
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



CR- %$1*0
PWA-5719-34

NMA

BROAD SPECIFICATION FUELS COMBUSTION TECHNOLOGY PROGRAM

PHASE I

FINAL REPORT

by

R. P. Lohmann and R. A. Jeroszko

Engineering Division

Pratt 6 Whitney Aircraft Group
United Technologies Corporation

Prepared for

NATIV.X AERONAUTICS AND SPACE ADMINISTRATION

Lewis Resei ech Center
Under

Contract NAS3-22392

(N	 r	 168180	 BEOAO SP :C [FICATIJN iJ 	 N83-30551
! ' ;.l llty+ ^Lc? ;Y nt:O;FA>1, t'4ASL 1	 F  rlil pt'N^^t

(1 1 rat t	 1,i,1 WLitr.ey Al.rcra..t	 ;ro l ii))	 Iv ^^
HC A Itl/MF A01	 B	 UnclaS

c 3/25 28419



UNITED
TECHNOLOGIES
PRATT&WHITNEY
AIRCRAFT

400 Man Street
East Hartford. Connecticut 06108

In reply please refer to:

RPL:JK	 KBA1C (0559N)
Ref. No. PWA-5719-34

July 29 1983

To:	 National Aeronautics and
Lewis Research Center

21000 Brookpark Road
Cleveland, Ohio 44135

Space Administration

Attention:

Subject:

References

L. Schopen

Contracting Officer

Broad Specification Fuels Combustion Technology Program -

Phase I Final Report

(1) NASA Contract NAS3-22392

(2) NASA Lewis Letter 2513, J. S. Fear to R. P. Lohmann,
dated 3 June 1983

Gentlemen:

We submit herewith the Contractor Final Report (CR-168180) for the subject

prograr" in compliance with the reporting requirements of the Reference (1)
contract. NASA approval for final submittal of this report, contingent on

incorporation of the revisions and corrections specified by NASA, was received

via the Reference (2) letter. Additional distribution of this report is being

made in accordance with the distribution list supplied by NASA.

Sincerely yours,

UNITED TECHNOLOGIES CORPORATION
Pratt & Whitney Aircraft Group
EEng nefring	 is 'qn

R. P. Lohmann
Program tanager



1.REPORT NO. 2. GOVERNMENT AGENCY 3.RECIPIENT'S CATALOG NO.
NASA CR-168180

4.TITLE AND suB'r1T1E_
Broad Specification Fuels Technology Program

5. REPORT DATE
11 October 1982

Phase I _-

R. P. Lohmann and R. A. Jeroszko

.

PWA-5719-34

9.PERFORMING ORG. NAME AND ADDRESS 10. WORK UNIT NO.

United Technologies Corporation
Pratt & Whitney Aircraft Group 11. CONTRACT OR GRANT NO.

Commiercial Engineering NAS3-22392

12. SPONSORING AGENCY NAME AND ADDRESS

National Aeronautics and Space Administration

13. TYPE REPT./PERIOD COVERED

Contractor Final Report
21000 Brookpark Road
Cleveland, Ohio	 44135 14. SPONSOR ING

15. SUPPLERENTARY NOTES

16. ABSTRACT
An experimental evaluation was conducted to assess the impact of the use of broad-

ened properties fuels on combustor design concepts. Emphasis was placed on estab-
lishing the viability of design modifications to current combustor concepts and the
use of advanced technology concepts to facilitate operation on Experimental Referee

Broad Specification ( ERBS) fuel while meeting exhaust emissions and performance
specifications and maintaining acceptable durability. Three different combustor
concepts, representative of progressively more aggressive technology levels,

were evaluated. When operated on ERBS rather than Jet A fuel, a single stage com-

bustor typical of that in the most recent versions of the JT9D-7 engine was found
to produce excess carbon monoxide emissions at idle and elevated liner temperatures

at high power levels that were projected to reduced liner life by 13 percent. The
introduction of improved component technology, such as refined fuel injectors and
advanced liner cooling concepts were shown to have the potential of enhancing the
fuel flexibility of the single stage combustor. Both of the advanced combustor con-

cepts, a staged and a variable geometry combustor, were found to be more adaptable

to the use of broadened properties fuels due to the additional flexibility of oper••
ation.	 Idle emissions,	 ignition and smoke output goals were generally attainable
with these concepts and some reduction in NO 	 emissions relative to single stage
combustors was demonstrated. The lean combustion achieved at high power in these
advanced concepts leads to reduced heat load on the liner and was shown in the

variable geometry combustor to offset the increases in liner temperature associated

with a Jet A to ERBS transition.

17. KEY WORDS (SUGGESTED BY AUTHOR(S))
Combustion, Fuels, Combustor Design

18. DISTRIBUTION STATEMENT

19. SECURITY CLASS (THIS REPT)
Unclassified

20.	 a
Unclassified

ror sale oy ine Nazionai iecnnicai intormaTion service, :^pringtieia, VA ZZIbl



FOREWORD

This report presents the results of an experimental evaluation conducted to

assess the potential of combustor design modifications and the use of advanced
technology concepts to facilitate operation on broadened properties fuels. The
program was conducted as Phase I of the Broad Specification Fuels Combustion
Technology P-ogram under Contract NAS3-22392.
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SECTION 1.0

SUMMARY

This report presents the results of Phase I of the Broad Specification Fuels

Combustion Technology program. The objective of the overall program is to

identify and evolve the combustor technology required to acc --nodate the use
of broadened properties fuels in current and future high bypa.s ratio engines

for Conventional Takeoff and Landing (CTOL) aircraft. The specific objective
of the Phase I program was to establish the viability of design modifications

to current combustor concepts and to introduce advanced technology concepts to
facilitate operation on broadened properties fuels while meeti ' le exhaust
emissions and performance specifications and maintaining acceptable durability
characteristics.

The target broadened properties fuel for this program was Experimental Referee

Broad Specification fuel, hereafter referred to by the acro n ym ERBS. This fuel
had a hydrogen content of 12.93 percent as opposed to a nominal level of about
13.7 percent in Jet A. The program goals had been stipulated for a combustor

operating on ERBS fuel and included durability and operational characteristics,
such as stability and ignition, consistent with the reference JT9D-7F engine
combustor when it was operated on Jet A fuel. Further goals included aggressive
levels of control of the combustor exit temperature distribution, section

pressure loss and combustion efficiency as well as compliance with the
proposed 1981 and 1984 Environmental Protection Agency standards for emissions

and smoke output.

The Phase I program was structured around the experimental evaluation of three

combustor concepts; a single stage combustor, a staged Vorbix combustor, and a
variable geometry combustor. The selection of these concepts established the

overall direction of the effort an 	 specifically intended to cover a wide
range of combustor technology.

After the JT9D-1F engine was selected as the reference engine for the program,

the production combustor used in that engine was selected as the initial con-

figuration of the single stage combustor concept. This allowed program results
to be related to in-service engine experience. Subsequent configurations of
the single stage combustor were variations of a more advanced combustor that

is used in the more recent models of the JT90 engine series.

Staged combustors, with two distinct combustion zones serviced by independent

fuel systems, offer opportunities for improved stoichiometry control. A second
generation version of the staged Vorbix combustor is being evolved under the
National Aeronautics and Space Adwinistratio,-VPratt & Whitney Aircraft Energy
Efficient Engine Program and this staged combustor was selected as the second

concept in the Phase I program. Finally, a variable geometry combustor, in
which movable gaspath components are used to shift the airflow distribution

within the combustor to achieve optimum stoichiometry, was selected as the
third and most advanced combustor concept.



To accomplish the objectives of the program, a total of sixteen configurations
of these three basic combustor concepts were tested in rigs that incorporated
a sector of the appropriate full size annular combustor. The tests were
conducted in a facility capable of providing nonvitiated air at pressures,
temperatures and airflow rates consistent with the full takeoff power level of
the engine. The final configuration of each concept was evaluated for combus-
tion stability and ignition capability in an al' itude test facility. The fuel
for the majority of these tests was ERBS but se'. cted critical configurations
were also evaluated with Jet A and blended fuels of lower hydrogen content.

The evaluation of the baseline configurations of the single stage combustor
concept indicated that the advanced combustor was capable of achieving nearly
all of the appropriate program goals while operating on Jet A fuel. Only the
combustor exit temperature pattern factor exceeded the program goal of 0.25
but the observed levels were consistent with experience with this combustor.
When this combustor was operated on EBBS fuel, two major deficiencies were
observed. The increased radiant heat load led to higher liner temperatures and
a projected 13.5 percent loss of liner life. In addition, use of this fuel led
to increases in the carbon monoxide emissions at idle that were sufficient to
exceed the program goal for this constituent.

Subsequent variations to the single stage combustor concept explored different
means for overcoming these deficiencies and enhancing their ability to operate
on broadened properties fuels. Changing the stoichiometry and residence time
history in the combustor by revising airflow distribution produced changes in
emissions, smoke and performance characteristics which were consistent with
experience. Unfortunately, the key factors in a Jet A to ERBS transition --
id1E emissions and liner heat load -- require opposing changes in primary zone
sto-Ichiometry. For this reason, it apppears that changing current design
practice to alter primary zone stoichiometry in single stage combustors is not
an attractive generic approach to accommodating broadened properties fuels.
However, this approach may be of value in accommodating unique combinations of
combustors and fuels.

More fundamental improvements in combustor performance were achieved by
introducing advanced technology design concepts. The use of modified fuel
injectors in the single stage combustor led to significant improvements in
high power performance including a reduction in peak liner temperatures, lower
pattern factor and reduced smoke and NO X output. More advanced liner cooling
concepts also offer the potential for significant improvements in combustor

performance. Advanced liners offset the increased heat load produced by broad
property fuels without requiring increases in liner cooling airflow which
would compromise performance and emissions characteristics.

Evaluation of the advanced Vorbix combustor demonstrated that the operational
flexibility of the staged combustor concept could be advantageous in
accommodating the use of broadened properties fuels. While this concept was
weighed against more stringen' emissions goals based on the proposed
Environmental Protection Agency standards for engines certified after 1934,
the sensitivity of the emissions output to fuel composition was less than
encountered with the single stage concept. The program goal for carbon
monoxide emissions was achieved with both Jet A and ERES fuel. Unburned
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hydrocarbon emissions were low with both fuels but the levels were marginal
relative to the program goal. Although NOx emissions were not reduced enough
to satisfy the proposed standards, output was substantially below the level
which could be achieved with a conventional single stage combustor in the high
pressure ratio Energy Efficient Engine. In fact, the levels attained with the
staged Vorbix combustor were the lowest in the program.

Changes in fuel composition produced several divergent effects on liner metal
temperatures in the staged Vorbix combustor. Some of the data indicate that
the increments in liner temperature associated with broad property fuels are
considerably smaller than the temperature changes encountered in louver cooled
single stage combustors. It is not clear whether these findings should be
attributed to locally leaner combustion achieved with staging or a reduction
in sensitivity to fuel composition due to the internal convective cooling of
the advanced technology liner structure incorporated in this combustor.
However, the remaining data indicate that liner temperatures in the main stage
are extremely sensitive to fuel composition. It appears that significant
variations in the dispersion of fuel toward the inner liner altered the
convective heat loads on these surfaces. The mechanisms causing these
temperature excursions must be identified and desensitized before this
particular type of staged combustor could be considered viable for extensive
Operation with broadened properties fuels.

The synthesis of the characteristics of fully modulated variable geometry
combustors from the evaluation of appropriate fixed geometry configurations
indicates that this concept has considerable potential for accommodating the
use of broadened properties fuels. The ability to enrich the primary
combustion zone by restricting its airloading at low power levels was found to
improve the ignition and stability margins relative to a fixed geometry single
stage combustor. In this operating mode the idle emissions levels were
sufficiently low with ERBS fuel to achieve the program goals of carbon
monoxide and unburned hydrocarbon emissions less than the proposed EPA
standards for engines certified after 1984. Furthermore, by increasing the
primary zone air loading to the maximum possible at high power levels to
reduce the bulk equivalence ratio to about 0.60 at takeoff, the heat load on
the liners was reduced. The associated increments in liner metal temperature
were more than adequate to offset those associated with a Jet A to ERBS
transition. However, the NOx emissions characteristics were substantially
higher than anticipated and were traced to incomplete mixing in the

conventional swirl stabilized primary combustion zone. This result could be
indicative of the need for more complex c wnbustor designs if a greater degree
of mixture homogeneity is required for control of NOx emissions.

At the conclusion of the Phase I program, it was evident that the advanced
technology design approaches and combustor concepts evaluated could be
exploited to enhance combustor performance and durability while operating with
broadened properties fuels. Use of the advanced staged and variable geometry
combustors offer the greatest opportunity but these approaches also require
significant revisions even at the conceptual level to adapt them to engine
operational requirements. These aspects will be addresxed in Phase II of the
program.



SECTION 2.0

TECHNICAL BACKGROUND

2.1 INTRODUCTION

Over the past decade, escalating fuel costs have severely impacted the

economics of both commercial and military aircraft operations. The problem has

been compounded by a reduction in the quantity of high quality petroleum crude
available to produce aviation fuels to current specifications. One method of

1	 alleviating fuel cost and availability concerns is to modify these specifica-
tions to allow the use of lower quality fuels. Another alternative is to

accelerate production of synthetic fuels from shale or coal-derived feed
stocks to reduce our dependence on uncertain foreign sources and stabilize

fuel prices. However, either of these approaches could lend to variations in

the chemical composition and physical properties of the fuel which would have

adverse impacts on the operation and maintainability of aircraft engines.
Intelligent selection of fuels for the aircraft of the future will require

careful cost/benefit analysis which recognizes not only fuel cost and
zvailability t ,jt also the impact of increased engine maintenance costs and the

expense of de.eloping technology to accommodate the new fuels.

As early as 1974, the National Aeronautics and Space Administration (NASA)

recognized this impending situation in the aircraft industry and initiated
programs to evaluate the effects of changes in fuel composition on the

performance, emissions and overall design and operation of gas turbine
combustors. This effort included both in-house investigations and contracted

studies such as the Alternate Fuels Addendums to the Experimental Clean
Combustor Program (References 1 and 2). This initial evaluation indicated that
relaxing the fuel specification to permit higher aromatic contents or lower
hydrogen/carbon ratios in the fuel would have significant impacts on gas
turbine combustion systems.

At the time it seemed most appropriate to coordinate the efforts to evolve

fuel-related combustor technology by concentrating on the implications of a

single fixed broadened properties fuel. The Jet Aircraft Hydrocarbon Fuels

Technology Workshop, convened at NASA-Lewis Research Center in June 1977,

provided the basis for identifying this particular fuel (Reference 3). The
attendees, including representatives of the petroleum industry, engine and

airframe manufacturers, airlines, the military, and NASA, reviewed the
experience to date and arrived at a tentative specification for Experimental

Referee Broad Specificat ion Fuel, hereafter referred to by the acronym ERBS.

Under Contract NAS3-20802 (Reference 4), Pratt & Whitney Aircraft conducted a

design study to assess the impact of the use of ERBS specification fuel on
combustors for current and advanced gas turbine engines for commercial
aircraft. This design study identified specific areas where new technology
must be developed and substantiated to produce combustion systems capable of

operating on ERBS specification fuel without compromising the environmental

acceptability, performance, durability or reliability of the combustor. The
Broad Specification Fuels Combustion Technology Program is directed at this
specific objective.



2.2 ERBS FUEL COMPOSITION

In Table 1 the specification for ERBS fuel as defineu In Reference 3 is com-

pared to the specification for Jet A, the fuel currently used for the majority
of commercial aircraft operations in the United States. Specifications of this

type stipulate only allowable limits on the composition of the fuel. The
method of defining these limits differs, most notably in the means of limiting

the fractions of aromatics and complex aromatics. The Jet A specification
stipulates specific limits on the concentration of these constituents while

the ERGS specification uses the hydrogen content of the fuel as the controll-
ing parameter. Hydrogen content provides a characterization of the hydrocarbon

composition of the fuel: since the aromatic compounds have a high ratio of
carbon to hydrogen atoms, increasing the aromatic content reduces the hydrogen

content. The hydrogen content stipulated in the ERBS specification would
permit the aromatic content to be in the range of 30 to 35 percent. (The

actual ERBS fuel used in this program was procured to a more rigorous
specification than Table 1 to provide control of hydrocarbon composition.

Details on the composition of this fuel are provided in Section 5.1).

Table 1

Comparison of Specifications for Jet A and ERBS Fuel

ASTM
D 1655

Jet A
	

EBBS

233 (-40) max
8 @ 253°K (-4°F)
0.7753 to 0.8299

(BTU/lb)	 42.8 (18,400) min

Aromatic Content - % vol

Hydrogen Content - % wt
Sulphur Mercaptan - % wt
Sulphur Total - % wt

Nitrogen Total - % wt
Naphthalene Content - % vol
Hydrocarbon Compositional

Analysis

Distillation Temperature
	

°K (OF)
Initial Boil Point

10 Percent
50 Percent

90 Percent
Final Boil Point
Residue - % vol

Loss - % vol
Flashpoint - °K (°F)
API Gravity

Freezing Point - °K (°F)
Maximum Viscosity - cs
Specific Gravity
Heat of Combustion - W/kg
Thermal Stability:

JFTOT Breakpoint
Temperature - K° (°F)

Method

20 max

0.003 max
0.3 max

3.0 max

477 (400) max
505 (450) max

561 (550) max
1.5 max

1.5 max
316 (110) min

533 (500) min
Visual Code 3

o P = 12

Report

12.8 +0.2
0.003`
0.3 max

Report
Report

Report

Report

477 (400) max
Report

534 (500) min
Report
Report

Report
316 (110) min
Report

244 (-20) max

12 @ 249°K (-10°F)
Report
Report

511 (460) min

TDR = 13.

AP = 25
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The lower hydrogen content of ERBS fuel is also reflected in the distillation
temperature distribution where the high end of the distillation range occurs

at higher temperature levels. The decrease in hydrogen content also

necessitates an increase in freezing ppoint relative to Jet A -- a factor that
affects both fuel storage and pumpability during ground operations and on long

duration high altitude flights. The proximity of the fuel temperature to the
freezing point has a strong influence on viscosity and deteriorated fuel

atomization could compromise cold engine starting. Consequently, the ERBS
specification also includes a limit on low temperature fuel viscosity. The

differences in the maximum allowable breakpoint temperature imply that the
thermal stability of ERBS fuel will be poorer than that of Jet A.

These changes in the chemica l,, composition and physical properties of the fuel

are expected to have significant impacts on the design and operation of
combustors for aircraft gas turbine engines. These impacts are characteristic
of all reduced hydrogen content broadened property fuels and include:

o	 Increased flame luminosity resulting in higher radiant heat transfer to

the combustor liner which will shorten liner life.

o	 Increased carbon monoxide and unburned hydrocarbon emissions output at low

power levels because of poorer fuel atomization and more complex fuel
chemistry.

o	 Increased smoke production and NOx emissions because of the more complex
fuel chemistry.

o	 More difficult cold starting and altitude relight because of increased
fuel viscosity and in the case of some fuels, reduced volatility. These
factors could also impair combustion stability.

o	 Greater propensity toward carbon deposition on liners, and fuel injector

plugging and streaking because of the reduced thermal stability of the
fuel.

Under the Broad Specification Fuels Combustion Technology Program the

magnitude of these concerns with use of ERBS fuel rather than Jet A are

investigated. The technology required to resolve these problems with minimal
impact on the acceptability of the engine is also identified and demonstrated.

2.3 PROGRAM OBJECTIVES AND STRUCTURE

The overall objective of the Broad Specification Fuels Combustion Technology

Program is to identify, develop and ultimately demonstrate the technology
required to use broadened properties fuels in current and future high bypass

ratio engines for commercial aircraft. Combustor design concepts will be

established which minimize the impact of Experimental Referee Broad
Specification (ERBS) fuel on the emissions, performance, durability and
operating characteristics of these engines. The data accumulated under this

program will provide valuable input to the cost/benefit analysis of broadened

properties fuels.



A three phase program was originally formulated to meet these objectives.
These phases consisted of:

Phase I - Combustor Concept Screening

Phase I, which is the subject of this report, consisted of combustor rig

testing to evaluate various approaches to enhancing the performance,

emissions, durability and operating characteristics of different combustor
concepts operating on broadened properties fuels.

Phase II - Combustor Optimization Tests

This phase which is currently under way consists of additional combustor rig

tests, conducted on the best combustor concepts identified during Phase I, to

identify the optimum combustor system, based on performance, emissions and

durability. The interaction of the combustor with other engine components is
also being addressed.

Phase III - Engine Verification Testing

This phase, which has been deleted from the program would have involved

evaluation of the best combustor concept from the Phase II rig testing in a
complete high bypass ratio turbofan engine. Both transient and steady state

testing would have been conducted to assess the overall acceptability of the
combustor design in an actual engine environment.

The Phase I program was structured around the experimental evaluation of three

combustor concepts; a single stage combustor, a staged Vorbix combustor, and a
variable geometry combustor. The selection of these concepts established the

overall direction of the effort and was specifically intended to cover a wide
range of combustor technology.

After the JT9D-7 was selected as the reference engine for the program, the

single stage combustor currently used in this engine was selected as the first

combustor concept. This selection allowed some of the less complex
technological advances, such as fuel injectors with improved atomization and

enhanced liner cooling approaches, to be evaluated as a means of accommodating
broadened properties fuels. The selection also allowed program results to be
compared to in-service engine experience.

In selecting the two remaining concepts, it was recognized that a substantial

body of combustion technology has evolved over the past decade in programs

aimed at reducing aircraft engine emissions and improving fuel consumption. It
was logical to consider the combustor concepts developed in these programs as

approaches to minimizing the sensitivity of the combustion system to fuel
composition. Of particular interest are the staged combustors developed under

the emissions reduction programs. The principal feature of these burners is
the use of two distinct combustion zones, each s,:rviced by an independent fuel

injection system. By operating the combustor on only one zone at low power

levels and both zones at high power, the combustor may be optimized at two

7



operating conditions, rather than a single condition. Use of a rich mixture

strength in the low power stage produces low carbon monoxide and unburned
hydrocarbon emissions at idle. When the two stages are used in combination, a

low equivalence ratio can be maintained at high power to minimize NOx and
smoke output. This type of stoichiometry control appears useful in

circumventing some of the problems associated with broadened properties fuel.
For example, rich primary zone stoichiometry at low power could offset
potential deterioration in ignition capability while lean combustion at high
power levels could reduce the radiant heat load on the burner liners. For this

reason a staged combustor was selected as the second concept to be evaluated

in the Phase I program. The Vorbix staged combustor concept was developed

under the NASA/Pratt & Whitney Aircraft Experimental Clean Combustor Program
(References 5, 6, and 7). More recently, a second generation or improved

version of this concept was designed and developed under she NASA/Pratt &

Whitney Aircraft Energy Efficient Engine Program (References 8 and 9). This

advanced combustor was selected as the staged combustor concept for the Phase
I program.

More recent studies (References 10 and 11) have indicated that variable

geometry combustors, in which airflow distribution is shifted with operating

condition to achieve optimum stoichiometry at all power levels, offer
significant advantages in meeting performance and emissions requirements. As

in the staged combustor concept, the enhanced control of stoichiometry could
be used to advantage in accommodating broadened properties fuels.

Consequently, the variable geometry combustor was selected as the third and
most advanced combustor concept for the Phase I program.

To accomplish the objectives of the program, these three combustor concepts

were tested in rigs which incorporated a sector of the appropriate full size

annular combustor. The tests were conducted in a facility where nonvitiated
air was provided at pressures, temperatures and airflow rates consistent with

the full takeoff power leve i of the engine.

Since a major objective of the program was to assess the ability of the three

combustors to operate with broadened properties fuels, the initial test of
each combustor concept consisted of a comprehensive evaluation of its

sensitivity to fuel composition. Four different test fuels were used for these

initial tests: Jet A, Experimental Referee Broad Specification (ERBS) fuel and
two additional blended fuels. The latter were produced by blending stock with
a high aromatic content and ERBS to produce fuels with nominal hydrogen

contents of 12.3 and 11.8 percent (compared to 12.8 and 13.7 percent for ERBS
and Jet A, respectively). The Jet A fuel then provided a baseline which

reflected current experience while the blended fuels provided variation in
fuel composition which extended beyond the target ERBS specification.

Following the initial assessment of the sensitivity of each combustor concept

to fuel composition, several different single stage and variable geometry

combustor configurations were tested to evaluate alternate design approaches
to accommodating broadened properties fuels. Variations to the single stage

combustor concept included modified fuel injectors, advanced liner cooling

r
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approaches, and revisions to primary zone stoichiometry/residence time.

Perturbations to the variable geometry combustor concept were aimed primarily

at exploring the mode and extent of airflow schedule variation required. The

tests conducted on the intermediate configurations were generally narrower in
scope than the tests conducted on the original configuration and were
restricted to only ERBS and Jet A fuel.

At the end of the Phase I program, the final, or "best" configuration for each

combustor concept was assembled by incorporating the most effective features

and approaches identified during the preceding rig tests. These final
configurations were then tested to demonstrate the advances in technology

which had been accomplished during Phase I. All four types of fuel were used
in these demonstration tests.

2.4 PROGRAM GOALS

The objective of the Broad Specification Fuel Combustion Technology Program is

to identify and evolve the technology required to operate current and advanced
commercial aircraft engines on broadened properties fuels with minimal impact

on the performance, emissions, duraEility and operating characteristics of the

engines. To provide guidelines for this program, goals were established for
both combustor performance and emissions.

2.4.1 Performance Goals

The following performance goals were established for combustors operating on

Experimental Referee Broad Specification fuel:

o Combustion efficiency of 99 percent, as defined by emissions measurements,
at all operating conditions.

o Combustor section total pressure loss of no more than 6 percent at sea
level takeoff with a preference for the lower section loss of the current

JT9D engine.

o Combustor exit temperature pattern factor of 0.25.

o	 Combustor exit average radial temperature profile consistent with turbine
design requirements.

o	 Liner metal temperatures comparable to those currently obtained with Jet A

fuel to maintain liner life.

o	 Altitude relight and cold starting capability consistent with engine

specifications.

These goals were considered to be long range objectives for the entire program

and were not given equal emphasis in Phase I. In particular, combustor exit

temperature pattern factor and radial profile goals were deemphasized in order
to concentrate Phase I effort on the other performance and emissions goals.

These goals could be addressed during the latter parts of the Phase II program

when effort would be restricted to only one combustor concept.

9



2.4.2 Emissions Goals

The emissions goals for the program are those advanced by the Environmental
Protection Agency for Class T-2 aircraft engines with thrust levels in excess
of 90 kilonewtons ( Reference 12) at the time the program was formulated. Using
the pressure ratio of the JT9D-7F engine cycle, these goals are listed in
Table 2 in terms of the Environmental Protection Agency parameter, which IS
defined by weighting the emissions indices over the landing and takeoff cycle
of Reference 12. Although the Environment Protection Agency did not include a
limitation on NO emissions for engines manufactured prior to January 1,
1984 a goal has ^een established for this parameter to provide for the

possibility that the combustion system developed might also be used in engines
manufactured after that date.

Table 2

Emissions Goals for Combustors in the JT9D-7F Engine

Engines
	

Eng ines
	

Engines
Manufactured
	

Manufactured
	

Certified
after
	

after
	

of ter
January 1, 1981*
	

January 1, 1984
	

January 1, 1984

EPA Parameter
(kg/kN )
Carbon Monoxide
	

36.1
	

36.1
	

25.0
Unburned Hydrocarbon
	

6.7
	

6.7
	

3.3
Oxides of Nitrogen
	

33.0
	

33.0
	

33.0
Maximum SAE Smoke Number
	

19.2
	

19.2
	

19.2

*Compliance date since extended to January 1, 1983

In establishing appropriate goals from these proposed standards it was evident

that combustor concepts or technology evolved from this program would be
incorporated primarily in engines manufactured after January 1, 1984 and would
consequently be subject to the constraint on emissions of oxides of nitrogen.
Further, the advanced technology staged Vorbix and variableggeometry combustor
concepts would require diffuser/ burner cases and fuel supply/control systems
which are substantially different from those currently used in the JT9D-7
engine. As a result, incorporation of either of these combustor concepts would
most likely be restricted to newer engine models that would be certified in
the post 1984 time period when the more stringent carbon monoxide and unburned
hydrocarbon emissions standards would also be applicable.
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SECTION 3.0

REFERENCE ENGINE AND COMBUSTOR

The Pratt & Whitney Aircraft JT9D-7F was selected as the reference engine for

this program. The JT9D-1F is part of a large family of JT9D engines which have

seen extensive service in current ;wide body aircraft and are expected to be
used well into the 21st century. At 50 ;000 pounds of thrust, the JT9D-7F is

considered a representative high technology engine for wide body commercial
aircraft.

This section contains a brief description of the engine and detailed informa-

tion on the mechanical design, performance, and emissions characteristics of
the combustor.

3.1 REFERENCE ENGINE SELECTION

The JT9D-7F has been selected as the reference engine for the Broad

Specification Fuels Combustor Technology Program. The JT9D engine family,

designed and developed by Pratt & Whitney Aircraft, powers a number of wide
body commercial aircraft including the Boeing 747 and the McDonnell Douglas

DC-10-40. More recent JT9D engine models are also used in the Airbus
Industries A-300 and A-310 and the Boeing 767. Since the economic life of
these aircraft exceeds 20 years, the JT9D engine family is expected to

continue in active service in the commercial wide body aircraft well into the

tr„inty-first century.

There are a number of JT9D engine models that incorporate cycle variations
unique to the thrust and mission requirements of the particular aircraft in

which they are used. The models in the JT9D-7 series, which include the -7A,
-7F, -1J, -1R, and -20, are designed to an essentially common gas path. The

combustors in these models are mechanically interchangeable, differing
primarily in liner air schedules used to accommodate different cooling flow

levels. Different thrust ratings are achieved primarily by varying pressure
ratio and turbine inlet temperature in the otherwise common engine core.

There are also a limited number of JT9D engine models at the high end of the

thrust range, including the JT9D-7Q and JT9D-59/70. The design of these models
varies substantially from the basic JT9D-7 series, featuring larger diameter

fans, inc-eased low compressor stages and a high capacity turbine to achieve

higher takeoff thrust ratings. The combustor sections of these engines, while

similar to those of the JT9D-7 series, are not interchangeable primarily
because of differences in turbine elevations.

The pressure ratio and turbine inlet temperature of the JT9D-7F place it in

the middle of the JT9D family of engines, minimizing the degree to which

program results have to be extended to match the operating conditions of other
models. This was a major factor in the selection of the JT9D-7F as the
reference engine.
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3.2 REFERENCE ENGINE DESCRIPTION
CR:111- ^L k
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The JT9D-1F engine is an advanced, dual-spool, axial-flow turbofan with a high
overall compression ratio and a high bypass ratio. The mechanical configura-
tion is shown in Figure 1. The engine consists of five major modules: fan and
low-pressure compressor, high-pressure compressor, combustor, high-pressure
turbine, and low-pressure turbine. The low-pressure spool consists of a
single-stage fan And a three -stage low-pressure compressor driven by a four-
stage low-pressure turbine. The high-pressure spool consists of an eleven-
stage high-pressure compressor driven by a two-stage high-pressure turbine.
The accessory gearbox is driven through a towershaft located between the low
and high-pressure compressors.

FAN

HIGH
PRESSURE
TURBINE LOW PRESSURE

TURBINE
HIGH PRESSURE COMBUSTOR
COMPRESSOR

LOW PRESSURE 1^
COMPRESSOR/Rw_

I

i—
i

ail

Figure 1

a	 i

Cross Section of the JT9D-1 Reference Engine

3.3 REFERENCE COMBUSTOR DESCRIPTION

The mechanical design of the reference JT9D combustor is shown in Figure 2.

Figure 3 is a cutaway of the combustor liner and diffuser case while 17 igure 4

shows additional detail of the construction of the front end of the combustor.
The combustor is an annular design with an overall length of 604 mm (23.18 in)
between the trailing edge of the compressor exit guide vane and the leading
edge of the turbine inlet guide vane. The burning length between the fuel
nozzle face and the turbine inlet guide vane leading edge is 0.45 m (11.1 in).
The diffuser section incorporates an inner ramp and outer trip followed by a

12
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dump section. A burner hood provides a positive pressure feed to the combustor
front end. The hood is indented locally in ten places downstream of each
diffuser case strut. A film-cooled louver construction is used for the
combustor 1 :ners. The liner assembly features inner and outer slipjoints to
facilitate assembly as well as to allow for liner thermal expansion. The fuel
system features direct liquid fuel injection using twenty duplex/pressure
atomizing fuel nozzles. The nozzle portion of the fuel injector is enclosed in
Twenty short-cone swirler modules as shown in Figure 3-4. The cones provide
primary zone flame stabilization. Optional take-off thrust augmentation is
provided by water injection through the fuel nozzle heatshields. Further

details on the geometry and operating characteristics of this combustor are
provided in Section 4.1.1.

FUEL NOZZLE
ASSEMBLY 1201

DIFFUSER STRUT
LEADING EDGE

INNER DIFFUSER RAMP

— - — ENGINE CENTERLINE 	 -

DIFFUSER STRUT
TRAILING EDGE

%	 TONGUE-IN-GROOVE SLIP JOINT

CONE

COMPRESSOR
EXIT

GUIDE VANE
OUTER DIFFUSER

TRIP

IGNITER

AFT OUTER
SLIP JOINT

TURBINE
INLET
GUIDE
VANE

Figure 2	 Cross Section of the JT9D -1 Reference Combustor
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Figure 3	 JT9D-7 Combustor Section
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3.4 REFERENCE COMBUSTOR PERFORMANCE 	 c,& 	 ^^ : li- IFY

Table 3 lists the critical operating parameters for the JT9D-7F combustor at
the four sea level static conditions of the Environmental Protection Agency
landing and takeoff cycle and the maximum cruise aerodynamic design point of
the engine. The idle condition is the minimum set point at which thrust is
6.37 perc ent of takeoff thrust. Other critical design parameters for the
combustor at the sea level takeoff condition are:

Compressor Exit Axial Mach Number 	 0.26
Combustor Reference Velocity - m/sec ( ft/sec)	 25 (82)

	Combustor Section Total Pressure Loss (%)	 5.4

	

Combustor Exit Temperature Pattern Factor 	 0.42

Table 3

JT9D-7F Engine Combustor Operating Parameters

Inlet	 Inlet
Total	 Total	 Combustor	 Combustor

Operating	 Pressure	 Temperature	 Airflow	 Fuel/Air
Condition	 MPa (psis)	 "K ("F	 kg/sec (lb/sec)	 Ratio

Ground Idle	 0.369 (;► 3.6)	 447 (345)	 20.79 (45.75)	 0.0109

(6.37% Thrust)

Approach	 0.896 (129.9)	 582 (588)	 42.14 (92.70)	 0.0156

(30% Thrust)

Climbout	 1.972 (296.0)	 735 (864)	 80.48 (177.05)	 0.0226

(85% Thrust)

Sea Level Takeoff 	 2.257 (327.4)	 767 (921)	 89.18 (196.0)	 0.0248
(100% Thrust)

Max Cruise	 0.946 (137.2)	 700 (800)	 38.93 (85.65)	 0.0231

(10,668W35,000 ft, M - 0.9)

In addition to meeting the pattern factor requirement, the circumferentially

averaged radial profile of the combustor exit temperature distribution must

also be consistent with the design gas temperature distribution of the high
pressure turbine blades. Figure a shows the required radial temperature

profile.

Figure 6 shows the design flight envelope of the JT9 D-7 engine. The engine

must be capable of self starting with the combustor driven only by a

windmillin fan and compressor over a s! ►bstantial fraction of the flight
envelope. ?able 4 lists the combustor operating conditions ai the lettered

points on the upper boundary of the relight envelope as defined from the
windmilling performance characteristics of the JT9D-7 compressor. As shown ,n
the figure, flight testing of the JT911-7 engine demonstrates that ignition has

been accomplished over a wide range of conditions includiny conditions more

s-vere than the required envelope.
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OD
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JT91D Combustor Exit Average Radial Temperature Profile

Table 4

Combustor Inlet Conditions at Altitude Pelight

Point of Figure 5: A b C U

Flight Mach Number U.67 U.74 U.b2 U.92

Altitude - meters 915U 915U 1U,bkw lu,bbb
(feet) (30,000) (3U,000) (35,uuu) (35,000)

Comuustor Inlet Total

Pressure - MPa	 (psia) U.U.1b	 (5.52) U.U41	 (5.9o) U.U3b	 (5.3U) U.U44	 (b.38)

_	 Combustor Inlet Total

Temperature -	 °K (°F) Z5b	 (U) 261	 (11) 25b (5) 27U	 (27)	 1

Engine Airflow kg/sec	 (lb/sec) 3.48 (7.0) 4.15	 (9.14) 4.04	 (u.89) 5.32	 (11.70)

% Fuel	 Flow - k9/hr	 (lb/hr) 289	 (635) 289	 (635) 289 (635) Z69 (635)

*Minimum fuel	 flow of JT9U engine control scheuule
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The JT91) engine specification also requires ground start capability at an
ambient temperature of 219°K (-65°F) or the temperature at which the fuel
viscosity is 12 cintistokes. With Jet A fuel this occurs at an ambient
temperature of about 239°K (-30°F). When the engine is cranked at this
temperature the engine airflow is approximately 6.8 kg/sec (15 .0 lb/sec), the
combustor inlet total pressure is about 0 . 11 MPa (15.85 psia) and the air
temperature rise in the compressor is essentially negligible. The fuel flow
used for cranking start is 362 kg/hr (796 lb/hr),

15,000- DESIGN FLIGHT 50
i ENVELOPE

12,000 IOGNITION 40ACHIEVED IN	 JT9D-7F AIRSTART
FLIGHT TEST	 GUARANTEE C	 DO	 O

w
w 9000 00 0 30 "A B

o
w 0 ''x
F- 0 w
J 6000 ^— — 20 LLUj
Q ^

3000 / 10
STARTER /	 WIND-
ASSIST	 MILLING

0 0
0 0.2	 0.4	 0.6 0.8	 1.0

MACH NUMBER

Figure 6 JT9D-7 Airstart Envelope and Demonstrated Ignition Capability from
Flight Testing

3.5 REFERENCE COMBUSTOR EMISSIONS CHARACTERISTICS

Since the JT91) engine and combustion system were designed before current

standards for gaseous pollutants had been issued, the combustor was not

specifically intended to provide low emissions. However, the combustor does
incorporate smoke reduction features and produces no visible smoke at any
operating condition.
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Exhaust emissions are periodically monitored during JT9D production acceptance
tests. Typical results for the idle, 30 percent, 85 percent, and 100 percent
sea level static thrust power settings are shown in Table 5. These power
settings correspond to the simulated ground idle, approach, climbout, and
takeoff conditions specified by the Environmental Protection Agency (EPA) to
establish aircraft engine emission standards. The data presented in Table 5
represent average emission levels for JT9D-7F production engines incorporating
the current combustor configuration. This combustor has been installed in
production engines shipped since November 1975. The data have been corrected
to standard day temperature and pressure and to an ambient humidity level of
6.3g H20/kg dry air. Jet A fuel was used for the tests. The corresponding
values of the Environmental Protection Agency Parameter (EPAP) are also
presented in Table 5. This parameter combines emission rates at the idle,
approach, climb, and takeoff operating modes, integrated over a specific
landing/takeoff cycle (Reference 12).

Table 5

Emission Characteristics of the JT9D-7F Combustor

Emissions Index gnVkg
Carbon Total Un urne xi es of	 SAE Smoke

Monoxide HXdrocarbons Nitrogen	 Number

Ground Idle 60.0 29.0 3.1

Approach 
(30% Thrust) 2.9 0.5 7.8	 --

Cl mbout
(85% Thrust) 0.4 0.3 34.4	 --

Sea Level Takeoff
(100% Thrust) 0.4 0.3 46.0	 4

Max Cruise (M = 0.9,
10668 m/35,000 ft) 0.8 0.6 24.2	 --

EPA Parameter - gm/kN 	 101
	

48
	

69

Notes:	 Data for oxides of nitrogen presented as nitrogen dioxide equivalent.

Ground idle data is without compressor air bleed at minimum idle set
point and approximately 6.37% of rated takeoff thrust.

Cruise emissions estimated on the basis of data obtained from sea
level operating line.
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SECTION 4.0

COMBUSTOR CONCEPTS AND TEST CONFIGURATIONS

The Phase I program was structured around the experimental evaluation of three
combustor concepts which were selected to encompass a wide range of combustor
technology. These concepts consisted of, in order of increasing complexity and
potentia

o	 A single stage combustor representative of the state of the art in

current engines.

o	 The staged Vorbix combustor developed under recent emissions abatement
programs.

o	 A variable geometry combustor in which the airflow to individual zones

may be modulated to provide optimum stoichiometry.

A description of the baseline configuration of each of these combustor

concepts is provided in this section. The modifications that were incorporated
in subsequent configurations of each combustor are also identified and the

motivation for the revisions is established.

4.1 SINGLE STAGE COMBUSTOR CONCEPT

After the JT9D-7 engine had been selected as the reference engine for the
program, the cont)ustor in this engine became the reference single stage
combustor concept. The initial configuration was identical to the production

combustor used in the JT9D-7F engine and was designated Configuration SS-1.
Six additional single stage combustor configurations, Configurations SS-2

through SS-1, were also evaluated. All of these were based on an alternate

JT9D combustor construction designated the "Advanced Bulkhead" combustor. This
construction evolved from the basic JT9D-7 production combustor and is the
Bill of Material burner in more recent engine models such as the JT9D-7R4.

4.1.1 Configuration SS-1; Production JT9D-1F Combustor

The mechanical arrangement of the JT9D-7 combustor has been discussed in
Section 3.3 and illustrated in Figures 2 through 4. The basic mechanical

configuration shown therein is common to several JT9D-7 engine models.
Components for specific models such as the JT9 D-7F differ primarily in liner
air schrJules to accowk)date different cooling flow levels. Figure 7 shows the

actual test combustor liner for Configuration SS-1. The test rig is
constructed from a sector of an engine diffuser case and the test combustor

liners are a 72 degree sector cut from a full annular production JT9D-1F
combustor liner. The only modification to these liners is the installation of

flanges for attachment to the rig endwalis. This assures accurate reproduction

of engine combustor geometry and airflow schedule.
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Figure 7	 Current Production JT9D-7 Combustor Liner Sector

Figure 8 shows the airflow distribution in Configuration SS-1 as deduced from

pressure measurements in the test rig. The corresponding airflow aperture
sizes in the liners of this and all of the other test combustor configurations

are listed in Appendix A of this report. As shown in the figure, nearly half
of the combustor airflow is used for cooling with a substantial fraction of
the airflow, used on the flame stabilization cones in the front end of the

burner. Primary zone airloading in this combustor is about 35 percent of the

total combus`or airflow. It consists of the air admitteo through the fuel
injector-swirler aperture, the combustion air jets in the first louvers of the

inner and outer liner, and a fraction of the cone cooling air. This loading
produces an equivalence ratio in the primary zone of about unity at takeoff
and 0.5 at idle operating conditions. This stoichiometry is consistent with

the historical observation of low smoke output from the JT9D-1F engine and

would also indicate that substantial reduction in idle carbon monoxide and
unburned hydrocarbon emissions could be achieved by enriching the primary

combustion zone, i.e., by reducing the airloading.

The fuel injector in the MD-7 production combustor is a duplex pressure

atomizing injector with concentric primary anu stconaar, orifices producing
hollow cone spray patterns. Figure 9 shows the flow schedule of the injector.
The fuel supply system includes a pressurizing valve to control the primary/

secondary fuel flow split. At low fuel flow rates all fuel is discharged
through the primary system, but when the pressure drop across the fuel injec-
tor exceeds 1.03 W a (150 psi) the pressurizing valve opens to admit flow to

the secondary system. As fuel supply pressure is increased further the valve
scheduling admits progressively more fuel flow into the secondary system. As
shown in the figure, the fuel flow split between the primary and secondary

system is about 50-50 at the nowinal JT9D-7F idle condition. At higher fuel
flow conditions the fraction of the total fuel passing through the primary

system is substantially less; about 15 percent at cruise and about 6.5 percent
at takeoff.

1
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4.1.2 Configuration SS-2; Advanced Bulkhead Combustor

The advanced bulkhead combustor was originally designed to provide a retrofit

combustor for the JT9D-7 series of engine models that would be capable of

satisfying the proposed Environmental Protection Agency standards for carbon
monoxide, unburned hydrocarbon and smoke emissions from engines manufactured

after January 1, 1981 (Table 2). From the onset the design was constrained by
the requirements for computability with the other engine components, including
the diffuser case and fuel supply system, as well as a desire for maximum
parts commonality with the current production combustor. As the development of

this combustor progressed it became evident that it would achieve these
emissions goals while satisfying the operational requirements of in-service

components and offering advantages in durability relative to the production
combustor. After the current production combustor had been selected as the

reference single stage combustor for this program it was logical to select the
advanced bulkhead combustor as the first perturbation of the single stage
concept and it was adopted as Configuration SS-2.

Figure 10 shows a cross section of the advanced bulkhead combustor. It differs

mechanically from the current production combustor in two particular aspects:

the construction of the front end and the type of fuel injector. Following its

namesake, the front end of the combustor has been revised to incorporate a
bulkhead rather than multiple cone type construction. This configuration
considerably simplifies burner construction and makes more effective use of
cooling air in the primary combustion zone because of the smaller surface area

of the annular bulkhead. The bulkhead construction also removes cooled walls
from the immediate proximity of the reaction zones which minimizes the
interaction of the cooling air on these surfaces with critical carbon monoxide
and unburned hydrocarbon consuming reactions.

In the advanced bulkhead combustor, the duplex pressure atomizing fuel

injector of the current production combustor has been replaced with a duplex
injector with an aerated secondary fuel system. Figure 11 shows a cross

section of this fuel injector. It incorporates highly swirling airflow
radially inside and outside the prefilming surface to atomize the secondary
fuel. For compatability with the existing JT9D-7 fuel system the primary/
secondary flow schedules and splits as well as pressure drops are identical

with those of the baseline injector shown in Figure 9. The aerated secondary
fuel system was incorporated in the advanced bulkhead combustor because it was
recognized that the combustor might have to operate at richer primary zone
equivalence ratios than the current production combustor in order to reduce

idle carbon monoxide and unburned hydrocarbon emissions. These richer

equivalence ratios could lead to excessive smoke formation at high power
levels. Use of the aerated injector leans the critical smoke formation region
near the injector face and reduces the fuel droplet size at high power - both

of which are conducive to reduced smoke formation. Fuel injector atomization

evaluations conducted under the present program (reported in Appendix B)
confirmed the superior atomization characteristics of this fuel injector
relative to the duplex pressure atomizing injector.
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Figure 11	 Schematic Cross Section of Experimental Duplex Aerating Injector
Used in the Advanced Bulkhead Combustor Concept

While the circumferential fuel injector density is identical, use of the

bulkhead construction shifted the point of fuel injection downstream relative
to the current production combustor. Long injector supports had to be used to

retain the injector mount position on the diffuser case. The configuration of
the hood enclosing the front end of the combustor was also modified to

accommodate installation of the larger aerating injectors and to enhance the
airflow  feed to the front end of the combustor.

The louver cooled liner of the advanced bulkhead combustor is essentially

identical to the liner in the production combustor over the downstream two
thirds of its length; the only variation is in the sizes of the cooling air

and dilution air jet orifices and the locations of the latter.

Figures 12 and 13 show the advanced bulkhead combustor sector that was used

during the experimental evaluation. The above cited modifications to the
combustor hood relative to the current production combustor are evident on
comparison with Figure 7.
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Figure 14 shows the airflow distribution observed in Configuration SS-2. The
liner aperture sizing schedule for this configuration duplicates the optimum
established in the engine development program. The primary zone stoichiometry
had evolved through a tradeoff of low power carbon monoxide emissions, high
power smoke output and operational considerations. Primary zone airloadings
are derived from the injector and insert airflows and the flows through the
combustion air holes in the second louver panel of the inner and outer liner
and total 29.1 a percent of combustor airflow. This produces primary zone bulk
equivalence ratios of about 0.5 at idle and 1.0 at takeoff. These are
comparable to the equivalence ratios in the current production combustor and
suggest that the idle emissions reduction accomplished with the bulkhead
combustor may be attributable to avoiding reaction quenching with cooling air
rather than richer stoichiometry. However, there is some evidence that the
combustion air jets entering the bulkhead combustor act only to stabilize the
location of a primary reaction zone formed by the injector and insert airflow
but do not become intimately mixed with these streams. On this premise the
actual primary reaction zone is considerably richer than the bulk equivalence
ratio would indicate and stoichiometry may also be a significant factor in thu
improved low power emissions characteristics. Further evidence of this locally
rich combustion will be found in the discussion of other test configurations.

INJECTOR

COOLING AIRFLOW
INNER LINER -	 17.22%	 AIRFLOWS IN PERCENT OF COMBUSTOR AIR
OUTER LINER -	 22.'2%	 1
BULKHEAD/FRONT END - 7.35%	 DOUBLE SHAFT ARROWS Ca INDICATE

COMBUSTION OR DILUTION JETS
TOT AL 46.69%

Figure 14	 Airflow Distribution in Configuration SS-2

The data of Figures 8 and 14 indicate that the total cooling airflow require-
ments of the advanced bulkhead combustor and the current production combustor
are comparable. However, the quantity of air used to cool the bulkhead end
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injector, insert in the bulkhead type combustor is less than half that used to
cool the front end of the production combustor. The deleted front end cooling
air is diverted to the louvers in the liners of the advanced bulkhead
combustor to enhance the durability of these components. With comparable
primary zone airloading and liner cooling air requirements, both combustors
have about the same 23 percent of combustor airflow available for use in the
dilution zone to control the combustor exit temperature distribution.

4.1.3 Additional Modifications to the Single Stage Combustor Concept

The assessment of the sensitivity of the current production JT9D-7 combustor
to fuel composition, derived from the evaluation of Configuration SS-1,
established a baseline for the remainder of the program. Subsequent testing of
Configuration SS-2 extended this baseline to an improved single stage
combustor consistent with the most recent models in the JT9D engine series.
The remaining configurations of the single stage combustor concept, Configura-
tions SS-3 through SS-7, were defined to investigate the effect of design
perturbations to the advanced bulkhead combustor and to identify those
modifications that would reduce the sensitivity of the combustor to fuel
composition. Table 6 lists the seven single stage combustor configurations
evaluated. Configurations SS-1 and SS-2 establish the baseline. The remaining
configurations are used to determine the effects of changes to (1) fuel
injectors, (2) primary zone stoichiometry and residence time, and (3) liner
cooling approach. These configurations are described further in the remainder
of this section.

Fuel Injector Modifications

Variations in fuel properties, primar'ly viscosity but to a lesser extent
surface tension and specific gravity, are known to affect the atomization
characteristics and spray patterns produced by fuel injectors. Figure 15 shows
the variation in Sauter Mean Diameter of the spray from the duplex pressure
atomizing primary/aerating secondary system fuel injector used in Configura-
tion SS-2. These data are reproduced from Appendix B of this report which
includes the results of a series of spray characterization tests conducted o.,
the fuel injectors used during this program. The data shown demonstrate a
trend toward increasing droplet size with the shift from Jet A to Experimental
Referee Broad Specification Fuel and continuing increases as fuel viscosity is
inc ►•eased further. Since deterioration of fuel atomization could adversely
impact several combustor performance parameters, including ignition capabili-
ty, emissions at lower power and smoke formation, a mndified fuel injector was
evaluated in Configuration SS-4. This injector was a modified version of the
basic duplex pressure atomizing primary/aerating secondary fuel injector shown
in Figure 11 and incorporated revisions designed to enhance the atomization of
a more viscous broadened properties fuel. These included redesign of the swirl
vanes in the outer aerating air passage and the entry to the inner aeratirg
air passage to increase the swirl angle of the air. The contours of a passage
feeding wash air over the face of the primary fuel nozzle face were also
revised to enhance fuel atomization with this system. Airflow calibrations of
the injectors indicated that the net effect of these modifications was to
reduce the airflow capacity of the injector by about four percent while the
swirl strength of the discharging airflow was increased about ten percent.
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Before incorporating this injector in the high pressure combustor rig for
Configuration SS-4, bench tests were conducted to assess its atomization
characteristics relative to the baseline injector used in Configuration SS-2.
The results of these investigations are also presented in Appendix B. These
data revealed that the objective of enhancing atomization by revising the
aerating passages of the secondary system had been accomplished. When the
injector was operated on the secondary fuel system, Sauter Mean Diameters of
the spray averaged 25 percent less than the baseline infector operating at
comparable conditions. Improvements of this magnitude would be expected to
offset the adverse effect of changes in fuei viscosity identified in Figure
15. The revisions to the airflow in the primary fuel injection system did not
appear to produce any significant improvement in atomization characteristics.
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Figure 15 Atomization Characteristics of Duplex Aerating Secondary Fuel

Injector Used in Configuration SS-2

7F:

Z0
W

U_

w
F-
w

d pig

d
W

i.

1L
W

H

ll)
	

^i

(1

11gL



Airflow Schedule Revisions

Primary zone stoichiometry is known to be a fundamental combustor design

parameter affecting combustion stability, emissions, particulate formation and

liner heat loading. Optimum stoichiometry is generally established by a trade
between these operating parameters. The introduction of broadened property
fuels can alter combustor operation and necessitate reoptimization to achieve
the best overall combustor performance. Consequently, perturbations to the

residence time and the equivalence ratio in the primary zone of the single
stage combustor were investigated to provide the basis for such a reoptimi-

zation of the advanced bulkhead combustor with ERBS fuel.

Three combustor configurations, Configurations SS-3, SS-5 and SS-6 were

involved in this sequence of perturbations. Figure 16 shows the airflow

distribution in these configurations relative to the baseline bulkhead type
combustor configuration (SS-2) while Table 6 indicates the bulk primary zone

stoichiometry of these configurations. Details on the aperture sizes in the
liners are provided in Appendix A.

In Configuration SS-3 the residence time in the primary zone was extended

relative to the baseline by moving the dilution air jet orifices downstream on

the liner. Increasing the length of the reaction zone prior to quenching with
dilution air jets could provide more time for oxidation of carbon monoxide or

particulates but could also allow more oxides of nitrogen to be formed.

Configurations SS-5 and SS-6 were used to evaluate richer and leaner primary

zone equivalence ratios. In Configuration SS-5 the primary combustion air jet

orifices in the second louver panel of the inner and outer liner were plugged

and the air diverted to additional holes in the dilution zone of the
combustor. This increased the bulk primary zone equivalence ratio at idle to

nearly unity, a change which would be expected to minimize carbon monoxide and
unburned hydrocarbon emissions at this condition. The reduced primary zone

airloading could also be conducive to easier ignition and enhanced stability
if either of these parameters were compromised by the use of broadened

properties fuels. While not pursued in this phase of the program, proper use
of the additional dilution air made available by reducing the primary zone

loading could enhance control of the combustor exit temperature distribution.
However, the higher primary zone equivalence ratios could also increase
particulate formation and heat load on the combustor liner at high power.

In Configuration SS-6, the primary zone equivalence ratios were reduced by

increasing the airloading on the primary zone. This was accomplished by
enlarging the combustion air jet orifices on the second louver panel and

making a compensating reduction in the area of the dilution air orifices in
order to maintain essentially the same combustor section total pressure drop
as the baseline configuration. This excursion was expected to relieve some of

the additional liner heat load caused by the use of a Lowe- hydrogen content

fuel. However, the extent of the shift in primary zone airloading incorporated
in Configuration SS-6 was limited to minimize adverse impacts on low power

combustion stability and emissions.
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Improved Liner Cooling Approach

A major concern with the use of broadened properties fuels is the potential
increase in radiant heat load on the combustor liner and the attendant
increase in metal temperatures and reduction in liner life. Higher heat loads
can be countered by increasing the quantity of cooling air and thus
maintaining metal temperatures at current levels, but this appproach can have
adverse effects on combustor operation. Higher coolant levels in the primary
combustion zone can quench reactions that would otherwise consume carbon
monoxide and unburned hydrocarbons and therefore lead to increased levels of
these pollutants. The increased cooling air also must be diverted from another
function - most likely dilution of the combustion gases - which could impede
maintenance of the design combustor exit temperature distribution. To avoid
these compromises while still maintaining liner life it would be advantageous
to replace the convntional film cooled louvers in the combustor with a
construction incorporating a more effective cooling concept. This approach was
pursued in Configuration SS-7 by incorporating Finwall® panels in place of
the louvers enclosing the primary zone of the advanced bulkhead combustors. As
shown in Figure 17, Finwall® is a double walled liner construction with a
multitude of parallel axially directed internal cooling air passages. Because
of the characteristically small dimensions of the passages, there is a high
rate of heat transfer to the cooling air which is subsequently discharged to
film cool the gas side of the downstream panel. Combustion or dilution air
jets are directed through the Finwall® panels without compromising local
cooling by installing grommets around the holes. The grommet serves as a
manifold to collect the cooling air flow from the interrupted passages and
redistribute it into the passages downstream of the hole.

GROMMET

HOT AIR
GAS JET

SECTION A-A

COOLING AIR

Figure 4-11	 Finwall® Liner Configuration
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Figures 18 and 19 show the sector of the advanced bulkhead combustor with the

Finwall® panels installed in the liner. On the inner liner three louvers have

been replaced witn two panels of Finwall 9 . while four louvers of the outer
liner have been replaced with three Finwall ® panels. The design of this
configuration was based on the requirement that the maximum combustion gas

side metal temperature on the Finwall (F) panels at sea level takeoff with ERRS
fuel would be no higher than that encountere:; in the louver liner with Jet A
fuel. Thermal analysis indicated Oat this requirement could be met while the
net cooling air flow to five Finwall® panels was 27.5 percent less than the
cooling air flow in the s-^ en lower panels they replaced.

Figure 18	 Outer Liner Side of JT9D-7 Bulkhead Combustor with Finwall®
Liner Panels

VOW
^I Y

wwnu

Lim-

1

^..jp 0 ............	 # ^	 LOUVER

i r	 -"

Figure 4-13	 Inner Liner side of JT9D Bulkhead Combustor with Finwall®
i_iner Panels
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Figure 20 shows the airflow distribution in Configuration SS-7 and reflects

this reduction in primary zone cooling air. Relative to the baseline bulkhead

combustor of Configuration SS-2, the diverted liner cooling air, which

amounted to about 3 ercent of the combustor airflow, was redistributed among
the primary zone combustion air and dilution zone orifices in the liner. The

cooling flow to the remaining louvers of the liner, and the front end airflow
to the fuel injector, insert and bulkhead cooling system were essentially

identical to those of Configuration SS-2 (shown on Figure 14). Since this
configuration was intended to represent the final or best configuration of the

single stage combustor concept the modified pressure atomized primary/aerated
secondary fuel injector from Configuration SS-4 was used because this injector
was found to offer advantages over the baseline injector.

INJECTOR BULKHEAD
7.791	 3.421 1.930 1.017 0.948

7.246

INSERT 6.745	 9.326

4.172

4.291

2.215

1.587

1.736 1

76-8W600

.1264
1.022

0.965

1.166

0.770

.9500.922

1.549

. 	 7.439

1.257

2.220 1.756
1.681 1.299 1.284	 1.857	 1.251

AIRFLOWS IN PERCENT OF COMBUSTOR AIR
DOUBLE SHAFT =* ARROWS INDICATE

COMBUSTION OR DILUTION AIRJETS

Figure 20
	

Airflow Distribution in Configuration SS-7

The photographs of the burner sector for the bulkhead combustor with Finwall®

panels (Figures 18 and 19) show larger and more numerous primary combustion

air holes than required to admit the primary zone airflow indicated on Figure

20. This occurs because this burner sector was also used to assess configura-
tions of the variable geometry combustor concept in which high primary zone
airloadings were employed (c.f. Section 4.3). Grommeted holes were made in the

Finwall® liners for these maximum airloading configurations and plugs or
washers were installed on the grommets to eliminate or restrict flow to the

level required in the other configurations, including Configuration SS-7.
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4.2 STAGED COMBUSTOR CONCEPT 	 pF F'OOR	 ;CITY

A staged combustor was selected as the second concept for evaluation in the

Phase I program. The principal feature of these burners is the use of two

distinct combustion zones, each serviced by an independent fuel injection.
system. By operating the combustur on only one zone at low power levels and

both zones at high power the combustor may be optimized at two operating
conditions, rather than a single condition. This type of stoichiometry control

would be required if emissions of oxides of nitrogen were severely restricted
in the airport vicinity. It also appears to be useful in circumventing some of

the problems associated with the use of broadened properties fuels. The Vorbix
staged combustor concept had been evolved under the NASA/Pratt 6 Whitney

Experimental Clean Combustor Program (References 5, b, and 1). More recently,
a second generation or improved version of this concept was developed under

the NASA/Pratt b Whitney Energy Efficient Engine Program (Reference 8); this

advanced version was selected as the staged combustor concept for the Phase I

program.

4.2.1 Staged Combustor Description

Figure 21 shows a cross section of the staged Vorbix combustor as it is

configured in the Energy Efficient Engine. The combustor includes two distinct
burning zones -- a pilot zone and a main combustion zone. The pilot zone
operates at all flight conditions and is designed to minimize emissions at

idle and provide adequate stability and ignition characteristics. The main

zone is operative at conditions above idle. In this zone, lean combustion
occurs to minimize emissions of smoke and oxides of nitrogen at high power.
The combined operation of these zones provides emissions control throughout

the entire flight  spectrum.

HPC	 PREDIFFUSER +	 STRUT	
Pilt'1	 SEuMEN1ED
NOZ.LE	 PANELS

sp

01	 N:ONE
11
	\

L^-` MAIN

BLEED '
MANIFOLD

MULTI-SUPPORT FUEL
NO::LE ASSEMBLY

1	 -^

MAIN	
_iNOiZLE

CARBURETOR
FUEL MANIFOLD 11114E
A SHROUD

Figure "l Cross Section of Staged Vorbix Combustor from the Energy Efficient

Engine
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This advanced Vorbix combustor includes a number of significant improvements

over the first generation combustor evolved under the NASA/Pratt b Whitney
Experimental Clean Combustor Program. The spatial heat release rate of the

pilot zone is considerably lower. This results in lower reference velocities
and higher residence times, which is conducive to lower carbon monoxide and
unburned hydrocarbon emissions. Another characteristic is the increase in dome

height. This provides a larger recirculation zone for better relight and
starting and enhances the capability to reduce emissions at idle.

Aerated fuel injectors are used in the pilot zone rather than the pressure

atomizing nozzles used in the Experimental Clean Combustor design. The aerated

injector provides adequate fuel spray characteristics at idle where the fuel

flow and pressure drop are low.

The combustor main zone design retains the oxides of nitrogen reduction

features demonstrated in the Experimental Clean Combustor Program and
incorporates modifications to improve liner durability, reduce high power

smoke and simplify the configuration. These enhancements provide a more viable
combustor for a commercial engine.

The most notable difference between the two designs is the method by which

fuel is injected into the main zone. In the first generation Vorbix staged
combustor, fuel was injected directly into the main zone through pressure

atomizing injectors and mixed with swirling airstreams issued from swirlers in
the inner and outer liner walls. The advanced Vorbix combustor concept

features a compact carburetor tube arrangement, shown in Figure 22, that
premixes the fuel and air prior to combustion. Fuel is supplied to each of the
forty-eight carburetor tubes by a simplex pressure atomizing fuel nozzle. A
fraction of the fuel is vaporized while the remaining fuel is centrifuged out
to the walls of the tube via air introduced through a radial inflow swirler.

The fuel film formed at the exit plane of the tube is sheared into droplets by
the swirling core and secondary jets. This accomplishes th ree tasks: (1) some
premixing of fuel and air occurs to eliminate rich burning zones in the

combustor and to reduce smoke emissions; (2) the combination of swirler and

fuel injector results in a reduced blockage flow area in the outer shroud
passage; (3) the fuel is conveyed into the burning zone by the carburetor tube
swirling air resulting in better fuel penetration and dispersion.

The liner in the staged combustor in the Energy Efficient Engine is unique in

that it employs Counter Parallel Flow Finwall® cooling in conjunction with a
segmented construction (see Figure 23). This cooling concept offers distinct
advantages over more conventional internally cooled constructions in that the

cooling air is introduced through apertures in the outer wall at the center of
the panels and flows both forward and aft in the internal channels before

being discharged into the combustor gaspath. Because the jincture region
between panels is contacted only by cooling air that has been heated in its

passage through the panels, temperature gradients in the metal in these
regions are minimized. This feature offsets the fundamental difficulty

encountered with previous internally cooled liner concepts in which the
unidirectional cooling air flow caused significant thermal gradients at the

panel junctures that were simultaneously subjected to "cold" inlet cooling air
and heated air discharging from the upstream panel.
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The segmented construction is incorporated in the Energy Efficient Engine

combustor liner to eliminate hoop stress effects which would otherwise be the

life-limiting failure mode. The liner segments are investment cast nickel base

alloy with cooling air passages and seal slots electrochemically machined.The
circumference of a full annular liner is divided into 24 segments. The

segments are attached onto external frames by the integrally cast holes and

lugs as shown in Figure 4-17. Air leakage between segments is minimized by
feather seals.

4.2.2 Staged Combustor Test Configurations

Although the JT9D-7F had been selected as the reference engine for the Phase I

program, the advanced Vorbix staged combustor was evaluated with components
from the Energy Efficient Engine because of the availability of hardware from

that program. Under the Energy Efficient Engine (E 3 ) program, a combustor
sector rig had been fabricated and used in an extensive effort to evolve and
optimize the configuration and performance characteristics of the combustor in

the E 3 engine. This effort, documented in References 8 and 9, involved high
pressure testing of eighteen configurations with Jet A fuel and led to a well

established optimum configuration. Because of the thorough nature of this
recent effort on the staged combustor concept, the activity under Phase I of
the Broad Specification Fuels Combustion Technology program was restricted to
an assessment of the sensitivity of this concept to fuel composition. This

sensitivity assessment, in combination with the preceding rigorous development
effort, provided an adequate base for assessing the viability of the staged

combustor concept relative to the other concepts being screened in the Phase I
program and no additional perturbations of this concept were evaluated.

Figure 24 shows the airflow distribution in Configuration AV-1 of the advanced
Vorbix staged combustor. This configuration was installed in the sector rig to

evaluate the performance, emissions and durability characteristics of the
staged combustor with various test fuels at high pressure operating conditions
representative of the Energy Efficient Engine. The airflow distribution is
identical to the distribution in the final sector rig configuration of the
combustor as it was evolved under the Energy Efficient Engine program

(Configuration 2/15B, Run 21 of Reference 8) . The pilot zone airloadi ng is
very low: it consists only of the airflow through the pilot stage fuel

injector, its insert guide and some portion of the pilot zone cooling air.
This leads to equivalence ratios in the pilot zone of the order of unity at
idle which is conducive to low carbon monoxide and unburned hydrocarbon

emissions. At high power levels the majority of the fuel is consumed in the
main zone and the pilot stage equivalence ratio is reduced. The pilot to main

stage fuel split schedule is a primary test variable for a staged combustor
and the reoptimization of this schedule for operation with ERBS fuel was

investigated during the evaluation.

Because of the timetable for the Energy Efficient Engine combustor development

program, the evaluation of the ignition and altitude stability characteristics

of the staged combustor concept were conducted at an earlier date using a
different combustor configuration (Configuration 1/8A, Run 12 of Reference 8).

This configuration is designated AV-2: the geometry and airflow distribution
are shown in Figure 25. The differences in ignition and stability character-

istics tetween this configuration and Configuration AV-1 are small and would
not be expected to have a significant effect.
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Configuration AV-2 was evaluated after the combustor had been developed

sufficiently for the pilot zone of the combustor to become well established.
The fuel injectors in Configurations AV-1 and AV-2 were identical. The louver

cooled liner used in the latter to facilitate modifications during the initial
phases of the Energy Efficient Engine development program had the same

geometric envelope and local cooling flows comparable to those in the final
segmented liner. Comparison of Figures 24 and 25 shows that the pilot zone
airflow distributions in these configurations are also similar.

4.3 V RIABLL GEOMETRY COMBUSTOR

Recent studies (References 10 and 11) have indicated that variable geometry

combustors, in which the airflow distribution is shifted with operating
conditions to achieve optimum stoichiometry over a rangE of power levels, may
offer significant advantages in meeting performance and emissions
requirements. As in the staged combustor concept, the enhanced control of

stoichiometry could be used to advantage in operating with broadened
properties fuels. Consequently, the variable geometry combustor was selected
as the third and most advanced combustor concept for the Phase I program.

4.' ' Conceptual Definition

26 shows the conceptual definition (if the most general type of variable

A(letry combustor, hereafter referred to as "fully modulated" because the
airflow to both the primary combustion zone and the dilut'on zone can be

varied simultaneously. Airflow control is provided by butterfly valves
rotating about radial axes in the air supply ducts adjacent to the outer
combustor liner. Actuation of these valves diverts air from one combustor zone

to the other while holding the overall flow resistance and hence pres.ure drop
across the system reasonably invariant. The fully modulated variable georree try
is capable of producing the rather massive shifts in combustor airflow

required to maintain optimum equivalence ratios in the primary combustion zone
over the entire engine operating range. To minimize carbon monoxide and

unburned hydrocarbon emissions, the primary combustion zone must operate at an

equivalence ratio of about unity at lo g: power levels. At high power levels. a
low primary zone equivalence ratio, of the order of 0.5, is required to

minimize NOX emissions, smoke formation and radiant heat transfer to the

combustor liner. The airflow shifts needed to achieve these optimum

equivalence ratios are rather massive; the primary combustion zone requires
about 15 percent of combustor ai rflow at idle and 65 percent at takeoff.
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Other potential advantages of a variable geometry combustor include reduced

residence time, a simplified fuel system, and improvements in thrust specific
fuel consumption:

o

	

	 Because the primary combustion zone is operated at the optimum

equivalence ratio to minimize formation of carbon monoxide at low power
and smoke at high power, the residence time required to oxidize these

species is reduced. This could lead to decreases in combustor length,
reducing the surface area which must be cooled and thereby permitting
more of the combustor airflow to be used to control the exit temperature

pattern factor and radial profile. The reduced residence time in the
shorter combustor would also lead to lower NOx emissions.

o

	

	 Variable geometry can be used to enrich the primary zone at ignition and
low power altitude operating conditions. This reduces demand on the low

flow atomization characteristics of fuel injectors and encourages the use
of single pipe injectors. The fuel system could then be simplified

relative to duplex injectors or staged fuel systems. This also eliminates
the risk of carbon deposition in inactive high power stage injectors, a
decided advantage when operating on broadened properties fuels with lower
thermal stability.

o	 Through appropriate scheduling of airflow areas with engine power level,
variations in the net inlet flow area of the combustor (and 	 hence
pressure drop) may be used to advantage. Opening the combustor area at
cruise and other intermediate power levels would increase the fraction of
engine air passing through the combustor and reduce the turbine cooling

air. This would increase turbine efficiency and reduce burner section

pressure loss, thus improving thrust specific fuel consumption.

The major disadvantage of a variable geometry combustor is the increased

complexity and cost introduced by the air management system. This system must

be designed to provide the required airflow scheduling without introducing
variations in combustor section pressure drop that could adversely affect the
combustor liner or turbine inlet vane cooling. The airflow shifts between the

primary zone and dilution zone of the combustor are massive and must be
accomplished without compromising the combustor exit temperature pattern

factor or radial profile. The reliability of the air management system and its
actuation mechanisms will also be of paramount concern and fail safe operation

of the combustor must be assured.

Alternate variable geometry concepts that are less complex than the combustor

shown in Figure 26 could also be envisioned. One approach is to modulate only

the airflow entering the primary combustion zone through variable apertures on
the burner hood, bulkhead or liner. A combustor of this type would probably
not have sufficient airflow transfer capability to produce the extremely lean

primary zone equivalence ratios required to achieve very low NOx output at
high power and would experience suable variations in total pressure drop when
the system was actuated. However, this approach could be used to establish

favorable tradeoffs between low power carbon monoxide and unburned hydrocarbon
emissions, enhanced ignition and reduced high power smoke formation.
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Another approach involves the use of a variable geometry aerating fuel
injector. The stoichiometry of regions immediately downstream of the fuel
injector face is critical to the formation of smoke and the consumption of
unburned hydrocarbons. Variation in the quantity of air admitted through the
injector can affect this local stoichiometry. Changes in the quantity,

direction or velocity of air in the aerating passages of the injector can also
affect the spray angle and atomization characteristics of the fuel injector.
Variation in injector spray angle can be exploited to optimize emissions,
smoke formation, ignition and liner heat load consideration;,. The requisite

changes in injector airflow could be accomplished by axially translating
sections of the injector or by rotating blockage rings. The injector

components could be moved by mechanical linkages, air pressure drop forces or
they could be hydraulically driven by the fuel pressure in the injector.

4.3.2 Variable Geometry Combustor Test Configurations

Because the design and evaluation of a fully modulating variable geometry

combustor was beyond the scope of the Phase I program, the effort was
restricted to assessing the effect of variations in combustor airflow
distribution using fixed geometry combustor configurations. By evaluating

combustor configurations with progressive changes in airflow distribution, the
data required to optimize airflow scheduling with 	 engine power level could be

obtained. This information was sufficient to achieve the Phase I objective of
screening the variable geometry combustor relative to the other concepts
evaluated. If th's screening indicated that the variable geometry concept was
a viable approach to accommodating the use of broadened properties fuels, the

design and evaluation of a variable geometry combustor could be conducted in

Phase II of the proo-am.

The JT9D-7 advanced bulkhead combustor used in the majority of the single
stage combustor configurations was used as Che basic combustor for the
variable geometr -oncept. A total of eight configurations, the main features

of which are lis	 in Table 7, were evaluated. These included a baseline or
reference conf ' ration, a configuration with a modified fuel injector and a

pair of configur.1i s that simulated the use of a variable geometry fuel
injector. Four :)r 49urations were ailocated to investigating the
characteristics o. a fi-'ly modulated variable geometry combustor by evaluating
combustor a ,^ometries that were representative of the extremes of airflow
shif:-irl. lnese configurations are described in more detail in the remainder

of thi , section. Data on the size of air admission apertures on the combustors
are liF.ed in Appendix A.
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Reference Configuration

An aerated single pipe fuel injector was used in all of the variable geometry

combustor configurations. Use of this injector reduces the complexity of the

fuel supply system, thus offsetting the additional complications of actuating
the variable combustor components. It also minimizes the risks of deposition
with the potentially lower thermal stability of broadened properties fuels.
The greatest drawback with single pipe aerating injectors is the effect on

combustor operation at low fuel flow rates where atomization could be poor
relative to that achieved with duplex injectors. Areas of concern include

ignition, low power stability and idle emissions. Configuration VG-1 was
evaluated to measure these impacts. The combustor liner and the airflow

distribution were identical to Configuration SS-2. The duplex pressure
atomizing primary/aerated secondary fuel injector used in Configuration SS-2
was operated with all of the fuel flowing through the aerated secondary system

to simulate a single pipe fuel injector. Comparison of the results of this
evaluation with those of Configuration SS-2 established the increments
associated with use of the single pipe injector as opposed to a duplex
injector.

Modified Fuel Injector

As indicated in Section 4.1.3, a modified version of the duplex pressure

atomizing primary/aerated secondary injector had been constructed and found to

offer enhanced fuel atomization in the aerating secondary system. This
modified fuel injector was evaluated in the single pipe mode in Configuration

VG-2 to investigate the effect of these modifications on the single pipe/

duplex injector trade. To facilitate comparison all other features of the
combustor were identical to Configuration VG-1.

Variable Geometry Fuel Injector

Figure 21 shows a schematic view of a simulated variable geometry fuel

injector which was fabricated with an injector body and outer aerating passage
components identical to those used in the modified duplex fuel injector of

Configuration VG-2. The central primary fuel injection body was replaced with
interchangeable pintles that duplicated the extreme positions of an axially

translatable variable position pintle. The conical shoulder on the pintle

interacted with the lip of the fuel filming surface to meter the flow in the
inner aerating air passage and vary the angle at which this airflow impinged
on the fuel film. Figure 28 shows the assembled injectors with the long and

short pintles installed to simulate the open and closed positions.

Airflow calibrations of these injectors indicated that with the pintle in the

extended or open position, the airflow capacity was identical to the baseline

d- lpljx pressure atomized/aerated injector while the retracted length pintle
used to produce the closed position geometry reduced the airflow capacity by
12 percent. The retracted or closed position produced a swirl strength 1.15

times that of the baseline injector while in the open position the swirl

strength was 66 percent of that of the baseline injector. The combination of a

high swirl strength and low airflow was thought to be conducive to improved

ignition, while higher airflow would be expected to lean the critical smoke
production region near the injector face at high power levels.
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Spray characterization tests conducted on these injectors (reported in
Appendix B) indicated that changes in the position of the pintle altered the

spray angle with the closed position producing higher spray angles. The spray

was also more dispersed, i.e., the cone width was larger when the pintle was
in the open position. Relative to the baseline injector in a single pipe mode,
the variable injector demonstrated reductions in Sauter Mean Diameter in more
than ha l f of the fuel/operating condition/geometry variations evaluated and

redi-ctions in peak density droplet size in nearly all of these variations.

The simulated variable geometry injector was evaluated in Configuration VG-3

with the injector pintle in the open position and Configuration VG-4 with the
pintle in the closed position. The remaining combustor components and the

airflow distribution in these configurations were identical to Configurations
VG-1 and VG-2. This provided a common basis for comparison of all the single

pipe fuel injectors.

Variable Airflow Distribution; Initial Series

Configurations VG-5 and VG-6 represented the extremes of lean and rich primary

zone operation in a fully modulated variable geometry combustor. Other details
of the combustor, such as the type of fuel injector, remained common with

Configuration VG-1 so that this configuration could be considered
representative of the fully modulated combustor with the air management system
at an intermediate position.

Figure 29 shows the airflow distribution in the three configurations in the

sequence. Configuration VG-5 represents the variable geometry combustor with

all of the available air admitted to the primary combustion zone to the extent
that there is no dilution air available to control the exit temperature
distribution. This airflow distribution produces a primary zone bulk
equivalence ratio of about 0.6 at takeoff which is conducive to low NOx and
particulate formation. At the opposite extreme, Configuration VG-6 represents

the fully modulated variable geometry combustor with the valve in the primary
zone air supply duct closed and the valve in the duct to the dilution zone

open to produce the rich primary zone stoichiometry required for ignition and
low power stability and emissions. The net flow area for air admission into

each of the three configurations in this sequence was essentially the same.
Consequently, the pressure drop and distribution of air to the cooling louvers

and fuel injectors was nearly invariant between configurations.

Variable Airflow Distribution - Final Series

Configurations VG-7 and VG-8 also represent the extremes of rich and lean

primary zone operation in a fully modulated variable geometry combustor.
Figure 30 shows the airflow distribution in these configurations.

Configurations VG-7 and VG-8 differed from Configurations VG-5 and VG-6 in the
following respects:

o	 Configurations VG-7 and VG-8 were constructed with Finwall ® replacing

the louvers in the primary zone. As indicated in the description of
Configuration SS-7 (Section 4.1.3) this feature led to a reduction in the
liner cooling air requirement and produced a leaner bulk equivaience

ratio in the primary zone of Configuration VG-8.
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e	 The airloading on the primary zone was increased and the length of the
primary zone decreased in Configuration VG-1 relative to VG-6. Both of

these configurations represent the low power operating mode of the

combustor.
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o	 The sequencing of the combustion air holes in the liner of Configuration
VG-8 was altered to correct an apparent jet mixing limitation encountered

in Configuration VG-5. Combustion air was admitted through both the inner

and outs; liner with two axially spaced sets of holes. The downstream set
was positioned circumferentially so that jets entered the primary zone
immediately downstream of the fuel injectors to encourage mixing with the

reaction regions behind the injectors. The relative position of these

combustion air holes can be seen in Figures 18 and 19 and in the data of
Appendix A.

o	 Configurations VG-7 and VG-8 incorporated the "variable" fuel injector

with the pintle in the closed position. This does not imply that a

variable geometry fuel injector was envisioned in addition to the
hypothetical fully modulated variable air distribution system. Rather,

this particular injector, as a fixed geometry component, had been found
to be the best single pipe fuel injector evaluated in prior
configurations.

As -in the case of Configurations VG-5 and VG-6, the net flow area of the

combustor was nearly the same in Configurations VG-7 and VG-8 so the pressure

drop and distribution of cooling and fuel injector air was not substantially
altered when the primary zone/dilution zone airflow split was shifted.
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SECTION 5.0

EXPERIMENTAL APPARATUS

This section contains the results of analysis of the physical and chemical
properties of the test fuels used during the evaluation of the combustor
concepts. Also included are descriptions of the test rigs, instrumentation,
and the test facilities employed in the program.

5.1 TEST FUELS

Four different test fuels were used during the program. The principal test

fuel was Experimental Referee Broad Specification ( ERBS) fuel, which was used
in the evaluation of every combustor configuration. The majority of the
configurations were also evaluated with commercial Jet A fuel at selected

operating conditions. In addition, two blended fuels were used in limited
quantities to extend the range of.fuel composition during the more critical 	 3

tests of the initial and final configuration of each combustor. These two
fuels were produced by adding a blending stock to the ERBS fuel to reduce its
hydrogen content to 12.3 and 11.8 percent, respectively.

The Jet A fuel was supplied from the standard.- ofrre at each test facility.

The ERBS fuel and the two lower hy.drogern^ - content blended fuels were procured
by NASA from Suntech, Iac,- o-f"Mlarcus Hook, Pa. These fuels were delivered to
the Pratt and,_^(h-i-t-n-t Aircraft test facility in Middletown, Connecticut in
singl y lots of sufficient quantity for the entire Phase I program. The lower
hydrogen content fuels were blended to the required proportions at the
refinery before delivery. The ERBS fuel was stored in a dedicated tank in the
tank farm near the test facility. The lower hydrogen content blended fuels
were stored in leased tanker trailers parked near the test stand. Both the
permanent storage tank and the trailers were drained and steam cleaned before
the test fuel was delivered.

It was originally intended that the small amounts of test fuel required for

the combustor ignition tests and fuel injector spray evaluations would be
taken from the bulk lots. However, it became expedient to conduct some of
these tests before the bulk lots were delivered. Thus, a portion of the ERBS
fuel ana the blending stock required to produce the 11.8 percent hydrogen
content fuel were obtained from a stockpile maintained by NASA Lewis at the
Plum Brook facility in Sandusky, Ohio. Since the required quantities were only

on the order of 318 to 156 liters (100 to 200 gallons) , the fuel was
transported in convenient 208 liter (55 gallon) drums. When small deviations
were noted between the ERBS fuel from the Plum Brook stockpile and the bulk
lot delivered to the high pressure test facility, it was decided that all
ignition testing would be conducted with fuel from the Plum Brook stockpile to
maintain the continuity of the tests.
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Samples of the test fuels were taken for analysis in the Materials Engineering

Research Laboratory at the Pratt and Whitney Aircraft Middletown test

facility. Extensive analyses were conducted to determine the physical
pro,jerties and chemical composition of the four test fuels using samples
extracted during the high pressure test of the first combustor configuration.

Additional analyses of more limited scope were conducted on samples of the Jet
A fuel used in the high pressure test facility over the duration of that
program element. Likewise, samples of the fuels obtained from the Plum Brook

stockpile for the ignition tests were analyzed. The results of these analyses
are presented in the remainder of this section.

5.1.1 High Pressure Test Fuels

Table 8 shows the results of the analysis of the composition and properties of
the bulk lots of the ERBS and lower hydrogen content test fuels that were used

in all of the high pressure combustor tests. Also shown is the corresponding

analysis of a sample of the Jet A fuel that was being used in the high

pressure test facility at the time the first combustor configuration,
Configuration SS-1, was evaluated. The table also lists the American Society

for Testing and Materials (ASTM) Standard Procedure used to measure the
indicated property. In general, the procedure is that stipulated in the ASTM

D1655 specification for Jet A fuel. However, in the case of a few parameters,
alternate analysis methods were preferred and are so indicated in this table.

In addition to being listed in Table 8, the distillation temperature

distributions for the four fuels are plotted in Figure 31. The conventional

hydrocarbon structure definition was supplemented by mass spectroscopic

analysis of the ERBS and the two lower hydrogen content test fuels. The
results of these analyses are shown in Table 9.

The Jet A fuel is shown to ,,e well within the current ASTM D1655 specification

except that the aromatic content exceeds the specification limit of 20 percent

by volume. Likewise the smoke point, at 20mn, is at the limit of the
specification consistent with the measured napthalene content. However, since

1976, footnotes to the specification have permitted use of Jet A fuels with

aromatic contents up to 25 percent volume on a reportable basis. This Jet A
was in the reportable category.

The ERBS fuel was prepared by Suntech, Inc. to approach the limits on critical

parameters of the specification of Table 1, and consisted of a blend of
kerosene and catalytic gas oil. The principal composition controlling
parameter in the ERBS specification is the hydrogen content and it has been

maintained in the desired range of 12.8 + 0.2 percent. Relative to the Jet A
sample this has been accomplished by an increase of the order of ten percent

by volume in both the total aromatics and the napthalenes. This implies that
the concentration of single ring aromatics in the ERBS is comparable to that
in the Jet A and that the higher level of total aromatics in the ERBS is due
primarily to high concentrations of multi-ring aromatics. This is substantiat-

ed to some extent by the mass spectrographic analysis data of Table 8, which

indicates that the alkylnapthalenes are by far the highest concentration
aromatic group. These shifts in chemical composition would be expected to

alter the combustion characteristics of the fuel and this alteration is

evident on comparison of the smoke points of the Jet A and ERBS fuel.
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Table 8

Properties of Fuels Used in High Pressure Tests

12.3% 11.8% AST11

Composition Jet A*l ERBS Hydrogenrogen H dy rogen Procedure

Aromatic content - % vol 2C.6 31.5 40.4 52.2 D1319

Napthalene content - % vol 1.n6 11.7 13.5 15.4 D1840*3

Olefin content - % vol 0.3 0.2 0.2 0.2 D1319

Sulfur content - % wt 0.16 0.04 0.04 0.05 D3120

Hydrogen content - % wt 13.62 12.93 12.37 11.80 *2

Hydrogen/Carbon Ratio 1.89:1 1.77:1 1.59:1 1.59:1 *2

Physical Properties

Viscosity, cs. @ 249*K (-10*F) 5.50 8.57 7.23 6.48 D445

@ 299*K (80*F) 1.70 2.16 1.95 1.82

0 338*K (150*F) 1.00 1.19 1.11 1.06

Surface Tension - dynes/cm @ 298*K (77'F) 29.3 30.3 30.7 30.8 D971,

Gravity, *API, 289*K 	 (60*F) 41.4 36.9 34.8 32.6 D1298

Specific Gravity, 289/289*K (60/60*F) 0.8184 0.8403 0.8509 0.8623 D1298

Heat of Combustion - MJ/kg, Net 42.96 42.59 42.26 41.97 D2382

Gross 45.85 45.33 44.89 A4.47

-	 (Btu/lb)	 flet (18,490) (18,330) (18,190) ii8,060)

Gross (19,730) (19,510) (19.320) (19,140)
Flash Point - *K	 (*F) Open Cup -- 347	 (165) 327	 (130 336	 (145) D92

Closed Cup 318	 (114) 318	 (114) 308 (96) 311	 (100) D93

Freezing Point *k	 (*F) 215	 (-71.b) 243	 (-21.1) 244	 (-19.3) 244 (-20.2) D2386

Smoke Point - mm 20 12 11 9 D1322

Distillation

Temperatures - "K	 (*F)	 Initial 422	 (300) 422	 (336) 413	 (284) 420 (297) D86

10% 447 (346) 471	 (389) 453	 (357) 447 (346)

20% 456	 (361) 479	 (403) 468 (383) 459 (368)

30% 463	 (375) 485 (414) 476	 (397) 471	 (389)

40% 471	 (388) 490 (423) 486	 (416) 485	 (414)

50% 478	 (401) 498 (438) 496	 1434) 498 (438)
60% 484	 (413) 506	 (451) 507 (4i3) 511	 (461)

70% 492	 (427) 514	 (466) 517	 (472) 524 (484)

80% 501	 (442) 528 (492) 530 (495) 539	 (512)

90% 512	 (462) 550 (531) 555	 (540) 561	 (551)

Final 544	 (521) 594	 (611) 597	 (615) 603 (626)
Recovery - % vol 99.0 98.5 98.0 98.5

Residue - % vol 0.9 1.4 1.3 1.0

Loss - % vol 0.1 C.1 0.7 0.5

Carbon Residue 11% Bottoms - % wt 0.5 0.19 0.22 0.24 D524

*1 - Jet A ,•,,^'vsis is for sample obtained at high pressure facility during test of Configuration SS-1.

*2 - Perkin- E'rr;,r Model 240 Elemental Analyzer.
*3 - Specifica i, ,n D-1840 modified for naptnalene contents above 5% volume.
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Mass Spectrographic Analysis of High Pressure Test Fuels

Volume Percent of Total Sample

ER IS	 11.8% HZ

Saturates Analysis

Paraffins 42.9 39.1 32.9
Non-condensed Cyc loparaff in s 19.0 14.4 10.1
Condensed Dicycloparaffins 6.5 6.4 5.2
Condensed Tricycloparaffins 0.6 1.1 0.8
Alkylbenzenes 0.5 0.0 0.0

Total Saturates 69.5 61.0 49.0

Aromatic Analysis

Alkanes 0.5 0.6 0.9
Cycloparaff ins 0.0 0.3 0.3
Alkylbenzenes 3.7 10.5 15.7
Indanes-Tetral ins 5.7 7.0 6.7
Indanes-Dihydronapthalenes 1.6 2.1 1.9
Napthalene 0.1 0.2 0.2
Alkylnaphthalenes 13.2 11.4 16.6
Benzothiophenes 0.1 0.1 0.0
Acenaphthenes 0.9 2.0 1.7
Acenaphthylen e-Fluorenes 1.3 1.5 1.9
Phenanth renes 1.8 2.1 3.1

Total Aromatics 28.9 37.8 49.0

Comparison of the distillation temperature characteristics of ERBS and Jet A
in Table 8 or Figure 31 indicates that the boiling temperature of ERBS is

about 20 to 25°K (35 to 45°F) higher than that of Jet A across the entire

distillation range. Despite this increase, the flash points of the two fuels

are identical, implying comparable volatility. Relative to the specification

limit of Table 1, the viscosity of the ERBS test fuel was very moderate and

even complied with the specification for Jet A shown on this table. The
combination of comparable volatility, and only a moderately higher viscosity

of ERBS relative to Jet A, implies that the use of this fuel should not have a
profound effect on such atomization and evaporation dependent processes as

ignition and combustion stability.

Fue 1
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The two lower hydrogen content test fuels were produced by addition of
progressively greater quantities of a blending stock to the basic ERBS fuel.

The blending stock consisted of catalytic gas oil and xylene tower bottoms and

had an aromatic content in excess of 80 percent. The blend proportions had
been selected to produce fuels with nominally one half percent, and one
percent, lower hydrogen content than the ERBS; i.e., 12.3 and 11.8 percent
hydrogen, respectively. As shown in Table 8, each of these increments required
increases of the order of 10 percent volume in the total aromatic content of
the fuel.

The combination of the four high pressure test fuels has the desirable feature

of a variation of nearly two percent in hydrogen content and a range of
aromatic contents from about 20 to more than 50 percent. However, whereas the

decrease in h ydrogen content between Jet A and ERBS reflected primarily a
difference in multi-ring aromatics, the concentration of napthalenes in the

blended fuels are not substantially different from that in ERBS. This implies
that the increase in total aromatic content of the blended fuels is primarily

due to changes in the concentration of single ring aromatics. This is
obviously consistent with the use of xylene tower bottoms in the blending

stock and is further confirmed by the progressive increase in the
alkylbenzines in the mass spectrographic analyses of the aromatic constituents

of these fuels in Table 9. The increase in the aromatic content of the blended
test fuels is shown to produce a progressive decrease in the smoke point,

although the rate of decrease is significantly less than in the initial Jet A

to ERBS increment.

Figure 31 shows that while the addition of the blending stock to the ERBS
produced some increases in the distillation temperature of the higher

fractions, the dom i nant effect was a reduction of the distillation

temperatures for the early fractions. This resulted in approgressive increase
in volatility as evidenced by the lower flash points of tf^e 12.3 and 11.8

percent hydrogen test fuels relative to ERBS. The blending stock also had a
relatively low viscosity which produced progressively lower viscosity of these

fuels relative to ERBS. As indicated above, the combination of volatility and
viscosity relate to the ignition and stability characteristics of the
combustor. The trend of both these properties in the ERBS and the blended
fuels is toward enhanced ignition/stability with decreasing hydrogen content.

This characteristic is counter to expectations in that one would anticipate a

shift toward higher distillation temperatures and increased viscosity with the

higher aromatic concentrations that produced the reduction in hydrogen
content. This phenomena is apparently due to the production of the low

hydrogen content fuels by the blending of narrow and unique cuts rather than

with a broader distillation of a complete crude.

5.1.2 Jet A Fuel for High Pressure Tests

The Jet A fuel used for the high pressure tests of the combustor concepts was
drawn from the tank farm at the Middletown test facility. The farm serves as a
fuel source for the entire test operation at Middletown and not just the high
pressure combustor test facility. Consequently, there was no opportunity to
control the Jet A fuel that was being used over the duration of the program.
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A B C D

SS-1 SS-2/VG-1 SS-5/AV-1 SS-7/VG-7
20.6 25.0 21.0 20.1
1.06 1.54 1.19 1.60

13.62 13.49 13.82 13.78
20 20 20 21

	42.96
	

42.91
	

43.01
	

43.06
(18,490)
	

(18,470)
	

(18,510)
	

(18,530)

	

0.8184
	

0.8208
	

0.8160
	

0.8128

	

1.70
	

1.72
	

1.85
	

1.75

However, the composition and properties of the Jet A fuel were monitored by

conducting analyses of samples collected at various times during the course of
the high pressure test sequence.

Table 10 presents the results of the analyses of these four fuel samples.

Sample A was obtained during the test of Configuration SS-1 and is the Jet A

fuel of Table 8. The other samples were obtained during the testing of
configurations which served as either reference or baseline configurations of

each combustor concept, as well as at spaced intervals over the duration of
this element of the program.

Table 10

Properties of Jet A Fuel Used at the High Pressure Facility

Sample

Configuration Tested

Aromatic Content - % vol
Napthalene Content - % vol

Hydrogen Content - % wt

Smoke Point - mm

Heat of Combustion, 0et
MJ/kg

(BTU/lb)
Specific Gravity @ 289/289°K

(60/60°F)

Viscosity, CS @ 299°K (80°F)

With the exception of the aromatic content of Sample B, which is at the limit

of acceptability under the footnotes in the current ASTM D1655 specification,

the samples are reasonably consistent in their composition and properties.

5.1.3 Ignition Test Fuels

As indicated above, the ER BS and 11.8 percent hydrogen test fuels used for the

ignition test sequences were obtained in drum lots from a stockpile maintained

by Lewis Research Center, rath. , than from the bulk lot used for the high
pressure tests. In addition, the 11.8 percent hydrogen content fuel used in

the ignition tests was blended on site, rather than at the refinery, by mixing
ERBS fuel with the high aromatic content blending stock in the stipulated
proportions prior to each test.

Table 11 lists the measured composition and properties of the fuels used in

the ignition testing of the advanced vorbix combustor, while the corresponding

data on the fuels used in the evaluation of the JT9D based single stage and
variable geometry concepts are shown on Table 12. The tests on the advanced

vorbix combustor concept were conducted earlier in the program and comparison
of the data of Table 11 with that of Table 8 indicated that the composition

and the majority of the physical properties of these ignition test fuels were

comparable with those of the bulk lot. However some deviations are evident in
the distillation characteristics.

ORIGnMA P,'''IF
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Table 11

Fuels Used in Ignition Tests of Advanced Vorbix Combustor Concept

11.8%

Fuel Jet A ERBS H dro en

Aromatic Content - % vol 21.4 31.5 58.0

Hydrogen Content - % wt 13.78 12.95 11.88
Specific Gravity 289/289°K (60/60°F) 0.8104 0.8398 0.8602

Viscosity - cs @ 299°K	 (80°F) 1.73 2.05 1.78

Distillation - °K	 (°F)
Initial 437(321) 448(348) 423(302)
10% 457(364) 463(375) 443(338)

20% 464(377) 468(384) 451(353)
30% 411(3&9) 475 (396) 462(372))

50% 483(411) 488(420) 488(419)
80% 507 (454) 527 (490) 538(509)

90% 520(477) 567(561) 566(560)
Final 551(533) 618(653) 610(640)

Table 12

Fuels Used in Ignition Tests of Single Stag: am d Variable Geometry

Combustor Concepts

11.8%

Fuel Jet A ERBS adraen

Aromatic Content - % vol 18.8 30.8 49.3

Hydrogen Content - % wt 13.72 12.90 11.84
Specific Gravity 289/289°K(60/60°F) 0.8146 0.8418 0.8633
Viscosity - cs @ 299°K(80°F) 1.67 2.26 1.90

Distillation - OK(OF)

Initial 431(310) 451(364) 426(307)

10% 449 (349) 475(396) 449(350)

20% 457(364) 482(408) 461(371)
30% 464 (376) 487 (417) 475(396)

50% 477(400) 502(444) 503(441)

80% 502 (444) 533 (501) 543(518)

90% 513(464) 559(547) 566(560)
Final 547(525) 598(618) 604(628)

The data of Table 8 and Figure 31 indicate that, over the 10 to 50 percent

recovered range critical to volatility, the boiling temperature of the ERBS is
about 22°K (407) higher than that of Jet A implying the ERBS to be
substantially less volatile. However, in the case of the test fuels of Table

11 the boiling temperature of the Jet A and the ERBS are much closer together
over this range and the differences in volatility are minimized. Furthermore,

since the 11.8 percent hydrogen content fuel was produced by blending with

this particular lot of ERBS fuel, the volatility of that test fuel is improved
to the extent that it, rather than the Jet A, is the most volatile of the

three test fuels These differences must be recognized in interpreting the
results of the ignition tests on the advanced vorbix combustor.
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The drums of ERBS fuel and stock used to blend the 11.8 percent hydrogen fuel

for the ignition tests on the single stage and variable geometry combustor
concepts were drawn from the stockpile at Lewis research Center nearly a year
later than those used in the evaluation of the advanced vorbix combustor.

Table 12 shows the properties and composition of the ERGS and the 11.8 ppercent
hydrogen blended fuel mixed from this lot, as well as those of the Jet A fuel
used in the ignition tests on these concepts. The data in this table indicate

that the composition and the properties, including the distillation

characteristics, of these ignition test fuels were comparable with those of
Table 8 and Figure 31.

5.2 TEST APPARATUS - JT9D BASED COMBUSTOR CONCEPTS

Both the single stage and the variable geometry combustor concepts were based

on JT9D-7 components and were evaluated in the same rig and test facility.
This section includes a description of this test apparatus.

5.2.1 JT9D Combustor Test Rig

Figure 32 shows the JT9D combustor test rig which duplicates the internal

contours of a segment of the JT9D-7 engine diffuser and burner case with the
majority of the rig walls having been fabricated from actual engine

components. The JT9D engine combustor has 20 fuel injec t ors and this rig, with
a 72 degree sector width, includes four fuel injectors. .h he JT9D engine

diffuser case incorporates ten service struts, two of which are reproduced in
the test rig and Are located 18 degrees to either side of the plane of
symmetry, i.e., outboard of the two center fuel injectors. The fuel injector
support locations and pad details duplicate those of the production JT9D-7
engine and production fuel injector supports and igniter are employed.
Orifices are installed in the rear bulkhead of the rig to simulate the
extraction of turbine cooling air from the combustor section. These orifices
were sized to duplicate the turbine cooling flow of the JT9D-7F engine at sea
level takeoff.

The combustor liners and front end were fabricated by cutting the required 72

degree sector from existing full annular production or experimental louver

cooled JT9D burner assemblies. Flanges were welded to these liner sectors to
attach them to radial endwalls. The photographs of the combustor concepts in

Figures 8 and 10 show the complete liner sector/endwall assemblies. Figure 33

shows a liner sector with the endwall removed to show the louver cooling on
the endwall. The combustor sector is installed in the rig case from the rear

and is retained by rails on the endwall that slide on tracks on the case. This
accommodates differential thermal expansion while constraining the liner in a

curved position to minimize buckling deflections of the outer liner.

Leads from thermocouples and pressure taps on the combustor liner are bundled

at the rear of the liner and are routed out of the rig by passthroughs
adjacent to the rear bulkhead. The passthroughs are removable from the rig
case with the liner sector to minimize damage to the instrumentation leads

during teardownJas-pembly and hardware reoperation. Figure 34 shows the fully

assembled segment combustor and rig casing.
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Figure 34	 Assembled ,JT9D Combustor Sector Rig

62



5.2.2 JT9D Combustor Test Facility

All of the high pressure tests on the JT9D based combustor concepts were

conducted in X-960 Stand of the Pratt & Whitney Aircraft Middletown test

facility. X-960 is a new test facility with an airflow capacity of up to 45.5
kilograms/ second (100 pounds/second) with inlet temperatures and pressures up
to 923°K (12007) and 4.14 Wa (600 psia) respectively, thereby permitting
testing of representative combustor segments of current and anticipated high
airflow size engines in a nonvitiated environment to full operating pressure.

Figure 35 shows a schematic diagram of the airflow system in X-960. An FT4A

gas turbine drives a free turbine which powers two series mounted compressors.

The rig inlet air is preheated to the appropriate combustor inlet temperature
in two indirectly fired nonvitiating preheaters. The preheaters operate in
parallel and the rig inlet airflow measurements are made in venturis in both

of these lines. The airflow measurement is redundant in that venturis are

located both upstream and downstream of the air preheater. The upstream
venturis provide the primary airflow measurement and are designed for sonic
operation with an airflow measurement accuracy of +0.5 percent.

Figure 36 shows the segment JT9D sized rig installed in the X-960 Stand. The
test rig is enclosed inside a breech locked pressure tank that is pressurized

above the rig operating pressure to avoid large bursting loads on the rig
cases. The tank pressurization air and cooling air for the combustor exit

instrumentation rake are bled from the stand inlet air duct upstream of the
air preheater and the venturis. The rig inlet air duct provides an
accelerating flow field in the transition from a cylindrical to an annular

segment shape upstream of the combustor section inlet plane. The annular
segment is 72 degrees in width at the rig inlet plane to be compatible with
the burner rig.

The circumferentially traversing combustor discharge rake, described in more

detail in Section 5.2.3 following, is mounted on a shaft rotating about the
centerline of the combustor annulus. The traverse shaft extends through the

rear wall of the exhaust chamber and is turned by an externally mounted
actuator.

The pressure level in the test rig is regulated by a water cooled back

pressure valve and the combustion products are quenched by a water spray
before discharging to the atmosphere in a silencer pit.

When a test is completed, the entire pressure vessel enclosing the rig and the

transition section of the inlet duct can be disconnected from the air supply

ducts in the test cell and moved to a dressing area adjacent to the test cell

for removal of the combustor rig proper. Two such pressure vessels are
available at this facility so that, while a rig is being operated in the test
cell proper ,mother rig can be installed in the second vessel in the dressing

area.
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The control room immediately adjacent to the test cell contains all of the
facilities and emissions equipment necessary to operate the rig. Rig control

to maintain test parameters is effected by means of a Rig Supervisory Control

system (RSC). The RSC is a digital computer control unit with appropriate
input and output signal circuits. Pertinent input signals are compared to
preprogrammed levels within the computer, then through the output circuits the

necessary action is taken to trim the facilities equipment as required. In
addition to being used to set test conditions, it also controls the facility
during transients between test points, monitors rig and facility safety

parameters permitting early detection of problems in the facility or rig, and
institutes a controlled shutdown if required.

The data acquisition system incorporates, in addition to the standard pressure

and temperature instrumentation, analytical instruments for emission
measurements consistent with those specified in the latest EPA requirements.
Steam-traced emission sampling lines are routed to the emission console
located in the control room, where they can be manifolded as desired.

The fixed-station emission measurement system is designed to measure exhaust

constituents from the high-pressure burner facility. The instrumentation and

sample-handling system were designed to conform to specifications in SAE
ARP-1256, subsequently adopted, with some exceptions by the Environmental
Protection Agency (References 11 and 12). The laboratory is self-contained and
incorporates gas analysis instruments for measurement of the following:

o	 Carbon dioxide and carbon monoxide are measured with Beckman Model

865 Non-Dispersive Infrared (NDIR) instruments.

o	 Nitrogen dioxide is measured with a Beckman Model 255A Non-Dispersive

Ultr aviolet (NDUV) analyzer.

o	 Nitric oxide and total oxides of nitrogen are measured with a TECO

Model 14D Chemiluminescence analyzer.

o	 Oxygen is measured with a Scott Model 250 Paramagnetic 02 analyzer.

The combustor rig exhaust gas sample is distributed to the various

instruments, with each instrument having its own flow metering system. The
sample handling is shown schematically in Figure 37.

Emissions analysis systems are regularly calibrated against a complete set of

standard gases. Where possible, these gases are traceable to the National

Bureau of Standards through a set of Standard Reference Materials including:

SRM 1673-1675 Carbon Dioxide in Nitrogen

SRM 1677-1681 Carbon Monoxide in Nitrogen

SRM 1665-1669 Propane in Air.
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Figure 37	 Gas Emissions Measuring System

Burner exhaust smoke measurements were obtained through use of a smoke
measuring system that conforms t;> specifications of the Society of Automotive
Engineers Aerospace Recommended Practice, ARP-1179. Figure 38 shows the smoke

measuring system, or smoke meter, which is a semiautomatic electromechanical

devi-.e. It incorporates a number of features to permit the recording of smoke
data with precision and relative ease of operation. The unit is designed to

minimize variability resulting from operator-to-operator differences. One of
these features is a time-controlled solenoid-activated main sampling valve

(Valve A of Figure 38) having "closed," "sample" and "bypass" positions. This
configuration permits close control of the sample size over relatively short
sample times. In addition, this timing system operates a bypass system around

a positive displacement volume measurement meter to ensure that the meter is

in the circuit only when a .,mple is being collected or during the leak check
mode. Other design features include automatic temperature control for the

sample line and filter holder, and silicon rubber filter holders with support

screens for ease of filter handling.

The filter holder has been constructed with a 2.54 cm (1.0 in) diameter spot
size, a diffusion angle of 7.25 degrees and a converging angle of 27.5 degrees.

A Photovolt Model 670 reflection meter with a type Y search unit conforming to

ASA Ph 2.17-1958 "Standard for Diffuser Reflection Density" is used to
determine the reflectance of the clean and stained filters. A set of hunter

Laboratory reflectance plaques, traceable to the National Bureau of Standards,

is used to calibrate the reflection meter.
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Figure 38	 Smoke Meter

The burner test stand complex in the Middletown Test Facility is equipped with
a computer controlled automatic data acquisition system. All data with the
exception of that related to radiometer and smoke measurements, are processed
through an on-line Univac computer that provides near real time data analysis.

The data reduction program processes all data into engineering units and
computes combustor operating parameters such as diffuser inlet Mach Number,
fuel/air ratio, ideal temperature rise and emission indices with the latter

averaged over the circumferential rake scan. Preselected critical parameters
including those derived from emissions analysis are presentee on a scope in
the control room for screening to establish data validity before proceeding to
the next point in the test program. Hard copy printout of the entire data

reduction program output is available at a printer terminal in the Engineering
Building in East Hartford within minutes after the data are acquired.

The Jet A fuel for X-960 Stand was drawn directly from the tank farm at the
Middletown test facility. The Experimental Referee Broad Specification Fuel

(ERGS) was drawn from a 20,000 gallon storage tank near the test facility.

The two lower hydrogen content test fuels were stored in tank trailers at a
transfer station near the test complex. Figure 39 shows a simplified schematic
diagram of the fuel supply system. Transfer and high pressure pumps are

located in the line from each fuel source and the desired fuel was selected by
operating the appropriate pumps and opening the selector valve in that line. A

single pipe delivers the fuel from the selector valve to the rig. The total
flow to the test rig is measured and the system is split into two separate
branches with independent flow control to feed the primary and secondary fuel
manifolds on the rig. Switching of fuels during testing was accomplished by
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activating the pumps in the line from the second source and bringing the fuel

pressure up to the level in the system after which the selector valves were
actuated. The selector valves are on-off type valves and the control system is
set up so that only ore of the four selector valves can be open at a time. The
entire pump and selector valve operation sequence is actuated from the control

room of the test stand and was accomplished with the rig operatingg. Check
valves in the lines upstream of the selector valves prevent backflow through

the lines which could contaminate the fuel in storage tanks. A timed delay
bypass valve downstream of the high pressure pump diverts fuel to a droop tank

for several minutes to avoid long system purge times after a change in test
fuel.

The fuel flaw to the combustor was measured with turbine type flow meters. One

meter was used to measure the fuel flow to a manifold feeding the primary

orifices of the injectors. The fuel flow to the secondary fuel manifold passed
through either of two parallel metering paths which differed in the flow

capacity of the control valves and flowmeters. The dual range system was
required to obtain accurate fuel flow rate measurements over a wide range when

the combustor was operated with single pipe fuel injectors. A fourth fuel flow
meter was employed to provide a redundant measurement of the total fuel flow

to the rig. Each meter was calibrated over the anticipated range of fuel flows
prior to the initiation of testing. Appropriate correction factors for the

differences in specific gravity and viscosity of the test fuels, derived from
the laboratory analysis of these fuels, were incorporated in the data

reduction programs. Fuel supply temperatures were measured with immersion type
thermocouples in the fuel system and the fuel supply pressures were measured

at the primary and secondary manifolds immediately upstream of the injectors.

5.2.3 JT9D Combustor Rig Instrumentation

Figure 40 shows the location of fixed instrumentation on the combustor rig

inlet duct and rig cases. Four multihead Kiel type total pressure rakes and
five multihead total temperature rakes are installed in the inlet duct. The
total temperature and total pressure rakes are located 1.5 and 2.7 annular

duct heights respectively, upstream of the equivalent axial location of the
burner diffuser inlet plane in the rig as shown in Figure 41. Each total

pressure and total temp.rature rake has four radially spaced sensors. The air
temperature probes have shielded Chromel-Al;_mel thermocouples. Four static

pressure taps are circumferentially spaced on the inner radius wall of the
inlet duct at the same circumferential location as the total pressure rakes.

Static pressure taps were installed on the combustor rig case. In conjunction
with pressure measurements from instrumentation on the combustor liners these

data permitted computation of the airflow distribution in the combustor and
simulated turbine cooling air bleed system. A hydrocarbon sniffer was

installed on ; port on the outer burner case to detect fuel in the burner
shroud in the event of fuel system malfunction, damage or aspiration from the

combustor.
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Since the effect of fuel composition on liner temperature and durability was a
major concern in the program,, - .he combustor liners were extensively
instrumented with metal temperature thermocouples. Typically, thirty to forty
Chromel-Alumel thermocouples were installed on each liner sector. The thermo-

couples were installed by welding the junction directly to the cold side
surface of the liner. Figures 42, 43 and 44 show the location of these

thermocouples on the three JT90 combustor liner sectors employed during the

program. Figure 45 shows a photograph of the outer liner of the basic bulkhead
combustor sector after the installation of the thermocouples and is represen-

tative of the lead routing on all of the sectors. On the liner proper, the
thermocouples were installed with the junctions positioned near the weld

between a film cooled panel and the riser of the following louver. Since the
temperature gradient between this region and the cooler louver knuckle is

critical to cyclic fatigue, the measurements were relevant to liner life. In
the case of the bulkhead combustor of Figure 43, several thermocouples were

also located on the cold knuckle of a louver to verify the temperature in this
region. The readings from these thermocouples were excluded from any "average"
metal temperature definition. The circumferential distribution of thermo-
couples generally favored positions downstream of the two center fuel

injectors and midway between these injectors. Two or three of the thermo-
couples on the liners could not be connected to the data acquisition system

because they were used for condition monitoring purposes by the supervisory
control system in the test facility. Thermocouples located near the endwalls

of the liner sectors were generally allocated to this purpose.

When the instrumentation was installed on the bulkhead combustor sector of

Fi gure 43, an intermediate region of the liners was left devoid of
thermocouples. The dilution air orifices are located in this region of the
combustor, and the configuration changes that were to be made on this sector
required repeated reoperation of the liners in this area to alter or relocate

these apertures. Since the instrumentation would be susceptible -L*:o damage
during these reoperations, it was concentrated in the primary and dilution

zones upstream and downstream of these areas. Likewise measurement of

meaningful metal temperatur s in the Finwall® panels of the combustor liner
of Figure 44 would require immersing the thermocouple Junctions in the hot
wall of the panels. Because of the complexiV of such an installation, no

thermocouples were installed on the FinwallQP panels. However, the density of
thermocouples on the bulkhead of the combustor was increased to provide a
better indication of primary zone heat load effects.

A porous plug radiometer was installed in the test rig to provide direct

measurement of the radiation heat transfer to the liner during the evaluation
of selected configurations. As showr in Figure 40 the radiometer was mounted

in a boss or. the rig case with the sensing surface protruding through a hole
in the combustor liner in order to sense t-ae radiant heat load in the primary
combustion zone. Figures 42 and 43 show the loca^ion of the radiometer probe
in the combustors.
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Figure 45 JT9D Bulkhead Combustor Outer Liner Sector After Installation of

Thermocouples

Figure 46 shows a cross section view c` the porous plug radiometer, which is a

transpiration cooled device designed to measure incident tonal hemispherical

radiation in the presence of strong convective conditions. These radiometers
use a controlled flow or transpiration cooling through the sensor to blow the
free stream thermal boundary layer from the front surface of the probe. This
technique allows a direct measurement of the radiant heat flux without

complication from convective or reactive effects. The sensing element consists
of a thin porous plate through which a precisely metered quantity of transpir-
ant gas of filtered shop air or bottled nitrogen is passed. A differential
Chrome 1-constantan thermocouple measures the temperature difference between
the gas and the plate, which is related to the heat flux into tree porous plug.
The probe was calibrated prior to use to establish the relationship between

incident heat flux, gas flow rate and gas temperature rise. During test, the
output fron the differential thermocouples in the Sensor was processed on a
digital mil ivoltmeter that is incorporated in a p)rtable Hewlett Packard

computer. Preprogrammed calibration data on the radiometer was used to provi'de

real time readout of the heat flux and sensor surface temperature.

The combustor exit conditions were measured with the exit rake shown in Figure

47. The rectangular flan g e of the rake attache: V) a flat on the side of the
traverse drive shaft on the centerline of the exh,lust chamber, as shown in

Figure 36. The radial arm, support the senso-s at the radius of the combustor
exit annulus. Figure 48 shoes the details of the rake head which consists of

four gas sampling/total pressure probes and five shielded gas temperature

thermocouple probes spaced radially a(.r , ,ss the combustor exit annulus in two
circumferentia,ly spaced rows. The mount am and the gas sample/total pressure
tubes are cooled with high pressure air bled from the rig inlet supply duct

upstream of the air-, low measurement venturis.
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Figure 46	 Porous Plug Radiometer

Figure 47	 )T9D Combustor Exit Rake Assembly
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Figure 48	 JT9D Combustor Exit Rake Head Details

The gas temperature thermocouples in the rake employ a g . -ended immersion type
of junci; 4 on with ISA Type B thermocouple wire (Platinum, six percent Rhodium
vs Plat inum, 30 percent Rhodium) . The calibration of this wire is accurate to
1975°K (3100 0F). The gas sampling heads were made from Platinum - 20% Rhodium
alloy while the r emainder of the lines were made from stainless steel tubing.
When emissions or smoke is measured, the samples fron

selected by valves in the sample lines, are mixed in
the analysis equipment. All of the emissions or smoke

this program were extracted from all four heads on th
produce a single representative average sample for th

circumferential position. Temperature measurements on
rake have shown that the gas samples are quenched to

400°F) by the cooling air in the rake and the sample
and the analysis equipment are heated to maintain the

0	 0about 425 K (300 F ) . When these sensors are used to measure
sample lines are dead ended by closing the selector valves,

is recorded on a transducer in the automatic data recording

1 various sensors, as

a manifold and feed to
samples analyzed during

e rake and mixed to
e particular

this type of air cooled
425 to 475°K (300 to

lines between the rake
SaT,- . ? temperature at

total pressure the
and the pressure

system.
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5.3 TEST APPARATUS - ENERGY EFFICIENT ENGINE COMBUSTOR CONCEPTS

The advanced Vorbix combu>tor concept was designed for the NASA/Pratt 6

Whitney Aircraft Energy Efficient Engine and the evaluation of this combustor

involved use of rig components sized for geometric computability with that
engine. This rig, the test facility and instrumentation were essentially

identical to those employed during the evolution of this combustor under the
Energy Efficient Engine grogram (Reference 9). This section provides a

description of this experimental apparatus.

5.3.1 Energy Efficient Engine Combustor Test Rig

The Energy Efficient Engine combustor test rig was a sector rig which

incorporated many of the design features of the JT9D combustor rig (see

Section 5.2.1). The rig cases describe a 90 degree sector and enclose a 75
degree sector of the combustor proper. This is sufficient to include five of

the 24 diffuser case struts and pilot stage fuel injectors of the full annular
combustor section, and ten of the 48 carburetor tubes. Figure 49 shows a cross

section of this rig. While the JT9D combustor rig had been fabricated from an
engine diffuser case, the aerothermal definition of the engine gaspath was
incomplete at the time construction of this rig was initiated. Consequently,
it consists of basic structural cases with removable fillers and inserts used

to reproduce the case contours in the prediffuser, dump and burner shroud
regions. The rig incorporates manifolds for extracting simulated turbine

cooling and service bleed air and, in operation, the airflow rates in these
systems were metered and controlled tc duplicate those in the engine.

For development flexibility, the pilot and main stage fuel injectors were
mounted on individual supports rather than on the modular supports that would
be used in the full annular engine combustor. The rig is compatible with the

use of either the segmented Finwall® combustor liner sector or a liner sector

with conventional sheet metal louver construction. Either liner is attached to
louver cooled endwalls similar to those shown on the JT9D combusto.° sector in

Figure 33. Like the JT9D rig construction, the burner sector is mounted on
rails on the endwalls of the case that constrain the liners in a curved
position while accommodating thermal expansion.

5.3.2 Energy Efficient Engine Combustor Test Facility

The high pressure tests on the Energy Efficient Engine combustor rig were

conducted in X-903 Test Stand. X-903 is one of four high pressure combustor
development stands located in the Building 330 test complex at the Pratt 6

Whitney Aircraft Middletown plant. Normally, airflows up to 11.4 kg/sec (25
lb/sec) at pressure levels up to 4.3 MPa (625 ps i a) are provided in this stand

by two steam driven two stage turbocompressors and one six stage steam driven
boost compressor. However, this airflow was inadequate to provide combustor
inlet Mach number similarity in the sector rig at the inlet pressure levels of
the Energy Efficient Engine cycle at high power levels. For these operating

conditions the air was supplied from the compressors at X-960 Stand in the

adjacent building. As indicated in Section 5.2.2 these compressors were
rapable of providing air flow rates up to 45.5 kg/sec (100 lb/sec) which was
more than adequate for operation of the sector rig. Regardless of the source

of the air, it was preheated to the required combustor inlet temperature in an

indirect fired heat exchanger prior to delivery to the pest rig.
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Figure 49	 Energy Effic;ent Engine Combustor Sector Rig

The combustor test rig is mounted within a cylindrical pressure tank. Tank

pressurization is automatically controller' to 0.04 MPa (6 psi) above rig
pressure. In this manner, the p ressure load is supported by the facility
pressure vessel, permitting experimental hardware to be of relatively light
construction. A retractable tank section with a quick-disconnect breech-lock
seal is provided to enable easy access to the test rig. Exhaust gases are

collected in a water-cooled exhaust chamber and ducted underground to an
expansion and liquid separation pit at the base of the main exhaust stack.
X-903 Stand is serviced by an automated data acquisition and record^;ng system
similar to that in X-960. All necessary data required for configuration
analysis are recorded and processed in real time on the central Univac
computer. The computer reduces the data, converts it to engineering units, and

displays the results on a data display scope at the test facility. The data
can then be reviewed, after which printed output can be obtained at the test

location or at the computing center. The printed output includes raw and

reduced data for both performance and gas analysis evaluation.

79



The emissions and smoke collection and analysis system serving X-903 and the
other test stands in Building 330 is similar to that in X-960 and emplo s
identical instruments. This system was described in Section 5.2.2 and shown in
Figures 31 and 38.

During the high pressure test sequence, the advanced Vorbix combustor was
operated on Jet A, Experimental Referee Broad Specification fuel (ERBS) and
the 11.8 percent hydrogen test fuel. These fuels were supplied through the
fuel system in X-960 Stand in the adjacent building. As shown in Figure 39 the
legs of the distribution system carrying these three fuels are branched
downstream of the transfer pumps. The branch lines route to Building 330,
where X-903 Stand is located, and feed three independent high pressure pumps.
The remainder of the fuel supply system in X-903 Stand, i.e., that downstream
of the high pressure pumps, was essentially the same as that shown in Figure
39 for the X-960 Stand .

5.3.3 Energy efficient Engine Combustor Rig Instrumentation

Table 13 provides a list of the fixed instrumentation installed on the inlet
duct and the cases of the Energy Efficient Engine combustor rig. When. instal-
led in the test facility the airflow entered the rig through a transition duct
followed by an inlet duct which had a constant annular sector cross section.
The inlet total pressure and total temperature rakes were installed in this
duct upstream of the prediffuser inlet plane. The rig was instrumented
extensively with static pressure taps, many of which had been required to
accomplish the early development objectives of the Energy Efficient Engine
program. These included the static pressure taps in the prediffuser, and the
strut mounted total pressure rakes at the prediffuser exit which had served to
document the performance of this component. Likewise the static pressure taps
in the burner shrouds and under the pilot stage hood provided substantiation
of the pressure recovery in these passages but were used in the present
evaluation primarily to confirm the combustor airflow distribution.

Table 13
Instrumentation on Energy Efficient Engine Combustor Rig Cases

Location	 Measurement/Type	 Quantit

6
5

5/5

2 rows of 6/6

4 struts

2 rows of 4
1

2 rows of 6
1

Inlet Duct	 4-Element total pressure rakes
4-Element total temperature rakes
ID/OD wall static pressure taps

Prediffuser	 ID/OD wall static pressure taps

Diffuser Case Struts 	 5 element total oressure rakes

Outer Shroud	 Wall static pressure taps
Hydrocarbon sniffer

Inner Shroud	 Wall static pressure taps
Hydrocarbon sniffer

Combustor Hood	 Static pressure taps
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When the segmented liner combustor sector was first assembled for evaluation
under the Energy Efficient Engine program 40 Chromel-Alumel thermocouples were
installed on the liner segments. Thirty-six of these were located on the hot

side surface of the segments. Th it installation involved milling a slot into
the hot side wall of the FinwallV and imbedding the junction in the metal
while routing the leads off the segment without disrupting the cooling
airflow. The four remaining thermocouples were installed on the hooks which

attached the segments to the liner structural case. Figure 50 shows the
location of these thermocouples on the sector burner liner'.

The combustor exit conditions were measured with instrumentation mounted on a

fixed vane pack. The pack consisted of 14 radial vanes spanning the combustor

exit annulus and spaced at 5.7 degree increments as shown in Figure 51. The
vanes have flat parallel sides with semicircular leading and trailing edges

and are 0.95 cm (0.375 in) thick. The vane leading edge is constructed of a
0.95 cm (0.375 in) tube that connects to a manifold on the opposite side. The

manifold covers the remaining cross-sectional area of the vane. The vanes are
air cooled, and film cooling holes, 0.635 mm (0.025 in) in diameter, are

located in a 3.8 mm (0.150 in) staggered array. The holes are canted on the
sides 30 degrees to downstream. The cooling air flows through the leading edge

tube into the manifold at the opposite end from which it is directed into the
rear cavity of the vane and is discharged through the film cooling holes on
the remainder of the vane surface.

Gas temperature thermocouples and gas sampling heads are installed on the

leading edge of the eight vanes in the center of the combustor exit sector.
Five shielded thermocouples are spaced radially across the combustor exit

annulus on these vanes and incorporate a grounded immersion type of junction

with ISA Type B thermocouple wire (Platinum, six percent Rhodium vs Platinum,
30 percent Rhodium). The calibration of this wire is accurate to 1975°K
(31000 F). Four gas sampling heads are located radially between the thermo-

couples on each of these eight vanes. The gas sampling heads are uncooled and
are fabricated in a convergent-divergent shape from a Platinum-20% Rhodium
alloy. The sample lines inside the vane body are fabricated from stainless
steel tubing and the sample was quenched by the cooling air inside the vane.

The sample lines between the rig and the analysis equipment are heated to

maintain the sample temperature at about 425°K (300 0F). When emissions or
smoke are measured the samples from various sensors,as selected by valves in

the sample lines, are mixed in a manifold and feed to the analysis equipment.
All of the emissions or smoke samples analyzed during this program were

extracted from all 32 gas sample heads on the vane pack and mixed to produce
single representative average sample for the particular combustor operating
condition.

radially spaced total

located on each side of the
vanes with thermocouple

each endwall of the rig

Four vanes in the pack were instrumented with five

pressure Kiel head probes. Two of these vanes were
exit annulus adjacent to the central array of eight

probes and gas sampling heads. The vanes closest to

were not instrumented.
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Figure 50	 Thermocouple Sensor Locations on Segmerted Liner

5.4 ALTITUDE TEST FACILITY

The final configuration of each of the three combustor conccpts was evaluated
for altitude and sea level ignition capability and stability in an altitude
facility at X-336 Stand in the Experimental Test Airport Laboratory at P-3tt &
Whitney Aircrrft's East Ha tford facility. X-336 is a subatmospheric pressure
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test stand equipped with inlet air and fuel coolers and ,sir dryers. The
exhaust duct in this stand can be evacuated to pressures as low as 0.001 W a
(1 psis) by a combination of vacuum pumps, and refrigerated air can be

supplied at temperatures as low as 224°K (-60°F) and dried to a water content
of less than 1 gm/kg.

Figure 51	 Combustor Exit Instrumentation Vane Pack

For ignition testing the entire combustor rig and the inlet ducat section

containing the burner inlet instrumentation is removed from the high pressure

facility and installed in X-336 Stand. The fuel supply system permits drawing
fuel from either the standard facility Jet A supply or, through manually

actuated valves from barrels of special test fuels.

The existing rig inlet rakes and the venturi in the facility inlet duct are

used to establish combustor air inlet conditions. Ignition is detected by

Chromel-.Alumel immersion type thermocouple probes installed in the combustor
exit plane with one probe located axially downstream of each fuel injector.

The signals from these thermocouples, the frequency count from a turbine type
flowmeter in the primary fuel supply line, the output from a pressure

transducer in the primary fuel manifold and the igniter pulses are all
recorded urn a Visicorder strip chart to document the t'3nsien`_s during the

ignition process.
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SECTION 6.0

EXPERIMENTAL PROCEDURES

6.1 INTRODUCTION

This section presents a definition of the parameters used in assessing the

performance and emissions characteristics of the combustors. Also contained in
this section are the test procedures and the test conditions.

The various combustor performance and emissions parameters that are discussed

as program results are listed in Table 14. Definitions of the calculated

parameters are presented in Section 6.2 and 6.3 while the symbols are defined
in the Nomenclature List.

Table 14

Summary of Combustor Performance Parameters

Parameter

Total Airflow
Burner Airflow

Inlet Total Pressure

Inlet Total Temperature

Reference Velocity

Total Fuel Flow

Fvel Flow Split
Fuel/Air Ratio

Burner Total Pressure Loss

Metal Temperature
Fuel Temperature
Pattern Factor

Carbon Balance Fuel/Air

Ratio
Emissions Index.

Combustion Efficiency

EPA Parameter

Symbol Units Measured Calculated

Wat Kg/sec (lb/sec) X
Way Kg/sec (lb/sec) X

PTin MPa	 (psia) X

TTin
°K	

(°F) X

VRef m/sec (ft/sec) X
WF Kg/sec (lb/sec) X
% of WF % X
F/A -- X

AP/PTin % of PTin X
°K	 (°F) X

f
WT

°K	
(°F) X X

FAC E -- X
EI g/kg X
77 c % X

EPAP g/kN X

6.2 PERFORMANCE PARAMETER DEFINITIONS

The definition of several combustor performance parameters require the

identification of average combustor inlet and exit total pressure and total

temperaturF. The combustor inlet total temperature and total pressure, TTin
and P Tin are the numerical averages of the measured values from the rakes in
the rig inlet duct immediately upstream of the diffuser. Likewise the exit

total temperature and total pressure TTexit and PTexit are the numerical

C -16c
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averages of all measurements obtained at the combustor exit plane. In the case

of the JT9D based single stage and variable geometry combustor concepts this

data included measurements at nineteen (19) positions of the circumferentially

traversing combustor exit rake. As shown in Figure 52 these positions were
evenly spaced three degrees apart across the majority of the 12 degree width

of the sector,

RAKE IN
STOWED
POSITION

THERMOCOUPLES

FUEL INJECTOR

f

GAS
SAMPLE TOTAL

PRESSURE

1A „	 DIFFUSER STRUT

TYP
3-F

14 POSITIONS Of
THERMOCOUPLE HEADS

DURING TRAVERSE	 3 POSITIONS OF GAS SAMPLE
HEADS DURING EMISSIONS OR

SMOKE TRAVERSE

Figure 52	 Schematic Front View of JT9D Combustor Sector Showing Exit Rake

Circumferential Positions

The advanced Vorbix combustor test rig incorporated fixed position combustor

exit instrumentation mounted on a vane pack. The combustor exit temperature
was the numerical average of the measurements from forty (40) gas temperature

thermocouples mounted on eight vanes in the center of the combustor exit

sector as described in Cection 5.3.3. Likewise, the combustor exit total
pressure was the numerical average of the measurements from twenty (20) total
pressure probes mounted on four of the vanes in the combustor exit sector.

Combustor performance parameters computed from this and other data are
described below.

Combustor Airflow

lire combustor airflow Wa b is calculated by subtracting the measured inner
and outer turbine cooling air bleed flows and the estim-,Ied combustor liner

sidewall cooling airflow from the measured total rig airflow.
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The reference velocity is defined as that flow velocity that would result if
the total combustor airflow, at the compressor discharge temperature and

static pressure, were passed through the combustor liner at the maximum cross
sectional area. This area is 111 cmz (111.2 in ) for the JT90 based
combustor concepts and 35.

7
 cm2 (55.4 in2) for the Energy Efficient Engine

combustor sector.

Total Pressu r -1, Loss

The tota\1 pressure loss across the burner section includes losses in the
diffuser as well as those across the burner proper and is referenced to the

average burner section inlet total pressure as:

.APT = 
PTin - PTexit
	 (Eq. 1)

P Tin	 PTin

Pattern Factor

The combustor exit temperature nonuniformity is characterized by the pattern

factor which is defined as:

P.F. = TTexit max - TTexit
	 (Eq. 2)

	

T Texit	 TTin

where:

TTexitmax - maximum temperature measured at exit

Metered Fuel,/Air Ratio

The metered fuel/air ratio is the ratio of the total combustor fuel flow, as
defined by turbine meters in the fuel supply system, to the combustor airflow,
Wab.

6.3 EMISSIONS ANALYSIS PARAMETERS

Carbon Balance Fuel Air Ratio

The carbon balance fuel/air ratio was computed using the equation:

(Eq. 3)
F/ ACB = 

MC + aMH	
NCO + NC 02

MAIR	 100 - 
1

+	 NCO - 9NCO2

where:

	

	 Mx is the molecular weight of the x th specie

Nx is the mole fraction of the x th specie
cv is the hydrogen to carbon ratio of the fuel

and the measured species concentrations.
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Emissions Indices

Concentrations of emissions constituents were reduced to emission indices in

the form of grains of constituent per kilogram of fuel. Generally the carbon
balance fuel.-air ratio of the sample was used to make the conversion from
concentrations since it is considered more representative of the actual fuel
air ratio at the site of combustion. However, a malfunction of the carbon
dioxide measurement apparatus occured during the test of configurations VG-3
and VG-4. Since this precluded accurate computation of the carbon balance fuel

air ratio the metered fuel air ratio was used for the conversion of this data.
Data obtained from other configurations which would be compared against that
of configurations VG-3 and VG-4, such as VG - 1 and SS	 were converted to
emissions indicies using both fuel air ratios and both sets of results are
tabulated in Appendix C. However, except in situations where comparison with
the emissions data from conf igurat ions VG-3 arid VG-4 is being made, the
emissions characteristics cited are those computed with the carbon balance
fuel air r,itio.

In evaluating the JT-0 based combustor concepts, involving the use of a
circumferentially traversing emissions sampling rake, an average emissions
index was computed by numerically averaging the individual readings at three

circumferential posit ions. These three positions are shown in the schematic
diagram of Figure 5". The evaluation of the Fnergy Efficient Engine-based
advanced Vorbix combustor concept involved use of a combusto r exit vane pack
with thirty two (3.) discrete gas sampling heads. In operation, a single mixed

sample produced by extracting simultaneously ,rnd at nearly equal flow rates
through all sample ports was used. The mixed sample was analysed for

composition and the computed carbon balance fuel air ratio and emissions
indices is a representative average.

orrections were applied to the emissions indices to account for deviation of

the test condition from standard conditions. These included correction of
NOx emissions for inlet humidity and of all constituents for deviations of
the inlet total pressure relative to the appropriate engine cycle. Except for
the operation of the advanced Vorbix combustor at climb and takeoff conditions
these inlet pressure deviations were smal l and consisted only of experimental
inaccuracies in setting the test conditions These co r rection factors are:

l,lnteas
Co rrec tea I I I tic	 Measured E I 1 Hi x,

f T c or ►• )

ptnk^as
iorrectOki EI ( 0	 Measured EIC O x	 ,

1 r c or ►'

Corrected EIN ii	 Measured LINOT̂«?r'r	 V\p
x	 x	 E`

lmeas

(Eq. 4)

(Eq. `!)

0.01:1,+ O i mt,,is - Hcor ► )

(E(l. h)

whe-, v: 	11	 Inlet specific humidity
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Combustion Efficiency

Combustion efficiency is calculated from gaseous emissions data on a deficit

basis using the average carbon monoxide and total unburned hydrocarbon
emissions. The calculation is based on an assumption that the total

concentration of unburned hydrocarbons can be assigned the heating value of
methane 04 ) and the equilibrium concentration of carbon monoxide is
negligible. The equation is:

Vic = 1 _	 10 EICO + 50.2 EITHC	 (Eq. 7)

1000 HV

where:	 HV = heating value of the tuel (kJ/kg)

EPA Weighted Emissions Parameter

The average emissions at the idle, approach, climb and takeoff conditions are

used to compute the EPA parameter for a landing and takeoff cycle in the form:

EPAP = ,Z 
EIj Wfj tj	

(Eq. 8)
Fn

where:	 EI = Emission Index (gm/kg of fuel)

Wf - Fuel flow (kg/hr)

t = Time in mode (nrs)
j = Mode, i.e., idle, approach, climb and takeoff

Fn= Rated engine thrust (kilonewtons)

This equation reduces to the form:

EPAP =	 Aj EI j	 (Eq. 9)

where Aj is a coefficient unique to the particular engine cycle. Table 15

lists the values of the coefficients for the JT9D-7F and Energy Efficient
Engine cycles.

Table 15

Value of EPAP Coefficients

Coefficient A for

Time In Mode Coefficient A for Energy Efficient

Mode (minutes) JT9D-7F Cycle Engine Cycle

Idle 26.0 1 63 1.10

Approach 4.0 0.72 0.57
Climb 2.2 1.12 0.97

Takeoff 0.7 0.44 0.38
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6.4 HIGH PRESSURE TEST PROCEDURES

The single stage and variable geometry combustors were evaluated over test

matrices structured around the combustor operating conditions in the JT9D-7F
engine as listed on Table 3. The rig operating conditions were identical to

those of that table except that the combustor airflow was 20 percent of that
listed to correspond to the 72 degree sector width of the rig. Because of the

program objective of evolving the combustor concepts toward operation on
broadened properties fuels the majority of the test points involve operation

with ERBS fuel. The basic matrix includes operation with ERBS fuel at the
combustor design condition at each of the four power levels in the

Environmental Protection Agency landing and takeoff cycle and at the cruise
aerodynamic design point of the engine. Comparative data were also obtained

with Jet A fuel and parametric variations conducted at the idle and takeoff
conditions. A second and more extensive test matrix was used for evaluation of

the performance of selected single stage and variable geometry combustor
configurations. This test matrix parallels the structure of the basic matrix
wi-th the principal feature being the inclusion of test points with additional

low hydrogen content fuels. The matrix involved operation of the combustors on
both Jet A and ERBS at the five major operating conditions, i.e., the four

conditions in the EPA landing and takeoff cycle and the cruise condition.
Operating with the two lower hydrogen content test fuels was limited to the

idle, cruise and takeoff operating conditions. The matrix also included

parametric variations which were conducted with both ERBS fuel and the 11.8
percent hydrogen blended test fuel.

The high pressure tests on the advanced Vorbix combustor were conducted at

combustor inlet and operating conditions representative of the Energy

Efficient Engine cycle as listed in Section 4.3. However, because experience
with operation of the test rig with the segmented Finwall® combustor liner
was limited, the total pressure at the climb and takeoff operating conditions
was reduced to 92 and 86 percent respectively of the design engine pressure

level at these conditions. Table 16 presents a summary of the operating
parameters of the Energy Efficient Engine combustor rig as it was run under
the present program.

In conducting the high pressure tests, efforts were made to conserve the ERBS
and other special test fuels. Since it required considerable running time to
complete a major change of combustor inlet conditions and achieve thermal
stabilization in the high pressure test facility, the combustors were operated

on Jet A fuel during these transitions as well as during the initial startup.
The remote test fuel selection system was used to switch operation to ERBS or

one of the lower hydrogen content fuels only after inlet condition
stabilization had been achieved at the desired test conditions.

The data of Section 5.1 indicate that the heating value of the test fuels

decreases with decreasing hydrogen content. In operating an engine on lower

hydrogen content fuels the fuel/air ratio of the combustor would have to be
increased to m3int ,i the net energy release constant at each power setting.

However, the cifference in the heating value of Jet A and ERBS was less than

one percent ano increments in the fuel/air ratio of this magnitude would be
less than the accuracy to which rig operating conditions could be maintained.
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Table 16

Operating Conditions of the Energy Efficient Engine
Sector Combustor Rig

Inlet	 Inlet	 Combustor
Engine	 Total	 Total	 Sector	 Combustor

Operating	 Pressure	 Temperature	 Airflow	 Fuel/Air
Condition	 MPa (psis)	 °K (°F)	 kg/sec (lb/sec)	 Ratio

Ground Idle	 0.434 (63)	 472 (391)	 2.76 (6.06)	 0.0098
(6% Thrust)

Approach	 1.159 (168)	 620 (659)	 5.89 (12.94)	 0.0150
(30% Thrust)

C1imbout	 2.647 (384)*	 775 (934)	 12.01 (26.42)**	 0.0217
(85% Thrust)

Sea Level Takeoff	 2.760 (400) *	 805 (991)	 12.31 (27.06) **	 0.238
(100% Thrust)

Max. Cruise	 1.400 (203)	 754 (899)	 6.44 (14.13)	 0.0231
(10,688 m135,000 ft, M = 0.8)

* Reduced from design level
**Reduced from equivalent engine level to maintain diffuser inlet Mach number
at reduced inlet pressure.

Nigh power operation of both the JT9D and the Energy Efficient Engine

combustor rigs was potentially limited by the temperature capability of the
combustor exit instrumentation. In the case of the Energy Efficient Engine
combustor rig with its fixed exit vane pack, the fuel/air ratio at takeoff was
restricted to 0.022, as opposed to the design value of 0.0238, by this
limitation. The traversing combustor exit rake used on the JT9D combustor rig
could be rotated to a stowed position outside of the combustor exit annulus as
shown in Figure 52. This permitted more flexible operation in situations where
local gas temperatures were excessive in that after exit temperature and
emissions traverses were conducted at the highest allowable fuel/air ratio,

the rake could be moved out of the gaspath while the fuel/air ratio was
increased to the design level to acquire data on liner temperatures or heat
flux at that condition.

6.5 ALTITUDE IGNITION TEST PROCEDURES

Ignition and stability evaluations were conducted on the final configu"ation

of each of the three combustor concepts. The single stage and variable
geometry combustor concepts were evaluated at conditions representative of

those encountered in the JT9D-7F engine while the advanced Vorbix combustor
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was tested at simulated operation of the Energy Efficient Engine. Table 17
provides a list of the combustor operating conditions at each point in the

altitude relight/cold start test sequences. These are referenced to the flight
and relight envelopes of Figure 53 which shows three superimposed lines of

constant airflow that are constructed from the windmilling characteristics of
the compressor in the appropriate engine. These lines are spaced across the

entire flight envelope rather than just the airstart envelope to provide
substantiation of the ignition characteristics over a wider range of combustor

inlet conditions including the lower flight Mach numbers at which the

combustor inlet temperature is lower.

Table 17

Altitude Ignition/Stability Test Conditions

Inlet

Airflow	 Sector Rig	 Total	 Inlet
Line on	 Airflow	 Temperature	 Total	 Wf i

Figure 6-2	 kg/hr (lb/hr)	 °K (°F)	 P ressure	 kg/hr ^Ib/hr)

JT9D-1F Engine

1 1920 (4233) 242 (-23) Varied 57.8	 (127)

2 2944 (6483) 258 (	 5) Varied 57.8	 (127)

3 4180 (9200) 272 (	 30) Varied 57.8	 (127)

Energy Efficient Engine

1 364 (	 800) 243 (-22) Varied 59	 (130)

2 726 (1600) 250 (-10) Varied 59	 (130)

3 1456 (3200) 288 (	 60) Varied 59	 (130)

In evaluating the altitude ignition capability, the airflow to the combustor

rig was established or ne of these lines and ignition attempts made at
progressively lower combustor inlet pressures, corresponding to higher
altitudes, until the limit of ignition was reached. These tests were conducted

at a fixed inlet temperature corresponding to the upper boundary of the
relight envelope. The ignition attempts were made at a fuel flow rate

corresponding to the minimum scheduled fuel flow of the appropriate engine.

The minimum pressure blowout condition was also established on each airflow

line. In these tests, the combustor was fired at a low simulated altitude,
i.e., at high pressure, and after combustion was stabilized the pressure was
progressively decreased at constant inlet temperature, fuel flow and airflow

until blowout was encountered.
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Figure 53 Altitude Relight Test Conditions Superimposed on the JT9D-1 Flight
Envelope

Cold ignition tests were also conducted by operating with both the inlet air

and the fuel cooled to simulate 245 to 250°K (0 to -10°F) ambient
temperatures. The rig airflow duplicated the compressor discharge Mach number

at sea level cranking conditions. The time to achieve ignition was recorded

over a range of starting fuel flow rates.

The altitude relight, minimum pressure blowout and cold start tests were

conducted with Jet A, ERBS and the 11.8 percent hydrogen test fuels.
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SECTION 7.0

EXPERIMENTAL RESULTS

During the experimental investigation, a total of sixteen combustor

configurations were evaluated in the high pressure test facility, requiring

more than 200 hours of facility operation. In addition, ignition and stability
characteristics of one configuration of each combustor concept were evaluated
in the altitude test facility. Data from these tests is tabulated in Appendix
C and results are discussed in this section. Section 7.1 presents results of
the evaluation of three single stage combustor configurations which are
similar to production combustors used in various models of the JT9D engine.

These results are significant because they establish the sensitivity of these
combustors to fuel composition. Section 7.2 evaluates the test results for the

remaining configurations of the single stage combustor concept. These
configurations involved perturbations to primary zone stoichiometry, fuel

injectors and more effective liner cooling; they were tested primarily with
ERBS fuel. Results of the evaluation of the advanced Vorbix staged combustor

concept are presented in Section 7.3 while configurations representing
different modes of operation of variable geometry combustor concepts are

discussed in Section 7.4. The sensitivity of the ignition and stability
characteristics of selected combustor configurations is discussed in Section

7.5.

7.1 FUEL SENSITIVITY OF BASELINE COMBUSTORS

Three combustor configurations, SS-1, SS-2 and VG-1, were selected as baseline

configurations. Configuration SS-1 is the current production combustor for the
JT9D-7F engine and hence is representative of an in-service combustor.
Configuration SS-2 duplicates the advanced bulkhead type combustor which had
been developed for the JT9D-7F engine. It is conceptually identical to the
combustor used in more advanced JT91) engine models such as the JT9D-7R4.
Configuration VG-1 had been designated as the initial configuration of the

variable geometry concept, However, it is identical to Configuration SS-2

except for operation of the duplex fuel injector in the single pipe mode
through the aerated secondary fuel system. Consequently, the effect of single

pipe versus duplex fuel injection could be isolated by comparing these two
configurations. Further, since Configuration VG-1 was evaluated with all four

test fuels at the most critical operating conditions (whereas Configuration

SS-2 was restricted to operation on Jet A and ERBS fuel) its inclusion as one
of the baseline configurations extends the evaluation of the basic bulkhead

combustor over the entire range of fuel composition. The fuel sensitivity of
these three configurations is discussed in the remainder of this section.

7.1.1 Liner Heat Load

Fuels with lower hydrogen content have been found to form higher

concentrations of carbonaceous particulates in the initial combustion zone.

These particles become luminous when heated to near stoichiometric

temperatu res by the combustion gases and radiant heat transfer to the liner

becomes a significant part of the net heat load. In the test program, radiant

i
a
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heat flux to the combustor liner was measured at a single position on the
Inner liner immediately downstream of the fuel injector in each baseline
combustor configuration. Figure 54 shows the relation between radiant heat
flue, and the hydrogen content of the fuels. The magnitude of the measured heat
fluxes is qualitatively consistent with accepted empirical models of the
combined gas/luminous particle radiation process (Reference 13). The data show
a general trend of increasing heat flux with decreasing hydrogen content. The

use of ERBS fuel (12.93 percent hydrogen) rather than Jet A (13.62 percent
hydrogen) leads to increases in heat flux of up to thirty percent depending on
the combustor configuration and operating mode.

COMB USTOR
O — PRODUCTION (SS-1)
q — BULKHEAD SINGLE PIPE (VG-1)

	

'200	 6 ` BULKHEAD BASELINE (SS-2)

TAKEOFF	 100

;300
I	

i

 80

O

60

600

CRUISE	 80

60

0
40

12	 13	 14

FUEL HYDROGEN CONTENT,%WT.

Figure 54	 Radiant Heat Flux to Liner in Primary Zone of the Three Baseline

Single Stage Combustors
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The level of heat flux in the current production combustor (Configuration
SS-1) is generally lower than in the bulkhead combustor. These measurements
may have been influenced by the position of the radiometer or caused by
locally leaner mixtures in the production combustor. In the bulkhead

combustors, the entire primary combustion region downstream of the fuel
injector face could be sensed by the radiometer, whereas in the production

combustor the probe was located downstream of the "cone-annular" transition

and did not sense radiation from the regions inside the flame stabilizing

cones (see Figures 42 and 43). Alternatively, these differences may have been
caused by locally leaner mixtures in the production combustor. There is

minimal difference in the heat flux levels encountered in the bulkhead
combustor configurations with the fuel injector operating in the normal duplex
mode and in the single pipe injection node. This is to be expected because, at
takeoff, ninety percent of the total fuel flow passes through the aerated
secondary system of the duplex fuel injector.

The data in Figure 54 show a general trend toward greater sensitivity of heat

flux to fuel hydrogen content in the Jet A to ERGS range, i.e., hydrogen
contents of 13.6 to 12.9, than in the low hydrogen content range. The single

exception to this trend occurred in the production combustor at cruise. This

leveling of radiant heat flux at low hydrogen content could be caused by a
single factor or a combination of several factors, including (1) delayed heat

release, (2) saturated particulate concentrations, or (3) fuel composition

effects. A brief description of each factor follows.

1. Delayed Heat Release

The lower hydrogen content fuel could be burning at a slower rate because
of more complex chemistry. This could cause the point of highest heat
release to move downstream in the combustor, diminishing heat flux at the

radiometer location. However, this does not appear to be the case because
a downstream shift was not detected by the thermocouples on the liners.

2. Saturated Particulate Concentrations

Combustion of lower hydrogen content fuels leads to progressively higher

production of particulates in the orimary combustion zone. Leveling could

be caused by saturation of the numbAr density of luminous particles at
which, according to current empirical models such as that of Reference

13, the "effective emissivity" of the combustion products exponentially
approaches that of a blackbody radiator and there is no further increase

in heat transfer.

3. Fuel Composition Effects

As shown by the data of Table 8, the difference in hydrogen content

between Jet A and ERBS fuel essentially results from an increase in the

napthalene content, i.e., double ring aromatics, of about 10 percent by
volume. Conversely, when the two lower hydrogen content fuels were

blended the hydrogen content was reduced primarily by adding single ring
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aromatics to the basic ERBS fuel. Since multi-ring aromatics have a
greater propensity for particulate formation than single ring components,
the proportionately larger inc rease in heat flux produced by the Jet A to

ERBS increment may have been due to These differences in fuel composition
which are not evident when fuel is characterized on the basis of hydrogen
content.

Further research beyond the scope of this program would be required to better

isolate the cause of these differences in the response of radiant heat flux to
fuel composition.

1.1.2 Liner Metal Temperatures

Use of lower hydrogen content fuels increases radiant heat flux which

increases local metal temperatures in the combustor liner, reducing structural

life. As indicated in Section 5.2.3, thermocouples we-e installed in the JT91)
combustor liner sectors to measure these temperature increments. The
thermocouple junctions were positioned near the weld between a film cooled
panel and the riser of the following louver. Since the temperature gradient

between t;iis region and the cooler louver knuckle is critical to cyclic
fatigue the measurements were relevant to liner life.

The incremental changes in metal temperature associated with different fuels

are most evident at the cruise condition and trends are best delineated with
data obtained at cruise. Figu,^e 55 maps the measured temperature distribution

in the liner of the current production JT9D-7F combustor et cruise. Local

metal temperatures observed during operation on Jet A fuel and the incremental
increases in metal temperature encountered with ERBS fuel and the 11.8 percent
hydrogen content fuel are presented. The data demonstrate a progressive
increase in local metal temperatures with decreasing hyd rogen content. The
incremental increases in liner temperature are also more pronounced in the

primary zone than in the dilution zone. Evidently, the radiant heat transfer

to the liner from luminous particles is more intense on those surfaces with a
close proximity to, and hence a high view factor from; the primary reaction
zore where particulate concentrations are the highest.

Within the primary zone, the increases in liner temperature appear to be

global in nature. For example, use of LRBS fuel produced temperature risei in
the narrow range of 11° to 16°K (20° to 29°F) at all primary zone thermocouple

locations on the inner liner and 18 1 to 251 K (32° to 45°F) on the nominally

hotter outer liner. This uniform temperature increase is consistent with a
diffuse radiant source and shows no evidence of a;i axial shift in the position
of the zone of highest radiant heat release.

Figure 56 shows the corresponding temperature distribution in the baseline

advanced bulkhead combustor sector at cruise, It includes measured
temperatures with Jet A fuel and, the local incremental temperature increases

encountered with ERBS fuel. While the nominal temcperat ,ire levels in the liner

are comparable tc those in the current production combustor (see Figure 55),
the temperature distribution also shows high temperature streaks downstream of
the fuel injectors. The increases in temperature with ERBS fuel rather than
Jet A are also larger than those encountered in the current production

combustor.
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An empirical parameter for correlating fuel effects on liner temperature was

developed in Reference 14; this parameter has found acceptance and
substantiation in other investigations of the effect of fuel properties on
liner temperature. Its use involves establishing the incremental change in
maximum liner temperature at cruise relative to that observed with a reference

JP-4 fuel with a nominal hydrogen content of 14. ^ percent. Since this level
was beyond the range of hydrogen content in the test fu is used in the
program, the relationship between maximum liner tempera t ure and hydrogen
content was extrapolated to establish the liner temperature with JP-4 fuel. In

Figure 57 the correlation parameter is used to show the variation of liner
temperature at cruise in the three baseline single -stage combustor
configurations. There is little variation among the three configurations; the
only pronounced departure from a single characteristic is the bulkhead

combustor with the single pipe fuel injector operating on ERBS fuel. The data

also fit well within the band established by prior tests of other single stage

engine combustors reported in Reference 14. This correlation implies that the
incremental increase in liner temperature associated with a change in fuel

composition will be larger in a combustor which has higher initial liner
temperature levels.

COMBUSTOR

O PRODUCTION (SS 11

b	
D BULKHEAD BASELINE ISS 2)

BULKHEAD SINGLE PIPE (VG 1

DATA

BAND OF
MOST COMBUSTORS

11	 12	 13	 14	 15

FUEL HYDRO(-EN CONTENT, %WT

Figure 57	 Correlation of Maximum Cruise Liner Temperature in the Reference

Single Stage Combustor Configurations
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While liner temperature is most sensitive to fuel composition at intermediate
operating conditions such as cruise, the life limiting  fai lure mode of current

combustor liners is fatigue arising from cyclic exposure to elevated
temperatures. The highest liner temperatures are encountered at takeoff. Thus

an assessment of the impact of different fuels on combustor liner life must be

based on changes in metal temperature at this condition. These temperature

increments are generally not as pronounced as those encountered at cruise
because the pressure level in the combustor, and hence the vo`:al (radiant and
convective) heat flux to the liner, is substantially higher. Consequently the

incremental change in radiant heat flux associated with a different fuel is a
smaller fraction of the total heat load.

Figure 58 shows the temperature distribution and temperature increments in the

liner of the advanced bulkhead combustor of the JT9D-7F engine at takeoff. The
temperature distribution with Jet A fuel parallels that observed at cruise
(Figure 56) . The nominal level is 50 to 75°K (90 to 135°F) higher; the highest

temperatures occur in the streak downstream of the fuel injector at
circumferential position A. The incremental changes in liner temperature

associated with ERBS fuel or the 11.8 percent hydrogen test fuel relative to
Jet A are significantly smaller than those observed at cruise. In fact, no

detectable increases were observed at many thermocouples on the inner liner
enclosing the dilution zone of the combustor.

Despite the reduction in the magnitude of liner temperature increments in the

primary zone at takeoff relative to those at cruise, they retain their global
nature in that the magnitudes are in a narrow band. The single exception is a
thermocouple in the streak region on the fourth louver of the inner liner. The
thermocouple indicated a metal temperature of 1169°K (1641°F) during operation

with Jet A fuel; this thermocouple was apparently at the hottest location in
the liner. With ERRS fuel, liner temperature increased 40°K (72°F) at this

location. This increase is more than three times the temperature increase
encountered at the other measurement locations in the primary zone. However,

it must be considered a unique local phenomenon associated with the high
temperature streak.

Figure 59 shows the temperature distribution in the liner of the current
production JT9D combustor sector (Configuration SS-1) at takeoff with Jet A

fuel. As with the bulkhead combustor, the local metal temperatures are 50° to
75°K (90 0 to 135°F) higher than the temperatures encountered at cruise (Figure

55). However, the increments associated with the lower hydrogen content test

fuels are very small and in many instances negative. On the basis of this
data, it appears that the nominal magnitude of the temperature increments must

be approaching zero and that the residual positive and negative increments are

indicative of the uncertainty arising from defining the increments as the
difference of two experimental measurements. In regard to the accuracy of the
measurements, all liner temperature data reported herein have been adjusted to

compensate for any deviations in combustor inlet total temperature relative to

the nominal inlet temperature of Table 3 or Table U. No adjustments were made

to account for differences in the combustor fuel/air ratio between test
points, but efforts were made to minimize these variarn;es.

i
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The minimal increases in liner temperature are inconsistent with the data of

the preceding section in which radiant heat flux to the combustor liner at
takeoff was shown to increase continuously with progressively lower hydrogen
content fuels. It is possible that the absence of liner temperature increases

resulted from compensating changes in convective heat transfer produced by
introducing the lower hydrogen content fuels. An alternative explanation is

that the convective heat load in this particular combustor is high and that
the incremental increase in radiant heat load produced by these fuels did not
produce a sufficient increase in total heat load to elevate liner temperature
significantly.

Figure 60 provides an overview of the impact of fuel composition on liner

temperature in the three reference combustor configurations. The metal
temperatures cited are averages of all thermocouples in the primary zone and

dilution zone of the combustor. Positioning these thermocouples near the weld

region of the louver makes the measurements a representative indicator of
temperatures in the life limiting region and not an average metal temperature

for the entire liner surface. It is evident from the figure that liner

temperature in the dilution zone is generally insensitive to variations in
fuel hydrogen content. The effect of hydrogen content is also more pronounced
at cruise than at takeoff. The insensitivity of liner temperature in the

current production combustor, cited above, is also illustrated.

There is also some difference in the nominal temperature level in the liner of

the advanced bulkhead combustor when it is operated at cruise with the duplex
pressure atomizing primary/aerating secondary fuel injector in the normal
duplex mode (Configuration SS-2) and in the single pipe aerated mode

(Configuration VG-1). These differences result from changes in the overall
mean temperature level rather than variations in the intensity of hot streaks
on the liner. Data from the spray evaluation of the fuel injectors used in
these configurations (presented in Appendix B) indicate that the single pipe

mode produced a wider spray angle at higher power levels than the normal
duplex mode. This increase in spray angle could have localized combustion
closer to the liner surfaces and caused the increases in nominal temperature

level. Despite this difference in overall temperature level with fuel

injection mode, the increments in liner temperature associated with the use of
ERBS fuel rather than Jet A are comparable.

Stress analysis of louver sheet metal liners, in combination with empirical

data on the fatigue strength of Hastelloy X liner material provides
correlation between the temperature gradient across the louver knuckle at

takeoff and the cyclic fatigue life of this region. Measured temperature

increases in the weld region of louvers in the primary zone of the advanced
bulkhead combustor at takeoff have been used to calculate the reduction in

liner life for several situations. These data are summarized in Table 18.
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Three Reference Combustors

Table 18

Projected Effect of Use of ERBS Fuel vs Jet A on Life of

Advanced Bulkhead Combustor Liner

Cunfiguration	 SS-2	 VG-1

Fuel Injection Mode	 Duplex	 Single Pipe

Based on Average Liner Temperature Increase

Temperature Increase °K ("F)	 7 (12)	 12.3 (22)
Reduction in Life - %	 6	 11

Based on Maximum Liner Temperature Increase

Temperature Increase °K (°F)	 15 (27)	 40 (72)

Reduction in Life - %	 13.5	 36
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These projections indicate that liner life is less sensitive to fuel

composition when the fuel injector is operated in the normal duplex mode
(Configuration SS-2). As the data in Appendix B demonstrate, this lack of

sensitivity should not be attributed to a significant difference in the
sensitivity of the spray geometry or atomization characteristics of the

injector to fuel composition. Projected liner life increments differ by
factors of 2 or 3 when based on the measured average temperature increase in

the critical weld region as opposed to the single maximum observed temperature
increase. For a direct back to back comparison of the use of the two fuels in

existing hardware the larger life increments associated with the maximum
temperature increases must be incorporated. However, the life increments based
on average temperature increases indicate that there is a significant
incentive to reduce the sensitivity of liner life to fuel composition by

reducing the magnitude of the increments at these isolated locations. In both
combustor configurations these maximum liner temperature increases occur at

the point of highest nominal liner temperature in the streak region behind a
fuel injector. It will be shown in Section 7.2 that use of a modified fuel

injector reduced not only the nominal temperature level in the streak region
but also the Jet A to ERBS temperature increment at that location.

7.1.3 Emissions

Figures 61 and 62 show the measured carbon monoxide and unburned hydrocarbon
emissions from the current production combustor (Configuration SS-1) and the

advanced bulkhead combustor (Configuration VG-1) at the idle combustor inlet

conditions. In the bulkhead combustor, the fuel injector operated in the

aerated single pipe mode. Data are presented for a range of fuel/air ratios
centered about the design proportions. The data indicate a general trend

toward decreasing emissions output with increasing fuel/air ratio. The data
also indicate that the emissions output levels off at fuel/air ratios near

0.015. As indicated in Section 4.1, the bulk primary zone equivalence ratios
in both combustors were about 0.5 at the design idle fuel/air ratio. Hence, a
fuel/air ratio of 0.015 would produce mixture strengths approaching
stoichiometric and carbon monoxide and unburned hydrocarbon emissions would be
expected to be minimal. Data obtained with the ERBS fuel and 11.8 percent

hydrogen test fuel over a wide range of fuel/air ratios show substantially

similar characteristics. In general, emissions output is most divergent at
lean fuel/air ratios where emissions rise abruptly, indicating declining

combustion efficiency as lean blowout is approached. With the exception of
carbon monoxide emissions from the current production JT9D combustor (Figure
61), the differences in emissions with ERBS and 11.8 percent hydrogen fuels
diminish as fuel/air ratio is increased; there are virtually no differences at
fuel/air ratios of about 0.015. These findings suggest that combustors with

rich primary zone mixture strengths, i.e., approaching stoichiometric at idle,
may not only produce the lowest nominal carbon monoxide and unburned

hydrocarbon emissions at this condition but that these emissions
characteristics may also be least sensitive to fuel composition.
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The effects of fuel composition on the emissions from these combustors at the
design idle fuel/air ratio are demonstrated in Figures 63 and 64, which were

constructed from a crossplot of the data of Figures 61 and 62. Also shown in
these figures are the emissions characteristics of Configuration SS-2, the

baseline advanced bulkhead combustor operating in the normal duplex fuel

injection mode. At the design idle fuel flow rate, about half of the fuel
passed through the pressure atomizing primary system and the remainder through
the aerated secondary system. Goals for these constituents are shown in the

figures. To comply with the proposed 1981 Environmental Protection Agency

standards (Table 2), these goals must be met at idle and typically low levels
must be achieved at higher power conditions.
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Figure 63 Carbon Monoxide Emissions Characteristics of the Baseline Single

Stage Combustors at Idle

The nominal level of carbon monoxide emissions from the current production

combustor is high but sensitivity to fuel composition is minimal. The bulkhead
type combustor exhibits a much stronger sensitivity to fuel composition;

carbon monoxide emissions increase with reduction in hydrogen content. When
operating on Jet A fuel (13.62 percent hydrogen), carbon monoxide emissions

are below the goal level. However, the emissions characteristics are sensitive
enough to cause carbon monoxide output to increase significantly above the

goal with ERBS fuel (12.93 percent hydrogen). The data also indicate that

carbon monoxide emissions from the advanced bulkhead combustor are independent

of fuel injection mode; the single pipe and the baseline duplex modes produce

essentially the same emissions levels with Jet A and ERBS fuels.
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Figure 64 Unburned Hydrocarbon Emissions Characteristics of the Baseline JT9D

Single Stage Combustors at Idle

The unburned hydrocarbon emissions characteristics of the three single stage

combustors shown in Figure 64 are qualitatively similar to those for carbon

monoxide. The overall level of emissions from the current production combustor

is substantially above the goal, but the two lower hydrogen content test fuels
produce reductions of the order of 25 percent relative to Jet A and ERGS. This
improvement in performance was probably caused by the unusual viscosity and

volatility characteristics of the two fuels. As indicated in Section 5.1.1,
these fuels had lower viscosity and greater volatility than would have been

expected for their hydrogen contents relative to the trends deduced from the
prope r ties of the Jet A and ERBS fuel. These characteristics could have
enhanced atomization and vaporization, producing the observed reduction in
unburned hydrocarbon emissions. Conversely, both the unburned hydrocarbon and
carbon monoxide emissions characteristics of the bulkhead type combustor

reflect an apparent sensitivity to fuel composition, i.e., its hydrogen
content or hydrocarbon structure, and not the physical properties relevant to
vaporization ( see Configuration VG-1 on Figures 63 and 64). This may result
from the construction of the bulkhead combustor. Cooling air remains more
remote from the initial reaction zones, minimizing quenching reactions and
making the combustion process less sensitive to the rate of evaporation.
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The data of Figure 64 indicate that the goal for unburned hydrocarbon i '4WI
) r

emissions can be achieved with substantial margin by the advanced .^Jlkhead
combustor operating on Jet A fuel (13.62 percent hydrogen content). Unburned

hydrocarbon emissions vary somewhat with fuel injection mode. The duplex mode,
with half of the fuel passing through a pressure atomizing system at high

pressure drop, is less sensitive than the single pipe mode. However,
regardless of the injection mode the goal for unburned hydrocarbon emissions
can be met with ERBS fuel.

Similar measurements of the carbon monoxide and unburne6 hydrocarbon emissions

characteristics of the baseline single stage combustor were obtained at

approach (30% takeoff thrust) and higher power levels. These measurements were
consistent with development experience in that the emissions were low and the

combustion efficiency exceeded 99.9 percent with all combinations of test fuel
and power level (above approach) investigated.

While the proposed EPA emissions standards (Reference 12) do not stipulate

maximum levels for emissions of oxides of nitrogen from single stage

combustors, the sensitivity of these emissions was investigated during the
evaluation of the three baseline combustors. Figure 65 shows the variation in

NO emissions from these combustors at simulated takeoff condit ions for the
AD engine. Data were acquired at takeoff combustor inlet conditions but at a

fuel/air ratio of 0.0193 rather than the design fuel/air ratio of 0.0248 due
to temperature limitations on the combustor exit rake. Despite similar primary
zone stoichiometry, the NOx output of the bulkhead combustor configurations
is significantly higher than the output of the current production combustor.

Data from all three combustors indicate a progressive increase in NOx

emissions with decreasing hydrogen content. This has generally been attributed
to the increase in adiabatic flame temperature caused by the reduced hydrogen
content of the fuel. In Reference 4 an interpretation was advanced in which

kinetic analysis of the NOx formation in a combustor led to the following
relation between NOx emissions and flame temperature:

-0.53EINOx	
=	 Tf	 exp	

61,400 _ 67,400	
(Eq. 101,

EINOx ref	 Tf ref	 Tfref	 Tf

In the single stage combustors, with their swirl stabilized combustion zone,

diffusion is the dominant mode of combustion and the majority of reactions
occur at or near stoichiometric proportions. The theoretical variation of

NOx emissions with hydrogen content was determined from Equation 10 using
computed flame temperatures at an equivalence ratio of unity and combustic. of

Jet A fuel as the reference condition. The solid lines on Figure 65 show the
theoretical variation for each combustor. Measurements from the current
production combustor follow the theoretical variation closely while the

measurements from the bulkhead combustor indicate that this combustor is less
sensitive than predicted in both fuel injection modes. Nonetheless, this

theoretical approach appears to be qualitatively substantiated and can be of
use in establishing a limit on the potential increase in NOx emissions.
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Figure 65 Takeoff NOx Emissions Characteristics of the Baseline JT9D Single

Stage Combustors

7.1.4 Smoke

Unless they are oxidized in the remainder of the combust ,) ,.-, the carbon

particulates formed in the primary zone are emitted with the other combustion
products in the form of visible smoke. The smoke output of the baseline
combustors was measured at selected high power operating conditions. The
magnitude of the SAE smoke number was low: less than 5 under all combinations

of operating conditions and test fuels. While the experimental uncertainty of
comparative measurements of such small magnitudes is high, the data from all

three baseline combustor configurations demonstrated a consistent trend.

Figure 66 shows the variation in measured SAE Smoke Number with fuel hydrogen
content at combustor inlet conditions consistent with takeoff operation of the

JT91) engine but at reduced fuel/air ratios imposed by the exit rake
temperature limitations. There is a definite similarity in the sensitivity of
smoke output to fuel composition in the current production combustor and the

advanced bulkhead combustors. Additional confirmation is provided by the
measurement obtained in Configuration VG-1 with the reduced reference

velocity. This, perturbation of inlet conditions increased the residence time
in the combustor, allowing more complete oxidation of the particulates and

producing the observed reduction in the Smoke Number.
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Fi.jure 66 Smoke Characteristics ui JT9D Baseline Single Stage Combustors at
Takeoff

A e tho higher fuel/air ratios all three configurations produced about the same

sn,..' -^ output, the change from Jet A to ERBS fuel was accompanied by an
inc.A _ase in SAE Smoke Number on the order of 15 to 25 percent, The reductions
in Smoke Number that occurred with the 12.3 and 11.8 percent hydrogen test

fuels was unexp ted given the composition and hydrocarbon structure of the
fuels. The unus 1 viscosity and volatility characteristics of these fuels,
cited prev^jusly is the only evident factor which would explain these

results. Smoke output has been shown to be sensitive to fuel atomization and

vaporization processes in unique situations involving combustors operating at
low power levels, but this type of sensitivity would not appear likely in the

high pressure and temp?rature environment of the JT9D combustor at takeoff.
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7.1.5 Combustov Exit Temperature Distribution

While refining the combustor exit temperature distribution to achieve the

program goals for pattern factor and radial profile was not a major objective
of the Phase I effort, the sensitivity of these parameters to variations in

fuel composition was investigated. Figure 67 shows a representative comparison
of combustor exit temperature distribution with Jet A and ERBS fuel. These
data were obtained from the baseline advanced bulkhead combustor (Configur-

ation SS-2) operating at JT9D takeoff conditions with the fuel/air ratio
reduced to 0.0193 because of exit rake temperature limitations. There was a

fifth gas temperature thermocouple on the combustor exit rake, located near
the inner radius at 8 percent radial span. However, the data from this

thermocouple were not included in the analysis of the exit temperature. It
appears that erroneously low readings were produced by the water spray in the

facility exhaust chamber which forced cooling air flow from the simulated
inner vane platform onto this thermocouple. Exclusion of the readings was
justified by consideration of the energy balance on the combustor, i.e., the
enthalpy rise across the combustor relative to the heat of combustion of the
fuel consumed.

The data of Figure 67 indicate that the use of ERBS fuel rather than Jet A did

not have a significant impact on the overall combustor exit temperature

distribution. The temperature distribution is dominated by hot regions
downstream of, but displaced about three degrees from, the centerline of the
fuel injectors. The peak behind the fuel injector at the 27° circumferential

position represents the maximum temperature; this point is coincident with the
circumferential locations of the thermocouples which indicate the highest
liner metal temperatures. The pattern factor of 0.454 +0.003 is dictated by
the nigh gas temperature which occurred at the same circumferential position
with both fuels. Had the high temperature streaks not occurred downstream of

one of the injectors, the exit pattern factor with both test fuels would have
beEn less than 0.20.

The tendency for the combustor exit temperature distribution to be insensitive

to fuel composition was also evident in the other baseline single stage
combustor configurations. Table 19, which lists combustor exit temperature
pattern factors for these configurations at JT9D takeoff combustor operating
conditions, demonstrates this insensitivity. With the exception of the
bulkhead combustor operating in the single pipe mode with 12.3 percent

hydrogen fuel, pattern factor deviations are +.022 or less.
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OF POOR

Exit Temperature Pattern Factors of Baseline

Single Stage Combustors at JT9D Takeoff

Combustor Configuration	 Jet A	 ERBS	 12.3% H2	11.8% H2

Current Production (SS-1) 	 0.433	 0.440	 0.460	 0.477
@ F/A = 0.0206

Baseline Bulkhead (SS-2)	 0.456	 0.451	 --	 --
@ UA = 0.0193

Bulkhead Single Pipe (VG-1)	 0.462	 0.476	 0.541	 0.491
@ F/A = 0.0193

To achieve the required turbine blade life, the circumferentially averaged
radial temperature profile at the combustor exit must comply with the target
profile defined in Figure 5. Figure 68 shows the radial temperature profiles
obtained from the exit temperature distribution for all of the baseline single

stage combustor/test fuel combinations listed in Table 19. The data indicate
that the radial temperature distribution at the exit of each combustor

configuration is essentially insensitive to fuel composition except in the
previously cited case of the bulkhead combustor operating in the single pipe

mode on 12.3 percent hydrogen fuel. In this exceptional case, the data
indicate that the profile has been shifted by a reduction in the average

temperature at the 89 percent span location, i.e., near the outer periphery of
the gas path. The data also demonstrate that the radial profiles produced by

all three baseline combustors are considerably less peaked than the target
profile and would require additional refinement to achieve the target.

It must be noted that these observations about the combustor exit temperature

distribution are based on short duration testing which only reflects the
effect of different test fuels on fuel spray or combustion characteristics.

Combustor exit temperature distribution can also deteriorate from alterations

in the fuel injector spray characteristics caused by deposits in or on the
injector. Investigation of the effect of fuel composition on this
deterioration mechanism was beyond the scope of the program but must be
considered in establishing turbine life impacts.

7.1.6 Combustion Stability

The lean blowout fuel/air ratios of the baseline single stage combustors were

measured at the JT9D idle inlet condition. This parameter indicates the risk

of blowout during engine deceleration and provides a qualitative or relative
measure of the altitude stability and ignition characteristics of the

combustor. Table 20 lists the fuel/air ratio at blowout for each combustor. It

can be seen from the table that the ratio is a function of combustor
configuration but independent of fuel composition. The current production

combustor (Configuration SS-1) and the baseline bulkhead combustor with the
duplex fuel injector (Configuration SS-2) have nearly the same blowout
fuel/air ratio. Since the stability of both of these combustors has been found

to be adequate in engine operation, the idle blowout fuel/air ratio must be
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Table 20	
OF POCilt

Lean Blowout Fuel/Air Ratio of Baseline

Single Stage Combustors at JT9D Idle

Combustor

Configuration	 Jet A	 ERGS	 11.8% H2

Current Production	 (SS-1)	 0.0042	 0.0042	 0.0043

Baseline Bulkhead	 (SS-2)	 0.0044	 0.0046	 --

Bulkhead Single Pipe (VG-1) 	 0.0061	 0.0063	 0.0060

7.1.7 Carbon Deposition

Since the tests were short, the full impact of carbon deposition on the burner

liners and external surfaces of fuel injectors could not be assessed. However,
the tests were monitored to detect any serious deficiencies. Figure 69 shows

the inside of the current production combustor sector (Configurati n SS-1)

after testing. There is some evidence of carbon deposition on the surfaces of
the flame stabilization cone, but the material had a soft powdery texture and
was not considered to be a significant problem. Figure 70 shows the inside of
the advanced bulkhead combustor sector. The photograph was taken after the
sector had been operated in the baseline configurations (SS-2 and VG-1) and

after various fuel injector perturbations had been evaluated. Consequently

this sector was subjected to more than 100 hours of operation before being
photographed. There is no evidence of carbon deposition on the bulkhead or the

liner of this combustor. When this combustor operated with the standard duplex
pressure atomizing/aerated fuel injector there was no evidence of carbon

formation on the injector face. However some deposition was observed on the

alternate fuel injector and the variable geometry injector.

7.1.8 Status of Single Stage Combustor Concept

The results presented in this section summarize the capabilities of state-of-

the-art single stage combustors to accommodate the use of broadened property

fuels. The advanced bulkhead combustor construction was shown to represent a

significant advance over the cone stabilized annular combustor in that low
power emissions goals were met with Jet A fuel. Test results indicate that

increased liner temperatures, caused by increased radiant heat load, are a
major obstacle in accommodating broadened property fuels. Reductions in liner

life of 13.5 percent are projected with ERBS fuel. Use of broadened property
fuels was also shown to increase emissions output. There is particular concern

about carbon monoxide emissions at idle; ERBS fuel has been found to increase
emissions output beyond acceptable levels. The modifications to the basic

single stage combustor which are discussed in Section 7.2 were designed to

reduce the sensitivity of these parameters to fuel composition.
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Figure 69 Interior of Current Production JT9D Combustor (Configuration SS-1)
after Testing
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Figure 70 Inte r io r of Advanced Bulkhead Combustor (Configuration V 10-1 and
SS-2) after Testing

Including Co-figuration VG-1 as a baseline single stage combustor config-

uration provided the opportunity to assess the potential of a single pipe

aerated fuel injector relative to the conventional, but mo r e complex, duplex

system. In general, the performance of the single pipe approach was comparable

to the duplex system. The single exception was the area of combustion
stability in which the lean blowout fuel/air ratio was notably higher than

achieved by a duplex injectors with a pressure atomized prima ry system. This
finding implies that further refinement may be required to develop a viable

single pipe fuel injection system with the required stability and ignition
capability. However, single pipe fuel injection offers distinct advantages in
reducing the propensity for deposition and coking in the fuel system. In view
of the reduced thermal stability which is expected with broadened property

fuels, the advantages of the single pipe fuel injection approach may justify
the effort required to develop adequaie combustion stability and ignition
margin.
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7.2 MODIFICATIONS TO SINGLE STAGE COMBUSTOR CONCEPT

After the baseline single stage combustors had been evaluated, test effort was
focused on advanced single stage combustor configurations which incorporated a
variety of modifications designed to enhance the performance and emissions
characteristics of the basic single stage combustor. Particular emphasis was
placed on those modifications which would offset the deficiencies encountered
with operation on broadened properties fuels. These revisions included use of
modified fuel injectors, variations in combustor stoichiometry and use of
advanced liner cooling concepts. The tests indicated that advanced technology
features could lead to fundamental improvements in the performance of
combustors operating on broadened properties fuels. Test results are discussed
in more detail in the remainder of this section. Unless indicated otherwise
all data reported in this section were obtained with ERBS fuel.

7.2.1 Modified Fuel Injector

As described in Section 4.1.3, the first variation to the advanced single
stage combustor, Configuration SS-4, incorporated a modified version of the
duplex pressure atomizing primary/aerated secondary fuel injector used in the
bulkhead combustor. This injector was operated in the normal duplex mode
during the evaluation. The effect of the modification was deduced by comparing
test results from Configuration SS-4 with results from the baseline
Configuration, SS-2. The modified fuel injectors were also evaluated in the
single pipe mode in Configuration VG-2. Results were compared with data from
Configuration VG-1 to determine the effect of the modification.

Table 21 summarizes the results of the evaluation of the relevant combustor
configurations. The effect of the injector modification can be determined by
comparing the data for the baseline and modified configurations obtained with
ERBS fuel. Corresponding data for the baseline combustors operating on Jet A
fuel are also provided. These data can be used to distinguish the changes in
combustor performance caused by the fuel injector modification from the
changes caused by the switch from Jet A to ERBS fuel.

The data obtained at idle indicate that, despite the improvement in fuel
atomization observed in bench tests, the modifications to the fuel injector
did not reduce carbon monoxide and unburned hydrocarbon emissions
significantly. While there was a decrease in carbon monoxide emissions of
about 10 percent when the baseline and modified injectors were operated in the
single pipe mode, the modified injectors increased carbon monoxide emissions
by about the same amount when operated in the duplex mode. The emissions of
unburned hydrocarbons were found to increase when the modified fuel injectors
were used. With the duplex fuel system, the unburned hydrocarbon emissions are
low enough to meet the goal of a maximum emissions index of 4.0 gm/kg as
defined in Figure 64. However, larger increases in unburned hydrocarbon
emissions were encountered in the single pipe aerating mode and this goal was
exceeded.
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The modified fuel injectors had opposing effects on lean stability

characteristics at idle. The lean blowout fuel/air ratio increased in the

duplex mode (all of the fuel passed through the pressure atomizing primary
system of the injector at this fuel/air ratio). Conversely, lean blowout

improved in the single pipe mode. These results are qualitatively consistent
with the results of the spray characterization tests reported in Appendix B.

The modifications to the fuel injector at best failed to improve fuel
atomization in the primary system whereas they enhanced atomization in the

secondary system of the injector.

Data obtained at takeoff indicate that modific 4 fuel injectors substantially

improve high power performance. When interpolated to a common fuel/air ratio,
the data of Table 21 indicate significant reductions in NOx emissions (on
the order of ten percent), smoke output and exit gas temperature pattern

factor. The reductions in NOx emissions and smoke output are both greater
than the increments associated with the change from Jet A to ERBS fuel. They

also imply that the modifications to the injectors affected fuel dispersion in
the primary combustion zone. Apparently, a more uniform dispersion is achieved

at high power levels and fuel concentration is moderated in the locally rich
regions where NOx and smoke are formed in greater quantities.

Figure 71 shows the temperature distribution at the exit plane of Configura-
tion SS-4 at takeoff conditions. Comparing these data with the distribution

from the baseline configuration (Figure 67) indicates that the temperature

levels of the hot regions downstream of the fuel injectors are more nearly

consistent. The single high temperature region behind the injector at the 27
degree position, which dictated the high pattern factor in Configuration SS-2,
has been eliminated.

Table 21 also lists maximum and average liner temperatures in the primary zone

of the combustors. The most obvious effect of the modification to the fuel
injectors is the large reduction in maximum liner temperature at both cruise

and takeoff conditions. In the baseline configurations, the maximum
temperatures occurred at positions in line with a fuel injector (but not the

same injector in all cases). In most cases, attenuation of the metal

temperatures in the regions immediately downstream of the fuel injectors is
sufficient to reduce the average temperature of the liner enclosing the
primary zone by increments comparable to those produced by the transition from

Jet A to ERGS fuel in the baseline configurations.

In summary, the modified fuel injector substantially improved combustor

performance at high power conditions, even though it did not provide the gains
in low power emissions expected from its improved atomization characteristics.

Improvements included reduced NO and smoke output, reduced liner
temperatures in the most criticaf regions, and a more uniform exit temperature

distribution. These improvements are attributed to the enhanced fuel
dispersion characteristics of the fuel injector which apparently resulted in

more uniform mixture strengths in the primary zone.
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Figure 71 Exit Temperature Distribution of Configuration SS-4 with Modified

Fuel Injector

7.2.2 Increased Primary Zone Residence Time

The dilution jet orifices on the liner of Configuration SS-3 were moved
downstream relative to the baseline Configuration (SS-2) to investigate the
effect of primary zone residence time on combustor performance. This change
was made because ERBS fuel had increased carbon monoxide emissions to a level
which exceeded the goal for the baseline combustor configurations. This
approach offered an opportunity to oxidize more of this constituent in the
primary zone. Table 22 compares the results of the evaluation of Configuration

SS-3 with those of the baseline configuration.
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Table 22

Effect of Primary Zone Residence Time on

Performance of Single Stage Combustor

Baseline	 Extended Primary

k .,nf isurat ion (SS-2) 	 Zone Conf iguration (SS-3)

Fuel

Emissions Indices at Idle - gm/kg
Carbon Monoxide
Unburned Hydrocarbons

Performance at Takeoff (F/A=0.0193)

NO Emission Index - gm/kg
SA9 Smoke Number
Exit Pattern Factor

Average Liner Temperatures °K (°F)
Cruise; Primary Zone

Dilution Zone
Takeoff; Primary Zone

Dilution Zone

ERBS	 ERBS

	

27.5	 20.4

	

2.0	 1.0

	

42.0	 42.1

	

4.5	 2.1

	

0.451	 0.460

851 (1073) 844 (1062)
769 (925) 784 (950)
931 (1216) 940 (1232)
848 (1067) 870 (1106)

The emissions characteristics measured at idle indicate that extending the

length of the primary zone successfully reduced carbon monoxide emissions
below the goal of 21 gm/kg. Unburned hydrocarbon emissions, which were already

at an acceptable level in Configuration SS-2, were also reduced. Similarly,
measurements of the SAE Smoke Number at takeoff indicate that the increase in
primary zone residence time permitted more particulates to be oxidized in the

combustor, further reducin n detectable smoke at the combustor exit. Increasing

the length of the primary zone would be expected to increase oxides of
nitrogen, but this type of increase was not detected in the measurements

obtained at takeoff.
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Displacement of the dilution air orifices toward the discharge of the
combustor reduced the space available for penetration and mixing, which
control the exit temperature distribution. However, as shown in the table, the
combustor exit temperature pattern factor was not altered significantly. In
fact, the overall gas temperature distribution retained the dominant features
of the distributions for the baseline Configuration (Figure 67).

As shown in Table 7-5 the average of the sixteen individual liner metal
temperature measurements in the primary zone did not change by more than 9°K
(167) at either cruise or takeoff when the dilution air orifices were moved
downstream. The shifts which did occur were random; the average temperature
decreased at cruise and increased at takeoff. In the dilution zone, the
;;hanges in av,Jrage temperature were larger and more consistent. Readings from
the nine operating thermocouples in this section of the liner showed that
average temperature increased 15°K (25°F) at cruise and 22°K (39°F) at
takeoff. Evidently, shifting the dilution air jets downstream delays quenching
of the luminous particulates in the combustion products, exposing the liner at
the rear of the combustor to a significantly higher radiant heat load.
Consequently, while increasing residence time in the primary combustion zone
appears to be a viable approach to reducing emissions constituents and smoke
in order to accommodate broadened properties fuels, consideration must also be
given to the durability of the aft sections of the combustor liner.

7.2.3 Primary Zone Stoichiometry Variations

The bulk equivalence ratio in the primary zone is a controlling parameter in
the combustion process; the influence of this parameter was assessed in
Configurations SS-5 and SS-6 of the single stage combustor concept. Primary
zone airloading in these configurations was perturbated above and below the
nominal loading level for the baseline bulkhead combustor (Configuration SS-2)
by altering the airflow through the combustion air orifices in the liner
enclosing the primary zone. The perturbations in airflow to the primary zone
were moderate to remain realistic with respect to the operational constraints
on a single stage combustor. Further, a corresponding change was made to the
flow entering the dilution zone orifices in order to maintain the same overall
combustor section total pressure drop.

Figure 72 shows the effect of variations in primary zone airloading on the
emissions characteristics of the single stage combustor. In the baseline
bulkhead combustor (Configuration SS-2), 37 percent of the combustor air
flowed through the primary zone, producing a bulk equivalence ratio of 0.44 at
the design idle fuel/air ratio. As shown in the figure and indicated in
Section 7.1, the baseline configuration met the program goal for unburned
hydrocarbon emissions, but narrowly missed the goal for carbon monoxide
emissions. However, since carbon monoxide emissions decrease with reductions
in primary zone airloading, a small reduction should enrich this zone enough
to achieve the program goal with ERBS fuel. Conversely, an increase in primary
zone airloading, which would produce lean mixture strengths at high power
levels, leads to large increases in both unburned hydrocarbon and carbon
monoxide emissions. It is evident that the baseline bulkhead combustor was
designed at the minimum primary zone equivalence ratio consistent with low
emissions at idle.
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Figure 72 Effect of Primary Zone Airloading on Emissions Characteristics of
Single Stage Combustor

Measurements of combustion stability at idle indicated that enriching th

primary zone through reduced airloading improved the lean blowout fuel/air
ratio from 0.0046 in Configuration SS-2 to 0.0025 in Configuration SS-6.

However, in Configuration SS-5 increased airloading led to significartly
higher carbon monoxide and unburned hydrocarbon emissions which usually imply

a shift toward the lean stability limit, but the lean blowout fuel/air ratio
remained essentially unchanged.

Figure 72 also shows the variation in NO emissions at normal takeoff inlet
conditions but with a reduced fuel/air ratio relative to the engine design

condition. At this fuel/air ratio, the bulk equivalence ratio in the primary

combustion zone would be unity at a primary zone airloading of about thirty
percent. As shown in the figure, the NO emissions characteristic is
consistent in that there is a maximum at thirty percent and emissions decline

at both lower and higher primary zone airloadings. Measurements of the SAE
Smoke Number at the modified takeoff conditions were inconclusive:
experimental uncertainties between combustor configurations were equal in

magnitude to the low nominal smoke output from the single stage combustor.
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"hanges in primary zone ec uivalence ratio also affect heat loads on the liner,
.s demonstrated in Figure 73. Average readings frog thermocouples installed on
the primary and dilution -,ie liner louvers and the front bulkhead of the
combustor are shown as % Fin c tion of primary zone airloading. Due to attrition
of thermocouples on the I;ner during the course of the program, the number of

measurements is limited to those thermocouples which produced accurate
readings in all three :onfigurations. (The thermocouples on the bulkhead were

not installed on the baseline configurations.) Despite some deviations, metal
temperatures decrease with incre-a ses in primary zone airloading. When the

combustor operates at a fixed overall fuel/air ratio and pressure drop, the
variations in primary zone equivalence ratio would not be expected to affect

the thermal environment in o.e dilution zone of the combustor. Although the
thermal environment was generally unaffected at takeoff, there were

unexplained deviations at cruise with low primary zone airloading producing
metal temperatures throughout the dilution, zone which were higher than

expected.

Sire life limiting liner metal temperatures occur in the primary zone,

increasing primary zone airloading to produce leaner mixtures at high power

may be an effective method of maintaining liner life with broadened properties
fuels. In Section 7.1.2, the average liner temperature in the primary zone of

the baseline bulkhead combustor (Configuration SS-2) was shown to increase 6°K
1, 12-F) at takeoff when ERBS fuel was substituted for Jet A. Assuming that the

variation in bulkhead temperature with primary zone airloading at takeoff
shown in Figure 73 is a representative primary zone liner response, a four
percent increase in combustor airflow would be enough to reduce the metal
temperatures to the levels encountered with Jet A fuel, thus maintaining liner
life. If the analysis is based on the change in maximum rather than average
liner temperature, the increment is 16°K (27°F) and a 9.5 percent increase in
combustor airflow is required to offset the change in liner temperature.
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However, as the data of Figure 72 indicate, even an increase of four percent
of combustor airflow to the primary zone would have a serious impact on

emissions output at idle. Carbon monoxide emissions would rise from close to
the goal to more than 50 percent above, while unburned hydrocarbon emissions
would also exceed acceptable levels.

Increases in primary zone airloading would also be expected to adversely

affect combustor exit temperature distribution due to the reduction in
available dilution air. Table 413 shows the variation in combustor exit

temperature pattern factor for the relevant combustor configurations. There isMprogressive increase in pattern factor as airflow is diverted from the
dilution air jets to the primary combustion zone. Rased on the tabulated data,

the 4 percent and 9.5 percent increases in primary zone airloadin requireu to
maintain liner life with ERRS fuel would increase the pattern factor by 0.03

and 0.07 respectively. While it is possible that development effort could
reduce these increments and optimize the dilution process with the lower

airflow, the potential for increases in pattern factor of this magnitudf must
be recognized.

Table 23

Effect of Primary ''one Airloading on Combustor

Exit Temperature Distribution

Conf igurat ion
	

SS-5	 SS-2	 SS-6

Airflow Distribution — % Wab
Primary "one	 17.0	 32.5	 41.3

Dilution Air ,lets	 39.1	 23.6	 14.8

Combustor Exit Distribution

Pattern Factor	 0.405	 0.451	 0.516

In summary, altering combustor stoichiometry by shifting primary zone

airloading produces desirable characteristics which could be used to erharce

the performance of single stage combustors with broadened properties fuels.

The change in airloading ha ,:i the strongest impact on emissions output at idle
and liner heat load. Lean stability characteristics and exit temperature
distribution were influenced to a lesser extent and both of these elements

would be favorably affected by enriching the primary :one. Unfortunately, the

key factors - idle emissions and liner heat load - require opposing changes in
primary zone airloading. For this reason it appears that changing current

design practice to alter primary zonestoichiometry in single stage combustors
is not an attractive generic approach to accommodating broadened properties
fuels. However, this approach may be of value iii accomodat ing unique

combinations of combustors and fuels.
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7.2.4 Improved Liner Cooling

As shown in Section 4.1.3, Configuration SS-7 incorporated Finwall ® construc-

tion in the liner enclosing the primary zone. The modified fuel injector used

in Configuration SS-4 was also included in Configuration SS-7 in order to
reduce liner temperature streaks and produce a lower exit temperature pattern

factor. Table 24 summarizes the emissions and performance characteristics of

Configuration SS-1; corresponding data from several other configurations is
included for reference. Configuration SS-2 is the baseline single stage
combustor while Conf :quration SS-4 incorporated the modified fuel injector in
an otherwise baseline combustor.

Table 24

Effect of Improved Liner Cooling and Modified Fuel Injector on

Single Stage Combustor Performance

Configuration SS-2 SS-2 SS-4 SS-7

Injector Baseline Baseline Modified Modified

Liner Baseline Baseline Baseline Finwall®

Fuel Jet A ERBS ERBS ERBS

Idle Emissions Indices - gm/kg

Carbon Monoxide 16.8 27.5 31.6 36.0

Unburned Hydrocarbons 1.9 210 3.2 6.7

Performance at Takeoff
(F/A = 0.0193)
NOx Emissions Index	 gm/kg	 41.0	 42.0	 37.7	 47.5

SAE Smoke Number 	 3.2	 4.5	 2.7	 1.7
Exit Pattern Factor 	 0.457	 0.451	 0.281	 0.309

Average Metal Temperatures - °K (°F)

Cruise
Bulkhead	 ---	 911 (1180)*	 ---	 985 (1315)

Liner - Primary Zone	 845 (1063) 851 (1073) 845 (1064)	 ---
Liner - Dilution Zone	 766 (920)	 769 (925)	 767 (922)	 792 (967)

Takeoff
Bulkhead	 ---	 986 (1315)*	 ---	 1047 (1425)

Liner - Primary Zone	 928 (1212) 930 (1216) 931 (1219)
Liner -• Dilution Zone	 852 (1074) 848 (1067) 841 (1054) 865 (1098)

*Estimated from data for Configurations SS-5 and SS-6.
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The data indi-ate that Configuration SS-7 generated significantly higher

carbon monoxide and unburned hydrocarbon emissions at idle than the baseline

combustor operating on ERBS fuel. However, as discussed in Section 7.2.1 and
shown in the table, use of the modified fuel injector in Configuration SS-4
produced some increase in these constituents. The remainder of the increase

may have been caused by a shift in airflow in Configuration SS-7 relative to
the baseline configuration. Incorporating the advanced Finwall® construction

in the primary zone liner reduced the cooling air requirements; about two
percent of the combustor airflow which was saved was diverted into the primary

combustion air jets. As shown in Figure 72 and discussed in Section 7.2.3,
even small increases in primary zone airloading relative to the baseline
configuration could increase idle emissions to the levels encountered. One of

the potential advantages of an advanced liner which requires less cooling air
is the reduced propensity for quenching carbon monoxide or hydrocarbon
consuming reactions through contact with low temperature cooling air. While

Configuration SS-7 did not demonstrate this benefit, it was also evident from
the low nominal level of the emissions of these constituents and their
response to other perturbations that reaction quenching by liner cooling air

was not a significant mechanism in the bulkhead type combustor.

The modified fuel injector had been selected for Configuration SS-7 bLc ;&:e of

the superior high power performance demonstrated in Configuration SS-4. The
data of Table 24 show that this advantage was sustained in Configu,'ation SS-7;

in fact, the SAE Smoke Number at takeoff was reduced even furtl-:er. Similarly,
the combustor exit temperature pattern factor remained low compared to the
baseline configuration. The overall exit temperature distribution retained the

dominant features demonstrated in Configuration SS-4 (see Figure 71). However,
while introducing the modified fuel injector in Configuration SS-4 led to a 10
percent reduction in takeoff NOx emissions relative to the baseline
configuration, the NO emissions from Configuration SS-7 were about 10

percent higher than tie baseline. The primary zone bulk equivalence ratio at
the modified (reduced fuel/air ratio) takeoff condition used to tabulate NOx
emissions was about 0.75 and emissions output was increasing with overall
combustor fuel/air ratio at this point. Consequently, while no specific
evidence can be advanced, the increased NOx emissions produced by
Configuration SS-7 might be attributed to local enrichment of the primary

reaction zone associated with the use of the Finwall b panels. For example,

this local enrichment could have resulted from a change in the pe etration
characteristics of the p-ioary combustion air jets in the Finwal 	 liner due

to the grommets used on these apertures. It is noteworthy that higher than

anticipated NOx emissions were also encountered in Configurations VG-7 and

VG-8 which used the same combustor liner sector.

The gas side metal temperatures in the Finwall ® liner panels could not be
measured directly due to the difficulties associated with installing

thermocouples in these surfaces. However, the panels had been designed for
operation on ERBS fuel at the same maximum metal temperature which would be

encountered in a louver cooled liner with Jet A fuel. The panels were
inspected after Configurations SS-1, VG-7 and VG-8 had been tested. There was

no observed distress in the panels, providing qualitative verification that

the panels had peen cooled to the intended level.
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Thermocouples were installed on the dilution zone liner and the bulkhead of

the combustor sector in Configuration SS-7: the average metal temperatures are
listed in Table 24. While more thermocouples were installed in Configuration

SS-7 than in the liners of the previous configurations, the averages only

include readings from thermocouple locations which were common to each
combustor sector. Measured liner temperatures in Configuration SS-7 were found
to be considerably higher than the temperatures in the preceding configura-

tions. Metal temperatures in the dilution zone were 15 to 25°K (25 to 45°F)

higher while those on the bulkhead were of the order of 50°K (100°F) higher.
This variation was observed with all four test fuels. Examination of the
pressure distribution around the combustor indicated that the temperature
changes did not result from large scale shifts in local liner cooling air
flow. However, it must be recognized that two different combustor sectors were

involved. While efforts were made to install the thermocouples in a consistent

manner and at the same locations, deviations were inevitable. These deviations
may have contributed to the temperature differences.

While metal temperatures in the line r have been emphasized thus far,

measurements obtained from Configuration SS-7 as well as Configurations SS-5
and SS-6 indicate that the highest temperatures were encountered on the
bulkhead of the combustor. Configuration SS-7 was evaluated with all four test
fuels; Figure 74 shows the variation in average bulkhead metal temperature at

the takeoff combustor inlet condition. Metal temperature increases
progressively with increasing fuel/air ratio and decreasing hydrogen content.

At the design takeoff fuel/air ratio the transition from Jet A to ERBS fuel
increases average bulkhead temperature 11°K (207), an increment comparable in

magnitude to the increases in the hottest regions of the louver panels in tie
liner.

7.2.5 Improvement Potential of the Single Stage Combustor Concept

The analysis of test results presented in this section highlights areas in

which development effort would be effective in enhancing the ability of single

stage combustors to operate on broadened properties fuels. Changing the
stoichiometry and residence time history in the combustor by revising airflow

distribution has produced changes in emissions, smoke and performance

characteristics which are consistent with accepted theory and experience with
Jet A fuel. However, current combustor airflow schedules have been optimized
to satisfy a number of opposing criteria and goals. Generic modification of

combustor stoichiometry to accommodate a particular aspect of operation with
broadened properties fuels is likely to compromise one or more other criteria
with opposing requirements.
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Figure 74	 Sensitivity of Bulkhead Metal Temperature at Takeoff Condition

It appears that more fundamental improvements in combustor performance can be

achieved by introducing advanced technology design concepts. In the current

program, introduction of modified fuel injectors, which were produced with
minimal development effort, led to significant improvements in high power
performance including a reduction in peak liner temperatures, lower pattern

factor and reduced smoke and NO ou put. With a properly structured
development effort, the atomization characteristics and spray geometry of fuel

injectors can be refined, providing optimum combustor performance with
broadened properties fuels. While it was not demonstrated directly by the
relevant combustor configuration, more advanced liner cooling concepts offer

the potential for significant improvements in combustor performance. Advanced

liners offset the increased heat load produced by broadened properties fuels

without requiring increases in liner cooling air flow which would compromise
performance and emissions characteristics.
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7.3 STAGED VORBIX COMBUSTOR CONCEPT

The staged vorbix combustor was the second combustor concept evaluated in the

Phase I program. With two distinct combustor zones, each serviced by an

independent fuel system, this advanced technology combustor included the type
of stoichiometry control that would be required if emissions of oxides of

nitrogen were restricted in the airport vicinity. This flexibility of
operation was expected to provide significant advantage over the single stage

combustor concept in the accomodation of broadened properties fuels. The
staged vorbix concept was evaluated with combustor rig components from the

NASA/PWA Energy Efficient Engine Program and was operated at conditions
representative of that engine.

1.3.1 Liner Temperatures

Fine wire thermocouples had been embedded in the hot wall of the internal
convectively-cooled segments of the Vorbix combustor liner to monitor liner

temperatures. Figure 75 shows the changes in liner temperature encountered at

the cruise condition with the transition from Jet A to ERBS fuel. In this and
subsequent figures, no effort is made to differentiate the data on the basis
of the circumferential position of the thermocouples because no trends or
tendencies toward streaking could be detected due to the high density of pilot
zone fuel injectors and carburetor tubes.
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Figure 75 Effect of Fuel Composition on Liner Temperatures in the Staged

Vorbix Combustor at Cruise
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Within the pilot zone the increases in liner temperature are moderate,

avera ing only 6°K (11 0 r). This increase is significantly less than the 38°K
(69 0F^ increase in average temperature observed in the louver cooled bulkhead

type single stage combustor (Configuration SS-2). This reduced sensitivity may

result from the staged operation of the combustor. The pilot zone is
`	 comparable to a single stage combustor operating at an equivalence ratio which

is 20 to 30 percent of normal. This lean operation can minimize the initial

formation of carbon particulates which cause shifts in radiant heat transfer
to the liner. However, the internally cooled liner construction may also
contribute to the reduced sensitivity of this combustor to fuel composition.

By changing the overall energy balance on the liner surface, the incremental
change in radiant heat transfer may have become a proportionately less

significant contribution to the total heat load, thereby producing the smaller
change in surface temperature.

Measured responses from the thermocouples in the secondary or main stage of

the combustor with the transition from ERBS fuel to Jet A can be divided into
two groups. Increases of 5 to 16°K (9 to 297) were observed in the first

group, which included nearly all of the thermocouples on the outer liner
segments and some of the thermocouples on the inner liner segments. The

average increase is higher than the average in the pilot zone, but still
considerably less than the increases encountered in the primary zone of a
louver cooled single stage combustor. These thermocouples appear to be

responding reasonably to the increase in radiant heat transfer associated with
the combustion of ERBS fuel in the main stage. However, the second group,
which included more than half of the thermocouples on the inner liner, shows a

more erratic response to the change in fuel composition. In fact, a

significant number of negative temperature increments were observed. These
responses evidently result from the sensitivity of local convective heat
transfer modes to fuel composition. During the development of the staged
Vorbix combustor under the Energy Efficient Engine program, high temperature

streaks were encountered in this region of the inner liner. It was thought

that these streaks resulted from the interaction between the swirling flow

from the pilot fuel injector and the jets from the carburetor tubes.

Similar terperature measurements were obtained with the combustor operating at

the takeoff condition for the Energy Efficient Engine (with the exceptions
noted in Section 6.4). Figure 76 shows the increases in local liner

temperatures in the pilot stage with ERBS fuel and the 11.8 percent hydrogen
content test fuel. As experience with the single stage combustor would
indicate, the increases in liner temperature with ERBS fuel at takeoff were

consistent with, but less than the increases observed at cruise. However,
reducing the fuel hydrogen content further to 11.8 percent did not produce
significant additional increases in local liner temperatures.

The response of the thermocouples in the main stage became chaotic at the
takeoff condition: local temperature excursions in excess of +55°K (100°F)

were observed. The data obtained at takeoff are best presente7 in the

alternate format of Figure 77. This figure graphically illustrates the
response of each thermocouple for the entire Jet A/ERBS/11.8 percent hydrogen

content fuel change sequence. Very few thermocouples show the response which
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would be anticipated with a progressive increase in radiant heat load, i.e., a

modest increase in temperature with decreasing hydrogen content. Rather,

pronounced increases and decreases in temperature were observed with ERBS fuel

while only moderate increments (both positive and negative) were observed with
further reduction in hydrogen content. With only two exceptions, temperatures

on the outer liner increased and temperatures on the inner liner decreased as
hydrogen content was reduced. This response reinforces the conclusion reached
with cruise data that the liner temperature is responding to a strong change
in convective heat load which is dependent on fuel composition. While a

specific cause can not be identified, the sensitivity of the fuel dispersion
and atomization processes which occur in the carburetor tubes to the physical
properties of the fuel might produce this unusual response.

8 04) WITH 11.8% H 2 FUEL

NOMINAL
PILOT/MAIN STAGE
FUEL SPLIT =20180

r

INCREASE
IN LINER TEMPERATURE
IN OK( O F) RELATIVE
TO USE OF JET A FUEL

Figure 16	 Effect of Fuel Composition on Liner Temperature in the Pilot
Stage of the Advanced Vorbix Combustor at Takeoff
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Figure 77 Effect of Fuel Composition on Liner Temperatures in the Main Stage

of the Advanced Vorbix Combustor at Takeoff

The takeoff liner temperature data shown in Figures 76 and 77 were obtained at

a pilot to main stage fuel split of 20/80. To investigate the effect of this
split on liner temperature sensitivity more fuel was introduced to the pilot
stage, even though this perturbation could increase high power NO
emissions. Operation at a 30/70 pilot to main fuel split at takeoff increased

the sensitivity of the pilot zone liner temperature to fuel hydrogen content.
The corresponding reduction in main zone fuel flow also changed liner
temperature responses to fuel composition. Most of the thermocouples on the
inner liner, which show a decrease in temperature with fuel hydrogen content
at a 20/80 fuel flow split (see Figure 77), showed increases of comparable
magnitude at the 30/70 fuel flow split.
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Structural analysis of the segmented liner (Reference 15) indicates that the

life limiting failure mode is cyclic fatigue cracking of the not surface of
the liner segments. Consequently, the highest temperatures encountered during

operation, i.e., those at takeoff, are most significant in determining liner
life. While the structural analyses have not advanced sufficiently to
determine the life decrement associated with specific increases in liner

temperature, it would appear that the small temperature changes observed in
the pilot stage of the advanced Vorbix combustor with ERBS fuel would not

produce large life deficits. However, the large temperature excursions
encountered in the main stage at takeoff would be expected to lead to

excessive loss of liner life. These data indicate that the sensitivity of this
configuration of the advanced Vorbix combustor to fuel composition is

unacceptable. Further refinement of the main stage of the combustor is
required to exploit what appears from liner temperature measurements in the
pilot zone to be a potential advantage of staged combustors.

7.3.2 Emissions

Figure 78 shows the carbon monoxide and unburned hydrocarbon emissions

characteristics of the advanced Vorbix combustor at the idle operating

condition for the Energy Efficient Engine. The variation in the concentration
of these constituents with fuel/air ratio is shown for the three test fuels
evaluated. The goals which are shown in the figure are representative of the

levels which must be achieved (in combination with comparable performance at

higher power) to comply with the proposed standards of Table 2 for engines
certified after 1984.
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Figure 78
	

Emissions Characteristics of the Staged Vorbix Combustor at Idle
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At the design fuel/air ratio, carbon monoxides emissions are slightly higher

with the reduced hydroge content fuels than they are with Jet A. However,

emissions output with all three fuels is well below the goal. The variation in
unburned hydrocarbon emissions with fuel/air ratio is more pronounced. This
variation parallels trends observed in the single stage combustor, including
higher emissions output and g ► eater sensitivity to fuel composition at the
lean fuel/air ratios. The performance improvements which accompany reductions
in hydrogen content at the low fuel/air ratios may t? due to the fuel

volatility effect identified in Se `ion 5.1.1. At the design idle fuel/air
ratio, unburned hydrocarbon emissions with all three fuels are nearly

identical and close to the goal.

To fully evaluate the emissions characteristics of staged combustors, carbon

monoxide and unburned hydrocarbon output at approach must be considered in
addition to emissions output at idle. Output of these constituents can be

significant when the combustor is operating with both stages fired at the low

overall fuel/air ratios encountered at approach. The alternative of operating
on one stage is precluded by concern over engine acceleration capability.
Figure 79 shows the variation in carbon monoxide and unburned hydrocarbon

emissions at approach as a function of the pilot to main stage fuel flow

split. Operation with ERBS fuel significantly increases the output of both

constituents. The goal for carbon monoxide emissions can be achieved with Jet
A fuel at all but the lowest pilot stage fuel fractions. Assuming a parallel

variation in carbon monoxide output with pilot stage fuel flow fraction, it is
doubtful that the goal can be achieved with ERBS fuel even at pilot stage fuel

fractions approaching 90 percent. However, compliance with the proposed
emissions standard is determined by weighting emissions output over the

landing/takeoff cycle, and the levels which are cited as goals at idle and
approach are an oversimplification of this weighted average. The actual EPA

parameter for carbon monoxide emissions from the staged combustor operating on
ERBS fuel is 22.67, which satisfies the goal of a maximum of 25. This

parameter is computed with the carbon monoxide output levels shown in Figures
78 and 79 and the appropriate emissions output at higher power levels.

Unburned hydrocarbon emissions at approach are a more critical problem in that

the levels observed with Jet A fuel already exceed the goal. In addition,

emissions at approach and idle can not be traded to comply with the weighted
average EPA parameter because they are already at or above the goal level at

idle. Consequently, the unburned hydrocarbon emissions characteristics of the
staged Vorbix combustor must be refined in order to meet the program goals
with Jet A fuel. The introduction of ERBS fuel increases the need for
refinement even further.

A major incentive for evaluating staged combustors is the capability of

reducing oxides of nitrogen through lean combustion at high power levels.
Figure 80 shows the effect of fuel composition on the NO emissions
characteristics of the staged Vorbix combustor at the takeoff condition for

the Energy Efficient Engine. As in the preceding figures, the emissions level
cited as a goal is that which; in combination with a comparable level of
emissions at lower power levels; would produce a weighted average EPA

parameter that complies with the proposed standards for engines certified
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after 1984 (Table 2), Data obtained with Jet A fuel demonstrate the genera,
emissions characteristics of the staged Vorbix combustor; the NOx emissions
index increases as overall fuel/air ratio rises. Shifting fuel from the main
stage to the pilot stage produces proportionatelygreater increases in NO
emissions due to the higher equivalence ratios in the pilot stage. While fix
output wit!; Jet A fuel is not low enough to meet the goal, emissions are
substantially below the levels which could be achieved with a conventional
single stage combustor in this high pressure ratio engine.

PERCENT FUEL IN PILOT STAGE

Figure 79 Emissions Characteristics of the Staged Vorbix Combustor at Approach

Operating the staged combustor on either ERBS fuel or the 11.8 percent
hydrogen content fuel increases NOx emissions at pilot zone aquivalence
ratios of both 0.45 and 0.65. This increase in emissions results from the

higher flame temperatures produced by lower hydrogen content fuels which, as
demonstrated in Section 7.1.3, increase the potential for formation of oxides

of nitrogen. The fractional increases in NOx emissions observed with the
transition from Jet A fuel to the lower hydrogen content fuels are comparable

in magnitude to the increases observed in single stage combustors (see Figure

65). Consequently, while staged combustion reduces nominal thermal NOx
emissions output, it does not reduce the sensitivity of the emissions
characteristics to fuel composition.
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7.3.3 Smoke

The smoke output from the advanced Vorbix combustor was extremely low at all
operating conditions. The SAE Smoke Number was less than unity at nearly all
test points. No consistent variation in smoke output with fuel composition was
observed.

7.3.4 Combustor Exit Temperature Distribution

The combustor exit temperature distribution was measured with fixed gas
temperature thermocouples mounted on a vane pack behind the test combustor.

Because the circumferential density of thermocouples was comparable to the
density of the carburetor tubes in the power stage (vane spac-,,.g of 5.1°
versus carburetor tube spacing cf 7.5 0 ) the features of the exit temperature

distribution could not be correlated with the geometry of the combustor. When
the combustor operated on Jet A fuel at simulated takeoff inlet conditions and

a fuel/air ratio of 0.0213, the exit temperature pattern factor was 0.331.
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This is somewhat higher than the 0.25 level observed in prior evaluations of

the staged Vorbix combustor under the Energy Efficient Engine program. This
increase has been attributed to higher than nominal fuel flow from the fuel
injector in one carburetor tube in the main stage. When the combustor operated

at the same conditions with the lower hydrogen content test fuels the high
temperature streak produced by the injec t or still dominai.ed the exit
temperature distribution. Pattern factors of 0.305 and 0.368 were observed

with ERBS fuel and the 11.8 percent hydrogen fuel respectively.

E	 Circumferentially averaged radial temperature profiles constructed from these
temperature distributions are shown in Figure 81. To achieve the required

turbine blade life in the Energy Efficient Engine the entire temperature
profile must be within the maximum local temperature envelope shown. The

temperature profiles measured with all three fuels are characterized by a high

temperature core and cool peripheral area, particularly at the outer radii.
The elevated temperatures measured at the 30 percent span preclude achieving a

satisfactory profile with any of the test fuels. Variations in the profile
with fuel composition are shown to be small.
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Figure 81 Exit Radial Temperature Profiles from the Staged Vorbix Combustor

Perturbations in the pilot to main stage fue', flow split at takeoff were

investigated with all three test fuels. The pattern factor did not change more

than +0.0015 relative to the values cited above and no significant shifts in
radial temperature profile were observed.
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7.3.5 Combustion Stability

The lean blowout fuel/air ratio was determined at idle inlet conditions with
each test fuel to obtain a qualitative measure of the ignition and stability

characteristics of the staged combustor. The measured lean blowout fuel/air
ratio was 0.0057 with Jet A fuel, 0.0066 with ERGS fuel, and 0.0053 with 11.8
percent hydrogen content fuel. This sensitivity to fuel composition is

moderate and follows the general trend of the combined viscosity and

volatility characteristics of the fuels. The nominal level of the blowout
fuel/air ratio is comparable to the level observed in the single stage

combustor with a single pipe fuel injector.

7.3.6 Carbon Deposition

After the high pressure test of Configuration AV-1 had been completed, the

test rig was opened and the components were inspected. There was no evidence

of carbon deposition or any other distress on the liner segments, fuel

injectors, or carburetor tubes.

7.3.7 Status of the Staged Combustor Concept

The high pressure tests indicate the advanced Vorbix combustor is capable of
meeting the proposed carbon monoxide emissions standards for engines certified
after 1984 with either Jet A or ERBS fuel. Unburned hydrocarbon emissions were
low with both fuels but the levels are still marginal relative to the proposed

standards. The use of staged combustion is a demonstrated method of achieving

low NOx emissions at high power. Although NOx emissions were not reduced
enough to satisfy the proposed standards, output was substantially below the

level which could be achieved with a conventional single stage combustor in
the high pressure ratio Energy Efficient Engine. In fact, the levels attained

with the staged Vorbix combustor were the lowest in the program.

The effect of fuel composition on liner temperatures in the staged Vorbix
combustor remains a paradox. Some of the data indicate that the increments in
liner temperature associated with broadened properties fuels are considerably

smaller than the temperature changes encountered in louver cooled single stage
combustors. It is not clear whether these findings should be attributed to

locally leaner combustion achieved with staging or a reduction in sensitivity

to fuel composition due to internal convective cooling. However, the remaining
data indicate that liner temperatures in the main stage are extremely
sensitive to fuel composition. It appears that significant variations in the
dispersion of fuel toward the inner liner altered the convective heat loads on

these surfaces. The mechanisms causing these temperature excursions must be

identified and densitized before the staged Vorbix combustor could be
considered viable for extensive operation with broadened properties fuels.
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7.4 VARIABLE GEOMETRY COMBUSTOR CONCEPT

The variable geometry combustor was selected as the third concept for
evaluation in the Phase I program because the local stochiometry control

accomplished by shifting the combustor airflow distribution could enhance the
capability of operating with broadened properties fuels. Two basic variable

geometry combustor design approaches were evaluated by conducting tests on
fixed geometry combustor configurations respresentative of different positions
of the variable components. The first design approach involved use of a
variable-geometry single-pipe fuel injector while the second was a "fully

modulated" variable geometry combustor in which massive quantities of
combustor air could be shifted between the primary and dilution zones. Two

variations of the "fully modulated" combustor were evaluated. These
configurations were produced as perturbations of the baseline JT9D bulkhead
combustor with the fuel injector operating in the single pipe mode as
established by Configuration VG-1 and that configuration was the reference

against which the performance of the different variable geometry approaches
was evaluated.

7.4.1 Variable Geometry Fuel Injector

Combustor configurations VG-3 and VG-4 incorporated single-pipe fuel injectors

w"th interchangeable central pintles that reproduced the extreme positions of

a hypothetical axially-translatable variable-position pintle. As indicated in
Section 4.3.2, prete t flow calibration and spray characterization had

demonstrated that these changes in pintle position altered the injector

airflow, its angular momentum and the spray angle. In both pintle positions
the atomization characte istics were generally superior to the baseline

injector operating in the single pipe mode. Table 25 presents a listing of the
pertinent results of the high pressure evaluation of the combustor with the
fuel injector pintle in both positions while operating on ERBS fuel. For
comparison, the corn , onding data obtained with the baseline combustor and
single pipe fuel in.,-, or in Configuration VG-1 is shown. The latter includes
results obtained f-,. onaration on both Jet A and ERBS fuel to provide
indication of the it 	 ntal changes associated with that fuel transition.

The data obtained at .,..e ^-licate that the use of the variable geometry fuel

injector, with the pintle in either position, had minimal effect on the carbon
monoxide :P ;ss ions at this power level. The concentration of this pollutant is
slightly 0 0or than that obtained with ERBS fuel in the baseline

Configurat' .n VG-1 with the fixed geometry fuel injector, and remains
substantially above the level achieved with Jet A fuel in thit configuration.

Likewise, the unburned hydrocarbon emissions output at idle varies only
slightly wi;h the position of the pintle in the variable geometry injector and

is higher than achieved ^i the baseline combustor with t +ie same fuel.

However, use of the variable geometry fuel injector configurations led to
significant improvement in the lean stability characteristics at idle. The
lean blowout fuel air ratio with the pintle in either position is shown in
Table 25 to be considerably lower than achit•ved with the baseline injector in
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Configuration VG-1. Curiously, use of the injector with the pintle in the open
position; which admits more air through the injector and hence produces leaner
local mixtures; produced a lower blowout fuel air ratio than the injector with

the pintle retracted to restrict the airflow.

Shifting of the fuel injector pintle did not have a significant effect on the

output of NOx emissions at takeoff. While extrapolation of the data from

Configuration VG-4 was required to achieve a common fuel air ratio for

comparison, the results presented on Table 25 indicate little variation in
takeoff NOx emissions between the two configurations with the variable fuel

injector and that wil the baseline fixed geometry injector when they were
operated on ERBS fuel. The SAE smoke number at takeoff was lower with the

variable geometry injector in either position than it was with the baseline

fixed geometry injector in Configuration VG-1 even when the latter was

operated on Jet A rather than ERBS fuel. However, the nominal smoke output
from all four fuel-configurational variations was small and the incremental

differences are comparable to the experimental uncertainty.

Introduction of the variable geometry fuel injectors was found to have a

significant effect on both the combustor exit temperature distribution and
liner temperature levels at high power conditions. The improvement in exit

temperature distribution is evident from the cited pattern factors which

reduced progressively from the baseline Configuration VG-1 through

Configurations VG-3 and VG-4. Figure 67 of Section 7.1 shows the combustor
exit temperature distribution observed with Configuration VG-1. Evaluation of

Configurations VG-3 and VG-4 indicated that the high temperature regions
downstream of each fuel injector and in particular that behind the injector at

the 27 degree circumferential position were progressively attenuated. Figure
82 shows the exit temperature distribution observed at takeoff with ERBS fuel

in Configuration VG-4 and demonstrates that the high temperature streak that
dominated the temperature distribution and established the pattern factor of
Configurations VG-1 and VG-3 has been eliminated.

Similar effects are evident in the maximum liner metal temperature. This peak

temperature occurred at the same location in all of the fuel-configurational

variations listed on Table 25, i.e. downstream of a fuel injector on the third

louver panel of the inner liner as shown in Section 7.1.2. The measurements
indicated that use of the variable geometry fuel injector produced significant

reductions in maximum liner temperature at both cruise and takeoff relative to
the baseline Configuration VG-1 operating on the same ERBS fuel. When the

injector pintle was in the open position the reduction in peak liner

temperature at cruise was more than 70°K (1407) which was nearly equal to the
incremental change in peak liner temperature associated with the Jet A to EBBS

tr,.nsition in the baseline Configuration VG-1. Operation with the pintle in
the closed position reduced these peak metal temperatures at cruise another

60°K (1090F).
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Figure 82 Combustor Exit Temperature Distribution at Takeoff With Variable

Geometry Injector in Closed Position

Consideration of the listed average liner temperatures indicates that the

mechanism of reduction of the maximum liner temperature differs with the
position of the pintle in the variable geometry injector. When the p^ntle was

in the closed position the average liner temperature in the primary zone was

comparable to those in the baseline Configuration VG-1, implying that the use

of this injector produced an attenuation of only the hot streaks downstream of
the injector without causing a major shift in the heat load distribution on
the remainder of the liner. Conversely use of the injector with the pintle in

the open position led to increases in the average liner temperature in the

primary zone while the reductions in maximum liner temperature were being

achieved. This implies a more significant change in the heat load distribution
on the liner.

The cause of the improved high power performance with the variable geometry

injector is not evident. However, as described in Section 7.2.1 similar trends
of reduced exit temperature pattern factors and peak liner temperatures were

also observed in the single stage combustor configurations with the modified
fuel injector. The geometry of the outer aerating air passage in the improved

144



and the variable geometry injectors was identical and was a refinement

relative to the baseline injector. It is suspected that this is the common
aspect. Likewise, the cause of the lower liner temperatures and pattern

factors with the variable geometry injector in the closed as opposed to open

configuration cannot be positively identified, but the bench spray
character ization tests described in Appendix B indicated that closing the

pintle caused an increase in the spray angle which may have enhanced fuel

dispersion.

Based on the data of Table 25 the viability of a variable geometry fuel injec-

tor with a translating pintle as simulated by Configurations VG-3 and VG-4 is
questionable. The use of such an injector with the pintle in the closed

position at high power would be desirable to achieve the exit temperature
pattern factor and liner temperature advantages. However, there is little

advantage to be gained by introducing a different injector geometry at low

power.

Translating the pintle to the open position, as in Configuration VG-3, at low

power appears to offer minute reductions in idle carbon monoxide and unburned

hydrocarbon emissions and a 20 percent reduction in lean blowout fuel/air
ratio with the latter having possible favorable implications regarding
altitude stability and ignition. However, it is doubtful that the added

complexity of a variable fuel injector could be considered acceptable for this
small performance advantage. Rather the results of this evaluation indicate
that the closed pintle injector of Configuration VG-4 should be considered in
the context of a fixed-geometry single-pipe injector that offers considerable

potential for use in either a single stage or another variable geometry

combustor concept.

7.4.2 Fully Modulated Variable Geometry Combustor

Two sequences of combustor configurations were evaluated to assess the

viability of a fully modulated variable geometry combustor as a means of

accommodating the use of broadened properties fuels. The initial sequence
included combustor Configurations VG-1, VG-5 and VG-6 which were variations of

the baseline louver-cooled JT9D-7F bulkhead combustor with the baseline fuel
injector operated in the aerated single pipe mode. The second sequence

encompassed Configurations VG-7 and VG-8 and was reppresentative of a more
advanced design approach in that it employed Finwal P structure in the liners
enclosing the primary combustion zone as described in Section 4.3.2. The
variable fuel injector with the pintle in the closed position was used as a

fixed-geometry single-pipe injector in tfiis sequence of configurations. Both
of these sequences included the entire range of variation of airflow

distribution that could be accommodated in the hypothetical fully-modulated
variable-geometry combustor which operated at an essentially invariant

pressure drop so as to maintain constant liner cooling and fuel injector
aerating airflow.

The results of the evaluation of these sequences were used initially to

establish the optimum scheduling of the airflow distribution in the combustor:
i.e, to define the fractions of combustor airflow the variable geometry

mechanism should deliver to each zone of the combustor. The primary zone
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airloading - the fraction of combustor airflow entering the primary zone
through both the fuel injector and its surrounding insert and collar and the
primary combustion air orifices in the liner - is the principal variable in
the optimization. Figure 83 shows the trend of critical emissions character-
istics of the variable geometry combustor synthetized from Configurations
VG-1, VG-5 and VG-6. Data are presented for the carbon monoxide and unburned
hydrocarbon emissions at the idle condition of the JT9D-7F engine and for the
oxides of nitrogen at the takeoff condition of that engine. The goals shown on
the figure for each constituent are the levels that would have to be achieved
at that operating condition to attain the proposed requirements of Table 2 for
an engine certified after 1984 if consistent emissions levels are also
maintained at other power conditions. The data indicate the carbon monoxide
emissions dictate the optimum air loading at the idle condition. A primary
combustion zone loading of 25 percent or less of the total combustor airflow
would be required to achieve the goal for carbon monoxide emissions while
operating on ERBS fuel. At that loading the goal for unburned hydrocarbon
emissions would be satisfied by a comfortable margin. Of course, reducing the
primary zone airflow further at low power levels, such as the 17 percent of
total airflow incorporated in test Configuration VG-6, could be advantageously
pursued to enhance low power combustion stability and provide wider margin for
compliance with the carbon monoxide and unburned hydrocarbon emissions goals.
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Figure 83	 Emissions Characteristics of a Variable Geometry Combustor
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The takeoff NOx emissions data of Figure 83 indicate that the trade with
primary zone airflow, and hence bulk equivalence ratio, is very limited. The
emissions peak at an air loading that corresponds to a bulk primary zone

equivalence ratio of about unity at takeoff. Increasing this air load to the
maximum practical level of about 60 percent (i.e. Configuration VG-5), at

which all combustor air not used for liner cooling is admitted to the primary
zone, produced a bulk equivalence ratio of about 0.6 in that zone at takeoff.
However, this accomplished only a 30 percent reduction in the NOx emissions

leaving the emissions index still at nearly twice the goal level. The

inability to reduce NOx emissions by more substantial amounts with the
introduction of massive quantities of additional primary zone air appears to

be attributable to the strong recirculation zones formed by the air discharge
from the aerated fuel injectors in the bulkhead type combustor. Apparently,

the jets of additional combustion air introduced through aperatures in the
liners immediately downstream of these injectors do not have sufficient

momentum to effectively penetrate these recirculation zones. Consequently,
while the bulk equivalence ratio of the primary zone is reduced, the mixture

strengths in the NOx formation regions remained nearly invariant and little
net reduction in NOx emissions was accomplished.

Based on the data of Figure 83, a variable geometry combustor synthesized from

Configurations VG-1, VG-5 and VG-6 would not be attractive from the isolated

point of view of emissions control. In fact, the data of this figure indicate
that nearly as favorable emissions characteristics could be achieved by
retaining a fixed geometry combustor with very low primary zone air loading.
However, variation of primary zone stochiometry also has a significant effect

on combustor liners heat load and the variable geometry features used to
reduce NOx emissions at high power would also contribute to enhanced liner

life. Figure 84 shows the measured 	 - • dge aietal temperatures in the bulkhead
and in liners enclosing the primary 	 i the diluticn zones of this sequence of
combustor configurations. With the t eption of some anomalies in the data
from thermocouples on primary zone liner panels, the measurements exhibit a

trend of substantial decrease in metal temperature with increasing primary
zone air loading at both the cruise and takeoff operating conditions. The

liner cooling air flow rates were maintained essentially invariant in these
configurations and the reduced metal temperatures must be attr*,buted to the
lower bulk equivalence ratio in the primary zone. Even if, as deduced in the

discussion above, the additional pr=inary zone air was not participating in the
reactions sufficiently to suppress NOx productiin, it was evidently effective

in attenuating the heat load on the bulkhead and parts of the liner.

A comparison can be made between the liner metal temperature in a fixed and a

variable geometry combustor, both of which operate with low primary zone air

loadings; of the order of twenty percent of the combustor air flow; at low

power levels in order to satisfy idle emissions, stability or ignition

constraints. It is evident from the data of Figure 84 that, if the variable
geometry combustor were capable of increasing the primary zone air loading to

60 percent of combustor airflow at high power levels it could potentially have
local metal temperatures in the louvers enclosing the primary zone 28 to 42°K

(50 to 75°K) lower than the fixed geometry combustor at takeoff. Temperature
reductions of this magnitude could more than offset the increases associated

with the use of broadened properties fuels in fixed geometry combustors such
as those of Section 7.1 and could contribute to the viability of the fully

modulated variable geometry combustor concept.
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Figure 84 Effect of Primary Zone Air Loading on Liner Temperatures in

Variable Geometry Combustor

Based on these considerations of the emissions characteristics and liner

durability impacts in the first sequence of combustor configurations, the
airflow schedule of the hypothetical fully modulated variable geometry
combustor was refined prior to definition of the final sequence of
configurations. To satisfy emissions constraints and meet ignition and

stability requirements it was concluded that the primary zone airloading
ir:, orporated in Configuration VG-6 was close to optimum for low power levels
and that the actuation of the variable geometry system to produce higher

primary zone airloadings should occur in the range above the 30 percent thrust

approach sea level power setting and be completed prior to attaining cruise
conditions. It was also concluded that the primary zone airloading should be

at the highest attainable level in the configuration simulating the high power
operating mode of the combustor to emphasize reduction of the NOx Emissions at

these operating conditions. Consequently, in defining Configuration VG-8 the
liner cooling air that had been eliminated by incorporating the Finwall®
liner panels was diverted to the primary combustion air jets. The positioning
of the combustion air holes in the liner in this configuration was altered to

improve the interaction of these jets with the reaction zones inside the
combustor.

Table 26 presents the performance characteristics of the two hypothetical

Fully-modulated variable-geometry combustors. The initial combustor is that

synthesized from the performance of Configurations VG-1, VG-5 and VG-6 as
described above, while the final version is that based on data obtained from
Configurations VG-7 and VG-B. The table also shows the program goals relevant

to the variable geometry combustor concept and the performance of the fixed

geometry baseline Configuration VG-1 when it was operated on Jet A fuel.
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Table 26

Performance Characterisitics of Fully Modulated Variable Geometry Combustors

Fullx Modulated
Program Baseline variable Geome r
Goal Single Stage Tn^T- Fi na l

Combustor Configuration - VG-1 VG-5/6 VG-7/8

Fuel	 Injector - Baseline Baseline Var. Closed
Single Pipe Single Pipe Positio

Finwall&Liner Type - Louver Louver

Airflow Distribution (% Wab)
Primary/Dilution	 @ Idle/Approach - 32.5/23.6 17.0/39.1 17.9/42.1

Zones	 @ High Power - 32.5/23.6 56.1/0 60.0/0

Fuel ERBS Jet A ERBS ERBS

Idle Performance

Carbon Monoxide Emissions (gm/kg) 14.0(1) 16.0 10.2 23.3
Unburned Hydrocarbon Emissions (gm/kg) 2.0(1) 1.1 1.0 5.3
Lean Blowout Fuel/Air ratio Note 2 0.0061 0.0052 Note 3

Takeoff Performance (F/A - 0.0193)

NOx Emissions (gm/kg) 16.0(1) 38.6 27.5 35.3
SAE Smoke Number 19.2 3.8 1.7 1.3
Exit Pattern Factor 0.25 0.462 0.473 0.359

EPA Emissions Parameters

Carbon Monoxide 25.0 27.3 19.8 39.2

Unburned Hydrocarbons 3.3 1.8 1.63 8.7

Nitrogen Oxides 33.0 68.7 56.5 65.4

Average Liner Metal Temperatures °K (°F)

Bulkhead No higher 870(1107)(4) 826(1027) 964(1277)

Cruise	 Primary Zone than 832(1038) 838(1050) Note 5

Dilution Zone baseline 774(934) 154(899) 769(925)

combustor
Buikn,ad with 952(1255)(4) 902(1164) 1047(1426)

Takeoff	 Primary Zone Jet A 928(1211) 940(1234) Note 5

Dilution Zone Fuel 857(1084) 850(1072) 844(1061)

Notes:	 (1) Approximate goal to achieve EPA parameter if emissions at other power levels are consistent.

(2) Consistent with reference engine.
(3) Altitude stability and ignition capability evaluated. See S a-ction 7.5.

(4) Estimated !rom measurements on Configurat i ons VG-5 and VG-6.
(5) Finwall®	 panels not instrumented.
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The data indicate that the baseline fixed geometry combustor could achii
goals for unburned hydrocarbon emissions appropriate to post 1984 engine

certification but was marginally deficient of the corresponding goal f of

carbon monoxide emissions. However, the initial version of the variable
geometry combustor achieved the goals for both of these constituents by

comfortable margins even when operating on ERBS rather than Jet A fuel.
was an obvious consequence of the enrichment of the primary combustion
that can be accomplished at low power levels in the variable geometry
combustor. The carbon monoxide and unburned hydrocarbon emissions

characteristics of the final version of the variable geometry combustor
not as good as those of its predecessor with the goals for both of then
constituents being exceeded. This version had incorporated the "variable

injector with the pinLle in the closed position from Configuration VG-4
this deterioration in low power emissions characteristics had been anti

on the basis of experience with that configuration.

The use of the variable geometry concept is shown to lead to improvemen,
the combustion stability at idle. The enrichment of the primary zone of the
initial version of this combustor produced a 15 percent reduction in lean

blowout fuel air ratio relative to the baseline fixed geometry combustor
despite the use of ERBS rather than Jet A fuel. While the idle stability of
Configuration VG-7 was not investigated, the experience OT evaluating
Configuration VG-4 with the same fuel injector implies that the fully

modulated variable geometry combustor synthesized from this configuration
should have even lower blowout fuel air ratios. Configuration VG-7 was
however, subjected to a series of sea level and altitude ignition tests in an

altitude test facility. The results of this evaluation are discussed in detail
in Section 7.5 and demonstrate superior altitude ignition capability of the

variable geometry combustor concept relative to a fixed geometry single stage
combustor.

The NOx emissions characteristics of both versions of the fully modulated

variable geometry combustor are below expectations for this type of combustor.

Relative to the baseline fixed geometry combustor, the initial version of this

combustor produced only a 29 percent reduction in NOx emissions a, takeoff and
an 18 percent decrease in the overall EPA parameter for oxides of nitrogen. As
indicated previously in this section, the limited NOx emissions reduction
achieved with this configuration appeared to be attributable to inadequate
mixing in the primary combustion zone. While the positioning of combustion air

jets in the primary zone had been altered to enhance mixing in Configuration

VG-8, the high power NOx emissions and consequently the EPA parameter were
even higher in the final variable geometry combustor. Similar higher than

anticipated NOx emissions were observed in the evaluation of Configuratioc n̂
SS-7 which also incorporated the combustor liner sector with the FinwallJ in

the panels enclosing the primary zone. As indicated in Section 7.2.4 it was

suspected that the use of the grommetted combustion air orifices in the

FinwalA panels may have altered the penetration characteristics of the air
jets. This could have further reduced their ability to mix with the combustion

products inside the liner and led to richer local combustion.
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Further evidence of this locally rich initial combustion is apparent in the
measured temperatures on the combustor bulkhead as listed on Table 27. The
average measured metal temperatures are shown for the final variable geometry

combustor configurations - Configurations VG-7 and VG-8. Both of these
incorporated the Finwall® liner panels but with widely different primary zone
air loadings and hence equivalence ratios at takeoff. Comparison of the data
for Configuration VG-8 with Configuration VG-5 having similar bulk primary

zone equivalence ratio, but different liner construction and fuel injectors,
indicates that the bulkhead was substantially cooler in the latter
configuration. The temperature levels observed in Configuration VG-8 are
comparable to those measured in Configuration VG-1, which had a significantly

higher bulk equivalence ratio in the primary zone. This is further evidence

that with the Finwall® liner construction and the closed position variable
fuel injector the reaction zone stochiometry must be relatively independent of
the bulk stochiometry of the primary zone despite the presence of massive

quantities of additional air ir, the combustion air jets.

Table 27

Effect of Primary Zone Configuration on Bulkhead Temperatures wit ►. rl"M Fuel

Configuration

Liner

Fuel Injector

Primary Zone

Airloading — % Wab

Bulk Equivalence Ratio at Takeoff

Avg. Bulkhead Metal Temperature °K (°F)

at Cruise

at Takeoff

VG-5	 VG-8	 VG-7

Louver	 Finwall®	 Finwall®

Baseline	 Var. Closed	 Var. Closed

	

56.1	 60.0	 17.9

	

0.60	 0.57	 2.03

826 (1027)	 964 (1277)	 980 (1304)

902 (1164)	 1047 (1426)	 1051 (14:3)

One of the major concerns in the operation, of a fully modulated variable

geometry combustor is the ability to control the combustor exit temperature
distribution if all of the available combustion air is diverted to the primary
combust'(.,„ zone at high power levels. The results of the evaluation of the

initial v -r ,ion of the variable geometry combustor in the high power mode;

i.e. Confi i-ation VG-5; indicated that the combustor exit temperature pattern

factor at Ll off, while substantially above the program goal as shown as

Table 26; wa_ iot much greater than that measured with the baseline fixed

geometry comb,, for having considerable dilution zone airflow. The exit
temperature distribution also retained the dominant features of that observed
in the evaluation of the baseline combustor Configuration VG-1. Furthermore,

measurements of the exit temperaturE distributions from the final version of
the variable geometry combustor in the high power mode, i.e. Configurktion

VG-8, indicated a significantly lower pattern factor than that of Configur-
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ation VG-5. These trends are consistent with prior experience with the fuel

injectors in these configurations and imply that the characteristics of the

fuel injectors dominate the exit temperature distribution in this type of
r	 combustor. However, they du not serve to alleviate the basic concern over the

ability to control the exit temperature distribution in the absence of

dilution air.

7.4.3 Status of the Variable Geometry Combustor Concept

The results presented in this section provide an indication of the viability

of two versions of a variable geometry combustor for accommodating the use of

broadened properties fuels. The first version incorporated a variable geometry

fuel injector capable of modulating the quantity of air admitted through the
aerating passages. Its evaluation revealed that there were no significant

advantages to be achieved from the point of view of emissions, durability or
operational performance from this approach. However, the fixed geometry fuel
injectors that Werc used to simulate the variable injector were found to
produce significant improvements in combustor exit pattern factor, combustor

stability margin and maximum liner temperature levels which could be used to
advantage in more conventional single stage combustors with single pipe fuel
systems.

The synthesis of the characteristics of fully modulated variable geometry
combustors from the evaluation of appropriate fixed geometry configurations

indicates this concept has considerable potential for accommodating the use of
broadened properties fuels. The ability to enrich the primary combustion zone

by restricting its airloading at low power levels has been found conducive to
improved ignition and stability margin and to achieving carbon monoxide and

unburned hydrocarbon emissions levels consistent with the proposed EPA
standards for engines certified after 1984. Furthermore, by -Mcreasing the

primary zone airloading to reduce the equivalence ratio at high power the heat
load on the liners may be reduced. The associated incremental changes in liner
metal temperature are more than adequate to offset those associated with a Jet

A to ERGS transition.

Several major deficiencies were also observed in the evaluation of simulated

fully-modulated variable-geometry combustors. Despite maintaining primary zone
bulk equivalence ratios of 0.60 and less at takeoff, the NOx emissions

characteristics were substantially higher than anticipated. This has been
traced to incomplete mixing in the conventional swirl stabilized primary

combustion zone but raised concern over the need for more complex combustor
designs if a greater deg ree of mixture homogeneity is required for control of

NOx emissions. There is also concern over operation of a variable geometry

combustor at high power levels if all of the available combustor airflow is
diverted into the primary zone since this would leave no mechanism for control

of the combustor exit temperature distribution. These difficulties lead to
questioning of the practicality of the full modulated air-;' low vers ilon of the

variable geometry combustor. In particular, could a less complex variable
geone'ry combustor in which only the primary zone airflow is modulated be more

tractable and still offer the opportunity to enhance ignition, low power
emissions and liner heat load while operating on broadened properties fuels? A

variable geometry combustor of this type will be investigated in Phase II.
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7.5 IGNI.ION AND STABILITY EVALUATION

The final version of each combustor concept was evaluated in an altitude test

facility to assess the impact of broadened properties fuels on ignition and

altitude stability characteristics. A brief description of each configuration
follows:

5:-gle Stage Combustor -Configuration SS-7 incorporated the advanced

1- inwall® liner construction in the primary zone and the modified duplex
fuel injector.

Staged Combustor - Configuration AV-2, an advanced staged Vorbix
combustor, had the same aerodynamics and stoichiometry as the high

pressure test configuration but incorpor a ted a louver cooled sheet metal
liner.

Variable Geometry Combustor - Configuration VG-7 simulated a fully
modulatable variable geometry combustor with a single pipe fuel injector.

The airflow control system produced low primary zone airloading, i.e., a
rich primary zone stoichiometry which would be desirable at ignition and
other low power operating conditions.

The single stage and variable geometry combustor configurations were evaluated

at representative conditions for the JT9D-7F engine, while the staged Vorbix
combustor was evaluated under simulated operating conditions for the Energy

Efficient Engine.

7.5.1 Altitude Ignition and Stability Characteristics

In Fig-ire 85 the ignition boundaries and minimum pressure stability envelopes
for Configuration SS-7 are superimposed on the required ignition envelope for

the JT90-7F engine, which was defined in Section 3.4. The overall ignition

capability and blowout margin for this configuration are low relative to
levels acl-•ieved with JT9D components during flight" testing. However, previous

experience correlating data from rig tests with da:a obtained during flight

testing indicates that these findings are characteristic of JT9D combustors.
Rig data accurately reflects the incremental changes in ignition capability or

stability margin produced by a combustor modification but generates
consistently pessimistic absolute levels.

When the results of the fuel sensitivity evaluation are interpreted on this

basis, it can be seen that the ERBS fuel and the 11.8 percent hydrogen content
test fuel produce some reduction in the altitude ignition capability of the
single stage combustor. However, the minimum pressure stability envelope is

shown to be independent of fuel composition.
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Figure 85 Altitude Ignition and Stability Characteristics of Configuration
SS-7

Figure 86 shows the ignition characteristics of the advanced Vorbix combustor

relative to the required ignition envelope for the Energy Efficient Engine.
The combustor could be ignited at all attainable conditions within the

envelope. In addition, ignition was achieved with all three test fuels at the
critical points shown in the figure. However, the fuel control schedulE for

the Energy Efficient Engine calls for richer fuel/air ratios at ignition than

the JT9D-7F, which may have facilitated starting. Attempts to document a
minimum pressure stability boundary for the staged Vorbix combustor were
unsuccessful; blowout could not be produced at the minimum scheduled fuel flow

over the range of vacuum capabilities in the facility, which included

simulated altitudes in excess of 13.5 kilometers (45,000 feet).

7
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Figure 86	 Ignition Characteristics of Configuration AV-2

The measured ignition envelope for the advanced variable geometry combustor,

Configuration VG-7, is shown in Figure 87. h comparison with Figure 85
indicates, ignition capabi !ity with Jet A fuel improved somewhat relative to

the single stage combustor. The data presented in Appendix B do not support
this finding in that fuel atomization characteristics with the single pipe
aerated injector used in the variable geometry combustor are significantly
poorer at ignition than the characteristics of the pressure atomizing primary

system of the duplex injector used in the single stage combustor. Evidently
the richer primary zone stoichiometry of the variable geometry combustor in

the low primary zone airloading mode is sufficient to overcome the atomization
deficiency and produce the cited improvement in ignition capability.
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Figure 87	 Ignition Characteristics of Configuration VG-7

While the ignition boundaries of the variable geometry combustor are nearly
identical with Jet A fuel and the 11.8 percent hydrogen content test fuel, the
ignition boundary observed with ERBS fuel is somewhat lower. This difference
may be due to the viscosity and volatility trends of these fuels, cited
previously (Section 5.1). As shown in Table 12, the viscosity and low volume
distillation temperature ranges of Jet A fuel and the 11.8 percent hydrogen
content fuel are comparable, implying that the atomization and vaporization
characteristics, which are critical to ignition, are similar. The viscosity
and low volume distillation temperatures of the ERBS fuel are higher which
tends to impede fuel vaporization and hence ignition.
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7.5.2 Sea Level Ignition Evaluation

The impact of fuel composition on the sea level ignition capabilities of the

three combustor concepts was also evaluated. The JT9D•-based single stage and
variable geometry combustors were evaluated at air and fuel temperatures of

250°K (-10 0F), while the advanced Vorbix combustor was evaluated at an air

temperature of 218°K (40°F) and a fuel temperature of 213°K (0°F) due to high

ambient humidity at the time of the test.

Results of the evaluation of the single stage combustor, Configuration SS-7,

are presented in Figure 88. In most instances, rapid ignition was achieved
with Jet A fuel at 85 percent of nominal ignition flow. Progressively higher

fuel flow rates were required to achieve consistent ignition with the ERBS

fuel and the 11.8 percent hydrogen content fuel, implying a sensitivity to
fuel composition. However, the incremental increases required to achieve

ignition with the broadened properties fuels were small and satisfactory

results could be achieved without exceeding the nominal ignition flow. Similar
results were observed with the staged Vorbix combustor (Configuration AV-2)
and the variable geometry combustor (Configuration VG-1). Ignition capability

was somewhat sensitive to fuel composition, but each combustor had an adequate
ignition margin with Jet A fuel to accommodate this sensitivity.

FUEL FLOW — PERCENT OF NOMINAL
IGNITION FLOW

Figure 88 Sea Level Ignition Characteristics of Single Stage Combustor

Configuration SS-7
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7.5.3 Summary of Ignition and Stability Effects

The evaluation of the final configuration of each combustor concept indicates

that ignition capability can be affected by fuel composition. Although the
differences were moderate, they indicate a general sensitivity to fuel

viscosity and volatility effects at simulated altitude ignition conditions.
Conversely, sea level ignition also appeared to be sensitive to fuel

composition, implying a different controlling mechanism.

The staged Vorbix combustor demonstrated

than the advanced version of the single

may be due in part to differences in the

geometry to enrich the primary zone of a
also improved ignition capability.

better altitude ignition capability

stage combustor, but this improvement

engine cycle. Use of variable

n otherwise single stage combustor
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SECTION 8.0

CONCLUDING REMARKS

The results of Phase I of the Broad Specification Fuels Combustion Technology

Program have demonstrated that the use of Experimental Referee Broad
Specification (ERGS) fuel rather than Jet' A fuel can have a significant impact

on the operation of conventional single stage JT9D combustors. Reductions in
liner life of about 13 percent are anticipated from the data as are higher

carbon monoxide and unburned hydrocarbon emissions and some deterioration in
ignition capability. The program results also indicate that advanced

combustion technology offers the potential for reducing these sensitivities.
Modest reductions with the least configurational impact appear attainable with
the introduction of improved fuel injectors and advanced liner constructions.
More advanced technology combustor concepts, such as staged and variable

geometry combustors, are less sensitive to changes in fuel composition and
offer more flexibility of operation. However, the technical risks associated

with the development and use of these complex combustor concepts are large. If
these advanced technology combustors were required solely for the purpose of
accommodating a particular roadened properties fuel, the costs and risks
involved would become major factors in a cost-benefit analysis of the

acceptability of that fuel.

While not addressed specifically in the Phase I program, consideration of the

use of broadened properties fuels also leads to concern over deterioration in

thermal stability with increased propensity for carbon deposition in fuel

injectors and their supports. The use of duplex and staged fuel systems in
which parts of the system are not operational at low power levels are of

particular concern because of the risk of thermal decomposition of stagnant
fuel in the absence of the convective cooling produced by flowing fuel. This

concern can be a major factor in establishing the acceptability of a
particular combustor concept and must be recognized in future evolution of

advanced technology combustors.

The incentive to incorporate advanced combustor concepts could be improved,

and consequently the economic impact of their introduction reduced, if these
concepts were also exploited to enhance important engine operation aspects

such as combustor and turbine airfoil durability and specific fuel consumption.
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NOMENCLATURE

A	 Flow Area cm2 (in2)

CD	 Discharge Coefficient

CO	 Carbon Monoxide

EI	 Emission Index gm/kg

F/A	 Fuel to Air Ratio

gc	 Gravitational Constant m/sec t (ft/sect)

NOx	 Oxides of Nitrogen

PS	 Static Pressure MPa (psia)

PT	 Total Pressure MPa (psia)

THC	 Total Unburned Hydrocarbons

Tf	 Flame Temperature °K (°F)

TT	 Total Temperature °K (°F)

Vref	 Velocity at a Cross Section of the Burner in the Absence of

Combustion m/sec (ft/sec)

WA	 Airflow kg/sec (lb/sec)

WAB	 Burner Airflow kg/sec (lb/sec)

WF	 Burner Fuel Flow kg/sec (lb/sec)

71C	 Combustion Efficiency

SUBSCRIPTS

ca	 Circumferential Average

exit	 Average at Combustor Exit Plane

in	 Average at Combustor Section (diffuser) Inlet

3
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APPENDIX A

COMBUSTOR LINER HOLE PATTERNS
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I ID	 21 `	 31D	 41D	 510	 $1D	 7 to
1

	
BID

2 	 a....1	 _^\ "ID

101D
i t ID

1210

3
4

5

t OD 2 OD^`_- 	"
30D

400
SOD	 /

8 0D	
Do

7 00	 GOD 90D 11 OD
10 OD

SHORT CONE HOOD
AREA S
CM'

AREAS
IN'

1 FUEL NOZZLE AND SWIRLER 13.94 2.160

2 SKIRT COOLING 5.01 0.777

3 FALSE HEAD COOLING 7.61 1.180

4 CROTCH COOLING 11.10 1.721

5 MOUNT LUG COOLING 0.37 0.057

•Ac0

BYPASS AIR
AREA
CM'

AREA
IN'

OD TURBINE COOLING AIR 31.06 4.814

ID TUR8INE COOLING AIR 30.89 4.787

ENOWALL COOLING AIR 17.42 2.700

LINER COOLING

INNER LINER OUTER LINER

LOUVER AREA AREA LOUVER AREA AREA
CM' IN' CM' IN'

1	 to 3.365 .5215 1	 OD 3.809 .5904

2	 ID 2.601 .4031 2 OD 3.853 .5972

3	 10 2.989 .4632 3 OD 3.192 .4947

4	 ID 2.578 .3995 4 OD 3.191 .4946

5	 10 1.716 .2680 5 OD 4.209 .6524

6	 ID 2.346 .3636 6 OD 2.226 .3449

7	 ID 0.779 .1208 7 OD 2.950 .4573

8	 ID 0.841 .1303 8 00 3.289 .5098

9	 ID 1.743 .2701 9 00 3.631 .5627

10	 ID 1.259 .1952 10 00 4.558 .7065

11	 ID 2.129 .3299 11	 OD 3.352 .5195

12	 ID 4.729 .7329

LOUVER
NUMBER AIR TYPE

PENETRATIONS

NUMBER TYPE
SIZE

SPACINGCM IN
1	 OD COMBUSTION 8 PLUNGED HOLE 1.702D 670D BETWEEN

4 OD DILUTION 8 SLOT X1 422 X 212 INLINE

1	 ID COMBUSTION 8 PLUNGED HOLE 2.228D .877D BETWEEN

4	 ID DILUTION 8 SLOT X ,9898 X ^6a INLINE

Figure A-1 Combustor Hole Pattern in JT9D-7 Production Burner;
Configuration SS-1

'IT Nf iP1t^;c^L:lit G 1 ^^ ,1: 1;3. ^„^^ rtio r
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OF PC ,rz

1	 3	 1 10	 210	 310	 4 ID	 -

BULKHEAD HOOD
AREA
CM'

AREA
IN'

1 FUEL NOZZLE 9.03' 1.400'

2 INSERT 7.48' 1.160•

3 BULKHEAD COOLING 6.23 0.965

4 INSERT COOLING 6.45 0.999

• Acd

BYPASS AIR
AREA
CM'

AREA
IN'

OD TURBINE COOLING AIR 31.06 4.814

ID TURBINE COOLING AIR 30.89 4.787

ENDWALL COOLING %IR 17.42 2.700

LINER COOLING

INNER LINER OUTER LINER

LOUVER AREA AREA LOUVER AREA AREA
CM' IN' CM• IN-

1	 ID 4.929 .7640 1	 00 5.523 .8560

2	 ID 4.808 .7452 2 OD 3.814 .5912

3	 ID 2.737 .4242 3 OD 3.093 .4794

4	 10 3.507 .5436 4 OD 3.767 .588

5	 ID 5.165 .8006 5 OD 7.033 1.0900

6	 ID 4.768 .7390 6 00 6.497 10070

7	 ID 3.754 .5818 7 OD 5.007 .7760

8	 ID 2.608 .4042 8 DO 4.418 .6848

9	 ID 2.336 .3620 9 OD 2.878 .4460

10	 ID 3.121 .4838 10 OD 2.905 .4502

11	 ID 1.696 .2628 11	 OD 4.558 .7064

12	 ID 2.128 .3298 12 OD 3.352 .5196

13	 10 4.728 .7326

LOUVER
NUMBER AIR TYPE

PENETRATNINS

NUMBER TYPE
DIAMETER

SPACINGCM IN
2 OD COMBUSTION 8 PLUNGED HOLE 1.664 .655 BETWEEN

5 OD DILUTION 7 SHARP EDGE HOLE 1.905 .750 INLINE

6 OD DILUTION 7 SHARP EDGE HOLE 1.700 .66H INLINE

2	 ID COMBUSTION 8 PLUNGED HOLE 1.857 .731 BETWEEN

4	 ID DILUI ION 7 SHARP EDGE HOLE 2.065 .813 INLINE

5	 ID DILUTION 7 SHARP EDGE. HOLE 1.270 .500 INLINE

Figure A-2	 Combustor Hole Pattern in JT9D-7 Bulkhead Burner for
Configurations SS-2, SS-4, and VG-1 through VG--4
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. y

Lii i"l+vf(tarL. 1 Y

I	 I—	 2 ID	 310	 4 ID	 SID	 _

}

BULKHEAD HOOD
AREA
CM'

AREA
IN'

1 FUEL NOZZLE 9.03' 1.400'

2 INSERT 7.48' 1.160'

3 BULKHEAD COOLING 6.23 0 965

4 INSERT COOLING 6.45 0.999

'Acd

BYPASS AIR
AREA
CM'

AREA
IN'

OD TURBINE COOLING AIR 31 06 4 814

ID TURBINE COOLING AIR 30.89 4.787

ENOWALL COOLING AIR 17.42 2.700

LINER COOLING

INNER LINER OUTER LINER

LOUVER AREA AREA LOUVER AREA AREA
CM' IN' CM' IN'

1	 ID 4 929 7640 1	 00 5 523 .8560

2	 10 4.608 .7452 2 OD 3.814 .5912

3	 ID 2.737 ..242 3 OD 3.093 ,4794

4	 ID 3.507 .5436 4 OD 3.767 5838

5	 ID 5.165 .8006 5 OD 7.033 1.0900

6	 10 4.768 .7390 8 OD 6.497 1.0070

7	 10 1754 .5818 7 00 5.007 .7760

8	 1D 2.608 .4042 8 OD 4.418 1848

9	 ID 2.336 .3620 9 OD 2.878 .4460

10	 10 3.121 .4838 10	 OD 2.905 .4502

11	 ID 1.696 .7628 11	 OD 4.558 .7064

12	 1D 2128 .3298 12	 OD 1352 .51%

13	 ID 4.728 .7320

LOUVER
NUMBER AIR TYPE

PENETRATIONS

NUMBER TYPE
?IAMETER

SPACINGCM IN

2 C^ COMBUSTION B PLUNGED HOLE 1.864 .655 BETWEEN

6 OD DILUTION 7 SHARP EDGE HOLE 1.700 669 INLINE

7	 00 DILUTION 7 SHARP EDGE HOLE 1,905 .950 INLINE

2	 10 COM8USTION 8 PLUNGED HOLE 1 857 731 RETWEEN

6	 ID DILUTION 7 SHARP EDGE HOLE 2065. 813 IN LINE

7	 ID DILU/10N 7 SHARP EDGE HOLE 1 270 S00 INLINE
^J

Figure A-3	 Combustor Hole Pattern in JT9D-1 Bulkhead Burner;
Configoration SS-3
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OF POOR QU '̂ LIVI

1	 3	 1 1D	 2 1D	 3 1D	 41D	 SID

AREA AREA
BULKHEAD HOOD	 CM'	 IN'

1 FUEL NOZZLE 9.03' 1 .400•

2 INSERT 7.48' 1.160'

3 BULKHEAD CODLING 6.23 0.965

4 INSERT COOLM1 6,45 0.999

•Acc^

AREA	 AREA
BYPASS AIR	 CM'	 IN'

OD TURBINE COOLING AIR 31.06 4.814

ID TURBINE COULING AIR

ENDWALL COOLING AIH

30.89

17,42

4.787

2.700

LINER COOLING

INNER L114ER OUTER LINER

LOUVER AREA AREA LOUVER AREA AREA
CM' IN' CM' IN-

1	 ID 4.929 .7640 1	 OD 5.523 .8560

2	 ID 4.806 .7452 2	 00 3.814 5912

3	 10 2.737 .4242 3	 OD 3093 .4794

4	 ID 3,507 ,5435 4	 OD 3.767 5838

5	 ID 5.165 1006 6 OD 7.033 1.0900

6	 ID 4.768 .7390 6 OD 6.497 1.0070

7	 ID 3,754 .5818 7 00 5.007 .7760

8	 ID 2.608 .4042 8 OD 4.418 .6848

9	 ID 2.336 .3620 9 00 2.878 .4460

10	 ID 3.121 .4838 10	 OD 2.905 .4502

11	 ID 1.696 .2628 11	 OD 4.558 .7064

12	 ID 2.128 .3298 12	 00 3.352 .5196

13	 ID 4.728 ,7328

LOUVER
NUMBER AIR TYPE

PENETRATIONS

NUMBER TYPE
DIAMETER

SPACINGCM IN

6 OD DILUTION 7 SHARP EDGE HOLE 2.065 .813 INLINE

7	 OD DILUTION SHARP EDGE HOLE 2.065 .813 INLINE

5	 ID D{LUTIDN 7 SHARP EDGE HOLE 1 .905 .750 INLINE

6	 ID DILUTION 7 SHARP EDGE HOLE 1.905 .750 INLINE

Figure A-4	 Combustor Hole Pattern in JT9D-7 Bulkhead Burner;
Configurations SS-5 and VG-6

168



Ui• r ..

1	 3	 1 ID	 210	 31D	 4 10	 SID

AREA	 AREA
BULKHEAD HOOD	 CM'	 IN'

1	 FUEL NOZZLE 9.03' 1.400'

2	 INSERT 7 48' 1 160'

3	 BULKHEAD POOLING 6 23 0365

4	 INSERT COOLING G 45 0 999

•Acd

AREA	 AREA
BYPASS A IR	 CM'	 IN'

OD TURBINE COOLING AIR 31,06 4.814

ID TURBINE COOONG AIR 30.89 4.787

ENDWALI. COOLING AIR

L_

17.42 2.700

LINER COOLING

INNER LINER OUTER LINER

LOUVER AREA AREA LOUVER AREA AREA
CM' IN' CM' IN-

1	 IO 4.929 .7640 1	 00 S.S23 .8560

1
2	 4) 4 808 .7452 2 OD 3.811 5912
3	 ID 2 737 .4242 3 OD 1093 .4794
4	 ID 3 507 5436 4 00 3 767 .5838
5	 ID 51-1 .8006 5 OD 7.033 10900
6	 Io 4.768 .7390 6 Do 6.497 1.0070
7	 to 3 754 .58 18 7 OD 5.007 .7760
8	 to 2.608 .4042 8 OD 4.418 .6848
9	 to 2.336 .3620 9 00 2 878 .4460

10	 to 3.121 .4838 10 OD 2.905 4502
11	 ID 1.696 .2626 11	 OD 4.558 .7064
12	 10 2.128 .3298 12	 00 3.352 .5196
13	 IU 4.728 I	 .7328

LOUVER
NUMBER AIR TYPE

PENETRATIONS

NUMBER TYPE
DIAMETER

SPACINGIN
^ COMBUST ION 6 PLUNGED HOLE  1 .000 BETWEEN

OD OILU110N i :HARP EDGE HOLE

1225

 750 INLINE

2	 10 COMBUSTION S PLUNGED HOLE  1 000 BETWEEN

L
5 ID UII WIG' 7	 — SHARP EDGE HOLE ? 065	 817 INANE

Figure A-6	 Combustor Hole Pattern in JT9D•-7 Bulkhead Burner;

Configuratioo SS-6
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BULKHEAD HOOD
AREA
CM'

AREA
IN'

1 FUEL NOZZLE 8.65• 1.340'

2 INSERT 7.48 1.160'

3 BULKHEAD COOLING 6.23 0.365

4 INSERT COOLING 6.45 0.999

'ACd

BYPASS AIR
AREA
CM'

AREA
IN'

OD TURBINE COOLING AIR 31.06 4.814

ID TURBINE COOLING AIR 30.89 4.787

ENDWALL COOLING AIR 17.42 2.700

LINER COOLING

INNER LINER OUTER LINER

LOUVER AREA AREA LOUVER AREA AREA
CM' IN- CM' IN-

1	 ID 2.465 .3820 1	 OD 5.523 .8560

2	 ID 2.089 .3237 2 OD 3.843 .5957

3	 ID 1.947 .3017 3 OD 2.752 .4265

4	 ID 5.165 .6006 4 OD 2.181 .3380

5	 10 4.768 .7390 5 OD 6.497 1.0070

6	 ID 3.754 .5818 6 OD 5.007 .7760

7	 10 2.608 .4042 7 OD 4.418 .6848

8	 ID 2.336 .2620 8 OD 2.878 .4460

9	 ID 3.121 .4838 9 OD 2.905 .4502

10	 ID 1.696 .2628 10 00 + 658 .7064

11	 ID 2.128 .3298 11	 OD 3.352 .5196

12	 ID 4.728 .7328

LOUVER
NUMBER AIR TYPE

PENETRATIONS

NUMSERT

9

TYPE
SHARP EDGE HOLE

DIAMETER
SPACING
BETWEEN

CM
1.905

IN
.7502 OD COMBUSTION

5 GO DILUTION 7 SHARP EDGE HOLE 1.905 .750 INLINE

6 OD DILUTION 7 SHARP EDGE HOLE 2.035 .801 INLINE

2	 ID COMBUSTION 8 SHARP FDGE HOLE 1.905 .750 BETWEEN

4	 ID DILUTION 7 SHARP EDGE HOLE 2.065 .813 INLINE

5	 I 1.715 .675 INLINE

Figure A-6	 Combustor Hole Pattern in JT9D -7 Bulkhead Burner;
Configuration SS-7
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OF POoP ,LI ., ;'
€TYY

1	 3	 11D	 21D	 31D	 410	 510

BULKHEAD HOOD
AREA
CM'

AREA
IN'

1 FUEL NOZZLE 9.03 1.400'

2 INSERT 7.48' 1.160'

3 BULKHEAD COOLING 6.23 0.965

4 INSERT COOLING 6.45 0.999

'Acd

BYPASS AIR
AREA
CM'

AREA
IN'

OD TURBINE COOLING AIR 31.06 4.814

10 TURBINE COOLING AIR 30.89 4.787

ENDWALL COULINC AIR 17.42 2.700	
i
1

LINER COOLING

INNER LINER OUTER LINER

LOUVER AREA AREA LOUVER AREA AREA
CM' IN CM' IN'

1	 10 4.929 .7640 1	 or" .8560

2	 ID 4.808 .7452 2 OD 3.814 .5912

3	 ID 2.737 .4242 3 OD 3.093 .4794

4	 ID 3.507 .5436 4 OD 3.767 .5938

5	 ID 5.165 .8006 5 OD 7.033 1.0900

6	 ID 4.768 .7390 6 OD 6.497 1.0070

7	 ID 3.754 .5818 7 00 5.007 .7760

8	 ID 2.608 .4042 8 On 4.418 .6848

9	 10 2.336 .3620 9 OD 2.878 .4460

10	 ID 3.121 .4838 10 OD 2.905 .4502

11	 ID 1.696 .2628 11	 OD 4.558 .7064

12	 IC 2.128 .3298 12 00 3.352 .5196

13	 :j 4.728 .7328

I

LOUVER
NUMBER AIR TYPE

PENETRATIONS

NUMBER TYPE

DIAMETER
SPACINGCM I	 IN

2	 CID COMBUSTION R SHARP ErGE HOLE 3.175 1.250 BETWEEN

1	 ID COMBUSTION 8 SHARP EDGE HOLE 1.905 .750 .,.•`.eEN

2	 ID COMBUSTION 8 SHARP EDGE HOLE j	 2.540 1 .000 BETWEEl

Figure A-7	 Combustor Hole Vittern in JT9D-7 Bulkhead Burner;

Configuration VG-5
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OF POOR QUALITY

I	 a	 1 ID	 21D	 31D	 I -

BULKHEAD HOOD
AREA
CM'

AREA
IN'

1	 FUEL NOZZLE 8.00• 1.240'

2	 INSERT 7.48' 1.160'

3	 BULKHEAD COOLING 6.23 0.965

4	 INSERT COOLING 6.45 0.999

'Acd

BYPASS AIR
AREA
CM'

AREA
IN'

00 TURBINE COOLING AIR 31.06 4.814

10 TURBINE COOLING AIR 30.89 4.767

ENOWALL COOLING AIR 17.42 2.700

LINER CO'. LING

INNER LINER i OUTER LINER

LOUVER AREA AIEA LOUVER AREA AREA
CM'

i
IN' CMt IN'

1	 10 2.465 .3820 1	 OD 5.523 .8560

2	 ID 2.089 .3237 2 OD 3.843 .5957

3	 ID 1.947 .3017 3 00 2.752 .4265

4	 ID 5.165 .8006 4 00 2.181 .3380

5	 ID 4.768 .7390 5 OD 6.497 1.0070

6	 ID 3.754 .5818 6 00 5.007 .7780

7	 ID 2.608 4042 7 00 4.418 .6848

8	 ID 2.336 .3620 8 OD 2.878 .4480

9	 ID 3.121 .4838 9 00 2.905 .4502

10	 ID 1.696 .2628 10 00 4.558 .7064

11	 ID 2.128 .3298 11	 00 3.352 .5196

12	 ID 4.728 .7328

LOUVER
NUMBER AIR TYPE

PENETRATIONS

NUMBER TYPE
DIAMETER

SPACINGCM	 I IN
5 00 DILUTION 7 SHARP EDGE HOLE 2.459 .968 INLINE

6 OD DILUTION 7 SHARP EDGE HOLE 2.459 .968 INLINE

4	 ID DILUTION 7 SHARP HOLE HOLE 2.459 .968 INLINF

5	 ID DILUTION 7 SHARP HOLE HOLE 1	 2.459 .968 7 INLINE

Figure A-8	 Cor,Iblistor Hole Pattern in Ji9D -7 Bulkhead Burner;
Configuration VG -7
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OF POOR ^;,	 2 'r

1	 1 ID	 2 ID	 310	 _ ,_

BULKHEAD HOOD
AREA
CM'

AREA
IN'

1 FUEL NOZZLE 8.00' 1.240'

2 INSERT 7.48 1.160'

3 BULKHEAD COOLING 6.23 0.965

4 INSERT COOLING 6.45 0.999

Acd

BYPASS AIR
AREA
CM'

AREA
IN'

OD TURBINE COOLING AIR 31.06 4.814

ID TURBINE COOLING AIR 30.89 4.737

ENDWALL COOLING AIR 17.42 2.700

LINER COOLING

INNER LINER OUTER LINER

LOUVER AREA AREA LOUVER AREA AREA
CM' IN' CM' IN'

1	 ID 2.465 .3820 1	 OD 5.523 .8560

2	 ID 2.089 .3237 2 OD 3.843 .5957

3	 ID 1947. 3017 3 OD 2.752 .4265

4	 ID 5.165 .8006 4 OD 2.181 .3380

5	 10 4.768 .7390 5 OD 6.497 1.0070

6	 ID 3.754 .5818 6 OD 5.007 .7760

7	 ID 2.608 .4042 7 OD 4.418 .6846

8	 ID 2.336 .3620 8 OD 2.878 .4460

9	 ID 3.121 .4838 9 00 2.905 .4502

10	 10 1.896 .2628 10 00 4.558 .7064

11	 ID 2.128 .3298 11	 OD 3.352 .5196

12	 ID 4.728 .7328

LOUVER
NUMBER AIR TYPE

PENETRATIONS

NUMBER TYPE
DIAMEt ER

SPACINGCIA

2 00 COMBUSTION 8 GROMMET HOLE 2.223 .875 BETWEEN

3 OD COMBUSTION 7 GROMMET HOLE 1.588 .625 INLINE

2	 ID COMBUSTION 8 GROMMET HOLE 2.062 .812 BETWEEN

3	 ID COMBUSTION B GROMMET HOLE 2.062 .812 INLINE

Figure A-9	 Combustor Hole Pattern in JT9D-7 Bulkhead Burner;
Configuration VG-8
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APPENDIX B

FUEL INJEC;	 ;PRAY EVALUATION

Fuel atomization and Spray characterization tests were conducted on the

injectors that were used in the configurations of the single stage and
variable geometry combustors that were evaluated during this program. Figure

B-1 is a schematic diagram of the air and fuel supply systems in the test

facility. The test injector was installed in a plenum box and ambient

temperature air was supplied to the plenum to provide airflow through either
the nozzle nut passages or the aerating air passages of the injector. The

supply pressure in the plenum was adjusted to match the air velocity occurring
in these passages at the appropriate engine operating condition. For injection

evaluations at the cold start condition the fuel was cooled using a fuel
conditioning system. The test fuel was contained in a piston accumulator which

is surrounded with acetone cooled by liquid nitrogen and refrigeration

systems. Once the test fuel reached the desired temperature, it was pushed out
by injecting JP-7 behind the piston. The test fuel flow rate was determined by

measuring the flow rate of the room temperature JP-7 fuel.

v cr,in ioi ONIOFF VALVE

FUEL CONDITIONING SYSTEM

Figure B-1	 Schematic Diagram of Air and Fuel Supply to Fuel Injector Test

Facility

Each injector was tested on three fuels: Jet A, Experimental Referee Broad

Specification Fuel (ERBS) and Marine Diesel fuel. The properties of these

fuels, as determined by laboratory analysis, are listed in Table B-1.
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While not used in the remainder of the program, the Marine Diesel fuel had
been selected as the third test fuel because it had a viscosity level
considerably above ERBS which would provide a reasonably wide range of
atomization properties.

Table B-1

Properties of Test Fuels for Fuel Injector evaluation

Specific Gravity 289/289 *K (60/60°F)

Viscosity - centistokes
at 291 ` K (75°F)
at 250°K (-10°F)

Sierface Tension - dynes/cm
at 297°K (75°F)

Aromatic Content - % volume

Fuel
r if ne

Jet A	 ERBS	 Diesel

0.e976	 0.8388	 0.8576

1.73 2.2 3.65
5.2 7.7 18.6

27.6 30.6 31.6

19.7 31.9 39.4

The tests were conducted at simulated idle, cruise, takeoff and cold starting
conditions of the JT9D-7F engine, the fatter with 250 °K ( -10°F) fuel
temperature. Data were obtained on the droplet sire distribution, spray angle
and spray quality. Spray angle data was obtained with a twenty tube
patternator rake positioned 10.16 cm (4 inches) downstream of the injector
face. Fifteen tubes on the rake were positioned in a close density on a radial
line across the spray while the other five tubes were located in diametrically
opposite but wider spaced positions to check on spray symmetry. Two parameters
of interest were defined from the patternator rake data,

Mf,art SeraySera Angle - the angle including 50 percent of the total volume
Tlow of e spray as measured from the injector centerline.

S2^ray Band Width - the double angle between rays subtending 25 percent
ands percent of the total volume flow of the spray.

Droplet size distribution in the spray was obtained with a Malvern particle
size analyzer with the laser beam intersecting the spray at a plane 7.62 cm (3
inches) from the injector face. Two characteristic drop sizes are of interest:

Sauter Mean Diameter - the single droplet size with the same surface area
to vo ume ratio as t e entire spray.

Peak Density Diameter - the droplet size with the greatest mass fraction
of the spray.

These four spray angle and atomization parameters are tabulated in Table B-2
for each combination of injector type, fuel and simulated engine operating
condition tested.
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APPENDIX C

TABULATED TEST DATA

Data are presented in three tables. Table C-1 lists emissions data including

identification of combustor inlet and operating conditions. The emissions
indices listed are after correction to standard combustor inlet conditions as

defined in Section 6.3.

Table C-2 provides data on the liner metal temperature at all test points at
the cruis3 and higher power level. Point numbers followed by an "N" indicate

those at the design fuel air ratio for the particular nominal condition. Data

are presented, where applicable, from thermocouples located in the primary and
secondary or dilution zone of the liner and on the bulkhead. Temperatures are
reported as the differential above combustor inlet total temperature. D-TM is
the highest recorded temperature in that zone while D-TA is the average of the

readings from the N the ►inocouples that were operational in that zone.

Table C-3 lists the lean blowout fuel air ratios of the combustor
configurations at the idle inlet condition.

13LVNK 1vOT FILMMY
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OF POOR QUALD-Y
Table C -3

Combustor Lean Stability Data

LEAN B^OWOUT S"ARY

TT
CEG-K

456
444
454

453
451

447

445

446
4441

45_'
444
445

453
441
441

446

448

451
451

446

449
451
452

445

451
450

	

CONFIGURATION	 FUEL	 PT
TYPE	 M-PA

	

SS-1	 JET-A 0.3781
EROS 0.3764
11.8 0.3733

	

SS-2	 JET-w 0.3585
ERRS 0.3593

	

SS-3	 EROS 0.3505

	

SS-4	 ERGS 0.3680

	

SS-5	 JET-A 0.3662
EROS 0.3636

	

SS-6	 JET-A 0.3375
ERRS 0.3579
11.8 0.3636

	

VG-1	 JET-A 0.3683
EPBS 0.36 3
11.8 0.:640

	

VG-2	 EBBS 0.3716

	

VG-3	 EROS 0.3640

	

VG 4	 JET-A 0.3672
ERBS 0.3604

	

VG-5	 ERBS 0.3671

	

VG-6	 JET-A 0.3673
ERBS 0.3671
11.8 0.3673

	

VG-8	 JCT-A 0.3666
ERBS 0.3656
11.6 0.3633

WAB
KG/SEC

4.£5
4.26
4.19

4.12
4.15

4.17

4.01

4.03
4.03

4.15
4.12
4.15

4.19
4.11
4.13

4.04

4.14

3.93
3.97

4.02

4.09
4.06
4.04

4,04

4.08
4.10

FUEL/AIR RATIO
AT BLO10UT

0.0042
0.0042
0.0043

0.0044
O.0046

0.0049

0.0049

0.0037
0.0047

0.00:3
0.00; 5
0.0027

0.0061
0.0063
0.0060

0.0053

0.0041

0.0047
0.0052

0.0076

0.0040
0.0052
0.0060

O.0045
0.0050
0.0049

AY-1	 JET-A	 0,456	 411	 7,90	 0.0057
ERBS	 0.452	 472	 2.88	 0,0066
11.8	 0.455	 473	 2,86	 0.0053
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