

494.
495.

497.
498.

499_
500.
501.

502.

503.
504.

505.

506.
507.

508.

509.
510.

511.

512.
513.

514.

515.

516.
517.

518.

519.

520.

C

C

576 "rMPC = (TEC(I)+TEC( I+1 ))/2.

TCBM .= TCDM÷(TMPC-1.)_DMC
573 CONTINUE

TWDM = "rWDM_.SHR/(SHR-1.)
TCDM = rCDi:i*SHR/(SHR---I. )

HOT ENB HEAT TR_e>,I,SFER INTEGRAL FOR FULL CYCLE AND TOTAL. GAS MASS AT
EACH POINT IN THE CYCLE. TOTAL I'IASS SIIOI.'LD NOT CHANGE.

DO 1021 I=I,NDIV

HTW = HTW'_(WI(I÷I)-WI(I))_(PR(I)÷PR(I$1))/2.

1021 XMT<I) = XMCX<I)_RVT÷XHWX(I>÷PR(I)_VD

C BASIC HEAT INPUT, WATTS

HT = HTW_SPB*PMX_HAV_NOC/(2°_PIE)

C SPECIFIC STATIC CONDUCTION HEAT LOSS FOR THE 4L23 ENGINE

CON = 9680.
C FLOW FRICTION CREDIT, WATTS

FFF = (QHP'f.5_QRP)_(-1)

C HEAT TO ENGINE, WATTS
HTE = III'÷QHR÷OHC_OHGICO_÷FFI =

INDICATED EFFICIENCY, %

ZEF = 100._POF/HTE
C PRINT OUT RESULTS OF ONE ITERATION

WRITE(6,12) LUP

WRITE(6,3010_PO,HT
WRITE(6,3020) QHP,QHR

WRITE(6,1925) ORP,QHC,QCP,OHG,POF,CON,ZEF,FFF,HTE

WRIT..(6,1921) BTW,BTC,RVT,VD
C AFTER ALL LOSSES ARE TAKEN INTO ACCOUNT LUP IS INDEXED. THE PROGRAM

C DOES 3 ITERATIONS WITH PRINTOUTS BEFORE GOING INTO A SUMMARY.

LUP = LUP÷I
IF(LUP-3) 339,339,1607

C IF INPUT V:'LUE NWR IS OTHER THAN ZERO THE FOLLOWING SUMMARY

C INFORMATION IS PRINTER AT THE END OF THE COMPUTATION
1607 IF(NWR) 1613,606,1613

1613 WRITE(6,51) TWDM,TCDM

C PRINT OUT EACH 10 DEGREES, ANGLE, HOT VOLUME, HOT GAS TEMPERATURE,

C COLD VOLUME, COLD GAS TEMPERATURE, TOTAL VOLUME, PRESSURE
1149 WRITE(6,20>

DO 3001 I=IO,NDIV,IO

X=F'R(I)_P_X

VH=VHD÷HAV:"WI(I)

O0
"n .-J_
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LO 3::! ,

I ..Z..J -)

r_ .~_ ¢-_

,_-3 0.

5 3 2.

r:-- ....: 3 4

536.

,J, J/

538,

53'; •

540 ,,

5-41.

542.
543.

544.

545.

546.

547,

548.

549.

550•

551.

552,

553.

554.

555.

556 •

557.

558 •

559.

560.

r_ _ ._j LJ" ...r, "_,".. • ............ I _ I " .;-t--h-_....

1) [. UII } ')1:;:b_ VC

..!.':.)()t !',q:_;.[ ;L ii 6 _ _.:;!. ) I :, _,.'_1,. '..ql; _"_.i; . ;:<

C 'i!.i/_l:;.:f_; OVER N.lrIt i'.!lL.{i L:_iA 5r:;[ ,.
6o.6 l-)i) _0 2

S:I.I. CAl..I_ I.ilXIT

:; r: Ol.;:it,-',r ,:.F 1,..:,,...!., ._[ 1(::,._2F10., -::!)
'5 F:OF:tHAI (SFlO,,.4,2!.LO;,

11 F(it;.;HAi (2-.'].14 SI:'ECIFI.'.I; I.iE_::fl RATIO.:..F10._.a_.1,:.)X.,181.1 D.[V,. F:'lii.F,"C<(;L..E-:

lI5/1X..,20H I:'HASE ANGI..E(.OEG,,) :::FLO,.::_..,9.(-'INC:!:::,. IN .OF:' It,FF,.="-.[EL'

23X, "DIJCr .OIAI--iIZTEF;,'([;Fi)=:; ,1::1.0.,-:)_. I.:)X..- ".OLJCF L.[!i',.!O Ii.I(EH) ::" ,_::J.©, -I: ' OUT["I..I
3"f: "/)

17 FOF::i"I_YT( " ITERATION ' _'I2)

3010 FORHhT(SX," BASIC F'OWEI::(W;Yi'TS)::::",-F':LO,1-9X,"BA,SIC HEAT(W;':_TTS).::."..
IFIO, :[ .)

3020 F[ ':_AT ( 5X, ' IIEiYi"EI:;_ WI HI)AGE ( WAT'TS ) .:::"., I::'10., 1 .'..8X :, " REHEAT LOSS ( WAT'i"S )= "
I,'FIO.I)

510F'ORMAT( " DIi"iENSIONLESS ,.,VG• GAS ri_i;itF'"/" HOT END ' ,F10.,:),10.'-(,

1"COLD END :_FIO_.4)

2010 FORHAT (2X,19H COLD CRAb. RATIO ::=

IFIO._,7X,: HOT CRANK RATIO ::.";;FIO._-)

1710 FORMAT (7F10•4)
1720 FORMAT (5F'10+4,2110)

1730 FORMAT (6F10_4,110)

1805 FORMAT(18H INPUT DIMENSI[]NS_*)

1810 FORMAF(21H COLD ME] TEMF'(K)----:FlO,.4,8X,18H HOT MET TEMP(CM)=

1FlO•4/5X,16H PISTON DIA(CM)=F10.4..,7X,19H PISTON STROKE(CM)=
2F10.4)

1820 FORMAT(21H HOT CAP LENGTH(CM)=FIO.4.,.IOX,I.6H F'ISTON GAF'(Ci'4).-:: F10.4

1/21H PIST END CLR(CM)= FIO.4.,8X,181"I PIST ROD DIA(CH)= F10.4>

1830 FORMAT(5X,16H REGEN POROSITY=: F10°4,11X,15H REGEN DIA(CM)=

1FlO.4/21H REG. WIRE DIA(CM)= F10°4,8X,18H REGEN LENGTH(CM)=

2F10.4)

1840 FORMAT(7X,14H NUN OF REGEN= 15,19X,121"I MUM OF CT = 15,

1/21H COOL TUBE DIA(CM)= F10•4,10X_

216H TOT CT LEN(CM)= F10.4)

1850 FORMAT(4X,17H COOL CT LEN(CM).'= FI0•4,5X,21H HEATER TUBE DIA(CM)=

IF10•_/5X,16H TOT HT LEN(CM)= F10.4,gx,171"I HEAT HT I..EN(CM)= FI0•4/

29X,12H NUM OF HT = 15,13X,18H HEAT TRAN. EXP• = F10.4)

1860 FORMAT(IX,20H AVG. PRESSURE(MPA)= F10.4,3X

O0
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551.

562.
563 o

5&4°
r:- / _-r
-JO.J ,

5c/7.
568,
IE-/

L--7.&

571,

572.

J/ ,_*

i::- .-'7 o
J/4_,

575 •
576 •

.5 ;'7.

378.

J.-" 7 t

580 •

a ¢.-,

IL-",i-,I _ ),

',;83.
rr ;-_

r:. r-, i_ o
,..I o ,J

5 E_&,

...I ([) ; _.

Ti_.;)(,,,
5? [ .

I' ",% ..

' ',: s

123H ENGINE SF'EED(RAD/SEC)= FIO.4/oX,I&H METNET OPTION =: 15;

215X,16H NUMBER E)F" C'fL.,=" I5)

:!92] FORMAT(8X,2OFI EFF'EC_ HOT TEMF'(K) .... FlO,l,6;z,:

;L2ILFI EFFEC, COLD TEMF'(K) =FIO. 1/5X, 23H £i.[oFl_A_l:.£1"" ' r" -- MASS RATIO ....F.I.0.4..-

28X,19H RE[vIJCED BEAJ'I VOL ::: F'lO.4")
" #'_A') I_ • • "=A' --" •17_J FORMAT(28H REGENEF-,,/UR WIH£Jf_GE(WATTS)= FIO.I,6X,

121FI ',-:;HUTTLE LOSS ( WATT S ) :::FI 0,1 I,'.:;'( ,=23H COOLER L:!I N.TL_AGE( WAF TS ) :.:1- 10.1

2 _ J X... _ H A F' P E N D I X L.OS S ( WA T T S ):::: r 10 • 1 / 10'x: _ 18 H _.1ET F'0 _ E R ( _, Ar T S-.;) .::.F l 0, [ :;
38X_lgEt CONDUCTION(WATTS) .... FlO,1/9":,lgH Ii'.!DICATED EF:I::,.(%)= FI-,.,L,

45X, 22EI FLOW FRICTION ( W_:FFTS ) :::- F 10, .1./42X, 2:31.1 I.Ir;¢,; TO F;H[;I NE ( WAr]".; ) :.:
5F10 _ 1 )

20 FORMAT(" PRESSLJRE._MF'A-VOI...UME_CH3 :iij..,_,.i^'* FOP ONE C'fI..INBER"/" ,'>,NGI_E iE.
IG",SX,'HOT VOL.',6X_'COLB VOL_." _.'v ..........,,. - "i"OTAI.. VOI:., " ,/_,, " I::'RI>;SUF.:F ;,

21 FORMAr(5x, I5,3X,FIO,,4,5X"FIO_4_,5X,FIO.,!,5X,FIO.. 4)
END

C SLJBROLr/INE TO F'IND ' *'-'r ''-',"_L,..,r-L'_ol OF" A LIS'F

FLJNCrION XLARGE (X, I'-IDIV )

D:[MENSION X(720>

XL,_RGE --- X(1)

BO _' _'_-':" ... ("u_d I=?,ND

IF(XLARGE-X(I) > 506 _'505 , 505

506 XLAF::GE .... X ( I )

505 C[)NT I HLJE

REFLJRN

END

SLJBF:,'OLJTINI!:I TO FINi) SHAI...I.E'5f i]F: A L [S";1

FUNCIIOi:_ 5MAI..I... ( ix :._!(I IV)
D itiE i'!S I 0 i'.;X < .72(.,>

Ei:i"iALL. :::: ..x{( :1..,

O0 "::i<)7 I L'._F.!r_ tV

[ F ': '};,"iAl...l.'"i,( ( [ ' ".' 5()" ;.! ;::>7 :, '..:5():i]
'::i,j_!_ SH,_d..L. ::: x.',[)

5.,7.7 C[)f! I ] i"..q..._E
F;E 1-! _F"iJ

ti: f.![!

:::3 i--

--11

1 ' "" " , r _ " "%1 ........... , +'t• :...... fr.[ .r. ii't !i.fif:I', CIl. i_lli..

FL]i _' i'I(i:i! !"'t i': "I.'I_'



/

ba

0
.: •• +i
O_Ji ,

602
60:3.

604.

605.

606.

,607 +

608.

609.

610.

811.

6.1_2,

613 +

6L4.
615.

616+

6i7+

618.

6:L9.

620.

621 +

622 °

623 +

624°

6"5

626.

627 +

628 +

0-"7 +

630.

631.

632.

633 °
zl "7/".

635

636

637+
.£ _ ,.'-,

639 °

640 •

C

C

BIHENSIOP_ X(20)

H =: 10 +* H

Z :---. H-H/IO

M = HI1

GI -:': X(M)

t,I :- H ll

G2 = X(i-I)

F'LOr = Z*G2._ ( I +-.--Z),GI
RETURN

ENB

8J_

851

SUBROUTINE TO I...IST COLD VOLUMES ANB DERIVATIVES

f::LIBROUr I HE.... VOLC (ilAI_F -NI:--t+... ""- C...'r-'DC_.. BCI .. L. LC,_" NDIV, SIF'I, COFI • SAI..F, CALF,
1PBR, ALF )

DIMENSION C( '''_'t.-O) ,CI (720) _ DC (72C, "_,,BC I _"-":-_r:_,, ..._,

B.THENSION SIF'I(72();_COFI(720):SALF(/20), ,R..AI_F(720)
NBIVI = NDIV-II
Din. R52 I=I,NDIV1

COFI (1)=COS(ALF)

SAI..F ( I ) :=SIN ( ALF" )

AL F.=:ALF-'--DAI... F
ElO o -'=-_-"oou I:::I,NBIV

CALF ( I ) :..: ( SALF" ( I l-:l :_.-SALF ( I ) )/BAI_I=" O 0
CALF(NEIIV:t ) ::: CAt..F(:I. ) -,1

.00 8,_,1 I=I...NDIV "0
SIFI(I) ::= SALF(I) 0

,.....oAL.F_I) = ( ..... _" _oALF t I ) ," ,''•,oJ.-,LF [ I-1) )
" "l -rCOFI_NI.LV1) ;:: COFI(1) _D'_

SIF!(NB.[VI) ::: SIFI(1) _ _

N := NF*.<I r m

BO 30.'---: I = I,.N "_ i
20l CRC =: SI')RT (ZZC**2-CALF ( I ) *+'2)

-'.BEE NOTE :11:1

I F ( F:'DR ) 70] O, 7C,10 ; 7020

-'0°0.+ C ( I ."= I + --SALF ( I *-,,.._x'"" r. i.'_ "-- l+: Z. U" 1" _ "

CI ( I )=1 +""S I F I (I )'l-CRC-'::Z("

DC (I) .......CALF(I)*(1 +'--'SALF(I)/CRC)

7010

..... _- "SIBCI(1) .......Ct+L,- (I)*(1+ FI ( I )/[;I-_:C)
GO TO 302

C(I)=1 ''_"'__A'_F ( I "_-CRC _ZZC

A
/



F

?

i

i-,_.

I

gO

641

6 "_3,,

644.
645.

6'_0.

647

648,
6 "V_.

6.50.

351 •
I¢:*.*')

•- i:r" .-t

.,-r- 'l

65 ,!:.•

658

659

660.

861 •

662.

663 •

664.

00.3 $

666 •
667,

668.

669 •

670.

67:1.

67:_,

674.

OJ ,.J*

676 •

677.

678 •

679 •

680.

302

201
,-s r)

101

C

k--R.,

.... , ' .q ..... _ .... _":': F:t;J.(I: :L.'r.:..IFZ(I:•-_ , "" I.,I",l, ,' _...:._,
DC(I)=CALF( I >*( ;1_-SAI...F(.[)/CRC)

DCI(I"_ .:-"u ;-,...," " ' Pr'l')*(1, ,, --.SII:'I r I),CRC),

CL;NTIt_UE

f:"E 1 LJRi-,I

E i'! D

c_I ""'"l IoJBRUUTI_iE F-OR F'RESS!JIk'F DROF' Ii'I.'I-EGRAL. CAL.CUI_ATION
SUBROIJr INE F'DI NT ( X :, D_-iW-.DMC, RVF _ DVC, NEt I ks, DM, PF::, XINT -

1 DPR,XI3 -X [2 _XNI'IF)
DIMENSION DMW (720 ), ]._M[] (720) ,.DVC (720) ,F:'R(;720 ) _DF'R (720 )

DH := O,

X I NF :: 0

XII := O,

I{X1 .... 1,-XNHT

X 12 .... (>,

EX2 .:: 2,XNHT

DO 101 I:::I.-XLDIV

DMX ....DhC (I)---X* _Di"_W( [}/RVT+DMC ( i ) )

Y = ABS(T, MX)

DM = DM.FY

A = TJF"R(I)*Y**EX:I

IF(DMX) 201 ,?02,202

A ......A

XII = XII"A

XI2 = XI2-fY**EX2

XINF = X I NT_. Y*DMX/F'R (I )*DVC (I )

XNDIV :-'iqDiV

RETURN

END

SUBROUTINE TO LIST HOT VOLUMES AND DERIVATIVES

SUBROUTINE VOLW(W,Wi,DW_DWI,CFI_SFI,ZZW,NDIV,SIFIrCOFI,SALF,CALF,

1 DALF )
.... v) -CALF(720)DIMENSION SIFI(720),COFI_720),SAL.F( '-_°'"

DIMENSION W(720),WI(720),DW(720),DWI(720)

SIFIP := SIFI(1)*CFI-COFI(1)*SFI

DO 101 I=I,NDIV

201 SALFI = SIFI(I+I)*['FI-COFI(I+I)*SFI

SALFF' =: (SIFIF'+SALF1)/2,

co

..0:_
0_
OL_

c: ;-'_

--I--,



681.

682.

683.

684.

685.

686.

687.

688.

689.

690.

691.

692.
693.

694.

67J*

696.

697,
698.

699_

700.

701.

702.

703.

704.

705.

706.

707.

708.

709.

710.

711_

712_

713.

714.

COMMAND?

5.874

1.39
330.

).060

.115

0.0

//

CXXXXXXXXX

CALFP .... (SALF1---.SIF'IP)/DALF

CRW = SQRT(ZZW**2--CAI.FP**2)

W(I)=I.+SALF'F'-CRWFZZW

WI(1)=I.+SIFIP-CRW +ZZW

DW(1)=CALFF'*(I_-.SALFP/CRW)

DWI(1)=CALFP,(1.-SIFIF'/CI%W)

101SIFIP = SALF1

RETURN

END

//GO.SYSIN DD *

5,874

90
1033.

.8

12.9

.204 9.6516

360
10.16 4,,65

3.5 .0043

:[2 • 02 ,, 472

209.44

1 10
6.4

2.5

41,8

.74,

.Oa.06

-_" E:'L-3.

5

71.

6

.040&

312

36

XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX

C XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX

C INTEGER DATA MUST BE RIGHT JUSTIFIED. THER ARE: 7 DATA FIELDS PER

C L.INE OF 7 COI_UMNS EACH°

-- n _ eC DATA FIFL.D LAYOUT IS AS FOI._L.I..W._:_.

...... _{ -vo'T _|, _1- ..C******ZZC ****:#-:,.,_.:.W ****:$'.(NHT ****:$F'MX:I ..... :i,****SF'D *****_:NET ****$*NOC

C******SHR ******NFI :***.**NDIV **-:.*.:*_-*NWIq: ***:$:._*NDS :,_:*;-_.::_.**DDD **:_**:4_DLL

C******BTC ******BTW t*****BF'O *'_****BS[ *'tc_:'_:,'l,t:,_£'F'l. :,}::-:'_*.'.'-:*:_BF-'C :_:>}'****B[;C

C******PDR *****:_BRO ******BDR *::_.'*:_:*:.':':BWD ******BRL ***:#*',_,'NBR *:_.'_"_'-'*IJL-'T

.... _"...... _' '" I *****H I La -_._.._*._.._.r_t-ITC******CTn *****CTLL *****CrL.S ;_-,.,..,..{,rl-,r.£ It*:{:{t:_.HTLL " " - e .......... ._--
C NEXT DATA SET REPEATS LAST.

C CHANGE ACCORDING TO DATA PRINrOUT.

C DATA MUST BE WITHIN CONTI;:OL CARDS(//),

O0
"n ::_0

w

OZ
O_
:;Dr-

C_

r-m j
--I..



D.4 Evaluation of Appendix Loss as Calculated .by Rios

In his 1969 series (69 am), Rios calculated the appendix loss in a Stirling

refrigerator. He refers to this loss as the loss due to gas motion in the

radial clearance. The appendix loss calculatedby Rios is more than an order

of magnitude higher than that calculated by the second order method. It was

decided to evaluate the derivation of Rios more closely (69 am, pp. 136-138)

to determine the cause of such a large discrepancy. Many steps taken by

Rios were not understood by this author, but when the adaptation from refrig-

erator to heat engine was carefully analyzed, some changes were made that

resulted in an appendix loss comparable to that given by the second order code.

D.4.1 RiosAPpendix Loss Adapted to a Heat Engine

The pumping or appendix loss is the loss due to gas flow into and out of the

radial clearance between the piston and displacer. The following assumptions
are made:

l • The radial clearance is small, so it can be assumed that the gas

entering and leaving the radial clearance volume is at the adjacent

clyinder wall temperature.

1 The temperature gradient at the stroked part of the cylinder is

smaller than that of the unstroked part and is approximated by
Rios to be:

dT z_T

d x 2 BPL (D-l

Where d T = the temperature gradient

d x = distance along the stroked part of the cylinder

nT = the temperature difference from one end of the gap to
the other

BPL = the hot cap or gap length
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3. Variations in piston motion, pressure and gas flow may be approxi-
mated by sinusoids.

The highest average pressure and temperature in the gap is reached near top dead
centeG after the hot cap has compressed the hot gases into the gap. The lowest

average pressure and temperature is reached near bottom dead center, after the

expansion stroke of the hot cap (where the total engine volume is maximum).

Considering assumptior 2, Rios calculates the space - average temperature

fluctuation of the stroked and unstroked parts of the gap is:

T = BTC! + BTW + _CBTW - BTSI) BST
2 BPL T sin (SPD(t)) (D-2

so --Tmin = BTCl 2+ BTW - (BTW BPL" BTCI} TBST (D-3

and _Tmax = BTCI + BTW + BTW BTCl BST
2 BPL T (D-3

where T = the space-average temperature fluctuation

Tmi n = the minimum space average temperature

Tma x = the maximum space average temperature

BTCI

BTW

BST

SPD

= the cold metal temperature

= the hot gas temperature

= the hot cap stroke

= engine speed, rad/sec

= time, seconds

The pressure is:

where

PMX + PMN
2

+ PMX - PMN
2 Sin ((SPD)t -9)

P
PMX
PMN

= the pressure ?luctuation

= the maximum pressure (MPa)
= the minimum pressure

= the angle between the pressure and volume variations

(D-5

A small error is introduced if it is assumed that the maximum temperature and
pressure occur simultaneously, and that the minimum pressure and temperature
occur simultaneously, The mass difference is assumed to be the difference be-
tween the mass of each of these points and is calculated by Rios to be:

r

MG (max) " MG (min) = GGV _ PMX + PMIN I

' T L (D-6inca

where MG (max) : the maximum mass in the gap
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MG (min) = the m_nimummass in the gap

GGV : the dead volume in the gap

R = the gas constant

The mass fluctuation amplitude is defined to be:

MAG = 1 GGV "PMIN[ PMAX
2 R IG---"

LT,o  Tmax

And the gap mass fluctuation is approximated by :

MG : MMG + MAG Sin ((SPD)t - _)')

where MMG is the average mass in the gap

(D-7

(D-8

Rios assumes that:

!

_ B because both are close to 180° (D-9

From equation D-l the temperature of the gas moving in and out of the radial

clearance is given by Rios as:

T : _=- (BTW- DTC.)(BST) Sin ((SPD)t), (D-IO
4 BPL

The enthalpy flow into tilecylinder is given by:

HG=-CPIT _M (D-]l

o -CPI,'(_- (BTW-BTCl)BSTSi_(SPDxt)_SpD/4 BPL MAG (D-12

Cos(SPD x t- 9) dt

where CPI = the heat capacity of the gas at constant pressure

d HG = the enthalpy flow into the cylinder

d M = the mass flow into the gap

Net enthalpy flow per cycle is integrated by Rios to be:

HG = /d HG : TPIE CPI MAG_T {-_-) Sin B

:{P_E)/SHR I/BSTI (PMX (GGV)Sin

(D-13

(D-14

385



where:

QFS=

OR{G_A_-PAG_ IS
OF PoOR QUAI.|TY

I l RP ]
BTW + BTCI BST " BTW + BTCI +_T

LBT'W- BTCl BPL BTW - BTCI BPL]

PIE : 3.14159

SHR : the specific heat ratio of the gas

So total enthaply flow is given by:

QHG : HG SPD
2 x PIE

: PMX x GGV x BST x SHR x Sin (_X SPD x NOC x_
RP x 8 x BPL X (SHR" _)

where QHG
NOC

: the appendix loss

: the number of cylinders

D.5.2 Results

(D-15

(D-16

Some major errors were found, In a refrigerator, maximum pressure and minimum
temperature occur almost simultaneously in the gap while in a heat engine the
maximum pressure and maximum temperature occur almost simultaneously. The cor-
rection is shown in Equation D-6.

The second error had resulted from a confusion of signs in R_os thesis. In his

derivation (69 am, 136-138) the mass difference correctly contains a subtraction

sign, while on page 57 and in his sample calculation (Appendix I, page 178) the
sign is incorrectly changed to a plus sign.

The computer program in Section D.3 gives the pumping loss as:
(See lines 435-438)

*****Pumping loss*****

QFS = (RP/(BTW/(BTW - 2. x BTC) - BST/BPL)) + (I./(BTW/((BTW - 2 x BTC)
+ BST/BPL) ))

QHG = ABS(SPD x PMX x GGV x BST x SHR x QFS x ARG x NOC/((SHR - l) x
BPL x RP x 8.))

Based upon the analysis given above it should be:

X = (BTW + BTCI)/(BTW - BTCl)
Y : BST/BPL

QFS - - RP/(X + Y) + l./(X - Y)

QHG = ABS(SPD x PMX x GGV x BST x SHR x QFS x ARG x NOC/((SHR - l) x BPL x
RP x 8.))

The formula for QFS is quite different. The formula for QHG is unchanged.

386
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Let / - llIW/(I_IW- ?. x BId)

Then tile ratio of the new pumpln_i loss to the old pumpIn_j loss, RAIIO, is:

"I P7"(7...... l'.7"(,

Ior case 17 _.'.htch is compared in detail in Section 7

PMX " 12.[_6 MPa, PMIN : b. LJ5 MPa

from tlle pressure - volume data fo|" every I0". lherefore

RP - 12.B6/6,,% - I.,%0

BIW ,, 1033 K

BIC ,.BlCl _.330 k

Therefore:

X 1033 _ 330 - 1.93:_
1033 -" ",_30

Y - 4.65 - 0,727

? _ 1033 " ?. 769
1033 L" _(_,_0)

RAIIO _- _ O.211

lherefore the true pulnpinq (appendix) loss for case 17 is 14162.7(ii.211) * ?9,q'L_.
Now it only dlsa_Irees by a factor of 3 rather than 14.

Ib

.Ill 7



APPENDIX E

ADIABATIC CYCLE ANALYSIS BY THE MARTINI METHOD

The method given below is a small extension of the work published earlier

(75 ag). It does not require the selution of a differential equation, but

instead requires the solution at each time step of an algebraic equation

that is implicit in the unknown pressure.

El

A =

AD =

AR =

B =

C()=

CP =

CR =

CS =

DA =

DC =

DE =

DR =

DT =

E =

E():

F =

GA

I

12

IN

IM

IX

Nomenclature for •Appendix E

Z

= integer counter

initial temperature multiplier for expansion space

phase angle, degrees

ph_c angle, radians

initial temperature multiplier for compression space

compression space volumes, cm3

heat capacity of helium at constant pressure

5.20 j/gk

nondimensional, temperature corrected clearance ratio

CR - 2*E*T DR

CR*V/(2*E*T)

angle increment, radians

dead volume with compression space, cm3

dead volume with expansion space, cm3

Regenerator dead volume, cm3

time increment, seconds

ratio between absolute temperature of heat rejection and heat reception

expansion space volumes, cm3

crank angle measured from the minimum volume in the expansion space,
radians

(k-l)/k where k = Cp/t v

.286 for hydrogen

0.400 for helium

= counter to indic:ate which temperature will be solved for in Finkelstein
equations.

= number of time increments per revolution

= IN

= iteration counter
389
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K

K1

K2

MC

ME

MH

MR

MW

NC

NE :

OM =

P( ):

PI =

PM

PQ =

R =

=

SP- =

T =

T( ):
TR :

NOMENCLATURE (continued)

= swept volume in expansion space/swept volume in compression space

= V*CR/(R*2*E*T)

= V/(2*E*W*R*T)

= mass flow into compression space g/sec.

= mass flow into expansion space, g/sec.

= measured heat input j/cycle

= gas inventory time gas constant, j/k

= measured work j/cycle

= nondimensional heat transfer coefficient for compression space

nondimensional heat transfer coefficient for expansion space

angular velocity, radians/sec

common gas pressure, MPa

3.14159

= mean pressure

(P(I+I)/P(1)) t GA

gas constant for helium

2.0785 J/gk

sum of the pressures

temperature of cylinder walls and heat exchange associated with

the expansion space, K.

bulk gas temperature in the expansion space

effective temperature of gas in regenerator, K

U : step function for expansion space; if ME >0 then U = 1 if not U _= 0

U( ) = bulk gas temperature in the compression space

V •

VM •

VT(1)=

W •

WC( )•

WE( )=

WR •

X •

Y1 •

Z =

Zl

to_al swept volume of expansion space, cm3

maximum VT(1)

E(1), C(1)

total hydrogen gas inventory, grams

mass of gas in compression space, grams

mass of gas in expansion space, grams

W*R

temporary variable

step function for compression space

trial expansion space temperature K

counter to tell which gas

trial compression space temperature K

%



E 2 Derivation of Equations ___k'

In general the total gas inventory at time increment I is:

W = P(1)*E(1) + P(1)*C(I) + P(1)*V*CR
R'T(1) R'U(1) R*2*E*T

mass in mass in mass in

expansion compression dead spaces

space space

W : WE(1) + WC(1) + P(1)*KI

at time increment I + l the gas inventory is

W = P(I+I)*E(I+I) + P(I+I)*C(I+I) P(I+I)*V*CR
R*T(I+I ) R*U(I+I ) + R*2*E*T

W = WE(I+I) + WC(I+I) + P(I+l)*Kl

(El)

(E2)

(E3)

(E4)

In Equations El and E3 the knowns are W, E(1), E(I+l), R, C(1), C(I+l), V, CR,

E, T. The unknowns are T(1), U(I) AND P(1) in Equation El and T(I+l), (U(I+I)

and P(I+l) in Equation E3. One must start by assuming T(_) = T and U(_) = E*T

and then P(_) can be calculated from Equation El. Equation E3 still has three

unknowns. To find a solution we must use the adiabatic compression law.

That is:

k-l

k

where k = Cp/C v = 1.40 for hydrogen. So (k-l)/k = 0.286. Also

.286

Equation E5 and E6 do not depend upon the mass of gas being considered. The

mass may change. It does not matter. If WE(I+I)<WE(1) then gas is leaving

the expansion space. For the gas in the expansion space Equation E5 applies.

Thus by combining Equations E3, E4, and E5

P(I+I)*E(I+I)
WE (I+l ) : R*T (I)*PQ

l&
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In the first edition of the Design Manual (78 ad, pp. 65-71) it was assumed

that the masses of gas are proportional to volumes. However, this is not strict-

ly true. For instance the volume of the expansion space may be decreasing so

gas would be expected to be flowing out. However, if the total volume of gas is

decreasing at a higher rate, gas may be flowing into this space instead of out of

it. In consideration of this possibility a more exact formulation is given here

than was used in the first'edition of the Design Manual.

If WE (I+l) > WE(1) gas is entering the expansion space. In this case we have

two kinds of gas, the gas that was in there the whole time and the gas that

entered.

For this case, the volume of the gas space at the end of the increment E(I+l) is

divided into two parts.

E(I+l) = ES(I+I )

original

gas

+ EE(I+I) (_)

new

gas

The original gas volume shrinks to

WE(1)*R*TS(I+I)
ES(I+I) = P(I+l)

where TS(I+I) is the new temperature of the original gas.

Substituting in Equation E5

)*R*T(1)*PQ
ES(I+I) = WE-(Ip(I+_._

The new gas volume is calculated by:

EE(I+I) -- (WE(I+I) WE(I] I *R*TE(I+I )I

- P(I+l)'

where TE(I+I) is the new temperature of the entering gas.

starts at temperature T, application of Equation E5 gives

EE(I+I) (WE(I+1) - WE(1) )*R*T*PQ
= P(I+I)

Since this gas

(E9)

(ElO)

(Ell)

(E12)
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CombiningEquation E8with ElO and El2 gives

WE(1)*R*T(1)*PQ IWE(I+I) - WE(1)) *R*T*Pq

E(I+l) -- P(I+l) + PCI+l)

which reduces to

WE(I+I)
R*PQ

(El3)

(5]4)

Similarly for the compression space, if gas is flowing out, that is

if WC(I+l) < WC(1) then

WC(I+I) P(I+l)*C(I+l) (El5)
= R*U(I)*PQ

If gas is flowing in, that is WC(I+I) > WC(1) then

WC{I)*R*U(1)*Pq + (WC(I+I) - WC(I+I))*R*E*T*Pq (El6)
C(I+l) = P(I+l) P(I+l)

which reduces to

C(I+l)*P(I+l) . WC(1) lU(1) - E*T IR*PQ

WC(I+I) = E*T (El7)

TO calculate WE(I+I) and WC(I+I) one does not need to calculate the next

temperatures, T(I+l) and U(I+l) because they are worked into Equations E7 to

EfT. However, these temperatures will be used in the next increment and must

be calculated. If WE(I+I) > WE(1) then gas is entering the expansion space.

The temperature of the gas already in this space becomes:

T(I+l) = T(1)*PQ (El8)

and the temperature of the gas entering the expansion space is:

T(I+l) l = T*PQ (El9)

The average gas temperature is the mass average of these two gas masses so

T(I+l) T(1)*PQ*WE(1) + T*PQ*(WE(I+I) - WE(1)) (E20)
-- WE(I+I)'
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.If WE(I+I) < WE(1) then T(I+l) is calculated by Equation ElS.

The temperatures in the compression space are treated in a similar way. If

VC(I+I) > WC(I) then

U_I+l) - U(1)*PQ*WC(1) +.T,E*PQ*!WC(I+I)-WC(1) I (F.21)

wc(z+l)

If WC(I+l) < WC(1) then

U(I+l) = U(1)*PQ

The calculation proceeds in the following order:

(EZ2)

I. Pick P(_) from the known initial conditions given a measured pressure

or a pressure computed assuming gas spaces have surrounding metal
temperature.

2. For the next time step choose P(I+l) the same as P(1), P(O) the
first time around.

3. If E(I+l) > E(1) calculate WE(I+I) by Equation El4 if not by Equation E7.

4. If C(I+l) > C(1) calculate WC(I+I_ by Equation El5 if not by Equation El7,

5. Calculate the mass balance error EE by:

EE = WE(I+I) + WC(I+I) + P(I+l)*Kl - W (23)

6. Choose another P(I+l) I% greater than P(I).

7. IfthealreadycalculatedWE(I+1)> WEU)thencalculateWE(I+1)by
Equation El4; if not thenby Equation _7 (Using P(I+l) from Step 6).

8. If the already calculated WC(I+I) > WC(1) then use Equation _5;

if not, Equation _7 (Using P(I+l) from Step 6.)

9. Calculate another mass balance by Equation E23.

lO. By the secant method estimate what P(I+l) should be by extrapolation

or interpolation of the two errors and the two pressures to determine
what pressure would give zero error.

If. Repeat steps 7, 8, g, and lO until convergence is obtained at an

error in mass balance of less than one part per million.

12. Accumulate integral of VT(1) vs. P(1) curve to obtain work output
per cycle.

13. Accumulate integral of E(1) vs. P(1) curve ¢o obtain heat input
per cycle.

14. If WE(I+I) > WE(1) then calculate T(I+l) by Equation E20; if not

then by Equation ElS.

15. If WC(I+I) > WC(1) then calculate U(I+l) by Equation E21; if not
then by Equation E22.

l

!
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16. Index to the next set of expansion and compression space volumes

and start over with step 2.

17. After one full revolution, print out the value of the integrals

accumulated and compare the pressure at 360 ° with the pressure at

0°. If the error is greater than 0.1%, then repeat the cycle.

The above calculation procedure has been programmed using a TRS-80 computer

in the Basic language.

Martini Adiabatic Cycle Results

The first thing to show is that this calculation procedure gives exactly the

same results as the Finkelstein-Lee method(60 v, 76 bl). Table E1 compares

the results. Time steps from 12 per cycle to 240 per cycle (30° increment to

1.5 ° increment) are shown. The 240 per cycle was as large as the 16K storage

TRS-80 computer available at the time could handle with the computer formula-

tion which saves all results in arrays. Figure _ shows how the numerical

results extrapolate to zero angle increment. The extrapolation (Figure El,

Table El) is in all cases extremely close to what Finkelstein said it would be.

The agreement is amazing since Ted Finkelstein performed these calculations

without benefit of computer. One important thing to note is that relatively

large angle increments can be used still with reasonable accuracy. For instance,

for a 15° angle increment the errors are:

Pressure Ratio

Work Required

Heat Input

Coefficient of Performance

Error %

-I.05

+0.88

-2.37

-3.30
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Oh

Table E 1

COMPARISON OF FINKELSTEIN ADIABATIC CYCLE CALCULATIONS AND
MARTINI ADIABATIC CYCLE CALCULATIO_JS

Sinusoidal Motion, K = l, E = 2, CR = l, AD = 90°

This Report

Degree
Increment

Steps Maximum Press Energy Output Heat Input Coefficient of iterations

Cycle Minimum Press _oules joules Performance Rehuired

cycle cycle

30

15

4

2

1.5

0

12 5.198 -.87831 _RT 0.453119 WRT 0.515899 3

24 5.2140 -.894804 WRT 0.471572 WRT 0.527012 3

90 5.1930 -.890696 WRT 0.480606 WRT 0.539584 2

180 5.178 -0.888513 WRT .0.481783 WRT 0.542235 2

240 5.1742 -.887832 WRT 0.482141WRT 0.543054 2

oo 5.162 -.8865 WRT 0.483 WRT 0.545 Extrapolation

Oo
J

02
O_
_r-

_Q
r-ITl

"(UIP

Finkelstein

(Ref. 6n v_

Not

Given 5.16 -0.886 WRT 0.481WRT 0.543

• ni- l



.87 ......

•8854 WRT j/_-.

•89 Energy O_tput

___5.162 Press

ure Ratio

- 0.545 Coefficient of Performance
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Figure E-I, Extrapolation of Results to Zero Anqle Increment,

.4_
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APPENDIX F

NON-AUTOMOTIVE PRESENT APPLICATIONS AND FUTURE

APPLICATIONS OF STIRLING ENGINES

In this appendix "present applications" will be defined as products that
are for sale on the open market as well as products that are in limited pro-

duction and are for sale even if the sale is restricted or at a very high price.

FI Present Applications

FI,1 Demonstration Engines

Small, inexpensive demonstration engines are excellent educational tools
and serve well to inform the general public and the technical community of new

technical possibilities. Two Stirling engines made by Solar Engines of Phoenix,

Arizona, (Figure FI) havebeen widely advertised and sold. Model I sells with

a book on Stirling engines by Andy Ross. Model 2 comes assembled with a para-

bolic mirror for solar heating.

From the author's own experience, both of these engines work reliably and

have a high no-load speed, but can produce very little oower. However, tests

have shown that they produce about 60 percent of the maximum possible indicated

power, considering the temperature applied, the speed and the displacement of

one atmosphere air.

Two handsome models are offered by ECO Motor Industries Ltd., Guelph,

Ontario, Canada (See Figure F-2). These engines are fired with methyl alcohol.
The "Stirling" hot air engine uses a unique linkage devised by Mr. Pronovost, the

proprietor. The "Ericsson" engine models the linkage of the improved Ericsson

pumping engine of 1890. Both engines come with assembly and operating instruc-

tions and working drawings.

A model Stirling engine designed especially as a classroom demonstration of

a heat engine and a cooling engine is available from Leybold-Heraus, Koln,

Germany (See Figure F-3. It produces measureable power (about lO watts). The

engine has glass walls so the movement of both the piston and the displacer can
be observed.

Sunpower has offered for sale a classroom demonstrator for a number of

years. So far about 50 of these demonstrators have been sold. In the fall of

1976 I was asked to analyze one that had been modified for laser heat input. In

its original condition I calculated this engine could produce about 7 watts

indicated power at an indicated efficiency of 15 percent. This engine operated
at 2.5 arm average pressure and 20 Hz with helium. The rub was (literally) that

the measured combined mechanical efficiency and alternator efficiency was only
12.4 percent. The presently reported characteristics are: 41 cm high, 23 c_

square base, 4 Kg, 2-I0 watts output. Prices were (Aug. 1978):
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a. Model I - Flame heated engine.

(77 br)

MODEL 1

Model 2 - Solar heated engine.

(79k)

t

Figure F-I.

4OO

$,

Stirling Engines by Solar Engines.
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Figure F-3. The Leybold-Heraus Model Hot Air Engine.

N_ODEL SD-IO0 1

Figure F-4. The Model SD-IO0 Sunpower 70 w
Electric Power Source.
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Model IOB with factory installed water pump
Alternator to fit lOB engine
Fresnel lens with mount and clock drive

Propane heater to replace I00 w electric heater
Cooler

Refrigerant pump with inertia compressor

$500

$400
$640
$IOO
$ 5o
$200

i

This engine is still a reasonable starting point to learn first-hand about

Stirling engines of intenilediate efficiency. With intelligent improvements one

can show up to 20 percent overall efficiency from this engine.

Electric Power Generators

Stirling electric power generators are beginning to be applied b_cause they

have been shown to be ve_ reliable and quiet.

Sunpower's Model SD-IO0 generator produces 70 w (e) of 12 VDC electric

power (See Figure F-4 .) It operates at 35 hz with helium at 16 bar. Propane

heats the engine to 650 C. It operates silently. It has operated an electric

trolling motor at full power. Current developmental price is $5,000 each!

AGA Navigation Aids Ltd. is selling the thenl_o-mechanical generator (TMG)

developed at Harwell, England (77 t.) Their 25 watt machine when operating on

pro_ane uses only 27 percent of the fuel required by a 25 w (e) thermo-electric

gem_erator. In addition, the TMG shows no power degradation after over four

years of operation. Two models are available: a 25 watt, 10 percent efficient

machine; and a 60 watt, 9 percent efficient machine. Generators up to 250

watts are planned. Two are in actual use. Figure F-5 shows a developmental

TMG before it was installed in the National Data Buoy off Land's End. England.

Stirling Power Systems of Ann Arbor, Michigan, has eight 8 kw Stirling
engines from FFV of Sweden built into automatic total power systems for

Winnebago motor homes (79 ap). Figure F-6 shows the power system ready for

installation into the side of the vehicle. The power system is entirely auto-

matic. It starts from cold in 15 seconds. Electricity is supplied to the
electric refrigerator, st_ve and air conditioner and lights. Waste heat from

the engine is supplied to convectors in the motor home if heat is needed or to
the radiator on the roof if it is not.

This development incorporates improvements in the full system much of

which is not related to the Stirling engine. However, in this system two

pri:me features of the Stirling engine are demonstrated--quietness and reliabi-

lity. Table F-I compares the measured sound level at various points of a

Stirling engine equipped motor home with the same home equipped with a gasoline

engine. Note that the conventional powered system is 250 percent more noisy

than the Stirling-powered machine. To calibrate the dBA sound rating, 62 dBA
is a kitchen exhaust fan and 59 dBA is a bathroom exhaust fan as used on a

motor home. Reliability is as yet not proven because none of them are in the

hands of the average customer. The life of a Stirling engine is estimated at

5,000 to I0,000 hours compared with 2,000 hours for an Otto cycle engine.

Projected maintenance requirements (Table F-2) are speculative, but indicate

that the motor home owner who will probably not care for the gasoline engine

as well as he should would be much better off with the Stirling engine.

Present models operate on unleaded gasoline to use the same fuel as the motor

home engine. Later models will be equipped to operate on various types of

fuels including diesel oil, fuel oii, and kerosene.
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Table F.I.

OR;C,%'AL p-,

OF POOR QU/_LITY

Sound Level Measurements (78 cl)

)

i

t

A weighted scale,
one meter from
source, outside

Kitchen, inside

Rear Seats, in,,_ide

STIRLING OTTO-CYCLE % Higher
ENGINE ENGINE Noise

55 dBA BO dBA 250%

51 dBA 56 dBA 50%

48 dBA 58 dBA 100%

Table F-2. Projected Maintenance Requirements

STIRLING OTTO-CYCLE
ENGINE ENGINE

Check Oil N/A 20 hours

Change Oil N/A 150 hours
Change Oil Filer N/A 300 Hours
Change Spark Plugs N/A 500 hours
Tune-Up N/A 500 hours
Add Helium Bottle 2,000 hours N/A
Change Igniter 2,000 hours N/A

Fuel economy, a major advantage in other Stlrling engines, is not true here.

It is reported that the Stirling system uses slightly less fuel than its con-
ventional counterpart. Designers of the engine purposely traded off efficiency

for lower manufacturing costs.

FI.3 Pumping Engines

The old hot air engines were used almost entirely for pumping water. Today

only one is known to be almost ready for sale. Metal Box India has been develop-

ing a fluid piston engine. According to Dr. Colin West, they have one that will

pump water ten feet high at an efficiency of 7 percent using propane gas as

fuel. They plan to market a coal-fired machine in India.

F2 Future Applications

For this manual, "future applications" are defined as one-of-a-kind

engines on out through just an idea. Treatment in this section will be brief
with the reference being given if possible.
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F2.1 Solar Heated Eilgines

Solar hearted Stirling engines are not new. John Ericsson built one in
1872 (77 br). No_ they are seriously being considered. Pons showed that system

cost of solar _tirling power in mdss production is projected at 5(/kwh (79 dk.)

Presently utilities are purchasing new capacity at 5(/kwh. This study plans
an 18.6 m (61 ft) diameter front braced mirror with a P-75 engine at the focus.

Sunpower, Inc. has designed and built a l kw free piston Stirling engine

directly connected to an alternator.(78 ac). Perfo_lance (78 as) of 42 percent

engine efficiency at 1.25 kw output at 60 Hz from a lO cm diameter power piston

operating with an amplitude of l cm and a charge pressure of 25 bar has been
predicted for the SPIKE (See Figure _7 _) A different test engine which could

be solar heated attained a measured 32 percent efficiency at 1.15 kw output

(79 ar). Solar heated engines of lO0 kw size operating at 60 Hz are envisioned.

Mechanical Technology Incorporated has been doing the linear generator for

the above development. The generator efficiency has hit go percent, but

because of gas spring losses, engine efficiency of 33 percent is degraded to

Ig percent system efficiency. MTI plans a 15 kw, 60 Hz engine-generator for
a dispersed mirror solar electric systemJ

F2.2 Reliable Electric Power

Besides those developments already in the present application category

DOE is sponsoring two different developments for isotope-powered electric power

generation in remote locations. One uses the Philips Stirling engine (79 aq).

The other uses a free-piston engine and linear electric generator (79_ 79 am).

These developments had been linked to radioisotope heat, but this part was

cancelled. These engines use electric heat. Plans are to substitute a combus-
tion system.
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F2.3 Heat Pumpin 9 Power

Stirling engines in reverse, heat pumps, have enj,ayed a good market in

the cryogenic industry to produce liquified gases and to cool infrared sensors
and the like (77 ax).

Stirling engines have also been tested to take the place of the electric
n_tor in a conm_n Rankine cycle heat pump for air conditioning (77 ad, 78ax,

79 at). One free-piston engine pump is being developed for this purpose (77 w).

Engine driven heat pumps have the advantage of heating the building with both

the waste heat from the engine and the product of the heat pump (77 j). Also

being considered and undergoing preliminary testing are Stirling heat engine heat

pumps. These could be two conver;tional Stirling engines connected together

(73 x) or free-piston machines which eliminate much of the machinery and the
seals (69 h). Using machines of this type it appears possible that the primary

fuel needed to heat our buildi_,gs can be greatly reduced to less than 25 percent

of that now being used (77 h, 78 p). With this type of incentive Stirling

engines for house heating and cooling may be very big in the future.
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F2.4 Biomedical Power

Miniature Stirling engines are now being developed to power an artificial

heart (72 ak). Indeed this engine appears uniquely suited for this application

since it is very reliable and can be made efficient in small sizes. One engine
of this size ran continuously for 4.07 years before both electric heaters

failed. Most engine parts had operated 6.2 years with no failures. Once the

blood pump compatibility with the bo,ly is improved to the order of years from

the preseill six months then this application area will open up.

Between the tens to hundreds of horsepower required for automobiles and

the few _vatts required for artificial hearts may be many other applications.

For instance, powered wheelchairs now use a cumbersome lead-acid battery and

control box between the wheels and an electric motor belt driving each large

wheel. With a Stirling engine and thermal energy storage the same performance
might be obtained, using a TES-Stirling engine, belt driving each wheel with the

speed controlled electrically. The large battery box and controls could be

dispensed with and the chair could become truly portable by being collapsible
like an unpowered wheelchair. There may be many specialized applications like
this.

F2.5 Central Station Power

Many people have asked if Stirling engines are '_eful in the field of

central station electric power. Very little has been published attempting to

answer this question (68 k). R. J. Meijer (77 bc) calculates that Stirling

engines can be made up to a capacity of 3,000 HP/cylinder and 500 HP/cylinder

Stirling engines have been checked experimentally using part engine experiments
(77 bc). Many simple but efficient machines could be used to convert heat to

say hydraulic power. Then one large l_draulic motor and electric generator

could produce the power. In the field of advanced electric power generation it

should be emphasized that the Stirling engine can operate most efficiently over

the entire temperature range available and could supplant many more complicated

schemes for increasing the efficiency of electric power generation.

Argonne National Laboratory has the charter from DOE to foster 500 to 2,000

HP coal-heated neighborhood electric power total energy systems (78 g, 79 ai,

79 aj). Initial studies show that straightforward scale-up of known Stirling
engines and the applications of known materials could lead to considerable
improvement in our use of coal.

F2.6 Third World Power

Stirling engines in some forms are very simple and easy to maintain. They

can use available solid fuels more efficiently and attractively than the present

alternative. Metal Box India's development of a coal-fired water pump has
already been mentioned. Also it has just been demonstrated that l atm minimum

pressure air engines (79 bj, 79 ar) designed with modern technology can gener-
ate 880 watts while an antique engine of the same general size only generated
50 watts. There is probably a very good market for an engine that would fit

into a wood stove or something similar and operate a 12 volt generator or a
water pump. The waste heat from the engine would still be usable to heat water

or warm the room and electricity would be produced as well.
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F2.7 Power For Other Uses?

Who is to say whether the above list of uses is complete. As these
machines come into use and many people become involved in perfecting them for

their own purposes, many presently unforeseen uses may develop. A silent

airplane engine may even be possible for small airplanes. The Stirling engine
is still a heat engine and is limited to the Carnot efficiency as other heat

engines are, but it appears to be able to approach it more closely than the
others. Also the machine is inherently silent and uses fewer moving parts

than most other engines. What more will inventive humans do with such a

machine? Only the future can tell.
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