NASA Contractor Report 165659

CALCULATION OF LATERAL-DIRECTIONAL STABILITY
DERIVATIVES OF WINGS BY A NONPLANAR
QUASI-VORTEX-LATTICE METHOD
C. Edward Lan

KOHLMAN AVIATION CORPORATION
Lawrence, Kansas 66044

NASA Purchase Order L-7198B
January 1981
FOR EARLY DOMESTIC DISSEMINATION
Because of its significant early commercial potential, this information, which has been developed under a U.S. Government program, is being disseminated within the United States in advance of general publication. This information may be duplicated and used by the recipient with the express limitation that it not be published. Release of this information to other domestic parties by the recipient shall! be made subject to these limitations.

Foreign release may be made only with prior NASA approval and appropriate export licenses. This legend shall be marked on any reproduction of this information in whole or in part.
Review for general release January 31, 1982

NASA

National Aeronautics and Space Administration

Table of Contents
Page
Summary 1

1. List of Symbols 2
2. Introduction 5
3. Theoretical Development 6
3.1 Boundary Condition 6
3.2 Edge Suction and Streamwise Vortex Density Distribution 9
3.3 Forces and Moments in Sideslipping Flight 10
3.4 Forces and Moments in Steady Rolling 13
3.5 Forces and Moments in Steady Yawing 15
3.6 Conversion to Stability Axes System 16
4. Numerical Results and Discussions 17
4.1 Conventional Configurations Without Significant Vortex-Lift Effect 17
4.2 Configurations With Significant Vortex-Lift Effect 24
5. Concluding Remarks 31
6. References 32
Appendix A Instruction on the Usage of the Nonplanar QVLM
Program and Sample Input Data 34
Appendix B Program Listing 76

Summary

The nonplanar quasi-vortex-1attice method is applied to the calculation of lateral-directional stability derivatives of wings with and without vortex-lift effect. Results for conventional configurations and those with winglets, V-tail, etc. are compared with available data. All rolling moment derivatives are found to be accurately predicted. The prediction of side force and yawing moment derivatives for some configurations is not as accurate. Causes of the discrepancy are discussed. A user's manual for the program and the program listing are also included.

1. List of Symbols

A	aspect ratio
b	wing span
\bar{c}	reference chord
C	leading-edge suction parameter defined in Eqn. (21)
$C_{D_{i}}$	induced drag coefficient
C_{ℓ}	rolling moment coefficient
C_{L}	lift coefficient
C_{m}	pitching moment coefficient about y-axis
C_{n}	yawing moment coefficient
$\Delta \mathrm{C}_{\mathrm{p}}$	lifting pressure coefficient
c_{t}	tip chord
${ }^{C} \ell_{\beta}$	$\begin{aligned} & =\frac{\partial C_{\ell}}{\partial \beta} \\ & =\frac{\partial C_{n}}{} \end{aligned}$
$\mathrm{C}_{\mathrm{n}_{\beta}}$	$\begin{aligned} & =\frac{n}{\partial \beta} \\ & \\ & \end{aligned}$
${ }^{C^{Y}}{ }_{\beta}$	$=\frac{{ }^{\prime}}{\partial \beta}$
$\mathrm{C}_{2}{ }_{\mathrm{p}}$	$=\partial C_{\ell} / \partial\left(\frac{\mathrm{pb}}{2 \mathrm{~V}_{\infty}}\right)$
c_{n}	$=\partial C_{n} / \partial\left(\frac{p b}{2 V_{\infty}}\right)$
C_{Y}	$=\partial C_{Y} / \partial\left(\frac{\mathrm{Pb}}{2 V_{\infty}}\right)$
$\mathrm{C}_{\text {l }} \mathrm{r}$	$=\partial C_{\ell} / \partial\left(\frac{r b}{2 V_{\infty}}\right)$
$\mathrm{C}_{\mathrm{n}_{\mathrm{r}}}$	$=\partial C_{n} / \partial\left(\frac{r b}{2 v_{\infty}}\right)$
$\mathrm{C}_{\mathrm{Y}_{\mathrm{r}}}$	$=\partial C_{Y} / \partial\left(\frac{r b}{2 V_{\infty}}\right)$
G(x)	tip suction parameter defined in Eqn. (24)

$\vec{i}, \vec{j}, \overrightarrow{\mathrm{k}}$	unit vectors in the positive x, y and z directions
$\mathrm{M}, \mathrm{M}_{\infty}$	freestream Mach number
$\overrightarrow{\mathrm{n}}_{\mathrm{w}}$	unit normal vector to the wing surface
p	roll rate
q	pitch rate
\bar{q}	freestream dynamic pressure
r	yaw rate
$\stackrel{\rightharpoonup}{\mathrm{R}}$	position vector
$S_{\text {LE }}$	sectional leading-edge suction coefficient
$\stackrel{\rightharpoonup}{\mathrm{v}}$	induced velocity vector
v_{n}	induced velocity normal to the wing plane
U, V, W	freestream velocity components in the x, y, z directions
V_{∞}	freestream velocity
x, y, z	rectangular coordinate system with positive x-axis pointing downstream, positive y-axis pointing to the right and positive z-axis pointing upward. See Figure 1.
$x_{\ell}(\mathrm{y})$	x-coordinate of leading edge
$z_{c}(x, y)$	camber surface ordinate
α	angle of attack
β	sideslip angle
γ_{x}	streamwise vortex density
γ_{y}	spanwise vortex density
Γ	sectional circulation
Λ_{ℓ}	leading-edge sweep angle
ϕ	dihedral angle
λ	wing taper ratio

Subscripts
a

S
t

2. Introduction

Most existing methods for calculating lateral-directional stability derivatives are based on lifting-line type theory with or without empirical corrections (Refs. 1-5). These methods form the basis for some handbook calculations, such as in the USAF Stability and Control Datcom. Although these methods provide a reasonable estimation of lateral-directional stability derivatives for conventional configurations, they are not applicable to complex planforms of variable sweep angles, with winglets or with vertical fins, and to planforms exhibiting edge vortex separation. For these non-conventional configurations, application of a lifting-surface theory would be more appropriate.

In this report, the application of the quasi-vortex-1attice method (QVLM) of Reference 6 to calculating lateral-directional stability derivatives of arbitrary wing configurations will be described. Potential flow theory will be assumed. The effect of vortex separation along wing edges will be accounted for through Polhamus' method of suction analogy (Ref. 7). Earlier application of the present method to simple wing-body configurations at low angles of attack was reported in Reference 8.

3. Theoretical Development

It is assumed that the flow field is governed by the Prandt1-Glauert equation. Thickness effect will not be included in the formulation.

In Section 3.1, the general boundary condition to be satisfied on the wing surface will be derived. The present method is very much dependent on the accurate calculation of streamwise vortex density distribution $\left(\gamma_{x}\right)$ and edge suction forces. These will be the subject of discussion in Section 3.2. From Sections 3.3 to 3.5, various contributions to forces and moments in lateral-directional motion will be indicated. All calculations will be done in body axes. The conversion to stability axes can be made through the use of a set of formulas to be given in Section 3.6.

3.1 Boundary Condition

It is assumed that the sideslip angle (β) is small. The freestream velocity vector $\left(\vec{V}_{\infty}\right)$ is then given by

$$
\begin{equation*}
\vec{V}_{\infty}=\mathrm{U} \overrightarrow{\mathbf{i}}+\mathrm{V} \overrightarrow{\mathbf{j}}+\mathrm{W} \overrightarrow{\mathbf{k}} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{U}=\mathrm{V}_{\infty} \cos \alpha \cos \beta \simeq \mathrm{V}_{\infty} \cos \alpha \tag{2}\\
& \mathrm{V}=-\mathrm{V}_{\infty} \beta \tag{3}\\
& \mathrm{W}=\mathrm{V}_{\infty} \sin \alpha \cos \beta \simeq \mathrm{V}_{\infty} \sin \alpha \tag{4}
\end{align*}
$$

Let $\vec{\omega}$ be the angular velocity of the wing based on the primed axes system (see Figure 1) and \vec{R} be the position vector of some point on the wing. Using the conventional notation for roll rate (p), pitch rate (q) and yaw rate (r), it follows that the linear velocity (\vec{v}^{\prime}) associated with the wing angular motion is given by

$$
\begin{align*}
\vec{v}^{\prime} & =-(p \vec{i}+q \vec{j}+r \vec{k}) x\left(x^{\prime} \vec{i}+y^{\prime} \vec{j}+z^{\prime} \vec{k}\right) \\
& =-\vec{i}\left(q z^{\prime}-y^{\prime} r\right)+\vec{j}\left(p z^{\prime}-x^{\prime} r\right)-\vec{k}\left(p y^{\prime}-q x^{\prime}\right) \tag{5}
\end{align*}
$$

To find the induced air velocity on the wing (based on xyz axes) due to $\vec{\omega}$-motion, the sign of \vec{i} and \vec{k}-components in Eqn. (5) must be reversed and $x^{\prime}, y^{\prime}, z^{\prime}$ are to be replaced by $-x, y,-z$. It follows that

$$
\begin{equation*}
\vec{v}=\vec{i}(-q z-y r)+\vec{j}(-p z+x r)+\vec{k}(p y+q x) \tag{6}
\end{equation*}
$$

The sum of \vec{V}_{∞} and \vec{v} represents the total "freestream velocity." The latter will produce normal velocity component $\left(v_{n}\right)$ to the wing plane. Before v_{n} can be calculated, the unit normal vector to the wing plane must be determined. Let $z_{c}(x, y)$ be the camber surface. Then, according to Figure 1,

$$
\begin{equation*}
z=z_{o}+z_{c}(x, y)+\left(y-y_{o}\right) \tan \phi \tag{7}
\end{equation*}
$$

Introduce a function $f(x, y, z)$ defined by:

$$
\begin{equation*}
f(x, y, z)=z-z_{o}-z_{c}(x, y)-\left(y-y_{o}\right) \tan \phi \tag{8}
\end{equation*}
$$

Then the unit normal vector to the wing surface is given by:

$$
\begin{equation*}
\vec{n}_{w}=\frac{\nabla f}{|\nabla f|}=\frac{-\frac{\partial z_{c}}{\partial x}+\vec{i}+\left(-\frac{\partial z_{c}}{\partial y}-\tan \phi\right) \vec{\jmath}+\vec{k}}{\sqrt{1+\left(\frac{\partial z_{c}}{\partial x}\right)^{2}+\left(\frac{\partial z_{c}}{\partial y}+\tan \phi\right)}} \tag{9}
\end{equation*}
$$

If $\frac{\partial z c}{\partial x}$ and $\frac{\partial z c}{\partial y}$ can be assumed to be negligible in comparison with unity and $\tan \phi$, respectively, Eqn. (9) can be simplified to be:

$$
\begin{equation*}
\overrightarrow{\mathrm{n}}_{\mathrm{w}} \simeq-\sin \phi \overrightarrow{\mathrm{j}}+\cos \phi \overrightarrow{\mathrm{k}} \tag{10}
\end{equation*}
$$

Using Eqns. (1), (6) and (9), the normal velocity component (v_{n}) can now be calculated as:

$$
\begin{aligned}
\frac{v_{n}}{V_{\infty}}= & \vec{V}_{\infty} \cdot \vec{n}_{w}+\vec{v} \cdot \vec{n}_{w} \\
& \left(\text { cont }{ }^{\prime} d\right. \text { next page) }
\end{aligned}
$$

Figure 1. Definition of Axes System

Figure 2. Decomposition of Lifting Force on a Nonplanar Wing

$$
\begin{align*}
& \simeq \frac{-\cos \alpha \frac{\partial z c}{\partial x}+\sin \alpha}{\sqrt{1+\left(\frac{\partial z c}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}+\tan \phi\right)^{2}}}+\beta \sin \phi+\frac{p}{V_{\infty}}(z \sin \phi+y \cos \phi)- \\
& \frac{r}{V_{\infty}} x \sin \phi+\frac{q}{V_{\infty}} x \cos \phi \tag{11}
\end{align*}
$$

In Eqn. (11), \vec{n}_{w} from Eqn. (10) is used to simplify the expression associated with angular motion. The first term in Eqn. (11) can be recognized as the boundary condition for symmetrical loading at a given angle of attack. Eqn. (11) can be written in nondimensional form:

$$
\begin{gather*}
\frac{v_{n}}{V_{\infty}} \simeq \frac{-\cos \alpha \frac{\partial z}{\partial x}+\sin \alpha}{\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z c}{\partial y}+\tan \phi\right)^{2}}}+\beta \sin \phi+\bar{p}\left(\frac{z}{b / 2} \sin \phi+\right. \\
 \tag{12}\\
\left.\frac{y}{b / 2} \cos \phi\right)-\bar{r} \sin \phi\left(\frac{x}{b / 2}\right)+\bar{q} \cos \phi\left(\frac{x}{\bar{c} / 2}\right)
\end{gather*}
$$

where

$$
\begin{align*}
& \overline{\mathrm{p}}=\frac{\mathrm{pb}}{2 \mathrm{~V}_{\infty}} \\
& \overline{\mathrm{r}}=\frac{\mathrm{rb}}{2 \mathrm{~V}_{\infty}} \tag{13}\\
& \overline{\mathrm{q}}=\frac{\mathrm{q}}{2 \mathrm{~V}_{\infty}}
\end{align*}
$$

The normal velocity given by Eqn. (12) must be cancelled on the wing surface by using vortex distribution. This condition represents the boundary condition to be satisfied to find the loading.
3.2 Edge Suction and Streamwise Vortex Density Distribution $\left(\gamma_{x}\right)$ While the calculation of the spanwise vortex density distribution $\left(\gamma_{y}\right)$ is the first step in determining the symmetrical loading, it is
the streamwise vortex density distribution which is the basis for predicting the tip suction and the lateral-directional aerodynamic characteristics of a wing. The calculation of γ_{y} is made with the QVLM (Ref. 6) by satisfying the symmetrical boundary condition (the first term is Eqn. (12)) and will not be discussed here. The leading-edge suction has also been accurately predicted by the QVLM.

To determine γ_{x} distribution and the tip suction, the following expression for the conservation of vorticity will be used:

$$
\begin{equation*}
\frac{\partial \gamma_{x}}{\partial x}+\frac{\partial \gamma_{y}}{\partial y}=0 \tag{14}
\end{equation*}
$$

By integration, Eqn. (14) can be solved for γ_{x} (Ref. 8):

$$
\begin{align*}
& \gamma_{x}=\frac{\partial \Gamma(x, y)}{\partial y} \tag{15}\\
& \Gamma(x, y)=-\int_{x_{\ell}(y)}^{x} \gamma_{y}\left(x^{\prime}, y\right) d x^{\prime} \tag{16}
\end{align*}
$$

In Reference 8, a trigonometric interpolation formula was derived to calculate the derivative in Eqn. (15). The tip suction can also be determined accurately. For more detail, Reference 8 should be consulted.

3.3 Forces and Moments in Sideslipping Flight

The incremental ΔC_{p} due to sideslipping arises from the following sources:
(1) Incremental pressure force due to geometric dihedral. This contribution comes from the second term in Eqn. (12). For a flat wing, this contribution will be zero.

The predicted spanwise vortex density $\left(\gamma_{y}\right)$ will interact with U-component of the freestream to produce a lifting pressure:

$$
\begin{equation*}
\Delta C_{p_{1}}=2 \gamma_{y} \cos \alpha \tag{17}
\end{equation*}
$$

(2) Interaction of sideslipping velocity $\left(-\nabla_{\infty} \beta\right)$ with γ_{x}. In nondimensional form, this will contribute to a $\Delta C_{p_{2}}$ amounting to

$$
\begin{equation*}
\Delta C_{P_{2}}=2 \beta \gamma_{x} \tag{18}
\end{equation*}
$$

on the right wing in positive lift. On the left wing, $\Delta \mathrm{C}_{\mathrm{P}_{2}}$ is negative, thus creating a rolling moment.
(3) Effect of wake nonalignment with freestream. In the usual way of calculating the loading, the flat wake has been assumed to be in the positive x direction. According to Eqn. (18), the wake trailing vortices $\left(\gamma_{x}\right)$ will then interact with the sideslipping velocity to produce positive lifting pressure on the right wake. This must be cancelled by introducing a γ_{y} distribution in the wake equal to $\beta \gamma_{x}$, where γ_{x} in the wake is equal to its value at the trailing edge. This is similar to the results derived by Rubbert by perturbation expansion (Ref. 9) of the governing equation.

This effect will produce downwash on the right wing, thus producing negative γ_{y} distribution. It will create a ΔC_{p} similar to that given by Eqn. (17). This refinement was not made in Reference 8.

Note that ΔC_{p} produced by the aforementioned sources are antisymmetrical. The resulting rolling moment, and hence the dihedral effect $\left(C_{\ell_{\beta}}\right)$, can be calculated in a straightforward manner. The lifting pressure (ΔC_{p}) is taken to be acting normal to the planform, as illustrated in Figure 2. It follows that a side force will be produced, which will
also generate a yawing moment. The rolling moment due to the element can be seen to be:

$$
\begin{equation*}
\mathrm{d} \mathscr{L}=-\bar{q} \Delta C_{p} d \operatorname{sdx}\left(z_{1} \sin \phi+y_{1} \cos \phi\right) \tag{19}
\end{equation*}
$$

where \bar{q} is the freestream dynamic pressure. Integration of Eqn. (19) in the chordwise and spanwise directions will yield the total rolling moment, and hence the dihedral effect.

The side force and yawing moment due to sideslip for a wing alone are contributed from the following sources:
(a) Contribution from the incremental pressure force due to geometric dihedra1, as given by Eqn. (17).
(b) Contribution from the change in the leading-edge suction. This is produced by the loading change discussed under Items (1) and (3) in this Section.

According to Reference 6, the sectional leading-edge suction coefficient for combined symmetrical and antisymmetrical loadings can be calculated as:

$$
\begin{equation*}
S_{L E}=\frac{\pi}{2} \sqrt{1-M_{\infty}^{2} \cos ^{2} \Lambda_{\ell}} \frac{\left(C_{s} \pm C_{a}\right)^{2}}{\cos ^{2} \Lambda_{\ell}} \tag{20}
\end{equation*}
$$

where C_{S} is the leading-edge singularity parameter for symmetrical loading defined as (Ref. 6):

$$
\begin{equation*}
c_{s}=\lim _{x \rightarrow x_{\ell}} \gamma_{y} \sqrt{\frac{x-x_{\ell}}{c}} \tag{21}
\end{equation*}
$$

and C_{a} is the corresponding parameter for antisymmetrical loading. The positive sign in Eqn. (20) is for the right wing and the negative sign is for the left wing. It follows that the effective change in leadingedge suction due to sideslip is given by:

$$
\begin{equation*}
\Delta S_{L E}=\frac{\pi}{2} \sqrt{1-M_{\infty}^{2} \cos ^{2} \Lambda_{\ell}} \frac{\left(\pm 2 C_{s} C_{a}\right)}{\cos ^{2} \Lambda_{\ell}} \tag{22}
\end{equation*}
$$

This suction force is normal to the leading edge, as shown in Figure 3, thus contributing to side force and yawing moment.
(c) Contribution from the change in tip suction. According to Reference 8 , the local tip suction coefficient for the combined symmetrical and antisymmetrical loadings is given by

$$
\begin{equation*}
S_{t}=\frac{2 \pi\left(G_{s} \pm G_{a}\right)^{2}}{c_{t}} \tag{23}
\end{equation*}
$$

where $G(x)$ is defined by

$$
\begin{equation*}
G(x)=\sqrt{\frac{b}{2}} \lim _{y \rightarrow \frac{b}{2}} \sqrt{1-\left(\frac{y}{b / 2}\right)} \quad \frac{1}{2} \frac{\partial \Gamma_{t}}{\partial y} \tag{24}
\end{equation*}
$$

and Γ_{t} is the total sectional circulation. c_{t} in Eqn. (23) is the tip chord length. It follows that

$$
\begin{equation*}
\Delta S_{t}=\frac{2 \pi\left(-2 G_{s} G_{a}\right)}{c_{t}} \tag{25}
\end{equation*}
$$

ΔS_{t} is also illustrated in Figure 3.
(d) Contribution from the induced drag (Page 14-3, Ref. 10)

The induced drag under symmetrical loading is assumed to act in the direction of freestream with sideslip. Hence, if $C_{D_{i}}$ is the induced drag coefficient, the side force coefficient from this contribution will be

$$
\begin{equation*}
\Delta C_{y}=-C_{D_{i}} \beta \tag{26}
\end{equation*}
$$

The yawing moment can be computed from the induced drag distribution. 3.4 Forces and Moments in Steady Rolling

The roll damping derivative $\left(\mathrm{C}_{\ell_{p}}\right)$ can be computed by integrating the antisymmetrical lifting pressure induced by the roll rate (see $\overline{\mathrm{p}}$-term in Eqn. (12)) multiplied by the spanwise moment arm. The moment arm used in Eqn. (19) is still applicable here.

Figure 3. Change in Leading-Edge and Tip Suctions due to LateralDirectional Motion

The side force and yawing moment due to roll rate for a wing alone are contributed from the incremental pressure force, change in the leadingedge suction and change in the tip suction, similar to those discussed in Section 3.3 for the sideslip effects.

3.5 Forces and Moments in Steady Yawing

The incremental lifting pressure due to yaw rate consists of three components:
(1) Due to yawing, a backwash ry is produced. This will interact with the symmetrical γ_{y} to produce a lifting pressure equal to:

$$
\begin{equation*}
\Delta C_{P_{r}}=-2 \frac{r y}{V_{\infty}} \gamma_{y}=-2\left(\frac{r b}{2 V}\right) \gamma_{\infty} \frac{2 y}{b} \tag{27}
\end{equation*}
$$

(2) Due to yawing, a sidewash $\operatorname{rxcos} \phi$ is produced on the wing plane. This will interact with the symmetrical γ_{x} to produce a lifting pressure equal to:

$$
\begin{equation*}
\Delta C_{P_{r}}=-2 \frac{r x}{V_{\infty}} \cos \phi \gamma_{x}=-2\left(\frac{r b}{2 V_{\infty}}\right) \gamma_{x} \frac{2 x}{b} \cos \phi \tag{28}
\end{equation*}
$$

(3) Incremental lifting pressure due to geometrical dihedral. This effect can be seen from the boundary condition in Eqn. (12). Once the incremental antisymmetrical lifting pressure is obtained, the wing rolling moment due to yawing can be calculated immediately. The calculation of side force and yawing moment due to yaw rate follows the same procedures of computing the effects due to sideslip. This is because a wing in yawing can be regarded as being subjected to "variable sideslip" effect, since the sidewash on the wing plane (rx $\cos \phi$) varies on the wing.

3.6 Conversion to Stability Axes System

Once the stability derivatives are calculated on some body axes, it is desirable to transform them to values based on stability axes. The transformation formula have been derived elsewhere (page 192, Ref. 11) and are listed below for convenience. The primed quantities in the following are based on body axes (ε in Ref. 11 is replaced with $-\alpha$).

$$
\begin{align*}
& \mathrm{C}_{\mathrm{y}_{\beta}}=\mathrm{C}_{\mathrm{y}_{\beta}}{ }^{\prime} \tag{29}\\
& C_{y_{p}}=C_{y_{p}}^{\prime} \cos \alpha+C_{y_{r}}{ }^{\prime} \sin \alpha \tag{30}\\
& \mathrm{C}_{\mathrm{y}_{\mathrm{r}}}=\mathrm{C}_{\mathrm{y}_{\mathrm{r}}}{ }^{\prime} \cos \alpha-\mathrm{C}_{\mathrm{y}_{\mathrm{p}}}{ }^{\prime} \sin \alpha \tag{31}\\
& C_{\ell_{\beta}}=C_{\ell_{\beta}}{ }^{\prime} \cos \alpha+C_{n_{\beta}}{ }^{\prime} \sin \alpha \tag{32}\\
& C_{\ell p}=C_{\ell_{p}}{ }^{\prime} \cos ^{2} \alpha+\left(C_{\ell_{r}}^{\prime}+C_{n_{p}}{ }^{\prime}\right) \sin \alpha \cos \alpha+C_{n_{r}} \sin ^{2} \alpha \tag{33}\\
& C_{\ell_{r}}=C_{\ell_{r}} \cos ^{2} \alpha+\left(C_{n_{r}}^{\prime}-C_{\ell}{ }^{\prime}\right) \sin \alpha \cos \alpha-c_{n_{p}} \sin ^{2} \alpha \tag{34}\\
& \mathrm{C}_{\mathrm{n}_{\beta}}=\mathrm{C}_{\mathrm{n}_{\beta}}{ }^{\prime} \cos \alpha-\mathrm{C}_{\ell_{\beta}}{ }^{\prime} \sin \alpha \tag{35}\\
& C_{n_{p}}=C_{n_{p}} \cos ^{2} \alpha+\left(C_{n_{r}}^{\prime}-C_{\ell}{ }^{\prime}\right) \sin \alpha \cos \alpha-C_{\ell_{r}} \sin ^{2} \alpha(36) \tag{36}\\
& C_{n_{r}}=C_{n_{r}} \cos ^{2} \alpha-\left(C_{\ell}{ }^{\prime}+C_{n_{p}}^{\prime}\right) \sin \alpha \cos \alpha+C_{\ell}{ }^{\prime} \sin ^{2} \alpha \tag{37}
\end{align*}
$$

4. Numerical Results and Discussions

Some preliminary results without the refinement for high angles of attack have been reported in Reference 8. Good agreement in roll derivatives with Garner's theoretical calculation (Ref. 12) for two wings at different Mach numbers has been demonstrated. In the following, additional results by the present refined program will be presented for conventional configurations and configurations with significant vortex-1ift effect. 4.1 Conventional Configurations without Significant Vortex-Lift Effect The experimental results for lateral-directional stability derivatives for four wings with NACA 0012 airfoil section were presented in Reference 1. The results for two wings are chosen for comparison here. Figure 4 presents the results for a rectangular wing of $A=5.16$. It is seen that the present method predicts all rolling moment derivatives with good accuracy. However, $C_{y_{p}}$ and $C_{n_{p}}$ are not accurately predicted. To see whether this is true for other unswept configurations with different aspect ratio, the test data in Reference 5 for $A=2.61$ are compared in Figure 5. Again, both $C_{y_{p}}$ and $C_{n_{p}}$ are overpredicted. This discrepancy indicates that both leading-edge and tip suction forces are not fully realized in the experiment, as has been assumed in the theory. This phenomenon has also been discussed by Garner in Reference 12. One possible way to solve this problem is to apply an edge suction correction factor. For the leading-edge suction, an empirical correction factor has been determined in Reference 13 as a function of airfoil geometry and Mach number. Experimental data showing the degree of leading-edge suction development can also be found in References 14 and 15. However, a systematic work on tip suction phenomena does not seem to exist.
\qquad Experiment (Ref. I)
Present Theory with attached Potential Flow ----Queijo's Theory (Ref. 2)

Figure 4 Comparison of Predicted Lateral-Directional Stability Derivatives with Experimental
Data for an Unswept Wing at $M=0$. $A=5.16, ~ \Lambda=0$, and $\lambda=1.0$

Figure 5 Comparison of Predicted Rolling Stability Derivatives with Experimental Data for a Rectangular Wing of $A=2.61$ at $M=0$

Slight increase in $\left.\right|_{\ell_{\mathrm{p}}} \mid$ with increasing C_{L} in Figure 5 implies that partial vortex-lift effect may exist at the tip.

The results for a 45 -degree swept wing of $A=2.61$ are presented in Figure 6. In this case, the vortex lift effect is assumed to exist along the leading edge, but not along the tip chord. This is evidenced from C_{ℓ} variation and experimental lift curve. Again, all rolling moment derivatives are reasonably predicted, except at high lift coefficients. The prediction of side force and yawing moment due to sides1ip and yaw rate is not accurate, probably because the effect of skin friction has not been included in the program. At zero C_{L}, the skin friction will produce negative $C_{y_{B}}$. For the other derivatives, the effect of skin friction may or may not be important, depending on the location of moment center.

Figure 7 presents the sideslip derivatives for a KC-135A wing-body model with and without winglets at different subsonic Mach numbers. The experimental results are given in Reference 16 . It is seen that the dihedral effect can be accurately predicted for this nonplanar wing-body configuration below the drag-divergence Mach number. The absolute level of $C_{n_{\beta}}$ and $C_{y_{\beta}}$ is not correctly predicted, because the body effect has not been included. Of course, a body will contribute negative $C_{n_{\beta}}$ and $C_{y_{\beta}}$ to the total derivatives. However, the trend with Mach number variation and the incremental effect produced by winglets are all correctly predicted.

Finally, another nonplanar configuration - a V-tail is analyzed in Figure 8. The experimental data can be found in Reference 17. The lateral stability derivatives are presented as a function of geometric

Experiment (Ref. 1)
Present Theory, with Leading-Edge Vortex Lift Effect

- - - Queijo's Theory (Ref. 2)

Figure 6 Comparison of Predicted Lateral-Directional Stability Derivatives with Experimental Data for a Swept Wing at $M=0$. $A=2.61, ~ A=45^{\circ}$ and $\lambda=1.0$

Figure 7 Comparison of Predicted Lateral Stability Derivatives with Experimental Data for a KC-135A Mode1 at $C_{L}=0.44$

Figure 8 Comparison of Predicted Lateral Stability Derivatives with Experimental Data at $\alpha=0^{\circ}$ and $M=0$ for a V-Tail of Aspect Ratio of 5.55
dihedral angles. All predicted β-derivatives are seen to agree quite well with experimental data.

4.2 Configurations with Significant Vortex-Lift Effect

When edge vortex separation is present, its effect can be predicted by Polhamus' suction analogy (Ref. 7). In this method, the predicted leading-edge and tip suctions are assumed to be acting normal to the wing at the edges.

A delta wing of $A=1.147$ with sharp edges was tested and reported in Reference 18. The longitudinal aerodynamic characteristics are presented in Figure 9 together with the predicted results. As can be seen, the method of suction analogy works quite well for this wing. The sideslip derivatives are compared in Figure 10. Again, $C_{\ell_{\beta}}$ is reasonably well predicted. As for $\mathrm{C}_{\mathrm{y}_{\beta}}$, the effect of skin friction may explain the discrepancy. At high angles of attack, $C_{y_{\beta}}$ reverses in sign. This may be due to the fact that at high angles of attack in sideslip, the windward leading-edge vortex is large and is pushed more inboard to affect a larger wing area on the right side as compared with the left vortex effect. Since the right side leading-edge vortex generates positive sidewash on the wing surface, the resulting positive side force will make $\mathrm{C}_{\mathrm{y}_{\beta}}$ more positive as angle of attack is increased. This effect is not included in the present method.

A more complicated configuration is illustrated in Figure 11. Test results of this configuration were reported in Reference 19. The longitudinal and lateral aerodynamic characteristics are presented in Figures 12 and 13 , respectively. In the present calculation, the outboard portion of wing which has a lower sweep angle and has dihedral is assumed

Figure 9 Comparison of Predicted Longitudinal Aerodynamic Characteristics with Experimental Data for a Delta Wing of $A=1.147$ at $M=0.2$

Figure 10Comparison of Predicted Lateral Stability Derivatives with Experimental Data for a Delta Wing of $A=1.147$ at $M=0.2$

All dimensions are in cm. (in.)

Figure 11 Geometry for a Test Model of Supersonic Cruise Configuration

Figure 12 Comparison of Predicted Longitudinal Aerodynamic Characteristics of a Supersonic Cruise Configuration with Experimental Data at $\mathrm{M}=0.165$

Figure 13 Comparison of Predicted Lateral Stability Derivatives for a Supersonic Cruise Configuration with Experimental Data at $M=0.165$
not to develop vortex lift and has zero leading-edge suction. This assumption is plausible judged from the surface oil flow data in Reference 19. Figure 12 shows that the present method predicts the longitudinal characteristics quite well, in particular, the trend with tip dihedral being correctly predicted. The theoretical method used in Reference 19 is the conventional vortex-lattice method (Ref. 20).

5. Concluding Remarks

The present nonplanar quasi-vortex-lattice method predicts quite well all rolling moment derivatives, which are, of course, contributed mainly by the wing in a complete configuration. To improve the prediction of other lateral-directional stability derivatives, the following refinements are needed:
(1) to include the fuselage effect.
(2) to include the effect of skin friction so that the prediction of $C_{y_{\beta}}, C_{n_{\beta}}, C_{y_{r}}$ and $C_{n_{r}}$ can be improved.
(3) to incorporate empirical correction factors for the degree of development of edge suction forces.
(1) To11, T. A. and Queijo, M. J., "Approximate Relations and Charts for Low-Speed Stability Derivatives of Swept Wings," NACA TN 1581, 1948.
(2) Queijo, M. J., "Theory for Computing Span Loads and Stability Derivatives due to Sideslip, Yawing, and Rolling for Wings in Subsonic Compressible Flow," NASA TN D-4929, December 1968.
(3) Quei.jo, M. J., "Theoretical Span Load Distributions and Rolling Moments for Sideslipping Wings of Arbitrary Plan Form in Incompressible Flow," NACA Report 1269, 1955.
(4) Polhamus, E. C. and Sleeman, W. C., Jr., "The Rolling Moment due to Sideslip of Swept Wings at Subsonic and Transonic Speeds," NASA TN D-209, February 1960.
(5) Goodman, A. and Fisher, L. R., "Investigation at Low Speeds of the Effect of Aspect Ratio and Sweep on Rolling Stability Derivatives of Untapered Wings," NACA Report 968, 1950.
(6) Lan, C. E., "A Quasi-Vortex-Lattice Method in Thin Wing Theory," Journal of Aircraft, Vol. 11, No. 9, Sept. 1974, pp. 518-527.
(7) Polhamus, E. C., "A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading-Edge-Suction Analogy," NASA TN D-3767, December 1966.
(8) Lan, C. E., "Calculation of Lateral-Directional Stability Derivatives for Wing-Body Combinations with and without Jet-Interaction Effects," NASA CR-145251, August 1977.
(9) Rubbert, P.E., "Sideslip of Wing-Body Combinations," NASA CR-114716, October 1972.
(10) Hoerner, S. F. and Borst, H. V., "F1uid-Dynamic Lift," published by Hoerner Fluid Dynamics, P.O. Box 342, Brick Town, N.J. 08723, 1975.
(11) Etkin, B., "Dynamics of Atmospheric Flight," John Wiley and Son, Inc., 1972.
(12) "On the Application of Subsonic Linearized Wing Theory to SecondOrder Forces and Moments," ARC R \& M No. 3758, 1975.
Part I General Principles and Mathematical Models, by G. J. Hancock.
Part II . Edge Forces and Roll-Rate Derivatives, by H. C. Garner.
(13) Carlson, H. W. and Mack, R. J., "Studies of Leading-Edge Thrust Phenomena," AIAA Paper No. 80-0325, Jan. 1980.
(14) Henderson, W. P., "Studies of Various Factors Affecting Drag Due to Lift at Subsonic Speeds," NASA TN D-3584, October 1966.
(15) Henderson, W. P., "Effects of Wing Leading-Edge Radius and Reynolds Number on Longitudinal Aerodynamic Characteristics of Highly Swept Wing-Body Configurations at Subsonic Speeds," NASA TN D-8361, December 1976.
(16) Jacobs, P. F., "Effect of Winglets on a First-Generation Jet Transport Wing. V.-Stability Characteristics of a Full-Span Wing with a Generalized Fuselage at High Subsonic Speeds," NASA TP-1163, March, 1978.
(17) Schade, R. O., "Effect of Geometric Dihedral on the Aerodynamic Characteristics of Two Isolated Vee-Tail Surfaces," NACA TN-1369, July 1947.
(18) Davenport, E. E. and Huffman, J. K., "Experimental and Analytical Investigation of Subsonic Longitudinal and Lateral Aerodynamic Characteristics of Slender Sharp-Edge 74° Swept Wings," NASA TN D-6344, July 1971.
(19) Washburn, K. E.and Gloss, B. B., "Effect of Wing-Tip Dihedral on the Longitudinal and Lateral Aerodynamic Characteristics of a Supersonic Cruise Configuration at Subsonic Speeds," NASA TM X-72693, August 1976.
(20) Lamar, J. E. and Gloss, B. B., "Subsonic Aerodynamic Characteristics of Interacting Lifting Surfaces with Separated Flow Around Sharp Edges Predicted by a Vortex-Lattice Method," NASA TN D-7921, September 1975.

Appendix A

Instruction on the Usage of the Nonplanar QVLM

Program and Sample Input Data

A. 1 PROGRAM CAPABILITIES

This program has the following main features:
(1) It is applicable to nonplanar wing configurations, such as wingwinglet, wing-vertical fin combinations, etc. It can also analyze wing-tail or wing-canard configurations. However, the wake is assumed flat.
(2) Up to five flap spans with different flap angles, including ailerons, can be analyzed.
(3) Arbitrary camber shapes defined at three spanwise stations or less are used in the program through cubic spline interpolation.
(4) The program can calculate the symmetrical loading, the rolling moment coefficient due to aileron deflections (for attached potential flow only) and lateral-directional stability derivatives. For the first two conditions, the bending moment distribution is also calculated.
(5) The vortex-lift effect is calculated through the use of Polhamus' suction analogy.
(6) Ground effect analysis is made by the image vortex method. However, the ground effect on lateral-directional stability derivatives has not been correlated with the experimental data.
A. 2 INPUT DATA FORMAT

Group 1 Format (6 X, I4), 1 card
ICASE Number of cases to be run

Group 2 Format 2(6X, 14), 1 card
NCASE User's case number
NGRD $\quad=1$ if the wing is in ground effect; $=0$ otherwise.

Group 3 Format (13A6), 1 card
TITLE (I) Any words describing the case to be run. ($\mathrm{I}=1,13$)

Group 4 Format 8(6X, I4), 1 card
NC Number of spanwise sections on the right wing (to be divided according to points of discontinuities in geometry, such as edges of flap spans). Limited to 7. (Avoid dividing planforms into too many sections).

M1(I), $I=1$, NC Numbers of vortex strips in each section plus one.
There are NC numbers. Minimum value is 3 . Maximum total number of vortex strips is 48.

IWING = Last wing vortex strip number if a tail is present, $=0$, otherwise.

NWING $\quad=$ The numerical order of the last wing spanwise section, numbered from inboard sections.

IWGLT $=1$ if a winglet to be represented by a tail is present. $=2$ if the winglet (vertical fin) is placed inboard of wing tip.
$=0$ otherwise.
Group 5 Format 8(6X, I4), 1 card
NFP Number of flap spans. Limited to 5.
NJW(I), $I=1, N F P$ Numerical orders of flap spans among the spanwise sections.
For clean or full-span flap configurations, set NFP $=1$, $\operatorname{NJW}(\mathrm{I})=1$.

NVRTX The vortex strip number at and outboard of which the leading-edge vortex-lift effect is not included. If it is zero, total vortex-1ift is assumed.

```
Group 6
    NW(1) Numbers of vortex elements in chordwise sections,
    NW(2) divided along flap hinge line or winglet leading edge,
        as illustrated in sample input.
    ICAM = 1 if camber ordinates are to be read in,
        =0 if camber slopes are defined manually in subprograms ZCR(X),
        ZCI(X), ZCT(X). The default is for a noncambered wing.
    IM Number of camber ordinates to be read in (limited to 12);
        arbitrary if ICAM = 0.
        Number of stations at which camber ordinates are read in.
        Limited to 3. Station 2 must be consistent with the
        intermediate station defining twist (see Group 13).
    ICAMT = 1 if the tail, winglet or vertical fin has camber.
        In this case, camber ordinates at wing root, wing tip
        and tail should be all read in.
        = 0, otherwise.
```

*Omit group 7 if ICAM $=0 *$
Group 7 Format 8F10.6
$X T(I, J) \quad X$-coordinates at which camber ordinates are read in.
Nondimensionalized with chord length. All X-coordinates
are read in first.
ZC(I, J) Camber ordinates at the corresponding X-locations. Non-
dimensionalized with chord length.
The above are to be repeated IST times. Input root chord first.

Group 8
LAT $\quad=0$ for symmetrical loading only
$=-1$ for computing C_{ℓ} with aileron deflection.
$=1$ for computing lateral-directional stability
derivatives. (Symmetrical loading is always calculated).
NAL Numerical order of aileron span among the flap spans.
$(=0$ if LAT $\neq-1)$
Group 9 Format 8F10.6
Corner-point coordinates of a spanwise section.
XXL(1) L.E. X-coordinate of the inboard chord.
XXT(1) T.E. X-coordinate of the inboard chord.
YL(1) Y-coordinate of the inboard chord.
XXL(2) L.E. X-coordinate of the outboard chord.
XXT(2) T.E. X-coordinate of the outboard chord.
YL(2) Y-coordinate of the outboard chord.
ZS elevation of the spanwise section.
DIHED dihedral angle in degrees for the section.
Note. Group 9 is to be repeated NC times. With flaps or winglet, another NC cards are needed to describe the flap and the associated regions. The order of input is illustrated below. Panels with dihedral must be rotated to $X-Y$ plane for geometric description.

ALPINC Incremental angle of attack in degrees.

Note. The above variables in Group 11 should be all zero if ALPCON $=1.0$ Group 12 Format 2F10.6, 1 card

HEIGHT Ground height of $3 / 4$ chord point of M.A.C., or other reference point. $=0$. if $N G R D=0$.

ATT pitch attitude angle in degrees. $=0$. if $N G R D=0$.

Group 13 TWIST1	Format 7F10.6, 1 card
	twist in degrees from root chord to an intermediate
	station, negative for washout. If TWIST1 >99, the twist
	distribution and camber slope defined in Functions TWST
	\& zCDX will be used.
TWIST2	twist in degrees from an intermediate station to tip
	chord, referenced to the intermediate station. $=0$. if
	the intermediate station is the tip.
YTW	Y-coordinate of the intermediate station.
RINC	root chord incidence angle in degrees.
CAMLE1	L.E. camber slope at the root chord.
CAMLE 2	L.E. camber slope at the intermediate station $\}$ if ICAM $=1$
CAMLE3	L.E. camber slope at the tip chord.

*Group 14 must be omitted if IWING $=0$

Group 14 Format 3F10.6, 1 card
TINC Tail incidence angle in degrees.
HALFSH Tail half area. If the tail is to represent the winglet at the tip, put HALFSH $=$ HALFSW. If the tail is a vertical fin inboard of wing tip, put HALFSH $=$ fin area.

Winglet position indicator. Its numerical value is based on whether the winglet is attached to the wing first or second chordwise section, respectively. It is indicated below. If there is no winglet, it should be 0 .

If ICASE >1, repeat Groups 2-14.

Remarks:

(1) With the existing dimension for the array $D Q(I, J)$ in the main program, a total of 140 vortex elements can be used. The minimum memory for execution is 55 K (decimal).
(2) Three working disk files are needed in execution. They are designated as (01), (02) and (03).

A. 3 OUTPUT DATA FORMAT

(1) First, the input data will be printed.

HALFSW half wing area
CREF reference chord
(2) Vortex Element Endpoint Coordinates:
$\left(X_{1}, Y_{1}, Z_{1}\right)$ coordinates of the inboard endpoint of a bound vortex element
$\left(X_{2}, Y_{2}, Z_{2}\right)$ coordinates of the corresponding outboard endpoint of a bound vortex element
(3) Control Point Coordinates:

One set of (XCP, YCP, ZCP) defines a control point location.
(4) Sectional Pressure and Force Data

XV percent chordwise location
YV percent spanwise location (referred to half span)
$C P \quad \Delta C_{p}$ (with aileron deflections, ΔC_{p} on both left and right wings will be printed).

Y/S the nondimensional y-coordinate of the spanwise station (referred to half span)

CL Sectional lift coefficient
CM sectional pitching moment coefficient about the y-axis
CT sectional leading-edge thrust coefficient
CDI sectional induced drag coefficient
(5) The next group of output variables is for the attached potential flow. If ALPCON $=1$, the lift and pitching moment coefficients will be $\mathrm{C}_{\mathrm{L}_{\alpha}}$ and $\mathrm{C}_{\mathrm{m}_{\alpha}}$.
(6) The results to be used in the method of suction analogy are printed next. If $\operatorname{ALPCON}=1$, the variables printed are used for a noncambered wing in the following formulas:

$$
\begin{aligned}
& C_{L}=K_{p} \sin \alpha \cos ^{2} \alpha+\left(K_{v, \ell e}+K_{v, s e}\right) \sin ^{2} \alpha \cos \alpha \\
& C_{D_{i}}=C_{L} \tan \alpha
\end{aligned}
$$

$$
C_{m}=K_{p} \sin \alpha \cos \alpha \frac{\bar{x}_{p}}{C_{r e f}}+K_{v, \ell e} \sin ^{2} \alpha \frac{\bar{x}_{\ell e}}{C_{r e f}}+K_{v, s e} \sin ^{2} \alpha \frac{\bar{x}_{s e}}{C_{r e f}}
$$

(7) If lateral-directional stability derivatives are calculated, results for both attached potential flow and vortex-separated flow will be printed, based on body and stability axes. The sideslip derivatives are in per radian.
(8) If rolling moment coefficient due to aileron deflection is calculated, it will be printed here.
(9) The last group of results is the bending moment distribution and the bending moment coefficient at the root chord.

A. 4 Sample Test Case No. 1

Input Data :

1

NASA TP-1163. KC-135A WITH WINGLFT

*** CAMBER ORDINATES FOR THE ROOT SECTION ***

X / C	0.	0.10000	0.20000	0.30000	0.40000	0.50000	0.60000
Z / C	0.	0.01450	0.01878	0.01947	0.01946	0.01855	0.01744
	0.70000	0.00000	0.90000	1.00000			
	0.0145δ	$U .41022$	0.00532	0.			

*** CAMBER ORDINATES FOR THE IMTERMEDIATE SECTION ***

x / C	0.	0.10000	0.20000	0.30000	0.40000	0.50000	0.60000
$2 / C$	0.	0.01450	0.01878	0.01947	0.01946	0.01855	0.01744
	$0.700 \cup \mathrm{u}$	U. 60000	0.90000	1.00000			
	0.01456	U. U1022	0.00582	0.			
MBER	ORDINATES	FOR THE TIP	SECTION	***			
x / C	O.	0.10000	0.20000	0.30000	0.40000	0.50000	0.60000
2/C	0.	0.09505	0.01900	0.02145	0.02300	0.32370	0.02410
	0.70006	U. 60000	0.90000	- 1.00000			
	0.02330	U. 41990	0.01215	-0.00435			

\Varangle 7659
7659
7659
0922
0922
 00
+000

[^0]| 1.80191 | 3.42231 | 9.14169 | 12.1216? | 0. | 0. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3.32155 | 4.87363 | 9.14169 | 12.12168 | 0. | 3. |
| 4.84119 | 6.32494 | 9.14169 | 12.12168 | 0 . | ก. |
| 3.42231 | 5.08439 | 12.12168 | 15.17831 | 0. | 7 |
| 4.87363 | 6.46562 | 12.12168 | 15.17831 | 0 . | 0 |
| 6.32494 | 7.84683 | 12:12168 | $15: 17831$ | 0 : | 0 |
| 5.08439 | 6.70479 | 15.17831 | 18.15831 | 0. | 0 |
| 6.46562 | 8.01770 | 15.17831 | 18.15831 | 0. | 0 |
| 7.84686 | 9.33061 | 15.17831 | 18.15831 | 0. | 0 |
| 6.70479 | 8.20227 | 18.15831 | 20.91224 | | |
| 8.09770 | 9.45204 | 18.15831 | 20.91224 | 0. | |
| 9.33061 | 10.70131 | 18.15831 | 20.91224 | 0 | 0 |
| 8.20227 | 9.50173 | 20.91224 | 23.30201 | 0 | |
| 9.45204 | 10.69671 | 27.91224 | 23.30201 | 0 | 0 |
| 10.70181 | 11.89169 | 20.91224 | 23.30201 | 0 | 0 . |
| 9.50173 | 10.53802 | 23.30201 | 25.20778 | 0. | 0 |
| 10.69671 | 11-58930 | 23.30201 | 25.20778 | 0 | 0. |
| 11.89169 | 17.84059 | 23.30201 | 25.20778 | 0 . | |
| $10.5380 ?$ | 11.25917 | 25:20778 | 26.53401 | 0. | |
| 11.68930 | 12.3800 .5 | 25.20778 | 26.53401 | 0. | 0 |
| 12.84059 | 13.50092 | 25.20778 | 26.53401 | 0 - | |
| 11.25917 | 11.67568 | 26.53471 | 27.30000 | 0. | 0 |
| 12.38005 | 12.77900 | 26.53401 | 27.30000 | 0. | 0. |
| 13.50092 | 13.88232 | 26.53401 | 27.30000 | 0. | 0. |
| 13.22075 | 13.49908 | 27.30000 | 27.87407 | 0 | 0 |
| 13.60700 | 13.84704 | 27.30000 | 27.87407 | 0 . | 0 |
| 13.99325 | 14.19500 | 27.30000 | 27.87407 | 0 : | 0 |
| 13.49908 | 13.92508 | 27.87407 | 28.75271 | 0. | 0 |
| 13.84704 | 14.21443 | 27.87407 | 28.75271 | 0 | 0 |
| 14.19500 | 14.50379 | 27.87407 | 28.75271 | 0 : | 0 |
| 13.92508 | 14.41698 | 28.75271 | 29.76729 | 0. | 0. |
| 14.21443 | 14.53867 | 28.75271 | 29.76729 | 0 . | 0 |
| 14.50379 | 14.86035 | 28.75271 | 29.76729 | 0. | 0 |
| 14.41698 | 14.84298 | 29.76729 | 30.64593 | 0 | |
| 14.63867 | 15.00606 | 29.76729 | 30.64593 | 0 . | 0 |
| 14.86035 | 15.16914 | 29.76729 | 30.64593 | 0 - | 7 . |
| 14.84298 | 15.08893 | 30.64593 | 31.15321 | 0. | 0 - |
| 15.00606 | 15.21817 | 30.64593 | 31.15321 | 0 : | 0. |
| 15.16914 | 15.34742 | 30.64593 | 31.15321 | 0 - | 0. |
| CONTROL POINT COORDINATES $=$ | | | | | |
| $\times \subset$ | $Y C P$ | 7. $C P$ | \times ¢ P | YCP | ZCP |
| -8.75474 | 0.34223 | 0. | -5.08437 | 0.34223 | |
| -3:24919 | 0.34223 | 0. | -8.03457 | 1.35177 | 0 : |
| -4.47596 | 1.35177 | 0 . | - 2.69666 | 1.35177 | 0 |
| -6.87447 | 2.97800 | 0 . | - 3.49590 | 2.97800 | 0 . |
| -1.80662 | 2.97800 | 0. | - 5.33263 | 5.13936 | |
| -2.19333 | 5.13936 | 0. | -0.62369 | 5.13936 | 0 - |
| - 3.48635 | 7.72749 | 0 : | -0.63358 | 7.72749 | 9. |
| 0.79281 | 7.72749 | 0 | -1.42822 | 10.61259 | 0 \% |
| 1.10516 | 10.61259 | 0. | 2.37185 | 10.61259 | \bigcirc |
| 0.73856 | 13.65000 | $0 \cdot$ | 2.93569 | 13.65000 | 1] |
| $4 \cdot 03425$ | 13.65000 | \bigcirc | 2.90535 | 16.68741 | \%. |
| 4.76621 | 16.68741 | 0 | 5.69665 | 16.68741 | 0. |
| 4.96348 | 19.57251 | 0. | 6.50495 | 19.57251 | 0. |
| 7.27569 | 19.57251 | 0 | 6.80976 | 2?.16064 | 0 : |
| 8.06471 | 22.16064 | 0 | 8.69219 | 22.16064 | \bigcirc |
| 8.35160 | 24.32200 | 0 . | 9.36728 | 24.32200 | 3. |
| 9.87512 | 24.32200 | 0. | 9.51169 | 25.94822 | 0 \% |

10.34734
10.23186
11.31769
12.89580
12.61444
13.64625
13.85762
14.00531
14.61675
14.81945
-2.25535
0.72619
0.24478
-0.84766
2.02920
2.16735
1.68890
4.37715
4.94553
4.85194
7.30500
8.02909
8.01498
10.23285
10.80728
10.55154
12.58080
12.72984
11

$X X$
PRESSURE DISTRIBUTION AT ALPHA $=1.510$ DEG。
XX
$\times V$
0.04345
0.32435
0.60524
0.67223
0.82435
0.97647
0.04319
0.32236
0.60154
0.66852
0.82736
0.97620
0.04273
0.31894
0.59516
0.66215
0.81894
0.97574
0.04206
0.31393
0.58580
0.65779
0.81393
0.97507
0.04114
0.30708
0.57303
0.64001
0.80708
0.97415
0.03994
$Y V$
0.01254
0.01254
0.01254
0.01254
0.01254
0.01254
0.04952
0.04952
0.04952
0.04952
0.04952
0.04952
0.10908
0.10908
0.10908
0.10908
0.10908
0.13826
0.18826
0.18826
0.18826
0.18826
0.18826
0.28306
$\cap .28306$
0.28306
0.28306
0.28306
0.28306
0.38874

00

10
27
26
10
95
40
64
88
87
64
42
49
39
28
27
39
51
19
21
22
21
21
20
54
45
36
34
55
73
41
10
0

0.4035 NiN N
Nom

M
ON
O

0.8249
$0: 9765$
路
0.324
0.606
0.673
\qquad

[^1]nMmry-oummñonmmivt
NMNGO-MGNJ

7
8
9
1
0
6
3
1
1
9
13431
07970
58078
38027

$\begin{array}{r}38072 \\ -35992 \\ \hline 27372\end{array}$
2737
14079
1671
16713
61809
40000
.4000
$: 3976$
. 1453
2209
6558
.4145
3870
.3399
.3976
O. 14
.68390
0.68375
0.3853
0.314
0.3853
0.1477
0.12302
.1477
.2093
.6699
0.3591
0.3645
.3645
0.1603
1.0157
. 5148
0.3797
0.3665
0.1558
1.6396
1.6396
0.5486
0.3534
0.3334
0.2297
0.2761
0.1596
.1596
.4363
.43631
0.2510
0. 2777
$\cdot 1547$
$\cdot 1900$
1900
.4381
.438
.3032
$\begin{array}{r}.3032 \\ .2385 \\ \hline\end{array}$
.2685
.149
1.062
.3383
0.
.21341
.24619
.14150
.2755
0.1
.8705
0.2530
0.1754
0.1751
$0:$
0.14406
.18574
0. 1258

```
\(Y / 5\)
0.01254
0.04952
0.10908
0.13826
0.28306
0.38874
0.50000
0.61126
0.71694
0.81174
0.89092
0.95048
0.98746
\(C L(R I G H T)\)
0.34518
0.35762
0.37702
0.40089
0.42631
0.45157
0.47470
0.49492
0.50951
0.51620
0.47718
0.42661
\(C L(L E F T)\)
0.34518
0.35762
0.37702
0.40789
0.42631
0.45157
0.47470
0.49492
0.50951
0.50630
0.47718
0.42661
```



```
THE FOLLOWING ARE THE WINGLET CHARACTERISTICS
\begin{tabular}{llll} 
FOLLOWING ARE & THE WINGLET & CHARACTERISTICS & \\
1.00962 & 0.14184 & 0.14184 & -9.23425 \\
1.03590 & 0.13154 & 0.13154 & -0.21894 \\
1.07179 & 0.11994 & 0.11994 & -0.20718 \\
1.10769 & 0.10802 & 0.10802 & -0.19401 \\
1.13397 & 0.08108 & 0.08108 & -0.14953
\end{tabular}
*** THE FOLLOWING ARE ATTACHED POTENTIAL FLOW RESULTS *** TOTAL LIFT COEFFICIENT \(=0.44493\)
TOTAL INDUCED DRAG COEFFICIENT \(=0.00474\)
THE INDUCED DRAG PARAMETER \(=0.02394\)
TOTAL PITCHING MOMENT COEFFICIENT \(=-0.08550\)
THE WING LIFT COEFFICIENT \(=0.44115\)
THE WING INDUCED DRAG COEFFICIENT \(=0.00596\)
THE WING PITCHING MOMENT COEFFICIENT \(=-0.07904\)
THE TAIL LIFT COEFFICIENT \(=0.00378\) (BASED ON WING AREA) , = 0.00378 (BASED ON TAIL AKLA)
the tail pitching moment coefficient rased on reference wing area AND MEAN WING CHORD, AND REFERRED TO THE Y-AXIS \(=-0.00646\) (NOTE. THE INOUCED DRAG COMPUTATION IS FOR SYMMETRICAL LOADING ONLY)
```

the following parameters are used in the method of suction analogy

| CLP $=0.44591$ | CLVLE $=0.00620$ | CLVSE $=0.00109$ |
| ---: | :--- | :--- | :--- |
| CDP $=0.01027$ | CDVLE $=-0.00100$ | CDVSE $=0.00007$ |
| $C M P=-0.08550$ | CMVLE $=-0.00173$ | CMVSE $=-0.00149$ |

STABILITY DERIVATIVES BY POTENTIAL FLOW THEORY

```
***STABILITY DERIVATIVES EVALUATEDAT ALPHA = 1.510 DEGREES
    AND AT MACH NO.* O.50.BASED ON BODY AXES(IN PER RADIAN)***
    CYB = -0.1691180 CLB = -0.1986322 CNB = 0.0151494
    CYP = -0.1860291 CLP = -0.4867214 CNP = -0.0144590
    CYR = 0.1008180 CLR = 0.1168240 CNR = -0.0159456
***STABILITY DERIVATIVES BASED ON STABILITY AXES***
    CYB = -0.1691180 CLB = 0.0.1981640 CNB = 0.0203784
    CYP = -0.1833078 CLP = -0.4836980 CNP = -0.0021287
    CYR = 0.1056851 CLR = 0.1291542 CNR = 0.0189690
```

STABILITY DERIVATIVES WITH EDGE VORTEX SEPARATION
STABILITY DERIVATIVES EVALUATED AT ALPHA = 1.510 DEGREES AND AT MACH NO, ${ }^{2}$ 0.50,BASED ON BODY AXES(IN PER RADIAN) **INCLUDING the effect of le and se vortex lift* $C Y B=-0.2169768 \quad C L B=-0.2115922 \quad C N B=0.0348294$ CYP $=-0.3323266 \quad C L P=-0.5473992 \quad C N P=0.0466965$ $C Y R=0.1118237 \quad$ CLR $=0.1198273$ CNR $=-0.0225003$
STABILITY DERIVATIVES BASED ON STABILITY AXES CYB $=-0.2169768$ CLB $=-0.2106009 \quad$ CNB $=0.0403930$ CYP $=-0.3292644 \quad$ CLP $=-0.5426481 \quad C N P=0.0604077$ $C Y R=0.1205421 \quad$ CLR $=0.1335387$ CNR $=-0.0272514$
***STABILITY DERIVATIVES EVALUATED AT ALPHA \# $\quad 1.510$ DESREES
 INCLUDING the effect of le vortex lift $C Y B=-0.2106318 \quad$ CLB $=-0.2102347$ CNB $=0.0333645$ $C Y P=-0.3059744 \quad C L P=-0.5369804 \quad C N P=0.0411909$ $C Y R=0.1091325 \quad C L R=0.1193995 \quad C N R=-0.0218611$

STABILITY DERIVATIVES BASED ON STABILITY AXES*** $C Y B=-0.2106318$ CLB $=-0.2092825$ CNB $=0.0388929$ $C Y P=-0.3029924 \quad C L P=-0.5323923 \quad C N P=0.0546483$ $C Y R=0.1171575 \quad$ CLR $=0.1328574$ CNR $=0.0264491$

```
THE FOLLOWING BENDING MOMENT COEFFICIENT IS BASED ON 2*S*(3/2).
            (FOR WHERE S = 418.500OO AND 8/G = 27.30000
            (FOR ATTACHED POTENTIAL FLOW ONLY)
\begin{tabular}{lll}
\(Y / S\) & BM (RIGHT) & BM (LFFT) \\
0.01254 & 0.10333 & 0.10333 \\
0.04952 & 0.09516 & 0.09516 \\
0.10908 & 0.08275 & 0.08275 \\
0.18826 & 0.06770 & 0.06770 \\
0.28306 & 0.05186 & 0.05186 \\
0.38874 & 0.03694 & 0.03694 \\
0.50000 & 0.02429 & 0.02429 \\
0.61126 & 0.01459 & 0.01459 \\
0.71694 & 0.00794. & 0.00794 \\
0.81174 & 0.00389 & 0.00389 \\
0.89092 & 0.00177 & 0.00177 \\
0.95048 & 0.00083 & 0.00083 \\
0.98746 & 0.00050 & 0.00050
\end{tabular}
    THE FOLLOWING ARE THE WINGLET CHARACTERISTICS BASED ON WING GEOMETRY
            WHERE S = 418.50000 AND B/2= 27.30000
\begin{tabular}{lll}
1.00962 & 0.00035 & 0.00035 \\
1.03590 & 0.00020 & 0.00020 \\
1.07179 & 0.00007 & 0.00007 \\
1.10769 & 0.00001 & 0.00001 \\
1.13397 & 0.00000 & 0.00000
\end{tabular}
THE BENDING MOMENT COEFFICIENT BASED ON WING HALF SPAN AND WING AREA AT THE WING ROOT \(=0.106180(\) RIGHT) \(=0.106180\) (LEFT)
THE BENDING MOMENT COEFFICIENT BASED ON WING HALF SPAN AND WING AREA AT THE WINGLET ROOT \(=0.000420\) (RIGHT) \(=0.000420\) (LEFT)
```

A. 5 Sample Test Case No. 2

Input Data:

A CONFIGURATION WITH ANTISYMMETRICAL AILERON DEFLECTIONS

VORTEX ELEMENT ENDPOINT COORDINATES $=$

62
81
99
67
85
04
71
89
77
74
95
79
00
87
77
98
18
12
31
27
45
42
59
56
72
68
83
76
91
81
95
85
99
91
756
99 233
084
834
712
162
70
77
439
21
13
43
891
71
74
58
78
699
82
812
644
781

000

XCP	C?	2 CP	XCP	YCP	ZCP
0.20020	0. 02279	0.	0.54800	0.02279	3.
0.72190	0.02279	3.	ก. 27377	O.08929	D.
0.38974	0.19414	0 .	0.72099	0.19414	0 :
0.8866 ?	0.19414	0.	0.53872	0.32883	0.
0.85696	0.32883	$0{ }^{\circ}$	1.01609	0.32882	\bigcirc -
0.70864	0.48245	0.	1.01705	0.48245	0.
1.16375 1.17368	0.48245 0.64255	0 O	1.31755	0.64255	0
1.05565	0.79617	0 :	1:32876	$0: 79517$	0 :
1.46531	0.79617	0 :	1.20463	0.93086	0 .
1.46473	O. 93086	0.	1:59478	9.93086	
1.69557	1.03571	0 。	1.39417	1.10221	0.
1.6377 ?	1:10221	0 .	1.75950	1:10221	$0:$
1.44160	1:14510	0 .	1.58101	1.14510	0
$\begin{aligned} & 1.30071 \\ & 1-7364 ? \end{aligned}$	1-14510	0.	1.50232	1.20000	0.
9.585 27	1:27500	0 :	1.89212	1.27500	0 :
1.92555	1.27500	0.	1.66822	1.35000	0 :
1.88782	1.35000	0 .	1:90762	1.35000	0 .
1.72895	1.40490	0.	1.94324	1.40490	0.
1.98246	1.44375	0 .	2:08773	1.44375	0 :
1.81341	1.48125	0 :	2.02032	1.48125	0 :
$2: 17378$	1.48125	0 :	0.87096	0.02279	0 :
$\begin{aligned} & 1.02001 \\ & 1-07844 \end{aligned}$	0.02279	0.	0.93214	0.08929	0.
$\begin{aligned} & 1.07844 \\ & 1.17053 \end{aligned}$	0.08929 0.19414	0:	1.02858	0.19414	0 :
1.28884	0.32883	0 :	9:29377	0.48245	0 :
1.42378	0.48245	0.	1.44103	0.64255	0 。
1.56442		0.			
$\begin{array}{r} 1: 69936 \\ 1=81767 \end{array}$	0.79617 0.93086	0	1.75622 $1: 80266$	0.93086 1.03571	0
$\begin{aligned} & 1.81767 \\ & 1.90976 \end{aligned}$	O. 93086	0 0.	1.80266 9.86384	1.03571	0 0.
$1: 96819$	1.10221	0	$1: 90328$	1:14510	0 :
?. 00585	1.14510	0.	1.95378	1.20000	0.
2.05408	1.20000	\%	2.02275	1.27500	0 .
2.18583	1.35000	$0 \cdot$	2.142?	1.40490	0 :
2.23405	1.40470	0 :	2:17795	$1: 44375$	O.
? 2.26818	1.44375 1.48125	0:	?. 21245	1.48125	0.


```
DRESSURE DISTRIB'JTION AT ALPHA = 5.00D DEG.
```

AND AILERON ANGLE $=-15.0 C O$ DEG.
XX

$x V$
0.04689
0.35000
0.65311
0.74393
0.95607
0.04689
0.35006
0.65391
0.74394
0.95607
0.04689
0.35000
0.65312
0.74394
0.95607
0.04689
0.35001
0.65312
0.74395
0.95607
0.04689
0.35001
0.65313
0.74396
0.95607
0.04689
0.35002
0.65314
0.74396
0.95607
0.04689
0.35002
0.65315
0.74397
0.95607
0.04689
0.35003
0.65316
0.

$\begin{aligned} & 0.49270 \\ & 0.23912 \\ & 0.13056 \\ & 0.14866 \end{aligned}$
2
460
- 12
05468
-628
- 240
39
13
7.0480
. 710
.24636
1338
1
. 0450
78
.25523
133
0753
0.0448
. 83337
. 2658
1369
11079
4
87752
. 27755
. 14434
. 11836
0.051
.91292
.15917
. 13722
.065
94
30
. 19263
-1022
,
574
3183
.25917

[^2]

```
    *** the following are attached potential flow results ***
TOTAL LIFT COEFFICIENT = 0.26796
    TOTAL INDUCEN ORAG COEFFICIENT = 0.00624
    THE INDUCED GRAG PARAMETER = 0.08738
    TOTAL PITCHING MOMENT COEFFICIENT = - ?. 32568
    FAR-FIELD INDUCED DRAG= 0.00636
    FAR-FIELD INOUCED DRAG PARAMETER= 0.08905
        (NOTE. THE INDUCED DRAG COMPUTATION IS FOR SYMMETRICAL LOADING ONLY)
```

the followifg parameters are used in the method of suction analogy

| CLP $=0.26567$ | CLVLE $=0.02597$ | CLVSE $=0.00729$ |
| ---: | :--- | ---: | :--- |
| CDP $=0.02324$ | CDVLE $=0.00227$ | CDVSE $=0.09064$ |
| CMP $=-0.32568$ | CMVLE $=-0.02963$ | CMVSE $=-0.01871$ |

THE ROLLING MOMENT COEFFICIENT $=0.0220$ DUE TO AILERON DEFLECTION OF -95.OOJ DEG. AT M = O. 400

THE FOLLOWING BENDING MOMENT COEFFICIENT IS BASED ON Q*S* (3/2),
GOR WHERE $S=2.37900$ AND E/2 $=9.50000$

Y / S	BM (RIGHT)	BM (LEEFT)
0.01519	0.03796	0.11287
0.05953	0.03340	0.10402
0.12943	0.02682	0.09067
0.21922	0.01945	0.07461
0.32163	0.01254	0.05782
0.42837	0.00703	0.04207
0.53078	0.00334	0.02864
0.62057	0.00131	0.01821
0.69047	0.00044	0.01097
0.73481	0.00017	0.00680
0.76340	0.00009	0.00483
0.80060	0.00006	0.00330
0.85000	0.00006	0.00171
0.90000	0.00005	0.00665
0.93660	0.00002	0.00019
0.96250	0.00001	0.00004
0.98750		

THE BENDING MOPENT COFFFICIENT BASED ON WING HALF SPAN AND WING AREA
AT THE WING ROOT $=0.039589$ (RIGHT) $=0.115973$ (LEFT)
A. 6 Sample Test Case No. 3

Input Data:

$N \cap T F$. The calculated derivatives in this case will be based on the span of the horizontal tail $\left(\mathrm{b}_{H}\right)$. To convert them to those based on wing geometry, $C_{\ell}, C_{n_{B}}, C_{Y_{p}}$ and $C_{Y_{r}}$ should be multiplied by b_{H} / b_{W}, and all others except $\mathrm{C}_{Y_{\beta}}$ should be multiplied by $\left(\mathrm{b}_{\mathrm{H}} / \mathrm{b}_{\mathrm{W}}\right)^{2}$.


```
CASE NUMEER = 10
    THRUSH-HORIZONTAL AND VERTICAL TAIL COMBINATION AT }7800\mathrm{ LBS
```

 **

VORTEX ELEMENT ENDPOINT COORDINATES=

$\begin{aligned} & \times 1 \\ & 13.66218 \end{aligned}$	$13^{\times 2} 72951$	$0^{Y 1}$	${ }_{0}^{Y 2}$	$2 \begin{aligned} & 21 \\ & 270800 \end{aligned}$	22.70800
$\begin{aligned} & 13.66218 \\ & 14.46137 \end{aligned}$	$\begin{aligned} & 13.72951 \\ & 14.51647 \end{aligned}$	0.	$\begin{aligned} & 0.34905 \\ & 0.34905 \end{aligned}$	$\begin{aligned} & 2 \cdot 70800 \\ & 2 \cdot 70800 \end{aligned}$	$\begin{aligned} & 2.70800 \\ & 2.70800 \end{aligned}$
15.75450	15.78982	0.	0.34905	2.70800	2.70800
17.04763	17.06316	0.	0.34905	?.70805	2.70800
17.84682	17.85013	0.	0.34905	2.70800	2. 70800
13.72951	13.84416	ก.34905	0.94342	2.70800	2.70800
14.51647	14.61030	0.34905	0.94342	2.70800	2.70800
15.78982	15.84995	0.34905	0.94342	2.70800	2.70800
17.06316	17.08960	0.34 .905	0.94342	2.70800	2.70800
17.85013	17.85575	0.34905	0.94342	2.70800	2.70800
13.84416	14.00443	0.94342	9.77427	2.70800	2.70800
14.61030	14.74147	0.94342	1.77427	2.70800	2.70803
15.84995	15.93402	0.94342	1.77477	2.70800	?.70800
$17: 08960$	17.12657	0.94342	1.77427	2.70800	2.70800
17.85575	17.86361	0.9434 ?	1.77427	2.70800	2.70800
14.00443	14.19733	1.77427	2.77431	2.70800	2.70800
14.74147	14.89934	1.77427	$2: 77431$	2.70800	2.70800
15.93402	16.03520	1.77427	2.77431	2.70803	2.7080
17.12657	17.17106	$1: 77427$	2.77431	2.70800	2.70800
17.86361	17.87306	1.77427	2.77431	2.70800	2.70800
14.19733	14.40724	2.77431	3.86250	2.70800	2.70800
14.89934	15.07112	2.77431	3.86250	2.70800	2.70800
16.03520	16.14530	2.77431	3.86250	2.70800	2.70800
$17: 17106$	17.21948	2.77431	3.86250	2.70800	2.70800
17.87306	17.88336	2.77431	3.86250	2.70800	2.70800
14.40724	14.61715	3.8 ¢ 250	4.95059	2.70800	2. 70800
15.07112	15.24291	3.86250	4.95069	2.70800	2.70805
16.14530	16.25540	3.86250	4.95069	2.70800	2.70800
17.21948	17.26789	3.86250	4.95069	2.70800	2.70800

17.88336
14.61715
15.24291
16.25540
17.26789
17.89365
14.31006
15.40078
17.35658
17.97311
14.97033
15.53194
16.44065
17.34935
17.
15.08496
15.62577
16.50078
17.37580
17.91659
14.21176
15.32700
17.13150
18.93600
20.05124
14.4957
15.52805
17.19913
18.87021
19.90299
14.92920
15.83577
17.37264
18.76951
19.67608
15.43025
16.19109
17.47216
18.65323
19.41407
15.86418
16.49881
17.52567
18.55253
19.18716

4.95069
5.95073
$5: 95073$
5.95073
5.95073
5.95073
6.78158
6.78158
6.78158
6.78158
6.78158
7.37595
7.37595
7.37595
7.37595
7.37595
7.68569
7.685969
7.68569
7.68569
0.72638
0.72638
0.72638
0.72638
0.72638
1.83813
1.83813
1.83813
1.83813
1.83813
3.92187
3.12187
3.17187
3.12187
3.12187
4.23362
4.23362
4.23362
4.23362
4.23362
4.87550
4.87550
4.87550
4.87550
4.87550

[^3]CONTROL POINT COORDINATES＝

$26 P$
2.70800
2.70800
2.70800
2.70800
2.70800
2.70800
2.70800
2.70800
2.70800
2.70800
$x C P$
15.09516
17.53796
14.04454
16.47810
17.95740
15.24927
17.56521
14.37929
16.59550
17.96520

がった－rーののロ oommmamant Qunimbrmminin

14.56832	3. 31281	2.70800	15.50857	3.31281	2.70803
16.67079	3.31281	2.70800	17.61105	3.31281	2.70800
17.97020	3.31281	2.70800	14.76533	4.41219	2.70800
15.65257	4.41219	2.70800	16.74926	4.41219	2.70800
17.63651	4.41219	2.70800	17.97540	4.41219	2.70803
14.95435	5.46704	2.70800	15.79073	5.46704	2.70805
16.82455	5.46704	2.70800	17.66093	5.46704	2.70800
17.98040	5.46704	2.70800	15.12009	6.39190	2.70805
15.91187	6.39190	2.70800	16.89057	6.39190	2.70800
17.68235	6.39190	2.70800	17.98478	6.39190	2.70800
15.24910	7.11184	2.70800	16.00617	7.11184	2.70800
16.94195	7.11184	2.70800	17.69902	7:11184	2.70800
17.98820	7.11184	2.70800	15.33094	7:56854	2.70800
16.06590	7.56854	2.70800	16.97455	7.56854	2.70800
17.70960	7.56854	2.70800	17.99036	7:56854	2.70800
14.76275	0.33226	2.70800	16.24584	0.33226	2.70800
18.07903	0.33226	2.70800	19.56212	0.33225	2.70800
20.12860	0.33226	2.70800	15.07676	1.24000	2.70800
16.41801	1.24000	2.70800	18.07589	9.24000	2.70800
19.41714	1:24000	2.30800	19.92945	1.24000	?.7080〕
15.50571	?.48000	2.70800	16.65321	2.48000	2.70800
18.07159	2.48000	- 70800	19.21909	2.48000	2.70800
19.65740	2.48000	2.70800	15.93465	3.72000	う. 70800
16.88840	3:72000	2.70800	18.06730	3:72000	2.70800
19.02105	3:720u9	2.70800	19.38535	3.72000	2.70800
16.34866	$4.62: 74$	2.70800	17.06057	4.62774	2.70800
18.06416	4.62774	2.70800	18.87607	4.62774	2.70805
19.18620	4.62774	2.70800			

PRESSURE DISTRIBUTION AT ALPHA $=-2.003$ DEG.

$Y V$
0.02025
0.02025
0.02025
0.02025
0.02025
0.07937
0.07937
0.07937
0.07937
0.17257
0.17257
0.17257
0.17257
0.17257
0.29229
0.29229
0.29229
0.29229
0.42884
0.42884
0.42884
0.42884
$C P$
-0.53002
-0.17444
-0.08830
-0.04403
-0.0135
-0.5566
-0.5566
-0.1742
-0.09819
0.04399
0.01347
0.58248

- 0

17730
.03894
.0437
- -0.0
0.60958
-0.
-5.08333
-0.043
0.0132
-0.6792
-0.6.


```
*** THE FOLLOWING ARE ATTACHED POTENTIAL FLOW RESULTS ***
TOTAL LIFT COEFFICIFNT = -0.02265
    TOTAL INDUCED DRAG COEFFICIENT = 0.00023
    THE INDUCED DRAG PARAMETER = 0.43964
    TOTAL PITCHING MOMENT COEFFICIENT = 0.04559
        THE WING LIFT COEFFICIENT = -0.02265
        THE WING INDUCED DRAG COEFFICIENT = 0.00023
        THE WING PITCHING MOMENT COEFFICIENT = 0.04559
        THE TAIL LIFT COEFFICIENT = 0. (BASED ON WING AREA). = O. (BASED ON TAIL AKEA)
        THE TAIL PITCHING MOMENT COEFFICIENT BASED ON REFERENCE WING AREA
                AND MEAN WING CHORD. AND REFERRED TO THE Y-AXIS = 0.
        (NOTE. THE INDUCED DRAG COMPUTATION IS FOR SYMMETRICAL LOADING ONLY)
```

 THE FOLLOWING PARAMETERS ARE USED IN THE METHOD OF SUCTION ANALOGY
 \(C L P=-0.02263 \quad\) CLVLE \(=-0.00058 \quad\) CLVSF \(=-0.00016\)
 \(C D P=0.00079 \quad\) CDVLE \(=0.00002 \quad\) CDVSE \(=0.00001\)
 \(C M P=0.04559 \quad\) CMVLE \(=0.00109 \quad\) CMVSE \(=0.00036\)
 * Stability derivatives by potential flow theory*
***STABILITY DERIVATIVES EVALUATED AT ALPHA m - 2 OOD DEGREES AND AT MACH NO = O. BASED ON BODY AXES (IN PER RADIAN) *** $C Y B=-0.1692203$ CLB $=-0.0379778$ CNB $=0.1747360$ $C Y P=-0.0769056 \quad C L P=-0.0760935 \quad C N P=0.0825351$ $C Y R=0.4059052 \quad C L R=0.0921547 \quad C N R=-0.4236924$
STABILITY DERIVATIVES BASED ON STABILITY AXES
$C Y B=-0.1692203 \quad C L B=-0.0440529 C N B=0.1733041$
$C Y P=-0.0910246 \quad C L P=-0.0826097 C N P=0.0944460$
$C Y R=0.4029740 \quad C L R=0.1040656 C N R=-0.4171761$
* Stability derivatiyes with edge vortex separation*
***STABILITY DERIVATIVES EVALUATED AT ALPHA $=-2.000$ DEGREES AND AT MACH NO. $=0$. BASED ON BODY AXES (IN PER RADIAN) $* * *$ **INClUDing the effect of le and se vortex lift* $C Y B=-0.1704073 \quad C L B=-0.0384587 \quad C N B=0.1762162$ CYP $=-0.0685944 \quad C L P=-0.0696868$ CNP $=0.0707230$ $C Y R=0.4066442 \quad C L R=0.0931148 \quad C N R=-0.4250563$
STABILITY DERIVATIVES BASED ON STABILITY AXES $C Y B=-0.1704073 \quad C L B=-0.0445851 \quad C N B=0.1747666$ $C Y P=-0.0827443 \quad C L P=-0.0758340 \quad C N P=0.0829181$ $C Y R=0.4040026 \quad C L R=0.1053099 \quad C N R=-0.4189091$
STABILITY DERIVATIVES EVALUATED AT ALPHA $\overline{=}-2.000$ DEGREES AND AT MACH NO. O. EASED ON BODY AXES (IN PER RADIAN) * Including the effect of le vortex lift*
$C Y B=-0.1701461 \quad C L B=-0.0383281 \quad C N B=0.1759301$
$C Y P=-0.0749457 \quad C L P=-0.0728624 C N P=0.0776267$
$C Y R=0.4061316 \quad C L R=0.0928586 \quad C N R=-0.4244940$
STABILITY DERIVATIVES BASED ON STABILITY AXES
$C Y B=-0.1701461 \quad C L B=-0.0444446 \quad C N B=0.1744853$
$C Y P=-0.0890738 \quad C L P=-0.0792370 \quad C N P=0.0896834$
$C Y R=0.4032687 \quad C L R=0.1049152 \quad C N R=-0.4181195$

```
THE FOLLOWING BENDING MOMENT COEFFICIENT IS BASED ON Q*S*(B/2),
        (FOR WHERE S = 326.6000N AND B/? = % % % 72500
\begin{tabular}{lll}
\(Y / S\) & \(B M(R I G H T)\) & BM(LEFT) \\
0.02025 & -0.00469 & -0.00469 \\
0.07937 & -0.00406 & -0.00406 \\
0.17257 & -0.00317 & -0.00317 \\
0.29229 & -0.00219 & -0.00219 \\
0.42884 & -0.00132 & -0.00132 \\
0.57116 & -0.00066 & -0.00066 \\
0.70771 & -0.00026 & -0.00026 \\
0.82743 & -0.00007 & -0.00007 \\
0.92063 & -0.00001 & -0.00001 \\
0.97975 & -0.00000 & -0.00000
\end{tabular}
THE FOLLOWING ARE THE TAIL CHARACTERISTICS BASED ON TAIL GEOMETRY WHERE \(S=22.77000\) AND \(B / 2=4.96000\)
\begin{tabular}{lll}
0.66699 & -0.00000 & -0.00000 \\
0.25000 & -0.00000 & -0.00000 \\
0.50000 & -0.00000 & -0.00000 \\
0.75090 & -0.00000 & -0.00000 \\
0.93301 & -0.00000 & -0.00000
\end{tabular}
THE BENDING MOMENT COEFFICIENT BASED ON WING HALF SPAN AND WING AREA AT THE WING ROOT \(=-0.004920\) (RIGHT) \(=-0.004920\) (LEFT)
THE BENDING MOMENT COEFFICIENT BASED ON TAIL HALF SPAN AND TAIL AREA AT THE TAIL ROOT \(=-0.000000\) (RIGHT) \(=-0.000000\) (LEFT)
```

XX
PRESSURE DISTRIBUTION AT ALPHA = 4.000 DEG.
$X X$

VORTEX	xV	YV	${ }_{9}^{C P}$
$\begin{aligned} & \hat{1} \\ & 2 \end{aligned}$	0.02447	ก0.02025	$\begin{aligned} & 1.05746 \\ & 0.34803 \end{aligned}$
2	0.20811	0.02025	0.17616
4	0.79389	0.02025	0.19878
5	0.97553	0.02025	0.02708
6	0.02447	0.07937	1.11062
7	0.20611	ก.07937	0.34759
8	0.50500	0.07937	10.17594
9	0.79389	0.07937	0.08777
10	0.97553	0.07937	0.02688
11	0.02447	0.17257	1.16212
12	0.20611	0.17257	0.35374
13	0.50000	0.17257	0.17584
14	0.79389	0.17257	0.08726
15	0.97553	0.17257	0.02667
16	0.02447	ก. 29220	1.19824
17	0.20691	0.29229	0.36124
18	0.50000	$0.292 ? 9$	0.17632
19	C. 79389	0.29229	0.09661
20	0.97553	ก.29229	0.02640
21	0.02447	0.42884	1.21547
22	0.20611	0.42884	0.35394
23	0.50000	0.42884	0.17485
24	0.7 .9389	0.42884	0.08484
25	0.97553	0.42884	0.02575
26	0.02447	0.57116	1.23713
27	0.20611	0.57116	0.35701
28	0.50000	0.57116	0.16776
29	0.79389	0.57116	0.08009
30	0.97553	$0: 57116$	$0: 0 ? 418$
31	0.02447	0.70771	1.16212
32	0.20611	$0 \cdot 70779$	0.33441
33	0.50000	$0 \cdot 70779$	0.15089
34	0.79389	0.70771	0.07042
35	0.97553	0.70771	0.02116
36	0.02447	0.82743	1.05358
37	0.20611	0.82743	0.28680
38	0.50000	0.82743	0.12050
39	0.79389	0.82743	0.05504
40	C.97553	0.82743	0.01658
41	0.02447	0.92063	0.88278
42	0.20611	0.92063	0.20225
43	0.50000	0.92063	0.07859
44	0.79389	0.92063	0.03632
45	0.97553	0.92063	0.01129
46	0.02447	2.97975	0.54804
47	0.20611	C.97975	0.09090
48	0.50000	0.97975	0.03673
49	0.79389	0.97975	0.01784
50	0.97553	0.97975	0.00638
52	0.02447	0.06699	0.00000
53	0.50000	ก. 06699	0.00000
54	0.79389	0.06699	0.00000
55	0.97553	0.06699	-0.00000
56	0.02447	0.25000	0.00000
57	0.20611	0.25000	0.00000
58	0.50000	0.25000	0.00000
59	0.79389	0.25000	0.00000
60	0.97553	0.25000	0.00000
61	0.02447	0.50000	0.00000
$6 ?$	0.20611	0.50000	0.00000
63	0.50000	0.50000	0.00000
64	0.79389	0.50000	0.00000
65	0.97553	ก. 50000	0.03700
66	0.02447	0.75000	0.00000
67	0.20611	0.75000	0.00000
68	0.50000	0.75000	0.00000
69	0.79389	0.75000	0.00000
70	0.97553	0.75000	0.00000
71	0.02447	0.93301	0.00000
72	0.20611	0.93301	0.00000
73	0.50000	0.93301	0.00000
74	0.79389	0.93301	-0.00000
75	0.97553	0.93301	-0.00000
			68

Stability oerivatives by potential flow theory
 $C Y B=-0.1652173 \quad$ CLB $=-0.0361644 \quad C N B=0.1704872$ $C Y P=-0.6598568 \quad$ CLP $=-0.0799039$ CNP $=0.0469839$ $C Y R=0.4002541 \quad C L R=0.0860504 \quad C N R=0.4173858$
STABILITY DERIVATIVES BASED ON STABILITY AXES $C Y B=-0.1652173 \quad$ CLB $=-0.0241837$ CNB $=0.1725946$ $C Y P=-0.0238102$

CLP = 0.0722887
$C N P=0.0228523$
$C Y R=0.4028964 \quad C L R=0.0619189 \quad C N R=-0.4250011$
STABILITY DERIVATIVES WITH EDGE VORTEX SEPARATION
***STABILITY DERIVATIVES EVALUATED AT ALPHA = 4.000 DEGREES AND AT MACH NO. © O. BASED ON BODY AXES (IN PER RADIAN) ** $\#$ **INCLUDING THE EFFECT OF LE AND SE VORTEX LIfT*
$C Y B=-0.1643711 \quad C L B=-0.0337119$
$C N B=0.1678057$
$C Y P=-0.0684690 \quad C L P=-0.0920946$
$C Y R=0.3897360 \quad C L R=0.0793132$
$C N P=0.0705937$
$C N R=-0.4021554$
STABILITY DERIVATIVES BASED ON STABILITY AXES

$$
\begin{aligned}
& C Y B=-0.1643711 \quad C L B=-0.0219242 C N B=0.1697485 \\
& C Y P=-0.0411156 \quad C L P=-0.0831718 \quad C N P=0.0482882 \\
& C Y R=0.3935628 \quad C L R=0.0570077 C N R=-0.4110781
\end{aligned}
$$

STABILITY DERIVATIVES EVALUATED AT ALPHA = 4 DOO DEGREES AND AT MACH NO = O. BASED ON BODY AXES (IN PER RADIAN) * Including the effect of le vortex lift* $C Y B=-0.1659218 \quad$ CLB $=-0.0344873 \quad C N B=0.1694948$ $C Y P=-0.0557742 \quad$ CLP $=-0.0857472 \quad$ CNP $=0.0567947$ $C Y R=0.3941712 \quad C L R=0.0815308 \quad C N R=-0.4069859$
STABILITY DERIVATIVES BASED ON STABILITY AXES
$C Y B=-0.1659218 \quad C L B=-0.0225799 \quad C N B=0.1714876$
$C Y P=-0.0281423 \quad C L P=-0.0776847 . C N P=0.0337677$
$C Y R=0.3971017 \quad C L R=0.0585039 \quad C N R=-0.4150484$

```
THE FOLLOWING BENDING MOMENT COEFFICIENT IS BASED ON R*S* (3/Z)
                                    WHERE S = 326.60000 AND P/? = 7.72500
\begin{tabular}{lll}
\(Y / S\) & BM (RIGHT) & BM (LEFT) \\
0.02025 & 0.00937 & 0.00937 \\
0.07937 & 0.00811 & 0.00819 \\
0.17257 & 0.00632 & 0.00632 \\
0.29229 & 0.00438 & 0.00438 \\
0.42884 & 0.00264 & 0.00264 \\
0.57116 & 0.00133 & 0.00133 \\
0.70771 & 0.00014 & 0.00053 \\
0.82743 & 0.00002 & 0.00014 \\
0.92063 & 0.00000 & 0.00002 \\
0.97975 & & 0.00000
\end{tabular}
THE FOLLOWING ARE THE TAIL CHARACTERISTICS BASED ON TAIL GEOMETRY,
\begin{tabular}{lll}
0.06699 & 0.00000 & 0.00000 \\
0.25000 & 0.00000 & 0.00000 \\
0.50000 & 0.0000 & 0.00000 \\
0.75000 & 0.00000 & 0.00000 \\
0.93301 & 0.00000 & 0.00000
\end{tabular}
THE BENDING MOMENT COEFFICIENT BASFD ON WING HALF SPAN AND WING AREA AT THE WING ROOT \(=0.009824\) (RIGHT) \(=0.009824\) (LEFT)
THE BENDING MOMENT COEFFICIENT BASED ON TAIL HALF SPAN AND TAIL AREA AT THE TAIL ROOT \(=0.000000(R I G H T)=0.000000\) (LEFT)
```

$X X$
PRESSURE DISTRIRUTION AT ALPHA $=10.000$ DEG.
XX


```
\begin{tabular}{|c|c|c|c|c|c|}
\hline Y/S & CL (RIGHT) & CL (LEFT) & -1. 30658 & \({ }_{0}^{C T}\) & \({ }_{0}^{C 01}\) \\
\hline 0.02025 & 0.66854 & 0.66854 & -1.3065 & 0.06721 & 0.04905 \\
\hline 0.07937 & 0.68228 & 0.68228 & -1.33481 & 0.07750 & 0.04161 \\
\hline 0.17257 & 0.69905 & 0.69905 & -1.37387 & 0.08508 & 0.03500 \\
\hline 0.29229 & 0.71299 & 0.71299 & -1.41192 & 0.09051 & 0.03381 \\
\hline 0.42884 & 0.71680 & 0.71680 & -1.43283 & 0.09322 & 0.03175 \\
\hline 0.57116 & 0:70172 & 0.70172 & -1.41652 & 0.09218 & 0.03013 \\
\hline 0.70771 & 0.65668 & 0.65668 & -1.33755 & 0.08597 & 0.02850 \\
\hline 0.82743 & 0.56837 & 0.56837 & -1.16578 & 0.07311 & 0.02590 \\
\hline 0.92063 & 0.42572 & 0.42572 & -0.87689 & 0.05275 & 0.02151 \\
\hline 0.97975 & 0.22967 & 0.22967 & -0.47403 & 0.02645 & 0.01304 \\
\hline FOLLOWING ARE & THE TAIL C & CHARACTERISTICS & & & \\
\hline 0.06699 & 0.00000 & 0.00000 & -0.00000 & 0.00000 & 0.00000 \\
\hline 0.25000 & 0.00000 & 0.00000 & -0.00000 & 0.00000 & 0.00000 \\
\hline 0.50000 & 0.00000 & 0.00000 & -0.00000 & 0.00000 & 0.00000 \\
\hline 0.75000 & 0.00000 & 0.00000 & -0.00050 & 0.00500 & 0.00000 \\
\hline 0.93301 & 0.00000 & 0.00000 & -0.00000 & 0.00000 & -0.0000 \\
\hline
\end{tabular}
*** THE FOLLOWING ARE ATTACHED POTENTIAL FLOW RESULTS ***
TOTAL LIFT COEFFICIFNT = 0.111174
    TOTAL INDUCED DRAG COEFFICIENT = 0.00550
    THE INDUCED DRAG PARAMETER = 0.44047
    TOTAL PITCHING MOMENT COEFFICIENT = -0.22354
        THE WING LIFT COEFFICIENT = 0.11174
        THE WING INDUCED DRAG COEFFICIENT = 0.00550
        THE WING PITCHING MOMENT COEFFICIENT = -0.22354
        THE TAIL LIFT COEFFICIENT= 0. (BASED ON WING AREA) = 0. (BASED ON TAIL AKEA)
        THE TAIL PITCHING MOMENT COEFFICIENT BASED ON REFERENCE WING AREA
            AND MEAN WING CHORD. AND REFERRED TO THE Y-AXIS = 0.
        (NOTE. THE INDUCED DRAG COMPUTATION IS FOR SYMMETRICAL LOADING ONLY)
    THE FOLLOWING PARAMETERS ARE USED IN THE METHOD OF SUCTION ANALOGY
    CLP = 0.10032 CLVLE = 0.01404 CLVSE = 0.00339
    CDP = 0.01928 CDVLE = 0.00248 CDVSE = 0.00069
    CMP = -0.22354 CMVLE = -0.0.2706 CMVSE = - 0.00886
```

StABILITY DERIVATIVES BY POTENTIAL FLOW THEORY

```
*****************************************
```

STABILITY DERIVATIVES EVALUATED AT ALPHA ${ }^{\text {IT }} 10.000$ DEGREES AND AT MACH NO. $=0$. BASED ON BODY AXES(IN PER RADIAN) $C Y B=-0.1736853 \quad$ CLB $=-0.0309358$ CNB $=0.1831156$ CYP $=-0.0262398 \quad$ CLP $=-0.0828390 \quad$ CNP $=0.0109179$ $C Y R=0.4509616$ CLR $=0.0618147$ CNR $=-0.4841812$
STABILITY DERIVATIVES BASED ON STABILITY AXES

CYB	. 1736853	CLB	0.0013319	CNB	0.1857056
CYP	0.0524675	CLP	-0.0825029	CNP	-0.0599088
CYR	0.4486670	CLR	-0.0090120	CNR	-0.48

STABILITY DERIVATIVES WITH EDGE VORTEX SEPARATION
STABILITY DERIVATIVES EVALUATED AT ALPHA * 10.000 DEGREES AND AT MACH NO. $=0$. , BASED ON BODY AXES(IN PER RADIAN)* **INCLUDING the effect of le and se vortex lift* • CYB $=-0.1727723 \quad$ CLB $=-0.0192611$ CNB $=0.1733771$ CYP $=-0.0675935 \quad$ CLP $=0.1116661$ CNP $=0.0696910$ $C Y R=0.3892940 \quad$ CLR $=0.0227595 C N R=-0.3957882$
STABILITY DERIVATIVES BASED ON STABILITY AXES

CYB	0.1727723	Clb	0.0111382	CNB	0.1740878
YP	0.0010336	CLP	-0.1044248	CNP	0.0183158
CYR	0.3951172	CLR	-0.0286237	CNR	-0.403029

STABILITY DERIVATIVES EVALUATED AT ALPHA $=10.000$ DEGREES AND AT MACH NO. ${ }^{2}$ O. BASED ON BODY AXES(IN PER RADIAN) *including the effect of le vortex lift* $C Y B=-0.1806514 \quad$ CLB $=-0.0232006$ CNB $=0.1819484$
CYP $=-0.0359916 \quad$ CLP $=-0.0958652 \quad C N P=0.0353404$ $C Y R=0.4171407 \quad$ CLR $=0.0366749$ CNR $=-0.4260917$
STABILITY DERIVATIVES BASED ON STABILITY AXES

THE FOLLOWING BENDING MOMENT COEFFICIENT IS BASED ON Q*S* (3/2), (FCR ATTACHED POTENTIALFLOW ONLY)
Y / S
0.02025
0.07937
0.17257
0.29229
0.42884
0.57196
0.70771
0.82743
0.92043
0.97975

BM (RIGHT)
0.02317
0.02005
0.01564
0.01083
0.00657
0.00328
0.00130
0.00036
0.00005
0.00000
BM (LEFT)
0.02005
0.01564
0.01083
0.0065 ?
0.00138
0.00036
$0 \cdot 00005$
THE FOLLOWING ARE THE TAIL CHARACTERISTICS BASED ON TAIL GEOMETRY, WHERE $S=22.77000$ AND B/2 $=4.96000$

0.06699	0.00000	0.00000
0.25000	0.00000	0.00000
0.50000	0.00000	0.00000
0.75000	0.00000	0.00000
0.93301	0.00000	0.00000

THE BENDING MOMENT COEFFICIENT BASED ON WING HALF SPAN AND WING AREA AT THE WING ROOT $=0.024290$ (RIGHT) $=0.024273$ (LEFT)

THE BENDING MOMENT COEFFICIENT BASED ON TAIL HALF SPAN AND TAIL AREA AT THE TAIL ROOT $=0.000 C O O^{\prime}$ (RIGHT) $=0.00000 J^{=}$(LEFT)

Appendix B

Program Listing

This Progran is operational on the Honeywell $66 / 60$ computer system at the University of Kansas.

```
```

 QVLM
    ```
```

 QVLM
 THIS PROGRAM IS SASED ON THE GUASI VORTEX LATTICE METHOD BY
 THIS PROGRAM IS SASED ON THE GUASI VORTEX LATTICE METHOD BY
 C. EDWARD LAN OF UNIVERSITY OF KANSAS
 C. EDWARD LAN OF UNIVERSITY OF KANSAS
 REFERENCE JOUKNAL OF AIRCRAFT VOL. 11. NO. 9. SEPT. 1974. PP.518
 REFERENCE JOUKNAL OF AIRCRAFT VOL. 11. NO. 9. SEPT. 1974. PP.518
 -527
 -527
 *** GAMMA MUST BE DIMENSIONED TO HAVE AT LEAST (N+1)**2/4 ELEMENTS.
 *** GAMMA MUST BE DIMENSIONED TO HAVE AT LEAST (N+1)**2/4 ELEMENTS.
 WHERE N IS THE SIZE OF THE MATRIX ***
 WHERE N IS THE SIZE OF THE MATRIX ***
 DIMENSION GAMMA (19600)
 DIMENSION GAMMA (19600)
 * IP SHOULD GE CONSISTENT WITH MATRIX SIZE. IF IP IS INCREASED.
 * IP SHOULD GE CONSISTENT WITH MATRIX SIZE. IF IP IS INCREASED.
 DIMENSION FOR GAMMA SHOULD ALSO BE INCREASED.
 DIMENSION FOR GAMMA SHOULD ALSO BE INCREASED.
 PARAGE TER IP=140
 PARAGE TER IP=140
 DIMENSION DQ(IP.IP)
 DIMENSION DQ(IP.IP)
 EQUIVALENCE (DQ(1,1),GAMMA(1))
 EQUIVALENCE (DQ(1,1),GAMMA(1))
 C
C
DIMENSION CP(200),AW(201), CA(201) DMM(200)
DIMENSION CP(200),AW(201), CA(201) DMM(200)
DIMENSION XXL(2), YL(2) XXT(2) CPCWL(15),CPSWL(31), YBREAK(10)
DIMENSION XXL(2), YL(2) XXT(2) CPCWL(15),CPSWL(31), YBREAK(10)
DINENSION ALPH\&SO), SNALP(SO). CLS(SO), DCOS(7), DSIN(7), CLY(SOS.
DINENSION ALPH\&SO), SNALP(SO). CLS(SO), DCOS(7), DSIN(7), CLY(SOS.
1 CNALP(50)
1 CNALP(50)
DIMENSION BREAK(10), SWP(10.15), CHORDT(4),TFLP(5), CTP(2)
DIMENSION BREAK(10), SWP(10.15), CHORDT(4),TFLP(5), CTP(2)
DIMENSION BMR(5G) BML (50) DF(5), TITLE(13), CSU(SO), YCN(6)
DIMENSION BMR(5G) BML (50) DF(5), TITLE(13), CSU(SO), YCN(6)
COMMON /SCHEMEI C(2),X(10,41),Y(10,49),SLOPE(15),XL(2,15),XTY(41),
COMMON /SCHEMEI C(2),X(10,41),Y(10,49),SLOPE(15),XL(2,15),XTY(41),
1XLL(41)
1XLL(41)
COMMON/GGOM/ HALFSW,KCP(200),YCP(200),ZCP(200) XLE(100),YLE(100)
COMMON/GGOM/ HALFSW,KCP(200),YCP(200),ZCP(200) XLE(100),YLE(100)
1XTE(100) PSI(30) CH(100) XV(200) VV(200),SN(10,3) XN(200:2).YN(200
1XTE(100) PSI(30) CH(100) XV(200) VV(200),SN(10,3) XN(200:2).YN(200
2.2) ZN(200.2),WIDTH(7) YCON(51).SWEEP(100).HALFB,SJ(31,7)
2.2) ZN(200.2),WIDTH(7) YCON(51).SWEEP(100).HALFB,SJ(31,7)
COMMON /AERO/ AM,B,CL(50),CT(50),CD(50),CM(50)
COMMON /AERO/ AM,B,CL(50),CT(50),CD(50),CM(50)
COMMON /CONST/ NCS,NCW,M1(7).MJWT(2,5).MJWZ(2,5),NJW(5),NFP,NW(2)
COMMON /CONST/ NCS,NCW,M1(7).MJWT(2,5).MJWZ(2,5),NJW(5),NFP,NW(2)
COMMON CAMBI ICAM,IM\&XT(3,12), LC(3,12),AAM(3,11),BBM(3,11),CCM(3.
COMMON CAMBI ICAM,IM\&XT(3,12), LC(3,12),AAM(3,11),BBM(3,11),CCM(3.
111).DDM(3.11)
111).DDM(3.11)
COMMON /EXTRA/ CAMLEI_CAMLE2.CAMLE3,YTWOIST,TINP NGRD.HEIGHT.ATT,N
COMMON /EXTRA/ CAMLEI_CAMLE2.CAMLE3,YTWOIST,TINP NGRD.HEIGHT.ATT,N
1C.NWING.HALFBHOIPOS. IALP
1C.NWING.HALFBHOIPOS. IALP
COMMON /BETA/ GMAX(SOL),XTG(SJ),YTG(50),ZTG(50),B2,NCG,CTG(15),STGG
COMMON /BETA/ GMAX(SOL),XTG(SJ),YTG(50),ZTG(50),B2,NCG,CTG(15),STGG
115).DIST
115).DIST
DIMENSION GAMP(2OU),GAMX(200),GAMB(200),GAMR(200)
DIMENSION GAMP(2OU),GAMX(200),GAMB(200),GAMR(200)
EQUIVALENCE (GAMP(1),GAMMA(201)), (GAMB(1).GAMMA(401)), (GAMX(1).
EQUIVALENCE (GAMP(1),GAMMA(201)), (GAMB(1).GAMMA(401)), (GAMX(1).
1 GAMMA(6U1)), (GAMR(1).GAMMA(801))
1 GAMMA(6U1)), (GAMR(1).GAMMA(801))
PI=3.14159205
PI=3.14159205
22 BREAK (I)=0.
22 BREAK (I)=0.
BREAK(IS=PI*2.
BREAK(IS=PI*2.
C C ***NUMBER OF CASES TO BE RUN ***
C C ***NUMBER OF CASES TO BE RUN ***
READ (5, 148) ICASE
READ (5, 148) ICASE
WRITE (6, 148) ICASE
WRITE (6, 148) ICASE
NCON=1
NCON=1
IWGLT=0
IWGLT=0
1 CONTINUE
1 CONTINUE

```
        READ (5, 148) NCASE,NGRD
```

 READ (5, 148) NCASE,NGRD
 WRITE (6, 152)
    ```
        WRITE (6, 152)
```

WRITE (6. 15U) NCASE
WRITE (6. 152)
CASE TITLE ***
READ (5. 163) (TITLE(I), I=1.13)
WRITE (6,152)
WRITE (6,163) (TITLE(I), I = 1.13)
WRITE (6, 152)
NCS = O
IPANEL $=1$
WRITE (6, 133)
***TOTAL NUMBER OF SPANWISE SECTIONS. AND THE NUMBER OF VORTEX STRIPS IN EACH SECTION PLUS ONE ***

IWING=LAST WING VORTEX STRIP NUMEER IF A TAIL IS PRESENT =O OTHERWISE.
***NWING = THE NUMERIGAL ORDER OF LAST WING SPANWISE SECTION *** ** IWGLTEI IF A WINGLET TO BE REPRESENTED BY A TAILIS PRESENT **

* $\# N F P=N U M B E R$ OF FLAP SPANS
NJWENUMERICAL ORDERS OF FLAP SPANS AMONG THE SPANWISE SECTIONS*
* NOTE THE NUMBER OF FLAP SPANS IS LIMITED TO FIVE *
NOTE THE NUMBER OF FLAP SPANS IS LIMIIED TO FIVE ${ }^{*}$ TP=NJW(1) $=1$
FOR AL CLEAN OR FULL-SPAN FLAP CONFIGURATION PUT NFP
 * NVRTX=VORTEX STKIP NUMBER AT AND OUTBOARD OF WHICH THE L. E VORTEX
LIFT EFFECYIS NOT INCLUDED. IF IT IS ZERO. TOTAL VORTEX LIFT
EFFECT IS ASSUMED.
READ (S, 14४) NFP, (NJW(I), I=1,NFP),NVRTX
*** NUMBER OF CHORDWISE VORTEX ELEMENYS IN CHORDWISE SECTIONS CAMBER
$C O D E$ ($=1$ IF CAMEER ORDINATES ARE TO BE READ IN =O IF THE CAMEER
FUNCTIONS ARE DEFINED BY CLOSED-FORM EXPRESSIONS MANUALLY IN
SUEPROGRAMS ZCR $(x) Z C I(X)$ AND ZCT (x)). AND THE NUMBER OF CAMBER
ORDINATES TO BE READ IN (ARBITRARY IF ICAM=O). AND NUMBER OF
STATIONS AT WHICH CAMBER ORDINATES ARE READ IV ($=2$ AT MOST IF
THERE IS NO (HANGE IN TWIST AT AN INTERMEDIATE STATION) ***
ICAMT= 1 I IF THE IAIL WINGLET OR VERTICAL FIN HAS CAMBER IN THIS
CASE CAMBER OROINATES AT WING ROOT. WING TIP (REGARDED AS INTER-
MEDIATE STATIONS AND TAIL SHOULD BE ALL READ IN. =O OTHERWISE.
READ $(5,148)(N W(I), I=1,2), I C A M A M M S T O I C A M T$
$W R I T E(6,148)(N W(I), I=1,2)$ ICAM,IM IST:ICAMT
*** IF ICAM=1. READ IN THE X-COORDINATES AND THE CAMBER ORDINATES
FOR THE ROOT SECTION. THE INTERMEDIATE SECTION AND THE TIP SECTION
 * NOTE. THE MAXIPMUM NUMBER OF CAMBER ORDINATES ALLOWED IS 19 *
$\begin{array}{ll}\text { IF } \\ \text { DO } & \text { (ICAM, NE } \\ \text { I }=1 \text {, IST }\end{array}$ GO TO 3
READ (5, 147) (XT (I,J) J=1,IM)

```
        CONTIN!EEM EQ. O) IST=?
```


117
C
C
C
C
$C$$\quad$ GIVATERAL MODE SELECTOR ($=-1$ IF THE ROLLING MOMENT COEFFICIENT AT A
*** NAL=NUMERICAL ORDER OF AILERJN SPAN ($=0$ IF LAT=0) ***
READ $(5,148)$ LAT NNAL
WRITE $(6,148)$ LAT,NAL
WRITE (6)
NCW $W=N W(1)$
$i=1$
$L=1$
CHORDT (2)
C
CHORDT (2) $=0$.
CHORDT 3 (3) $=0$.
CHORET 4 = $=0$
CHORC
IV $=0$
ID $\mathrm{I} H=0$
10
$B 2=0$
$\mathrm{B2}=0$ 。
CIST=O
CONTI
$L L=1$
$F N=N C W$
DO $5 \quad \mathrm{I}=1$, NC. W
D
F
C
$\mathrm{F}=\mathrm{I}$
C
CPCWL(I)=0.5*(1.-COS($2 . * F I-1.) * P I /(2 * * F N)))$
SN(I,L)=2.*SQRT(CPCWL(I)*(1.-CPCWL(I)))
$C P C W L(I)=C P C W L(I) * 100$.
DO 12 KK=1.NC
C
C
C
C
C
*** COORDINATES OF BREAK CHORDS BOUNDING SPANWISE SECTIONS FKUY
ROOT TO TIP ON THE RIGHT WING ***
* DIHED $=$ THE DIHEDRAL ANGLE IN DEGREES FOR THE SECTION*
READ $(5,147)((X X L(I), X X T(I), Y L(I), I=1,2), Z S$ DIHED)
WRITE $(6,147)((X X L(I), X X T(I), Y L(I), I=1,2), Z S$ DIHE) $)$

YBREAK $(K K)=Y L(2)$
$F M=M 1(K K)$
NSW $=$ M1 (KK)
IF (KK.EQ.1) DIST=DIST+XXT(1)-XXL(1)
IF $(K K, E Q \cdot 1)$
$D 0 \quad 6 \quad j=1, N S W$
$F J=j$
$\mathrm{FJ}=\mathrm{J}$
CPSWL $(J)=0.5 *(1,-\cos ((2 * * F J-1) * P I /,(2 * * F M))) * 100$.
$Y C O N(J)=0.5 *(1 .-\operatorname{COS}(F J * P I / F M))$
SJ $(J K K)=S I N(F J * P I / F M)$
CONTINUE
SJ (JNK) $=S I N(F J * P I / F M)$
CONTINUE

DSIN(KK) $=$ SIN(DIHED $\quad * P I / 180$.

CPSWL (1) $=0$.
CPSWL (NSW) $=100$.
GO TO ${ }^{8}{ }^{8}=0$
A 118
$7 \quad \operatorname{CPSWL}(1)^{8}=0$
IF (IWGLT.EQ: ${ }^{1}$ AND. KK, EQ. NWING) (PSWL (NSW) $=100$.
IF (KK, EQ.NJW(Li)) MJWI $(L / L i)=I P A N E L$
$L R=(L-1) * N C+K K$
CALL PANEL (XXL,YL, XXT, CPCWL,CPSWL,VSW,IPAVEL,LPANEL,SWP,LR,ZS,L)
IPANEL=LPANEL+1
NCS =NCS+NSW-1
$B 2=B 2+F L O A T(N S W)-1$
WIDTH
BREAK $(K K)=Y L(2)-Y L(1)$
BREAK $(K K)=Y L(1)$
IF (KK EQ. NJW (LL)) MJW2 (L,LL) $=L P A N E L$
IF (KK NE: NE, OGOND. KK.EQ. NWING) GO TO 9
9 IF (KK EQ.NC.AND.IWING.NE. O) GOTO 10
CHORDT $(L)=X X T(2)-X X L(2)$
HALFB=YL(2)
$Y C N(L)=X X L(2)$
$G O T O$
10 CHORDT (L+2) =XXT(2)-XXL(2)
HALFBH=YL(2)
$\forall C N(L+2)=X X L(2)$
11 IF (KK.EQ.NJW(LL)) LLELL+1
CONTINUE
IF (L EQA 2) GOTO
15
IF (NW(2) EQ. 0) GOTO 13
L=2
NCWINW(2)
$\mathrm{B2}=0$ 。
GO T0 4
MOU1 $14 \quad I=1$ NFP
$\operatorname{MJWI}(2, I)=0$
MJ $\operatorname{Hz} 2(2, I)=0$
NCS =NCS*2
CONTINUE
$N C S=N C S / 2$
$N C W=N W(1)+N W(2)$
If (NVRTX,EQ.O) NVRTX=NCS+1
DO $220 I=1.5$
220. TF $\mathrm{TFP}^{\mathrm{DF}}(\mathrm{I})=0$
IF (IWGLT .NE 0) IV = 0


``` ANGLES IN DEG \({ }^{*} * *\)
READ (5, 147) AM HALFSWRCREFALPCONO (DF(I) I=1,NFP) WRITE (G. 147 ) AM, HALFSW\&CREF ALPCON. (DF (I) I=I,NFP)
*** THE FOLLOWING DATA SHOULD BE ALL O. IF ALPCON=1.
ALPI=INITIAL ALPHA IN DEGREES
ALPINC=INCREMENTAL ALPHA IN DEGREES
```



```
A 21
- 212 A 2 213
214
215 A 211
READ \((5,147)\) ALNM,ALPI ALPINC
\(W R I T E(6,147) A L N M, A L P I ~ A L P I N C\)

\section*{NALP=ALNM}

If (NALP,EQ, O) NALP=1
ALPI=ALPI *PI/180
ALPINC=ALPINC*PI/180.
\(A L P=A L P I\)
\(A L Q=A L P\)
*** HEIGHT=HEIGHT OF \(3 / 4\) CHORD POINT OF M.A.C. FROM GROUND IF NGRD=1. =0. OTHERWISE ATTEPITCH ATTITUDE OF WING IN DEGREES.
=0. IF NGRD=0.
READ (5, 147) HEIGHT,ATT
WRITE (6. 147) HEIGHT.ATT
ATT \(=\) SIN (ATT*PI/180.)
DO 16 IE1NFP
TFLP(I)=-DF(I)
TFLP(I) \(=-D F(I)\)
CAMLE1E0.
AMLES=0
YTW=HALFB
TINC \(=0\).
IALP=ALPCON
POS \(=0\).
TWISTi=0.
ITWST=0
HALFSH=0.
** THE FOLLOWING INPUT DATA ARE VOT NEEDED IF ALPCON=1****
 AT WHICH THE TWIST IS CHANGED (EHALFB FOR NO INTERMEDIATE TWIST) ROOT CHORD INCIDENCE IN DEG. LE. CAMBER SLOPE AT ROOT CHORD YTW
AND TIP TWIST
 BE TAKEN FROM FUNCTION SUSPROGRAM THIS CASE THE CAMBER SLOPE WILL
* If CAMBER ordinates are to be read in. the l. camber sLopes to be READ IN BELOW MAY BE ARBITRARY NUMBERS *

IF (IALP EAG. 1) GO TO IT

***IF A TAIL IS PRESENT, READ IN THE INCIDENCE ANGLE IN DEG. AND HALF TAIL AREA. OTHERWISE THIS CARD SHOULD BE OMITTED ***
```

 * IF THE TAIL IS TO REPRESENT THE WINGLETT PUT HALFSH=HALFSW **
    ```
    * HOWEVER IF THE WINGLET IS INBOARD OF THE WING TIP PUT HALFSHz
    IINGIET AREA ***
    POS IS THE WINGLET POSITION INDICATOR WITH RESPECT TO WING TIP.
    FOR DETAIL. SEE INSTRUCTIONS.
17 CONTINUE
```

IPOS=POS
TWIST1=TWIST1*PI/180.
TWIST2=TWIST2*PI/180.
RINC=RINC*PI/180.
TINC=TINC*PI/180
WRITE (6,149) HALFSW, CREF
JWING=IWING
CM(50)=IV
CM(49)=ICAMT (ICAMNE. 1) GO TO 19
WRITE (G, i5%)
WRITE (G, 15\&) (XT(1,I),I=1,IM)
WRIMLE1=ZCR(0.)
CAMLE2=CAMLEI
CAMLEZ =CAMLE1
IF (ISTAMEQ:) GOTO 19
WRITE (6, 157) (XT(2,I),I=1,IM)
WRITE (6,158) (XT(2,I),I=1,IM)
CAMLE2=2CI(O.)
CAMLES =CAMLE?
IF (IST EQ, 2) GO TO 19
WRITE (6.16O)
WRITE (6,158) (XT(3,I),I=1,IM)
WRITE (6,159) (ZC(3:I):I=1,IM)
CAMLE 3= ZCT(0.)
CONTINUE
WRITE (6, 154)
WRITE (6. 162)
WRITE (6, 15151) (XN(I,1),XN(I,2),YN(I,1),YN(I,2),ZN(I,1),ZN(I,Z),1=
11%LPANEL)
WRITE (6, 155)
WRITE (6, 155)
WRITE (6,169) (XCP(I),YCP(I),ZCP(I),I=1,LPANEL)
WRITE (6, 161) (XCP(I),YCP(I),ZCP(I),I=1,LPANEL)
J1=LPANEL + }
JT=LPANEL+1
B1=1 -AM*AM
ALZ=ALP*180.1PI
REWIND O1
REWIND Ol
REWIND
NPP=NALP
DO 14S KP=1.NALP
IF (IALP.EQ,T) GO TO 24
TINP=TINC+ALP
DO 23 I=1,NCS
IF (IWING.NE.O.AND.I.GT.IWING) GO TO 2
IF (ITWST,EQ:1) GO TO ZZ
IF (YLE(I),GT,YTW) GO TO 20
ALPH(I)=ALP+RINC+TWIST1*YLE (I)/YTW
SNALP(I)=SIN(ALPH(I)
SNALP(I)=SIN(ALPH(I)
GO TO 23
ALPH(I)=ALP+RINC+TWISTT+TWIST2*(YLE(I)-YTW)/(HALFB-YTW)
SNALP(I)=SIN(ALPH(I))
SNALP(I)=SIN(ALPH(I)}

```
```

DO $145 \mathrm{KP}=1$ NAL
IF (IALP.EQ.1) GOTO 24
DO $23 \quad I=1$ NCS
IF (IWING.NE:OMD. AN:GT. IWING) GO TO 21
IF (YLE(I) GT. YTW) GO TO 20

```
A 320
            ALPH(I)=TINP
            SNALP(I)=SIN(ALPH(I))
            GO TO 
            YC=YLE (I)/HALFB
            ALPH(I)=ALP&RINC+TWST(YC)
            SNALP(I)=SIN(ALPH(I)
            CNALP(I)=COS(ALPH(I))
23 CONTINUE
    CONTINUE
    MM=NW (1)
    NN=NW(1)
    IZ=1
    8=B1
    IPN=1
    IF (NW(2) EQ. 0) GO TO 25
    II=1+NCS
    CHORD=CH(1)+CH(II)
    GOTO 26
CHORD=CH(1)
CONTINUE
CSO=DCOS(1)
SSD=DSIN(q)
ZB=0
    YB=0
    YBB=0
    IF (KP.NE.1) GO TO 27
CALL WING (AW,LPANEL, IG,LPANT,LAT,NGRD,HEIGHT,ATT,CSD,SSU.YGREAK
    IDCOS,DSIN,IWING,ZB,YB,YBB,IWSLT,NC)
    CONTINIUE
    XC=(XCP({)-XLE(IZ))/CHORD
    IF (ITWST EQ. 1) GO TO 28
    YX=YTW
    IF
    ZR=ZCR(XC)
    ZI= 2R
    IF (IST NE 1) ZI=ZCI(XC)
    IF (IST NE I) ZI=ZCI(X
    GO TO 29
YC=YLE (IZ)/HALFE
CAM=ZCDX(XCOYC)
CAM=ZCDX
llll
AW(J1)=(ALPPT-CAM)*CSD
    IF (NALP=GT.1) CA(I)=AW(J1)
    IF (NALP.GT.1) GO TO 31
    DO 3O I=1.LPANEL
A 34
23
A 3444
CONTINUE
IJ=2
IJ=2
LL=1
CONTINUE
IF (KPONE 1) GOTOOSS
```

```
    1,DCOS,DSIN,IWING,7B,YB,Y很,IWGLT,NC)
    CONTINUF
        IF (NH(2) EFQ. O) GO TO 34
    II=IZ+NCS
    CHORO=CH(IZ)+CH(II)
    GO TO 35
CHOPD=CH(IZ)
CONTINUE
    XC=(XCP(IJ)-XLE(IZ))/CHORD
    IF (IZ.GT.JWING.AND.JWING.NE.D) GO TO 51
    LCAM=0
    IF
```



```
    ZR=ZCR(XC)
    YX=YTW
    ZI= Z.R
    IF (IST NE 1) ZI=ZCI(XC)
    IF (IS SME LE 2) YX=HALFB
    CAM=ZR-(ZR-ZI)*YCP(IJ)/YX
    GO TO (I', EQ. 1)
    GO TO
    ZI=ZCI(XC)
    YX=YTW
    GO TO S 3O
    ZI= ZCR(XC
    ZI=2C
    Y X = 0.
    GO TO 39
    GO
    2T=2C
    CONTINUE
    CAM1=ZI-(ZI-ZT)* (YCP(IJ) - YX)/(HALFB-YX)
    IF (LCAM EQ, 1) GO TO 48
    CAM=CAM4
    GO TO 42
    CAM=0.
    GO TO 50
    YC=YLE (IZ )/HALFB
    CAM=TCDX (XC,YC)
    CONTINUE
    IF (IJ,GE.MJWY(2,LL) AND.IJ,LE.MJWZ(2.LL)) GOTO 43
    GO TO 4%4, EQ, NAL) GOTO 50
    CAM=TFLP(LLS) +CAM
    GO
~
    43 IF (LLL,EQ, NAL) GO TO 50
```



```
    IF (IJ,GE.MJWI(ILLL) AND,IJ,LE.MJWZ(1.LL)) GJ TO 4Y
    IF (IJJ:GT: LPAN1) GO TO
    NCM=IJ +(NCS-IZ)*NW(1)+(IZ-1)*NW(Z)+1
```

```
XC=(XCP(NCM)-XLE(IZ))/CHORD
```



```
4
ZR=ZCR(XC)
YX=YTW
IF (IST .LE. 2) YX=HALFG
ZI= ZR
IFF
GO TO 48
CAM1= =2CDX(XC,YC)
GOTO 48
LCAM=1
GOTO 36
CAM=O.S*(CAM+CAM9)
GO TO 50
```



```
CONTINUE
IF (IALP &NE. 1) ALPT=SNALP(IZ)
IF (IALP NEE 1) ALPT=SN
GOTO 53
ALPT=SNALP(IZ)
IF (IALP,EQ* 1) ALPT=1.
CAM=0.
IF (IALLP EQ.1) GO TO 53
IF (ICAMT EQ.O) GO TO 52
CAM=ZCT(XC
IF (IJ.GT.LPANT) GO TO S
IF (IJ.NE MMM)GOTO 52
5?
XC=(XCP(NCM)-XLE(IZ))/CHORD
CAM 1=ZCT(XC)
CAM=0.5*(CAM+CAM1)
CONTINUE
IF (IJ.EQ,MM) CAM=CAM+O.5*TFLP(LL)
IF (IJ GT&LPANI) CAM=CAM+TFLP(LL)
CONTINUE
AW(JT)=(ALPT-CAM)*CSD
IF (NALP&GT.1) CA(IJ)=AW(J1)
IF (NALP-GT:1)
CALL UMSEQN (NJ, IJ,AW,GAMMA,CA)
CONTINUE
```



```
IF (IJ GE: LPANT, AND, IJ, MWZ(1, LS) LL=LL+I
NN=NW(?)
IF (IJJ.EQ. MJW2(2,LL)) LL=LL+1
CONTINUE
IF (IJJ LT. MM) GO TO 
57 IFG(IJ LEELPAN1) GO TO 5B SG(IZ+1)=2TG(IZ+1)+ZB+(YTG(IZ+1)-YB)*SSD
YTG (IZ+1)=YBR+(YTG(IZ+1)-YB)*CSD
XLL(IZ )=SSD
```

A
A
A 488
A 459
A 460
A 461
A 452
A 453
A 464
A 464
A 465
A 466
A 467
A 468
A 469
A 470
A 471
A 472
$\begin{array}{ll}\text { A } 473 \\ \text { A } & 474\end{array}$
A 474
A 475
A 475
A 476
A 476
A 477
A 478
A 479
A 480
A 481
A 482
A 483
A 483
A 484
A 484
A 48
A
A 486
A 437
A 488
A 489
A 490
A 431
A 492
A 492
A 493
A 494
A 494
A 495
A 495
A 496
A 496
A 497
A 497
A 498
498
499
A 500
A 501
A 502
503
A 504
A 505
A 506
A 507
A 507
A 508
A 508
A 509
A 510
A 510
A 511
A 512
A 513
CONTINUE
MM=MM+NN
IF (IWING (NE, O, AND. IZ GOEQ. (IWING+1)) GO TO 5%
IF (YLE(IZ).LT. YRREAK(IPN)) GO TO 63
IF GYLE
CONTINUE
ZB=ZQ+(YBREAK(IPN)-YR)*SSD
YB=YGREAK (IPN)
IF (IWING.NE. O.AND. IZ.EQ. (IWING+1)) GO TO 6)
GO To G2
\&O.AND. 12
IF (IWGLT EQ. 1) GO TO
ZB=0.
B=0
YBB=0

```

```

 ZR=YBREAK (NC-2)*DSIN(1)
 YBB=YBREAK(NC-2)*DCOS(1)
 YB=YBREAK(NC-2)
 CONTINUE
 ONTINUE
 IPN= (IJN+1EQ. LPANQ OR.ON INQ. LPANEL) IPN=1
 IFSD=DCOS(IIPN)
 CSD=DC OSN(IPN
 IF (IJ -EQ.LPANY) IZ=1
 IF (IJJ,EQ:LPANY)
 IJ=IJ+q
 NJ=NJ-1
 IF (IJ.LE. LPANEL) GO TO 32
 DO 64 I=1 LPANEL
 DMM(I) =GAMMAP(I)
 IF (KPPEQ,I) CALL INVN (DQ,CP,AW,LAT,NPP,LPANEL,IP)
 DO 65 I =1 LPANEL
 GAMMAS(I)=DMM(I)
 REWIND D?
 IF (NALP.EQ.1) GO TO 67
 DO 66 I=1.LPANEL
 GAMMA (I)=0.
 READ (OZ) (AW(K),K=1.LPANEL)
 DO 66 J=1 LPANEL
 GAMMA(I) =GAMMA(I)-AW(J)*CA(J)
 CONTINUE
 CM(1)=ITWST
 CALL THRUST (LPANELOGAMMA,SNALP,IALP,LPAN1. CAMLE1,CAMLEZ,CAMLES YT
 1W%IST.IWING,TINP,NGRD.HEIGHT,ATT. YBREAK.DCOS.DSIN,CSU,JWING,IWGLT.
 2NC.0.0.0.0. (NALP)
 DO 68 I= = NCS
 Y(1.I) =CD(I)
 Y(1, % = CD(I) LPANEL
 CP(I)=GAMMA(I)
 CALLGAMAX (AW,CA,LPANI,LPANEL,CP,NC,BREAK,SWP,CHORDT, IWINO NWIWG
 1 HALFBH,YCN,CTP, (TX,IWGLT,IPOS,O)
 DO 70 I=1.LPANEL
 GAMX(I)=CA(I)
 00 71 I=1.NCW
 GMMA(I)
    ```
            \(Y(2, I)=C L(I)\)
\(I F\) I \(W N G G E\)
            IF (IWING.NE.0) \(Y(3, I)=C M(1)\)
            CTIP=CTP (i) *DCOS (NWING)
            IF (IWGLT NF O) \(T I P=C T I P+C T P(2) * D C O S(N W I N G+1)\)

    IF (LLAT,NEOO) CALL LATERL (GAMMA,AW,CA,LAT,LPANEL, LPANYODFGNAL,YJK
    2EAK, DSIN, DCOS IWING IWGLT
    2. CHORDT,YCN.SNALP CNALP)
        IF (LAT.EQ. \((-1)\) ) GO TO 73
    DO 72 I \(=1\) LPANEL
    GAMMA (I) \(=0\).
    CONTINUE
    \(\mathrm{P}=0.1\)
    \(R L=0.1\)
    \(B K=0.1\)
    \(\operatorname{COSA} A=\operatorname{COS}(A L P)\)
    SINA=SIN (ALP)
    CLPP \(=3\).
    \(C D P P=0\)
    CDVL=0.
    \(C L T=0\).
\(C M T=0\).
    \(C M T=0^{\circ}\)
\(C D T=0^{\circ}\)
    \(C D T=0\).
\(C L L=0\).
    \(C L L=0\)
\(C L W=0\)
    \(C L W=0\)
\(C W=0\)
    \(C M W=0\).
    \(C D W=0\).
    \(C Y=0\)
    \(\mathrm{CNB}=0\)
    \(C L B=0\).
    \(C L P=0\)
    \(C L P=0\)
\(C Y P=0\).
    CYP \(=0\).
CHP \(=0\)
    \(C Y P=0\)
\(C Y R=0\)
\(C L R R=0\).
\(C N R=0\)
CYBV=0.
CYBVSE = 0 。
CNBV=0
CNBVSE =
CNBVSE \(=0\) 。
CLBV=0.
CLBVSE = 0 .
CYPV=0
CYPVSE =0.
CNPV=0
CNPVSE=0.
\(C L P V=0\)
\(C L P V=0\)
\(C L P V S E=0\)
CLPVSE = 0 .
\(C Y R V=0\)
\(C Y R S E=0\).
CYRSE = O
\(C L R R V=0\)
CLRVSE=0.
CNRV=0
622
623
623
CNRVSE \(=0\).
\({ }_{C S L}^{C S L}=0_{0}\)
\(C S\)
\(K C=1\)
NCOL=M1(1)
```

KLLL=0
NCW1=NCW+1
NL=1
NL=1
COD=DCOS(1)
COD=DCOS(1)
2B=0.
YB=0.
NBB=O
NCSS=N
COW=1.
SOW=0:
FATR=1.
FATR=1.EQ, AND.I.GT.JWING) FATR=0.5
IF (NW(2) EQ O) GO TO
IF
I1=I+NCS
CHORD=CHG
74
CONTINUE
CML=0
CML = O = % .
CL(I)=0.
CD(I)=0:
CYS=0.
CNS =0.
CNS =0.
CLBS=0.
CLPS=0.
CLPVS=0.
CNPS=0.
CYRS=0:
CLRS=0:
CLRS=0:
CNR=0.
CNB1=0.
CYR1=0.
CNR1=0.
CLYY(1)=0. NCW
NN=J+MM(2).EQ.G) GOTO 76
If (NW(2) EQ: G) GO TO 7O 76
LL=LP
IL=I1
L=2
FN=NW(2)
GO TO 77
LL=NN
IL=I
JLL=
L=1
FN=NW(1)
CN=NWNUS
CYPS=0.
XC=(XV (LL)-XLE(I))/CHORD
IF
ML=0

```

```

)
    ```




```

\square

```
```

\square

```
```)
```










A 631
A 632
A 63
A 63
A 639
A 640
A 641
A 642
A 643
A 643
A 644
A 645
A 634
A 635

A 636
A 637
A 637
A 638
A 639
A 638
A 639
A 64
A 645
A 646
A 647
A
A 646
A 647
A 648
A 647
$\begin{array}{r}648 \\ \hline 649\end{array}$
$\begin{array}{r}649 \\ \hline 650\end{array}$
A 650
A 65
A
A 651
A 652
A 652
A 653
A 654
A
A
$A$
$A$
A 658
A 659
A
A 659
A 660
A 660
A 661
A 661

- 662
A 662
A 662
$A$
$A$
$A$ 664
A 664
A 664
A 665
$A 666$
A 667
A 668
A 668
$A 668$
$A$
$A$
A 670
A 670
A 671
A 671
A 671
A 672
$A$
$A 672$
A 673
$A$
A 673
A 674
A 675
A 674
A 675
A 675
A 676
A 678
A 678
$A$
A 678
A 679
$A$
A 679
A 680
A 680
A 681
A 681
A 682
A 683
A 684

```
 XZ=X1
A }68
```



```
 YX=YTW
 IF (IST LEE 2) YX=HALFB
 CAM=X1-(Xi-X \)*YLE(I)/YX
YX=YTW
 IF (IST,LE, 2) YX=0
 CAM=X2-(X2-X 3)* (YLE (I) -YX)/(HA|FB-YX)
 80 YO=YLE(I)/HALFB
 CAM=ZCDX(XC,YC)
81 EP=ALPH(1)
 CS=COS (EP)
 SS=SIN(EP)
 GO TO 80
82 IF (NL FQ.NAL) EP=ALPH(I)
 IF (NL NE NAL) EP=ALPH(I)-TFLP(NL)
```



```
 YX=YTW
 IF
 GO TO 85
Y = YT W
IF (IST LE 2) YX=0
 CAM=X2-(X2-Xj)* (YLE (I) -YX)/(HALFB-YX)
 GO TO }8
84 YC=YLE(I)/HALFB
CAM=ZCDX(XC,YC)
85 CONTINUE
 CS=COS (EP)
 SS=SIN(EP)
 G0 T0 89
86 IF (IALP IEQ. Y) GO TOO TO S'
 CS=COS(TINP)
 SS=SIN(TINP)
 CAM=0
 IF (ICAMT.NF.O) CAM= NCT(XC)
GO TO (%9
CS=COS(TINP-TFLP(NL))
CAM=0.
IF (ICCAMT.NE.O) CAM=ZCT(XC)
CS=1.
A 685
A 680
A 687
A 688
A 689
A 690
A 691
A 692
A 692
A 693
A 694
A 695
A 696
A 696
A 698
A 699
A 700
GO TO 8
IF \((1 S T \quad L E, 2) \quad Y X=0\).
GO TO \(\begin{aligned} & 81 \\ & Y C=Y L E(I) / H A L F B\end{aligned}\)
\(C A M=Z C D X(X C, Y C)\)
\(E P=A L P H(1)\)
\(C S=C O S\)
\(S S=S I N(E P)\)
IF (NL EQ. NAL) EP=ALPH(I)
IF (NL NE. NAL) EP=ALPH(I)-TFLP(NL)
```



```
IF \((I S T\)
\(C A M=X 1-(X i-X Z) * Y L E(I) / Y X B\)
\(G O X O \quad 85\)
\(Y X=Y T W\)
IF \(C A M=X 2-\left(X 2-X \frac{1}{2}\right) \star(Y L E(I)-Y X) /(H A L F B-Y X)\)
GO TO 85
\(C A M=Z C D X(X C, Y C)\)
\(85 \quad \begin{array}{ll}\text { CONTINUE } \\ & C S=\operatorname{COS}(E P)\end{array}\)
\(C S=C O S(E P)\)
\(S S=S I N(E P)\)
GO TO 8
86 IF (IALP EQ. 1) GO TO \(\quad\) THO \({ }^{38} 87\)
SS \(=\) SIN (TINP)

```

$S S=S I N(T I N P-T F L P(N L))$
$\begin{array}{ll}\text { IF } \\ G O \quad 10 \quad 8 C A M\end{array} \quad$ NE. $\left.O\right) \quad C A M=Z C T(X C)$

```
 SS=1.
 CAM=O
 U1=0.
 u2=0
 V1=0.
 V2=0.
 IF (NGRD EQ. 0) GO TO }9
 ZCW=-2-* (ZN(LL,1)+2B+(YCP(LL)-YE)*SOD+HEIGHT)+ZN(LL,1)+ZB+(YCP(LL)
 1-YB)*SOO
 CALL BACKWH (XV(LL),YV(LL), ZCW,LPANEL,B,LPAN1,NW,CP,UY,LAT,CUU,SUU
 1.YBREAK,DCOS,OSIN,VI, IWING,ZS,YB,YSG,NCSS.IWGLT,NC)
 IF (LAT.NE.(-1)) GO TO 90
 CALL BACKWH (XV(LL),YV(LL), ZCW,LPANEL,B,LPANI,NW,GAYMA,UUZ.LAT,CUU,
 1 SOD,YBREAK,DCOS,DSIN,VZ.IWING,ZB,YB,YBB,NCSS,IWGLT,NCS
 CONTINUE
 IF (IALP)*EQ. O) GOTO
 GAK=CP(LL)*(1*+U1*ALP)+CP(LL)*ALP*U1-GAMX(LL)* (V1*ALP+SOD*ALP)*C.
 GBK=GAMMA(LL)
 CP(LL)=GAK
 GO TO 92
 GAK=CP(LL)* (1.+U1)*CS-GAMx(LL)*(V1+SOD*SNALP(I))
 GBK=GAMMA(LL)* (1.+U1+U2)*CS-GAMX(LL)* (V2+V1)
 GBK=GAMMA
 GAMMA (LL)=GBK
 CONTINUE
 GBS=GAK*SN(JLL|L)*CH(IL)/FN
 WBS=GBK*SN(JLL,L)*CH(IL)/FN
 WAS =0
 FT=SQRT(1.+CAM*CAM*COD*COD)
 CL(I)=CL(I)+GBS*(CA**SS+CS)*COD/FT
 CML =CML-GBS*XV (LL)*COD/FT
 CML=CML-GBS*XV(LL)*COD/FT
 CD(I) =CD(I)+GBS* (-CAM*CS+SS)*COD/FT
 CLS(I)=CLS(I)+WBS
 CLY(I)=CLY(I)+GBS*CS
 IF (LATMNE 1) GOTO 93
 FZ=SN(JLL,L)*CH(IL)/FN
 WP=GAMP(LL)*FZ* (1.+U1)
 WB=GAMB(LL)*FZ* (1*+U1)
 WR=GAMR(LL)*FZ*(1*+U1)
 WR=GAMR(LLL**FZ
 YCV =SOD*XV (LL)
 ZCV=SOD*(ZCP(LL)+ZB+(YCP(LL)-YB)*SOD)+COD*(YBB+(YCP(LL)-YB)*COD)
 CYS=CYS-WB*SOD-GBS*(-CAM*CS+SS)*COD/FT*BK*COSA
 CNS=CNS+WB*YCV+GBS*(-CAN*CS+SS)*COD/FT*BK*XV(LL)*COSA
 CLBS=CLBS-WB*ZCV
 CYPS=CYPS-WP*SOD
 CLPS=CLPS-WP*ZCV
 CNPS=CLPS-WP*ZCV
 CYRS=CNPS+WP*YCV FRSWR*SOD+GBS*SS*XV(LL)/HALFB*COD/FT*RL
 CYRS=CYRS-WR*SOD+GBS*SS*XV(LL)/HALFB*COD/FT*RL
 LRS=CLRS-WR*ZCV
 CNRS=CNRS+WR*YCV-GBS*SS*XV(LL)/HALFS*COD/FT*RL*XV(LG)
 CLPVS=CLPVS-(WP-GBS/CS*P*ZCV*SINA/HALFB)*ZCV
 CNB1=CNB1+WB*YCV
 CYR1=CYR1-WR*SOD
 NR1=CNR1+WR*YCV
 CNB1=CNB1+GBS*(-CAM*CS+SS)*COD/FT*BK*XV(LL)*COSA
 CONTINUE
 NUE3
```

A 743
A 743
A 744
A 745
A 747
747
748
A 749

```
 IF
 (YLE(I).GT. YTW) GO TO }9
X=YTW
IF (IST LE. 2) YX=HALFB
CAMLE=CAMLET-(CAMLE1-CAMLEZ)*YLE(I)/YX
GO TO 96
GO TO
YX=YTW
IF (IST LEF. 2) YX=0
CAMLE=CAMLE2-(CAMLE2-CAMLE3)* (YLE(I)-YX)/(HALFB-YX)
GO TO 96
YC=YLE(I)/HALFB
CAMLE =ZCDX(O.,YC)
EP=ALPH(I)
EP=ALPH(1)
XCS=COS(EP)
GO TO 99
* XCS=1.
XSS=0.
CAMLE =O.
```

```
```

    CYRS=CYRS*CONST
    ```
```

    CYRS=CYRS*CONST
    CNRS=CNRS*CONST
    CNRS=CNRS*CONST
    CLRS=CLRS*CONST
    CLRS=CLRS*CONST
    CLPVS=CLPVS* CONST
    CLPVS=CLPVS* CONST
    CNB1=CNB1*CONST
    CNB1=CNB1*CONST
    CYR1=CYR1*CONST
    CYR1=CYR1*CONST
    CNR1=CNR1*CONST
    CNR1=CNR1*CONST
    SIDE=CTH*2**Y(1,I)*Y(4,I)*FS
    SIDE=CTH*2**Y(1,I)*Y(4,I)*FS
    SIDEB=CTH*2.*Y(1, I)*Y(7,I)*FS
    SIDEB=CTH*2.*Y(1, I)*Y(7,I)*FS
    SIDER=CTH*2**Y(1,I)*Y(10,I)*F5
    SIDER=CTH*2**Y(1,I)*Y(10,I)*F5
    YE=YBB+(YLEE(I)-YB)*COD
    YE=YBB+(YLEE(I)-YB)*COD
    YE=YBB+(YLE(I)-Y
    YE=YBB+(YLE(I)-Y
    ZYE=SOD*(ZCP(KA)+ZB+(YLE(I)-YB)*SOD)+COD*(YBB+(YLE (I) -YB)*CUD)
    ZYE=SOD*(ZCP(KA)+ZB+(YLE(I)-YB)*SOD)+COD*(YBB+(YLE (I) -YB)*CUD)
    ZYE=SOD*(ZCP(KA)+ZB+(YLE(I)-YB)*SOD)+COD*(YBB+(YLE
    ZYE=SOD*(ZCP(KA)+ZB+(YLE(I)-YB)*SOD)+COD*(YBB+(YLE
    FD=FD*COO
    FD=FD*COO
    CYB1=CYS-SIDEB*SOD/FI
    CYB1=CYS-SIDEB*SOD/FI
    CNB1=CNB1+SIDEB*SOD*XLE(I)
    CNB1=CNB1+SIDEB*SOD*XLE(I)
    CLB1=CLBS-SIDEB*ZYE/F
    CLB1=CLBS-SIDEB*ZYE/F
    CYP1=CYPS-SIDE*SOD/F
    CYP1=CYPS-SIDE*SOD/F
    CNP1=CNPS+SIDE*SOD*XLE(I)
    CNP1=CNPS+SIDE*SOD*XLE(I)
    CYR1=CYR1-SIDERR*SOD/F1
    CYR1=CYR1-SIDERR*SOD/F1
    CNR1=CNR1+SIDER*SOD*XLE(I)
    CNR1=CNR1+SIDER*SOD*XLE(I)
    CLR1=CLRS-SIDER*ZYE/FY
    CLR1=CLRS-SIDER*ZYE/FY
    CNPS=CNPS-SIDE*YE*F3/F12
    CNPS=CNPS-SIDE*YE*F3/F12
    CNPS=CNPS-SIDE*XLE(I)*F6
    CNPS=CNPS-SIDE*XLE(I)*F6
    CLPS=CLPS-SIDE*ZYE*F4/F12
    CLPS=CLPS-SIDE*ZYE*F4/F12
    YS=CYS+SIDEB*F6-CT(I)*FD/FT*3K
    YS=CYS+SIDEB*F6-CT(I)*FD/FT*3K
    CNS=CNS-SIDEB*YE*F3/F12+CT(I)*FD/FT*EK*XLE(I)
    CNS=CNS-SIDEB*YE*F3/F12+CT(I)*FD/FT*EK*XLE(I)
    CNS=CNS-SIDEE*XLE(I)*FS
    CNS=CNS-SIDEE*XLE(I)*FS
    CNS=CNS-SIDEE*XLE(I)*FS
    CNS=CNS-SIDEE*XLE(I)*FS
    CLBS=CLBS-SIDEB*ZYE*F4/F12
    CLBS=CLBS-SIDEB*ZYE*F4/F12
    CYRS=CYRS+SIDER*FG+CT(Y)*FD/FT*XLE(I)/HALFB*RL
    CYRS=CYRS+SIDER*FG+CT(Y)*FD/FT*XLE(I)/HALFB*RL
    CNRS=CNRS-SIDER*YE*F3/FYZ-CT(I)*FD/FT*XLE(I)/HALFB*RL*XLE(I)
    CNRS=CNRS-SIDER*YE*F3/FYZ-CT(I)*FD/FT*XLE(I)/HALFB*RL*XLE(I)
    CNRS=CNRS-SIDER*XLE (I)*F6
    CNRS=CNRS-SIDER*XLE (I)*F6
    CLRS=CLRS-SIDER*ZYE*F4/F12
    CLRS=CLRS-SIDER*ZYE*F4/F12
    CLPVS=CLPVS-SIDE*ZYE/F{
    CLPVS=CLPVS-SIDE*ZYE/F{
    IF (I.GE.NVRTX) GO TO 100
    IF (I.GE.NVRTX) GO TO 100
    CB1=CYS
CB1=CYS
NB1=CNS
NB1=CNS
CLB9=CLBS
CLB9=CLBS
CYP1=CYPS
CYP1=CYPS
CNP1=CNPS
CNP1=CNPS
CLPVS=CLPS
CLPVS=CLPS
CYR1=CYRS
CYR1=CYRS
CNR1=CNRS

```
CNR1=CNRS
```

```
 CONTINUE
```

    CONTINUE
    CONTINUE
    CONTINUE
    IF (II LLT. NCOL) GO TO 103
    IF (II LLT. NCOL) GO TO 103
    KLL=NCOL-1
    KLL=NCOL-1
    KC=KC+1
KC=KC+1
NCOL=NCOL+M1(KC)-9
NCOL=NCOL+M1(KC)-9
KL=I-KLL
KL=I-KLL
A A = C H O R D * S J ( K L * K C ) * W I D T H ( K C ) / F M

```
A A = C H O R D * S J (K L * K C) * W I D T H (K C) / F M
```

    A 85
    A 85
102
856
357
858
- 859
$\begin{array}{r}860 \\ \hline\end{array}$
861
861
861
862
862
863
863
864
A 864
A 865
1865
A 866
866
867
A 867
$\begin{array}{r}867 \\ 868 \\ \hline\end{array}$
$\begin{array}{r}8 \\ \hline \\ \hline\end{array} 898$
$\begin{array}{r}870 \\ \hline\end{array}$

| - 871 |
| :--- |

    872
    872
872
873
873
874
874
875
875
876
876
877
878
A 878
A 879
880
889
889
887
882
883
883
884
884
885
885
886
A 887
A 888
888
889
809
890
890
891
891
892
892
893
893
894
894
895
$\begin{array}{r}896 \\ \hline\end{array}$
896
897
A 898
A 898
A 900
A 901
A 901
A 902
A 953
A 904
A 955
A 906
A 907
103
A 908
A 908
A 909
A 910
A 910

```
 AA=AA*FATR
 AA=AA* (LT C C CL(I)*AA
 CMT =CMT+CM(I)*AA
 CDT=CDT+CD(I)*AA
 CLL=CLL+CLS(I)*AA*YLE(I)
CLPP=CLPPP+CLPPS*AA
 CDPP=CDPP+CDPPS*AA
IF (I.GE.NVRTX) GO TO 104
CDVL=CDVL+CSU(I)*(-CAMLE*XCS+XSS)/FT*COD*AA
 CSL=CSL+CSU(I)* (CAMLE*XSS+XCS)/FT*COD*AA
 CSXL=CSXL-CSU(I)*XLE(I)*AA*COD
 CONYINUE
IF (LAT&NE&1) GO TO 105
CY=CY+CYS*AA
 CNB=CNB+CNS*AA
CLB =CLB+CLBS*AA
 CYP=CYP+CYPS*AA
CNP=CNP+CNPS*AA
 CLP=CLP+CLPS*AA
 C
CNR=CNR+CNRS*AA
 CLRR=CLRR+CLRS*AA
CLPV=CLPV +CLPVS*AA
CYPV=CYPV+CYPY&AA
CNPV=CNPV+CNPI*AA
CYRV=CYRV +CYR1*AA
 CNRV=CNRV + CNR1*AA
 CLRRV=CLRRV+CLR1*AA
 CLRRV=CLRRV+CLR1#AA
 CYBV=CYBV+CYB1*AA
 CNBV=CNBV+CNB1*AA
CONTINU
 MM=(NCW-NW(2))*I
 IF (IWING NE OGAND.I EQ.IWING) GO TO 106
 IF (I EEQ.NCS) GO TO NOAKO
CONTINUE
 ZB=2B+(YBREAK(IPN) -YB)*SOD
 YBB=YBB+(YBREAK (IPN)-YB)*COD
 YB=YBREAK (IPN)
 IF (IWING.NE. O.AND.I EEQ.IWING) GO TO 107
 GO TO 108
 COW=COD
YPRW=YBB
 YRW=YB
 ZPRW=ZB
 ZPRW=2B
 IF (IWGLT.EQ.1) GO TO 108
2B=0.
YB=0;
YBB=0.
 IF (IWGLT.NE, 2) GO TO 108
2B=YBREAK(NC-2)*DSIN(1)
2B=YBREAK(NC-2)*DSIN(1)
YBB=YBREAK(NC-2)*DCOS(9)
 YFRW=YBB
YRRW=YB
ZPRW=2B
CNB=CNB+CNS*AA
 IF (YLE (I# +) LT: YBREAK(IPN)) GO TO 109
CNP=CNP+CNPS*AA
NR=CNR+CNRS*AA
```

107 SOW=SOD
A 912
A 913
A 913
A 914
A 914
A 915
A 916
A 917
A 918
104
105912
A 916
A 917
A 918
A 919
A 920
A 920
A 920
A 921
A 921
A 922
A 922
A 923
A 923
A 923
A 924
A 925
A 926
A 927
A 926
A 927
A 928
A 928
A 928
A 929
A 930
A 931
A 932
A 932
A 933
A 933
A 934
A 934
A 935
A 935
A 936
A 936
A 937
A 937
A 938
A 938
A 939
A 940
A 940
A 949
A 940
A 94
A 942
A 942
A $94 \frac{2}{3}$
A 943
A 944
A 945
A 945
$A$
$A$
$A$
$A$ 966
A 947
A 948
A 949
$A$
A 949
A 950
A 950
A 959
A 951
A $95 ?$
A 952
A 952
A 953
A 954
952
954
955
$\begin{array}{r}\text { A } 954 \\ \hline 955 \\ \hline\end{array}$
A 955
A 956
A 957
A 956
A 957
$\begin{array}{r}957 \\ \hline 958 \\ \hline\end{array}$
A 958
A 959
A 959
A 960
A 961
A 961
A 961
A
A
A 962
A 963
A 964
A 965
A 966
A 967
A 968
A 968

```
108
CONTINUE
 IPN=IPN+
 COD=DCOS (IPN)
SOD=DSIN(IPN)
CONTINUE
IF (LLLEEQ.MJW2(2.NL)) NL=NL+1
 IF (IWING:EQGO)
 CLW=CLT
CMW =CMT
110 CONTINUE
IF (LATMNE,1) GO TO 116
 IF (LATMNE,1) GO TO 116
CYBVSEECYBV
CNBVSE=CNBV
CYPVSE=CYPV
CNPVSE=CNPV
CLPVSE=CLPV
CYRSE=CYRV
CNRVSE=CNRV
CLRVSE=CLRRV
NCNTE{
NCNT###
IF (IWING.NE:O)NCN
FATR=1.
IF(IV.EQ.1.AND,KK.EQ.2) FATR=3.S
K1=KK
KA=1+(NCS-1)*NW(1)
IF (IWING,EQ,O) GO TO 111
IF (KK,EQ.2) GO TO 191
KA=1+(IWING-1) NW(1)
SS=SOW
CS=COW
YB2 =YPRW
YBT=YRW
2B9=2PRW
YKP=YBKW
IF (KK.EQ.1) GO TO 112
111 CONTINUE
IF (KK,EQ.2) K1=KK+1
SS=SOD
CS=COD
YB2=YB日
YB1=YB
YKP=YBREAK(IPN)
112 ISN=1
 FN=NW(1)
 JJ=J
 IF (J.LE.NW(1)) GOTO 113
 ISN=2
 FN=NW(2)
 JJ=J-NW(1)
 K = KK+1
 K=KK+1
IF(KK,EQ,2) Kq=KK+2
113 FJJ=aj
ZCV=CS*(ZB1+(YKP-YB1)*SS)-SS*(YBZ*(YKP-YB1)*CS)
YCV=SS*(ZBY+(YKP-YBY)*SS)+CS*(YBZ+(YKP-YBG)*CSS)
CONTINUE
 CDW=CDT
```

XQ=YCN(K1)+0.5*CHORDT(K1)*(1.-COS((2.*FJJ-1*)*PI/(2.*FN)))
CK=CHORDT (K1)*2_*Y(KK+1,J)*Y(KK+4,J)*SN(JJ.ISN)/FN
CK2=CHOROT (K1)*2*Y(KK+1,J)*Y(KK+7,J)*SN(JJ,ISN)/FN

```

```

CK3=CHORDT (KG)*2**Y(KK+1,J)*XL(KK,J)*SN(JJ,ISN)/FN
CK=CK*FATR
K=CK*FATR
CK2=CK2*FATR
CK3=CK3*FATR
CK=CK*CS
CK2=CK2*CS
CK3=CK3*CS
CY=CY+CK2*PIS
CNB=CNB-CK2*XQ*PIS
CLB=CLB+CK2/CS*2CV*P1S
CYP=CYP+CK*PIS
CNP=CNP-CK*XQ*PIS
CLP=CLP+CK/CS*ZCV*PIS
CYR=CYR+CK3*PIS
CNR=CNR-CK3*XQ*PIS
LRR=CLRR+CK3/CS*ZCV*PIS
CYBVSE=CYBVSE+CX2由PIS
CNBVSE=CNBVSE-CK2*XQ*PIS
CLAVSE=CLBVSE+CK2/CS*ZCV*PIS
CYPVSE=CYPVSE+CK*PIS
CNPVSE=CNPVSE-CK*PTS*XO
CLPVSE=CNPVSE-CK*PSS*XQ
CLPVSE=CRPYSE*CKICS
CYRSE=CYRSE+CK3*PIS
CLRVSE=CLRVSE+CK3/CS*2CV*PIS
CYBV=CYBV-CK2ICS*SS*PIS
CNBV=CNBV+CK2/CS*SS*PIS*XQ
CLBV=CLBV-CK2/CS*YCV*PIS
CYPV=CYPV-CK/CS*SS*PIS
CNPV=CNPV+CK/CS*SS爫IS*XO
CNPV=CNPV*CKOK
CYRV=CYRV-CK3/CS*SS*PIS
CNRV=CNRV+CK3/CS:SS*PIS*XO
CLRRV=CLRRV-CKS/CS*YCV*PIS
CLPV=CLPV-CK/CS*YCV*PIS
CONTINUE
IF (ABS(CSL).GT.0.0001) XLEBAR=CSXL/CSL
CLT=CLT*PI/(2**HALFSW)
CMT=CMT*PI/(2**ALFSWW)
CMT=CMT*PI/(2**HALFSW)
CDT=CDT*PII(2**HALFSW)
CLL=-CLL*PI/(4**HALFSW
CMW=CMW*PI/(2**HALFSW)
CDW=CDW*PI/(2**HAFSW)
CLPP=CLPP*PI/(2**HALFSW)
CDPP=CDPP*PI/(2*HALFSW)
CDPP=CDPP*PI/(2**ALFSW)
CDVL=CDVL*PI/(C**HALFS
CSL=CSL*PI/(2*HALFSW)
CSXL=CSXL*PI/(2**HALFSW*CREF)
IF (ABS(CLI'GT:O,OOOI) XBP=CMT/CLT*CREF
KK=NCS
IF (IWING *NE O) KK=IWING
CDVS=CTIP*SNALP(KK)*2
CLVS=CTIP*COS(ALPH(KK))*2.
CMVS=CTIP*CTX*2./CREF
CONTINUE

```
A1031
A1032
A1033
A1034
A1034
A1 1035
A 1036
A1036
A1037
A 1038
A1039
A1040
A104
A104
11043
1043
41044
A1044
11045
11046
11047
-1048
A1049
-1050
11050
A 1051
A105
\(A 1052\)
\(A 1053\)
A1053
A1054
A1055
A1055
A1056
A1057
A1058
A1059
A1060
A1061
A1061
A1062
A1063
A1063
A1064
A1065
A1066
A1067
A1068
A106
A1070
A1070
41071
11072
A1073
11073
A1074
11075
A1076
A1077
A1078
A1078
A1079
A1080
A1081
\(A 1082\)
A 1083
```

    CDCLZ=O.NE,1) GO TO 1198
    IF (LATT.NE.1) GOTTO
    CONST=PI/(2**HALFSW)
    CY=CY*CONST/BK
    CNB=CNB*CONTB/BK
    CLB=CLB*CONTB/BK
    CYP=CYP*CONST/P
    CNP=CNP*CONTB/P
    CLP=CLP*CONTB/P
    CYR=CYR*CONST/RL
    CNR=CNR*CONTB/RL
    CLRR=CLRR*CONTB/RL
    CLPV=CLPV*CONTB/P
    CYBV=CYBV*CONST/BK
    CYBVSE=CYBVSE*CONST/BK
    CNBY=CNBV*CONTB/BK
    CNBVSE=CNBVSE*CONTR/OK
    CLBV=CLBV*CONTB/BK
    CLBVSE=CLBUSE*CONTB/BK
    CYPV =CYPV* CONST/P
    CYPVSE=CYPVSE*CONST/P
    CNPV=CNPV*CONTB/P
    CNPVSE=CNPVSE*CONTR/P
    CLPVSE=CLPVSE*CONTB/P
    CYRV=CYRV*CONST/RL
    CYRSE=CYRSE*CONST/RL
    CLRRV = CLRRV*CONTB/RL
    CLRVSE=CLRVSE*CONTB/RL
    CLRVSE=CLRVSE*CONTB/RL
    CNRVSE=CNRVSE*CONTB/RL
    CONTINUE
    IF (ABS(CLT).LE.0.001) GO TO 117
    CDCL2=CDT/(CLT*CLT)
    CONTINUE
    IF (LAT.EQ_(-1)) GO TO 121
    CALL BENDIN (NC,CLY,BMR,IWING,BREAK.CBMR,CBTRONWING.HALFSH,HALFEH.
    1DCOSODSIN,IWGLT,FTL)
    CBML=CBMR
    CBTL=CBTR
    DO 120 I=1,NCS
    BML (I)=BMR(I)
    GO TO 124
    IF (LAT.EQ.1) GO TO 124
    DO 122 I=1.NCS
    122. YCON(I)=CLY(I)+CLS(I)
1.DLL BENDIN (NC,YCON,BMR.IWING,BREAK,CBMR,CBTR,NWING,HALFSH,HALFGH
1.DCOS,DSIN.IWGLT,FTL)
IF (IWGLT.EQ.2) CBMR=CBMR+FTL* (SOD*ZPRW+COD*YPRW)/HALFB+CBTR
DO 123 I=1.NCS
123 YCON(I)=CLY(I)-CLS(I)
CALL BENDIN (NC,YCON,BML.IWING,BREAK,CBML.CBTL,NWINS.HALFSH.HALFGH
1.DCOS,DSIN,IWGLTYFTLSML,IWING,BREAK.CBML.CBTL,NWINS.HALFSHOHALFGH
IF (IWGLT.EQ.2) CBML=CBML+FTL* (SOD*ZPRW+COD*YPRW)/HALFB+CBTL
CONTINUE 180./PI
A1084
A1085
```
A1117
A1118
A11118
A1119
A1120
A11121
A1121
A1122
A1123
A1123
A1124
A1125
A1126
A1127
A1128
A1129
A1130
A1131
A1132
A1133
A1134
124
A1136
A1138
```

[^4]```
WRITE (6, 165) 
WRITE(6,166) ALP
IF (NAL.NE.O) AF=DF(NAL)*180./PI
IF (NAL,FQ,O) AF=O
IF (LAT EQ. (-1)) WRITE (6, 164) AF
CONTINUE (6, 165)
WRITE (6,165)
WRITE
WRITE
HAB=HALFB
IF (IWGIT EQ. q) IWING=NCS
DO 132 I=I.NCSNG.ANO. WHNG NE. O) HAB=HALFBH
```



```
IF=I+NWCS
II=I+NCS
CHORD=CH(1)
$26 CHORD=CH(I)
\26 CHORD=CH
DO q31 J=1.NCW
jJ=JJ {+J
IF (NW(2),EQ,0) GOTO 128
IF
LL=LPAN1-NG
128 6L=jJ
CONTINUE
XI=(XV(LL)-XLE(I))/CHORD
ETA=YV(LL)/HAB
IF (LAT,NE,(-9)) GO TO 130
CPR=(CP(LL))+GAMMA (LL))*2.
CPR=(CP(LL)+GAMMA (LL))*2.
CPL=(CP(LL) GGAMMA(LL))*Z*:CPL,CPR
G0 TO 139
130 CPK=2.*CP(1LL)
CPK=2.*CP(LL)
131 CONTINUE
JJ1=(NCW-NW(2))*I
K1=K1+NCW
CONTINUE
CONTINUE
WRITE (6, 171)
HAB=HALFB
DO 135 Is1,NCS
IF (IWGLT.EQ*O) GO TO WRITE3(6. (IWING+1), 173)
133
134
GO TO IT34
IFN(JWING.NE. O AND.I EQ. (JWING+1)) WRITE (6.172)
IF (JWING NE. O AND. 1 EQ. (JWING+1)) WRITE (6. 172)
CONTINUE
IF (IWING.NE,O
A1146
A1147
A1149
A1150
A11 51
A1152
A11%53
A1154
A115S
A115
A115
A1115%
A1156
A1162
A1164
A1164
A1165
132
A1166
A116
A1168
A1168
A1169
A1171
A1172
A1172
N1173
A1173
A11744
A197
A1176
A117%
A11788
A1178
A1178
```



```
A1780
A118
A118
A1983
A1184
A1185
A1186
A1187
A1188
A1188
CONTINUE
A119
A119
A119
A119
A1194
A1195
A1198
```

```
    IF (LAT.NE. (-1)) TEM=0.
    CLRT=CL(I)+TEM
```

WRITE (6,17EM

```
WRITE (6,17EM
WRITE (6, 174) YE,CLRT,CLLT,CM(I),CT(I),CD(I)
WRITE (6, 174) YE,CLRT,CLLT,CM(I),CT(I),CD(I)
WRITE (6, 175)
WRITE (6, 176) CLT
WRITE (6, 177) CDT
WRITE (6, 179) CMT
IF (IWING.NE.O) GO TO 136
IF (IWING.NE.O) GO TO 136 
IF (NGRD.NE.D) GO T0 137 10 137
IF (IDIH.NE:O) GO TO 137
IF (IDIH,NE.O) GOTO 137 
WRITE (6, 186) CLW 
CLTLW=CLT-CLW
CLTLH=CLTLW*HALFSW/HALFSH
CMTAIL=CMT-CMW
WRITE (0, 189). CLTLW.CLTLH
WRITE (6, 190) CMTAIL
CONTINUE
WRITE (6, 192) (1) GOTO TO 138
WRITE (6, 152)
GRIPE (GIP*R
WRITE (6,182)
WRITE (6, 180) CLTOCSL.CTIP
WRITE (6, 181) XBP XLEBAR,CTX
WRITE (6%152)
GO TO 139
CONTINUE
WRITE (6, 152)
WRITE (6, 182) CLPP,CSL,CLVS
WRITE (6,184) CDPP,CDVL,CDVS
WRITE (6, 185) CMT,CSXL,CMVS
WRITE (6% 152)
CONTINUE
HW=2**HALFSW
HSH=2**HALFSH
IF (LAT EQ. 0) GO TO 142
IF(NAL.EQ.O) GO TO 225
DF (NAL)=DF(NAL)*180.1P1
IFNTINUE EQ. (-1)) WRITE (6, 203) CLL,DF(NAL),AM
25
```

```
IF (LAT.NE,I), GO TO 142
```

IF (LAT.NE,I), GO TO 142
WRITE (6,152)
WRITE (6,152)
WRITE (6, 193)
WRITE (6, 193)
WRITE (6, 152)
WRITE (6, 152)
KA=1
KA=1
IF (KA GT. 3) GO TO 142
IF (KA GT. 3) GO TO 142
WRITE (GO
WRITE (GO
A1208
A1209
A1210
A1211
A1212
A1213
A1213
A12144
A1215
A1210

```
```

.

```
```

 IF (KA.EQ.2) WRITE (6, 201)
 WRITE (6, 197) CY,CLB,CNB
 WRITE (6, 198) CYP,CLP,CNP
 WRITE (6, 200)
 CYBB=CY
 CLBB =CLB*COSA+CNB*SINA
 CNBB=CNB*COSA-CLB*SINA
 CYPP=CYP*COSA+CYR*SINA
 CLPP=CLP*COSA*COSA+(CLRR+CNP)*COSA*SINA+CNR*SINA*SIVA
 CNPP=CNP*COSA*COSA+(CNR-CLP)*COSA*SINA-CLRR*SINA*SINA
 CYRR=CYR*COSA-CYP*SINA
 CLRL=CLRR*COSA*COSA* (CNR-CLP)*SINA*COSA-CNP*SINA*SIVA
 CNRR=CNR*COSA*COSA-(CLLRR*CNP)*SINA*COSA+CLP*SINA*SIVA
 WRITE (6,197) CYBB. (LBB.CNBB
WRITE (6, 198) CYPP,CLPP,CNPP
HRITE (6, 199) CYRROCLRLGCNRR
IF (KA.EQ.1) WRITE (6, (K, S%)
If (KA.EQ. 1) WRIIE (6., 1S2)
If (KA GT: 2) GO TO I42
KA=KA+1 2, GO TO 149
CY=CYBVSE
CNB = CNBVSE
CLB=CLGVSE
CYP=CYPVSE
CLP=CLPVSE
CNP=CNPYSE
CYR=CYYSE
CLRR=CLRVSE
CNR=CNRVSE
GO TO 140
CY=CYBV
CNB=CNBV
CLB=CLBV
CYP=CYPV
CLP=CLPV
CNP=CNPV
CLRR=CLRRV
CLRR=CLRRV
CNR=CNRV
WRITE (6, 204) HW,HALFB
WRITE (6, 205)
WRITE (6. 206)
HAB=HALFB
DO 145I=1,NCS
IF (IWGLT.EQGO)GO,TO 143
GO TO 1/44 (JWING+1)) WRITE (6. 208) HW.HALFB
IF (JWING .NE. O.AND.I EQ. (JWING+1)) WRITE (6. 207) HSH.HALFB
1H

```
\(1{ }^{1}{ }^{\text {F }}\)
```

 IF (JWING.NE, O AND.I EGQ. (JWING+1)) WRITE (6, 209)
    ```
    IF (JWING.NE, O AND.I EGQ. (JWING+1)) WRITE (6, 209)
    IF (IWING.NE,OG:AND.INGGT:IWING) HAB=HALFBH
    IF (IWING.NE,OG:AND.INGGT:IWING) HAB=HALFBH
    YE=YLE(I)/HAB
    YE=YLE(I)/HAB
    WRITE (6,174) YE,BMR(I),BML(I)
    WRITE (6, 209)
    WRITE (6, 210) CBMR.CBML
    WRITE (6, 2O9)
    IF (IWING NE. O FAND, IWGLT ;NE; 1) WRITE (S. 211) CBTR,CBTL
    ALP=ALQ+ALPINC
    ALQ=ALP
    ALZ=ALQ*180./PI
    IF(IWGLT.EQ.1.) IWING=JWING
    CONTINUE
    NCON=NCON+1
    IF (NCON LLE. ICASE) GO TO 1
    STOP
C
    147
    FORMAT (8F10.6)
    FORMAT (8(6X:14))
    FORMAT (10X,8HHALF SWE,E12.5.10X.5HCREF=,E12.5)
    FORMAT (13HCASE NUMBER =-I2)
    FORMAT (6F10.5)
    FORMAT (1HO,40H*****************************************)
    FORMAT (1HO.10HINPUT DATA)
    FORMAT (IHO 3GHVORTEX ELEMENT ENDPOINT COORDINATES=)
    FORMAT (1HO.26HCONTROL POINT COORDINATES=)
SOL
S FORMAT (/45H*** CAMBER ORDINATES FOR THE ROOT SECTION ***) (/53H*** CAMBER ORDINATES FOR THE INTERMEDIATE SECTION ***)
157 FORMAT (/53H*** CAMBER ORD
159 FORMAT (/7X.3HZ/C.11F1O:5)
160 FORMAT (/44H*** CAMBER ORDINATESGOR THETTIP SECTION ***)
160 FORMAT (/44H*** CAMBER ORDINATESYOR THETTIP SECTION****)
    FORMAT (/4X, 2HX1, 8X, 2HX2,8X,2HY1, 8X, 2HY2,8X,2H21,6X,2H22)
    FORMAT (YЗAG)
    FORMAT (I2OX 19HAND AILERON ANGLE = F8&3 2X&GHDEG:)
    FORMAT (/20X,42HXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)
166 FORMAT (/2OX,S2HPRESSURE DISTRIBUTION AT ALPHA = F8GSOZXG4HDEG.)
IGO
168 FORMAT (/3X,6HVORTEX,14X, 2HXV,17X, 2HYV,19X,2HCP)
    FORMAT (/3X,6HVORTEX,14X, 2HXV,17X,2HYV,17X,8HCP(LEFT),12X, 9HCP(RI
    1GHT))
    FORMAT (6X,I3,4(10X,F10.5))
    FORMAT //9X, 3HY/S,11X.9HCL(RIGHT).6X,8HCL(LEFT).10X,2HCM,12X,2HCT.
1 13X,3HCDI)
    FORMAF-(/4X,42HTHE FOLLOWING ARE THE TAIL CHARACTERISTIES)
    FORMAT (/4X,45HTHE FOLLOWING ARE THE WINGLET CHARACTERISTICS)
    FORMAT (8(5x.F10.5))
    FORMAT //2X,57H*** THE FOLLOWING ARE ATTACHED POTENTIAL FLOW RESUL
    1TS ***)
    FORMAT (/24HTOTAL LIFT COEFFICIENT =.F10.5)
    FORMAT (I2X, S2HTOTAL INDUCED DRAG COEFFICIENT %,F10.5)
```



```
    FORMAT (/2X,28HTHE INDUCED DRAG PARAMETER = FIO.5) 
    FORMAT (/2X.4HKP =F10.5,3X.6HKVLE =F10.5,3X.6HKVSE = F 10.5)
    FORMAT (/2X.5HXBP z F10.5,3X.6HXBLE = F10. 5.3X,6HXBSE =,F10.5)
A1315
A1316
A1317
A1318
A1320
A1332%
A1322
A1323
A1324
A1325
A1326
A1327
A1328
148
150
152
154
154
161
164
165
169
170

```

FUNCTION ZCDX (X,Y)}\mathrm{ DEFINE THE CAMBER SLOPE AT ANY X,Y IN CLOSED FORM, NHERE X IS
DEFINE THE CAMBER SLOPE AT ANY XOY INNCLOSED FORM, NHERE X IS NON-
DIMENSIONALIZED W.R.T. HALF SPAN.

```
```

$A=0.11 *(1 .-2 . * Y)+0.03$

```
\(A=0.11 *(1 .-2 . * Y)+0.03\)
\(B=-0.0825^{\star}(1:-2 . * Y\) ) - TWST \((Y)-0.101\)
```

$B=-0.0825^{\star}(1:-2 . * Y$) - TWST $(Y)-0.101$

```


```

$C=0.0275 *(1 *-2 * Y)+0.0$
$2 C D X=3 * A * X * X+2 * B * X+C$

```
\(C=0.0275 *(1 *-2 * Y)+0.0\)
\(2 C D X=3 * A * X * X+2 * B * X+C\)
RETURN
RETURN
END
```

END

```

FUNCTIONTWST(Y)
DEFINE THE TWIST DISTRIBUTION IN RADIAN AS A FUNCTIOV OF NONDIMENSIONAL Y.

TWST=-0.05041+3.61004*Y-36.98046*Y*Y+37.79204*Y**3+5.54321*Y**4
-15.46932*Y**5-0.00085*Y**6+0.00441*Y**7
TWST=TWST*3.14159265/180.
RETUR

FUNCTION ZCAM (I,X)
COMMON / CAMB/ ICAM,IM, XT \((3,12), 2 C(3,12), A A M(3,11), B 3 M(3,11), C C M(3\). 111), \(\operatorname{DDM}(3,11)\)
\(\underset{I F}{K=1}(X, G E . X T(I, K)\).AND. \(X . L T . X T(I, K+1)) G O T O ?\)
\(K=K+1\)
IF (K,GE. IM) GO TO 3

\(2 C A M=3 . \star A A M(I, K) * S M * * 2+2 * * B M(I, K) * S M+C C M(I, K)\)
GO TO 5
\(K=1 M-1 \cdot L T . X T(I, 1))\) GOTO 4
GO TO 2
\(K=1\)
2
GO TO
RETUR
END
```

 FUNCTION ZCR (X)
 COMMON /CAMB/ ICAM,IN.XT(3.12),2C(3.12),AAM(3.11),B3M(3.11),CCM(3.
 I11)-DDM(3,11)(ICAM,EQ. 1) GO TO 1
 C \ *** CAMBER FUNCTION AT THE ROOT IS DEFINED HERE ***
ZCR=0.

```

```

 END
    ```
```

 FUNCTION ZCI (X)
 COMMON /CAMB/IICAM.IM,XT(3.12),ZC(3.12),AAM(3.11).B3M(3.11),CCM(3.
 111)-DDM(3.11)
 IF (ICAM,EQ. 1) GO TO 1
 C C *** CAMBER FUNCTION AT THE INTERMEDIATE STATION IS DEFINED HERE ***
ZCI=ZCR(X)
1 GOTO_R 2(2.x)
END
FUNCTION ZCT (X)
111),DOMMON/CAMB/'ICAM.IM.XT(3.12),ZC(3.12),AAM(3.11).,B3M(3.11).CCM(3.
INF)(ICAM,EQ. 1) GO TO
C
ZCT=ZCR(X)

```

```

 END
    ```
```

manamananaman

```
```

 SUBROUTINE INVN (DQ,CP,AW,LAT,NALP,V,IP)
 DIMENSION DQ(IP,IP), CP(1), AW(1)
 SETDIM IS TO SET UP ARRAY TABLE FOR MATRIX INVERSIOV. AND MAY NUT
IA=IP
CALL SETDIM (DQ,IA,IA)
IF (NALP.EQ.1) GO TOA) 3
REWIND Oi
O T IE1 N
READ (01) (AW(K) K=1,N)
READ (O1) (CP(K) K=INN)
DO 1 j=1,N
DQ(I,J)=AW(J)
DQ IS THE MATRIX TO BE INVERTED. AW IS A WORKING ARPAY THE
CALL,HEMINV (DQ\&N\&AG)
O 2 I=1,N
WRITE (O2) (DQ (I,K) K=1,N)
IF (LATANE.1) GO TO 6
REWIND D1
DO 4 I=1.N
READ (O1) (AW (K),K=1,N)
READ (01) (CP(K)NK=1N)
DO 4 J=1,N
DQ(I;J)=CP(J)
CALL HEMINV (DQ,N,AW)
DO 5 I=1,N
WRITE (OD) (DQ(I,K),K=I,N)
RETURN
END
DQ(I,J)=CP(J

```
```

 SUBROUTINE THRUST (LPANEL,GAMMA,SNALP,IALP,LPAN1,CAMLE1,CAMLEL,CAM
 TLENS
ZKZ,P,BK_RL.CNALP
DIMENSION GAMMA(1), SNALP(1), YK(1), DC(1), DS(1), CSU(1)
DIMENSION CNALP(1)
AN(x)=SIN(x)/COS(x)
COMMMON /GEOM/ HALFSW,XCP(200),YCP(2J0),ZCP(200),XLEE(100),YLEE(1UU),
1XTE(10n),PSI(30),CH(100),XV(200),YV(200),SN(10,3),XV (205,2),YN(CLU
2:Z),ZN(200,2),WIDTH(7),YCON(51).SWEEP(100),HALFBG,SJ(31.7)
COMMON /AERO/ AM.B.CL(50),CT(50),CD(50).CM(50)
COMMON /CONSTI NCS,NCWOM1(7),MJW1(2,5),MJW2(2,5),NJW(5),NFP.NW(2)
COMMON ISCHEMESC(2)-X(10.41),Y(10.41):SLOPE(15):XL(2.15):XTT(41).
1XLL(41)
LG=1
NS = NCS
IF (NGRD,EO. 1) LG=2
ITWST=CM(9
IV=CM(SO)
ICAMT =CM(49)
B1=B
PI=3.1415¢265
CN=NW(1)
CS=DC(1)
CS=DC(1)
ZS=0
2B=0.
YB=0.
IPM=1
DO 29 I=1.NCS
FCOS=COS(SWEEP(I))
FTAN=TAN(SWEEP(I))
FST=CS
IFT=CS
I1=I+NCS
CHL=CH(I)+CH(I1)
GO TO
CHL=CH(I)
CONTINUE
SRT=SQRT(CH(I)/CHL)
BB=B
IZ=1
IW=1
MM=0
ISN=1
NM=NW (1)
NL=NW(1)
A=0
KP=i+(I-1)*NW(1)
COSD=DC(1)
SIND=DS(1)
ZAB=0
ZA=0.
YA=0,
IPN=1
DO 17 NN=1.LPANEL
L=NN
J=NN-MM

```
    1s
```

 FN=NL
    ```
        FN=NL
    GO TO (24
    GO TO (24
    IF (NN.GT. LPAN1.AND. NN.LE. LPANFL) ISN=2
    IF (NN.GT. LPAN1.AND. NN.LE. LPANFL) ISN=2
    CONTINUE
    CONTINUE
    X1=XN(NN,1)-XLE (I)
    X1=XN(NN,1)-XLE (I)
    X2=XN(NN,2)-XLE (I)
    X2=XN(NN,2)-XLE (I)
    X12=XN(NN,2)-XN(NN,1)
    X12=XN(NN,2)-XN(NN,1)
    I SM=2
    I SM=2
        ISM=2
        ISM=2
    IF=1, (IV -EQ. 1 =AND. IZ GT. IWING) ISM=1
    IF=1, (IV -EQ. 1 =AND. IZ GT. IWING) ISM=1
    DO 12 K=1.ISM
    DO 12 K=1.ISM
    IF (KZ,EQ:1.AND.K.EQ.2) FC=-1.
    IF (KZ,EQ:1.AND.K.EQ.2) FC=-1.
    N1=1
    N1=1
    GO TO
    GO TO
    NTNNTINAE
    NTNNTINAE
    00 12 KK=1,LG
```

```
    00 12 KK=1,LG
```

```


```

```
    IF (KKUE
```

```
    IF (KKUE
    PS=SIND
    PS=SIND
    PC=COSD
    PC=COSD
    QS=SS
    QS=SS
    QC=CS -
    QC=CS -
        GO TO
        GO TO
        PS=0.
        PS=0.
        PC=1:
        PC=1:
        QS=0.
        QS=0.
        QC=1
        QC=1
    CONTINUE
    CONTINUE
    Y1 2=YN(NN, 2)-YN(NN,1)
    Y1 2=YN(NN, 2)-YN(NN,1)
            Z12=ZN(NN,2)-ZN(NN.1)+Y12*PS
            Z12=ZN(NN,2)-ZN(NN.1)+Y12*PS
    Y12=Y12*PC
    Y12=Y12*PC
    YC=(-1.)**N1* (YBB+(YLE (I) -YB)*QC)
    YC=(-1.)**N1* (YBB+(YLE (I) -YB)*QC)
    Y1=YAA+(YN(NN-1)-YA) &PC-YC
    Y1=YAA+(YN(NN-1)-YA) &PC-YC
    YZ =YAA+(YN(NN-2)-YA)*PC-YC
    YZ =YAA+(YN(NN-2)-YA)*PC-YC
    XYK=X1*Y12-Y1*X12
    XYK=X1*Y12-Y1*X12
    M,
    M,
    GE=-1.
    GE=-1.
    G0 T0-11
    G0 T0-11
    Z1=ZN(NN,1)-ZC+ZA+(YN(NN,1)-YA)\starPS
    Z1=ZN(NN,1)-ZC+ZA+(YN(NN,1)-YA)\starPS
    Z2=ZN(NN,2)-ZC+ZA+(YN(NN,Z)-YA)*PS
    Z2=ZN(NN,2)-ZC+ZA+(YN(NN,Z)-YA)*PS
    XZJ=X1*Z12-Z1* X12
    XZJ=X1*Z12-Z1* X12
    UCOM=-Z1*Y12* (-ATT)*FCON
    UCOM=-Z1*Y12* (-ATT)*FCON
    YZI=Y1*Z12-Z1*Y1Z
    YZI=Y1*Z12-Z1*Y1Z
    ALB1=XYK*XYK+XZJ*XZJ+B1*YZI*YZI
    ALB1=XYK*XYK+XZJ*XZJ+B1*YZI*YZI
    R1B1=SQRT(X1*X1+B1*Y1*Y1 + B1 * Z 1* Z1)
    R1B1=SQRT(X1*X1+B1*Y1*Y1 + B1 * Z 1* Z1)
    R2B1=SQRT(XZ*XZ+BY*YZ*YZ+B1*ZZ*ZZ)
    R2B1=SQRT(XZ*XZ+BY*YZ*YZ+B1*ZZ*ZZ)
```

 CONTINEE
    ```
    CONTINEE
        PS=0
        PS=0
    O
    O
    ZC=ZCP(KP)+ZB+(YLE(I) -YB)*QS
    ZC=ZCP(KP)+ZB+(YLE(I) -YB)*QS
    Z=2CP(KP)+2B+(YLE(I)-YB)*Q
    Z=2CP(KP)+2B+(YLE(I)-YB)*Q
    GE=1
    GE=1
    FCON=0.
```

 FCON=0.
    ```
```

 \UA1=(X2*X12+B1*Y2*Y12+B1*Z2*Z12)/R2B1-(X1*X12+B1*Y1*Y12+B1*\angle1*\angle1Z
 G1B1=(1.-X1/R1B1)/(Y1*Y1+Z1*21)
 G2B1=(1.-X2/R2B1)/(Y2*Y2+22*22)
 F1=UUB1* (UCOM+XYK)*GE/ALB1
 F2=(-Y2*G2B1+Y1*G1B1)*GE
 F3=-xZJ*UUB1/ALB1* (-1.)**N1
 F4=(Z2*G2B1-Z1*G9B1)*(-1.)**N9
 A=A+((F1+F2)*QC-(F3+F4)*QS)*SN(J,ISN)*GAMMA(NN)*CH(IZ)/FN
 1*FC
 IF (NN.LT.NM.OR.NN EQ. LPANEL) GO TO 17
 IW=IW+1
 IZ =IZ+
 MM=NM
 NM=NM+NL
 IF (IWING NE O AND,IW.EQ.(IWING+1)) GO TO 13
 IF (IW E&Q&)(NCS+1))
 CONTINUE
CONTINUE
YAA=YAA+(YK(IPN)-YA)*COSD
YA=YK (IPN)
IF (IWING.NE. O.AND.IW,EQ. (IWING+1)) GO TO 14
14 IF (IWGLT .EQ. 1) GO TO 16
ZA =0.
YA=0.
YAA=0

```

```

 IF
 ZA=YK(NC-2)*DS(1)
 YA = YK (NC-2)
 YANYKNNC
 IPN=I IPN+1
 IF (NN EQ. LPAN1) IW=1
 IF (NN EQ.LPAN1 OR. NN.EQ. LPANEL) IPN=1
 COSO=DC(IPN)
 COSO=DC(IPN)
 CONTINUE
 IF (KZ.EQ.1) GO TO }2
 IF (IALP.EQ. 1) GO TO 21
 IF (JWING.NE, 0, AND: I FGT, JWING) GO TO 22
 IF (ITWST, EQ: 1) GO (YLE(I) GO GT, YTW) GO T0 19 18
 IF
 YX=YTW
 CAM=CAMLEGO-(CAMLE{-CAMLEZ)*YLE(I)/YX
 18
`
Y = YT
IF (IST LE, 2) YX=0.
CAM=CAMLEZ-(CAMLE2-CAMLE3)* (YLE(I)-YX)/ (HALFB-YX)
GO TOO 20
YC=YLE (I)/HALFB
CAM=2CDX(O.YYC)
ALPT=SNALP(I')
GO TO }2

```
\(23 \quad 2 \mathrm{C}={ }^{T 0} \mathrm{ZCP}\left(\mathrm{K}_{\mathrm{K}}^{4}\right)+Z B+(Y L E(I)-Y B) * D S(I P M)\) \(Y C=Y B B+(Y L E(I)-Y B) * D C(I P M)\)
\(X C=X L E(I)\)
DSS =DS (IPM)
\(D C C=D C(I P M)\)
WBT \(=0\)
```



``` ALPK=RL HALFB, XLL,XTT,NS, IV,IWING,NGRD,HEIGHT,ATT,Yく, IWGLT,NC
\(A L P T=P *(Z C * D S(I P M)+Y C * D C(I P M)) / H A L F B+B K \star D S(I P M)-R L \star X L E(I) / H A L F G\)
1 *DS (IPM) + W \(B T\)
\(C A M=0\).
CST=1.
24 CONTINUE
\(A=A / 8+(A L P T-C A M) * C S T\)
\(A=A * S R T\)
THRTY=A/(CN*SQRT (FTAN*FTAN+BB))
CD (I) \(=\) THRT 9
IF (KZ NE, O) GO TO 25
\(\mathrm{CT}(\mathrm{I})=(\mathrm{PI} / 2) * S Q R T.(1 .-A M * A M * F \operatorname{COS*FCOS}) * T H R T 1 * T H R T 1 / F C O S\)
FCR \(=1\).
IF (THRT1:LT:O.) FCR=-1.
\(\operatorname{CSU}(I)=C T(I) * F C R\)
CONTINUE
```



```
IF (YLEE(I+1) LT. YK (IPM)) GO TO 29
CONTINUE
\(Z B=Z B+(Y K(1 P M)-Y B) * S S\)
\(Y B B=Y B B+(Y K(I P M)-Y B) * C S\)
\(Y B=Y K(I P M)\)
```


ZB=O.
YB=0.
YBB=0.
IF (IWGLT, NE. 2) GO TO. 28
2B=YK(NC-2)*DS(1)
YBB=YK(NC-2)*DC(1)
YB=YK (NC-2)
YO=YK (NC-2
CONTINUE
IPM=IPM+9
CS=DC(IPM)
SS=DS(IPM)
29 CONTINUE
RETURN
END

```
    SUBROUTINE BENDIN (NC,CL,BM,IWING,BREAK,SUMM,SUMT,NNING,HALFSH,HAL
    1FBH,DC \(\quad D S\). IWGLT,FTL)
    DIMENSION A(30), BM (1), H(30), PHI(30), BREAK(1), C_(1)
    DIMENSION DC(1): DS(1)
    COMMON /GEOM/ HALFSW, XCP (200), YCP(200), ZCP(200), XLE 100 ), YLE (10U).



    COMMON /CONST/
PI \(=3\). 14159265
\(N S T=N C S-M 1(N C)\)
    NST \(=N C S-M 1(N C)+1\)
    SUMF=0.
    SUMM=0.
    SUMS \(=0\).
    FTL=0.
    AREA=HALFSH
    HAB=HALFBH
    IF (IWGLT EQ: 1) HAB=HALFB
IF (IWGLT EQ. 2) AREA=HALF

    00
\(M=N C-I+1\)
    \(I F(I . N E, N C) \quad D I H E F C=D C(M) * D C(M-1)+D S(M) * D S(M-1)\)
    IF (I.NE.NC) DIHEFS=DS(M)*DC(M-1)-DC(M)*DS(M-1)
    IF (I \(E Q\). NC) DIHEFC=1.
    \(I F(I) \in Q, N C) \quad D I H E F C=1\).
\(I F(I \quad E Q, N C) \quad D I H E F S=0\).
    WSPAN = WIDTH (M) \(* 0.5\)
    WSP AN \(=W I D 1\)
\(M M=M 7(M)-1\)
    MM1-M1 (M)
    \(F M=M M 1\)
    IF (M.EQ. NWING) AREA=HALFSW
    IF (M, EQ NWING) HAB=HALFB
    FJ = J
    \(J J=N S T+J\)
    \(J J=N S T+J\)
\(C H O R D=C H(J J)\)
IF (NW(2)
    IF (NW (J) =FJ*PI/FM O) CHORD=CHORD+CH(JJ+NCS)
    \(H(J)=C L(J J) * C H O R D * S J(J, M)\)
    CONTINUE
    DO \(\frac{1}{3} \mathrm{~J}=1\). MM 1
    \(A(J)=0\).
    \(\mathrm{FJ}=\mathrm{J}\)
    \({ }^{\mathrm{F}} \mathrm{J}=\mathrm{J}\)
    DO \(2 K=1\), MM
    \(A(J)=A(J)+H(K) * C O S((F J-1) * P H I,(K))\)
    IF (J.EQ•1) A(J)=A(J) /FM
    \(I F\)
\(C O N T I N U E N E: 1) A(J)=A(J) * 2 . / F M\)
    DO \(6 \quad K=1\). MM 1
    \(J K=M M 1-K\)
    \(K K=J K+N S T\)
    BSPAN = BREAK (M) -YLE (KK) +WSPAN
    IF (K EQ. MM1) GO TO 5
    SUM=A 1\()^{\circ} *((P I-P H I(J K)) * B S P A N+S I N(P H I(J K)) * W S P A N)-0.5 * A(2) * W S P A N *(\)
    \(1 \mathrm{PI}-\mathrm{PHI}(J K)-S I N(2 . * P H I(J K)) / 2).-A(2) * S I N(P H I(J K)) \star B S P A N\)
        DO \(4 \mathrm{~J}=2\).MM
    \(F J=J\)
    \(S U M=S U M-B S P A N * A(J+1) * S I N(F J * P H I(J K)) / F J+W S P A N * 0.5 * A(J+1) *(S I N((F J+\)
11.) \(1 P H I(J K)) /(F J+1,2)+S I N((F J-1.) \star P H I(J K)) /(F J-1)\).
```

BM(KK)=WSPAN*SUM/(2.*AREA*HAB) +SUMM+SUMF*(BREAK(M+1)-YLE(KK))
GO TO 6
BSPAN=WSPAN
SUM=(A(1)*BSPAN-0.5*A(2)*WSPAN)*PI
SUMM=WSPAN*SUM/(2**AREA*HAB) +SUMM+SUMF*(BREAK(M+1)-BREAK(M))
CONTINUE
P1=A(1)\starPI*WSPAN/(2**AREA*HAB)
SUMF=(SUMF+P1)*DIHEFC-SUMS*DIHEFS
SUMS=(SUMF+P1)*DIHEFSS+SUMS*DIHEFS
IF (MMEEQ. (NWING+1) -AND. IWING .NE. O) GOTOT
GO TO 8
SUMI=SUMM
IF (IWGLT .EQ. 1) GO TO 8
SUMM=0.
SUMF=0.
CONTINUE
IFN(I O,NC) GO TO 9
NST=NST-M1(M-1)+1
GO TO 10
NST=0
CONTINUE
RETURN
END

```
```

 SUBROUTINE WING (AW,LPANEL,I,BB,LPANT,LAT,NGRD,HEIGHT,ATT,CS,SJ,YK
 1,DC,DS,IWING,ZB,YB,YBB,IWGLT,NC
 DIMENSION AW(1)
 DIMENSION BW(200)
 DIMENSION W(2),W1(2), YK(1), DC(1), DS(1),V(2), V1(2)
 COMMON/GEOM/ HALFSW,XCP(200),YCP(200),ZCP(200),XLE(100),YLE(1UU),
 1XTE(100),PSI (30),CH(100),XV(200),YV(200),SN(10, 3),XV (200,2),YN(2UO
 2.?),ZN(2OO,2),WIDTH(?),YCON(51),SWEEP(100),HALFB,SJ(31,7)
 COMMON /AERO/ AM,B,CL(50),CT(50),CD(50),CM(50)
 COMMON/CONST/NCS,NCW,M1(7),MJW1(2.5),MJWZ(2,5),NJ&(5),NFP,NW(Z)
 LG=1
 IF (NGRD .EQ. 1) LG=2
 IV=CM(SO)
 w (1)=0.
 V1(1)=0.
 IPN=1
 B1=BB
 IZ=1
 IW=1
 IFF=1
 I SN=1
 NL=NW(1)
 NN=NW (1)
 COSD=DC(1)
 CIND=DS(1)
 ZA=0.
 YA=0.
 YAA=0
 DO 1% J=1.LPANEL
 V1(2)=0.
 W1(2)=0.
 W(2)=0
 W(2)=0
 MI=J-IFFF+1
 FN=NL
    ```

```

 GO TO ?
 NL=NW(2)
 CONTINUE
 X1=XN(J,1)-XCP(I)
 X2=XN(J,2)-XCP(I)
 X12=xN(J:2)-XN(J:1)
 ISM=2
 IF (IV,EQ. 1.AND. IZ.GT, IWING) ISM=1
 IF (II.EQ.I) GO TO 3
 N=1
 GO TO 4
 N=2
 CONTINUE
DO 11 KK=1,LG
IF (ABS(CS-COSD).GT.0.001) GO TO 5

```

```

CONTINUE
PS=SIND
PC=COSD

```
```

 QS=SS
 QC=CS
 GO TO }
 PS=0.
 PC=1.
 QS=0
 QC=1
 CONTINUE
 Y1Z=YN(J,2)-YN(J,1)
 Z12=ZN(J.2)-ZN(J.1)+Y12*PS
 Y12=Y12*PC
 YC=(-1) **N* (YBB+(YCP(I) -YB)*QC)
 Y1=YAA+(YN(J,1)-YA)*PC-YC
 Y1=YAA+(YN(J,1)-YA)\starPC-YC
 Y2=YAA+(YN(J,2)-YA
 IF
 FCON=1.
 GO TO 9
 ZC=ZCP(I)+ZB+(YCP(I)-YB)*QS
 FCON=O
 CONTINUE
 Z1=ZN(J.1)-ZC+ZA+(YN(J.1)-YA)*PS
 Z1=ZN(J,1)-ZC+ZA+(YN(J,1)-YA)*PS
 XZJ=X1*212-21*X12
 UCOM=-Z1*Y12*(-ATT)*FCON
 YZI=Y1*212-z1*Y12
 ALB1=XYK*XYK+XZJ*XZJ+BI*YZI*YZI
 R1B1=SQRT(X1*X1+B1*Y1*Y1+S1*Z1*Z1)
 R1B1=SQRT(X1*X1+B1*Y1*Y1+S1*Z1*Z1)
    ```

```

 1)/R1B1! 1-x /R1早)/(Y1*Y1+Z1+Z1)
 G1B1=(1. -X1/R1B1)/(Y1*Y1+Z1*Z1)
 GGB1=(1:-X2/R2B1)/(Y2*Y2+Z2*Z2)
 FT=UUB1:(UCOM+XYK)/ALB\
 F2=-Y2*G2B1+Y1*G1B1
 F3=-XZJ*UUB1/ALB1
 F4=22*G2B1-21*G1B1
 IF (KK EQ 2) GO TO 10
 W(II)=(Fi+FZ)*CH(IZ)*SN(MI*ISN)/(8**FN)
    ```

```

 W(III)}=W(II)*Q
 W(II =V (III)*QS
 10 W1(II)=(Fq+F2)*CH(IZ)*SN(MI\&SN)/(8.*FN)
V1(II)=(F3+F4)*CH(IZ)*SN(MI/ISN)/(8.*FN)
W1(II)=W1(II)*QC
V1(II)=V1(II)*QS
CONTINUE
AW(J)=W(1)+W(2)-W1(1)-W1(2)-(V(1)-V(2)+V1(1)-V1(2))
AW(J)=W(1)+W(2)-W1(1)-W1(2)-(V(1)-V(2)+V1(1)-V1(2))
IF (J,LT.NN,OR.J.EQ.LPANEL)GO TO 16
IZ=IZ+1
IW=IW+9
IFF=NN+1
NN=NN+ML
IF (IWING.NE. O.AND.IW.EQ. (IWING+1)) GO TO 12
Q= 2) GO 10

$Z A=Z A+(Y K(I P N)-Y A) * S I N D$
$Y A A=Y A A+(Y K(I P N)-Y A) * C O S D$
$Y A=Y K(I D N)$

GO TO 15 (IWGLT EQ. 1) GO TO 15
$Z A=0$.
$Y A=0$.
$Y A=0$.
$Y A=0$.
IF (IW EQ. (NCS+1)) GO TO 15
IF (IWGLT, NE 2) GO TO 15
$Z_{Y A} A=Y K(N C-2) \star D S(1)$
$Y A A=Y K(N C-2) * D C(1)$
$Y A=Y K(N C-2)$
$Y A=Y K(N C-2)$
CONTINUE
${ }_{I} P N=I P N+1$
IF (J EQQ LPAN1 OR. J EQ. LPANEL) IPN=1
$\operatorname{COSD=DC(IPN)}$
16 IF (J EQ. LPAN1 OR J EQ. LPANEL) IW=1
WRITE (O̊i) (AW (J), $j=1$ LPANEL)
WRITE (O1) (BW(J), J=1 LPANEL)
RETURN
\cdots
$\begin{array}{llll}k & 1 & 1 & 6 \\ K & 1 & 17\end{array}$
$\begin{array}{ll}k \\ k & 118\end{array}$
$\begin{array}{ll}k & 118 \\ k & 19\end{array}$
K 119
$\begin{array}{rl}k \\ k & 20 \\ k\end{array}$
K 121
$\begin{array}{ll}K & 12 \\ k & 1 \\ k\end{array}$
$\begin{array}{ll}K \\ k & 12 \\ k\end{array}$
$\begin{array}{ll}k \\ k & 25 \\ k\end{array}$
K 126
k
k
$k$$\frac{2}{8}$
$\begin{array}{ll}K & 128 \\ K & 129\end{array}$
k
k
$k$$\frac{2}{0}$
$\begin{array}{llll}k & 13 & 0 \\ k & 13 & 1\end{array}$
$\begin{array}{ll}k \\ k & 132 \\ k & 3\end{array}$
$\begin{array}{lll}K & 13 \\ K & 13 \\ K & 3\end{array}$
$\begin{array}{ll}k & 134 \\ k & 135 \\ K & 136\end{array}$

END
$\begin{array}{ll}k & 137 \\ k & 138\end{array}$
K 138
K 139
$k 940$
K 1410

```
    SUBROUTINE LATERL (GAMMA,AW,CA,LAT,LPANEL,LPAN1,DF,VAL,YK,DS/OC,IW
    ING,IWGLT,NALP,ALP,GAMP,GAMB,GAMR,CP,GAMX,BREAK,SWP,CHORDT,YCN,
    SNALP, (NALP)
    DIMENSION GAMMA(1), AW(1),CA(1), DF(1), YK(1), DS(1)
    DIMENSION DC(1),GAMP(1),GAYB(1),GAMR(1), CP(1), SAMX(1), BREAK(
    11). SWP(10,15), CHORDT(1), YCN(1),SNALP(1) CNALP(1)
    COMMON/GEOM/ HALFSW,XCP(2OO),YCP(2OO),ZCP(2OO),XLE(1OO).YLE(1NU),
    1XTE(100),PSI (30),CH(100),XV (200),YV(200),SN(10,3),XV(200,2),YN(20O
    2,2),ZN(2OO,2),WIDTH(7),YCON(51),SWEEP(1OO),HALFB,SJ(31,7)
    COMMON /CONSTI NCS,NCW,M1(7), YJW1(2,5),MJWZ(2,5),NJN(5),NNPNNW(2)
    COMMON ISCHEME/ C(2).X(10.41),Y(10,41)OSLOPE(15):XL(2.15).XTT(41).
    1 XLL (41)
    COMMON/AERO/AM.B.CL(50).CT(50).CD(50).CM(50)
    COMMON/EXTRA/ CAMLE1,CAMLEZ,CAMLES,YTW,ISP,TINP,NGZD,HEIGHT,ATT,N
    1C,NWING.HALFBH, IPOS IALP
    COMMON/BETA/GMAX(50),XTG(50),YTG(SO), ZTG(50),BZ.NCG,CTG(1S),STG(
    115).DIS S
    DIMENSION DUM(200), DUMY(200), DUMZ(200), DUMS(200), DUMC(200)
    L1=LPANEL+1
    IV =CM(50)
    PI=3.14159265
    IF (LAT.EQ.1) GOTO 5
    REWIND 01
    READ (O1) (DUM(I).I=1.LPANEL)
    READ (O1) (AW(I) I = % LPANEL)
    AW (L1) =0.
    DO 1 I=1.LPANEL
    GAMMA(I)=-AW(I+1)/AW(1)
    NJ=LPANEL-1
    MM=NW(1)
    NN=NW(1)
    OO 4 IJ=2,LPANEL
    READ (O1) (DUM(K),K=1.LPANEL)
    READ (O1) (AW(K),K=1.LPANEL)
    READ(L1)=0.
```



```
    GO TO 3
    IF (IJ.EQ.MM) AW(L1)=0.5*DF(NAL)
    IK=IJ
    CALL VMSEQN (NJ.IK.AW,GAMMA,CA)
    NJ=NJ-1
    IF (IJ.GE.LPANT.AND.IJ.LT.LPANEL) NN=NW(2)
    IF (IJ.GE.LPANI:AND.IJ
    IF (IJ LL
    MM=MM+NN
    CONTINUE
    RETURN
    K2=1
    BK=0,
    P=0.1
    NWW=NW(1)
    IST=0
IF (NW (2).NE.O) NWW=NW(2)
IF (NW(2)-NE:O) IST=LPANI
00 8 I=1 NCS
GMAX(I)=0.
```

```
```

 MK=IST+(I-1) *NWW
    ```
```

 MK=IST+(I-1) *NWW
 IK=I
 IK=I
 IK=I
 IK=I
 LP=MK+LQ
 LP=MK+LQ
 AA=1.
 AA=1.
 DO 6 LS =1,NWW
 DO 6 LS =1,NWW
 LN=MK+LS
 LN=MK+LS
 IF (LS.EQ.LQ) GO TO
 IF (LS.EQ.LQ) GO TO
 IF (LS.EQ:LQ) GOTOO
 IF (LS.EQ:LQ) GOTOO
 AA=AA*(XTE (IK)-XV(LN))/(XV(LP)-XV(LN))
 AA=AA*(XTE (IK)-XV(LN))/(XV(LP)-XV(LN))
 CONTINUE
 CONTINUE
 CMNXN
 CMNXN
 CONTINUE
 CONTINUE
 NCG=8
 NCG=8
 FN=NCG
 FN=NCG
 OIST=0IST*2*
 OIST=0IST*2*
 DO 9 I=1,NCG
 DO 9 I=1,NCG
 FI=I
 FI=I
 AG=(2**FI-1,)*PI/(2.*FN)
 AG=(2**FI-1,)*PI/(2.*FN)
 FI=I
 FI=I
 STG(I) =SIN(AG)
 STG(I) =SIN(AG)
 DOG 33, 1=1,3
 DOG 33, 1=1,3
 MM=NW(1)
 MM=NW(1)
 NN=NW (1)
 NN=NW (1)
 IPN=1
 IPN=1
 IPM=0
 IPM=0
 IZ=1
 IZ=1
 IZ=1
 IZ=1
 IW=1
 IW=1
 YB=0.
 YB=0.
 ZB=0.
 ZB=0.
 YBO=0
 YBO=0
 IF (I,NE.1) REWIND D
 IF (I,NE.1) REWIND D
 DO 15 IJ=1. LPANEL
 DO 15 IJ=1. LPANEL03
 YC=YBB+CYEP(LPANEL
 YC=YBB+CYEP(LPANEL
 YBB+(YCP(IJ)-YB)*DC(IPN)
 YBB+(YCP(IJ)-YB)*DC(IPN)
 ZC=ZCP(IJ)+ZB+(YCP(IJ)-YB)*DS(IPN)
 ZC=ZCP(IJ)+ZB+(YCP(IJ)-YB)*DS(IPN)
 XC=XCP(IJ)
 XC=XCP(IJ)
 WBT=0.
 WBT=0.
 OSS=DS(IPN)
 OSS=DS(IPN)
 OCC=DC(IPN)
 OCC=DC(IPN)
 I2=IW
 I2=IW
 IF (I.NE.1) CALL WBETA (XC,YC,ZC,WBT,DSS,DCCEBK,RL HALFB,XLLOXTT,N
 IF (I.NE.1) CALL WBETA (XC,YC,ZC,WBT,DSS,DCCEBK,RL HALFB,XLLOXTT,N
 ICS.IV,IWING,NGRD,HEIGHT,ATT,YK,IWGLT,NC)
 ICS.IV,IWING,NGRD,HEIGHT,ATT,YK,IWGLT,NC)
 CA(IJ)=P*(ZC*DS(IPN) +YC*DC(IPV) /HALFB+BK*DS(IPN)-RL*XCP(IJ)/
 CA(IJ)=P*(ZC*DS(IPN) +YC*DC(IPV) /HALFB+BK*DS(IPN)-RL*XCP(IJ)/
 HALFB*DS(IPN)+WBT
 HALFB*DS(IPN)+WBT
 IH (I.NE,I) GO TO
 IH (I.NE,I) GO TO
 10
 10
 IF
 IF
 DUMS(IJ)=OS(IPN
 DUMS(IJ)=OS(IPN
 DUMS(IJ)=OS(IPN)
 DUMS(IJ)=OS(IPN)
 DUMC(IJ)=CNALP(IZ)
 DUMC(IJ)=CNALP(IZ)
 DUMY (IJ)=YC
 DUMY (IJ)=YC
 OUMZ(IJ)=2C
 OUMZ(IJ)=2C
 CONTINUE
 CONTINUE
 IF (IJ.GE. LPAN1,AND. IJ .LT. LPANEL) NN=VW(2)
 IF (IJ.GE. LPAN1,AND. IJ .LT. LPANEL) NN=VW(2)
 IF (IIJ.GE.LPAN1 GOND. IJ.LT. LPANEL) NN=NW(2)
 IF (IIJ.GE.LPAN1 GOND. IJ.LT. LPANEL) NN=NW(2)
 MM=MM+NN
 MM=MM+NN
 I2=12+
 I2=12+
 IF
 IF
 IF (IWING (NE,O,AND,IW,EQ. (IWING+1)) GO TO 11
    ```
```

 IF (IWING (NE,O,AND,IW,EQ. (IWING+1)) GO TO 11
    ```
```

```
        97
        98
        100
        101
        102
        103
    104
```15
```

```
 IF (YLE(IZ) .LT. YK(IPN)) GO TO
```

```
 IF (YLE(IZ) .LT. YK(IPN)) GO TO
```

CB=2B+Y

```
 IPN)-YB)*DS(IPN)
 YBB=YBA+(YK(IPN)-YB)*DC(IPN)
 YB=YK(IPN)
 IF (IWING.NE.O.AND.IW.EQ.(IWING+1)) GO TO 12
 GO TO 14
 IF (IWGLT.EQ.1) GO TO 14
 2B=0.
 YB=O.
 YBB=0.
 IF (IW.EQ.(NCS+1)) GO TO, 14
 IF (IWGLT.NE.2) GO TO 14
 2B=YK(NC-2)*DS(?)
 YBB=YK(NC-2?)
 YB=YKKNC
 IPN=IPN+
 IF (IJ.EQ. LPANY ORR. IJ -EQ. LPANEL) IPN=1
 IF (IJ EQQ LPAN1 OR:IJ EQ. LPANEL) IW=1
 IF (I-EQ:1) GO TO IT
 REWIND OZ
 IF (NALP.EQ.1) GO TO
 17
 IF (NALP-EQ.1) GO
16 READ (O2) (AW(J),JJ=1.LPANEL)
 DO 19 J=1 LPANEL
 GAMMA (J)=0:
 READ (D2) (AW(K) K=1.LPANEL)
 DO 18 K=1.LPANEL
 1R GAMMA(J)=GAMMA(J)-AW(K)*CA(K)
 CONTINUE
 CALL THRUST (LPANEL,GAMYA,SNALP,IALP,LPAN1,CAMLET,CAMLEZ.CAMLES,YT
```



```
 2 P,BK,RL,CNALP)
 CALL GAMAX (AW&CA,LPANI,LPANEL,GAMMA,NC,BREAK,SWP,CHORDT,IWING.
 1 NWING,HALFBH,YCN,SLOPE,CTX,IWGLT,IPOS,KZ)
 IF (I EQ.1) GO TO 23
 IF (I-EQ*2) GO TO 27
 DO 20 K#1 LPANEL
 20 GAMR(K)=GAMMA(K)*DUMC(K)-YV(K)/HALFB*CP(K)*RL-XV(K)/HALFB
 20 GAMR(K)=GAMMA(K)*D
 DO P1 K=1 NCS
 Y(10,K)=CD(K)
 DO 22 K=1,NCW
 XL(1,K)=CL(K)
 22 IF (IWING.NE:O) XL(2,K)=CM(K)
 23 CO T0 31 3 L LFANEL
 23 GO TO 3, 31 . LFANEL
 GAMP(K)=GAMMA(K)*DUMC(K)+DUM(K)*P*DUMZ(K)/HALFB*GAMX(K)-DUMS(K)*P
 1*DUMY(K)/HALFB*GAMX(K)
 DO 25 K=1,NCS
 Y(4,K) =CD(K)
 Y(4,K)=CD(K)
 Y(5,K)=CL(K)
26 IF (IWING.NE.O) Y(6,K)=CM(K)
 G0 T0 31
27
 g0 28 K=9,LPANEL
1 1 6
```

    21
    ```
\(\begin{array}{r}144 \\ \hline 145\end{array}\)
\begin{tabular}{l}
1 \\
\(L\) \\
144 \\
\hline
\end{tabular}
\begin{tabular}{l}
\(L 146\) \\
\(L\) \\
\hline
\end{tabular}
1
1
1 48
\(\begin{array}{r}1 \\ \hline \\ \hline\end{array}\)
L 149
\begin{tabular}{l}
\(L 150\) \\
\hline
\end{tabular}
\begin{tabular}{l}
\(L 150\) \\
\(L\) \\
\hline
\end{tabular}
151
+152
\(\qquad\)
```

28 GAMB(K)=GAMMA (K)*DUMC(K)+BK*GAMX(K)*DUM(K)
DO 29 K=1,NCS
Y(7,K)=CD(K)
00 30 K=1,NCW
IF8,K)=CL(NWING.NE.0) Y(9,K)=CM(K)
30 IF (IWING:NE.O) Y(9,K)=CM(K)
IF (I.EQ.1) GO TO ST 32
IF (I ;
BK=0.
G0 TO, 33
BK=0.1
P=0.
CONTINUE
RETURN
RET

```
\(\begin{array}{ll}L & 172 \\ L & 173 \\ L & 174 \\ L & 175 \\ L & 176 \\ L & 1778 \\ L & 1779 \\ L & 180 \\ L & 181 \\ L & 182 \\ L & 183 \\ L & 184 \\ L & 185 \\ L & 186 \\ L & 187\end{array}\)
 OATA CON/1.E-1./
 DIST2 \(=0.5 *\) DIST
 FN=NCG
 \(W W=0\).
 \(W W=0\).
\(V=0\).
 \(V W=0\).
 IF (NGRD.EQ.1) LG=2
 \(7 A=\dot{C}\)
 \(Z A=C\)
\(Y A=0\).
 \(\begin{aligned} Y A & =0 \\ Y A & =0\end{aligned}\)
 \(Y A A=0\).
IP \(=1\)
 IPN=1
 DO \(13 \mathrm{I}=1\).NCS
 IF (BK.GT.0.01) \(P R=B K * D C(I)\)
 ISM \(=2\)
 IF (IV.EQ. 1.AND.I.GT.IWING) ISM=1
 \({ }_{J=2}^{I F}\) FOR LEFT WND WG EFFECT
 \(=2\) R \(\quad=1\) ISM EFFECT
 \(00,8 \mathrm{~J}=9\). ISM
 \(W(J)=0\).
 \(V(J)=0\).
 DO \(8 \quad \mathrm{~K}=1\). NC
 DO \(8 K K=1\), LG
 \(\mathrm{Y} C=Y * C O N(J)\)
 QX1=XTG(I) +DIST2*(1.-CTG(K))
 \(Q \times 2=X T G(I+1)+D I S T) *(1-C T G(K))\)
 IF (RL.GT.0.01) PR=-RL*0.5* \((Q \times 1+Q \times 2) / H A L F B\)
 IF (RL.GT:O.01) GO TO 6
 \(\mathrm{X} 1=\mathrm{Q} \times 1-\mathrm{x}\)
 \(\times 2=2 \times 2-x\)
 \(\times 12=Q \times 2-Q \times\)
 IF (ABS (DCC-DC(I)).GT.0.001) GO TO 1
 IF (J.EQ.1.AND.KK.EQ.1) GO TO 2
 \(P S=D S(I)\)
 \(P C=O C(I)\)
 GO TO
 \(P S=0\).
\(P C=1\).
 \(\mathrm{PC}=1\)
CONTINUE
 CONTINUE
\(Y 12=Y T G(I+1)-Y T G(I)\)
 Z12 \(=2 T G(1+1)-Z T G(I)+Y 12 * P S\)
 Y12=Y12*PC
 \(Y 1=Y A A+(Y T G(1)-Y A) * P C-Y C\)
 \(Y Z=Y A A+(Y T G(I+1)-Y A)+P C-Y C\)
 \(X Y K=X 1 \star Y 12-Y 1 \star X 12\)
 IF (KK.EQ.1) GO TO 4
 \(I F=(K K . E Q=1)\) GO TO
\(Z C=-2 *(Z+H E I G H T)+Z\)
 GE=-1
 FCON=i.
 GO TO 5
 Z
\(\mathrm{C}=\mathrm{Z}\)
Z
 GE=1.
 FCON=0.
 \(Z 1=Z T G(I)-Z C+Z A+(Y T G(I)-Y A) \star P S\)
```

    Z2=ZTG(I+1)-ZC+2A+(YTG(I+1)-YA)*PS
    XZJ=x1*212-21*X1?
    UCOM=-21*Y12* (-ATT)*FCON
    YZI=Y1*212-21*Y12
    ```

```

    RB1=SQRT(X1*X1+B2* *1*Y1+32*21* *21)
    ```

```

    1RB1
    GB1=(1--X1/RB1)/(Y1*Y1 +21*21)
    GBZ=(1-xZ/RBZ)/(Y2*YZ+Z2*zZ2)
    FI=UR* (UCOM+XYK)*GE/ALB1
    FZ=(-Y2*GB2+Y1*GB1)*GE
    F3=-xZJ*UB/ALB1*CON(J)
    F4=(22*GB2-21*GB1)*CON(J)
    P1=-(F3+F4)*STG(K)*GMAX(I)*DIST/FN
    P2=-(F1+F2)*STG(K)*GMAX(I)*DIST/FN
    WRITE (03) P1,P2
    WRITE (OS
    READ (03) P1.P2
    V(J)=V(J)+P1*PR
    W(J)=W(J)+P2*PR
    IF (RL.GT.0.01) GO TO 12
    F(IWING.NE:O.AND.I.EQ.IWING) GO TO
IF (YTG(I+1).LT.YK(IPN)) GO TO 12
ZA=ZA+(YK(IPN)-YA)*DS(I)
YAA=YAA+(YK(IPN)-YA)*DC(I)
YA=YK(IPN)
IF (IWING.NE.O.AND. I.EQ.IWING) GO TO 10
GO TO 11
IF (IWGLT,EQ.1) GO TO 11
ZA=0.
YA=0.
YA= =0.
IF (IWGLT,NE:2),GO TO 11
ZA=YK(NC-2)*DS'(1)
ZA=YK(NC-2)*DS(1)
YAA=YK (NC-2)
11 IPN=IPN+1
CONTINUE
WW=WW+(W(1)-W(2))/8.
VV=VV+(V(1)-V(2))/8.
CONTINUE
WN=WW*DCC-VV*DSS
RETURN
END
(
$R B 2=S Q R T(X 2 \star X 2+B 2 \star Y 2 \star Y 2+32 * 22 \star Z 2)$
(X2*X12+B2*Y2*Y12+B2*Z2*Z12)/RB2-(X1*X12+B2*Y1*Y12+B2*21*21く)/
$G B 2=(1-x 2 / R B 2) /(Y Z * Y Z+2 Z \star Z 2)$
$F \cdot 1=U R *(U C O M+X Y K) * G E / A L B 1$
$F 3=-x Z j *$ UB/ALB1*CON(J)
$F 4=(22 \star G B 2-29 * G B 1) * C O N(J)$
$P=-(F 3+F 4) * S T G(K) * G M A X(1) * D I S T / F N$
WRITE (03) P1,P2
READ (03)
$W(J)=W(J)+P 2 \star P R$
IF (IWING.NE O,AND.I.EQ.IWING) GO TO 9
$A=Y A+(Y K(I P N)-Y A) * D S(I)$
12
$Y A A=Y A A+(Y K(I P N)-Y A) * D C(I)$
$Y A=Y K$ (IPN)
IF (IWING NE O AND. I.EQ.IWING) GO TO
10
(IWGLT.EQ.1) GO TO 1
11

```
```

                            *
    ```
58 \(\begin{array}{ll}M & 59 \\ M & 60\end{array}\) M 6

SUBROUTINE GACKWH (X,Y,Z/LPANEL,G/LPAN1,NW,GAMMA,VX,LAT,CD,SD,YK, 1DC, DS, VT, IWING, ZB,YG,YBB,NCS, IWGLT,NC)
DIMENSION NW(1), GAMMA(1), U(2), YK(1), DC(1), DS(1)

\(1 \times T E(1 C 0), P S I(30)\) © \((H(100), X V(200), Y V(200), S N(10,3), X V(200,2), Y N(\mathbb{C O U}\)
2,2), \(2 N(200,2), W I D T H(7), Y C O N(51), S W E E P(100), H A L F B, S J(31,7)\)
\(\mathrm{B} 1=\mathrm{B}\)
12
\(I Z=1\)
IF F =1
I \(S N=1\)
IPN=1
I W = 1
\(C O S D=D C(1)\)
SIND=DS(1)
\(\begin{array}{ll}Z A & =0 .\end{array}\)
\(Y A=C\).
YAA \(=0\)
\(M M=N W(1)\)
\(N N=N W(1)\)
\(v x=0\).
\(V T=0\)
DO \(6 \mathrm{~J}=1\), LPANEL
\(M I=J-I F F+1\)
\(F N=N N\)

\(x 1=x N(J, 1)-x\)
\(\times 2=x N(J, 2)-X\)
\(\times 12=X N(J, 2)-X N(J, 1)\)
Y1 \(2=Y N(J, 2)-Y N(J, 1)\)
Z12 \(=2 N(J, 2)-Z N(J, 1)+Y 12 * S I N D\)
Y12=Y12*COSD
\(Z 1=Z N(J, 1)-(Z+Z B+(Y-Y B) * S D)+Z A+(Y N(J, 1)-Y A) \star S I N D\)
\(Z 2=Z N(J, Z)-(Z+Z E+(Y-Y B) \star S D)+Z A+(Y V(J, Z)-Y A) * S I N D\)
\(\times 2 J=X 1 * 212-21 * \times 12\)
DO 1 II \(\quad\) I \(=1,2\)
\(F C P=1\)

\(Y 1=Y A A+(Y N(J, 1)-Y A) * C O S D-Y C\)
\(Y Z=Y A A+(Y N(J, 2)-Y A) * C O S D-Y C\)
\(X Y K=X 1 * Y 12-Y 1 * X 12\)
YZI=Y1*Z12-Z1*Y1
ALB \(1=X Y K * X Y K+X Z J * X Z J+B 1 * Y Z I * Y Z I\)
R1B1 \(=\) SQRT \((X 1 * X 1+B 1 * Y 1 * Y 1+B 1 * Z 1 * Z 1)\)
\(R 2 B 1=S Q R T(X 2 * X 2+B 1 * Y 2 * Y 2+B 1 * Z 2 * Z 2)\)
UUB1=(X2*X12+B1*Y2*Y12+B1*Z2*212)/R2B1-(X1*X12+B1*Y1*Y12+B1*Z1*212
1)/R1B1
\(\mathrm{G1}=(1 .-X 1 / R 1 \mathrm{B1}) /(\mathrm{Y} 1 * Y 1+Z 1 * Z 1)\)
\(G 2=(1-X 2 / R 2 B 1) /(Y Z * Y Z+Z 2 * Z 2)\)
\(\mathrm{F} 1=\mathrm{UUB} 1 * X Y K / A L B\)
\(F 2=-Y 2 * G 2+Y 1 * G 1\)
\(F 4=-\times 2 J * U U B 1 / A L B 1\)
\(F 5=22 * G 2-21 * G 1\)
\(F 12=-(F 1+F 2)\)
F45 \(=\mathrm{F} 4+\mathrm{F} 5\)
```

    IF (LAT -EQ. O) F45=F45*FCP
    IF (LAT NE:O) F12=F12*FCP
    FF (LAT NEALBS) F3=F3*FCP
    ```

```

    U(II)=F3*CH(IZ)*SN(MI*ISN)*GAMMA(JJ)/(8**FN)
    VT=VT+(F
    X=U(1)+U(2)+VX
    IF (J.LT.MM) GO TO b
    IZ=IZ+
    IW=IW+1
    IFF=MM+1
    MM =MM +NN
    IF (IWING.NE O (NCS+1) AND. IWO TO EQQ. (IWING+1)) GO TO 2
    ```

```

2 CONTINUE
ZA= ZA+(YK(IPN)-YA)*SIND
YAA=YAA+(YK (IPN)-YA)*COSD
YA=YK(IPN)
IF (IWING .NE. O.AND.IW,EQ. (IWING+1)) GO TO 3
IF TOWING.NE. O.AND. IW.EQ. (IWING+1)) GO TO S
GO TO SWG, EQ. 1) GO TO 5
2A =0.
Y }A=0
Y }A=0
IF (IW,EQ. (NCS+1)) GO TO 5
IF (IWGLT.NE. 2) GO TO 5
ZA=YK(NC-2)*DS(1)
YAA =YK(NC-7)*DC(1)
YA=YK (NC-2)
CONTINUE
IPN=IPN+1
IF (J.EQ.LPAN1.OR.J.EQ. LPANEL) IPN=1
COSD=DC(IPN)
SIND=DS(IPN)
IF (J.EQ. LPANI OR.J.EQ. LPANEL) IW=1
RETURN
END

```

SUBROUTINE PANEL (XXL,YL,XXT, CPCWL,CPSWL, NSW, IPANEL,LPANEL,SWH,LK,
1 2sen
IMENSION XXL (1), YL(1), XXT(1), CPCWL(1), CPSWL(1)
DIMENSION SWP \((10,15)\)
COMMON /SCHEME/ C(2), X \((10,41), Y(10,41), S L O P E(15), X L(2,15), X T T(41)\),
1 XLL (41)
 \(1 \times \operatorname{XE}(100), \operatorname{PSI}(30), \mathrm{CH}(100), X V(250), Y V(200), \operatorname{SN}(10,3), X V(200,2), Y N(\angle U U\)
\(2,2), 7 N(200,2), W I D T H(7), Y C O N(51), S W E E P(100), H A L F E, S J(31,7)\)

115).01ST
\(\mathrm{PI}=3.14159265\)
NSW \(1=\mathrm{NSW}-1\)
\(N R=B 2\)
\(0011=1,2\)
\(\mathrm{C}(\mathrm{I})=\mathrm{xXT}(\mathrm{I})-\mathrm{xXL}(\mathrm{I})\)
DO \(1=1, N C W\)

SPAN=2
\(\mathrm{DO}^{2} \mathrm{J=1}\), NCW
PSI (J) \(=0.5 \star(1,-\operatorname{COS}(F L O A T(J) * P I / F L O A T(N C W)))\)
SLOPE (J) \(=(X L(2, J)-X L(1, J)) / S P A N\)
2
SWP \(=(X X T(2)-X X T(1)) / S P A N\)
DO \(5 K=1\) NSN
\(Y K=C P S W L(K) * S P A N / 100\).
IF (NW(2), EQ:O) GO TO 3
IF (L:EQ.1) GO TO 4
\(K K=N R+K\)
\(Y T G(K K)=Y L(1)+Y K\)
\(X T G(K K)=X X T(1)+S P N *(Y T G(K K)-Y L(1))\)
\(Z T G(K K)=Z S\)
CONTINUE
DO \(5, J=1\) NCW
\(Y(J, K)=Y K+Y L(1)\)
\(X(J, K)=X L(1, J)+S L O P E(J) *(Y(J, K)-Y L(1))\)
CONTINUE
XLL (1) \(=\times \times \operatorname{XL}(1)\)
\(X T T(1)=X X T(1)\)
\(006 \quad 1=2\) NSW
\(X L L(I)=X L L(I-1)+(X X L(2)-X X L(1)) *(Y(1, I)-Y(1, I-1)) / S \supset A N\)
XTT \((I)=X T Y(I-1)+(X X T(2)-X X T(1)) *(Y(1, I)-Y(1, I-1)) / S \supset A N\)
DO \(8 \quad K=1\) NSW1
\(K K=N C S+K\)
\(Y L E(K K)=Y C O N(K) * S P A N+Y L(1)\)
\(X L E(K K)=X L L(K)+(X L L(K+1)-X L L(K)) *(Y L E(K K)-Y(1, K)) /(Y(1-K+1)-Y(1-K)\)
1)

XTE \((K K)=X T T(K)+(X Y T(K+1)-X T T(K)) \star(Y L E(K K)-Y(1, K)) /(Y(1, K+1)-Y(1, K)\) 1)
```

YN(NPANEL,I)=Y(J,KI1)
ZN(NPANELII)=ZS
mo
7 CONTINUELII)=ZS
YCP(NPANEL)}=\hat{YLEE(KK)
ZCP(NPANEL)=ZS
XV(NPANEL)=XLE (KK) +CPCWL(J)*CH(KK)/100.
YV(NPANEL)=YLE (KK)
YV (NPANEL
LPANEL=NPANEL
LPANEL
RETURN
END
0
062
ZCP(NPANEL) =2S (KK) +CPCWL(J) *CH(KK)/100
0
END ( 0

```
```

    SUBROUTINE DRAG (CLT,YBREAK,VC,TFLP,NAL)
    DIMENSION ALPHI(50), YBREAK(1), TFLP(1), XK(50), YK(50)
    COMMON/GEOM/ HALFSWOXCP(200),YCP(200),ZCP(200),XLE(100),YLE(10U)
    {XTE(100),PSI(30),CH(100),XV(200),YV(200),SN(10,3),XV(200,2),YN(2UO
    2.2),ZN(200,2),WIDTH(7),YCON(S1).SWEEP(100)-HALFB,SJ(31,7)
        COMMON IAEROI AM&B,CL(50),CT(50),CD(50),CM(50)
        COMMON /CONST/NCS.NCWOMG(7),MJW1(2.5),MJW2(2.5),NJN(5),NFP,NW(2)
    M=41
    PI=3-14159265
    N=(M+1)/2-1
    MM1 =M-1
    FM=M
    1 I=1,NS
    F=I
    J=M-1
    XK(I)=SIN(FI*PI/FM)
    XK(J)=XK(I)
    YK(1)=-\operatorname{COS(FI*PI/FM)}
    YK(J)=-YK(I)
    DO }2,I=1,NC
    CM(I)=SQRT(\)-(YLE(I)/HALFB)**2)
    IC=1
    BREAK=YBREAK(9)
    MST=1
    MEND=M1(1)-1
    DO 8 I=1,NS
    YCON(I)=0.
    CD(I)=0.
    II=NS+I
    BB=YK(II)*HALFB
    IF (BB LE. BREAK) GO TO 3
    NK=M1(IC)-1
    IC=IC+1
    NQ=M1(IC)-1
    BREAK=YBREAK(IC)
    MST=MST+NK
    MEND=MEND+NG
CONTINUE
DO }77\mathrm{ J=MST MEND
IF (NW(2) EQ, 0) GO TO 4
J1=J+NCS
CHORD=CH(J)+CH(J1)
GO TO 5
CHORD=CH(J)
CONTINUE
A=1.
DO 6 K=MST,MEND

```

```

A=A*(BB-
CD(I)=CD(I)+A*CL(J)*CM(J)
YCON(I)=YCON(I) +A*CHORD
CD(I)=CD(I)/SQRT(1.-YK(II)**2)
CONTINUE
DO 14 I=1,NS
N=NI+I)=0.

```
```

        00 13 J=1,MM
        IF (J EQ&IN) GO TO 9
        INDEX=IABS(JIIN)
        FACTOR=?**((-1.)**INDEX-1.)*XK(J)/(FM*(YK(J)-YK(IN))**2)
        GO TO
    FACTOR=FM/XK(J)
IF (J (J-GT.NS) GO TO 11
JJ=M-J-NS
GO TO
ALPHI(I)=ALOHI(I)+CD(JJ)*YCON(JJ)*FACTOR
CONTINUE
ALPHI(I)=ALPHI(I)/(16.*HALFB)
14 CONTINUE
CDN=0
CDI =0.
I=1,NS
CDI=CDI+CD(I)*YCON(I)*ALPHI(I)*XK(IN)
CDI=CDI+CD(I)*YCON(I)*ALPHI
CDL2=CDI/(CLT*CLT)
WRITE (G, 16) CDI
WRITE (6, 17) CDL2
RETURN
FORMAT (/2X.23HFAR-FIELD INDUCED DRAG=,F10.5)
FORMAT (I2X,33HFAR-FIELD INDUCED DRAG PARAMETER=F1J.5)
END

```
```

    SURROUTINE VMSEQN (NC1,K,AA,A,CA)
    DIMENSION AA(1). CA(1). A(1)
    NC=K*NC1
    NC=K*NC
    SUM1=0
    K1=K
    JJ=1
    DOM 1 J=1.K1
    SUM1=SUM1+AA(J)*A(JJ)
    JJ=JJ +NC1+1
SUM1=SUM1+AA(K)
DO 3 I=1,NC
SUM2=0.
J=1+1
DO 2 J=1.K1
SUM2=SUM2+AA(J)*A(JJ)
jJ=JJ+NCI+1
KK=k+1
SUM2=SUM2+AA(KK)
CA(I)=-SUM2/SUM
CA(I
=0
KNC=(K-1)*NC1
DO 6 I=1.NC
IF (IGGT,NCNC) GO TO 5
IF (I,EQ.MM) GO TO 7
KK=KK+1
IL=I+L
A(I)=C A(KK)*BASE+A(IL
GO TO 6
II=I-KNC
A(I)=C4(II)
CONTINUE
GO TO 8
II=MM+M-1
KK=0
L=L+
M=L+1
GO TO 4
CONTINUE
RETURN
RETU

```
00
```

        SUBROUTINE GAMAX (AW,CA,LPAN1,LPANEL,GAMMA,NC,BREAK,SWP,CHURUT,IWI
        1NG,NWING,HALFBH,YCN,CTIP,CTX,IWGLT,IPOS,KZ)
    DIMENSION AW(1), CA(1),GAMMA(1), BREAK(1)
    DIMENSION SWP(10.15), CTIP(1)
    DIMENSION GW(10,2;, CHORDT(1), YCN(1)
    DIMENSION A(15),F(15), THETA(15)
    DIMENSION A(15), F(15), THETA(15)
    COMMON,GEOM/ HALFSW,XCP(200),YCP(200),ZCP(200),XLE(100),YLE(1UU), (1)
    2,2),ZN(200.2).WIDTH(7).YCON(51),SWEEP(100),HALFB,SJ(31,7)
COMMON /AERO/ AM,B,CL(50),CT(50),CD(50),CM(50)
COMMON /CONST/ NCS,NCW,M1(7),MJW1(2,5),MJWZ(2,5),NJN(5),NFP,NW(2)
PI=3.14159265
IPS1=IFOS/10
IPS 2=I PCS -IPS 1*10
NK=0
MK=LPAN1
DO 8 I=1,NCS
NA=1
SUMI=0.
NWW=NW (1)
ISN=1
1SN=N
FN=NW(1)
N1=NWW+
DO 2 J=1.NWW
KK=NK+J
IF (NA,EQ, 2) KK=MK+J
FJ=J
THETA(J)=(2**FJ-1.)*PI/(2**FN)
F(J)=GAMMA(KK) *SN(J.ISN)
CONTINUE
THETA(NT)=PI
THETA NT NO=NI
A(J) =0.
FJ=J
DO N K=1.NWW
3.A(J)=A(J)+F(K)*\operatorname{cos((FJ-1.)*THETA(K))}
IF (J EQ, 1) A(J)=A(J)/FN
IF (J,NE. 1) A(J)=A(J)*2\&/FN
CONTINUE
DO 6 K=1,N1
KK=NK+K
IF (NA .EQ. 2) KK=MK+K
SUM=A(T):THETA(K)
DO 5 j=1.NWW
FJ=J
SUM=SUM+A(J+1)*SIN(FJ*THETA(K))/FJ
IZ=1
IF (NA EQ, 2) 12=I+NCS
SUM =-0.5*CH(IZ)*SUM+SUMI
IF (NA EQ. 1 AND.K EQ. NY) GO TO 6
AW (KK)=SUM
CONTINUE
IF (NA ,EQ\& 2) GO TO NW(1))
NWW=NW(2)
NA=NA+1
ISN=ISN+1

```
```

    SUMI=SUM
    GONTINUE
    CONTINUE
    NK=NK+NW(1)
    NK1=0
    NK 2 =LPAN I
    DO 38,I=1,NC
    M=M1(I)
    FM=M
    MM=M-1 
    ```

```

    CONTINUE
    IW=1
    IF
    IF (IF GI NWING) IW=2
    G(J-IW)=0
    CONTINUE
    IK=0
    IS=0
    HAB=HALFB
    AA=-1
    BB=1
    BR=BREAK (I)
    IF (J GT.NW(1)) GO TO 15
    NK=NK
    LK=0
    IR1=I
    JJ=J
    MK=NW(1)
    IF
    IF (IPPS1 EEQ. 1)
    ```

```

11 IF (IPSZ .EQ. 1) GO TO 14
IF (IWGLT ,EQ, 2) HAB=WIDTH(I)
IF (IWGLT EQ: 2) BR=0.
GO TO
HAB=HALFB
HC=HALFBH-HALFB
AA=HALFB/HC
BB=HALFBH/HC
HAB=HC
IK=1
FT=2
FI=2*
NK=NK2
MK=NW(2)

```
```

LK=NW(1)
=I+NC
JJ=J-NW(1) NWING) GO TO 16
IF (IPSGI-EQWING) GO I) IS=1

```

```

13
IF (IPS1 GEQ. 1) G0 T0 13
IF (IPS
IF (IPSZ
IF (J.EQ. 1.OR.J.EQ. (NW(1)+1)) GO TO 18
GOTO 2
CONTINUE
DO 1
YCON(JP)=\operatorname{COS(FJ*PI/FM)}
Y=0.5*WIDTH(I)*(1.-YCON(JP))+BR
PSI (JP)=SQRT((BB-Y/HAB)* (Y/HAB-AA))*FT
CONTINUE
CONTNK+JELK
L2=-1+MK
L3=L2+MK
SP=SWP(JJ,IR1)
CS=COS(SP)
TAN=SIN(SP)/CS

```

```

DO 22 LQ=1.MM
LP=L1+(LQ-1)*MK
AA=1
DO \ \sum1 LS = 1,MM
LN=Li+(LS-1)*MK
IF (LS FEQ:(LQ) GOTO 21
AA=AA* (BREAK (I)-YCP(LN))/(YCP(LP)-YCP(LN))
CONTINUE
SM=SM+AA*AW(LP)*PSI(LQ)
GAMAO=SM
GAMMO=SM
GO TO
CONTINUE

```

```

DO 26 LQ=1,MM
LP=L1+(LQ-1)*MK
LP=L1+(LQ-1)*MK
AA=1
DO 25 LS=1*MMM
IN =LI+SSEQ)*MK GO TO 25
IF =AA\& (BREAK (IQ+Y)-YCP(LN))/(YCP(LP)-YCP(LN))
CONTINUE
SM=SM+AA*AW(LP)*PSI(LQ)
GAMAN=SM
GAM AN=SM
GO TO 28
GAMAN=O.

```
26
```

R 1 172
R 17%
R R 1774
R 175
R 1776
R 177
R 177
178
179
R 180
181
R182
R 183

```
```

        LL=NK+(K-1)*MK+J-LK
    ```
```

        LL=NK+(K-1)*MK+J-LK
        CA(LL)=0
        CA(LL)=0
        DO 30 KK=1,MM
        DO 30 KK=1,MM
        LI=NK+(KK-1)*MK +J-LK
        LI=NK+(KK-1)*MK +J-LK
        IF (KK EQ. K) GO TO 29
        IF (KK EQ. K) GO TO 29
        CA(LL)=CA(LL)+2.*(-1.)** (K+KK)* AW(LI)*PSI(KK)/(WIDTH(I)*(YCON(K
        CA(LL)=CA(LL)+2.*(-1.)** (K+KK)* AW(LI)*PSI(KK)/(WIDTH(I)*(YCON(K
        1K)-Y(ON(K)))
        1K)-Y(ON(K)))
        GO TO 30
        GO TO 30
    29 CA(LL)=CA(LL)+ AW(LL)*PSI(K)*YCON(K)/(WIDTH(I)*SJ(K,I)*SJ(K,I))
29 CA(LL)=CA(LL)+ AW(LL)*PSI(K)*YCON(K)/(WIDTH(I)*SJ(K,I)*SJ(K,I))
30 CONTINUE
30 CONTINUE
IF (IK,EQ, O) FK=YCP(LL)/(HAB*HAB)
IF (IK,EQ, O) FK=YCP(LL)/(HAB*HAB)
IF (IK EQ I) FKE-(1, -2 *(YCP(LLL)-HALFB)/HAB)/(J.5*HAB)
IF (IK EQ I) FKE-(1, -2 *(YCP(LLL)-HALFB)/HAB)/(J.5*HAB)
CA(LL)=CA(LL)+GAMAO*(-i.)**K/(1,YCON(K))/WIDTH(I)-GAMAN*(-1.)**(M
CA(LL)=CA(LL)+GAMAO*(-i.)**K/(1,YCON(K))/WIDTH(I)-GAMAN*(-1.)**(M
I+K)//(1-YCON(K)S)/WIDTH(I)+AW(LLS*FK/PSI(K)
I+K)//(1-YCON(K)S)/WIDTH(I)+AW(LLS*FK/PSI(K)
CA(LL) =CA(LL)PPSI(K)
CA(LL) =CA(LL)PPSI(K)
IF (IWING.NE, ONAND. IN EQ. NWING) GO TO
IF (IWING.NE, ONAND. IN EQ. NWING) GO TO
IF OI EOQ
IF OI EOQ
31 CONTINUE

```
```

31 CONTINUE

```
```






```
```

32 G(J,IW)=G(JGIW)+AW(LL)*PSI(K)*(-1.)**(K+M)/(1.+YCON(K))

```
```

32 G(J,IW)=G(JGIW)+AW(LL)*PSI(K)*(-1.)**(K+M)/(1.+YCON(K))
IF (J EG NW(I)S NKI=LL
IF (J EG NW(I)S NKI=LL
If (IWING.NE.O.AND.I.EQ.NWING) GO TO 33
If (IWING.NE.O.AND.I.EQ.NWING) GO TO 33
GONTO 37
GONTO 37
IF (CHORDT(IPR) LE: 0.001) GO TO 37
IF (CHORDT(IPR) LE: 0.001) GO TO 37
G(J-IW)=2,IWIDTH(I)*G(J,IW) 4O.5*(-1,)**M*GAMAO/WIOTH(I)
G(J-IW)=2,IWIDTH(I)*G(J,IW) 4O.5*(-1,)**M*GAMAO/WIOTH(I)
IF (IK EQ. D)G(J.IW)=G(J.IW) SQRT(HAB)/2.828427124
IF (IK EQ. D)G(J.IW)=G(J.IW) SQRT(HAB)/2.828427124
IF (IK EQ. I) G(J.IW)=G(J.IW)\#SQRT(HAB)/4.
IF (IK EQ. I) G(J.IW)=G(J.IW)\#SQRT(HAB)/4.
(IKEEQ; 1) G(J IW =G (
(IKEEQ; 1) G(J IW =G (
IF (IW,EQ.2S}CM(J)=G(J.IW
IF (IW,EQ.2S}CM(J)=G(J.IW
IF (IWING.NE,O) GO TO 3S
IF (IWING.NE,O) GO TO 3S
IF (JW=GNG.NE:O

```
```

        IF (JW=GNG.NE:O
    ```
```






```
```

36 GOTO

```
```

36 GOTO
36 CL(J)=O.
36 CL(J)=O.
NK2=1L
NK2=1L
38 CONTINUE
38 CONTINUE
CONTINUE (KZ.EQ.1) RETURN
CONTINUE (KZ.EQ.1) RETURN
IF <K2.
IF <K2.
CTP=0.0
CTP=0.0
CTX =0,
CTX =0,
SUMM= O. N, W
SUMM= O. N, W
CTIP(K)=0.
CTIP(K)=0.
IPZ=1

```
```

    IPZ=1
    ```
```




```
```

    IF
    ```
```

    IF
    SUM=0
    SUM=0
    FN=NW(1)
    FN=NW(1)
    CHD=CHORDT(IPZ)
    CHD=CHORDT(IPZ)
    00 41 I=1.NCW
    00 41 I=1.NCW
    FCR=1.
    ```
 FCR=1.
```

34

```
34
```






```
*
```

* 

R

```



```

1}18
R}18
R R 186
R 1887
\square
188
R 190
R 192
R 19%
194
196
CL(N)=0
CL(N)=0
DO 42 k=1.IW
DO 42 k=1.IW
8 198
R 199%
R}20
FCR=1.

```
FCR=1.
```



```
172
196
P }19
```

2
3
4
6
8
8

```
 IF (G(I,K).LT.O.) FCR=-1.
 J=I
 X1=YCN(IPZ)
 IF (K EQ. 2) GO TO 3?
```


CONTINUE
IF (I LE. NW(1)) GO TO 40
$15 N=2$
$\mathrm{N}=\mathrm{N}=\mathrm{N}$ (2)
$X 1=Y C N(I P Z+1)$
$x$
$C H D=C H O Q D T(I P Z+1)$
$F J=J$
XM = x1 + 0.5*CHD*(1- - COS((2**FJ - 1.)*PI/(2.*FN)))
SUM=SUM+CHD*G(I*K)*G(I,K)*SN(J.ISN)*FCR/FN
SUMM=SUMMM+CHD*XM*G(I*K)*G(I\&K)*SN(J*ISN)*FCR/FN
CONTINUE
CTX=SUM+CTX
CTIPP(K)=SUM*PI*PI/(2**HALFSW)
CTP=CTP+CTIP(K)
CONTINUE
CONTINUE
IF (ABS(CTX).LE.0.00001) GO TO 43
IF (CHORDTYY).GT.O.OO1,OR. (HORDT(3).GT. O.001) CTX=SUMM/CTX
CONTINUE
CTX =-CTX
RETURN
END
END

```
 SUBROUTINE SPLINE (N, X, Y, \(B, C, D-L M, N T)\)
DIMENSION S 43\(), H(13), C A(12), X(3,12), Y(3,12)\)
 DIMENSION S (43), H(13), CA(12), X(3,12), Y(3,
 \(D I M E N\)
\(L=L M\)
 DO 9 NN \(=1 . N T\)
 \(\mathrm{I}=1\)
 \(\mathrm{N} \mathrm{I}=\mathrm{N}+1\)
 \(\mathrm{NI}=\mathrm{N}+1\)
\(\mathrm{~N} 1=\mathrm{N}-1\)
 \(N 1=N-1\)
\(H(N I)=0\)
 \(H(N I)=0\)
\(H(1)=x(L, 3)-x(L, 2)\)
 \(H(1)=x(L, 3)-X(L, 2)\)
\(H(2)=-X(L, 3)+X(L, 1)\)
 \(H(2)=-X(L, 3)+X(L, 1)\)
\(H(3)=X(L, 2)-X(L, 1)\)
 DO \(K=4 N\)
 \(H(K)=0\)
 DO \(2, ~ K=1, N\)
 \(S(K)=-H(K+1) / H(1)\)
 \(\mathrm{NJ}=\mathrm{N}-1\)
 \(007 \quad I=2 N\)

 \(9(X(L, I)-X(L-I-9)))\)
 GO TO 4
 \(H(N I)=0\)
 DO \(6 \mathrm{~J}=1 \mathrm{~N}\)
 \(H(J)=3\).
 IF (IJ.EQ. N) GO TO 5

 \(H(I-1)=X(L-I)-X(L-I-1)\)
\(H(I)=2) *(X(L-I+1)-X(L, I-1))\)
 \(H(I)=2 * *(X(L+I+1)-x(L) I\)
\(H(I+1)=x(L+I+1)-X(L, I)\)
 GO TO 6
 \(H(N-2)=x(L, N)-x(L, N-1)\)
 \(H(N-1)=-x(L, N)+X(L, N-2)\)
 \(H(N)=X(L N-1)-x(L, N-2)\)
 CONTINUE
 \(\mathrm{I} I=\mathrm{I}\)
 CALL V
 \(N J=N J-1\)
 CONTINUE
 DO \(\quad \mathrm{I}=1\). Ni
 \(A(L, I)=(S(I+1)-S(I)) /(6 * *(X(L, I+1)-X(L, I)))\)
 \(B(L, I)=S(I) / 2\).
 \(C(L, I)=(Y(L, I+1)-Y(L, I)) /(X(L, I+1)-X(L, I))-(X(L, I+1)-X(L, I)) *(2 . *\)
 S
 \(D(L, I)=Y(L, I)\)
 \(L=L+1\)
 RETURN
 FND
```


[^0]:    $N$

[^1]:    
    38874
    38887
    3887
    3887
    3887
    874
    4
    0.811
    0.8117

[^2]:    $=P(R I G H T)$
    3.49261
    0.23897
    $0-23897$
    0.14835

    3
    7.54341
    0.54316
    0.23855
    0.1453

    12299
    0.05399
    0.62708
    0.62708
    0.23878
    0.13782
    0.11070
    0.11070
    0.04645
    0.70695
    0.24259
    0.12928
    0.04193
    0.77100
    0.24761
    0.1243
    0.09822
    0.03892
    0.81814
    0.25107
    $0=1953$
    0.09272
    0.03500
    0.84975
    0.24944
    0.10967
    0.08108
    0.02668
    0.86269
    0.23871
    0.08719
    0.05263
    0.00685
    0.00685
    0.86146
    0.21735
    0.04043
    -0.01819
    0.85295
    0.19295
    $-0.03940$

[^3]:    ninininininuninininininininininininininimininininininninininininininininin
    

[^4]:    A 11139
    A 9140

