NBS 503-8 N81-72731 Killed tot

NASA Contractor Report 165659

CALCULATION OF LATERAL-DIRECTIONAL STABILITY DERIVATIVES OF WINGS BY A NONPLANAR QUASI-VORTEX-LATTICE METHOD

C. Edward Lan

KOHLMAN AVIATION CORPORATION Lawrence, Kansas 66044

NASA Purchase Order L-7198B January 1981

FOR EARLY DOMESTIC DISSEMINATION

Because of its significant early commercial potential, this information, which has been developed under a U.S. Government program, is being disseminated within the United States in advance of general publication. This information may be duplicated and used by the recipient with the express limitation that it not be published. Release of this information to other domestic parties by the recipient shall be made subject to these limitations.

Foreign release may be made only with prior NASA approval and appropriate export licenses. This legend shall be marked on any reproduction of this information in whole or in part.

Review for general release January 31, 1982

Space Administration

Langley Research Center Hampton, Virginia 23665

Table of Contents

		Page
	Summary	1
1.	List of Symbols	2
2.	Introduction	5
3.	Theoretical Development	6
	3.1 Boundary Condition	6
	3.2 Edge Suction and Streamwise Vortex Density Distribution	9
	3.3 Forces and Moments in Sideslipping Flight	10
	3.4 Forces and Moments in Steady Rolling	13
	3.5 Forces and Moments in Steady Yawing	15
	3.6 Conversion to Stability Axes System	16
4.	Numerical Results and Discussions	17
	4.1 Conventional Configurations Without Significant Vortex-Lift Effect	17
	4.2 Configurations With Significant Vortex-Lift Effect	24
5.	Concluding Remarks	31
6. References		32
Ap	pendix A Instruction on the Usage of the Nonplanar QVLM	
	Program and Sample Input Data	34
Ap	pendix B Program Listing	76

i

Summary

The nonplanar quasi-vortex-lattice method is applied to the calculation of lateral-directional stability derivatives of wings with and without vortex-lift effect. Results for conventional configurations and those with winglets, V-tail, etc. are compared with available data. All rolling moment derivatives are found to be accurately predicted. The prediction of side force and yawing moment derivatives for some configurations is not as accurate. Causes of the discrepancy are discussed. A user's manual for the program and the program listing are also included.

1. List of Symbols

А	aspect ratio
Ъ	wing span
c	reference chord
С	leading-edge suction parameter defined in Eqn. (21)
CD4	induced drag coefficient
C _l	rolling moment coefficient
c_L	lift coefficient
C _m	pitching moment coefficient about y-axis
C _n	yawing moment coefficient
Δc_p	lifting pressure coefficient
°t	tip chord
с _г	$=\frac{\partial C_{\chi}}{\partial \beta}$
C _n	$=\frac{\partial \mathbf{n}}{\partial \beta}$
Cγβ	$=\frac{\partial C_{Y}}{\partial \beta}$
C _l	$= \partial C_{\ell} / \partial \left(\frac{pb}{2V_{\infty}} \right)$
C _n p	$= \partial C_n / \partial \left(\frac{pb}{2V\infty}\right)$
C _Y p	$= \partial C_{\underline{Y}} / \partial (\frac{pb}{2V_{\infty}})$
C _l r	$= \partial C_{g} / \partial (\frac{rb}{2V_{\infty}})$
C _n r	$= \partial C_n / \partial \left(\frac{rb}{2V_{\infty}} \right)$
Cyrr	$= \partial C_{Y} / \partial \left(\frac{rb}{2V_{\infty}}\right)$
G(x)	tip suction parameter defined in Eqn. (24)

i , j , k	unit vectors in the positive x, y and z directions
M, M _∞	freestream Mach number
n _w	unit normal vector to the wing surface
р	roll rate
q	pitch rate
q	freestream dynamic pressure
r	yaw rate
R	position vector
SLE	sectional leading-edge suction coefficient
\vec{v}	induced velocity vector
v _n	induced velocity normal to the wing plane
U, V, W	freestream velocity components in the x, y, z directions
V _∞	freestream velocity
x, y, z	rectangular coordinate system with positive x-axis pointing downstream, positive y-axis pointing to the right and positive z-axis pointing upward. See Figure 1.
x _l (y)	x-coordinate of leading edge
z _c (x,y)	camber surface ordinate
α	angle of attack
β	sideslip angle
Υ _x	streamwise vortex density
Υ _y	spanwise vortex density
Г	sectional circulation
Λ _l	<pre>leading-edge sweep angle</pre>
φ	dihedral angle
λ	wing taper ratio

•

•

Subscripts

a antisymmetrical s symmetrical t tip

• 4

2. Introduction

Most existing methods for calculating lateral-directional stability derivatives are based on lifting-line type theory with or without empirical corrections (Refs. 1-5). These methods form the basis for some handbook calculations, such as in the USAF Stability and Control Datcom. Although these methods provide a reasonable estimation of lateral-directional stability derivatives for conventional configurations, they are not applicable to complex planforms of variable sweep angles, with winglets or with vertical fins, and to planforms exhibiting edge vortex separation. For these non-conventional configurations, application of a lifting-surface theory would be more appropriate.

In this report, the application of the quasi-vortex-lattice method (QVLM) of Reference 6 to calculating lateral-directional stability derivatives of arbitrary wing configurations will be described. Potential flow theory will be assumed. The effect of vortex separation along wing edges will be accounted for through Polhamus' method of suction analogy (Ref. 7). Earlier application of the present method to simple wing-body configurations at low angles of attack was reported in Reference 8.

3. Theoretical Development

It is assumed that the flow field is governed by the Prandtl-Glauert equation. Thickness effect will not be included in the formulation.

In Section 3.1, the general boundary condition to be satisfied on the wing surface will be derived. The present method is very much dependent on the accurate calculation of streamwise vortex density distribution (γ_x) and edge suction forces. These will be the subject of discussion in Section 3.2. From Sections 3.3 to 3.5, various contributions to forces and moments in lateral-directional motion will be indicated. All calculations will be done in body axes. The conversion to stability axes can be made through the use of a set of formulas to be given in Section 3.6.

3.1 Boundary Condition

It is assumed that the sideslip angle (β) is small. The freestream velocity vector (\vec{V}_{m}) is then given by

$$\vec{\tilde{V}}_{\infty} = U\vec{1} + V\vec{j} + W\vec{k}$$
(1)

where

$$\mathbf{U} = \mathbf{V}_{\mathbf{c}} \mathbf{c} \mathbf{o} \mathbf{s} \boldsymbol{\alpha} \mathbf{c} \mathbf{o} \mathbf{s} \boldsymbol{\alpha}$$
(2)

$$\mathbf{V} = -\mathbf{V}_{\mathbf{\beta}} \boldsymbol{\beta} \tag{3}$$

$$U = V_{sin\alpha} \cos\beta \simeq V_{sin\alpha}$$
(4)

Let $\vec{\omega}$ be the angular velocity of the wing based on the primed axes system (see Figure 1) and \vec{R} be the position vector of some point on the wing. Using the conventional notation for roll rate (p), pitch rate (q) and yaw rate (r), it follows that the linear velocity (\vec{v} ') associated with the wing angular motion is given by

$$\vec{v}' = -(p\vec{1} + q\vec{j} + r\vec{k}) \times (x'\vec{1} + y'\vec{j} + z'\vec{k})$$

= $-\vec{i}(qz' - y'r) + \vec{j}(pz' - x'r) - \vec{k}(py' - qx')$ (5)

To find the induced air velocity on the wing (based on xyz axes) due to \vec{w} -motion, the sign of \vec{i} and \vec{k} -components in Eqn. (5) must be reversed and x', y', z' are to be replaced by -x, y, -z. It follows that

$$\vec{v} = \vec{1}(-q_z - y_r) + \vec{j}(-p_z + x_r) + \vec{k}(p_y + q_x)$$
 (6)

The sum of \vec{V}_{∞} and \vec{v} represents the total "freestream velocity." The latter will produce normal velocity component (v_n) to the wing plane. Before v_n can be calculated, the unit normal vector to the wing plane must be determined. Let $z_c(x,y)$ be the camber surface. Then, according to Figure 1,

$$z = z_{o} + z_{c}(x,y) + (y - y_{o}) \tan \phi$$
 (7)

Introduce a function f(x,y,z) defined by:

$$f(x,y,z) = z - z_{0} - z_{c}(x,y) - (y - y_{0}) \tan \phi$$
(8)

Then the unit normal vector to the wing surface is given by:

$$\vec{n}_{w} = \frac{\nabla f}{\left|\nabla f\right|} = \frac{-\frac{\partial z_{c}}{\partial x}\vec{1} + \left(-\frac{\partial z_{c}}{\partial y} - \tan\phi\right)\vec{j} + \vec{k}}{\sqrt{1 + \left(\frac{\partial z_{c}}{\partial x}\right)^{2} + \left(\frac{\partial z_{c}}{\partial y} + \tan\phi\right)^{2}}}$$
(9)

If $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ can be assumed to be negligible in comparison with unity and tan ϕ , respectively, Eqn. (9) can be simplified to be:

$$\vec{n}_{W} \simeq -\sin\phi \vec{j} + \cos\phi \vec{k}$$
 (10)

Using Eqns. (1), (6) and (9), the normal velocity component $\binom{v_n}{n}$ can now be calculated as:

$$\frac{\mathbf{v}_{n}}{\mathbf{v}_{\infty}} = \vec{\mathbf{v}}_{\infty} \cdot \vec{\mathbf{n}}_{W} + \vec{\mathbf{v}} \cdot \vec{\mathbf{n}}_{W}$$

(cont'd next page)

Figure 1. Definition of Axes System

$$\simeq \frac{-\cos\alpha \frac{\partial z_{c}}{\partial x} + \sin\alpha}{\sqrt{1 + (\frac{\partial z_{c}}{\partial x})^{2} + (\frac{\partial z_{c}}{\partial y} + \tan\phi)^{2}}} + \beta \sin\phi + \frac{p}{V_{\infty}} (z \sin\phi + y \cos\phi) - \sqrt{1 + (\frac{\partial z_{c}}{\partial x})^{2} + (\frac{\partial z_{c}}{\partial y} + \tan\phi)^{2}}$$

$$\frac{r}{V_{\infty}} x \sin \phi + \frac{q}{V_{\infty}} x \cos \phi$$
(11)

In Eqn. (11), \vec{n}_w from Eqn. (10) is used to simplify the expression associated with angular motion. The first term in Eqn. (11) can be recognized as the boundary condition for symmetrical loading at a given angle of attack. Eqn. (11) can be written in nondimensional form:

$$\frac{v_{n}}{v_{\infty}} \simeq \frac{-\cos\alpha}{\sqrt{\frac{\partial z}{\partial x}} + \sin\alpha}} + \beta \sin\phi + \overline{p}(\frac{z}{b/2} \sin\phi + \frac{\partial z}{b/2} \sin\phi + \frac{y}{b/2} \cos\phi) - \overline{r} \sin\phi(\frac{x}{b/2}) + \overline{q} \cos\phi(\frac{x}{c/2})$$
(12)

where

$$\overline{p} = \frac{pb}{2V_{\infty}}$$

$$\overline{r} = \frac{rb}{2V_{\infty}}$$

$$\overline{q} = \frac{q\overline{c}}{2V_{\infty}}$$
(13)

The normal velocity given by Eqn. (12) must be cancelled on the wing surface by using vortex distribution. This condition represents the boundary condition to be satisfied to find the loading.

3.2 Edge Suction and Streamwise Vortex Density Distribution (γ_x)

While the calculation of the spanwise vortex density distribution (γ_v) is the first step in determining the symmetrical loading, it is

the streamwise vortex density distribution which is the basis for predicting the tip suction and the lateral-directional aerodynamic characteristics of a wing. The calculation of γ_y is made with the QVLM (Ref. 6) by satisfying the symmetrical boundary condition (the first term is Eqn. (12)) and will not be discussed here. The leading-edge suction has also been accurately predicted by the QVLM.

To determine γ_x distribution and the tip suction, the following expression for the conservation of vorticity will be used:

$$\frac{\partial \Upsilon_{\mathbf{x}}}{\partial \mathbf{x}} + \frac{\partial \Upsilon_{\mathbf{y}}}{\partial \mathbf{y}} = \mathbf{0}$$
(14)

By integration, Eqn. (14) can be solved for γ_x (Ref. 8):

$$\gamma_{\mathbf{x}} = \frac{\partial \Gamma(\mathbf{x}, \mathbf{y})}{\partial \mathbf{y}}$$
(15)

$$\Gamma(\mathbf{x},\mathbf{y}) = -\int_{\mathbf{x}_{\ell}}^{\mathbf{x}} \gamma_{\mathbf{y}}(\mathbf{x}',\mathbf{y}) d\mathbf{x}'$$
(16)

In Reference 8, a trigonometric interpolation formula was derived to calculate the derivative in Eqn. (15). The tip suction can also be determined accurately. For more detail, Reference 8 should be consulted. 3.3 Forces and Moments in Sideslipping Flight

The incremental ΔC_p due to sideslipping arises from the following sources:

 Incremental pressure force due to geometric dihedral. This contribution comes from the second term in Eqn. (12). For a flat wing, this contribution will be zero.

The predicted spanwise vortex density (γ_y) will interact with U-component of the freestream to produce a lifting pressure:

$$\Delta C_{p_1} = 2\gamma_y \cos\alpha \tag{17}$$

(2) Interaction of sideslipping velocity $(-V_{\infty}\beta)$ with γ_x . In nondimensional form, this will contribute to a ΔC_{p_2} amounting to

$$\Delta C_{p_2} = 2\beta \gamma_x \tag{18}$$

on the right wing in positive lift. On the left wing, ΔC_p_2 is negative, thus creating a rolling moment.

(3) Effect of wake nonalignment with freestream. In the usual way of calculating the loading, the flat wake has been assumed to be in the positive x direction. According to Eqn. (18), the wake trailing vortices (γ_x) will then interact with the side-slipping velocity to produce positive lifting pressure on the right wake. This must be cancelled by introducing a γ_y distribution in the wake equal to $\beta \gamma_x$, where γ_x in the wake is equal to its value at the trailing edge. This is similar to the results derived by Rubbert by perturbation expansion

(Ref. 9) of the governing equation.

This effect will produce downwash on the right wing, thus producing negative γ_y distribution. It will create a ΔC_p similar to that given by Eqn. (17). This refinement was not made in Reference 8.

Note that ΔC_p produced by the aforementioned sources are antisymmetrical. The resulting rolling moment, and hence the dihedral effect $(C_{l_{\beta}})$, can be calculated in a straightforward manner. The lifting pressure (ΔC_p) is taken to be acting normal to the planform, as illustrated in Figure 2. It follows that a side force will be produced, which will

also generate a yawing moment. The rolling moment due to the element can be seen to be:

$$d\mathbf{J} = -\bar{q}\Delta C_{p} dsdx(z_{1} \sin\phi + y_{1} \cos\phi)$$
(19)

where \bar{q} is the freestream dynamic pressure. Integration of Eqn. (19) in the chordwise and spanwise directions will yield the total rolling moment, and hence the dihedral effect.

The side force and yawing moment due to sideslip for a wing alone are contributed from the following sources:

- (a) Contribution from the incremental pressure force due to geometric dihedral, as given by Eqn. (17).
- (b) Contribution from the change in the leading-edge suction. This is produced by the loading change discussed under Items (1) and (3) in this Section.

According to Reference 6, the sectional leading-edge suction coefficient for combined symmetrical and antisymmetrical loadings can be calculated as:

$$S_{LE} = \frac{\pi}{2} \sqrt{1 - M_{\infty}^2 \cos^2 \Lambda_{\ell}} \frac{(C_s \pm C_a)^2}{\cos^2 \Lambda_{\ell}}$$
(20)

where C is the leading-edge singularity parameter for symmetrical loading defined as (Ref. 6):

$$C_{s} = \lim_{x \to x_{\ell}} \gamma_{y} \sqrt{\frac{x - x_{\ell}}{c}}$$
(21)

and C_a is the corresponding parameter for antisymmetrical loading. The positive sign in Eqn. (20) is for the right wing and the negative sign is for the left wing. It follows that the effective change in leading-edge suction due to sideslip is given by:

$$\Delta S_{LE} = \frac{\pi}{2} \sqrt{1 - M_{\omega}^2 \cos^2 \Lambda_{\ell}} \frac{(\pm 2C_s C_a)}{\cos^2 \Lambda_{\ell}}$$
(22)

This suction force is normal to the leading edge, as shown in Figure 3, thus contributing to side force and yawing moment.

(c) Contribution from the change in tip suction. According to Reference 8, the local tip suction coefficient for the combined symmetrical and antisymmetrical loadings is given by

$$S_{t} = \frac{2\pi (G_{s} \pm G_{a})^{2}}{c_{t}}$$
 (23)

where G(x) is defined by

$$G(\mathbf{x}) = \sqrt{\frac{b}{2}} \lim_{\mathbf{y} \to \frac{b}{2}} \sqrt{1 - (\frac{y}{b/2})} \frac{1}{2} \frac{\partial \Gamma_{t}}{\partial y}$$
(24)

and Γ_t is the total sectional circulation. c_t in Eqn. (23) is the tip chord length. It follows that

$$\Delta S_{t} = \frac{2\pi (-2G_{s}G_{a})}{c_{t}}$$
(25)

 ΔS_t is also illustrated in Figure 3.

(d) Contribution from the induced drag (Page 14-3, Ref. 10)

The induced drag under symmetrical loading is assumed to act in the direction of freestream with sideslip. Hence, if C_{D_i} is the induced drag coefficient, the side force coefficient from this contribution will be

$$\Delta C_{y} = -C_{D_{i}} \beta$$
(26)

The yawing moment can be computed from the induced drag distribution. 3.4 Forces and Moments in Steady Rolling

The roll damping derivative (C_{l_p}) can be computed by integrating p the antisymmetrical lifting pressure induced by the roll rate (see \bar{p} -term in Eqn. (12)) multiplied by the spanwise moment arm. The moment arm used in Eqn. (19) is still applicable here.

Figure 3. Change in Leading-Edge and Tip Suctions due to Lateral-Directional Motion

The side force and yawing moment due to roll rate for a wing alone are contributed from the incremental pressure force, change in the leadingedge suction and change in the tip suction, similar to those discussed in Section 3.3 for the sideslip effects.

3.5 Forces and Moments in Steady Yawing

The incremental lifting pressure due to yaw rate consists of three components:

(1) Due to yawing, a backwash ry is produced. This will interact with the symmetrical γ_v to produce a lifting pressure equal to:

$$\Delta C_{p_{r}} = -2 \frac{ry}{V_{\infty}} \gamma_{y} = -2(\frac{rb}{2V_{\infty}})\gamma_{y} \frac{2y}{b}$$
(27)

(2) Due to yawing, a sidewash $rxcos\phi$ is produced on the wing plane. This will interact with the symmetrical γ_x to produce a lifting pressure equal to:

$$\Delta C_{p_r} = -2 \frac{rx}{V_{\infty}} \cos \phi \gamma_x = -2 \left(\frac{rb}{2V_{\infty}}\right) \gamma_x \frac{2x}{b} \cos \phi$$
(28)

(3) Incremental lifting pressure due to geometrical dihedral. This effect can be seen from the boundary condition in Eqn. (12). Once the incremental antisymmetrical lifting pressure is obtained, the wing rolling moment due to yawing can be calculated immediately.

The calculation of side force and yawing moment due to yaw rate follows the same procedures of computing the effects due to sideslip. This is because a wing in yawing can be regarded as being subjected to "variable sideslip" effect, since the sidewash on the wing plane (rx cos\$) varies on the wing.

3.6 Conversion to Stability Axes System

Once the stability derivatives are calculated on some body axes, it is desirable to transform them to values based on stability axes. The transformation formula have been derived elsewhere (page 192, Ref. 11) and are listed below for convenience. The primed quantities in the following are based on body axes (ε in Ref. 11 is replaced with $-\alpha$).

$$C_{y_{\beta}} = C_{y_{\beta}}$$
⁽²⁹⁾

$$C_{y_{p}} = C_{y_{p}} \cos \alpha + C_{y_{r}} \sin \alpha$$
(30)

$$C_{y_{r}} = C_{y_{r}}' \cos \alpha - C_{y_{p}}' \sin \alpha$$
(31)

$$C_{\ell_{\beta}} = C_{\ell_{\beta}}' \cos\alpha + C_{n_{\beta}}' \sin\alpha$$
(32)

$$C_{\ell p} = C_{\ell p}' \cos^2 \alpha + (C_{\ell r}' + C_{n p}') \sin \alpha \cos \alpha + C_{n r}' \sin^2 \alpha \quad (33)$$

$$C_{\ell_{r}} = C_{\ell_{r}} \cos^{2}\alpha + (C_{n_{r}} - C_{\ell_{p}})\sin\alpha\cos\alpha - C_{n_{p}} \sin^{2}\alpha \quad (34)$$

$$C_{n_{\beta}} = C_{n_{\beta}}' \cos \alpha - C_{\ell_{\beta}}' \sin \alpha$$
(35)

$$C_{n_{p}} = C_{n_{p}}' \cos^{2} \alpha + (C_{n_{r}}' - C_{\ell_{p}}') \sin \alpha \cos \alpha - C_{\ell_{r}} \sin^{2} \alpha (36)$$

$$C_{n_{r}} = C_{n_{r}}' \cos^{2} \alpha - (C_{\ell_{r}}' + C_{n_{p}}') \sin \alpha \cos \alpha + C_{\ell_{p}}' \sin^{2} \alpha \quad (37)$$

4. Numerical Results and Discussions

Some preliminary results without the refinement for high angles of attack have been reported in Reference 8. Good agreement in roll derivatives with Garner's theoretical calculation (Ref. 12) for two wings at different Mach numbers has been demonstrated. In the following, additional results by the present refined program will be presented for conventional configurations and configurations with significant vortex-lift effect. 4.1 Conventional Configurations without Significant Vortex-Lift Effect

The experimental results for lateral-directional stability derivatives for four wings with NACA 0012 airfoil section were presented in Reference 1. The results for two wings are chosen for comparison here. Figure 4 presents the results for a rectangular wing of A = 5.16. It is seen that the present method predicts all rolling moment derivatives However, C_{y_p} and C_{n_p} are not accurately predicted. with good accuracy. To see whether this is true for other unswept configurations with different aspect ratio, the test data in Reference 5 for A = 2.61 are compared in Figure 5. Again, both C and C are overpredicted. This y_p n_p discrepancy indicates that both leading-edge and tip suction forces are not fully realized in the experiment, as has been assumed in the theory. This phenomenon has also been discussed by Garner in Reference 12. One possible way to solve this problem is to apply an edge suction correction factor. For the leading-edge suction, an empirical correction factor has been determined in Reference 13 as a function of airfoil geometry and Mach number. Experimental data showing the degree of leading-edge suction development can also be found in References 14 and 15. However, a systematic work on tip suction phenomena does not seem to exist.

r

Figure 5 Comparison of Predicted Rolling Stability Derivatives with Experimental Data for a Rectangular Wing of A=2.61 at M=0

Slight increase in $|C_{l_p}|$ with increasing C_L in Figure 5 implies that partial vortex-lift effect may exist at the tip.

The results for a 45-degree swept wing of A = 2.61 are presented in Figure 6. In this case, the vortex lift effect is assumed to exist along the leading edge, but not along the tip chord. This is evidenced from $C_{\substack{k_p}}$ variation and experimental lift curve. Again, all rolling moment derivatives are reasonably predicted, except at high lift coefficients. The prediction of side force and yawing moment due to sideslip and yaw rate is not accurate, probably because the effect of skin friction has not been included in the program. At zero C_L , the skin friction will produce negative $C_{\substack{y\\ \beta}}$. For the other derivatives, the effect of skin friction may or may not be important, depending on the location of moment center.

Figure 7 presents the sideslip derivatives for a KC-135A wing-body model with and without winglets at different subsonic Mach numbers. The experimental results are given in Reference 16. It is seen that the dihedral effect can be accurately predicted for this nonplanar wing-body configuration below the drag-divergence Mach number. The absolute level of $C_{n_{\beta}}$ and $C_{y_{\beta}}$ is not correctly predicted, because the body effect has not been included. Of course, a body will contribute negative $C_{n_{\beta}}$ and $C_{y_{\beta}}$ to the total derivatives. However, the trend with Mach number variation and the incremental effect produced by winglets are all correctly predicted.

Finally, another nonplanar configuration - a V-tail is analyzed in Figure 8. The experimental data can be found in Reference 17. The lateral stability derivatives are presented as a function of geometric

ş

Comparison of Predicted Lateral-Directional Stability Derivatives with Experimental Data for a Swept Wing at M=0. A=2.61, Λ =45° and λ =1.0 Figure 6

.

Figure 7 Comparison of Predicted Lateral Stability Derivatives with Experimental Data for a KC-135A Model at C_L =0.44

Figure 8 Comparison of Predicted Lateral Stability Derivatives with Experimental Data at α =0° and M=0 for a V-Tail of Aspect Ratio of 5.55

dihedral angles. All predicted β -derivatives are seen to agree quite well with experimental data.

4.2 Configurations with Significant Vortex-Lift Effect

When edge vortex separation is present, its effect can be predicted by Polhamus' suction analogy (Ref. 7). In this method, the predicted leading-edge and tip suctions are assumed to be acting normal to the wing at the edges.

A delta wing of A = 1.147 with sharp edges was tested and reported in Reference 18. The longitudinal aerodynamic characteristics are presented in Figure 9 together with the predicted results. As can be seen, the method of suction analogy works quite well for this wing. The sideslip derivatives are compared in Figure 10. Again, $C_{l_{\beta}}$ is reasonably well predicted. As for $C_{y_{\beta}}$, the effect of skin friction may explain the discrepancy. At high angles of attack, $C_{y_{\beta}}$ reverses in sign. This may be due to the fact that at high angles of attack in sideslip, the windward leading-edge vortex is large and is pushed more inboard to affect a larger wing area on the right side as compared with the left vortex effect. Since the right side leading-edge vortex generates positive sidewash on the wing surface, the resulting positive side force will make $C_{y_{\beta}}$ more positive as angle of attack is increased. This effect is not included in the present method.

A more complicated configuration is illustrated in Figure 11. Test results of this configuration were reported in Reference 19. The longitudinal and lateral aerodynamic characteristics are presented in Figures 12 and 13, respectively. In the present calculation, the outboard portion of wing which has a lower sweep angle and has dihedral is assumed

All dimensions are in cm.(in.)

Figure 11 Geometry for a Test Model of Supersonic Cruise Configuration

3

,

Figure 12 Comparison of Predicted Longitudinal Aerodynamic Characteristics of a Supersonic Cruise Configuration with Experimental Data at M=0.165 28

Figure 13 Comparison of Predicted Lateral Stability Derivatives for a Supersonic Cruise Configuration with Experimental Data at M = 0.165

not to develop vortex lift and has zero leading-edge suction. This assumption is plausible judged from the surface oil flow data in Reference 19. Figure 12 shows that the present method predicts the longitudinal characteristics quite well, in particular, the trend with tip dihedral being correctly predicted. The theoretical method used in Reference 19 is the conventional vortex-lattice method (Ref. 20).

5. Concluding Remarks

The present nonplanar quasi-vortex-lattice method predicts quite well all rolling moment derivatives, which are, of course, contributed mainly by the wing in a complete configuration. To improve the prediction of other lateral-directional stability derivatives, the following refinements are needed:

- (1) to include the fuselage effect.
- (2) to include the effect of skin friction so that the prediction of $C_{y_{\beta}}$, $C_{n_{\beta}}$, $C_{y_{r}}$ and $C_{n_{r}}$ can be improved.
- (3) to incorporate empirical correction factors for the degree of development of edge suction forces.

6. References

- (1) Toll, T. A. and Queijo, M. J., "Approximate Relations and Charts for Low-Speed Stability Derivatives of Swept Wings," NACA TN 1581, 1948.
- (2) Queijo, M. J., "Theory for Computing Span Loads and Stability Derivatives due to Sideslip, Yawing, and Rolling for Wings in Subsonic Compressible Flow," NASA TN D-4929, December 1968.
- (3) Queijo, M. J., "Theoretical Span Load Distributions and Rolling Moments for Sideslipping Wings of Arbitrary Plan Form in Incompressible Flow," NACA Report 1269, 1955.
- (4) Polhamus, E. C. and Sleeman, W. C., Jr., "The Rolling Moment due to Sideslip of Swept Wings at Subsonic and Transonic Speeds," NASA TN D-209, February 1960.
- (5) Goodman, A. and Fisher, L. R., "Investigation at Low Speeds of the Effect of Aspect Ratio and Sweep on Rolling Stability Derivatives of Untapered Wings," NACA Report 968, 1950.
- (6) Lan, C. E., "A Quasi-Vortex-Lattice Method in Thin Wing Theory," Journal of Aircraft, Vol. 11, No. 9, Sept. 1974, pp. 518-527.
- (7) Polhamus, E. C., "A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading-Edge-Suction Analogy," NASA TN D-3767, December 1966.
- (8) Lan, C. E., "Calculation of Lateral-Directional Stability Derivatives for Wing-Body Combinations with and without Jet-Interaction Effects," NASA CR-145251, August 1977.
- (9) Rubbert, P.E., "Sideslip of Wing-Body Combinations," NASA CR-114716, October 1972.
- (10) Hoerner, S. F. and Borst, H. V., "Fluid-Dynamic Lift," published by Hoerner Fluid Dynamics, P.O. Box 342, Brick Town, N.J. 08723, 1975.
- (11) Etkin, B., "Dynamics of Atmospheric Flight," John Wiley and Son, Inc., 1972.
- (12) "On the Application of Subsonic Linearized Wing Theory to Second-Order Forces and Moments," ARC R & M No. 3758, 1975.
 Part I General Principles and Mathematical Models, by G. J. Hancock.
 - Part II Edge Forces and Roll-Rate Derivatives, by H. C. Garner.
- (13) Carlson, H. W. and Mack, R. J., "Studies of Leading-Edge Thrust Phenomena," AIAA Paper No. 80-0325, Jan. 1980.

- (14) Henderson, W. P., "Studies of Various Factors Affecting Drag Due to Lift at Subsonic Speeds," NASA TN D-3584, October 1966.
- (15) Henderson, W. P., "Effects of Wing Leading-Edge Radius and Reynolds Number on Longitudinal Aerodynamic Characteristics of Highly Swept Wing-Body Configurations at Subsonic Speeds," NASA TN D-8361, December 1976.
- (16) Jacobs, P. F., "Effect of Winglets on a First-Generation Jet Transport Wing. V-Stability Characteristics of a Full-Span Wing with a Generalized Fuselage at High Subsonic Speeds," NASA TP-1163, March, 1978.
- (17) Schade, R. O., "Effect of Geometric Dihedral on the Aerodynamic Characteristics of Two Isolated Vee-Tail Surfaces," NACA TN-1369, July 1947.
- (18) Davenport, E. E. and Huffman, J. K., "Experimental and Analytical Investigation of Subsonic Longitudinal and Lateral Aerodynamic Characteristics of Slender Sharp-Edge 74° Swept Wings," NASA TN D-6344, July 1971.
- (19) Washburn, K. E.and Gloss, B. B., "Effect of Wing-Tip Dihedral on the Longitudinal and Lateral Aerodynamic Characteristics of a Supersonic Cruise Configuration at Subsonic Speeds," NASA TM X-72693, August 1976.
- (20) Lamar, J. E. and Gloss, B. B., "Subsonic Aerodynamic Characteristics of Interacting Lifting Surfaces with Separated Flow Around Sharp Edges Predicted by a Vortex-Lattice Method," NASA TN D-7921, September 1975.

Appendix A

Instruction on the Usage of the Nonplanar QVLM

Program and Sample Input Data
A.1 PROGRAM CAPABILITIES

This program has the following main features:

- (1) It is applicable to nonplanar wing configurations, such as wingwinglet, wing-vertical fin combinations, etc. It can also analyze wing-tail or wing-canard configurations. However, the wake is assumed flat.
- (2) Up to five flap spans with different flap angles, including ailerons, can be analyzed.
- (3) Arbitrary camber shapes defined at three spanwise stations or less are used in the program through cubic spline interpolation.
- (4) The program can calculate the symmetrical loading, the rolling moment coefficient due to aileron deflections (for attached potential flow only) and lateral-directional stability derivatives. For the first two conditions, the bending moment distribution is also calculated.
- (5) The vortex-lift effect is calculated through the use of Polhamus' suction analogy.
- (6) Ground effect analysis is made by the image vortex method. However, the ground effect on lateral-directional stability derivatives has not been correlated with the experimental data.

A.2 INPUT DATA FORMAT

Group 1 Format (6X, I4), 1 card

ICASE Number of cases to be run

Group 2 Format 2(6X, I4), 1 card

NCASE User's case number

NGRD = 1 if the wing is in ground effect; = 0 otherwise.

Group 3 Format (13A6), 1 card

TITLE (I) Any words describing the case to be run. (I = 1, 13)

Group 4 Format 8(6X, I4), 1 card

- NC Number of spanwise sections on the right wing (to be divided according to points of discontinuities in geometry, such as edges of flap spans). Limited to 7. (Avoid dividing planforms into too many sections).
- M1(I), I=1, NC Numbers of vortex strips in each section <u>plus one</u>. There are NC numbers. Minimum value is 3. Maximum total number of vortex strips is 48.
 - IWING = Last wing vortex strip number if a tail is present, = 0, otherwise.
 - NWING = The numerical order of the last wing spanwise section, numbered from inboard sections.
 - IWGLT = 1 if a winglet to be represented by a tail is present. = 2 if the winglet (vertical fin) is placed inboard of wing tip.

= 0 otherwise.

Group 5 Format 8(6X, I4), 1 card

NFP Number of flap spans. Limited to 5.

- NJW(I),I=1,NFP Numerical orders of flap spans among the spanwise sections. For clean or full-span flap configurations, set NFP = 1, NJW(I) = 1.
 - NVRTX The vortex strip number at and outboard of which the leading-edge vortex-lift effect is not included. If it is zero, total vortex-lift is assumed.

Group 6 Format 8(6X, I4), 1 card

- NW(1) Numbers of vortex elements in chordwise sections,
- NW(2) divided along flap hinge line or winglet leading edge, as illustrated in sample input.
- ICAM = 1 if camber ordinates are to be read in,

= 0 if <u>camber slopes</u> are defined manually in subprograms ZCR(X),

ZCI(X), ZCT(X). The default is for a noncambered wing.

- IM Number of camber ordinates to be read in (limited to 12); arbitrary if ICAM = 0.
- IST Number of stations at which camber ordinates are read in. Limited to 3. Station 2 must be consistent with the intermediate station defining twist (see Group 13).
- ICAMT = 1 if the tail, winglet or vertical fin has camber. In this case, camber ordinates at wing root, wing tip and tail should be all read in.

= 0, otherwise.

*Omit group 7 if ICAM = 0 *

Group 7 Format 8F10.6

- XT(I,J) X-coordinates at which camber ordinates are read in. Nondimensionalized with chord length. All X-coordinates are read in first.
- ZC(I,J) Camber ordinates at the corresponding X-locations. Nondimensionalized with chord length.

The above are to be repeated IST times. Input root chord first.

Group 8	Format 2(6X, I4), 1 card
LAT	= 0 for symmetrical loading only
	= -1 for computing C_{l} with aileron deflection.
	= 1 for computing lateral-directional stability
	derivatives. (Symmetrical loading is always calculated).
NAL	Numerical order of aileron span among the flap spans.
	$(= 0 \text{ if } LAT \neq -1)$

Group 9 Format 8F10.6

Corner-point coordinates of a spanwise section.

- XXL(1) L.E. X-coordinate of the inboard chord.
- XXT(1) T.E. X-coordinate of the inboard chord.
- YL(1) Y-coordinate of the inboard chord.
- XXL(2) L.E. X-coordinate of the outboard chord.
- XXT(2) T.E. X-coordinate of the outboard chord.
- YL(2) Y-coordinate of the outboard chord.

ZS elevation of the spanwise section.

DIHED dihedral angle in degrees for the section.

<u>Note</u>. Group 9 is to be repeated NC times. With flaps or winglet, another NC cards are needed to describe the flap and the associated regions. The order of input is illustrated below. Panels with dihedral must be rotated to X-Y plane for geometric description.

Group 10

Format 8F10.6, 1 card

AM Freestream Mach number. AM < 1.

HALFSW Reference half wing area.

CREF Reference chord.

ALPCON An indicator (= 1. if $C_{L_{\alpha}}$ and $C_{m_{\alpha}}$ are to be computed. In this case, put flap angles to zero. = 0.otherwise).

DF(I), flap angles in degrees, inboard flap span first. I=1,NFP

Group 11 Format 3F10.6, 1 card

ALNM Number of angles of attack to be processed for the same configuration at the same Mach number.

ALPI Initial angle of attack in degrees.

ALPINC Incremental angle of attack in degrees.

Note. The above variables in Group 11 should be all zero if ALPCON = 1.0

Group 12 Format 2F10.6, 1 card

HEIGHT Ground height of 3/4 chord point of M.A.C., or other reference point = 0. if NGRD = 0.

ATT pitch attitude angle in degrees = 0 if NGRD = 0.

Group 13 must be omitted if ALPCON = 1.

Group 13 Format 7F10.6, 1 card

- TWIST1 twist in degrees from root chord to an intermediate station, negative for washout. If TWIST1 >99, the twist distribution and camber slope defined in Functions TWST & ZCDX will be used.
- TWIST2 twist in degrees from an intermediate station to tip chord, referenced to the intermediate station. = 0.if the intermediate station is the tip.

YTW Y-coordinate of the intermediate station.

RINC root chord incidence angle in degrees.

CAMLE1 L.E. camber slope at the root chord.

CAMLE² L.E. camber slope at the intermediate station

CAMLE3 L.E. camber slope at the tip chord.

arbitrary if ICAM = 1

*Group 14 must be omitted if IWING = 0

Group 14 Format 3F10.6, 1 card

TINC Tail incidence angle in degrees.

HALFSH Tail half area. If the tail is to represent the winglet at the tip, put HALFSH = HALFSW. If the tail is a vertical fin inboard of wing tip, put HALFSH = fin area.

Winglet position indicator. Its numerical value is based on whether the winglet is attached to the wing first or second chordwise section, respectively. It is indicated below. If there is no winglet, it should be 0.

If ICASE > 1, repeat Groups 2-14.

Remarks:

 With the existing dimension for the array DQ(I,J) in the main program, a total of 140 vortex elements can be used. The minimum memory for execution is 55K (decimal).

POS

Three working disk files are needed in execution. They are (2) designated as (01), (02) and (03).

A.3 OUTPUT DATA FORMAT

CREF

- First, the input data will be printed. (1)HALFSW half wing area reference chord
- (2) Vortex Element Endpoint Coordinates:

 (X_1, Y_1, Z_1) coordinates of the inboard endpoint of a bound vortex element

 (X_2, Y_2, Z_2) coordinates of the corresponding outboard endpoint of a bound vortex element

(3) Control Point Coordinates:

One set of (XCP, YCP, ZCP) defines a control point location.

(4) Sectional Pressure and Force Data

XV percent chordwise location

- YV percent spanwise location (referred to half span)
- $\Delta C_{\rm p}$ (with aileron deflections, $\Delta C_{\rm p}$ on both left and CPright wings will be printed).
- Y/S the nondimensional y-coordinate of the spanwise station (referred to half span)

CLSectional lift coefficient

- CM sectional pitching moment coefficient about the y-axis
- \mathbf{CT} sectional leading-edge thrust coefficient

CDI sectional induced drag coefficient

(5) The next group of output variables is for the attached potential flow. If ALPCON = 1, the lift and pitching moment coefficients will be $C_{L_{\alpha}}$ and $C_{m_{\alpha}}$.

- (6) The results to be used in the method of suction analogy are printed next. If ALPCON = 1, the variables printed are used for a noncambered wing in the following formulas:
 - $C_{L} = K_{p} \sin \alpha \cos^{2} \alpha + (K_{v,le} + K_{v,se}) \sin^{2} \alpha \cos \alpha$

$$C_{D_{i}} = C_{L} \tan \alpha$$

$$C_{m} = K_{p} \sin \alpha \cos \alpha \frac{\bar{x}_{p}}{C_{ref}} + K_{v,le} \sin^{2} \alpha \frac{\bar{x}_{le}}{C_{ref}} + K_{v,se} \sin^{2} \alpha \frac{\bar{x}_{se}}{C_{ref}}$$

- (7) If lateral-directional stability derivatives are calculated, results for both attached potential flow and vortex-separated flow will be printed, based on body and stability axes. The sideslip derivatives are in per radian.
- (8) If rolling moment coefficient due to aileron deflection is calculated, it will be printed here.
- (9) The last group of results is the bending moment distribution and the bending moment coefficient at the root chord.

A.4 Sample Test Case No. 1

Input Data :

1 NASA TF	1 -1163, КС- 2 1	0 135A WITH 1	WINGLFT	3	1	1	
0.	3 0.1	3 0.2	1 11 0.3	l 0•4	3 0.5	1 0.6	0.7 *
0.8	0•9 0•0145	1. 0.01878	0.01947	0.01946	0.01855	0.01744	0.01458
0.01022	0.00582	0°2	0.3	0•4	0.5	0.6	0.7
	0.0145	0,01878	0.01947	0.01946	0.01855	0.01744	0,01458
	0.00582	0 • 2	0.3	0•4	0.5	0.6	0.7
0.0 0.0199	0.01505 0.01215	0.019 -0.00435	0.02145	0.023	0.0237	0.0241	0.0233
10.853 11.505	$1 -3.4365 \\ 13.161$	0 27.3	10,133	11.505 15.102	27.3	8:	7 5 .
-3.4365 13.161	0.557 14.053	27.3 27.3	11.505 15.102	14.053	27.3 31.22	0.	7. 75.
	1.51	0.	0.				
Ŏ. -4.	0 209.25	27•3 20•	2.	0.	0.	0.	

1							
******	*****	* * * * * * * * * * *	*****	*			
LASE NUMBE	K = 10	* * * * * * * * * * * *		+			
****	****	* * * * * * * * * * * *	******	*			
NASA TP-	1163. KC-1	35A WITH WI	INGLFT				
******	*****	* * * * * * * * * * *	*****	*			
INPUT DAT	A 14	6	13	1	1		
1	1	0 1	11	3	1		
-10.853000	-3.436500	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10.133000	11.505000	27.300000	0.	7.000000
-3.436500	0.557000		11.505000	14.053000	27.300000	0.	7.000000
	209,250000	8.275000	0.	0.	31.220000	U .	/ J @ UUUUUU
		27.300000	2 . 00000	0.	0_	ŋ	
-4.000000	209.250000 HALF SW= 0.	20,000000 20925E 03	······································	CREF= 0.82	750E 01		
*** CAMBER	ORDINATES	FOR THE RC	OT SECTIO	V ***			
x / c	0.	0.10000	0.20000	0.30000	0.40000	0.50000	0.60000
z/c	0.	0.01450	0.01878	0.01947	0.01946	0.01855	0.01744
	0 . 70000	u_0000	0.9000	1,00000			
	0.01458	u.u1022	0.00532	0.			
*** CAMBER	ORDINATES	FOR THE IN	TERMEDIATE	SECTION *	* *		
x/c	0	0.10000	0.20000	0.30000	0.40000	0.50000	0.60000
z/c	٥.	0.01450	0.01878	0.01947	0.01946	0.01855	0.01744
	0.70000	u_\$0000	0.90000	1.00000			
	0.01458	° u₀u1022	0.00582	0.			
*** CAMBER	ORDINATES	FOR THE TI	P SECTION	* * *			
x / c	C.,	0.10000	0.20000	0.30000	0.40000	0.50000	0.6000
z/c		0.01505	0.01900	0.02145	0.02300	0.02370	0.02410
		0.0000	0.40000	1.00000			

45

>0000000000000000000000000000000000000
z 1 00.0000000000000000000000000000000000
$\begin{array}{c} 9999\\ 2&7765921\\ 1&1221688831\\ 1&1&1&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2&2$
Y1 0.765999 2.09977659221 3.99977765999 2.099777665999 2.099777669999 3.9999777669999 3.3881699 9.1221699 1.121699 1.121699 1.121699 1.121699 1.121699 1.121699 1.121699 1.121699 1.121699 1.121699 1.121699 1.121699 1.121699 1.122001 1.155.15520 1.155.155227 1.155.155227 1.155.155227 1.155.155227 1.155.155227 1.155.155227 1.155.155227 1.155.155227 1.155.155227 1.155.155227 1.15527 1.15527
$\begin{array}{c} x \\ 7 \\ 7 \\ 7 \\ 7 \\ 4 \\ 7 \\ 7 \\ 7 \\ 4 \\ 7 \\ 7$
$ \begin{array}{c} x & 1 \\ 354433722 \\ -39 \\ -39 \\ -39 \\ -64 \\ -75 \\ -38 \\ -75 \\ -38 \\ -75 \\ -38 \\ -75 \\ -38 \\ -75 \\ -38 \\ -75 \\ -38 \\ -75 \\ -7$

VORTEX ELEMENT ENDPOINT COORDINATES=

80191 3.42231 32155 4.87363 842231 5.08439 87363 6.46566 87363 6.46566 87363 6.46566 87363 6.46566 87363 6.46566 87363 6.46566 87363 6.46566 87363 6.46566 87363 6.46566 87363 6.46566 87363 6.46566 801770 9.33061 9.3306170 9.45204 9.45204 10.70131 10.70131 10.70131 205204 10.699169 9.45508 10.89169 11.8538009 12.859009 12.859009 12.859009 13.849500 14.95068 849509 13.849508 999908 14.9508 999908 14.9508 13.849704 9214379 14.840698 15.223379 999908 14.840698 15.008 14.84298 636055 15.088935 97	99.14169 9.14169 12.12168 12.12168 12.12168 12.12168 12.12168 12.12168 12.12168 12.12168 12.12168 12.12168 12.12188 12.22077 12.22077 12.2277 12.2272 12.2277 12.2277 12.2272 12.2277 12.2272 12.2272 12.2277 12.2272 1.	2 1 1 1 2 2 1 2 1 2 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 1 2 1 1 1 2	0.00 0.00	00000000000000000000000000000000000000
--	--	---	--	--

$\begin{array}{c} 1\ 0 & 3\ 3 \\ 7\ 3 \\ 8\ 6 \\ 9\ 2 \\ 1\ 1\ 2 \\ 8\ 5 \\ 9\ 1\ 6 \\ 8\ 0 \\ 1\ 1\ 2 \\ 8\ 5 \\ 9\ 1\ 1\ 2 \\ 1\ 3 \\ 1\ 1\ 2 \\ 1\ 3 \\ 1\ 1\ 4 \\ 1\ 2 \\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ $	$\begin{array}{c} 25.94827\\ 26.957777\\ 226.957777\\ 2278.280000\\ 3957277\\ 228.224407222\\ 300.957272\\ 228.224477222\\ 335788039\\ 12.95422772\\ 25.7727250\\ 133.977893749\\ 133.9773949\\ 133.97737250\\ 133.965577449\\ 133.965577250\\ 133.965577250\\ 22667.880000\\ 22627777\\ 226600002\\ 227777\\ 226600002\\ 227777\\ 226600002\\ 227777\\ 226600002\\ 227777\\ 226600002\\ 227777\\ 226600002\\ 227777\\ 226600002\\ 227777\\ 226600000\\ 227777\\ 226600000\\ 227777\\ 226600000\\ 227777\\ 226600000\\ 227777\\ 226600000\\ 227777\\ 226600000\\ 227777\\ 226600000\\ 227777\\ 226600000\\ 227777\\ 226600000\\ 227777\\ 228800000\\ 227777\\ 228800000\\ 227777\\ 228800000\\ 22627777\\ 228800000\\ 227777\\ 228800000\\ 227777\\ 228800000\\ 227777\\ 228800000\\ 227777\\ 228800000\\ 227777\\ 228800000\\ 2277777\\ 22660000\\ 2277777\\ 228800000\\ 2277777\\ 2288000000\\ 2277777\\ 228800000\\ 2277777\\ 228800000\\ 2277777\\ 228800000\\ 2277777\\ 228800000\\ 2277777\\ 228800000\\ 2277777\\ 2288000000\\ 2277777\\ 2288000000\\ 2277777\\ 2288000000\\ 2277777\\ 2288000000\\ 2277777\\ 2288000000\\ 2277777\\ 2288000000\\ 2277777\\ 2288000000\\ 2277777\\ 2288000000\\ 22777777\\ 2288000000\\ 22777777\\ 2288000000\\ 22777777\\ 2288000000\\ 2277777777\\ 2288000000\\ 2277777777\\ 22880000000\\ 2277777777777777777777777777777$		$\begin{array}{c} 1 \ 0 & 7 \ 0 \\ 5 \ 7 \ 0 \\ 5 \ 7 \ 0 \\ 5 \ 7 \ 0 \\ 1 \ 0 \\ 2 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	$\begin{array}{c} 25.94822 \\ 26.95777 \\ 0. \\ 7.56259 \\ 0. \\ 28.28000 \\ 0. \\ 29.26000 \\ 0. \\ 30.24000 \\ 0. \\ 30.95741 \\ 0. \\ 30.95741 \\ 0. \\ 34223 \\ 0. \\ 1.35177 \\ 0. \\ 351777 \\ 0. \\ 35177$	
	>	(* * * * * * * * * * * * * * * *	<pre><xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx< td=""><td>(X</td></xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx<></pre>	(X
	F	PRESSURE DIS	TRIBUTION	AT ALPHA = 1,510	DEG。
VOBTEX	,	× × × × × × × × × × × × ×		× × × × × × × × × × × × × × × × × × ×	ς ρ
VORTEX 2345678901 112345678901 11211345678901 222222222222222222222222222222222222		xy 0x 0x 0x 24242 2424235 0x 242235 0x 2422357 0x 2422357 0x 0x 2422357 0x 0x 2422357 0x 0x 2422357 0x 0x 2422357 0x 0x 2422357 0x 0x 2422357 0x 0x 2422357 0x 0x 2422357 0x 0x 2422357 0x 255522 0x 2422357 0x 255522 0x 242572 0x 255527 0x 255527 0x 255572 0x 255527 0x 255572 0x 255572 0x 255572 0x 255572 0x 255572 0x 255572 0x 257203 0x 25542703 0x 0x 25542703 0x		YV 0: 01 254 0: 01 254 0: 01 254 0: 01 254 0: 01 254 0: 01 254 0: 04 952 0: 10 908 0: 10 8226 0: 18826 0: 18826 0: 188306 0: 188306 0: 283306 0: 28366 0: 2866 0: 2866 0: 2866 0: 2866 0: 2866 0:	C = 43855690 P = 438556315963 P = 48556315963 P = 48524317977152227 P = 53324455323196722 P = 533263796722 P = 5332233196722 P = 5332233196722 P = 5332233196722 P = 532233196722 P = 53223329721572 P = 5322223327355123222255238455 P = 5322223523845721202 P = 532222352322235232222352232223522332222352233222235223322223522332222352233222235223322223522352235223322223522235222352235223522235223522235222352223522235222352223522235222352223522235222352223522223522223522223522223522223522223522222352222235222222

÷

48

19

 $\begin{array}{c} \begin{array}{c} 4 & 6 \\ 3 & 5 \\ 2 & 5 \\ 0 & - & 6 \\ 0 & - & 5 \\ 0 & -$ $\begin{array}{c} 0.98746\\ 0.98746\\ 0.98746\\ 1.00962\\ 1.00962\\ 1.00962\\ 1.00962\\ 1.00962\\ 1.00962\\ 1.00962\\ 1.00962\\ 1.03590\\ 1.0769\\ 1.10769\\ 1.10769\\ 1.10769\\ 1.10769\\ 1.10769\\ 1.10769\\ 1.10769\\ 1.10397\\ 1.13398\\ 1.13398\\ 1.1339\\ 1.13398\\ 1.1339\\ 1.1$

	Y/S 0.01254 0.04952 0.10908 0.18826 0.28306 0.38874 0.50000 0.61126 0.71694 0.81174 0.89092 0.95048 0.98746	CL (RIGHT) 0.34518 0.35762 0.470089 0.42631 0.45157 0.47470 0.47470 0.50951 0.51620 0.50534 0.47718 0.42661	CL(LEFT) 0.34518 0.35762 0.40089 0.42631 0.45157 0.47470 0.49492 0.50951 0.51620 0.50534 0.42661	CM 0.24092 0.22875 0.20357 0.15610 0.08314 -0.01396 -0.12994 -0.38461 -0.38461 -0.49878 -0.57692 -0.61040 -0.58830	CT 0.00019 0.00056 0.00162 0.00162 0.00469 0.00469 0.00635 0.00635 0.00921 0.00921 0.01008 0.01018 0.00894 0.00574	CDI 0.01417 0.01331 0.01116 0.00380 0.00660 0.00476 0.00326 0.00224 0.00168 0.00153 0.00153 0.00261 0.00747
THE	FOLLOWING AR 1.00962 1.03590 1.07179 1.10769 1.13397	E THE WINGLET 0.14184 0.13154 0.11994 0.10802 0.08108	CHARACTERISTICS 0.14184 0.13154 0.11994 0.10802 0.08108	-0.23425 -0.21894 -0.20718 -0.19401 -0.14953	0.04885 0.02880 0.02093 0.01629 0.01083	-0.06425 -0.04238 -0.03293 -0.02706 -0.01932

*** THE FOLLOWING ARE ATTACHED POTENTIAL FLOW RESULTS ***

TOTAL LIFT COEFFICIENT = 0.44493

TOTAL INDUCED DRAG COEFFICIENT = (1,0)(474)

THE INDUCED DRAG PARAMETER = 0.02394

TOTAL PITCHING MOMENT COEFFICIENT = -0.08550

THE WING LIFT COEFFICIENT = 0.44115

THE WING INDUCED DRAG COEFFICIENT = 0.00596

THE WING PITCHING MOMENT COEFFICIENT = -0.07904

THE TAIL LIFT COEFFICIENT = 0.00378(BASED ON WING AREA) = 0.00378(BASED ON TAIL AREA)

THE TAIL PITCHING MOMENT COEFFICIENT BASED ON REFERENCE WING AREA

AND MEAN WING CHORD, AND REFERRED TO THE Y-AXIS = -0.00646

(NOTE. THE INDUCED DRAG COMPUTATION IS FOR SYMMETRICAL LOADING ONLY)

t (

THE FOLLOWING PARAMETERS ARE USED IN THE METHOD OF SUCTION ANALOGY

CLP	=	0.44591	CLVLE =	0.00620	CLVSE =	0.00109
CDP	=	0.01027	CDVLE =	-0.00100	CDVSE =	0.00007
CMP	=	-0.08550	CMVLE =	-0.00173	CMVSE =	-0.00149

STABILITY DERIVATIVES EVALUATED AT ALPHA = 1.510 DEGREES AND AT MACH NO.* 0.50, BASED ON BODY AXES(IN PER RADIAN) *** CYB =-0.1691180 CLB = -0.1986322 CNB = 0.0151494 CYP =-0.1860291 CLP =-0.4867214 CNP =-0.0144590 CYR =0.1008180 CLR =0.1168240 CNR =-0.0159456 ***STABILITY DERIVATIVES BASED ON STABILITY AXES CYB ₽ -0.1691180 CLB =-0.1981640 CNB = 0.0203784 CYP ≈ ~0, 1833078 CLP =-0.4836980 CNP = -0.0021287 CYR =0.1056851 CLR = 0.1291542 CNR = -0.0189690*STABILITY DERIVATIVES WITH EDGE VORTEX SEPARATION* ***** ***STABILITY DERIVATIVES EVALUATED AT ALPHA = 1.510 DEGREE AND AT MACH NO.= 0.50/BASED ON BODY AXES(IN PER RADIAN)*** DEGREES **INCLUDING THE EFFECT OF LE AND SE VORTEX LIFT* CYB =-0.2169768CLB =-0.2115922 CNB =0.0348294 CYP =-0.3323266 CLP = -0.5473992CNP =0.0466965 0.1118237 CYR =CLR =0.1198273 CNR =-0.0225003 ***STABILITY DERIVATIVES BASED ON STABILITY AXES*** CYB =-0.2169768 CLB =-0.2106009 CNB = 0.0403930 CYP =-0.3292644 CLP =-0.5426481 CNP = 0.0604079 0.1205421 CYR =CLR =0.1335387 CNR =-0.0272514 ***STABILITY DERIVATIVES EVALUATED AT ALPHA = 1.510 DEGREE AND AT MACH NO.= 0.50/BASED ON BODY AXES(IN PER RADIAN)*** DEGREES ***INCLUDING THE EFFECT OF LE VORTEX LIFT*** CYB = -0.2106318 CLB = -0.2102347 CNB = 0.0333645 CYP = -0.3059744 CLP =-0.5369804 CNP =0.0411909CYR =0.1091325 CLR = 0.1193995 CNR =-0.0218611 ***STABILITY DERIVATIVES BASED ON STABILITY AXES*** CYB =-0.2106318 CLB =-0.2092825 CNB =0.0388929 CYP = -0.3029924 CLP =-0.5323923 CNP = 0.0546488

CYR =

0.1171575

CLR =

0.1328574

CNR =

~0.0264491

Ŷ.

THE FOLLOWING BENDING MOMENT COEFFICIENT IS BASED ON 2*S*(3/2), WHERE S = 418.50000 AND B/2 = 27.30000 (FOR ATTACHED POTENTIAL FLOW ONLY)

214	SM(RIGHT)	BM(LEFT)
n. n1254	0,10333	0.10333
ก้ได้ผู้จริว	0,09516	0.09516
ก้ ไก้จก์ลิ	0.08275	0.08275
0 18826	0.06770	0.06770
0 28306	0.05186	0.05186
n 38874	0. 03694	0.03694
n°50000	ñ. ñž429	0,02429
0.61126	0.01459	0_01459
0.71694	0.00794	0,00794
0 81174	0 00389	0.00389
n 80n02	0 00177	
N°050/2		<u> </u>
n 087/4	ດ້ໍ້ກໍດີຮັກ	ก้. ก็ก็ก็รัก
	0.000.00	

THE FOLLOWING ARE THE WINGLET CHARACTERISTICS BASED ON WING GEOMETRY WHERE S = $418_{\circ}50000$ AND B/2 = $27_{\circ}30000$

•

1_00962	0.00035	0.00035
1.03590	0,00020	0,00020
1.07179	0,00007	0,00007
1.10769	0.0001	0.00001
1,13397	0,00000	0.00000

THE BENDING MOMENT COEFFICIENT BASED ON WING HALF SPAN AND WING AREA AT THE WING ROOT = 0.106180 (RIGHT), = 0.106180 (LEFT)

THE BENDING MOMENT COEFFICIENT BASED ON WING HALF SPAN AND WING AREA AT THE WINGLET ROOT = 0.000420 (RIGHT), = 0.000420 (LEFT)

~

5 /

52

δ **α**

Input Data:

A CO	1 NFIGURATION 3	0 WITH ANT 1	ISYMMETRICA 6	L AILERON	DEFLECTIO	NS 3	
	1	2 2	0	0	0	0	
0 1.2987 1.645 0.7 1.7814 2.0697 0.4 1.	-1 0.7 1.7814 2.0697 1. 9.882 2.2517 1.1895 5.	1 1.125 1.425 0.425 1.125 1.425 0.811 0.	1 • 2987 1 • 645 1 • 7316 1 • 7814 2 • 0697 2 • 1418 0 •	1.7814 2.0697 2.1418 1.9882 2.2517 2.3176 ∞15.	1.125 1.425 1.5 1.125 1.425 1.425 1.5		
0.	0 e 0 e	1.5	0.*	0	0.	0.	

0

						с	
V			I	*	* *	* A	
0	ŏ	011012010	NI	*	* : * :	* 5	
	•		ΡĮ	А * ;	* *	**	
		9408 780 780 780 780	ΙT	۲ * *	r *	* N	
x 45500009842007484061536979 17893544889555473		8501900		01 *	*	* UI	
60343235613487685192566744 5369109161777692		70004000	DA	N F ★ ≠	* *	* # 9 E	
E 801197673983803790086407327 2025000015899635779			AT 3 1 3	• *	* *	* * ? E	1
	н		A	G	*	* R	
W F) A l			UF ★ ≠	* *	* * =	
	5			2 A x +	t 1	= 1	
		77009210		• *	*	o	
214724736957069281302413624 63573574685796889	S	08608580		I *	*	*	
	W	00149081900		۱0 * •	* *	* 1	
N 4323561348768519256674453669100161777692308	-		1	\ ★ ★	* *	* *	
P 173245333379062966792511218 5357825345567086	0		1221	W *	***	*	
	1 9			I 1	* *	* *	
	1 1	01 1 0 1 0 0		'H	**	र के	
	8			*	贪责	*	
Y • • • • • • • • • • • • • • • • • • •	5 (9)	14		* : 7	*	* 1	
	0 (5 E	2525		N T * *	* *	* *	
	0			` I	* *	*	
R 8883333333000055599966666 6111000999111888	0		(\$` *`	* 1 * 1	* 1	
D 333999999993330000777111111 1777000033388882222	0 1		5	Y № * *	* *	* *	
N				*	*	*	
A	0	1111220		€ *	*	*	
				T F ★ →	* *	**	
				₹ ¥	* *	* *	
		851891		с *	*	*	
00077788844422220000666677744 45555888866663333333		706478		A *	*	*	
888333333000055559999666666611 10000999111188880000			3 (**	* *	* *	
	С		5	A * *	• * • *	r 🖈	
	R	• 1		I	_		
	0. E	1221225		Lł			
	F :			EF			
Z • • • • • • • • • • • • • • • • • • •	2	780482310		۲C			
	0	199 188 199 188 199 199 199 199 199 199		N (
	9	4(782760)		1			
	81		n 0	DE			
	1 (FL			
22		111111		. E	_		
	Ē	5 9 8 9 9		С	_		
	1	145145		T			
	00	2502500 2500		10			
)			N			
			3 0	S	-		
	0	0000000					
	•	4 4 4 3 4					

۶. , · 0

$\begin{array}{c} 1 & \cdot & \cdot & \cdot \\ 2 & 3 & 8 & \cdot & \cdot \\ 2 & 1 & \cdot & 1 & \cdot & \cdot \\ 2 & 1 & 1 & \cdot & 1 & \cdot & \cdot \\ 2 & 1 & 1 & 1 & \cdot & 1 & \cdot & \cdot \\ 2 & 1 & 1 & 1 & 1 & \cdot & 1 & \cdot & \cdot \\ 2 & 1 & 1 & 1 & 1 & \cdot & 1 & \cdot & \cdot \\ 2 & 1 & 1 & 1 & 1 & 1 & \cdot & 1 & \cdot & \cdot \\ 2 & 1 & 1 & 1 & 1 & 1 & \cdot & 1 & \cdot & \cdot \\ 2 & 1 & 1 & 1 & 1 & 1 & 1 & \cdot & 1 & \cdot & \cdot$	1.2.73355 4557226 4577226 48571226 48571226 48571226 4877733334 48777333329 1.2.79179179179 1.2.79179179179 1.2.79179179179 1.2.79179179179 1.2.79179179179 1.2.77333329 1.2.79179179179 1.2.7733332 1.2.7758 1.2.7768 1.2.7758 1.2.7768 1.2.7773 1.2.7768 1.2.7771 1.2.7768 1.2.7768 1.2.7771 1.2.7768 1.2.7771 1.2.7768 1.2.7771 1.2.7768 1.2.7771 1.2.7768 1.2.7771 1.2.7768 1.2.7771 1.2.7768 1.2.7771 1.2.7768 1.2.7771 1.2.7768 1.2.7771 1.2.7768 1.2.7771 1.2.7771 1.2.7771 1.2.7768 1.2.7771 1.2.7772 1.2.7771 1.2.7772 1.2.7771 1.2.7772 1.2.7771 1.2.7772 1.2.7771 1.2.7772 1.2.7771 1.2.7772 1.2.	$\begin{array}{c} 1 & 38107\\ 1 & 38107\\ 1 & 38107\\ 1 & 385000\\ 1 & 425500\\ 1 & 425500\\ 1 & 425500\\ 1 & 462250\\ 1 & 466250\\ 1 & 466250\\ 1 & 466250\\ 0 & 0508399\\ 0 & 137399\\ 0 & 2583939\\ 0 & 137399\\ 0 & 2558393\\ 0 & 137399\\ 0 & 25582097\\ 0 & 4662500\\ 0 & 722097\\ 0 & 8666661\\ 0 & 987417\\ 1 & 125893\\ 0 & 9874177\\ 1 & 125893\\ 0 & 9874177\\ 1 & 125893\\ 1 & 36807\\ 1 & 125893\\ 1 & 368077\\ 1 & 125893\\ 1 & 368182\\ 1 & 3781077\\ 1 & 3$	$\begin{array}{c} 1.42500\\ 1.425000\\ 1.425000\\ 1.44625000\\ 1.44625000\\ 1.4462500\\ 1.4462500\\ 1.4494983399\\ 1.449498337739\\ 0.050737739\\ 0.125588400\\ 1.4562299\\ 0.125520997\\ 1.40250737399\\ 0.125502997\\ 1.40250737399\\ 0.125502997\\ 1.12589886666\\ 1.25502997\\ 1.1258993\\ 0.075520997\\ 1.1258993\\ 0.075520997\\ 1.1258993\\ 0.075520997\\ 1.1258993\\ 0.075520997\\ 1.1258993\\ 1.1259928\\ 1.1259928\\ $	
1 99086 2 12605 2 05466 2 18593 2 09635 2 2505 2 13195 2 25845	2 • 05466 2 • 18593 2 • 09635 2 • 22505 2 • 13195 2 • 25845 2 • 16278 2 • 28738	1.31382 1.31382 1.38107 1.38107 1.42500 1.42500 1.46250 1.46250	1.38107 1.38107 1.42500 1.42500 1.46250 1.46250 1.46250 1.49498 1.49498	

0	N .	T R	0L	Ρ	0	ΙN	T	С	0	0	R	DI	NA	ΤE	S	=				
	222222222111111111111111111111000000000	x 2763887110443664975987C981CC124568996C11235	P0218850675662934038282581227782697085495481	2917696766376576742589344704587436718098011 20154264585130720127525961814348267695853583					P2289928849933304407750048828928493304075048	2294482228660552505504431129482260525050431	77211844511877211000009972272184518721000972	99994435555776111000000005559943555761100000555			CF	Ð		0527750083325537658869970089012457889900112	P 4782311281209795805169478273259480060529471	07392953563887012822242326486773426488522755

ţ

С

÷

 $\begin{array}{c} \mathsf{Y} \ \mathsf{CP} \\ \mathsf{P} \ \mathsf$

ZCP

a

۶

PRESSURE DISTRIBUTION AT ALPHA = 5.000 DEG.

AND AILERON ANGLE = -15.000 DEG.

VORTEX

234

56789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678

1

. j

XV 0.04689 0.35000 0.65311 0.74393	YV 0 • 0 1 5 1 9 0 • 0 1 5 1 9 0 • 0 1 5 1 9 0 • 0 1 5 1 9	CP(LEFT) 0.49270 0.23912 0.13056 0.14866	C P(RIGHT) J.49261 0.23897 0.13042 0.14835
$\begin{array}{c} 0.65311\\ 0.74393\\ 0.95607\\ 0.04689\\ 0.35000\\ 0.465311\\ 0.74394\\ 0.956689\\ 0.35000\\ 0.455312\\ 0.956689\\ 0.355012\\ 0.956689\\ 0.455312\\ 0.956689\\ 0.355312\\ 0.956689\\ 0.355315\\ 0.956689\\ 0.355315\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.355315\\ 0.956689\\ 0.355315\\ 0.956689\\ 0.355315\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.355316\\ 0.956689\\ 0.956699\\ 0.355316\\ 0.956699\\ 0.355316\\ 0.956699\\ 0.355316\\ 0.956699\\ 0.355317\\ 0.956699\\ 0.355317\\ 0.956699\\ 0.355317\\ 0.956699\\ 0.355317\\ 0.956699\\ 0.355317\\ 0.956699\\ 0.355317\\ 0.956699\\ 0.9599\\ 0.9599\\ 0.$	$\begin{array}{c} 0.01519\\ 0.01519\\ 0.05953\\ 0.05953\\ 0.05953\\ 0.05953\\ 0.05953\\ 0.05953\\ 0.05953\\ 0.12943\\ 0.129$	$\begin{array}{c} 0.13056\\ 0.14866\\ 0.05956\\ 0.54355\\ 0.23920\\ 0.12403\\ 0.054831\\ 0.24049\\ 0.13995\\ 0.11321\\ 0.24049\\ 0.13995\\ 0.113798\\ 0.246386\\ 0.13798\\ 0.04505\\ 0.13798\\ 0.04505\\ 0.137788\\ 0.107581\\ 0.246386\\ 0.137788\\ 0.04505\\ 0.13778\\ 0.046582\\ 0.137755\\ 0.11079\\ 0.046582\\ 0.83337\\ 0.26588\\ 0.107558\\ 0.11079\\ 0.046558\\ 0.877555\\ 0.11079\\ 0.046558\\ 0.877555\\ 0.118836\\ 0.05150\\ 0.91292\\ 0.118836\\ 0.05150\\ 0.91292\\ 0.118836\\ 0.05172\\ 0.118836\\ 0.05150\\ 0.91292\\ 0.119263\\ 0.19223\\ 0.1$	$ \begin{array}{c} 1 & 3 & 0 & 4 & 2 \\ 0 & 1 & 4 & 8 & 3 & 5 \\ 0 & 1 & 4 & 8 & 3 & 5 & 5 \\ 0 & 1 & 4 & 8 & 3 & 5 & 5 \\ 0 & 5 & 9 & 4 & 1 & 6 & 5 & 5 \\ 0 & 1 & 2 & 2 & 3 & 8 & 5 & 5 & 5 \\ 0 & 1 & 2 & 2 & 9 & 9 & 9 & 0 & 0 & 2 & 3 & 8 & 7 & 8 \\ 0 & 1 & 2 & 2 & 9 & 9 & 9 & 0 & 0 & 0 & 2 & 2 & 9 & 9 & 9 \\ 0 & 0 & 2 & 2 & 3 & 8 & 7 & 8 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
0.04690 0.35004 0.65317	0.73481 0.73481 0.73481	0.31835 0.25917	0.85295 0.19295 -0.03940

49 50 552 553 555 5567 5567 5567 5567 5567 5567 5	0.74399 0.95608 0.04690 0.35003 0.65317 0.74399 0.95608 0.04690 0.35003 0.65316 0.74399 0.95607 0.95607 0.95607 0.95607 0.95607 0.04689 0.35002 0.35002 0.65315 0.74397	0.73481 0.76340 0.76340 0.76340 0.76340 0.76340 0.76340 0.80000 0.80000 0.80000 0.80000 0.80000 0.85000 0.85000 0.85000 0.85000	• ••	0.31258 0.12057 0.96868 0.32895 0.43862 0.50386 0.13092 0.98205 0.34413 0.55599 0.56498 0.13501 0.99379 0.35288 0.59571 0.56704	- 0.15485 - 0.06401 0.84340 0.17099 - 0.23090 - 0.35861 - 0.07971 0.82405 0.13339 - 0.37039 - 0.43773 - 0.43773 - 0.78111 0.7270 - 0.44949 - 0.47037
65 667 68 70 71 77 77 77 77 78 90 80 88 88 88 88 88 88 88 88 88 88 88 88	$\begin{array}{c} 0.95607\\ 0.04689\\ 0.35002\\ 0.65314\\ 0.74396\\ 0.95607\\ 0.04689\\ 0.35001\\ 0.65313\\ 0.74395\\ 0.95607\\ 0.04689\\ 0.35001\\ 0.65312\\ 0.74394\\ 0.95607\\ 0.04689\\ 0.35000\\ 0.4689\\ 0.35000\\ 0.65311\\ 0.74394\\ 0.95607\\ 0.9560$	0.85000 0.90000 0.90000 0.90000 0.90000 0.93660 0.93660 0.93660 0.93660 0.93660 0.93660 0.96250 0.96250 0.96250 0.96250 0.96250 0.96250 0.96250 0.98750 0.98750 0.98750 0.98750 0.98750	· · · · · · · · · · · · · · · · · · ·	D.12161 0.97710 0.31927 0.555888 D.08490 0.90648 0.25458 0.47104 0.35365 0.04964 0.78308 0.18737 0.25811 0.12904 0.02938 0.52500 0.10005 0.11979 0.04110 0.01409	$\begin{array}{c} -0.09063\\ 0.71149\\ 0.01538\\ -0.45870\\ -0.45870\\ -0.45630\\ -0.06504\\ 0.62689\\ -0.017289\\ -0.31471\\ -0.03657\\ 0.52504\\ -0.3162\\ -0.21131\\ -0.103657\\ 0.52504\\ -0.02045\\ -0.33050\\ -0.02045\\ -0.02058\\ -0.03106\\ -0.00905\end{array}$
Y/S 0.01519 0.05953 0.12943 0.21922 0.32163 0.42837 0.53078 0.69047 0.73481 0.76340 0.80000 0.85000 0.90000 0.93660 0.98750	CL (RIGHT) 0.23574 0.24281 0.26651 0.26651 0.27809 0.28573 0.28573 0.27230 0.23757 0.18432 0.10288 0.04478 -0.00500 -0.03051 -0.02304 0.02598 0.62764	CL(LEFT) 0.23592 0.24356 0.25576 0.27066 0.28641 0.30205 0.31801 0.33750 0.36819 0.41277 0.48521 0.52562 0.53641 0.52562 0.53641 0.41397 0.28682 0.16116	CM -0.10373 -0.12321 -0.15697 -0.20770 -0.27238 -0.34405 -0.41348 -0.47057 -0.52527 -0.52527 -0.53283 -0.53560 -0.52201 -0.52201 -0.41095 -0.33477 -0.20527	CT 0.00305 0.00749 0.01062 0.01389 0.01686 0.01930 0.02120 0.02253 0.02335 0.02335 0.02391 C.02391 C.02386 0.02340 0.02210 0.022210 0.022210 0.02223 0.01759 0.01317	CDI 0.01757 0.01375 0.01163 0.00955 0.00955 0.00777 0.00633 0.00513 0.00405 0.00306 0.00226 0.00173 0.00024 -0.00179 -0.00320 -0.00397 -0.00496

æ

4

58

4 V

*** THE FOLLOWING ARE ATTACHED POTENTIAL FLOW RESULTS *** TOTAL LIFT COEFFICIENT = 0.26716 TOTAL INDUCED DRAG COEFFICIENT = 0.00624 THE INDUCED DRAG PARAMETER = 0.08738 TOTAL PITCHING MOMENT COEFFICIENT = -0.32568 FAR-FIELD INDUCED DRAG= 0.00636 FAR-FIELD INDUCED DRAG PARAMETER= 0.08905 (NOTE, THE INDUCED DRAG COMPUTATION IS FOR SYMMETRICAL LOADING ONLY)

THE FOLLOWING PARAMETERS ARE USED IN THE METHOD OF SUCTION ANALOGY

CLP =0.26567 0.02597 CLVLE =0.00729 CLVSE =CDP =0.02324 CDVLE =0.00227 CDVSE =0.00064 CMP =-0.32568 CMVLE = -0.02963CMVSE = -0.01871

,

1

THE ROLLING MOMENT COEFFICIENT = 0.0220 due to Aileron deflection of -15.000 deg. At M = 0.400

THE FOLLOWING BENDING MOMENT COEFFICIENT IS BASED ON Q*S*(3/2), WHERE S = 2.37900 AND B/2 = 1.50000 (FOR ATTACHED POTENTIAL FLOW ONLY)

Y/S	BM(RIGHT)	BM(LEFT)
0.01519	0.03796	0.11287
0.05953	0.03340	0.10402
0.12943	0°05685	0.09067
0.21922	0.01945	0.07461
0-52163	0.01254	0.05782
0.42857	0.00703	0.04207
0.0000	0.00334	0.02864
0.02007		0.01821
0 77/04		0.01097
0-747/0		
0 20000	0.00004	0.00483
0.80000	0.00006	
0.90000	0.00000	0 00000
0.93660	0.00002	0.000000
0 96250	ñ. ññññ i	0.00004
0.98750	0,0000	0.0000

THE BENDING MOMENT COEFFICIENT BASED ON WING HALF SPAN AND WING AREA AT THE WING ROOT = 0.039589 (RIGHT) = 0.115973 (LEFT)

Input Data:

NOTE. The calculated derivatives in this case will be based on the span of the horizontal tail $(b_{\rm H})$. To convert them to those based on wing geometry, C_{ℓ} , $C_{\rm n}$, $C_{\rm y}$ and $C_{\rm y}$ should be multiplied by $b_{\rm H}/b_{\rm w}$, and all others except $C_{\rm y}$ should be multiplied by $(b_{\rm H}/b_{\rm w})^2$.

1							
******** CASE NUMPE	********** R =10	*****	*****	*			
*****	* * * * * * * * * *	****	******	k			
******** THRUSH-H	* * * * * * * * * * * * * * * * * * *	********** AND VERTIC	AL TAIL COI	* MBINATION A	T 7800 LBS		
* * * * * * * * *	*****	****	* * * * * * * * * *	k			
INPUT DAT 2 1 5	A 11 1 0	6 0 0	10 C	1 0	0 0		
13.554500 14.061500 0. 3.000000	17.954500 20.201500 163.299999 -2.000000	0. 0. 7.500000 6.000000	15.081100 16.073300 0.	17.991100 19.113300 0.	7.725000 4.960000	2.708000 2.708000	0 90:000
U •) • 0 •	0. 0. 11.385000 HALF SW= 0	7.725000 0. 16330E 03	0 .	0. CREE= 0.750	0. 000E 01	0.	
VORTEX EL	EMENT ENDP	OINT COORD	INATES =				
x1 13.662137 15.75450 17.04763 17.04763 17.04763 17.047682 13.516881 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.06313 17.063313 14.074447 15.07324 17.06333 14.0743633 14.074326 17.06333 14.0743633 14.074320 17.06333 14.074320 17.06333 14.074320 17.06333 14.074320 17.06333 16.073220 17.06333 16.073220 17.08333 16.073220 17.08333 16.073220 17.08333 16.073220 17.08333 16.073220 17.08333 16.073220 17.08333 17.08333 17.08333 17.08333 17.08333 17.08333 17.08333 17.08333 17.08333 17.08333 17.08333 17.08333 17.08333 17.08333 17.08333 17.08333 17.08333 17.08333 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.083313 17.0833333 17.083333 17.0833333 17.0833333 17.0833333 17.0833333 17.0833333 17.08333333 17.0833333 17.083333 17.083333333 17.093333333 17.09333333333333333	x^2 $13 \cdot 72951$ $14 \cdot 51647$ $15 \cdot 78986$ $17 \cdot 85013$ $17 \cdot 85013$ $14 \cdot 61030$ $17 \cdot 854960$ $17 \cdot 85575$ $14 \cdot 64995$ $17 \cdot 85575$ $14 \cdot 744402$ $17 \cdot 863575$ $14 \cdot 744402$ $17 \cdot 863575$ $14 \cdot 744402$ $17 \cdot 863575$ $14 \cdot 744657$ $17 \cdot 863561$ $17 \cdot 863561$ $17 \cdot 863561$ $17 \cdot 86357$ $14 \cdot 807334$ $16 \cdot 245348$ $17 \cdot 883715$ $16 \cdot 25578$ $16 \cdot 25578$	Y1 0. 0. 0. 0. 0. 349905 0. 349905 0. 349905 0. 349905 0. 94334227 0. 9433422777 1. 77744227 1. 777744331 1. 777744331 1. 777744331 2. 77744331 2. 77744331 2. 77744331 3. 886625 0. 886625 0. 8886625 8886625 0. 8886625000000000000000000000000000000000	Y2 0.3349005 0.3349905 0.3349905 0.3349905 0.3349943422 0.99943422 0.99943422277 1.99943422277 1.99943422277 1.999434222777 1.9994342227777744331 1.999434227777744331 1.9994342227777744331 1.999433227777744331 1.999433227777744331 1.9994332277777777777777777777777777777777	21 2.708000 2.708000 2.708000 2.708000 2.708000 2.708000 2.708000 2	Z2 Z 70800 Z 70800		

	C 0 I	7456774567745677456775588774457758887745677456
467574675	N T	
CO491525935	R (8622288433995439065392319045189983764146484551862288
)L	3725730062301090450561716158902952960123448607
75255555555	Р0	6510956889134556878096000475319074185963781736
	IN	
Y 0 0 0 0 0 1 1 2 2	T	
C1116633322	со	88433995439065391653945189983764146484551165409105107344182071473819297023067392516925817895
6466 6466 3316 3310 3310 37966	ORD	300753301090977809372827532012976502012344852746546 5688913395568778093728275520129765020120188651748395 5778578093728275520129074185963781736188591748395
	INA	
	TE	34444455555566666667777770000000000011111133333344444
	\$=	89999999999977777333333 77777888888811111222222 2222223333332222223333332222222333333
8(18(1))8(1)8(1)8(1)8(1)8(1)8(1)8(1)8(1)		
5746757467		
CO504925350		99999777773333366666677777888888111111222228888888
P9387546794		55555558888877778888882222233333222222333333777777
16 96 954 9740 9221 9229 950		67777775555599999966666633333311111188888866666655555 9333338888855555999998888883333377777722222200000
01166633222		
P55111335555		
46661661106666		
2222222222 ********		
) 8 () 8 (

14.56832 16.67079 17.97020 15.65257 17.63651 $\begin{array}{c} 15 & 50857\\ 17 & 61105\\ 14 & 76532\\ 15 & 749240\\ 15 & 797540\\ 15 & 790097\\ 17 & 660997\\ 17 & 988477\\ 17 & 988477\\ 17 & 988477\\ 17 & 988477\\ 17 & 994578\\ 16 & 699945\\ 17 & 99458427\\ 16 & 99958427\\ 16 & 99958427\\ 16 & 99958427\\ 16 & 99958427\\ 16 & 99958427\\ 16 & 99958427\\ 16 & 99958427\\ 18 & 99958427\\ 19 & 6539292\\ 18 & 9659292421\\ 19 & 6539292\\ 18 & 934585\\ 19 & 653957\\ 19 & 655927\\ 18 & 3865577\\ 18 & 876607\\ 18$

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31281

 31111

 31281
 PRESSURE DISTRIBUTION AT ALPHA = -2,000 DEG. ***** VORTEX 1 2 CP -0.53002 -0.17444 -0.08830 X۷ ΥV

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 3 $\begin{array}{c} -0.04303\\ -0.01357\\ -0.555666\\ -0.17429\\ -0.01324399\\ -0.01324399\\ -0.0132430\\ -0.0132430\\ -0.0132430\\ -0.013243\\ -0.013358\\ -0.013237\\ -0.060381\\ -0.000381\\ -0.000381\\ -0.000381\\ -0.000381\\ -0.000381\\$ 4 567 890 12345678901234 -0.04252

 $-0.01291 \\ -0.0594 \\ -0.03408 \\ -0.04015 \\ -0.04015 \\ -0.04015 \\ -0.058763 \\ -0.058763 \\ -0.05330 \\ -0.0500 \\ -0.0$

	Y/S 0.02025 0.07937 0.17257	CL (RIGHT) -0.13605 -0.13854 -0.14175	CL(LEFT) -0.13605 -0.13854 -0.14175	CM 0.26648 0.27224 0.28021	CT 0.00271 0.00313 0.00344	CDI 0.00203 0.00171 0.00151
) - 29229) - 42884) - 57116) - 70771	-0.14444 -0.14514 -0.14206 -0.13295	-0.14444 -0.14514 -0.14206 -0.13295	0.28797 0.29223 0.28891 0.27280	0.00366 0.00377 0.00372 0.00347	0.0013y 0.0013J 0.00124 0.00117
) • 82743) • 92063) • 97975	-0.11511 -0.08629 -0.04662	-0.11511 -0.08629 -0.04662	0.23777 0.17885 0.09669	0.00295 0.00213 0.00107	0.00106 0.00088 0.00056
THE F 0 0 0 0 0 0 0	OLLOWING ARE 0.06699 0.25000 0.50000 0.75000 0.93301	THE TAIL CHARAC -9.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000	CTERISTICS -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
*** THE	FOLLOWING A	RE ATTACHED POT	ENTIAL FLOW RESU	LTS ***		
TOTAL LIF	T COEFFICIEN	r = -0.02265				
TOTAL I	INDUCED DRAG	COEFFICIENT =	0.00023			
THE IND	DUCED DRAG PA	$RAMETER = 0_{*}4$	3964			
TOTAL P	PITCHING MOME	NT COEFFICIENT :	= 0.04559			``
THE	WING LIFT CO	EFFICIENT = -0.	°02265			
THE	WING INDUCED	DRAG COEFFICIE	NT = 0.00023			
THE	WING PITCHIN	G MOMENT COEFFI	CIENT = 0.0455	9		
THE	TAIL LIFT CO	EFFICIENT = 0	BASED ON	WING AREA), =	0. (BASED	ON TAIL AREA)
THE	TAIL PITCHIN	G MOMENT COEFFI	CIENT BASED ON R	EFERENCE WING A	REA	
	AND MEAN WI	NG CHORD, AND RI	EFERRED TO THE Y	-AXIS = 0.		·
(NOT	E. THE INDUC	ED DRAG COMPUTA	TION IS FOR SYMM	ETRICAL LOADING	ONLY)	
*****	****	****	* * * * *			
THE FOLLO	WING PARAMET	ERS ARE USED IN	THE METHOD OF S	UCTION ANALOGY		
CLP =	-0.02263 01	LVLE = -0.0005	8 CLVSE = $-0.$	00016		
CDP =	0.00079 C	DVLE = 0.0000	2 CDVSE = 0.	00001		
CMP =	0.04559 CI	MVLE = 0.0010	9 CMVSE = 0 .	00036		
****	*****	*****	* * * * *			

•

r 9

t ,

STABILITY DERIVATIVES BY POTENTIAL FLOW THEORY ********** ***STABILITY DERIVATIVES EVALUATED AT ALPHA = -2.000 DEGREES AND AT MACH NO.= 0. .BASED ON BODY AXES(IN PER RADIAN)*** CYB = $-0_{-}1692203$ CLB = -0.0379778CNB = 0.1747360 CYP =-0.0769056CLP = -0.0760935 CNP =0.0825351 0.4059052 CLR = 0.0921547 -0.4236924 CYR =CNR =***STABILITY DERIVATIVES BASED ON STABILITY AXES*** -0.1692203CLB =-0.0440529 CYB =CNB =0.1733041 CYP =-0.0910246 CLP = -0.0826097CNP =0.0944460 0.4029740 CLR = CYR =0.1040656 CNR =-0.4171761 **** ***STABILITY DERIVATIVES WITH EDGE VORTEX SEPARATION*** ***STABILITY DERIVATIVES EVALUATED AT ALPHA = -2.000 DEGREES AND AT MACH NO.= 0. PBASED ON BODY AXES(IN PER RADIAN)*** ****INCLUDING THE EFFECT OF LE AND SE VORTEX LIFT*** -0-1704073 CYB =CLB =-0.0384587 CNB = 0.1762162 -0,0696868 CYP =-0.0685944 CLP =CNP =0.0707230 CYR ≠ 0.4066442 CLR = 0.0931148 CNR =-0.4250563 ***STABILITY DERIVATIVES BASED ON STABILITY AXES*** CYB =-0.1704073CLB =-0.0445851CNB =0.1747666 CYP = $-0_{-}0827443$ CLP =-0.07583400-0829181 CNP =CYR =0-4040026 CLR = 0.1053099 CNR =-0.4189091***STABILITY DERIVATIVES EVALUATED AT ALPHA = -2,000 DEGREES AND AT MACH NO.= 0. PBASED ON BODY AXES(IN PER RADIAN)*** ***INCLUDING THE EFFECT OF LE VORTEX LIFT*** CYB =-0.1701461 CLB =-0.0383281 CNB = 0.1759301 -0-0749457 CYP =CLP =-0.0728624 CNP =0.0776267 CYR =0.4061316 CLR =0.0928586 CNR =-0.4244940 ***STABILITY DERIVATIVES BASED ON STABILITY AXES*** CYB =-0.1701461CLB = -0.0444446CNB = 0.1744853 CYP =-0.0890738 CLP =-0.0792370 CNP =0.0896834 CYR =0 - 4032687CLR = 0.1049152 CNR =-0.4181195

THE FOLLOWING BENDING MOMENT COEFFICIENT IS BASED ON Q*S*(B/2), WHERE S = 326.60000 AND B/2 = 7.72500 (FOR ATTACHED POTENTIAL FLOW ONLY)

	Y/S 0.02025 0.07937 0.17257 0.29229 0.42884 0.57116 0.70771 0.82743 0.92063 0.97975	BM (RIGH 	T) BM(LEFT) -0.00469 -0.00317 -0.00219 -0.00132 -0.00066 -0.00026 -0.00007 -0.00001 -0.00001	
THE	FOLLOWING WHERE S	ARE THE TAIL = 22.77000	CHARACTERISTICS BASED ON TAIL GEOMETRY, AND $B/2 = 4.96000$	
	0.06699 0.25000 0.50000 0.75000 0.93301	-0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000	-0.00000 -0.00000 -0.00000 -0.00000 -0.00000	

THE BENDING MOMENT COEFFICIENT BASED ON WING HALF SPAN AND WING AREA AT THE WING ROOT = -0.004920 (RIGHT), = -0.004920 (LEFT) THE BENDING MOMENT COEFFICIENT BASED ON TAIL HALF SPAN AND TAIL AREA AT THE TAIL ROOT = -0.000000 (RIGHT), = -0.000000 (LEFT)

67

X	X	X	>	()	<	Х	Х	Х		(X	Х	X	()	X	χ	X	(X	Х)	(X	Х)	K	X	χ	Х	(Х	Х		X	Х	Х)	(Х	Х)	(X	Х)	()	X	х	Х	X	1	K	X
---	---	---	---	----	---	---	---	---	--	---	---	---	---	-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	-----	---	---	---	---	---	---	---

4.000 DEG. PRESSURE DISTRIBUTION AT ALPHA =

VORT	E 123456780
	10 11 12 13 14 15 17 18
	12222222222223333333333334444444444455555555

****	* * * * * * * * * * * * * * * * * * * *	x x x x x
XV 0.02447 0.20611 0.50000 0.79389 0.97553 0.02447 0.20611 0.50000 0.79389 0.97553 0.02447 0.20611 0.50000 0.79389 0.97553 0.02447 0.20611 0.50000 0.79389 0.97553 0.02447 0.20611 0.50000	YV 0.02025 0.02025 0.02025 0.02025 0.07937 0.07937 0.07937 0.07937 0.07937 0.07937 0.17257 0.17257 0.17257 0.17257 0.29229 0.29229 0.29229	CP 1.05746 0.34803 0.17616 0.08784 0.02708 1.11062 0.34759 0.18777 0.02688 1.16212 0.35374 0.087726 0.02667 1.19824 0.36124 0.17632
$ \begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} 0.29229\\ 0.42884\\ 0.42884\\ 0.42884\\ 0.42884\\ 0.42884\\ 0.57116\\ 0.57116\\ 0.57116\\ 0.57116\\ 0.57116\\ 0.57116\\ 0.70771\\ 0.70771\\ 0.70771\\ 0.70771\\ 0.82743\\ 0.82743\\ 0.82743\\ 0.82743\\ 0.92063\\ 0.92063\\ 0.92063\\ 0.92063\\ 0.92063\\ 0.92063\\ 0.97975\\ 0.97975\\ 0.97975\\ 0.96699\\ 0.0000\\ 0.750000\\ 0.750000\\ 0.750000\\ 0.750000\\ 0.93301\\ 0.993301\\ 0.993301\\ 0.993301\\ 0.993301\\ 0.99330$	$\begin{array}{c} 0 & 08661 \\ 0 & 02640 \\ 1 & 21547 \\ 0 & 36394 \\ 0 & 17485 \\ 0 & 08484 \\ 0 & 025713 \\ 0 & 22713 \\ 0 & 16776 \\ 0 & 082418 \\ 1 & 227713 \\ 0 & 022418 \\ 1 & 16212 \\ 0 & 022418 \\ 1 & 16212 \\ 0 & 022418 \\ 1 & 16212 \\ 0 & 022418 \\ 1 & 05776 \\ 0 & 022418 \\ 1 & 05776 \\ 0 & 022418 \\ 1 & 05776 \\ 0 & 022578 \\ 0 & 022578 \\ 0 & 022578 \\ 0 & 02688 \\ 0 & 027858 \\ 0 & 027858 \\ 0 & 027858 \\ 0 & 027858 \\ 0 & 027858 \\ 0 & 027858 \\ 0 & 03788 \\ 0 & 000000 \\ 0 & 0 &$

	Y/S 0.02025	CL(RIGHT) 0.27151	CL(LEFT) 0.27151	CM -0.53167	ст 0.01085	CDI 0_00811	
	0.07937	0.27655	0.27655	-0.54315 -0.55905	0.01251 0.01373	0.0068u 0.006u3	
	0,29229	0.28842 0.28842	0.28842	-0.57453	0.01461	0.00553 0.00517	
	0.57116	0.28368 0.26549	0.28368	-0.57640	0.01488 0.01387	0,00495 0,00460	
	0.82743	0.22986	0.22986	-0.47437 -0.35682	0.01180 0.00851	0.00425 0.00352	
	0.97975	0,09307	0.09307	-0.19291	0.00427	0.00223	
	THE FOLLOWING ARE 0.06699	THE TAIL CHARAC		-0.00000	0.00000	0.00000	
	0 • 2 5 0 0 0 0 • <u>5 0 0 0 0</u>	0.00000	0.00000	-0.00000	0.00000	0.00030	
	0,75000	0.00000 0.00000	0.00000	-0.00000	0,00000	0.00000	
*** THE FOLLOWING ARE ATTACHED POTENTIAL FLOW RESULTS ***. TOTAL LIFT COEFFICIENT = 0.04522							
	TOTAL INDUCED DRAG C	TOTAL INDUCED DRAG COEFFICIENT = 0.00090					
	THE INDUCED DRAG PAR	THE INDUCED DRAG PARAMETER = 0.43975					
	TOTAL PITCHING MOMENT COEFFICIENT = -0.09096						
	THE WING LIFT COE	THE WING LIFT COEFFICIENT = 0.04522					
	THE WING INDUCED DRAG COEFFICIENT = 0.0090						
	THE WING PITCHING	THE WING PITCHING MOMENT COEFFICIENT = -0.09096					
	THE TAIL LIFT COE	FFICIENT = 0 .	• (BASED ON	I WING AREA) =	O. (BASE	ED ON TAIL AREA:	
	THE TAIL PITCHING MOMENT COEFFICIENT BASED ON REFERENCE WING AREA AND MEAN WING CHORD, AND REFERRED TO THE Y-AXIS = 0.						
(NOTE, THE INDUCED DRAG COMPUTATION IS FOR SYMMETRICAL LOADING ONLY)							
	THE FOLLOWING PARAMETE	RS ARE USED IN	THE METHOD OF	SUCTION ANALOGY			
	CLP = 0.04506 CL	VLE = 0.0023	O CLVSE = (.00064			
6	CDP = 0.00315 CC	VLE = 0.0001	6 CDVSE = 0	00004			
9	CMP = -0.09096 CM	VLE = -0.0043	7 CMVSE = -(00143			
	*****	***	***				

•

) 1

***** *

************ *STABILITY DERIVATIVES BY POTENTIAL FLOW THEORY* ******* ***STABILITY DERIVATIVES EVALUATED AT ALPHA = 4.000 DEGREES AND AT MACH NO.= 0. , BASED ON BODY AXES(IN PER RADIAN)*** -0_1652173 CYB =CLB = -0.0361644CNB = 0.1704872 CYP =-0-0518568 CLP == -0.0799039CNP =0.0469839 0.4002541 CYR =CLR = 0.0860504 CNR # -0.4173858 ***STABILITY DERIVATIVES BASED ON STABILITY AXES*** -0. 1652173 CYB =CLB = $-0_0241837$ CNB = 0.1725946 CYP =-0-0238102 CLP = $-0_{0}0722887$ CNP =0.0228523 CYR =0-4028964 CLR = 0.0619189 CNR =-0.4250011 ***** ***STABILITY DERIVATIVES WITH EDGE VORTEX SEPARATION*** ***STABILITY DERIVATIVES EVALUATED AT ALPHA = 4.000 DEGREE AND AT MACH NO.* 0. PBASED ON BODY AXES(IN PER RADIAN)*** DEGREES **INCLUDING THE EFFECT OF LE AND SE VORTEX LIFT* CYB =-0_1643711 CLB = -0.0337119 CNB =0.1678057 CYP =-0.0684690 CLP =-0.0920946 CNP =0.0705937 CYR =0.3897360 CLR = 0.0793132 CNR =-0.4021554 ***STABILITY DERIVATIVES BASED ON STABILITY AXES*** CYB =-0_1643711 CLB ≈ -0.0219242 CNB =0.1697485 CYP = -0.0411156 CLP =-0.0831718 CNP =0.0482882 0.3935628 CYR =CLR =0.0570077 CNR =-0.4110781 ***STABILITY DERIVATIVES EVALUATED AT ALPHA = 4.000 DEGREE AND AT MACH NO.= 0. , BASED ON BODY AXES(IN PER RADIAN)*** 4.000 DEGREES *INCLUDING THE EFFECT OF LE VORTEX LIFT* CYB =-0.1659218 CLB =-0.0344873 CNB =0.1694948 CYP =-0.0557742 CLP = -0.0857472 CNP = 0.0567947 CYR =0.3941712 CLR =0.0815308 CNR =-0.4069859 ***STABILITY DERIVATIVES BASED ON STABILITY AXES*** CYB = -0.1659218CLB 🕿 -0.0225799 CNB =0.1714876 CYP =-0.0281423 -0.0776847 CLP =CNP =0.0337677 CYR =0.3971017 CLR = 0.0585039 CNR =-0.4150484
THE FOLLOWING BENDING MOMENT COEFFICIENT IS BASED ON 2*S*(3/2), WHERE S = 326.60000 AND P/2 = 7.72500 (FOR ATTACHED POTENTIAL FLOW ONLY)

	Y/S 0.02025 0.07937 0.17257 0.29229 0.42884 0.57116 0.57116 0.70771 0.82743 0.92063 0.97975	BM (RIGH 7.00937 6.00811 0.00632 0.00438 0.00133 0.000133 0.00014 0.00014 0.00002 0.00000	D BM (LEFT) 0.00937 0.00811 0.00632 0.00438 0.00264 0.00133 0.00053 0.00014 0.0002 0.00002 0.00000			
ТНЕ	FOLLOWING WHERE S	ARE THE TAIL = 22,77000	CHARACTERISTICS AND B/2 = 4.96	BASED 0	N TAIL	GEOMETRYØ

0.06699	0.0000	0.0000
0.25000	0.00000	0.0000
0.50000	0,00000	0.00000
0.75000	0,00000	0.0000
0.93301	0.00000	0.00000-

THE BENDING MOMENT COEFFICIENT BASED ON WING HALF SPAN AND WING AREA AT THE WING ROOT = 0.009824 (RIGHT), = 0.009824 (LEFT)

THE BENDING MOMENT COEFFICIENT BASED ON TAIL HALF SPAN AND TAIL AREA AT THE TAIL ROOT = 0.000000 (RIGHT), = 0.000000 (LEFT)

	v	
12345678900123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345	DRTEX	
	PRI	0.0
	= S S < X X X Y	
410854108544 08541 085460354603546035460354603546035460354603	(X)	
CLOPS7109371 0937109371093710937109371093710937109371	D (X	•
	IS XX	7 5
	T R X X	тр
-	XX IB	1 10
	UT XX	нт
	10N X X X	TON
	4 4 (X) (
	άτ «x ζv	١т
	A XX CO	A
		1 0
	сни (Х)	ы
	×X	A
	= x x	_
	ו x x	1
	и . хх	Ω
	(X)	٥r
	(X X	n
	V X 2	D
	C	E (
334207842088 42098420984209841088310672101410032000000000000000000000000000000	3 8 5 0	3
5798532360933 44540525659 44547582847498367269510313465097397630500000000000000000000000000000000000	872	

	Y/S 0.02025 0.07937 0.17257 0.29229 0.42884 0.57116 0.70771 0.82743 0.92063 0.97975	CL (RIGHT) 0.66854 0.68228 0.69905 0.71299 0.71680 0.70172 0.65668 0.56837 0.42572 0.22967	CL(LEFT) 0.66854 0.68228 0.69905 0.71299 0.71680 0.70172 0.65668 0.56837 0.42572 0.22967	CM -1.30658 -1.33481 -1.37387 -1.41192 -1.43283 -1.41652 -1.33756 -1.16578 -0.87689 -0.47408	CT 0.06721 0.07750 0.08508 0.09051 0.09322 0.09218 0.08597 0.07311 0.05275 0.02645	CDI 0.04963 0.04161 0.03686 0.03381 0.03175 0.03013 0.02850 0.02598 0.02151 0.01364
	THE FOLLOWING ARE 0.06699 0.25000 0.50000 0.75000 0.93301	THE TAIL CHAR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	A CT E R I STICS 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	-0.00000 -0.00000 -0.00000 -0.00000 -0.00000	0.00000 0.00000 0.00000 0.00000 0.00500 0.00500	0.00000 0.00000 0.00000 0.00000 -0.00000
	*** THE FOLLOWING A	RE ATTACHED PO	TENTIAL FLOW R	ESULTS ***		
	TOTAL LIFT COEFFICIEN	T = 0.11174				
	TOTAL INDUCED DRAG	COEFFICIENT =	0.00550			
	THE INDUCED DRAG PA	RAMETER = 0.	44047			
	TOTAL PITCHING MOME	NT COEFFICIENT	= -0.22354			
	THE WING LIFT CO	EFFICIENT =	0.11174			
	THE WING INDUCED	DRAG COEFFICI	ENT = 0.0055	0		
	THE WING PITCHIN	G MOMENT COEFF	ICIENT = -0.2	2354		
	THE TAIL LIFT CO	EFFICIENT =	O. (BASED	ON WING AREA) /	= 0. (BA	SED ON TAIL AREA)
	THE TAIL PITCHIN	G MOMENT COEFF	ICIENT BASED C	N REFERENCE WIN	G AREA	
	AND MEAN WI	NG CHORD - AND	REFERRED TO TH	E Y - AXIS = 0.		
	(NOTE, THE INDUC	ED DRAG COMPUT	ATION IS FOR S	YMMETRICAL LOAD	ING ONLY)	
	****	* * * * * * * * * * * * * *	* * * * * *			
	THE FOLLOWING PARAMET	ERS ARE USED I	N THE METHOD C	F SUCTION ANALO	GY	
	CLP = 0.10932 C	LVLE = 0.014	04 CLVSE =	0.00389		
73	CDP = 0.01928 C	DVLE = 0.002	48 CDVSE =	0.00069		
	CMP = -0.22354 C	MVLE = -0.027	06 CMVSE = -	-0,00886		
	****	*****	* * * * * *			

•

t i

Ŷ I

***** *STABILITY DERIVATIVES BY POTENTIAL FLOW THEORY* **** ***STABILITY DERIVATIVES EVALUATED AT ALPHA = 10.000 DEGREE AND AT MACH NO.= 0. .BASED ON BODY AXES(IN PER RADIAN)*** 10.000 DEGREES CYB =-0,1736853 CLB = -0.0309358CNB = 0.1831156 CYP = $-0_{2}0262398$ CLP =-0.0828390 CNP =0.0109179 0.0618147 -0.4841812 CYR =0.4509616 CLR = CNR = ***STABILITY DERIVATIVES BASED ON STABILITY AXES*** -0.1736853 CLB = 0.0013319 CNB = 0.1857056 CYB =-0.0599088 CYP =0-0524675 CLP = -0.0825029 CNP =-0.4845172 0.4486670 CLR = -0.0090120CNR =CYR =********* *STABILITY DERIVATIVES WITH EDGE VORTEX SEPARATION* ************** ***STABILITY DERIVATIVES EVALUATED AT ALPHA = 10.000 DEGREE AND AT MACH NO.= 0. , BASED ON BODY AXES(IN PER RADIAN)*** 10.000 DEGREES ****INCLUDING THE EFFECT OF LE AND SE VORTEX LIFT*** CYB =-0.1727723 CLB = -0.0192611CNB = 0.1733771 CLP = -0.11166610.0696910 CYP = -0.0675935 CNP =0.0227515 CYR =0.3892940 CLR = CNR =-0.3957882 ***STABILITY DERIVATIVES BASED ON STABILITY AXES*** -0,1727723 0.0111382 CYB =CL8 = CNB ≈ 0.1740878 CYP =0.,0010336 CLP = -0.1044248CNP =0.0183158 0-3951172 CLR = -0.0286237CYR =CNR =-0.4030295 ***STABILITY DERIVATIVES EVALUATED AT ALPHA = 10.000 DEGREE AND AT MACH NO... PASED ON BODY AXES(IN PER RADIAN)*** 10.000 DEGREES ***INCLUDING THE EFFECT OF LE VORTEX LIFT*** CYB = -0.1806514 CLB = -0.02320060.1819484 CNB = $-0_{-}0359916$ CLP = -0.0958652CYP =CNP =0.0353404 0.4171407 CYR =CLR =0_0366749 -0.4260917 CNR =***STABILITY DERIVATIVES BASED ON STABILITY AXES*** CYB =-0-1806514 CLB =0.0087469 CNB =0.1832129 CYP =0.0369909 CLP =-0,0935074 CNP = -0.0233032 CYR = 0.4170532 CLR = -0.0219687CNR =-0.4284495

THE	FOLL	OWIN	IG E	3 E N D W H E	N I N G	M S	0 M E	NT	00 00	DE 1 DO (FFI 00	CIA	ENT	B/2	5 B	A S	E D 7.	0N 72	500	r S * ()	(8 /	2),	•				
		(F Y/S 0.077 0.177 0.29 0.427 0.427 0.29	CR 202 293 225 288 211 077	4 T T	ΑĊΗ	ĒÐ	P C BM (0 - C 0 - C 0 - C 0 - C 0 - C	R I 23 20 120 15 10 10 00 00 10	NT: GH1 054 828 280 4	Í Á L T)	. F	LO	W 0 8 0 0 0 0 0 0 0 0 0 0 0 0	NL 1 023 020 015 010 003 001	FT75643280432804)											
	тне	0.97 0.97 FOLL	04 97 0W HERI	ING S	ARE =	T 22	0.0 0.0 HE .77	TA	05 00 IL	C F A M	H A R N D	A C B /	0. 0. 0. 12 =	1 S T		S 96	B A S 0 O C	S E D	01	1 T /	AIL	G E	EOM	ET	γ γ,	•	
		0.06	5699 5000 5000 5000																						ŧ		
THE	BEND	ING	MOI	MEN 1 A T	THE	EF W	FI (IN (SIE R	N T 0 0 '	в/ Т =	SE SE	D.	0 N 0 2 4	WIN 29(JG)	H A (R	LF IGI	SP HT)	ÂN	4 N I =) W 0.	IN(024	; A ; 2 9	RE/ D	4 (1	. E F	т)
THE	BEND	ING	MOI	MEN1 AT	со тне	EF T	FI (AIL		NT 00	B/ T =	SE	D.	0 N 0 0 0		Ľ	H A (R	L F I G H	SP IT)	AN	A N [=		AIL 000	A OGC	RE/	۱ ۱	. E F	т)

Appendix B

Program Listing

This Program is operational on the Honeywell 66/60 computer system at the University of Kansas.

ç	Q	V	LM	1																																																															Å	L A
			Τł	+I C	S •		P E	R (D i) (G R A R	A D	Μ	L	I : Al	S N	: (3 A) f	N S	i E U	D	I	0 V	N E	R	T S	H E	Ē	G	i U 0	A F	S	I K	A	V (N S	D I S /	R T A S	; E	X		L	A	Т	T	1 (: E	Ξ	Μ	E	T	н	01	D	e	Y													A A A	1
				R	E	F 2	E 7	R I	ĒN	∮C	Ε			•	j	or	j f	. 1	i A	L		0	F		A	I	२ () R	₹A	F	Т		V	01	L.		1	1	,		N	0	•	ç	,	,	S	E	Ρ	T	•	1	15)7	4	,	i	PI	Ρ.	, 5	1	8	8				A A A	1
	•	*	* 1	k	G	A H	Mi E	M/ R I	A	M N	IU I	S I	T S	ļ	B	E He	۲ •		n I	E	NE	S	I 0	0 F	N	E (T)) E	T	ГО М	I A	H	A R	V I	EX	1	4 7 * *	r si	, L	E	A	S	T	•	()	4 4	+1)	#	*	2	/ 4	4	E	EL	Ε	M	E	N '	T S	5	•						Ā	4
			7			MPIRMU	E Mi A E I	NSI SI MI NSI V			NLORNN	D N C	G I D E	Al Bl P Q	M E 0 = (MA R 14 11		(1) 6 A 6 1 7 1) 6 1 M)) /	50 S A 1 A)) E S	N H G	T O A		1 I - C - N		ГН А (1	, , ,	M S)	A 0	T	R I B I	I X E	I,×	S	5 I 1 C	Z R	E	Â	S	I I E I	F D.		IF	>	I	S		I	N (CF	8 E	A	S	E	D	•									
C				0		MMM	E	N S N S N S	SI SI				C X A	P XI LI	(. L P	2({)))	Y	A	W S	(2 N	2) A	0 Ĺ	1 ; P) /	, ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	0 ())	A 2	()	2 ć	Û	1 : C i S). P(сы 5С)) N _ () ,	1M	(50 0	2) C	0 6	0: S) C F (]	5 (7)	Ska) s	۶L ۱	(D	3	1) / N	, (]) (7	18	R	E C	AL	K Y	())))	\$				4 1 1	444
						N M M M	A E E M				N N S	, c	B B H	R I Mi E i	E R M	Ak (!	50	(1))) 2	B B)	M	S L X	((P 5 1	() 0; 0;) <i>,</i> { 1	, 1 D	5 F) (Y	₽ 5 () 1	c ا م	H (0 F T J 4 1	2 C [] []) T [L ,	E S	4 (L) 1 0	/3 P) E	T / (1	F L (9	L F C S 5)	s (5 U) /	(5) (, X) 5 L	Ő () 2	C 1	۲۶ ۱) (()	2 N) (X	6 T) T	(4	41))) ,	ø				, , , ,	~ ~ ~ ~
						LME)M	M	01 11 21) () () ()) (2)	G	EPO	0.5	M. 120	/()/	+ 3(//	4 ((v v		. F 0 0 1	S	 ((17	X 0) (С О с	P) Yn	() // ())	20) (/ (/ ()) (2 (5		. Y)())	C)	P S	() 	2 (V E)(1)	, Z)) 0	c	PS)M	(N {	2 (H 5	00 10 A1) <i>a</i> 7 E	, X 3) 3,	۲L S	EXJ	(N (1 (3	00 20 1,	ננ סו ק	و (م(7)	2 2	L)	E	(Y	1 (N))) ()(Ó				4 1 1	AAAA
			4		001	M M M	M M	01	V V V V V	/ / / (C C 3	Ö Â	N M 1	S B 1	, T//)	/]	۱۳ ۱۹ ۱۹		S S	, , , , , , , , , , , , , , , , , , ,	NI	M	Ŵ	s X	M T	1	3	7)	2)	ĴĴ	WZ	า์ C	(2.3			2)	M	Ă	WA	ŻM	((2	9 - 9	5) 11) ,)	N P	B	⊌ B	(M	5 (()) 3	• N • 1	1 F 1	P >	8 8	N C	6 C I	(2	22) 3.	ø				, , , ,	A A A
			1		0 Ó	M N M	M W M		V V (V		E H B	X Â E	T L T	R Fl A	A B ∕	/ Н.) (, / c	. A (F h A	4 M 9 C 4 X	1 L) S (ŝ	1 1 0	Å)	C L	A P X	М I Т (L 6 5 (E 2 (5	2 / 5 J	, c	: A ,	M	L T	E : G	3. (!	۵ ۱ 5 ())	Г V) "	• Z	I T	S G	т (¢	т: О:) ,	n F ø E	32	• N	I G	i R I C	D G	ا م ا م	H 8 C 1	E I r G	G G	1 1	5	ø)	A :	ד ז 5 ז	r. r(ء ا ج	N {					а а а
			4) M U =	ÉIG32			10 10 10 10 10	NN(5=	C 69 1	GEUZ	A 1 6 1	M) 50	P (()		2 (\ M () (1 P (()))(;A	í M) IR	G ¢	A G 1	M A)	X M 0	(2 9/ 5/	2 (A (A M	00 (2 1 M)) 2 C 1 A)1) 8	6) 0	A 1	M)	B((())	62	20) () 18)(í)	G ø	A I G I	4 F A T	R (Ma	(2 9 A	2.0	4	0	1)) 4	•	(G	A	M	X	(1)) .	ø					"А А А А
с	2	2	1	Ē	R	E S	A z	K P :	(] [*	() *2	11 0	0	48																																																						ł	A
C C		*	* *	٢N	U	M	B	E	?	0	F		C	A:	S	ES	5	1	0)	B	Ε		R	U	N	1	* *	* *																																						1	A A
_1				R W N I C	E R I C W	A I O G N	D T N L T	E =- I = I =) (6)))	B	1	4 1	8.41) 8))		: A [(S A	S	E																																															A A A A A A
		*	de s	۴N	U G	S R	Ð	R (1	5 I	C	A	S T	E H	E	Ni)]	1 E [N	5 E	R	1	* S	*	* I	N	(G I	२ () L	JN	ID		Ë	F	F	EC	<u> </u>	r,	,	18	0		0	TI	HI I	EF	R I	11	S	ε																		r A A A
L				R	ER	A I	D T I	E ((5	5 <i>•</i> (6	8	1	4 1	8 57) 2	י (1 () A	۱S	E		N	G	R	D																																										1	A

•

•

12345678901234567890123456789012345678901 11111111122222222233333333333344

44446789012345 6

٩

77

,

C	* *	WF WF REF WF N I F WF V I F			((T 5)(() L=(661 10 666 10	1	11E6111 1	52 52 52 52 52 52 52 52 52 52 52 52 52 5) **()))	N I		SE LE TL	E (1)	ر م	I = • I	1.	, 1 1,	3) 13) 3)									•														
	* *	*T(11) T /	A L E A	N C H	UN S	18 5 E	e r C t	S S	OF ON		S P P L	AN US	W	IS ON	E	S *	E •	C T *	Ι	7 C	IS 4	•	AN	D	Т		E	NL	M	BE	ER	0	F	V	0 R	T	EX	: :	ST	RI	ΡS		
0000000	** **	IV 01 *NV IV * 1	/ / / / 		=L WI =1 T=	AS SE 1 2	T H I F	W E F	N N T	NG UM WI HE	EI	V O R I G L V I	R T C A E T N G		X TO E T	S R I	TR DE BE	I R	P O RE A T	NL F PF	4 E 4 E 1 M	IBE ASE SE	ER ST EN DC	I N TE A T	FI	A NG B ON	Y	TA SP A AW		NW FA	IS IS IL FF	5 5 E 7 O	PR S IS M	ES	SE CT PR	N T I C E S		= v T V G	:() :*:	k F I I	P	会 众		
c c		R E W F) FE	(5 (ø 6.	, 1 ·	48 14	() 8))	C . N i) (()	m 1 (p	11	I) (1	5	[= , I	1	, N 1 ,	C) N() ()	16 01	VI IW	NG IN	G	NW ØN	IU	N G I N	, 1 G,	(W I	GL W (T Sl	T										•••	-
	* * * *	* N N (F (L] E	 		UM UM C E F T		R I A T C	CANL NL NEX AS		F D BE R S T S UM	LRRFKNE		RS F L-N I	F S U	AN OF PA MB CL	IS . N EI	FL S F D E	A P L A D	P AN AP T	SF S An		NS NF IT	S FI DU	AM IM GL IS		NG TE AT AR ZE	D I D R	TH TON 000	E	S F P W 10	P / I V U 1 H 1 T /	AN /E IC AL	WI NF H V	SI P= TH		SE Jw EX		Γ I 1) Ε 1 Ι	0 = F	N S 1 V O T	* RT	ΕX		
ι		R E W F	AI) Г Е	(5 (ø 6.	1	4 8 1 4	() 8))	F I N I	Þ, FP	(N @ (I J I N	d (J W	I) ()) , I)] : ø	=1 I =	, e t 1 ,	V F • ^	P) IFF) <i>"</i> >)	N V 2 N	R	T X R T	X																	
	煮☆	* C(FL SI SI SI SI CA E ME			E R = 100 00 T N I = 10 T E	1 NRAS SSIANS	F I M A N F B T	FAR STC TT FAR TT FAR FAR		OR DR DR DR DR DR DR DR DR DR DR DR DR DR	DEC CNC	WERI)E FXRHEAINA	SECNEZACALAND	R D C M I N	VOI BEIN BETN SA	R	TET CATCO ACO SEL	XELARRTEWS	E SOS NDI DI A T NO				NTORX ETE	S E) IFARNTI	IEE EECWL	N RPAC RAL RAL I	CERNAEE GR	HAEDMADF E		WNOE NEH I			SOMA MED2ACA GACACA		CTARM NEET	ICFLORED)RDHE	NEY RS*	S C I A C A C A C A C A C A C A C A C A C		CA MB BE F TH NT	MB R R IS ER	ER		
L C		R E W F) F E	(5 (ø 6ø	, 1 ,	48 14	() 8	<mark>،</mark> (N 1 (1	n (NW	I) (1)	I = , I	1	, 2 1 ,) 2	ø I) ø	C/ I (a n C a	10] (M)	[M P I	» I Mø	S I	T, SŤ	I	C A 1 C	MI	г 4 т														
LUUUU	☆ ☆ ★	* 1 FC SL NOT	IF R IC(E	TE	IC HE SS TH	AN F IV E	1= 20 / E M	1 / 0 1 L Y A X		RE SE ** MU	A C * M	D T I N		1 - 1 1 - 1 1 B	TH T	E HI	X E D F	Ī	CO NT CA	OI Ei Mi	R C R M B E	NIN NEI R	A V D I O	TE At RC	S E I	A S N A	N. E	D C T E S	TH I(HE DN AL	(/ L (C A A N D W	M E D E D	BEI TI	R H E I S	0 F T 1	2 D 1 I 1 1	IN P	IA S	T E E C	S TI	ON		
с 2		IF DC RE RE) A I A I	(2))	IC I (5 (5	AN = 1 /	1 1 1	• N I S 4 7 4 7		° (1) x ; 2 () T (C (GC I, I,	J.	то),,	. J : . J :	3 = 1 = 1	9 9	I M I M)				,	•																			

\$

÷

78

۵

```
CALL SPLINE (IM, XT, ZC, AAM, BBM, CCM, DDM, 1, IST)
 3
         CONTINUE
         IF (ICAM .EQ. 0) IST=1
С
    *** LATERAL MODE SELECTOR (=-1 IF THE ROLLING MOMENT CDEFFICIENT AT A
GIVEN AILERON ANGLE IS DESIRED, =0 FOR NO LATERAL MODE OF MUTION,
AND =1 IF LATERAL-DIRECTIONAL DERIVATIVES ARE TO BE COMPUTED) ***
*** NAL=NUMERICAL ORDER OF AILERON SPAN (=0 IF LAT=0) ***
000000
         READ (5, 148) LAT, NAL
         WRITE (6, 148) LAT, NAL
        NCW = NW(1)
        i = 1
         CHORDT(2)=0_{a}
         CHORDT(3)=0.
         CHORDT(4)=0
         1 V = 0
        JDIH=0
B2=0.
DIST=0.
CONTINUE
LL=1
FN=NCW
D0 5 I=1.NCW
FI=I
CPCWL(I)=0.5*(1.-COS((2.*FI-1.)*PI/(2.*FN)))
SN(I.L)=2.*SQRT(CPCWL(I)*(1.-CPCWL(I)))
CPCWL(I)=CPCWL(I)*100.
D0 12 KK=1.NC
         IDIH=0
 4
 5
0000
    *** COORDINATES OF BREAK CHORDS BOUNDING SPANWISE SECTIONS, FRUM
ROOT TO TIP ON THE RIGHT WING ***
         DIHED=THE DIHEDRAL ANGLE IN DEGREES FOR THE SECTION *
    *
č
         READ (5, 147) ((XXL(I))XXT(I)) YL(I) I = 1,2) ZS, DIHED)
         WRITE (6_{\rho}, 147) ((XXL(I)_{\rho}XXT(I)_{\rho}YL(I)_{\rho}I=1_{\rho}2)_{\rho}ZS_{\rho}DIHED)
         YBREAK(KK) = YL(2)
         FM = M1(KK)
        NSW=M1(KK)
         IF (KK_EQ_1) DIST=DIST+XXT(1)-XXL(1)
         DO = 6 J = 1  NSW
         FJ = J
        FJ=J
CPSWL(J)=0_5*(1_-COS((2_*FJ-1_)*PI/(2_*FM)))*100_
YCON(J)=0_5*(1_-COS(FJ*PI/FM))
        SJ(J*KK)=SIN(FJ*PI/FM)
 6
         CONTINUE
         IF (DIHED GT. 5.) IDIH=1
        DCOS(KK)=COS(DIHED *PI/18).)
DSIN(KK)=SIN(DIHED *PI/180.)
        IF (IWING NE. O AND DCOS(KK) LE. 0.001) IV=1
IF (KK EQ. NC) GO TO 7
IF (IWING NE. O AND KK EQ. NWINC) GO TO 7
                                       ·····
         CPSWL(1)=0
         CPSWL(NSW) = 1.00
         GO TO 8
 7
         CPSWL(1)=0
```

.

5

A 115

A 116

A 117

A 118

A 120 A 121 A 122 A 123 A 124

A 125

A 126 A 127

A 128

A 129

A 130 A 131

A 132

A 133

A 134 A 135 A 136

A 137 A 138 A 139 A 140 A 141 A 142 A 143

A 144 A 145

A 146 A 147

A 148

A 149

A 150

A 151 A 152

A 153

A 154

A 155 A 156

A 157

A 158 A 159

A 160

A 161

A 162

A 163 A 164

A 165 A 166 A 167

A 168

A 171

A 169

A 170

A 119

79

IF(IWGLT .EQ. 1 .AND. KK .EQ. NWING) CPSWL(NSW)=100.A 172IF(KK .EQ. NJW(LL)) MJW1(L/LL)=IPANELA 173LR=(L-1)*NC+KKA 174CALL PANEL (XXL/YL/XXT/CPCWL/CPSWL/NSW/IPANEL/LPANEL/SWP/LR/ZS/L)A 174 8

 IF (ICA) *NUK(L) / NUMICL// INNUL
 177

 CALL PANEL (XXL,YL,XXT,CPCWL,CPSWL,NSW,IPANEL,LPANEL,SWP,LR,ZS,L)
 A 175

 IPANEL PANEL (XXL,YL,XXT,CPCWL,CPSWL,NSW,IPANEL,LPANEL,SWP,LR,ZS,L)
 A 176

 IPANEL PANEL PANEL
 A 177

 NCS=NCS+NSW-1
 A 177

 WIDTH(KK)=YL(2)-YL(1)
 A 177

 WIDTH(KK)=YL(2)-YL(1)
 A 180

 IF (KK.SW)=YL(1)
 A 181

 IF (KK.S)=YL(1)
 A 181

 IF (KK.S)=YL(1)
 A 181

 IF (KK.S)=YL(1)
 A 182

 IF (KK.S)=YL(1)
 A 182

 IF (KK.S)=YL(2)
 A 183

 IF (KK.S)=YL(2)
 A 183

 IF (KK.S)=YL(2)
 A 183

 IF (KK.S)=YL(2)
 A 183

 YCN(L) = XXL(2)
 A 183

 YCN(L) = XXL(2)
 A 185

 YCN(L) = XXL(2)
 A 187

 YCN(L+2) = XXL(2)
 A 187

 YCN(L+2) = XXL(2)
 A 190

 YCN(L+2) = XXL(2) 9 10 11 12 13 14 15 DO 220 I=1,5 DF (I)=0. 220 TFLP(I)=0. IF (IWGLT .NE. 0) IV=0 *** MACH NUMBER, REFERENCE HALF WING AREA, CONTROL INPUT FOR LARGE ALPHA COMPUTATION (±1. IF ALPHA=1. RADIAN A 212 (IN THIS CASE, PUT ALP=DF(I)=0.) AND =0., OTHERWISE), AND FLAP ANGLES IN DEG. *** CREF=REFERENCE CHORD READ (5, 147) AM,HALFSW,CREF,ALPCON,(DF(I),I=1,NFP) WRITE (6, 147) AM,HALFSW,CREF,ALPCON,(DF(I),I=1,NFP) A 210 *** THE FOLLOWING DATA SHOULD BE ALL 0. IF ALPCON=1. ALNM=NUMBER OF ALPHA TO BE EVALUATED. ALPI=INITIAL ALPHA IN DEGREES ALPINC=INCREMENTAL ALPHA IN DEGREES READ (5, 147) ALNM,ALPI,ALPINC WRITE (6, 147) ALNM,ALPI,ALPINC A 228 220 TFLP(I)=0. C C 0000 Ć С CCCC С

08

a 1

```
NAL P=ALNM
       IF (NALP.EQ.0) NALP=1
       ALPI=ALPI + PI/180.
       ALPINC=ALPINC*PI/180.
       ALP = ALPI
       ALQ = ALP
C
C
   *** HEIGHT=HEIGHT OF 3/4 CHORD POINT OF M.A.C. FROM GROUND IF NGRD=1.
С
       =0. OTHERWISE. ATT=PITCH ATTITUDE OF WING IN DEGREES.
č
       =0. IF NGRD=0.
                                         READ (5, 147) HEIGHT,ATT
       WRITE (6, 147) HEIGHT, ATT
       ATT=SIN(ATT*PI/180,)
       DO 16 I=1.NFP
      DF(I)=DF(I)*PI/180.
TFLP(I)==DF(I)
CAMLE1=0.
CAMLE2=0.
 16
       CAMLE3=0.
       YTW=HALFB
       TINC=0.
       IALP=ALPCON
       POS=0.
TWIST1=0.
       ITWST=0
       HALFSH=0.
С
   ***THE FOLLOWING INPUT DATA ARE NOT NEEDED IF ALPCON=1. ***
С
   ***TWIST IN DEG. FOR SECTION 1 AND 2(NEGATIVE FOR WASHOUT), Y-STATION
С
       AT WHICH THE TWIST IS CHANGED (=HALFB FOR NO INTERMEDIATE TWIST),
C
С
       ROOT CHORD INCIDENCE IN DEG. /L.E. CAMBER SLOPE AT ROOT CHORD YTW
С
       AND TIP ***
     * IF TWIST1 GT. 99. THE TWIST DISTRIBUTION DEFINED IN FUNCTION
SUBPROGRAM TWST IS TO BE USED. IN THIS CASE, THE CAMBER SLOPE WILL
С
C
С
       BE TAKEN FROM FUNCTION SUBPROGRAM ZCDX *
С
Č
   * IF CAMBER ORDINATES ARE TO BE READ IN . THE L.E. CAMBER SLOPES TO BE
Ĉ
       READ IN BELOW MAY BE ARBITRARY NUMBERS *
C
       IF (IALP "EQ. 1) GO TO 17
       READ (5. 147) TWIST1, TWIST2, YTW, RINC, CAMLE1, CAMLE2, CAMLE3
       WRITE (6, 147) TWISTI, TWISTZ, YTW, RINC, CAMLET, CAMLEZ, CAMLES
C
   ***IF A TAIL IS PRESENT, READ IN THE INCIDENCE ANGLE IN DEG., AND
C
   HALF TAIL AREA. OTHERWISE, THIS CARD SHOULD BE OMITTED ***
** IF THE TAIL IS TO REPRESENT THE WINGLET, PUT HALFSH=HALFSW **
** HOWEVER, IF THE WINGLET IS INBOARD OF THE WING TIP, PUT HALFSH=
С
Ĉ
       WINGLET AREA ***
С
Ċ
       POS IS THE WINGLET POSITION INDICATOR WITH RESPECT TO WING TIP.
       FOR DETAIL, SEE INSTRUCTIONS .
Ĉ
      LUNIINUE
IF (TWIST1 GT. 99.) ITWST=1
IF (IWING EQ. 0) GO TO 18
READ (5, 147) TINC, HALFSH, POS
WRITE (6, 147) TINC, HALFSH, POS
CONTINUE
 17
 18
```

A 229 A 230

Ä 231

A 232 A 233

A 234 A 235

236

A 237

Ä 238

A 239 A 240

A 241 A 242

A 243

A 244 A 245 A 246

A 247 A 248

A 249 A 250

A 251 A 252

A 253 A 254

A 255 A 256

A 257

A 258

A 259

A 260 A 261

A 262

A 263 A 264

A 265

A 266

A 267

A 268

A 269

A 270

A 271

A 272

A 273 A 274

A 275

A 276

A 277

A 278 A 279

A 280 A 281

A 282 A 283 A 284

A 285

81

2

¥

. .

IPOS=POS TWIST1 = TWIST1 + PI/180. TWIST1=TWIST1*PI/180. TWIST2=TWIST2*PI/180. RINC=RINC*PI/180. TINC=TINC*PI/180. WRITE (6, 149) HALFSW, CREF JWING = IWING CM(50) = IVCM(49)=ICAMT IF (ICAM_NE_1) GO TO 19 WRITE (6, 156) WRITE (6, 158) (XT(1,I),I=1,IM) WRITE (6, 159) (ZC(1,I),I=1,IM) CM(49) = ICAMT/RITE (6, 120) /RITE (6, 158) (XT(1,I),I=1,IM) /ARITE (6, 159) (ZC(1,I),I=1,IM) CAMLE1=ZCR(0.) CAMLE2=CAMLE1 CAMLE2=CAMLE2 IF (IST = EG, ?) GO TO 19 WRITE (6, 158) (XT(2,I),I=1,IM) WRITE (6, 158) (XT(2,I),I=1,IM) CAMLE2=ZCI(0.) CAMLE2=CAMLE2 IF (IST = EQ, 2) GO TO 19 WRITE (6, 150) (ZC(3,I),I=1,IM) WRITE (6, 158) (XT(3,I),I=1,IM) WRITE (6, 159) (ZC(3,I),I=1,IM) CAMLE3=ZCT(0.) CONTINUE WRITE (6, 154) 11 LPANEL) WRITE (6, 155) WRITE (6, 161) WRITE (6, 151) (XCP(I),YCP(I),ZCP(I),I=1,LPANEL) J1 = LPANEL + 1B1=1 - AM + AMB2 = B1ALZ=ALP*180./PI REWIND 01 REWIND 02 NPP=NALP D0 146 KP=1,NALP IF (IALP.EQ.1) G0 T0 24 TINP=TINC+ALP D0 23 I=1,NCS IF (IWING.NE.0.AND.I.GT.IWING) G0 T0 21 IF (ITWST.EQ.1) G0 T0 22 IF (ITWST.EQ.1) G0 T0 22 ALPH(I)=ALP+RINC+TWIST1*YLE(I)/YTW SNALP(I)=SIN(ALPH(I)) CNALP(I)=COS(ALPH(I)) G0 T0 23 ALPH(I)=ALP+RINC+TWIST1+TWIST2*(YLE(I)-YTW)/(HALFB-YTW) SNALP(I)=SIN(ALPH(I)) REWIND 02 SNALP(I)=SIN(ALPH(I)) CNALP(I)=COS(ALPH(I)) GO TO 23

A 286 A 287 A 288 A 239 A 290 A 291 A 292 A 293 A 294 A 295 A 296 A 297 A 298 A 299 A 300 A 301 A 302 A 303 A 304 A 305 A 306 A 307 A 308 A 309 A 310 A 311 A 312 A 313 A 314 A 315 A 316 A 317 A 318 A 319 A 320 A 321 A 322 A 323 A 324 A 325 A 326 A 327 A 328 A 329 A 330 A 331 A 332 A 333 A 334 A 335 A 336 A 337 A 338 A 339 A 340 A 341 A 342

*

'e

19

20

ā,

25 LPAN1,LAT,NGRD,HEIGHT,ATT,CSD,SSD 21 ALPH(I) = TINPSNALP(I) = SIN(ALPH(I))CNALP(I) = COS(ALPH(I))GO TO 23 YC=YLE(I)/HALFB 22 ALPH(I) = ALP + RINC + TWST(YC)SNALP(I)=SIN(ALPH(I)) CNALP(I) = COS(ALPH(I))23 CONTINUE CONTINUE MM = NW(1)NN = NW(1)IZ=18=81 IPN=1IF (NW(2) .EQ. 0) GO TO 25 II = 1 + NCSCHORD = CH(1) + CH(II)GO TO 26 25 26 CHORD = CH(1)CONTINUE CSD = DCOS(1)SSD = DSIN(1)Z8=0. YB = 0YBB=0. IF (KP.NE.1) GO TO 27 CALL WING (AW&LPANEL>1 & B&LPAN1&LAT&NGRD&HEIGHT&ATT&CSD&SSD&YBREAK 1 DC CS J DS IN JIWING ZB YB YBB YBB JIWSLT NC) CONTINUE XC= (XCP(1)-XLE(IZ))/CHORD IF (ITWST .EQ. 1) GO TO 28 YX=YTW IF (IST .LE. 2) YX=HALFB ZR=ZCR(XC) ZI=ZR IF (IST .NE. 1) ZI=ZCI(XC) CAM=ZR-(ZR-ZI)*YCP(1)/YX GO TO 29 YC=YLE(IZ)/HALFB CAM=ZCDX(XC,YC) CONTINUE IF (IALP .EQ. 1) ALPT=1. IF (IALP .EQ. 1) ALPT=1. IF (IALP .EQ. 1) ALPT=5NALP(IZ) IF (IALP .EQ. 1) ALPT=SNALP(IZ) IF (IALP .EQ. 1) CAM=0. AW(J1)=(ALPT-CAM)*CSD IF (NALP.GT.1) GO TO 31 DO 30 I=1,LPANEL GAMMA(I)=-AW(I+1)/AW(1) CONTINUE IJ=2 NJ=LPANEL-1 LL=1 CONTINUE IF (KP.NE.1) GO TO 33 CALL WING (AW,LPANEL/IJ,B,LPAN1,LAT,NGRD,HEIGHT,ATT,CSD,SSD,YBREAK 1. DCOS, DSIN, IWING, ZB, YB, YBB, IWSLT, NC) 27 85 29 30 31 32

A 343 Α Α Α Α A A Â A Â Α Â Â A A A A Α A Α A A Α A A 367 A ۵ A Â Α Α Α A A 376 Α Α Α Α Α Â Α Α A A 386 Α A A Α A A Α Α A 395 A 396 Α Α 398 Δ 399

.

ŝ

83

R

1, DCOS, DSIN, IWING, ZB, YB, YBB, IWGLT, NC) 33 CONTINUE IF (NW(2) EQ. 0) GO TO 34 II = IZ + NCS CHORD = CH(IZ) + CH(II) GO TO 35 CHORD = CH(IZ) CONTINUE YC = (XCP(IJ) - XLE(IZ)) / CHORD IF (IZ GT JWING AND IWING AND INTERNATION34 35 IF (IZ.GT.JWING.AND.JWING.NE.D) GO TO 51 LCAM=0 LCAM=0 IF (IALP EQ. 1) GO TO 40 IF (ITWST EQ. 1) GO TO 41 IF (YCP(IJ) GT. YTW) GO TO 36 ZR=ZCR(XC) YX=YTW · ZI = ZRIF (IST .NE. 1) ZI=ZCI(XC) IF (IST .LE. 2) YX=HALFB CAM = ZR - (ZR - ZI) * YCP(IJ) / YXGO TO 42 IF (IST EQ. 1) GO TO 37 IF (IST EQ. 2) GO TO 38 36 ZI = ZCI(XC)ZT = ZCT(XC)YX = YTWGO TO 39 37 ZI = ZCR(XC)7T = ZTYX = 0GO TO 39 38 ZI = ZCR(XC)ZT = ZCI(XC) $YX = 0_{a}$ CONTINUE CAM1=ZI-(ZI-ZT)*(YCP(IJ)-YX)/(HALFB-YX) IF (LCAM EQ. 1) GO TO 48 CAM=CAM1 GO TO 42 CAM=0. GO TO 50 YC=YLE(IZ)/HALFB CAM=ZCDX(XC,YC) 39 CAM = CAM140 41 42 CONTINUE IF (IJ GE. MJW1(2/LL) AND. IJ LE. MJW2(2/LL)) GO TO 43 _ GO TO 44 TO 44 (LL .EQ. NAL) GO TO 50 1=TFLP(LL)+CAM TO 50 (NW(2) .EQ. 0) GO TO 50 (NC .GT. 1) GO TO 45 (IJ .EQ. MM) CAM=CAM+0.5*TFLP(LL) TO 50 43 IF (LL .EQ. NAL) GO TO 50 CAM=TFLP(LL)+CAM GO TO 50 44 IF IF TF GO TO 50 (IJ GE MJW1(1/LL) AND IJ LE MJW2(1/LL)) GO TO 49 (IJ GT LPAN1) GO TO 50 45 IF IF (IJ GT LPAN1) GO TO 50 IF (IJ NE MM) GO TO 50 NCM=IJ+(NCS-IZ)*NW(1)+(IZ-1)*NW(2)+1 ~

A 400 A 401 A 402 A 403 A 404 A 405 A 406 A 407 A 408 A 409 A 410 A 411 A 412 A 413 A 414 A 415 A 416 A 417 A 418 A 419 A 420 A 421 A 422 A 423 A 424 A 425 A 426 A 427 A 428 A 429 A 430 A 431 A 432 A 433 A 434 A 435 A 436 A 437 A 438 A 439 A 440 A 441 A 442 A 443 A 444 A 445 A 446 A 447 A 448 A 449 A 450 A 451 A 452 A 453 A 454 A 455 A 456

.

.

84

د ۱

XC = (XCP(NCM) - XLE(IZ))/CHORDIF (ITWST EQ. 1) GO TO 46 IF (ITWST .EQ. 1) GO TO 46 IF (YCP(IJ).GT. YTW) GO TO 47 ZR=ZCR(XC) YX=YTW IF (IST .LE. 2) YX=HALFB ZI=ZR (IST .NE. 1) ZI=ZCI(XC) CAM1=ZR-(ZR-ZI)*YCP(IJ)/YX GO TO 48 CAM1=ZCDX(XC,YC) GO TO 48 LCAM=1 GO TO 36 CONTINUE CAM=0.5*(CAM+CAM1) GO TO 50 IF (LL .EQ. NAL) GO TO 50 IF (LL .EQ. NAL) GO TO 50 IF (IALP .EQ. 1) ALPT=SNALP(IZ) IF (IALP .EQ. 1) ALPT=1. ALPT=SNALP(IZ) IF (IALP .EQ. 1) ALPT=1. ALPT=SNALP(IZ) IF (IALP .EQ. 1) GO TO 53 IF (ICAMT.EQ.O) GO TO 52 CAM=2CT(XC) IF (IJ .NE.MM) GO TO 52 IF (IJ .NE.MM) GO TO 52 IF (IJ .NE.MM) GO TO 52 NCM=IJ (NCS-IZ)*NW(1)+(IZ-1)*NW(2)+1 XC=(XCP(NCM)-XLE(IZ))/CHORD CAM1=2CT(XC) CAM1=2CT(XC) CAM1=2CT(XC) CAM1=2CT(XC) CAM1=2CT(XC) CAM1=CS*(CAM+CAM1) CONTINUE IF (IJ .EQ.MM) CAM=CAM+0.5*TFLP(LL) IF (IJ .EQ.MM) CAM=CAM+0.5*TFLP(LL) CONTINUE IF (IJ .EQ.MM) CAM=CAM+0.5*TFLP(LL) CONTINUE IF (IJ .EQ.MM) CAM=CAM+0.5*TFLP(LL) CONTINUE AW(J1)=(ALPT-CAM)*CSD IF (NALP.GT.1) CA(IJ)=AW(J1) IF (NALP.GT.1) CA(IJ)=AW(J1) IF (IJ .EQ.MM) CAM=CAM+0.2A CAM=CA) CONTINUE AW(J1)=(ALPT-CAM)*CSD IF (NALP.GT.1) CA(IJ)=AW(J1) IF (NALP.GT.1) CA(IJ)=AW(J1) IF (NALP.GT.1) CA(IJ)=AW(J1) IF (IJ .EQ.MM) CAM=CAM1A.CA) CONTINUE IF (IJ .EQ.MM) CAM=CAM1A.CA) CONTINUE IF (IJ .EQ.MM) CAM=CAM1.CA) CONTINUE IF (IJ .EQ.MM) CAM=CAM1.CA) CONTINUE IF (IJ .EQ.MM) CAM=CAM1.CA) CONTINUE IF (IJ .EQ.MM] CAM=CAM1.CA) CAN CONTINUE IF (IJ .EQ.MM] CAM=CAM1.CA) CAN CONTINUE (YCP(IJ) .GT. YTW) GO TO ΙF - 47 ZR = ZCR(XC)46 47 48 49 50 51 52 53 54 IF (IJ .GE. LPAN1 .AND. IJ .LT. LPANEL) GO TO >>
IF (IJ .EQ. MJW2(1.L)) LL=LL+1
GO TO 56
NN=NW(2)
IF (IJ .EQ. MJW2(2.LL)) LL=LL+1
CONTINUE
IF (IJ .LT. MM) GO TO 63
IF (NW(2).EQ.O) GO TO 57
IF (IJ .LE.LPAN1) GO TO 58
ZTG(IZ+1)=ZTG(IZ+1)+ZB+(YTG(IZ+1)-YB)*SSD
YTG(T7+1)=YBB+(YTG(I7+1)-YB)*CSD ĬF (IJ "GE" LPAN1 "AND" IJ "LT" LPANEL) GO TO 55 55 56 57 YTG(IZ+1) = YBB+(YTG(IZ+1)-YB)*CSDXLL(IZ) = SSDXTT(IZ) = CSD

A 457 A 458 A 459 A 460 A 461 A 452 453 Α 464 Α Δ 465 A 466 A 467 468 Α A 469 A 470 , A 471 A 472 A 473 A 474 A 475 A 476 A 477 Α 478 Α 479 A 480 A 481 A 482 A 483 A 484 A 485 A 486 A 437 488 A A 489 A 490 A 491 A 492 A 493 A 494 Α 495 A 496 A 497 A 498 A 499 A 500 A 501 A 502 503 Α Α 504 A 505 A 506 507 A A 508 Α 509 A 510 511 A Â 512 Α 513

3

85

*

58	CONTINUE 17=17+1
	MM = MM + NN
	IF (IWING •NE• U•AND• IZ•EQ• (IWING+1)) GO TO 59 IF (IZ•FQ•(NCS+1)) GO TO 61
5.0	IF (YLE(IZ) LT. YBREAK(IPN)) GO TO 63
59	CONTINUE 78=78+(Y8RFAK(TPN)-Y8)*SSD
	YBB=YBB+(YBREAK(IPN)-YB)*CSD
	YB=YBREAK(IPN) TF (IWING_NE, O_AND_IZ_EQ (IWING+1)) GO TO AD
	GO TO 62
6U 61	IF (IWGLT "EQ. 1) GO TO 62 7B=0.
01	YB = 0
	YBB=0. IF (IZ _F0. (NCS+1)) GO TO 62
	IF (IWGLT .NE. 2) GO TO 62
	ZB=YBREAK(NC-2)*DSIN(1) YBB=YBREAK(NC-2)*DCOS(1)
	YB=YBREAK(NC-2)
62	
	IF (IJ EQ. LPAN1 OR, IJ EQ. LPANEL) IPN=1
	CSD=DCOS(IPN) SSD=DSIN(IPN)
63	IF (IJ EQ. LPAN ¹) IZ=1
	IF (IJ "EQ. LPAN1) LL=1
	NJ = NJ - 1
	IF (IJ LE. LPANEL) GO TO 32
64	DMM(I)=GAMMA(I)
	IF (KP.EQ.1) CALL INVN (DQ,CP,AW,LAT,NPP,LPANEL,IP)
65	GAMMA(I)=DMM(I)
	$\begin{array}{c} REWIND 02 \\ IE (NALP = 0, 1) (O = IO + I) \\ IE (NALP = 0, 1) (O = IO + I) \\ IE (NALP = 0, 1) (O = IO + I) \\ IE (IE = I) \\ IE (IE = IE + IE) \\ IE IE IE IE \\ IE IE IE IE \\ IE IE IE IE IE \\ IE IE IE IE \\ IE IE IE IE IE \\ IE IE IE IE IE IE IE IE IE IE \\ IE $
	DO 66 I=1/LPANEL
	GAMMA(I)=0
	DO 66 J=1/LPANEL
66	GAMMA(I) = GAMMA(I) - AW(J) * CA(J)
07	CM(1) = ITWST
	CALL THRUST (LPANEL, GAMMA, SNALP, IALP, LPAN1, CAMLE1, CAMLE2, CAMLE3, YT
	2NC = O = O = O = O CNALP)
40	DO 68 I=1 , NCS
00	DO 69 I=1. LPANEL
69	CP(I)=GAMMA(I)
	1 HALFBH/YCN/CTP/CTX/IWGLT/IPOS/D)
70	DO 70 I=1, LPANEL
10	DO = 71 I = 1 P N CW

•

*

\$

86

ė

ι

71	Y(2,I)=CL(I) IF (IWING.NE.D) Y(3,I)=CM(I) CTIP=CTP(1)*DCOS(NWING)
72	IF (IWGLI _NE_ U) CTIP=CTIP+CTP(2)*DCOS(NWING+1) IF (LAT.NE_O) CALL LATERL (GAMMA/AW/CA/LAT/LPANEL/LPAN1/DF/NAL/YBR 1EAK/DSIN/DCOS/IWING/IWGLT/NPP/ALP/GAMP/GAMB/GAMR/CP/GAMX/BREAK/SWP 2/ CHORDT/YCN/SNALP/CNALP) IF (LAT_EQ.(-1)) GO TO 73 DO 72 I=1/LPANEL GAMMA(I)=0.
()	P=0.1 $RL=0.1$ $BK=0.1$ $COSA=COS(ALP)$ $SINA=SIN(ALP)$
	CLPP=0. CDPP=0. CDVL=0. CLT=0. CMT=0.
	CD1=U. CLL=0. CLW=0. CMW=0. CDW=0. CY=0.
	CNB=0. CLB=0. CLP=0. CYP=0. CNP=0.
	CTR=0. CLRR=0. CNR=0. CYBV=0. CYBVSE=0. CNBV=0.
	CNBVSE=0. CLBV=0. CLBVSE=0. CYPV=0. CYPVSE=0.
	CNPV=0. CNPVSE=0. CLPV=0. CLPVSE=0. CYRV=0. CYRSE=0
	CLRV=0. CLRVSE=0. CNRV=0. CNRV=0. CNRVSE=0. CSL = 0.
	CSXL = 0. KC=1 NCOL=M1(1)

,

â

•

87

L

¥

KLL = 0KLL =0 MM = 0 NCW 1 = NCW + 1 IPN = 1COD = DCOS(1)SOD = DSIN(1)ZB=0.YB=0. YBB=0. NCSS=NCS COW=1. SOW=0. DO 110 I=1,NCS FAT R=1. IF(IV.EQ.1.AND.I.GT.JWING) FAT R=0.5 IF (NW(2) .EQ. 0) GO TO 74 I1=I+NCS CHORD=CH(I)+CH(I1) GO TO 75 CHORD=CH(I) CONTINUE CML=0. CLS(I)=0. CL(I)=0. CD(I)=0. CNS=0. CLSS=0. FATR=1. CLBS=0. CLPS=0. CLPVS=0. CYPS=0. CNPS=0. CYRS=0. CLRS=0. CNRS=0. CNB1=0. CYR1=0. CNR1=0CLY(I)=0DO 93 J=1, NCW NN = J + MMIF (NW(2) EQ. 0) GO TO 76 IF (J LE. NW(1)) GO TO 76 LL=LPAN1-NW(1)*I+NN+NW(2)*(I-1) IL=I1 JLL = J - NW(1)L=2 FN=NW(2) GO TO 77 LL=NN IL=I JLL=J L=1 FN=NW(1) CONTINUE XC=(XV(LL)-XLE(I))/CHORD IF (JWING_NE_D_AND_I_GT_JWING) GO TO 86 X1=ZCR(XC) L=2

A 628 A 629 A 630 A 631 A 632 A 633 A 634 A 635 A 636 A 637 A 638 A 639 A 640 A 641 A 642 A 643 A 644 A 645 A 646 A 647 A 648 A 649 A 650 A 651 A 652 A 653 A 654 A 655 A 656 A 657 A 658 A 659 A 660 A 661 A 662 A 663 A 664 A 665 A 666 A 667 A 668 A 669 A 670 A 671 A 672 A 673 A 674 A 675 A 676 A 677 A 678 A 679 A 680 A 681 A 682 683 A Α 684

8

3

74 75

76

77

\$

t

 $x_2 = x_1$ $x_{3} = x_{1}$ IF (IST .EQ. 1) GO TO 78 X2 = ZCI(XC) $x_{3} = x_{2}$ IF (IST _EQ. 2) GO TO 78 X3 = ZCT(XC)78 CONTINUE (IALP .EQ. 1) GO TO 88 ÎĒ 79 80 81 82 YX=YTW IF (IST_LE_2) YX=0. CAM=X2-(X2-X3)*(YLE(I)-YX)/(HALFB-YX) GO TO 85 YC=YLE(I)/HALFB CAM=ZCDX(XC,YC) CONTINUE CS=COS(EP) SS=SIN(EP) GO TO 20 83 84 CAM = ZC DX (XC, YC) CONTINUE CS = COS (EP) SS = SIN (EP) GO TO 89 IF (IALP EQ. 1) GO TO 38 IF (IALP EQ. 1) GO TO 87 CS = COS (TINP) SS = SIN (TINP) CAM = 0. IF (ICAMT.NF.0) CAM = ZCT(XC) GO TO 89 CS = COS (TINP-TFLP(NL)) SS = SIN (TINP-TFLP(NL)) CAM = 0. IF (ICAMT.NE.0) CAM = ZCT(XC) 85 86 87 IF (ICAMT.NE.O) CAM=ZCT(XC) GO TO 89 88 CS=1

A 685 A 686 A 687 A 688 A 689 A 690 A 691 A 692 A 693 A 694 A 695 A 696 A 697 A 698 A 699 A 700 A 701 A 702 A 703 A 704 A 705 A 706 A 707 A 708 A 709 A 710 A 711 A 712 A 713 A 714 A 715 A 716 A 717 A 718 A 719 A 720 A 721 A 722 A 723 A 724 A 725 A 726 A 727 A 728 A 729 A 730 A 731 A 732 A 733 A 734 A 735 A 736 A 737 A 738 A 739 A 740 Α 741

٠

68

s.

.

•	SS = 1,
89	
	ZCW = -2, $*(ZN(LL)) + ZB + (YCP(LL) - YB) + SOD + HEIGHT) + ZN(LL, 1) + ZB + (YCP(LL))$
	1-YB)*S0D
	CALL BACKWH (XV(LL), YV(LL), ZCW, LPANEL, B, LPAN1, NW, CP, U1, LAT, COU, SUD
	1,YBREAK, DCOS, DSIN, V1, IWING, ZB, YB, YBB, NCSS, IWGLI, NC)
	TF (LAT, NE, (-1)) GU TU YU GATI BACKWH (XV(II), YV(II), 70W, IPANEL, BALPAN1, NWAGAYMA, 112, (AT, 600),
	1 SODAY BREAK, DCOS, DSTN, V2, TWING, ZBAYBAYBA, NCSS, TWGIT, NC)
90	CONTINUE
	IF (IALP \bullet EQ. 0) GO TO 91
	GAK=CP(LL)*(1*+U1*ALP)+CP(LL)*ALP*U1+GAMX(LL)*(V1*ALP+SOD*ALP)*2.
	GBK=GAMMA(LL)
	GO TO 92
91	ĞĂK=ČP(ĹĹ)*(1.+U1)*CS-GAMX(LL)*(V1+SOD*SNALP(I))
	GBK = GAMMA(LL) + (1 + U1 + U2) + CS - GAMX(LL) + (V2 + V1)
	CP(LL)=GAK
0.2	GAMMA(LL)=GBK
97	CONTINUE GRS=GAK+SN(111,1)+CH(11)/EN
	WAS=0.
	FT = SQRT(1.+CAM*CAM*COD*COD)
	CL(I)=CL(I)+GBS*(CAM*SS+CS)*COD/FT
	IF (LÁTINEII) GO TO 93
	FZ=SN(JLL/L) ×CH(IL)/FN
	WP=GAMP(LL)*FZ*(1.+U1)
	WB=GAMB(LL)*FZ*(1.+U1)
	WK=GAMK(LL)*FZ*()_+U) YCV=SOD+XV())
	ZCV = SOD * (ZCP(LL) + ZB + (YCP(LL) - YB) * SOD) + COD * (YBB + (YCP(LL) - YB) * COD)
	CYS=CYS-WB*SOD-GBS*(-CAM*CS+SS)*COD/FT*BK*COSA
	CNS=CNS+WB*ŸCV+GBŠ*(-ČAM*ČŠ+SS)*CÕD/FŤ*BK*XV(LL)*COSA
	LTPS=LTPS-WP*SUD
	CYRS=CYRS-WR*SOD+GBS*SS*XV(LL)/HALFB*COD/FT*RL
	CLRS=CLRS-WR*ZCV
	CNRS=CNRS+WR*YCV-GBS*SS*XV(LL)/HALFB*COD/FT*RL*XV(LL)
	CLPVS=CLPVS-(WP-GBS/CS*P*ZCV*SINA/HALFB)*ZCV
	UND =UND =WD*TUV CVD1=CVD1=UD+SOD
	CNB1=CNB1+GBS*(-CAM*CS+SS)*COD/FT*BK*XV(LL)*COSA
93	CONTINUE

•

ŧ

IF (IALP .EQ. 1) GO TO 97 IF (JWING .NE. 0 .AND. I .GT. JWING) GO TO 98 IF (ITWST .EQ. 1) GO TO 95 IF (YLE(I) .GT. YTW) GO TO 94 YX=YTW IF (IST .LE. 2) YX=HALFB CAMLE=CAMLE1-(CAMLE1-CAMLE2)*YLE(I)/YX GO TO 96 YX=YTW IF (IST .LE. 2) YX=0. CAMLE=CAMLE2-(CAMLE2-CAMLE3)*(YLE(I)-YX)/(HALFB-YX) GO TO 96 94 Y = YTW A 807 IF (1ST LE2 - (2MLE2 - (2MLE3) * (YLE(I) - YX)/(HALFB-YX) A 800 CAMLE=CAMLE2 - (CAMLE2 - CAMLE3) * (YLE(I) - YX)/(HALFB-YX) A 800 CAMLE2 - (2MLE7 - (2MLE3) * (YLE(I) - YX)/(HALFB-YX) A 800 CT = 05 / HALFB A 810 A 811 95 96 97 98 99 F12=F1*F2

A 799 A 800 A 801 A 802 A 803 A 804 A 805 A 806 A 807 A 808 A 809

UNRS=UNRS*UUNST CLRS=C1RS+CONST	
CLPVS=CLPVS*CONST	
CYR1=CYR1+CONST	
SIDE=CTH*2 * Y(1, I) * Y(4, I) * F5	
$SIDEB=CIH*2 * Y(1 \rightarrow I) * Y(1 \rightarrow I) * F_2$	
SIDER=CIH*2,*T(')I)+T('D)I)*F)	
$K_{A} = 1 + (1 - 1) + N = 1$	
ZYE = SOD * (ZCP(KA) + ZB + (YLE(I) - YB) * SOD) + COD * (YBB + (YLE(I) - YB) + SOD) + SOD) + COD * (YBB + (YLE(I) - YB) + SOD) + SOD) + SOD) + SOD * (YBB + (YLE(I) - YB) + SOD) + SOD) + SOD * (YBB + (YLE(I) - YB) + SOD) + SOD * (YBB + (YLE(I) - YB) + SOD) + SOD * (YBB + (YLE(I) - YB) + SOD) + SOD * (YBB + (YLE(I) - YB) + SOD) + SOD * (YBB + (YLE(I) - YB) + SOD * (YBB + (YLE(I) - YB) + SOD) + SOD * (YBB + (YLE(I) - YB) + SOD * (YBB + (YBB + (YLE(I) - YB) + SOD * (YBB + (YBB + (YBB + (YBB + YBB + (YBB + YBB + (YBB + (YBB + YBB + YBB + (YBB + YBB + (YBB + YBB + (YBB + YBB + YBB + (YBB + YBB + (YBB + YBB + YBB + YBB + YBB + YBB + (YBB + YBB + YBB + YBB + YBB + YBB + (YBB + YBB + YBB + YBB + YBB + (YBB + YBB + Y) * CUD)
F6=(CAMLE*COD*(CAMLE*TAN*COD+SOD)+TAN*COD*COD)/F12	
FD = FD * COD	
CYB1=CYS-SIDEB+SOD/F1	
CYR1=CYR1-SIDER*SOD/F1	
CNR1=CNR1+SIDER*SOD*XLE(I)	
CLR1=CLRS-SIDER*ZYE/F1	
ĊŸŚ=ĊŸŠ+ŠIDĖB*FŎ-ĊT(I)*FD/FT*3K	
CNS=CNS-SIDEB*YE*F3/F12+CT(I)*FD/FT*BK*XLE(I)	
CNS = CNS - SIDE B * XLE(I) * F6	
CLBS=CLBS-SIDEB*ZYE*F4/F12	
UTK S=UTK ST SIVE K*FOTUTI (1)*FV/FI*KLE(1)/HALFB*KL CNDC=CNDC=CTDED+VE+E3/E12=CT(T)+E0/FT+VIE(T)/HALFB+KL	5(1)
ČLRŠ-ČLRŠ-ŠĪDĒR׎ŸĒ×F4/F12	
CLPVS=CLPVS-SIDE*ZYE/F1	
IF (I.GE, NVRTX) GO TO 100	
ĊŸP1=ĊŸPŠ	
CLPVS=CLPS	
IF (I .LT. NCOL) GO TO 103	
KLL=NCQL-1	
KU=KU+1 NCOL=NCOL+M1(KC)=1	
$\frac{1}{1}$	
103 KL = I - KLL $FM = M1(KC)$	

•

τ

,

ન

4

AA=AA * FATR CLT=CLT+CL(I) * AA CMT=CMT+CM(I) * AA CDT=CDT+CD(I) * AA CLL=CLL+CLS(I) * AA*YLE(I) CLPP=CLPP+CLPPS * AA CDPP=CDPP+CDPPS * AA IF (I.GE_NVRTX) GO TO 104 CDVL=CDVL+CSU(I) * (-CAMLE * XCS + XSS)/FT * COD * AA CSL=CSL+CSU(I) * (CAMLE * XSS + XCS)/FT * COD * AA CSL=CSL+CSU(I) * (CAMLE * XSS + XCS)/FT * COD * AA AA = AA * FATRX C S) / F T * C O D * A A * C O D CSXL=CSXL-CSU(I) * XLE(I) * AA*COD104 CONTINUE IF (LAT.NE.1) GO TO 105 CY = CY + CYS + AACNB = CNB + CNS + AACLB=CLB+CLBS*AA CYP = CYP + CYPS + AACNP = CNP + CNPS + AACLP = CLP + CLPS * AACYR=CYR+CYRS*AA $CNR = CNR + CNRS \star AA$ CLRR=CLRR+CLRS*AA CLPV=CLPV+CLPVS+AA CYPV = CYPV + CYP1 + AACNPV = CNPV + CNP1 + AACYRV=CYRV+CYR1+AACNRV = CNRV + CNR1 + AACLRRV = CLRRV + CLR1 * AACYBV=CYBV+CYB1+AACNBV = CNBV + CNB1 + AACLBV=CLBV+CLB1*AA 105 CONTINUE MM = (NCW - NW(2)) * IIF (IWING NE O AND I EQ.IWING) GO TO 106 IF (I EQ. NCS) GO TO 109 IF (YLE(I+1) LT. YBREAK(IPN)) GO TO 109 106 CONTINUE ZB=ZB+(YBREAK(IPN)-YB)*SODYBB=YBB+(YBREAK(IPN)-YB)*COD YB=YBREAK(IPN) IF (IWING .NE. O .AND. I .EQ. IWING) GO TO 107 GO TO 108 107 SOW = SODCOW = CODYPRW=YBB YRW=YB ZPRW=ZBYBKW=YBREAK(IPN) IF (IWGLT.EQ.1) GO TO 108 ZB = 0.YBB=U. IF (IWGLT .NE. 2) GO TO 108 ZB=YBREAK(NC-2)*DSIN(1) YBB=YBREAK(NC-2)*DCOS(1) YB=YBREAK(NC-2) YPRW=YBB YRW=YB ZPRW=ZB

A 912 A 913 A 914 A 915 A 916 A 917 A 918 Ä 919 A 920 A 921 A 922 A 923 A 924 A 925 A 926 A 927 A 928 A 929 Ä 930 A 931 A 932 A 933 A 934 A 935 A 936 A 937 A 938 A 939 A 940 A 941 A 942 A 943 A 944 A 945 A 946 A 947 A 948 A 949 A 950 A 951 A 952 A 953 A 954 955 A 956 Α A 957 A 958 959 A Α 960 A 961 A 962 963 A A 964 965 Α 966 Α A 967 968 A A 969

4

•

93

a . a

108	CONTINUE IPN=IPN+1 COD=DCOS(IPN)
400	SOD=DSIN(IPN)
109	IF (LL_EQ_ MJW2(2/NL)) NL=NL+1
	IF (IWING .EQ. 0) GO TO 110
	CLW=CLT
110	CONTINUE
	IF (LAT.NE.1) GO TO 116
	CNBVSE=CNBV
	CNPVSE=CNPV
	CLPVSE=CLPV CVRSE=CVPV
	CNRVSE=CNRV
	IF (IWING.NE.D) NCNT=2
	DO 115 KK=1/NCNT FATR=1/
	IF(IV, EQ.1, AND, KK, EQ.2) FATR=3,5
	KA = 1 + (NCS - 1) + NW(1)
	IF (IWING_EQ_O) GO TO 111 IF (KK_FQ_2) GO TO 111
	KA = 1 + (IWING - 1) * NW(1)
	SS=SOW CS=COW
	YB2=YPRW
	ZB1=ZPRW
	YKP=YBKW
111	CONTINUE
	IF (KK EQ.2) K1=KK+1
	SS= SOD CS= COD
	YB2=YBB
	2B1=2B
112	YKP=YBREAK(IPN)
112	FN = NW(1)
	DO 114 J=1,NCW
	IF (J.LE.NW(1)) GO TO 113
	ISN=2 FN=NW(2)
	JJ = J - NW(1)
	K1=KK+1 IF(KK_FQ_2) K1=KK+2
113	FJJ=JJ
	LLV=L3*(LB1+(YKP-YB1)*SS)-SS*(YB2+(YKP-YB1)*CS) YCV=SS*(7B1+(YKP-YB1)*SS)+CS*(YB2+(YKP-YB1)*CS)

-

.

۲

	99999999999999999999999999999999999999	0123456789012345678901234
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	999990000000000000000000000000000000000	5678901234567890123456789012
A 1 A 1 A 1	2 C 2 C 2 C	4 5 6

/

.

	XQ=YCN(K1)+0.5*CHORDT(K1)*(1COS((2.*FJJ-1.)*PI/(2.*FN))) CK=CHORDT(K1)*2.*Y(KK+1,J)*Y(KK+4,J)*SN(JJ,ISN)/FN CK2=CHORDT(K1)*2.*Y(KK+1,J)*Y(KK+7,J)*SN(JJ,ISN)/FN CK3=CHORDT(K1)*2.*Y(KK+1,J)*XL(KK,J)*SN(JJ,ISN)/FN CK=CK*FATR CK2=CK2*FATR	A1027 A1028 A1029 A1030
	CK3=CK3*FATR CK=CK*CS CK2=CK2*CS CK3=CK3*CS CY=CY+CK2*PIS CNB=CNB-CK2*XQ*PIS CNB=CNB-CK2*XQ*PIS	A1031 A1032 A1033 A1034 A1035 A1035
	CYP=CYP+CK*PIS CNP=CNP-CK*XQ*PIS CLP=CLP+CK/CS*ZCV*PIS CYR=CYR+CK3*PIS CNR=CNR+CK3*XQ*PIS CLRR=CLRR+CK3/CS*ZCV*PIS	A1037 A1038 A1039 A1040 A1041 A1042
	CYBVSE=CYBVSE+CK2*PIS CNBVSE=CNBVSE-CK2*XQ*PIS CLBVSE=CLBVSE+CK2/CS*ZCV*PIS CYPVSE=CYPVSE+CK*PIS CNPVSE=CNPVSE-CK*PIS*XQ CLPVSE=CLPVSE+CK/CS*ZCV*PIS CYRSE=CLPVSE+CK3*PIS	A1043 A1044 A1045 A1046 A1047 A1048 A1048
	CNRVSE=CNRVSE-CK3*PIS*XQ CLRVSE=CLRVSE+CK3/CS*ZCV*PIS CYBV=CYBV-CK2/CS*SS*PIS CNBV=CNBV+CK2/CS*SS*PIS CLBV=CLBV+CK2/CS*SS*PIS CYPV=CYPV-CK/CS*SS*PIS CYPV=CYPV-CK/CS*SS*PIS	A 1050 A 1051 A 1052 A 1053 A 1054 A 1055
114 115 116	CYRV=CYRV-CK3/CS*SS*FIS*XQ CNRV=CNRV+CK3/CS*SS*FIS*XQ CLRRV=CLRRV-CK3/CS*YCV*FIS CLPV=CLPV-CK/CS*YCV*FIS CONTINUE CONTINUE	A1057 A1057 A1058 A1059 A1060 A1061 A1062
	IF (ABS(CSL)。GT。0。0001) XLEBAR=CSXL/CSL CLT=CLT*PI/(2。*HALFSW) CMT=CMT*PI/(2。*HALFSW) CDT=CDT*PI/(2。*HALFSW) CLL=-CLL*PI/(4。*HALFSW*HALFB) CLW=CLW*PI/(2。*HALFSW) CMW=CMW*PI/(2。*HALFSW)	A 1063 A 1064 A 1065 A 1066 A 1067 A 1068 A 1068
	CDW =CDW+PI/(2, +HALFSW) CLPP=CLPP+PI/(2, +HALFSW) CDPP=CDPP+PI/(2, +HALFSW) CDVL=CDVL+PI/(2, +HALFSW) CSL=CSL+PI/(2, +HALFSW) CSXL=CSXL+PI/(2, +HALFSW+CREF)	A1070 A1071 A1072 A1073 A1073 A1074 A1075
	IF (ABS(CLI),GI,U,UUU) XBP=CMI/CLT*CREF IF (IALP ,EQ, 1) GO TO 117 KK=NCS IF (IWING ,NE, O) KK=IWING CDVS=CTIP*SNALP(KK)*2, CLVS=CTIP*COS(ALPH(KK))*2, CMVS=CTIP+CTV+2, COPE	A1076 A1077 A1078 A1079 A1080 A1081
117	CONTINUE	A1082 A1083

•

1 (

N 6

	•
	CDCL2=0. TE (LATINE 1) GO TO 118
	CONST=PI/(2. *HALFSW)
	CONTB=CONST/(2.*HALFB)
	CYP = CYP * CONST/P
	CNP=CNP*CONTB/P
	CLP = CLP + CONTB/P
	CNR=CNR*CONTB/RL
	CLRR=CLRR*CONTB/RL
	CLPV=CLPV+CONTB/P
	CYBVSE=CYBVSE+CONST/BK CYBVSE=CYBVSE+CONST/BK
	CNBV=CNBV*CONTB/BK
	CNBVSE=CNBVSE+CONTR/BK
	CYPV=CYPV*CONST/P
	CYPVSE=CYPVSE*CONST/P
	CLPVSE=CLPVSE*CONTB/P
	CYRV=CYRV*CONST/RL
	CLRVSE = CLRVSE * CONTB/RI
	CNRV = CNRV * CONTB/RL
110	CNRVSE=CNRVSE*CONTB/RL
110	IF (ABS(CLT) $_{a}$ LF $_{a}$ D_{a} D D D D D 119
	CDCL2=CDT/(CLT*CLT)
119	CONTINUE
	CALL BENDIN (NC/CLY/BMR/IWING/BREAK/CBMR/CBTR/NWING/HALESH/HALEHH/
	1DCOS, DSIN, IWGLT, FTL)
	IF (IWGLT_EQ_2) CBMR=CBMR+FTL*(SOD*ZPRW+COD*YPRW)/HALFB+CBTR
	CBTL=CBTR
	DO 120 I=1,NCS
120	BML(I)=BMR(I)
121	60 10 124 TE (LAT.EQ 1) GO TO 124
	DO 122 I=1,NCS
122	YCON(I)=CLY(I)+CLS(I)
	LALL BENDIN (NC/TCON/BMR/IWING/BREAK/CBMR/CBIR/NWING/HALFSH/HALFBH 1.DCOS/DSIN/IWGLT/FTL)
	IF (IWGLT_EQ_2) CBMR=CBMR+FTL*(SOD*ZPRW+COD*YPRW)/HALFB+CBTR
4 7 7	DO 123 I=1,NCS
123	TUUNUIJEULTUIJEULSUIJ CALL BENDIN (NCAYCONARMIAIWINGARREAKACRMIACRILANUINGAUALESU UALEUU
	1. DCOS, DSIN, IWGLT, FTL)
17/	IF (IWGLT_EQ_2) CBML=CBML+FTL*(SOD*ZPRW+COD*YPRW)/HALFB+CBTL
124	ALP=ALP*180./PI

ł.

÷

A

đ

WRITE (6, 165) IF (IALP .EQ. 1) WRITE (6, 167) IF(IALP.EQ.1) GO TO 125 WRITE(6,166) ALP IF (NAL.NE.O) AF=DF(NAL)*180./PI IF (NAL.EQ.O) AF=0. IF (LAT "EQ. (-1)) WRITE (6, 164) AF 125 CONTINUE WRITE (6, 165) IF (LAT.NE.(-1)) WRITE (6, 168) IF (LAT.EQ.(-1)) WRITE (6, 169) K1 = 0JJ1=0HAB=HALFB IF (IWGLT .EQ. 1) IWING=NCS DO 132 I=1.NCS IF (I .GT. IWING .AND. IWING .NE. D) HAB=HALFBH IF (I .GT. IWING .AND. IWGLT .EQ. 2) HAB=HALFB IF (NW(2) .EQ. 0) GO TO 126 11 = I + NCSCHORD=CH(I)+CH(I1) GO TO 127 CHORD=CH(I) 126 127 CHORD=CH(I) CONTINUE DO 131 J=1,NCW JJ=JJ1+J KK=K1+J IF (NW(2) .EQ. 0) GO TO 128 IF (J LE. NW(1)) GO TO 128 LL=LPAN1-NW(1) * I + JJ + NW(2) * (I-1) GO TO 129 128 fr=11 129 CONTINUE XI = (XV(LL) - XLE(I))/CHORDETA=YV(LL)/HAB IF (LAT, NE, (-1)) GO TO 130 $CPR = (CP(LL) + GAMMA(LL)) * 2_{a}$ $CPL = (CP(LL) - GAMMA(LL)) * 2_{a}$ WRITE (6, 170) KK,XI,ETA,CPL,CPR GO TO 131 CPK=2. +CP(LL) WRITE (6, 170) KK,XI,ETA,CPK 130 131 CONTINUE JJ1=(NCW-NW(2))*IK1 = K1 + NCW132 CONTINUE WRITE (6, 171) HAB=HALFB DO 135 I=1,NCS (IWGLT . EQ. 0) GO TO 133 TF IF (I .EQ. (JWING+1)) WRITE (6, 173) GO TO 134 133 CONTINUE IF (JWING .NE. O .AND. I .EQ. (JWING+1)) WRITE (6, 172) 134 CONTINUE IF (IWING .NE. O .AND. I .GT. IWING) HAB=HALFBH (I .GT. IWING .AND. IWGLT .EQ. 2) HAB=HALFB IF YE=YLE(I)/HAB

.

A1141 A1142 A1143 A1144 A1146 A1147 A1148-A1149 A1150 A1151 A1152 A1153 A1154 A1155 - A1156 A1157 A1158 A1159 A1160 A1161 A1162 A1163 A1164 A1165 A1166 A1167 A1168 A1169 A1170 A1171 A1172 A1173 A1174 A1175 A1176 A1177 A1178 A1179 A1180 A1181 A1182 A1183 A1184 A1185 A1186 A1187 A1188 A1189 A1190 A1191 A1192 A1193 A1194 A1195 A1196 A1197

٠

.

4

• TEM=CLS(I) IF (LAT.NE.(-1)) TEM=D. CLRT=CL(I)+TEM CLLT=CL(I)-TEM 135 WRITE (6, 174) YE,CLRT,CLLT,CM(I),CT(I),CD(I) WRITE (6, 175) WRITE (6, 176) CLT WRITE (6, 177) CDT WRITE (6, 176) CLT WRITE (6, 177) CDT WRITE (6, 178) CDCL2 WRITE (6, 179) CMT WRITE (6, 179) CMT IF (IWING.NE.O) GO TO 136 IF (ABS(CLT).LE.O.OO1) GO TO 137 IF (NGRD.NE.O) GO TO 137 IF (IDIH.NE.O) GO TO 137 IF (IDIH.NE.O) GO TO 137 If (NBGRD.NE.0) GO TO 137 IF (IDIH.NE.0) GO TO 137 CALL DRAG (CLT,YBREAK,NC,TFLP,NAL) GO TO 137 WRITE (6, 186) CLW WRITE (6, 187) CDW WRITE (6, 188) CMW CLTLH=CLTLW+HALFSW/HALFSH CMTAIL=CMT-CMW WRITE (6, 190) CLTLW,CLTLH WRITE (6, 190) CMTAIL CONTINUE WRITE (6, 192) IF (IALP & EQ.0) GO TO 138 WRITE (6, 192) CTIP = CTIP*2 WRITE (6, 182) WRITE (6, 182) WRITE (6, 152) CONTINUE WRITE (6, 152) CONTINUE WRITE (6, 152) CONTINUE WRITE (6, 183) CLPP,CSL,CLVS WRITE (6, 184) CDPP,CSL,CLVS WRITE (6, 185) CMT,CSXL,CMVS WRITE (6, 152) CONTINUE 136 WRITE (6, 186) CLW 137 CONTINUE 138 CONTINUE WRITE (6, 183) CLPP,CSL,CLVS WRITE (6, 184) CDPP,CDVL,CDVS WRITE (6, 185) CMT,CSXL,CMVS WRITE (6, 152) 139 CONTINUE HW=2. + HALFSW HW=2.*HALFSW HSH=2.*HALFSH IF (LAT .EQ. 0) GO TO 142 IF(NAL.EQ.0) GO TO 225 DF(NAL)=DF(NAL)*180./PI DF(NAL)=DF(NAL)*180./PI IF (LAT .EQ. (-1)) WRITE (6, 203) CLL,DF(NAL),AM E (O, 203) (LL,DF(NAL),A 225 CONTINUE IF (LAT.NE.1) GO TO 142 WRITE (6, 152) WRITE (6, 193) WRITE (6, 152) KA=1 CONTINUE IF (KA.GT.3) GO TO 142 WRITE (6, 195) ALZ WRITE (6, 196) AM WRITE (6, 193) WRITE (6, 152) 140 CONTINUE

A1198 A1199 A1200 A1201 A1202 A1203 A1204 A1205 A1206 A1207 A1208 A1209 A1210 A1211 A1212 A1213 A1214 A1215 A1216 A1217 A1218 A1219 A1220 A1221 A1222 A1223 A1224 A1225 A1226 A1227 A1228 A1229 A1230 A1231 A1232 A1233 A1234 A1235 A1236 A1237 A1238 A1239 A1240 A1241 A1242 A1243 A1244 A1245 A1246 A1247 A1248 A1249 A1250 A1251 A1252 A1253 A1254

2

86

.

•

IF (KA_EQ_2) WRITE (6, 201) A1255 IF (KA_EQ.3) WRITE (6, 202) A1256 WRITE (6, 197) CY, CLB, CNB A1257 WRITE (6, 198) CYP/CLP/CNP A1258 WRITE (6, 199) CYR, CLRR, CNR A1259 WRITE (6, 200) A1260 CYBB=CYA1261 CLBB=CLB*COSA+CNB*SINA A1262 CNBB=CNB*COSA-CLB*SINA A1263 CYPP=CYP*COSA+CYR*SINA A1264 CLPP=CLP*COSA*COSA+(CLRR+CNP)*COSA*SINA+CNR*SINA*SINA A1265 CNPP=CNP*COSA*COSA+(CNR-CLP)*COSA*SINA-CLRR*SINA*SINA A1266 CYRR=CYR*COSA-CYP*SINA A1267 CLRL=CLRR*COSA*COSA+(CNR-CLP)*SINA*COSA-CNP*SINA*SINA A1268 CNRR=CNR*COSA*COSA+(CNR+CLP)*SINA*COSA+CLP*SINA*SINA CNRR=CNR*COSA*COSA+(CLRR*CNP)*SINA*COSA+CLP*SINA*SINA A1269 CNRR=CNR*(DSA*(DSA+(CLRR*CNP)*SINA*(DSA+(LP*SINA*SINA WRITE (6, 197) CYBB, CLBB, CNBB WRITE (6, 198) CYPP, CLPP, CNPP WRITE (6, 199) CYRR, CLRL, CNRR IF (KA.EQ.1) WRITE (6, 152) IF (KA.EQ.1) WRITE (6, 152) IF (KA.EQ.1) WRITE (6, 152) IF (KA.EQ.2) GO TO 142 KA=KA+1 IF (KA.EQ.2) GO TO 141 CY=CYBVSE CNB=CNBVSE CLB=CLBVSE CLP=CLPVSE CLP=CLPVSE A1270 A1271 A1272 A1273 A1274 A1275 A1276 A1277 A1278 A1279 A1280 A1281 A1282 CLP=CLPVSE A1283 CNP = CNPVSEA1284 CYR = CYRSEA1285 CLRR=CLRVSE A1286 CNR = CNRVSEA1287 GO TO 140 A1288 141 CY = CYBVA1289 CNB = CNBVA1290 CLB = CLBVA1291 CYP = CYPVA1292 CLP = CLPVA1293 CNP=CNPV A1294 CYR = CYRVA1295 A1296 CLRR=CLRRV CNR = CNRVA1297 GO TO 140 A1298 142 CONTINUE A1299 WRITE (6, 204) HW, HALFB A1300 WRITE (6, 205) A1301 WRITE (6, 206) A1302 HAB=HALFB 3=HALFB 145 I=1,NCS (IWGLT .EQ. 0) GO TO 143 (I .EQ. (JWING+1)) WRITE (6, 208) HW,HALFB A1303 DO A1304 IF A1305 IF A1306 GO TO 144 A1307 143 CONTINUE A1308 IF (JWING .NE. O .AND. I .EQ. (JWING+1)) WRITE (6, 207) HSH, HALFU A1309 1 H A1310 CONTINUE 144 A1311

145	IF (JWING .NE. O .AND. I .EQ. (JWING+1)) WRITE (6, 209) IF (IWING .NE. O .AND. I .GT. IWING) HAB=HALFBH IF (I .GT. IWING .AND. IWGLT .EQ. 2) HAB=HALFB WRITE (6, 174) YE, BMR(I), BML(I) WRITE (6, 209) WRITE (6, 209) WRITE (6, 209) IF (IWING .NE. O .AND. IWGLT .NE. 1) WRITE (6, 211) CBTR, CBTL IF (IWGLT .EQ. 1) WRITE (6, 212) CBTR, CBTL	A1312 A1313 A1314 A1315 A1316 A1317 A1318 A1319 A1320 A1321
146	ALP=ALQ+ALPINC ALQ=ALP ALZ=ALQ+180./PI IF(IWGLT.EQ.1) IWING=JWING CONTINUE NCON=NCON+1 IF (NCON .LE. ICASE) GO TO 1 STOP	A1322 A1323 A1324 A1325 A1326 A1327 A1328
c 1489 1449 1552 1553 1554 1556	FORMAT (8F10.6) FORMAT (8(6X,14)) FORMAT (10X,8HHALF SW=,E12.5,10X,5HCREF=,E12.5) FORMAT (13HCASE NUMBER =,I2) FORMAT (6F10.5) FORMAT (6F10.5) FORMAT (1H0,40H**********************************	A 1330 A 1331 A 1332 A 13333 A 13334 A 1335 A 1336 A 1337 A 1338 A 1339
157 158 159 160 162 163 165 165	FORMAT (/53H*** CAMBER ORDINATES FOR THE INTERMEDIATE SECTION ***) FORMAT (/7X,3HX/C,11F10.5) FORMAT (/7X,3HZ/C,11F10.5) FORMAT (/44H*** CAMBER ORDINATES FOR THE TIP SECTION ***) FORMAT (/4X,3HXCP,7X,3HYCP,7X,3HZCP,7X,3HYCP,7X,3HYCP,7X,3HZCP) FORMAT (/4X,2HX1,8X,2HY2,8X,2HY1,8X,2HY2,8X,2HZ1,6X,2HZ2) FORMAT (/4X,2HX1,8X,2HX2,8X,2HY1,8X,2HY2,8X,2HZ1,6X,2HZ2) FORMAT (/20X,19HAND AILERON ANGLE =,F8.3,2X,4HDEG.) FORMAT (/20X,42HXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	A 1340 A 1342 A 1342 A 1344 A 1344 A 1345 A 1346 A 1346 A 1349
167 168 169 170 171	FORMAT (/20x,43HPRESSURE DISTRIBUTION AT ALPHA = 1.0 RADIAN) FORMAT (/3x,6HVORTEX,14x,2HXV,17x,2HYV,19x,2HCP) FORMAT (/3x,6HVORTEX,14x,2HXV,17x,2HYV,17x,8HCP(LEFT),12x, 9HCP(RI 1GHT)) FORMAT (6x,13,4(10x,F10.5)) FORMAT (/9x,3HY/S,11x,9HCL(RIGHT),6x,8HCL(LEFT),10x,2HCM,12x,2HCT, 1 13x,3HCDI)	A 1350 A 1351 A 1352 A 1353 A 1354 A 1355 A 1356
172 173 174 175 176	FORMAT (/4x,42HTHE FOLLOWING ARE THE TAIL CHARACTERISTICS) FORMAT (/4x,45HTHE FOLLOWING ARE THE WINGLET CHARACTERISTICS) FORMAT (8(5x,F10.5)) FORMAT (/2x,57H*** THE FOLLOWING ARE ATTACHED POTENTIAL FLOW RESUL 1TS ***) FORMAT (/24HTOTAL LIFT COEFFICIENT =,F10.5) FORMAT (/2X,32HTOTAL INDUCED DRAG COEFFICIENT =,F10.5)	A1357 A1358 A1359 A1360 A1361 A1363 A1363
179 180 181 182	FORMAT (/2X,20HTHE INDUCED DRAG PARAMETER #,FTU.5) FORMAT (/2X,35HTOTAL PITCHING MOMENT COEFFICIENT #,F10.5) FORMAT (/2X,4HKP =,F10.5,3X,6HKVLE =,F10.5,3X,6HKVSE #,F10.5) FORMAT (/2X,5HXBP #,F10.5,3X,6HXBLE =,F10.5,3X,6HXBSE #,F10.5) FORMAT (/66HTHE FOLLOWING PARAMETERS ARE USED IN THE METHOD OF SUC	A 1364 A 1365 A 1366 A 1367 A 1368

,

¥

A

÷

183 184 185 186 187 188 189	1	T F F F F F F F			A1 A1 A1 A1 A1 A1 A1		ACCCCCC	L72225555X		Y	>55523324	1117537 1117537					= 1 = 1 [N [N] 2	0000000000	555LIPL(· · · INIIA	333FDTFA		7770000					I			1(1(F C E		555FCFF	///IF1>		• • • • • • • • • • • • • • • • • • •	7H 7H 2H E 2				EEE FA	== = 5) 10 5 E		F F F 5)(-	5 5 5 5 5 5		16		
190	1	F		M	ÂÎ	. Г 1 Т	(N	75	X	Ď	69	5 É	İŤ	НĔ		Ť Å	Í	Ľ	P	I	ΤC	Ĥ	Ī	NÖ	5	M	5 M	Ē	NI	ſ	C (D E	F	F 1	t C	I	E N	Т	B	A A	SI	E D	ł	01	V	R	E I	FŁ	ƙ		
191	4	F		Ň	AÏ	: 1 : 1	Ċ	Ĭ1	Ô	X	,	9	н	A٨	D	ß	٩E	A	1	W	I١	IG	1	C٢	10	R	D ø		A١	N D	1	RE	F	EF	R R	E	D	T()	т	H	E	Y	-1	٩X	·I	S				
192	1	F		M	ĀĨ	.≠ ∵⊼	Ç,	/5	X	2	68	3 H	S	NQ	T	Ε.	•	Ţŀ	łE		IN	D	U	C E	D		DR	A	G	Ç	01	٩P	U	T Ą	A T	I) <u>N</u>	1	S	. .	F () R	ļ	s١	(M	M	E 1	r R	I		
193 194	1	F(M	A T A T		(/2	X	; ;	48 51	B H	. T ★ ★	ST ST	A	8 I 9 I	L	I I I I	ΓY ΓY	l	D E D E	R R	I \ I \	V A V A	T	I۱ I۱	VE VE	S S	E	3Y VI	I T I	Р0 Н	T E	E N D (N T G E	I	A L V O	R	Ē	0 X	W	T S E	H	E (A f)R R A	Y T	*) I()) N	*		
195	1	F)Ŕ	M	A T		(//	Ź	X	<i>,</i>	5	Ħ	* *	*	s t	' A	BJ	L	I	τy	,	DI	ER	I	v	A T	I	VE	S	ŧ	ΞV	A	LL	JA	Ť	E D	4	١T		AÌ	P	H	Ă		,	Fc	. د	3		
196	4	F	D R	M	ΑT		(5 X	E	1	61 61	I A	N	D	A	Г	M	A (: H	ſ	V 0		= ,	ø F	5		2,	3	7 F	•	в	٩S	Ε	D	0	N	B	00) Y	,	A :	ΧE	S	()	l N	l	ΡĘ	ER			
197 198 199 200	1	F(F(F(F(M M M	A T A T A T A T			** /5 /5 //) X X X Z	/ / X	5H 5H 5H		Y Y H	B P R **	= = *	øF øF øF ST	1 1 1	2 2 8 1	7 7 7 L	ı I	2 X 2 X 2 X 7 Y	1 1 1	5 5 5 0		L L I	B P R V A	====	, , I	F 1 F 1 F 1	2222	• • •	7 , 7 , 7 ,	2225	X X X X X X X X X X X X X X X X X X X	, 5 , 5 , 5	H (H (H (O)	CN CN CN	9 P R ST	= = = = = = = = = = = = = = = = = = =	B	F F F I	12 12 12 12	• • T	7) 7) 7) Y	A	X	ĒS	; *	*		
201 202 203		F(F(F(MM	A T A T A T		C C C	/5	XXX	8 ° 8 °	40	8 H 9 H 9 H	* * T	×I IN HE	N C I				N IG N	G G	Т Н М	H E IO	E E M (E F E N	F F T	FE E(T (E	O P F F F	F	ן 1 ב 1 כ	E	V	AN OR T	ID T =	E) /	SE (7		/ 0 F	R T 2	T (*) X /	E X 9 9 2	8	L I H C	F	T E	*) 1) 1 0 1			
204	1	A J F () R	EI M	AT	N I	$\left(\begin{array}{c} 1 \\ 1 \\ 2 \end{array} \right)$)E	۲ 6	3		H	Ē	ON F	0) F _ L	ó	F S W I	Ň	3, G	, 2 9	X E	, L N (4 H D I	I D N	E (G	⁵ M	ó	2 X 9 E	Ň	6 F T	A F C	T OI	M E F	1 : F	Ī	FI	8	3 T)	1 :	S	в	AS	SΕ	Ď	Ĺ) [4			
205	1		S R R	* M/ M/	(B 4 T 4 T	1	23	10	ø X X X	/	15 34 36	H	()	9H F 0 S /	WI R 1	HE A IX	R	E T 4 9 -	S C IB	H E M (E D	F	1 (P (G F		5 E)	NT NT		AL AL	9н 3н	I A F I B	N [L (M ())W	B (E	/ 2 0 N F T) L	= Y))	, F	10) _	5)										
207	1			I	- 1 	G	èć)M	ê	Ť	RY				0		9	HW	H	Ēŀ	RE		A F S	< E		F 1	10		1 A	2	L X /	,9	H	a k A n	I D	CI	E 37	RI 2	S ≕	T	I (F	: S 1 0	•	ёА 5)	IS	É	D	Û	N		
200	1	Г (С			d I	N	Ģ	Ğ	Ê	Ő I	NE NE	T	R	ne Yø	1	0	X	, G	H H	Wł	1 G	R	a k E	s e		H = ,	1E , F	10).	N 5	61 2	2 E 2 X	T • 9	С 9 Н	i A	A F N [? A }	CT B/	E 2	R	I \$ = /	S T F F	1	СS Ож	5	8,)	A S	δĒ	Ď		
210	1			M/ M/	AI AT VI	N	(1 ((G	68 A	U H R) TI E/	HE A p		B / '	EN 15	D	[N 1	G 8	N H A	10 T	ME	E N F H	T E	(0 0	E	f f G	F I R	C 1 0 0	[E D T	N	T = ,	B F	A : 1 (SE D.	D 6	(• 2) N ? X	* •	I I L H	N (G R]	H I G	A I H	LF T)	,	51	Р А 2 Х	N sp	1		
211	1 2	FC	R	н М/ 10	Α Γ Α	I K	((8 8 8	Ĥ	/ T T T F / L	10 10 10 10	/	L 81 1			E N	G H	M A T	0	ME	EN	Ŧ	r A	:0 \1	E L	F F R	50 1	C 1 01	E	N =	T Ø F	8 1	A : 0 :	S E	D	2)) N (•	1 8H	A (I I R	I C	H 5 H	A I T	LF) ,	#	S I 2 1	> Д Х ø	N 1	н		
212	12		R) = ,	(2 W]	XN 1	G G		SH AR	TE2	HI A X	/1	99 86 07 H (N ()	D 2 E	IN 1H FT	G A)	т)	10 T	M I H I	ĒN	IT W	I	C C N C)E GL	F F E T	I	C R (I E D C	N) T	T:	8 = /	F	S E 1 (E D	0 6,	N 2	X	W] Ø 8	[N 8 H	G (1	h R I	G	L I H	F ſ)	S	P •		

1-

7

•

¥

A1369 A1370 A1371 A1372 A1373 A1374

A1374 A1375 A13778 A13778 A13780 A13801 A13881 A13883 A13883 A13884

A1385 A1385 A13887 A13887 A13887 A13887 A13890 A13901 A13921 A1392 A1396

A1394 A1395 A1396

A1397 A1398

A1398 A1399 A1400 A14002 A14003 A1403 A1403 A1405 A1405 A1405 A1407 A1408 A1408 A1408 A1408

A1410 A1411 A1412 A1413

A1415 A1414 A1415 A1416 A1417 A1418-

101

-

1

0000	FUNCTION ZCDX (X,Y) DEFINE THE CAMBER SLOPE AT ANY X,Y IN CLOSED FORM, WHERE X IS THE NON-DIMENSIONAL CHORDWISE LOCATION W.R.T. L.E. AND Y IS NON- DIMENSIONALIZED W.R.T. HALF SPAN. A=0.11*(12.*Y)+0.03 B=-0.0825*(12.*Y)+0.03 B=-0.0825*(12.*Y)+0.0075-A-B ZCDX=3.*A*X*X+2.*B*X+C RETURN END	88888888888	1 2 3 4 5 6 7 8 9 10 11-
CCC	FUNCTION TWST (Y) DEFINE THE TWIST DISTRIBUTION IN RADIAN AS A FUNCTION OF NONDIMEN- SIONAL Y. TWST=-0.05041+3.61004*Y-36.98046*Y*Y+37.79204*Y**3+5.54321*Y**4 1-15.46932*Y**5-0.00085*Y**6+0.00441*Y**7 TWST=TWST*3.14159265/180. RETURN END		123456789-
1 2 3 4 5	FUNCTION ZCAM (I,X) COMMON /CAMB/ ICAM,IM,XT(3,12),ZC(3,12),AAM(3,11),B3M(3,11),CCM(5, 111),DDM(3,11) K=1 IF (X .GE. XT(I,K) .AND. X .LT. XT(I,K+1)) GO TO 2 K=K+1 IF (K .GE. IM) GO TO 3 GO TO 1 SM=X-XT(I,K) ZCAM=3.*AAM(I,K)*SM**2+2.*BBM(I,K)*SM+CCM(I,K) GO TO 5 IF (X .LT. XT(I,1)) GO TO 4 K=IM-1 GO TO 2 K=1 GO TO 2 RETURN END	000000000000000000000000000000000000000	123456789012345678 1112345678 -

```
FUNCTION ZCR (X)
                                                                                                   Ε
                                                                                                        1
        COMMON / CAMB/ ICAM, IM, XT (3, 12), ZC (3, 12), AAM (3, 11), BBM (3, 11), CCM (3,
                                                                                                   աաաաաաաա
                                                                                                        234
      111) DDM(3,11)
       IF (ICAM .EQ. 1) GO TO 1
C
C
                                                                                                        56
    *** CAMBER FUNCTION AT THE ROOT IS DEFINED HERE ***
С
                                                                                                        789
        ZCR=0.
       GO TO 2
        ZCR = ZCAM(1 \cdot X)
 1
                                                                                                       10
 2
        RETURN
                                                                                                       11
        END
                                                                                                       12-
       FUNCTION ZCI (X)
                                                                                                   F
                                                                                                        1
      COMMON / CAMB/ ICAM, IM, XT (3, 12), ZC (3, 12), AAM (3, 11), BBM (3, 11), CCM (3, 11), DDM (3, 11)
                                                                                                        ż
                                                                                                   FFFFF
       IF (ICAM "EQ. 1) GO TO 1
                                                                                                        4
5
С
Č
   *** CAMBER FUNCTION AT THE INTERMEDIATE STATION IS DEFINED HERE ***
                                                                                                        6
С
                                                                                                   F
                                                                                                        7
       ZCI = ZCR(X)
                                                                                                   F
                                                                                                        8
                                                                                                       - Ģ
                                                                                                   FFFF
```

```
GO TO 2
ZCI = ZCAM(2 \cdot X)
RETURN
END
```

2

C C

Ċ

3 9

```
FUNCTION ZCT (X)
     COMMON / CAMB/ ICAM & IM & XT (3, 12) & ZC (3, 12) & AAM (3, 11) & BBM (3, 11) & CCM (3,
    111), DDM(3,11)
     IF (ICAM _EQ. 1) GO TO 1
 *** CAMBER FUNCTION AT THE TIP IS DEFINED HERE ***
     ZCT = ZCR(X)
     GO TO 2
     ZCT=ZCAM(3,X)
1
2
     RETURN
     END
```

ຉຉຉຉຉຉຉຉຉຉຉຉຉ

10

11

12-

2

SUBROUTINE INVN (DQ, CP, AW, LAT, NALP, N, IP) DIMENSION DQ(IP, IP), CP(1), AW(1) SETDIM IS TO SET UP ARRAY TABLE FOR MATRIX INVERSION, AND MAY NUT BE NEEDED IF OTHER INVERSION ROUTINES ARE USED. IA=IP CALL SETDIM (DQ,IA,IA) IF (NALP,EQ.1) GO TO 3 REWIND 01 س و بورود و است. متورد ما محمد ما از از ا DO T I=1.N READ (D1) (AW(K).K=1.N) READ (D1) (CP(K).K=1.N) DO 1 J=1,N 1 $DQ(I_{P}J) = AW(J)$ DQ IS THE MATRIX TO BE INVERTED, AW IS A WORKING ARRAY. THE INVERTED MATRIX IS RETURNED IN DQ. CALL HEMINV (DQ.N.AW) DO 2 I=1.N WRITE (O2) (DQ(I.K).K=1.N) 23 IF (LAT.NE.1) GO TO 6 REWIND 01 DO 4 I=1.N READ (01) (AW(K),K=1,N) READ (01) (CP(K),K=1,N) DO 4 J=1,N 4 $DQ(I_{P}J)=CP(J)$ CALL HEMINV (DQ, N, AW) DO 5 I=1.N WRITE (02) (DQ(I.K).K=1.N) 5 RETURN 6 END

Н

н

Н

Н

н

Н

H

Η

H

H

H

Н

Н

Н

н

Н

H

Н

Ĥ

Н

Н

Н

H H

H

н

Н

н

Н

Н

3

ś

1

104

С С С

С

C C

Č

1

SUBROUTINE THRUST (LPANEL, GAMMA, SNALP, IALP, LPAN1, CAMLE1, CAMLE2, CAM 1LE3,YTW, IST, IWING, TINP, NGRD, HEIGHT, ATT, YK, DC, DS, CSU, JWING, IWGLT, NC 20KZOPOBKORLOCNALP) DIMENSION GAMMA(1), SNALP(1), YK(1), DC(1), DS(1), CSU(1) DIMENSION CNALP(1) TAN(X) = SIN(X)/COS(X)COMMON /GEOM/ HALFSW/XCP(200)/YCP(200)/ZCP(200)/XLE(100)/YLE(100)/ 1XTE(100), PSI(30), CH(100), XV(200), YV(200), SN(10,3), XN(200,2), YN(200 2,2), ZN(200,2), WIDTH(7), YCON(51), SWEEP(100), HALFB, SJ(31,7) COMMON /AERO/ AM, B, CL(50), CT(50), CD(50), CM(50) COMMON /CONST/ NCS, NCW, M1(7), MJW1(2,5), MJW2(2,5), NJW(5), NFP, NW(2) COMMON /SCHEME/ C(2), X(10,41), Y(10,41), SLOPE(15), XL(2,15), XTT(41), 1XLL(41) LG = 1NS = NCSIF (NGRD EQ. 1) LG=2 ITWST=CM(1) IV = CM(50)ICAMT = CM(49)B1 = BPI=3.14159265 CN = NW(1)CS = DC(1)SS=DS(1)ZB=0. YB=0. Y88=0_ IPM=1 DO 29 I=1,NCS FCOS=COS(SWEEP(I)) FTAN=TAN(SWEEP(I)) CST=CSIF (NW(2) .EQ. 0) GO TO 1 I1 = I + NCSCHL=CH(I)+CH(I1)GO TO 2 CHL = CH(I)CONTINUE SRT=SQRT(CH(I)/CHL) BB = B. IZ=1IW = 1MM = 0ISN=1NM = NW(1)NL = NW(1)NL=NW A=0. KP=1+(I-1)*NW(1) SIND=DS(1)ZA=0. YA = 0YAA=0IPN=1DO 17 NN=1, LPANEL L = N NJ = N N - M M

1

I

Ι

Ī

I

I

Ī

I

I

Ĩ

I

Ĩ

I

I

Ī

Ï

Ī

I

Ī

Í

Ĩ

I

Ī

Î I

Ī

Ĩ

Ī

Ĩ

Ī

Ι

Ī

Î

Ι

I

I

I

I

I

Ι

I

I

Ι

Ι

Ī

Í

I

1

Ι

Ī

1

Ż

Ĩ.

5678

9

10

11

12

13

14

15

16 17

18

19

20

2122325

26

27

28

30

31

32 33

34 35

36 37

38

39

40

41

42 43 44

45

46

47

4849

50

51

52 53

54

55

56 57

1

1 2 ę

```
FN = NL
        IF (NN .GE. LPAN1 .AND. NN .LT. LPANEL) GO TO 3
        GO TO 4
3
        NL = NW(2)
        NL=NW(2)

IF (NN GT. LPAN1 AND. NN LE. LPANFL) ISN=2

CONTINUE

X1=XN(NN,1)-XLE(I)

X2=XN(NN,2)-XLE(I)

X12=XN(NN,2)-XN(NN,1)

ISM=2

FC=1.
4
       FC=1.

IF (IV .EQ. 1 .AND. IZ .GT. IWING) ISM=1

DO 12 K=1.ISM

IF (KZ_EQ.1.AND.K.EQ.2) FC=-1.

IF (K .EQ. 1) GO TO 5

N1=1

GO TO 6

N1=2

CONTINUE

DO 12 KK=1.LG

IF (ABS(CS=COSD).GT.D.001) GO TO 7

IF (K .EQ. 1 .AND. KK .EQ. 1) GO TO 8

CONTINUE

PS=SIND
        FC=1_{-}
     . ....
56
7
        PS = SIND
        PC = COSD
        QŠ=SS
        QC = CS
        GO TO 9
8
        PS=0.
        PC=1.
        QS = 0_{-}
        QC = 1
9
        CONTINUE
        Y12=YN(NN,2)-YN(NN,1)
        Z12=ZN(NN,2)-ZN(NN,1)+Y12*PS
        Y2 = YAA + (YN (NN_2) - YA) + PC - YC
        XYK = X1 + Y12 - Y1 + X12
        IF (KK .EQ. 1) GO TO 10
        ŹĊ=-Ź"*(ŹČP(KP)+ŽB+(YLE(Ĭ)-YB)*QS+HEIGHT)+ZCP(KP)+Z3+(YLE(I)-YB)*W
      1 S
        GE = -1
        FCON=1.
        ŽČ=ŽČP(KP)+ZB+(YLE(I)-YB)*QS
GE=1.
FCON=0
        GO TO 11
10
       Z1 = ZN (NN, 1) - ZC + ZA + (YN (NN, 1) - YA) * PS
Z2 = ZN (NN, 2) - ZC + ZA + (YN (NN, 2) - YA) * PS
XZJ = X1 * Z12 - Z1 * X12
UC 0 m = - 71 + Y + 3 + X12
11
        XZJ=X1*Z12-Z1*X12
UCOM=-Z1*Y12*(-ATT)*FCON
        YZI=Y1*Z12-Z1*Y12
                                                                                                 I 111
I 112
I 113
I 114
                                                                                                                         I 111
       ALB1=XYK*XYK+XZJ*XZJ+B1*YZI*YZI
R1B1=SQRT(X1*X1+B1*Y1+B1*Z1*Z1)
R2B1=SQRT(X2*X2+B1*Y2*Y2+B1*Z2*Z2)
```

60

61

62

63

64

65

66 67

68

69

70

71

72 73

74

75

76

77

78

79

80

31

82 83

84

85

86

87

88

89

90

91

92

93 94

95

96

97

98

99 I

Ī 100

I 101

I 102

I 103

1 104 I 105

I 106

I 107 I 108

I 109 I 110

3 1

T

Ì

I

Ŧ

I

I

T

I

I

Ī

Ι

I

Ĩ

I Ī

T

I

Ī

Ī

ĩ

I

T

I

I

Ī

I

1

I

Ι

I

I

ī

I

I

T

I

I

I

I

106

4
```
UUB1=(X2*X12+B1*Y2*Y12+B1*Z2*Z12)/R2B1-(X1*X12+B1*Y1*Y12+B1*Z1*Z12

1)/R1B1

()/R1B1

                                                   UUB1=(X2*X12+B1*Y2*Y12+B1*Z2*Z12)/R2B1-(X1*X12+B1*Y1*Y12+B1*Z1*Z12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           I 115
                                             1)/R1B1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               I 116
  12
 13
   14
  15
 16
17
18
19
  20
                                                     GO TO 24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1 171
```

•

1

21	
22	GÖ TO 24
	ALPT = SNALP(I)
	CAM=CAMLE3
23	ZC = ZCP(KP) + ZB + (YLE(I) - YB) + DS(IPM)
	YC=YBB+(YLE(I)-YB)*DC(IPM)
	DSS=DS(IPM) DCC=DC(IPM)
	WBT=0. IF (BK.GT.O.001 .OR. RL.GT.O.001) CALL WBETA (XC/YC/ZC/WBT/DSS/DCC
	1 BKARLAHALFBAXLLAXTTANSAIVAIWINGANGRDAHEIGHTATTAY(AIWGLTANC) ALPT=P*(ZC*DS(IPM)+YC*DC(IPM))/HALFB+BK*DS(IPM)-RL*XLF(I)/HALFH
	1 * DS (IPM) + WBT CAM=D_
24	
	A=A/8.+(ALPT-CAM)*CST A=A*SRT
	THRT1=A/(CN*SQRT(FTAN*FTAN+BB)) CD(I)=THRT1
	IF (KZ_NE_0) GO TO 25 (T(I)=(PI/2))*SQRT(1 -AM*AM*ECOS*ECOS)+THET1+THET1/ECOS
	FCR=1 FCR=1
25	CSU(I) = CT(I) * FCR
25	IF (IWING NE. C. AND. I ER. IWING) GO TO 26
26	IF (YLE(I+1) LT, YK(IPM)) GO TO 29
20	ZB = ZB + (YK(IPM) - YB) + SS
·	YB = YK(IPM)
77	GO TO 28
2.1	ZB=0
	ZB=YK(NC-2)*DS(1)
2.0	YB=YK(NC-2) * DC(1) YB=YK(NC-2)
28	CONTINUE IPM = IPM+1
••	CS=DC(IPM) SS=DS(IPM)
29	CONTINUE RETURN
	END

-

•

¥.

٠

108

٤

\$

s

SUBROUTINE BENDIN (NC/CL/BM/IWING/BREAK/SUMM/SUMT/NJING/HALFSH/HAL 1FBH, DC, DS, IWGLT, FTL) DIMENSION A(30), BM(1), H(30), PHI(30), BREAK(1), C_(1) DIMENSION DC(1), DS(1) ČÔM MÔN / ĠEÔM / HALFŚŴ, XCP(200), YCP(200), ZCP(200), XLE(100), YLE(100), 1XTE(100), PSI(30), CH(100), XV(200), YV(200), SN(10,3), XV(200,2), YN(200 2,2), ZN (200,2), WIDTH (7), YCON (51), SWEEP (100), HALFB, SJ (31,7) COMMON /CONST/ NCS, NCW, M1 (7), MJW1 (2, 5), MJW2 (2, 5), NJN (5), NFP, NW (2) PI=3_14159265 NST = NCS - M1(NC) + 1SUMF=0. SUMM=0. SUMS=0. FTL=0. AREA=HALFSH HAB=HALFBH IF (IWGLT .EQ. 1) HAB=HALFB IF (IWGLT .EQ. 2) AREA=HALFSW IF (IWGLT .EQ. 2) HAB=HALFB DO 10 I=1.NC M=N(-I+1 IF (I_NE_NC) DIHEFC=DC(M)*DC(M-1)+DS(M)*DS(M-1) IF (I_NE_NC) DIHEFS=DS(M)*DC(M-1)-DC(M)*DS(M-1) IF (I_EQ. NC) DIHEFC=1. IF (I_EQ. NC) DIHEFC=1. IF (I_EQ. NC) DIHEFS=0. WSPAN=WIDTH(M)*0.5 MM=M1(M)-1 IF (I EQ. NC) DIHEFC=1. IF (I EQ. NC) DIHEFS=0. WSPAN=WIDTH(M) *0.5 MM=M1(M)-1 MM1 = M1(M)FM=MM1 1 IF (M .EQ. NWING) AREA=HALFSW IF (M .EQ. NWING) HAB=HALFB DO 1 J=1,MM FJ = JJJ = NST + JCHORD = CH(JJ)IF (NW(2) .NE. 0) CHORD=CHORD+CH(JJ+NCS) PHI(J) = FJ + PI/FMH(J) = CL(JJ) * CHORD * SJ(J,M)CONTINUE DO 3_J=1,MM1 A(J)=0. A(J)=0. FJ=J D0 2 K=1.MM A(J)=A(J)+H(K)*COS((FJ-1.)*PHI(K)) IF (J.EQ.1) A(J)=A(J)/FM IF (J.NE.1) A(J)=A(J)*2./FM CONTINUE D0 6 K=1.MM1 JK=MM1-K KK=JK+NST BSPAN=BREAK(M)-YLE(KK)+WSPAN IF (K.EQ.MM1) GO TO 5 SUM=A(1)*((PI-PHI(JK))*BSPAN+SIN(PHI(IK))*WSPAN)=0.5+A(2)+WSPAN+(SUM=A(1)*((PI-PHI(JK))*BSPAN+SIN(PHI(JK))*WSPAN)-D.5*A(2)*WSPAN*(1PI-PHI(JK)-SIN(2.*PHI(JK))/2.)-A(2)*SIN(PHI(JK))*BSPAN D0 4 J=2.4M DO 4 J=2,MM J FJ = JSUM=SUM-BSPAN*A(J+1)*SIN(FJ*PHI(JK))/FJ+WSPAN*0.5*A(J+1)*(SIN((FJ+

23

456789

14

15

222323

252627

28

29 30

31 32 33

34 35

36 37

38 39 40

41 42 43

45

52 53

54

55

56 57

109

1

2

3

_	11.)*PHI(JK))/(FJ+1.)+SIN((FJ-1.)*PHI(JK))/(FJ-1.)) BM(KK)=WSPAN*SUM/(2.*AREA*HAB) +SUMM+SUMF*(BREAK(M+1)-YLE(KK)) GO_TO_6	ן ר ר
5	BSPAN=WSPAN SUM=(A(1)*BSPAN-0.5*A(2)*WSPAN)*PI SUMM=WSPAN*SUM/(2.*AREA*HAB) +SUMM+SUMF*(BREAK(M+1)-BREAK(M)) CONTINUE	ן ר ו
	P1=A(1)*PI*WSPAN/(2.*AREA*HAB) SUMF=(SUMF+P1)*DIHEFC-SUMS*DIHEFS SUMS=(SUMF+P1)*DIHEFS+SUMS*DIHEFC IF (M _EQ. (NWING+1) _AND. IWING _NE_ 0) GO TO 7 GO TO _8	נ נ נ נ
7	SUMJ=SUMM FTL=SUMF IF (IWGLT_EQ_1) GO TO 8 SUMM=O_ SUMM=O_	נ נ נ
8	CONTINUE IF (I _EQ_ NC) GO TO 9 NST=NST-M1(M-1)+1 GO TO 10	L L L
9 10	NST=0 CONTINUE RETURN END	נ ן ן ו

6678901234567890123-

```
SUBROUTINE WING (AW, LPANEL, I, BB, LPAN1, LAT, NGRD, HEIGHT, ATT, CS, SS, YK
1, DC, DS, IWING, ZB, YB, YBB, IWGLT, NC)
 DIMENSION AW(1)
 DIMENSION BW(200)
 DIMENSION W(2), W1(2), YK(1), DC(1), DS(1), V(2), V1(2)
 COMMON /GEOM/ HALFSW, XCP(200), YCP(200), ZCP(200), XLE(100), YLE(100),
1XTE(100) PSI(30) CH(100) XV(200) YV(200) SN(10,3) XV(200,2) YN(200
2,2),ZN(200,2),WIDTH(7),YCON(51),SWEEP(100),HALFB,SJ(31,7)
 COMMON /AERO/ AM, B, CL (50), CT (50), CD (50), CM (50)
 COMMON / CONST / NCS - NCW - M1(7) - MJW1(2 - 5) - MJW2(2 - 5) - NJW(5) - NFP - NW(2)
LG=1
 IF (NGRD .EQ. 1) LG=2
 IV = CM(50)
 W1(1) = 0
V1(1) = 0
 IPN=1
B1 = BB
 17 = 1
IW = 1
 IFF=1
ISN=1
NL = NW(1)
NN = NW(1)
COSD=DC(1)
SIND=DS(1)
ZA=0
YA=0.
YAA=0.
DO 16 J=1. LPANEL
v1(2)=0.
W1(2) = 0
W(2)=0.
V(2)=0.
MI = J - IFF + 1
FN = NI
IF (J.GT. LPAN1 AND. J.LE. LPANEL) ISN=2
IF (J.GE. LPAN1 AND. J.LT. LPANEL) GO TO 1
GO TO 2
NL = NW(2)
CONTINUE
X1 = XN(J_21) - XCP(I)
X2 = XN(J_{\rho}2) - XCP(I)
X12 = XN(J_2) - XN(J_1)
ISM = 2
    (IV .EQ. 1 .AND. IZ .GT. IWING) ISM=1
IF
    11 II = 1 / ISM
DO
IF (II.EQ.1) GO TO
                         3
N=1
GO TO 4
N=2
CONTINUE
DO 11 KK=1.LG
IF (ABS(CS-COSD).GT.O.OO1) GO TO 5
IF (II EQ. 1 AND. KK EQ. 1) GO TO 6
CONTINUE
PS=SIND
PC = COSD
```

Κ XXXX ĸ ĸ K K Κ K ĸ Κ ĸ ĸ K ĸ **KKKK XXXXXXXXXX**X K ĸ KKK XXXXX KKK Κ Κ K ĸ κ Κ K Κ

,

í

1

111

1

Ż

3

4

6	PS=0. PC=1.
	QŠ=0.
7	QC=1. CONTINUE
	$Y12 = YN(J_2) - YN(J_1)$ $712 = 7N(J_2) - 7N(J_1) + Y12 + PS$
	Y12=Y12*PC
	YC=(-1_)**N*(YBB+(YCP(I)-YB)*QC) Y1=YAA+(YN(1_1)-YA)*PC-YC
	$Y2 = YAA + (YN (J_22) - YA) * PC - YC$
	IF (KK _EQ_ 1) GO TO 8
	$ZC = -2_{a} * (ZCP(I) + ZB + (YCP(I) - YB) * QS + HEIGHT) + ZCP(I) + ZB + (YCP(I) - YB) * QS$
-	GO TO 9
8	ZC=ZCP(I)+ZB+(YCP(I)-YB)*QS FCON=0_
9	
	$Z2 = ZN(J_2) - ZC + ZA + (YN(J_2) - YA) * PS$
	XZJ=X1*Z12-Z1*X12 UCOM=-71*X12*(-ATT)*ECON
	YZI=Y1*Z12-Z1*Y12
	ALB 1=X TK *X TK +X ZJ *X ZJ +B1 * TZI *TZI R1B1=SQRT(X1 *X1+B1 * Y1 + B1 * Z1 +Z1)
	R2B1=SQRT(X2*X2+B1*Y2*Y2+B1*Z2*Z2) IUIR1=(X2*X12+B1*Y2*Y12+B1*Z2*Z12)/p2B1=(X1+X12+B1+X1+V12+B1+Z1+Z1+Z1+Z1+Z1+Z1+Z1+Z1+Z1+Z1+Z1+Z1+Z1
	1)/R1B1
	$G_{1B} = (1_{a} - X_{1}/R_{1B})/(Y_{1} + Y_{1} + Z_{1} + Z_{1})$ $G_{2B} = (1_{a} - X_{2}/R_{2B})/(Y_{2} + Y_{2} + Z_{2} + Z_{2})$
	F1=UUB1*(UCOM+XYK)/ALB1 F2=-Y2+G2B1+Y1+G1B1
	$F_3 = -XZJ + UUB1/ALB1$
	F4=Z2*G2B1-Z1*G1B1 IF (KK _EQ_ 2) GO TO 10
	W(II) = (F1 + F2) * CH(IZ) * SN(MI + ISN) / (8 * FN)
	W(II) = W(II) * QC
	V(II)=V(II)*QS G0 T0 11
10	$W1(II) = (F1+F2) * CH(IZ) * SN(MI \cdot ISN) / (8 \cdot FN)$
	W1(II)=(F3+F4)*(H(IZ)*SN(MI#ISN)/(8*FN) W1(II)=W1(II)*QC
11	V1(II)=V1(II)*QS CONTINUE
••	AW(J) = W(1) + W(2) - W1(1) - W1(2) - (V(1) - V(2) + V1(1) - V1(2))
	BW(J)=W(I)-W(Z)-WI(T)+WI(Z)-(V(T)+V(Z)+V1(T)+V1(Z)) IF (J_LT_NN_OR_J_EQ_LPANEL) GO TO 16
	IFF=NN+1
	NN=NN+NL IF (IWING NF, O, AND, IW FQ, (IWING+1)) GO TO 12

~

•

,

112

.

.*

```
IF (IW .EQ. (NCS+1)) GO TO 14
     IF (YLE(IZ) LT. YK(IPN)) GO TO 16
12
     CONTINUE
     ZA = ZA + (YK(IPN) - YA) + SIND
     YAA = YAA + (YK(IPN) - YA) + COSD
     YA = YK(IPN)
     IF (IWING .NE. O .AND. IW .EQ. (IWING+1)) GO TO 13
     GO TO 15
13
     IF (IWGLT _EQ. 1) GO TO 15
14
     ZA=0.
     YA = 0
     YAA=0.
     IF (IWGLT NE 2) GO TO 15
ZA=YK(NC-2)*DS(1)
YAA=YK(NC-2)*DC(1)
YA=YK(NC-2)
     IF (IW _EQ. (NCS+1)) GO TO 15
     YA = YK(NC-2)
15
     CONTINUE
     IPN = IPN + 1
     IF (J EQ, LPAN1 OR, J EQ, LPANEL) IPN=1
     COSD=DC(IPN)
     SIND=DS(IPN)
     IF (J EQ LPAN1 OR J EQ LPANEL) IW=1
WRITE (01) (AW(J), J=1, LPANEL)
16
     WRITE (01) (BW(J)_{\rho}J=1_{\rho}LPANEL)
     RETURN
     END
                                                          .
```

~~

Â

۲

.

、

K 115 K 116 K 117 к 118 к 119 K 120 K 121 K 122 K 123 K 124 ĸ 125 к 126 K 127 K 128 K 129 к 130 K 131 K 132 K 133 K 134 K 135 K 136 K 137 к 138 K 139 к 140 K 141-

• 3

```
SUBROUTINE LATERL (GAMMA, AW, CA, LAT, LPANEL, LPAN1, DF, NAL, YK, DS, DC, IW
1 ING / IWGLT / NALP / ALP / GAMP / GAMB / GAMR / CP / GAMX / BREAK / SWP / CHORDT / YCN /
2 SNALP (NALP)
 DIMENSION GAMMA(1), AW(1), CA(1), DF(1), YK(1), DS(1)
 DIMENSION DC(1), GAMP(1), GAMB(1), GAMR(1), CP(1), SAMX(1), BREAK(
11), SWP(10,15), CHORDT(1), YCN(1), SNALP(1), CNALP(1)
COMMON /GEOM/ HALFSW,XCP(200),YCP(200),ZCP(200),XLE(100),YLE(100),
1XTE(100)/PSI(30)/CH(100)/XV(200)/YV(200)/SN(10/3)/XN(200/2)/YN(200
2,2),ZN(200,2),WIDTH(7),YCON(51),SWEEP(100),HALFB,SJ(31,7)
 COMMON /CONST/ NCS, NCW, M1(7), MJW1(2,5), MJW2(2,5), NJA(5), NFP, NW(2)
COMMON /SCHEME/ C(2), X(10,41), Y(10,41), SLOPE(15), XL(2,15), XTT(41),
1 \times LL(41)
 COMMON / AERO/ AM_B_CL(50)_CT(50)_CD(50)_CM(50)
 CÔMMÔN /EXTRA/ CAMLE1, CAMLE2, CAMLE3, YTW, ISP, TINP, NGR D, HEIGHT, ATT, N
1C, NWING, HALFBH, IPOS, IALP
 COMMON /BETA/ GMAX(50),XTG(50),YTG(50),ZTG(50),B2,NCG,CTG(15),STG(
115) DIST
 DIMENSION DUM(200), DUMY(200), DUMZ(200), DUMS(200), DUMC(200)
L1=LPANEL+1
 IV = CM(50)
 PI = 3.14159265
 IF (LAT.EQ.1) GO TO 5
 REWIND 01
 READ (01) (DUM(I),I=1,LPANEL)
 READ (01) (AW(I), I=1, LPANEL)
 AW(L1)=0.
 DO 1 I=1.LPANEL
 GAMMA(I) = -AW(I+1)/AW(1)
 NJ=LPANEL-1
 MM = NW(1)
 NN = NW(1)
 DO 4 IJ=2, LPANEL
 READ (01) (DUM(K) K=1 LPANEL)
READ (01) (AW(K) K=1 LPANEL)
 AW(L1) = 0.
 IF (IJ .GE. MJW1(1.NAL) .AND. IJ .LE. MJW2(1.NAL)) GO TO 2
    (IJ_GE. MJW1(2,NAL) .AND. IJ .LE. MJW2(2,NAL)) AW(L1)=DF(NAL)
 IF
 GO TO 3
    (IJ "EQ, MM) AW(L1)≃O"5*DF(NAL)
 IF
 IK = IJ
 CALL VMSEQN (NJOIKOAWOGAMMADCA)
 NJ = NJ - 1
IF (IJ.GE.LPAN1.AND.IJ.LT.LPANEL) NN=NW(2)
 IF (IJ LT, MM) GO TO 4
MM=MM+NN
 CONTINUE
 RETURN
 KZ = 1
 BK = 0_{a}
 P = 0.1
 RL = 0_{-}
NWW=NW(1)
IST=0
IF (NW(2).NE.0) NWW=NW(2)
IF (NW(2).NE.0) IST=LPAN1
                                       -
DO 8 I=1,NCS
 GMAX(I)=0_{a}
```

Ł

Ē

L

Ĺ

Ē

L

Ē

È

Ē

È

Ĺ

Ē

Ē

Ē

1

L

L

Ē

Ĺ

L

Ē

Ĺ

Ē

L

Ē

L

L L L

L

Ē

L

4

114

1

2

ž

4

5

S

 $MK = IST + (I - 1) \times NWW$ L IK = IIF $(NW(2)_NE_0)$ IK=I+NCS DO 7 LQ=1,NWW L LP=MK+LQ L AA=1AA=T. DO 6 LS=1>NWW LN=MK+LS IF (LS.EQ.LQ) GO TO 6 AA=AA*(XTE(IK)-XV(LN))/(XV(LP)-XV(LN)) L L 6 7 L GMAX(I) = GMAX(I) + AA + GAMX(LP)L CONTINUE NCG=8L FN = NCGDIST=DIST*2. L DO 9 I=1,NCG FI = IAG=(2.*FI-1.)*PI/(2.*FN) CTG(I)=COS(AG) STG(I)=SIN(AG) DO 33 I=1.3 MM=NW(1) L Ĺ L 9 L L NN = NW(1)L IPN=1IPM=0L IZ=1 Ł IW=1 Ē YB=0. ZB=0. YBB=0. IF (I.NE.1) REWIND 03 D0 15 IJ=1.LPANEL YC=YBB+(YCP(IJ)-YB)*DC(IPN) ZC=ZCP(IJ)+ZB+(YCP(IJ)-YB)*DS(IPN) YC=XCP(IJ) Y8=0_ L L L L L L L L Ĺ L 1 IZ=IW IF (I.NE.1) CALL WBETA (XC,YC,ZC,WBT,DSS,DCC,BK,RL,HALFB,XLL,XTT,N L 1CS, IV, IWING, NGRD, HEIGHT, ATT, YK, IWGLT, NC) L CA(IJ)=P*(ZC*DS(IPN)+YC*DC(IPN))/HALFB+BK*DS(IPN)- RL*XCP(IJ)/ L 1HALFB*DS(IPN)+WBT L 100 IF (I.NE.1) GO TO 10 L 101 DUM(IJ)=DC(IPN) Ē 102 DUMS(IJ)=DS(IPN) L 103 DUMC(IJ)=CNALP(IZ) L 104 DUMY(IJ)=YCĒ 105 DUMZ(IJ)=ZCL 106 10 CONTINUE IF (IJ GE. LPAN1 AND. IJ LT. LPANEL) NN=NW(2) IF (IJ LT. MM) GO TO 15 MM=MM+NN IZ=IZ+1 IW=IW+1 L 107 L 108 L 109 L 110 L 111 L 112 (IWING .NE. O .AND. IW .EQ. (IWING+1)) GO TO 11 IF L 113 IF (IW.EQ. (NCS+1)) GO TO 13 L 114

58

ŠŠ

60

61

62 63

64 65

66 67

68

õ9

70

71

72 73

74

75

76 77

78

7**9**

80

81

82 83

84

85

86 87

88

89

90 91

9Ż

93

94 9Ŝ

96

97

98

99

8

,

```
IF (YLE(IZ) .LT. YK(IPN)) GO TO 15
CONTINUE
ZB=ZB+(YK(IPN)-YB)*DS(IPN)
YB=YB+(YK(IPN)-YB)*DC(IPN)
YB=YK(IPN)
IF (IWING.NE.O.AND.IW.EQ.(IWING+1)) GO TO 12
GO TO 14
IF (IWING.NE.O.AND.IW.EQ.(IWING+1)) GO TO 12
GO TO 14
IF (IWGLT.EQ.1) GO TO 14
ZB=0.
YBB=0.
IF (IW.EQ.(NCS+1)) GO TO 14
IF (IW.EQ.(NCS+1)) GO TO 14
ZB=YK(NC-2)*DS(1)
YB=YK(NC-2)*DS(1)
YB=YK(NC-2)*DS(1)
YB=YK(NC-2)*DC(1)
YB=YK(NC-2)*DC(1)
YB=YK(NC-2)*DC(1)
YB=YK(NC-2)*DC(1)
YB=YK(NC-2)
CONTINUE
IFN=IPN+1
IF (IJ .EQ. LPAN1 .OR. IJ .EQ. LPANEL) IPN=1
IF (IJ .EQ. LPAN1 .OR. IJ .EQ. LPANEL) IW='
REWIND 02
IF (NALP.EQ.1) GO TO 17
DO 16 K=1,LPANEL
READ (02) (AW(J),J=1,LPANEL)
DO 19 J=1.LPANEL
GAMMA(J)=0.
READ (02) (AW(K),K=1,LPANEL)
DO 18 K=1,LPANEL
GAMMA(J)=GAMMA(J)-AW(K)*CA(K)
CONTINUE
CALL THRUST (LPANEL,GAMMASSNALP,IALP,LPAN1,CAMLE1,CAMLE2,CAMLE3,YT
11
12
13
14
15
16
17
18
10
            CALL_THRUST (LPANEL/GAMMA/SNALP/IALP/LPAN1/CAMLE1/CAMLE2/CAMLE3/YT
         1W. ISP. IWING. TINP. NGRD. HEIGHT. ATT. YK. DC. DS. CA. IWING. IWGLT. NC. KZ.
         2 POBKORLOCNALP)
            CALL GAMAX (AW, CA, LPAN1, LPANEL, GAMMA, NC, BREAK, SWP, CHORDT, IWING,
         1 NWING, HALFBH, YCN, SLOPE, CTX, IWGLT, IPOS, KZ)
IF (I.EQ.1) GO TO 23
IF (I.EQ.2) GO TO 27
            DO = 20 K=1, LPANEL
            GAMR(K)=GAMMA(K)*DUMC(K)-YV(K)/HALFB*CP(K)*RL-XV(K)/HALFB
20
         1 \times GAMX(K) \times RL \times DUM(K)
           *GAMX(K)*KL*DUM(K)

D0 21 K=1*NCS

Y(10*K)=CD(K)

D0 22 K=1*NCW

XL(1*K)=CL(K)

IF (IWING*NE*O) XL(2*K)=CM(K)

G0 T0 31

P0 24 K=1*IPANFI
21
22
23
           GAMP(K)=GAMMA(K) *DUMC(K) +DUM(K) *P *DUMZ(K) /HALFB *GAMX(K) -DUMS(K) *P
         1 * DUMY(K)/HALFB*GAMX(K)
           DO 25 K=1,NCS
Y(4,K)=CD(K)
DO 26 K=1,NCW
Y(5,K)=CL(K)
IF (IWING.NE.D) Y(6,K)=CM(K)
GO TO 31
DO 28 K=1,LPANEL
            DO 25 K=1,NCS
25
26
27
```

L 115

L 116 Ē 117 L 118 L 119 L 120 Ľ 121

L 122

L 123 L 124 L 125 L 126 L 127 L 128 Ē 129 L 130

L 131 L 132 L 133

L 134 L 135 L 136 Ē 137 L 138

L 139

L 140 L 141 L 142 L 143

L 144

L 145

L 146

L 147

L 148

Ē 153

L 154

Ē 155

L 156

Ē 157 L 158 L 159

L 160 L 161

L 162

L 163

1 164

L 165

L 166 L 167 L 168

L 169 L 170

L 171

1

L 149

L 150 L 151 Ē 152

GAMB(K)=GAMMA(K) *DUMC(K)+BK*GAMX(K) *DUM(K)
DO 29 K=1.NCS
$Y(7_K) = CD(K)$
DO = 30 K=1.NCW
Y(8,K) = CL(K)
IE (IWING, NE, Π) Y(9,K)=CM(K)
$IF (I_{-}FQ_{-}1) = GO = TO = 32$
IF (I_FQ_3) 60 TO 33
RL=0.1
BK = 0.
60 TO 33
BK=0.1
P=0_
CONTINUE
RFTURN
END

~

1

-

,

L 172 L 173 L 174 L 175 L 1776 L 1778 L 1778 L 1778 L 1883 L 1883 L 1885 L 1886 L 187 L 187

1

•

1

117

.

```
SUBROUTINE WBETA (X,Y,Z,WN,DSS,DCC,BK,RL,HALFB,DS,DC,NCS,IV,IW1NG,
1 NGRD, HEIGHT, ATT, YK, IWGLT, NC)
  DIMENSION DS(1), DC(1), CON(2), W(2), V(2), YK(1)
 COMMON /BETA/ GMAX(50), XTG(50), YTG(50), ZTG(50), B2, NCG, CTG(15), STG(
115) .DIST
 DATA CON/1 ... -1./
  DIST2=0.5 \times DIST
 FN = NCG
 WW = 0
 VV = 0.
 LG=1
 IF (NGRD_EQ_1) LG=2
 ZA=0.
 YA = 0
 YAA=0
 IPN=1
 00 13 I=1.NCS
 IF (BK.GT.0.01) PR=BK*DC(I)
 ISM = 2
  IF (IV.EQ.1.AND.I.GT.IWING) ISM=1
 J=2 FOR LEFT WING EFFECT
  DO = 8 J = 1 P ISM
 W(J)=0.
 V(J)=0.
 DO = 8 K = 1 NCG
 DO 8 KK=1,LG
 YC = Y \star C ON (J)
 QX1=XTG(I)+DIST2*(1.-CTG(K))
QX2=XTG(I+1)+DIST2*(1.-CTG(K))
IF (RL.GT.0.01) PR=-RL*0.5*(QX1+QX2)/HALFB
 IF (RL_GT_0_01) GO TO 6
 x = Q \times 1 - X
 X^2 = QX^2 - X
 X12=QX2-QX1
IF (ABS(DCC-DC(I)) GT 0.001) GO TO 1
IF (ABS(DCC-DC(I)) GT 0.001) GO TO 2
 IF (J.EQ.1.AND.KK.EQ.1) GO TO 2
 PS=DS(T)
 PC = DC(I)
GO TO 3
 PS=0
 PC=1
 CONTINUE
 Y_{12}=Y_{IG}(I+1)-Y_{IG}(I)
 Z12 = ZTG(I+1) - ZTG(I) + Y12 + PS
  Y12=Y12*PC
 Y1 = YAA + (YTG(I) - YA) + PC - YC
  Y_2 = YAA + (YTG(I+1) - YA) + PC - YC
 XYK = X1 + Y12 - Y1 + X12
 IF (KK_EQ.1) GO TO 4
 IF (KK EW. 1/ GO 10
ZC=-2.*(Z+HEIGHT)+Z
GE=-1.
FCON=1.
 GO TO 5
ZC=Z
GE=1.
FCON=0.
Z1=ZTG(I)-ZC+ZA+(YTG(I)-YA)*PS
 GO TO 5
```

M

м М

M М

М

М

М

м M

M

M

Μ

M

М

Μ

Μ.

Μ

М

Μ

Μ

M

M

Μ M

Μ

Μ

Μ

M Μ

Μ

Μ

Μ

M Μ

Μ Μ

М

М

М

Μ

M

Μ M

Μ

М

Μ

Μ

M

Μ

М

Μ

Μ

Μ Μ

Μ

М

1

2345

6789

10

11

12

13

14

15

16

17

18

19

20

21223225

Ž6

27

29 30

31 32 33

34 35

36 37

38

39

40

41 42 43

44

45

46

47 4849

54

55 56

57

118

С

1

2

3

4

```
72 = ZTG(I+1) - ZC + ZA + (YTG(I+1) - YA) + PS
      xz = x1 + z12 - z1 + x12
      UCOM=-Z1*Y12*(-ATT)*FCON
      YZI = Y1 + Z12 - Z1 + Y12
      ALB1 = XYK + XYK + XZJ + XZJ + BZ + YZI + YZI
      RB1 = SQRT(X1 + X1 + B2 + Y1 + Y1 + B2 + Z1 + Z1)
      RB2 = SQRT(X2 \times X2 + B2 \times Y2 \times Y2 + B2 \times Z2 \times Z2)
      UB=(X2*X12+B2*Y2*Y12+B2*Z2*Z12)/RB2-(X1*X12+B2*Y1*Y12+B2*Z1*Z12)/
     1 RB1
      GB1 = (1 - X1 / RB1) / (Y1 + Y1 + Z1 + Z1)
      GB2 = (1, -X2/RB2) / (Y2 + Y2 + Z2 + Z2)
      F1 = UB * (UCOM + XYK) * GE/ALB1
      F2 = (-Y2 * GB2 + Y1 * GB1) * GE
      F3 = -XZJ + UB/ALB1 + CON(J)
      F4 = (Z2 * GB2 - Z1 * GB1) * CON(J)
      P1 = -(F3 + F4) * STG(K) * GMAX(I) * DIST/FN
      P2 = -(F1+F2) \times STG(K) \times GMAX(I) \times DIST/FN
      WRITE (03) P1, P2
      GO TO
               7
      READ (03) P1,P2
67
      V(J) = V(J) + P1 + PR
8
      W(J) = W(J) + P2 + PR
      IF (RL_GT_0_01) GO TO 12
         (IWING.NÉ.O.AND.I.EQ.IWING) GO TO 9
      IF
      IF (YTG(I+1) LT YK(IPN)) GO TO 12
      ZA = ZA + (YK(IPN) - YA) * DS(I)
9
      YAA = YAA + (YK(IPN) - YA) + DC(I)
      YA = YK (IPN)
      IF (IWING.NE.() AND. I.EQ.IWING) GO TO 10
      GO TO 11
10
      IF (IWGLT_EQ_1) GO TO 11
      ZA=0.
      YA = 0
      YAA=0.
      IF (IWGLT_NE_2) GO TO 11
      ZA = YK (NC - 2) * DS(1)
       YAA = YK(NC - 2) * DC(1)
      YA = YK(NC - 2)
      IPN = IPN + 1
11
12
      CONTINUE
      WW = WW + (W(1) - W(2))/8_{*}
      VV = VV + (V(1) - V(2))/8.
13
      CONTINUE
       WN = WW * DCC - VV * DSS
      RETURN
      END
```

58 M 59 M Μ 60 Μ 61 Μ 62 М 63 64 65 М M Μ 66 Μ 67 Μ 68 69 Μ M 70 М 71 72 М M 73 74 M М 75 М 76 М 77 Μ 78 ŻŽ М Μ 80 Μ 81 82 Μ 83 Μ 84 Μ Μ 85 86 Μ М 87 88 M M 89 М **9**0 91 Μ 92 Μ 93 М 94 M Μ 95 96 Μ Μ 97 98 М 99 Μ Μ 100 M 101 M 102 103-M

```
SUBROUTINE BACKWH (X,Y,Z,LPANEL,B,LPAN1,NW,GAMMA,VX,LAT,CD,SD,YK,
1DC, DS, VT, IWING, ZB, YB, YBB, NCS, IWGLT, NC)
 DIMENSION NW(1), GAMMA(1), U(2), YK(1), DC(1), DS(1)
 COMMON / GEOM/ HALFSW, XCP(200), YCP(200), ZCP(200), XLE(100), YLE(100),
1XTE(100)/PSI(30)/CH(100)/XV(200)/YV(200)/SN(10/3)/XN(200/2)/YN(200
2,2),ZN(200,2),WIDTH(7),YCON(51),SWEEP(100),HALFB,SJ(31,7)
 B1=B
 IZ = 1
 TFF=1
 ISN=1
 IPN=1
 IW=1
 COSD=DC(1)
 SIND=DS(1)
 ZA=0.
 YA = C_{\bullet}
 YAA=0.
 MM = NW(1)
 NN = NW(1)
 VX=0.
 VT=0.
 DO = 6 J = 1 PANEL
 79=7
 MI = J - IFF + 1
 FN = NN
 IF (J .GT. LPAN1 .AND. J .LE. LPANEL) ISN=2
IF (J .GE. LPAN1 .AND. J .LT. LPANEL) NN=NW(2)
 X1 = XN(J_{2}1) - X
 X2 = XN(J_2) - X
 X12 = XN(J_{2}2) - XN(J_{2}1)
 Y12=YN(J_2)-YN(J_1)
 Z12 = ZN(J_{2}2) - ZN(J_{2}1) + Y12 + SIND
 Y12 = Y12 + COSD
 Z1 = ZN(J_1) - (Z+ZB+(Y-YB) + SD) + ZA + (YN(J_1) - YA) + SIND
 Z2 = ZN(J,2) - (Z+ZB+(Y-YB)*SD)+ZA+(YN(J,2)-YA)*SIND
 XZJ = X1 + Z12 - Z1 + X12
 DO 1 II=1,2
FCP=1
 IF (II EQ. 2) FCP=-1.
YC=FCP*(YBB+(Y-YB)*CD)
 Y1 = YAA + (YN(J_P1) - YA) + COSD - YC
 Y2 = YAA + (YN(J_2) - YA) + COSD - YC
 XYK = X1 + Y12 - Y1 + X12
 YZI=Y1 * Z12-Z1 * Y12
 ALB1=XYK*XYK+XZJ*XZJ+B1*YZI*YZI
 R1B1=SQRT(X1+X1+B1+Y1+Y1+B1+Z1+Z1)
 R2B1=SQRT(X2*X2+B1*Y2*Y2+B1*Z2*Z2)
 UUB1=(X2*X12+B1*Y2*Y12+B1*Z2*Z12)/R2B1-(X1*X12+B1*Y1*Y12+B1*Z1*Z12)
1)/R1B1
 G1 = (1_{a} - X1/R1B1)/(Y1 + Y1 + Z1 + Z1)
 G2 = (1 - X2/R2B1)/(Y2 + Y2 + Z2 + Z2)
 F1=UUB1*XYK/ALB1
 F2 = -Y2 + G2 + Y1 + G1
 F4 = -XZJ + UUB1/ALB1
 F5 = Z2 * G2 - Z1 * G1
 F12 = -(F1 + F2)
 F45 = F4 + F5
```

N

Ν

N

N

N

N

N

N

Ν

Ν

Ν

N

N

Ν

Ν

Ν

N

N

N

N

Ν

N

Ň

Ν

Ν

Ν

Ν

Ν

Ν

N

Ν

N

Ν

N

N

N

N

N

Ν

N

Ν

Ν

Ν

N

Ν

N

N

Ν

N

N

Ν

Ν

Ν

Ν

N

N

N

(LAT _EQ. 0) F45=F45*FCP IF IF (LAT NE. D) F12=F12*FCP F3=UUB1*YZI/ALB1 IF (LAT .NE. 0) F3=F3*FCP $U(TI) = F3 \star CH(IZ) \star SN(MI, ISN) \star GAMMA(JJ)/(8 \star FN)$ VT = VT + (F12 * SD + F45 * CD) * CH(IZ) * SN(MI + ISN) * GAMMA(JJ)/(B * FN)CONTINUE VX = U(1) + U(2) + VXIF (J .LT. MM) GO TO 6 IZ = IZ + 1IW = IW + 1IFF=MM+1MM = MM + NNIF (IWING .NE. O .AND. IW .EQ. (IWING+1)) GO TO 2 IF (IW .EQ. (NCS+1)) GO TO 4 IF (YLE(IZ) LT. YK(IPN)) GO TO 6 CONTINUE ZA = ZA + (YK(IPN) - YA) + SINDYAA = YAA + (YK(IPN) - YA) + COSDYA = YK(IPN)IF (IWING NE, O AND, IW EQ, (IWING+1)) GO TO 3 GO TO 5 IF (IWGLT "EQ. 1) GO TO 5 ŽΑ=0. YA = 0YAA=0IF (IW EQ. (NCS+1)) GO TO 5 IF (IWGLT NE 2) GO TO 5 $ZA = YK(NC-2) \times DS(1)$ YAA = YK(NC-2) * DC(1)YA = YK(NC - 2)CONTINUE IPN = IPN + 1IF (J EQ. LPAN1 OR. J EQ. LPANEL) IPN=1 COSD=DC(IPN)SIND=DS(IPN)IF (J.EQ. LPAN1 .OR. J.EQ. LPANEL) IW=1 RETURN END

,

٠

,

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72 73

74

75

76

77

78

79

8Ó

81

82 83

84

85

86

87

88

89

<u>9</u>0

91

92

93

94

95

96-

N

N N

Ν

N

Ν

N

N

Ν

Ν

Ν

Ν

Ν

Ν

N

Ν

N

N

Ν

Ν

Ν

N

Ν

N

Ν

N

N

N N

Ν

N

N

N

Ν

Ν

N

N

Ν

N

2

1

د

٦

3 4

5

6

```
SUBROUTINE PANEL (XXL/YL/XXT/CPCWL/CPSWL/NSW/IPANEL/LPANEL/SWP/LK/
 1 ZS L
  DIMENSION XXL(1), YL(1), XXT(1), CPCWL(1), CPSWL(1)
  DIMENSION SWP(10,15)
  COMMON /SCHEME/ C(2), X(10,41), Y(10,41), SLOPE(15), XL(2,15), XTT(41),
 1 \times L (41)
  COMMON /GEOM/ HALFSW/XCP(200)/YCP(200)/ZCP(200)/XLE(100)/YLE(100)/
 1XTE(100) PSI(30) CH(100) XV(200) YV(200) SN(10,3) XV(200,2) YN(200
 2,2),ZN(200,2),WIDTH(7),YCON(51),SWEEP(100),HALFB,SJ(31,7)
  COMMON /CONST/ NCS/NCW/M1(7)/MJW1(2/5)/MJW2(2/5)/NJW(5)/NFP/NW(2)
   COMMON /BETA/ GMAX(50)/XTG(50)/YTG(50)/ZTG(50)/B2/NCG/CTG(1>)/STG(
 115) DIST
  PI=3.14159265
  NSW1=NSW-1
  NR = B2
  DO 1 I=1,2
  C(I) = X X T(I) - X X L(I)
   DO 1 J=1.NCW
   XL(I_J) = XXL(I) + CPCWL(J) + C(I)/100_{-}
   SPAN=YL(2)-YL(1)
   DO 2 J=1,NCW
   PSI(J) = 0.5 + (1. - COS(FLOAT(J) + PI/FLOAT(NCW)))
   SLOPE(J) = (XL(2,J) - XL(1,J))/SPAN
   SWP(J_{e}LR) = ATAN(SLOPE(J))
   SPN = (X XT(2) - XXT(1)) / SPAN
   DO = 5 K = 1 NSW
   YK = CPSWL(K) * SPAN/100_{-}
  IF (NW(2)_EQ_0) GO TO 3
   IF (L.EQ.1) GO TO 4
  KK = NR + K
   YTG(KK) = YL(1) + YK
   XTG(KK) = XXT(1) + SPN + (YTG(KK) - YL(1))
   ZTG(KK)=ZS
   CONTINUE
   DO 5 J=1.NCW
   Y(J_K) = YK + YL(1)
   X(J_{\rho}K) = XL(1_{\rho}J) + SLOPE(J) + (Y(J_{\rho}K) - YL(1))
- CONTINUE
   X \perp (1) = X \times (1)
   XTT(1) = XXT(1)
   DO = 6 I = 2 NSW
   X = (I) = X = (I - 1) + (X = (2) - X = (1) + (Y = (1 - 1) - Y = (1 - 1)) / S^2 = A
   XTT(\bar{I}) = XTT(\bar{I}-1) + (XXT(2) - XXT(1)) + (Y(1,\bar{I}) - Y(1,\bar{I}-1)) / S^2 AN
   DO = 8 K = 1 NSW1
  KK = NCS + K
   YLE(KK) = YCON(K) + SPAN + YL(1)
   XLE(KK) = XLL(K) + (XLL(K+1) - XLL(K)) + (YLE(KK) - Y(1_K))/(Y(1_K+1) - Y(1_K))
 1)
   XTE(KK) = XTT(K) + (XTT(K+1) - XTT(K)) + (YLE(KK) - Y(1_K))/(Y(1_K+1) - Y(1_K))
 1)
  CH(KK) = XTE(KK) - XLE(KK)
SWEEP(KK)=ATAN((XXL(2)-XXL(1))/SPAN)
   DO 8 J=1,NCW
   NPANEL = (K-1) * NCW + J-1 + IPANEL
  DO 7 I=1,2
  KI1 = K + I - 1
  XN(NPANEL > I) = X(J > K I 1)
```

0

0

00

0

0

0

0

0

0

Ō

0

0

Ō

0

0

0

0

Õ

0

0

0

0

Ō

Õ

Ô

Ó

Õ

Ō

Õ

0

0

0

0

Ô

0

0

Õ

Õ

0

Õ

0

Ō

Õ

Ó

Ó

Ō

õ

Ō

0

0

Ô

0

0

0

0

0

122

1

2

3

4

5

YN(NPANEL, I) = Y(J, KI1)ZN(NPANEL, I) = ZS 7 CONTINUE XCP(NPANEL)=XLE(KK)+PSI(J)+CH(KK) YCP(NPANEL)=YLE(KK) ZCP (NPANEL)=ZS XV(NPANEL) = XLE(KK) + CPCWL(J) + CH(KK)/100.YV(NPANEL) = YLE(KK)8 CONTINUE LPANEL = NPANEL RETURN

,

.

1

0

,

•

~

ı

SUBROUTINE DRAG (CLT, YBREAK, NC, TFLP, NAL) DIMENSION ALPHI(50), YBREAK(1), TFLP(1), XK(50), YK(50) COMMON /GEOM/ HALFSW, XCP (200), YCP (200), ZCP (200), XLE(100), YLE(100), 1XTE(100) / PSI(30) / CH(100) / XV(200) / YV(200) / SN(10/3) / XV(200/2) / YN(200 2,2),ZN(200,2),WIDTH(7),YCON(51),SWEEP(100),HALFB,SJ(31,7) COMMON /AERO/ AM,B,CL(50),CT(50),CD(50),CM(50) COMMON / CONST/ NCS, NCW, M1 (7), MJW1 (2,5), MJW2 (2,5), NJH (5), NFP, NW (2) M = 4.1PI=3,14159265 NS = (M+1)/2-1MM1 = M - 1FM=M DO 1 I=1.NS F1=I J = M - IXK(I)=SIN(FI*PI/FM) XK(J) = XK(I) YK(I) = -COS(FI * PI/FM) YK(J) = -YK(I)XK(J) = XK(I)TK(J)=-YK(I) DO 2 I=1,NCS CM(I)=SQRT(1,-(YLE(I)/HALFB)**2) IC=1 BREAK=YBRFAK(1) 1 BREAK = YBREAK(1)MST=1MEND = M1(1) - 1DO 8 I=1. NS YCON(1)=0. CD(I)=0II = NS + IBB=YK(II) * HALFBIF (BB LE BREAK) GO TO 3 NK = M1(IC) - 1IC = IC + 1NQ = M1(IC) - 1BREAK = YBREAK(IC)MST=MST+NK MEND=MEND+NQ 3 CONTINUE DO 7 J=MST, MEND IF (NW(2) _ EQ_ 0) GO TO 4 J1 = J + NCSCHORD = CH(J) + CH(J1)60 TO 5 4 CHORD = CH(J)Ś CONTINUE DO 6 K=MST/MEND IF (K EQ J) GO TO 6 $A=A \times (BB-Y) = (Y) \times (Y) = (Y)$ Ă=A * (BB-YLE(K)) / (YLE(J)-YLE(K)) 6 CONTINUE (L)MO*(L)JO*A*(I)dO=(I)dO7 YCON(I) = YCON(I) + A + CHORDCD(I)=CD(I)/SQRT(1.-YK(II)**2) 8 CONTINUE DO 14 I=1.NS ALPHI(I)=0。 IN = NS + I

Ρ

Ρ

P P

P

P

P

P

P

P

Ρ

P

P

Ρ

р

Ρ

Ρ

Ρ

Ρ Ρ

P P

P

P

Ρ

P

Ρ

P

P

ρ

P

Ρ P

ρ

P

Ρ

P

P

P

. Р Р

P

p

Ρ

P

P Ρ

P

P

P

P

Ρ

P

Ρ

P

Ρ

P

1

2345

67

89

10

11

12

13

14

15

16

17

18

19

20

ŽĨ $\overline{2}2$

24 25

26

27 28 29

30

31 32

34

35

36

37

38

39

40

41

42 43

44 45 46

47

48

49

50

51

52 53

54

55

56

57

2

	DO 13 J=1,MM1 IF (J EQ. IN) GO TO 9 INDEX=IABS(J-IN) FACTOR=2.*((-1.)**INDEX-1.)*XK(J)/(FM*(YK(J)-YK(IN))**2) GO TO 10
9	FÁC TÓR = FM/XK(J)
10	IF (J GT, NS) GO TO 11 $JJ = M - J - NS GO TO 12 $
11	
12	ALPHI(I)=ALPHI(I)+CD(JJ)*YCON(JJ)*FACTOR
13	CONTINUE
	ALPHI(I)=ALPHI(I)/(16.*HALFB)
14	CONTINUE
15	CDI=0. DO 15 I=1.NS IN=NS+I CDI=CDI+CD(I)*YCON(I)*ALPHI(I)*XK(IN) CDI=CDI*HALFB*PI/(HALFSW*FM) CDL2=CDI/(CLT*CLT) WRITE (6, 16) CDI WRITE (6, 17) CDL2
	RETURN
C 16 17	FORMAT (/2X,23HFAR-FIELD INDUCED DRAG=,F10.5) FORMAT (/2X,33HFAR-FIELD INDUCED DRAG PARAMETER=,F1).5) END

SUBROUTINE VMSEQN (NC1,K,AA,A,CA) DIMENSION AA(1), CA(1), A(1) NC = K + NC1SUM1=0. $\bar{K}1 = K - \bar{1}$ JJ=1DO 1 J=1,K1 SUM1=SUM1+AA(J)*A(JJ)JJ = JJ + NC1 + 1SUM1=SUM1+AA(K)DO 3 I=1,NC1 SUM2=0. JJ = I + 1DO 2 J=1.K1 SUM2=SUM2+AA(J)*A(JJ)JJ = JJ + NC1 + 12 KK = K + ISUM2=SUM2+AA(KK) CA(I) = -SUM2/SUM13 M = 1L = 0 $KNC = (K-1) \times NC1$ $DO = 6 I = 1 \rho NC$ IF (I_GT_KNC) GO TO 5 MM = (M - 1) * NC1 + 1IF (I.EQ.MM) GO TO 7 4 KK = KK + 1IL = I + L $\overline{A}(I) = \overline{C}A(KK) * BASE * A(IL)$ 60 TO 6 5 II = I - KNCA(I) = CA(II)CONTINUE GO TO 8 II = MM + M - 17 . BASE=A(II)KK = 01 = 1 + 1M = M + 1GO TO 4 8 CONTINUE RETURN END

Q Q Q Q Q Q õ Q

1

x

.

~

126

1

6

SUBROUTINE GAMAX (AW, CA, LPAN1, LPANEL, GAMMA, NC, BREAK, SWP, CHURDT, IW) R R 1NG, NWING, HALFBH, YCN, CTIP, CTX, IWGLT, IPOS, KZ) DIMENSION AW(1), CA(1), GAMMA(1), BREAK(1) R DIMENSION SWP(10,15), CTIP(1) R R DIMENSION G(10,2), CHORDT(1), YCN(1) DIMENSION A(15), F(15), THETA(15) R R COMMON /GEOM/ HALFSW/XCP(200)/YCP(200)/ZCP(200)/XLE(100)/YLE(100)/ R 1XTE(100)/PSI(30)/CH(100)/XV(200)/YV(200)/SN(10/3)/XV(200/2)/YN(200 2,2),ZN(200,2),WIDTH(7),YCON(51),SWEEP(100),HALFB,SJ(31,7) R COMMON /AERO/ AM, B, CL (50), CT (50), CD (50), CM (50) R COMMON / CONST / NCS = NCW = M1(7) = MJW1(2=S) = MJW2(2=S) = NJH(S) = NFP = NW(2)R PI=3.14159265 R R IPS1=IPOS/10IPS2=IPCS-IPS1*10R R NK = 0MK = LPAN1R DO 8 I=1, NCS R R NA = 1-----SUM I=D. R NWW = NW(1)R ISN=1R R FN = NW(1)1 N1 = NWW + 1R DO = 2 J = 1 NWWR KK = NK + JR IF (NA "EQ" 2) KK=MK+J R R $F \downarrow = \downarrow$ THETA(J)=(2.*FJ-1.)*PI/(2.*FN) R R F(J) = GAMMA(KK) * SN(J > ISN)2 R CONTINUE R THE TA(N1) = PI R DO 4 J=10N1 R A(J)=0R F J = JDO 3 K=1, NWW R 3 $A(J)=A(J)+F(K)+COS((FJ-1_)+THETA(K))$ R R IF (J = EQ = 1) A (J) = A (J) / FNIF $(J NE_{*} 1) A(J) = A(J) + 2^{/}FN$ R 4 CONTINUE R DO 6 K=1, N1 R KK = NK + KR R IF (NA "EQ, 2) KK=MK+K SUM = A(1) * THETA(K)R DO 5 J=1, NWW R FJ = JR 5 · SUM = SUM + A(J+1) + SIN(FJ + THETA(K))/FJR IZ = IR IF (NA "EQ" 2) IZ=I+NCS R SUM = -0.5 * CH(IZ) * SUM + SUMIR IF (NA "EQ. 1 "AND. K "EQ. N1) GO TO 6 R AW(KK) = SUMR CONTINUE R 6 IF (NA "EQ" 2) GO TO 7 R IF (NCW "EQ. NW(1)) GO TO 7 R NWW = NW(2)R NA = NA + 1R ISN=ISN+1R

,

128

.

LK = NW(1)IR1 = I + NCJJ = J - NW(1)(I GT. NWING) GO TO IF 16 (IPS1 _EQ. 1) IS=1 IF (IPS1 EQ. 1) GO TO IF 13 IF (IPS1 .EQ. 2) GO TO 12 GO TO 17 IF (IPS2 "EQ. 2) GO TO 16 14 GO TO 12

 G0 10
 12
 R 1225

 G0 T0 20
 R 126

 G0 T0 20
 R 126

 C0NTINUE
 R 127

 D0 19 JP=1/MM
 R 128

 FJ=JP
 R 128

 YCON(JP)=COS(FJ*PI/FM)
 R 130

 Y=0.5*WIDTH(I)*(1.-YCON(JP))+BR
 R 131

 PSI(JP)=SQRT((BB-Y/HAB)*(Y/HAB-AA))*FT
 R 132

 CONTINUE
 R 132

 L1=NK+J-LK
 R 134

 L2=L1+MK
 R 135

 SP=SWP(JJ,IR1)
 R 137

 CS=COS(SP)
 R 139

 TAN=SIN(SP)/CS
 R 140

 SM=0.
 R 141

 LP=L1+(LQ-1)*MK
 R 142

 LP=L1+(LQ-1)*MK
 R 142

 LD0 21 LS=1,MM
 R 143

 LN=L1+(LS-1)*MK
 R 145

 LN=L1+(LS-1)*MK
 R 145

 LN=L1+(LS-L)*MK
 R 146

 IF (LS_EQ_LQ) GO TO 21
 R 146

 AA=AA*(BREAK(I)-YCP(LN))/(YCP(LP)-YCP(LN))
 R 148

 CONTINUE
 R 148

 SM=SM+AA*AW(IP)*PSI(LQ)
 R 148

 (J.EQ. 1 .OR. J .EQ. (NW(1)+1)) GO TO 18 17 IF 18 19 20 CONTINUE SM=SM+AA*AW(LP)*PSI(LQ) GAMA0=SM GO TO 24 GAMA0=0. CONTINUE IF (IS EQ. 1) GO TO 27 IF (I S EQ. 1) GO TO 27 IF (I EQ. NC) GO TO 27 SM=0. DO 26 LQ=1,MM LP=L1+(LQ-1)*MK AA=1. DO 25 LS=1,MM LN=L1+(LS-1)*MK IF (LS EQ. LQ) GO TO 25 AA=AA*(BREAK(I+1)-YCP(LN))/(YCP(LP)-YCP(LN)) CONTINUE 21 CONTINUE 23 W(LP)*PSI(LQ) 25 CONTINUE SM = SM + AA + AW(LP) + PSI(LQ)26 GAMAN = SMGO TO 28 27 GAMAN=0. 28 32 K=1.MM DO

R 115 R 116 R 117 R 118 R 119 R 120 R 121 122 R R 123 R 124 R 125 149 R R 150 R 151 R 152 R 153 R 154 R 155 R 156 R 157 R 158 R 159 R 160 R 161 R 162 R 163 R 164 165 R R 166 R 167 R 168 169 R 170 R R 171

129

LL=NK+(K−1)×MK+J−LK CA(LL)=0. CA(LL)=0. 00 30 KK=1,MM R 175 LI = NK + (KK - 1) + MK + J - LKIF (KK EQ. K) GO TO 29 CA(LL)=CA(LL)+2.*(-1.)**(K+KK)* AW(LI)*PSI(KK)/(WIDTH(I)*(YCON(K R 177 1K) - YCON(K))CONTINUE IF (IK = EQ. D) FK=YCP(LL)/(HAB*HAB) IF (IK = EQ. D) FK=YCP(LL)/(HAB*HAB) R 181 R 182 IF (IK = EQ. D) FK=YCP(LL)/(HAB*HAB) CA(LL)=CA(LL)+GAMAO*(-1.)**K/(1.-YCON(K))/WIDTH(I)-GAMAN*(-1.)**(M R 183 CA(LL)=CA(LL)+GAMAO*(-1.)**K/(1.-YCON(K))/WIDTH(I)-GAMAN*(-1.)**(M R 184 1+K)/(1.+YCON(K))/WIDTH(I)+AW(LL)*FK/PSI(K) R 185 CA(LL)=CA(LL)/PSI(K) IF (I = EQ. NC) GO TO 31 IF (I = EQ. NC) GO TO 31 R 188 GO TO 32 CONTINUE IF (CHORDT(IPZ) = LE. 0.DO1) GO TO 32 G(J.=IW)=G(J.=IW)+AW(LL)+PSI(K)*(-1.)**(K+M)/(1.+YCON(K)) CA(LL)=TAN*GAMMA(LL)+CA(LL) IF (I = EQ. NW(1)) NK1=LL IF (I = EQ. NW(1)) NK1=LL IF (I = EQ. NU(1)) NK1=LL R 196 IF (IWING.NE.D = AND. I.EQ.NWING) GO TO 33 GO TO 37 CONTINUE GO TO 30 29 30 31 32 GO TO 37 CONTINUE 33

 CONTINUE
 R 198

 IF (CHORDT(IPZ) LE. 0.001) GO TO 37

 G(J,IW)=2./WIDTH(I)*G(J,IW)+0.5*(-1.)**M*GAMAO/WIDTH(I)

 R 199

 IF (IK.EQ. 0) G(J,IW)=G(J,IW)*SQRT(HAB)/2.828427124

 R 200

 IF (IK.EQ. 1) G(J,IW)=G(J,IW)*SQRT(HAB)/4.

 IF (IW.EQ.2) CM(J)=G(J,IW)*SQRT(HAB)/4.

 IF (IW.EQ.2) CM(J)=G(J,IW)

 IF (IW.EQ.2) GO TO 37

 IF (IW.EQ.2) GO TO 35

 CL(J)=G(J,IW)

 GO TO 37

 CL(J)=G(J,IW) GO TO 37 IF (IPS1=EQ.2.AND.J.GT.NW(1)) GO TO 36 IF (IPS1=EQ.1) GO TO 36 GO TO 34 CL(J)=0. CONTINUE NK2=LL CONTINUE IF (KZ-EQ.1) RETURN CTP=0. CTX = 0. SUMM = 0. DO 42 K=1.IW CTIP(K)=0. IFZ=1 IF (K -EQ.2) IPZ=3 IF (CHORDT(IPZ) .LE. 0.D01) GO TO 42 SUM=0. ISN=1 FN=NW(1) CHD=CHORDT(IPZ) DO 41 I=1.NCW FCR=1. 34 35 36 37 38

R 172

R 173 R 174

R 176

R 178

R 179

R 198

R 206 R 207

8 0 S R R 209 R 210

R 211 R 212 R 213

R 214 R 215 R 216 R 217 R 218 R 219 R 220 R 221 R 222

R 223 R 224 R 225 226 R R 227 R 228

4

130

۰

```
IF (G(I_rK)_LT_rO_r) FCR=-1.
      J = I
      \bar{x}1 = YCN(IPZ)
      IF (K .EQ. 2) GO TO 39
         (IPS1 "EQ. 2 AND. I GT. NW(1)) GO TO 41
      IF
      IF (IPS1 .EQ. 1) GO TO 41
 39
      CONTINUE
      IF (I LE, NW(1)) GO TO 40
      ISN=2
      FN = NW(2)
      J=I-NW(1)
      X1 = YCN(IPZ+1)
      CHD = CHORDT(IPZ+1)
 40
      FJ = J
      XM = X1 + 0.5 * CHD * (1. - COS((2. *FJ - 1.) * PI/(2. *FN)))
      SUM = SUM + CHD + G(I + K) + G(I + K) + SN(J + ISN) + FCR/FN
      SUMM=SUMM+CHD*XM*G(I,K)*G(I,K)*SN(J,ISN)*FCR/FN
 41
      CONTINUE
      CTX = SUM + CTX
      CTIP(K)=SUM*PI*PI/(2.*HALFSW)
      CTP = CTP + CTIP(K)
 42
      CONTINUE
      IF (ABS(CTX), LE. 0. 00001) GO TO 43
      IF (CHORDT(1) GT. 0.001 .OR. CHORDT(3).GT. 0.001) CTX=SUMM/CTX
 43
      CONTINUE
      CTX = -CTX
      RETURN
С
```

3

a.

R 229

R 230 R 231 R 232 R 233

R 234

R 235 R 236 R 237

R 238

R 239 R 240 R 241

R 242 R 243 R 244

R 245

R 246

R 247

R 248 R 249

R 250 R 251 R 252

R 253

R 254

R 255 R 256

R 257-

END

â

```
SUBROUTINE SPLINE (NoXoYoAoBoCoDoLMont)
                   DIMENSION S(43), H(13), CA(12), X(3,12), Y(3,12)
                   DIMENSION A(3,11), B(3,11), C(3,11), D(3,11)
                   L=LM
                    DO 9 NN=1 NT
                   I = 1
                   NI = N+1
                   N1 = N - 1
                  H(NI)=0
H(1)=X(L_03)-X(L_02)
                   H(2) = -X(L_23) + X(L_21)
                   H(3) = X(L_2) - X(L_2)
                                                                                                                                                                                     .
                    DO 1 K = 4 N
1
                   H(K)=().
                   DO 2 K=1 N
2
                    S(K) = -H(K+1)/H(1)
                   NJ = N - 1
                  DO 7 I=2, N
IF (I , EQ , N) GO TO 3
                  H(NI) = -6 \times ((Y(L_{\rho}I+1) - Y(L_{\rho}I)) / (X(L_{\rho}I+1) - X(L_{\rho}I)) - (Y(L_{\rho}I) - Y(L_{\rho}I-1)) / (X(L_{\rho}I+1)  / (X
               1(X(L_{P}I) - X(L_{P}I - 1)))
                   GO TO 4
3
                   H(NI)=0_{-}
Ĩ.
                   DO 6 J=10N
                   H(J)=).
                   IF (I EQ. N) GO TO 5
                   IF (J LT. (I-1) OR. J GT. (I+1)) GO TO 6
                  H(I-1) = X(L_{\rho}I) - X(L_{\rho}I-1)
                   H(I) = 2 * (X(L_{\rho}I + 1) - X(L_{\rho}I - 1))
                  H(I+1) = X(L_{\rho}I+1) - X(L_{\rho}I)
                   GO TO 6
5
                  H(N-2) = X(L > N) - X(L > N-1)
                  H(N-1) = -X(L N) + X(L N-2)
                  H(N-1)=-X(L,N)+X(L,N-2)
H(N)=X(L,N-1)-X(L,N-2)
6 .
                  CONTINUE
                  II = I
                  CALL VMSEQN (NJ/II/H/S/CA)
                  NJ = NJ - 1
7
                  CONTINUE
                  DO 8 I=1/N1
                  A(L_{P}I) = (S(I+1) - S(I)) / (6_{*} (X(L_{P}I+1) - X(L_{P}I)))
                  B(L / I) = S(I) / 2.
                  \overline{C}(\overline{L_{\rho}I}) = (Y(\overline{L_{\rho}I+1}) - Y(L_{\rho}I)) / (X(L_{\rho}I+1) - X(L_{\rho}I)) - (X(L_{\rho}I+1) - X(L_{\rho}I)) * (2 *
              1S(I)+S(I+1))/6.
8
                  D(L \rho I) = Y(L \rho I)
ŏ
                  L=L+1
                  RETURN
                  END
```

22

23

ŽŽ

ŽŽ

31

34

35

36

37

47

\$

ŝ

48-

1

Ż

4

5

6

7 89

132

``

÷.

1. Report No. NASA CR-165659	2. Government Accession No.	3. Recipient's Catalog No.			
4. Title and Subtitle Calculation of Lateral-D of Wings by a Nonplanar (rectional Stability Derivati Quasi-Vortex-Lattice Method	5. Report Date VES January 1981 6. Performing Organization Code			
7. Author(s) C. Edward Lan	 7. Author(s) C. Edward Lan 9. Performing Organization Name and Address Kohlman Aviation Corporation RR 4, Box 100C Lawrence, Kansas 66044 				
9. Performing Organization Name and Addr Kohlman Aviation Corpora					
RR 4, Box 100C Lawrence, Kansas 66044					
12. Sponsoring Agency Name and Address National Aeronautics and	 Sponsoring Agency Name and Address National Aeronautics and Space Administration 				
Washington, DC 20546		14. Sponsoring Agency Code 530-01-13-01			
Dr. Bruce J. Holmes, Lang	ley Technical Monitor				
The nonplanar quasi-vortex-lattice method is applied to the calculation of lateral-directional stability derivatives of wings with and without vortex- lift effect. Results for conventional configurations and those with winglets, V-tail, etc. are compared with available data. All rolling moment derivatives are found to be accurately predicted. The prediction of side force and yawing moment derivatives for some configurations is not as accurate. Causes of the discrepancy are discussed. A user's manual for the program and the program listing are also included.					
17. Key Words (Suggested by Author(s)) Winglets Computer programs Wings Stability derivatives General aviation	18. Distribution S FEDD Dis	stribution			
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) 21. Unclassified	No. of Pages 22. Price*			

* Available: NASA's Industrial Applications Centers

Ø.