
W"T MTR WE LZMW IN = L"T 6 TiA»1>6 h N8 3

323^"^

MEASURING SOFTWARE DEVELOPMENT TECHNOLOGY

BY

FRANK E. McGARRY
GODDARD SPACE FLIGHT CENTER

In late 1976, the Goddard Space Flight Center (GSFC) initiated effort, to create
a software laboratory where various software development technologies and
methodologies could be studied, measured and enhanced. This laboratory became
known as the Software Engineering Laboratory (SEL), and since its inception has
been actively conducting studies and experiments utilizing flight dynamics
projects in a production environment. The SEL evolved to a full partnership in
the efforts between GSFC, the University of Maryland and Computer Sciences
Corporation (CSC).

The approach that the SEL has taken in carrying out the studies has been "o
apply varying methodologies, tools, management concepts, etc. to softwave
projects at Goddard; then to closely monitor the entire development cycle so
that the entire process and product can be compared to similar projects
utilizing somewhat different approaches. This monitoring function led to a need
to collect, store and interpret great amounts of data pertaining to all phases
of the software process, product, environment and problem. This data collection
and data processing process has been applied to over 40 software project-
ranging in size from 2,000 lines of code to approximately 120,000 lines of code
with the typical project running about 55,000 lines of code.

The data that has been collected (and is still being collected) and interpreted
for these projects comes from 5 sources:

1. Data Collection forms utilized by programmers, managers and support
personnel.. Typical types of data collected includco:

• Error and Change Information
• Weekly Hours and Resources
• Component Effort (hours expended on each component by week)
• Project Characteristics
• Computer Run Analysis
• Change and Growth History (week by week records of source code)

(Additional Information is contained in references 1 and 2)

2. Computer Accounting Information

3. Personnel Interviews -during and after the development process

4. Management and Technical Superviaor Assessments

5. Tools-used to extract data and measures from source code

F. McGarry
NASA/GSFC
1 of 34

—"9

^a

For the more than 40 projects which have been monitored, approximately 21,000

forms have been processed and are continually used to perform studies of the
software development process. To support the storage, validation and usage of
this information, a data base was designed and built on a PUP-11/70 at Goddard.
(Reference 3)

Approach (Chart 2)

The steps that have been taken to carry out the investigation within the SEL
have bean:

I. Develop a profile of the software development process as it is
'now'. First we must understand what we do well and what we do not so well so
we can build it baseline of current characteristics whereby later we can honestly
measure change.

2. Experiment with similar type projects. The second step has been to
apply select tools, methodologies and approaches to software projects so they
can be studied for effect.

3. Measure the process and product. As projects are developed which
are utilizing different software development techniques, the SEL uses the
extracted data to determine whether or not the applied technology has made any

measurable impact on the software characteristics (This may include reliability,
productivity, complexity, etc.).

Environment (Chart 3)

The projects which have been monitored and studied are primarily all flight
dynamics related software systems. This software includes applications to
sr., art attitude determination, attitude control, maneuver planning, orbi;.

adjust and general mission analysis.

The attitude systems normally have	 ry similar characteristic and all are
designed to utilize graphics as well as to run in batch mode. Depending on the
problem characteristics, the typical attitude systems range in size from 30,000
to over 120 , 000 lines of cede. * The percentage of reused code ranges from less
than 10 percent to nearly 70, percent with the average software package being
comprised of approximately 30 percent reused code.

The applications are prtr.arily scientific in nature with moderate reliability
requirements and nor- -t" Ily are not required to run in real time. The development
period typically runs for about 2 years (from Requirements Analysis through
Acceptance Testing). The development computers are typically a group of IBM
S/360's which have very limited resources and where reliability is quite low
(typically less than 3 houcs MTBF)

Details describing the environment can be found in Reference 1.

*Here, a line of code is any 80 byte record processable by a compiler or
assembler (i.e., comments are included)

F. WC,,!tr^,
NASA /GS[-C
2 of 34

Experiments Completed (Chart 4)

As was mentioned earlier, the SEL has monitored over 40 software development
projects during the 6 years of operation. During this time period, numerous
methologies, models, tools and general software approaches have been applied and
measured. The summary results to be presented are based in these projects. The
summary will be divided into 3 topic areas:

1. Profiles of the Development Process
2. Models
3. Methodologies

F. McGarry
NASA/GSFC
3 of 34

, rot i le-i of the I)rvelolanent p rocess (Charts 5 thru 12)

'file B est step in at(emptinK to mensure the etIeetiveness of Lilly sot tware
(4chnologV it. to }venerate a baseline or profile of how one typically performs

tilt; job. Then as moditi od approaches are attempted oil 	 projects, the
t-I trct s ma y he ,Il ► par ell t by comparison.

Resourcet; Al beat lot ► (Chart 1)

One tart of 11a1;1v i lit ormat toll that or.• may want to understand is gust where do
pro ►;r.unmert spend t hei t' t tile. When the SFI, looked at it 	 projects to
ettlderst and where tilt- t ins was spent , it found that the SFI, environment deviated
somewhat Irom the old 40- .1 0--411 yule. 'Typically projects indicated that when the
tot a l hours expended were based on phase dates of it project (I .e., it

data 41et((►t-it the ahsol(► te completion of tine phase of the cycle and the beginning
of the next phase) t hr breakdown was lass than I S percent tot' design, clone to
5(I peret-nt 1 or rode :1141 ;shout Ill percent for itltegrat ton and test .

When the pro};r.unnlers provided weekly data attributing their time to the activity
that thev felt thev wil t-(• actually doing, no matter what phase* of software
41eve lopment thev wer e lit-, the pt-ot t le looks quite different. The I phases
(desiells, code, test) each consun ►ed approximately the some percent effort and
over ;5 percent of the time was attributed to 'other' acttvt'tes (such as
travel, tr. ► ini ►► }„ unknown, etc.). The SEI, has continually found that this
effort (other) exists, 111141 cannot easily be reduced, and most probably should be

accepted ;1t; a }riven. The Sha, has found it to be it mistake to attempt to
increase productivity mere 1v by eliminating major portions of this 'other'ttme.

I)evelopment Resources (Chart 8)

Another area of concern to the SEL in defining the basic profile of software

development, was that of staffing level and rbsource expenditure profiles. Many
authorittes st ► hsertbe to the point that there is an optimal staffing level
profile which should he followed for all software projects. Such profiles as a

RrIyle_i^h Cucvr are su};}ested r1s optimal. Chart 8 depictu charnetert tit Ics of
1 • 1.38ses of projects moraltoted tit 	 Sm, and shows the difference In
producttvity rind reliability for groups of projects having different staffing

level pro tiles. Althotigh the Rayleigh Curve may be acceptable far some

projects. the SFI, has found that wide variattonr, on these characteristics still
Ien(i to it succeASful projects. The svl, has also found that extreme deviations

uuly tit , tttdicat ive of problem software.

(Itet,;i led information can he found tit 	 4 and 5)

F WGIIIN.
NASA-t;SFc
4 of 1.1

Productivity for large vs. small systems (Chart 9)

The common belief by many software managers and developers is that as the size

of a software system increases, its complexity increases at a higher rate than
the lines of code increase. Because of this fact, it is commonly believed that
it, the effort equation

E - alb
where E - effort of person time
where I . lines of code

that the value of b must be greater than 1. The projects that the SEL has
studied have beer unable to verify this belief and instead have found the value
of b to approximate .92 in the SEL environment. The fact that tills equation is
nearly linear leads to the counter intuitive point that a project of 150,000
lines of code will cost approximately 3 times as much as a 50,000 lines of code
project-instead of 4 or 5 times as much as is often commonly believed.

(Further details can be found in Reference h.)

Productivity Variation (Chart 10)

Another characteristics that the SEL has been interested in studying has been
the variations in programmer productivity. Obviously one would want to increase
the productivity by whatever approach found to be effective, but first we must
clearly understand what the baseline characteristics of productivity are
(minimum, maximum, average, difference betwein small and large projects, etc.);
only then will we know if we have improved or not in the years to come.

As has been found by other researchers in varying environments, the productivity
of difzerent programmers can easily differ by a factor of 6 or 10 to 1. The SEL
did °.ind that there was a greater variation (from very low productivity of .5
1.o.c/hour to 10.8 l.o.c./hour) in small projects. The probable reason for this
is that newer people are typically put on smaller projects and the SEL has found
extreme differences in the relatively inexperienced personnel.

Reusing Code (Chart 11)

As was stated in the introduction, projects being developed in the SEL
environment typically utilize approximately 30 percent old code. Although it is
obviously less costly to integrate existing code into a system rather than
having to generate new code, there is some cost that must be P.tributed to
adopting the old code. The development team must test, integrate and possibly
document the old code, so there is some overhead. By looking at approximately
25 projects ranging in size from 25,000 lines of code to over 100,000 total
lines of code and ranging in percent of reused code from 0 percent to 70
percent, the SEL finds that by attributing a value of approximately 20 percent
overhead cost to reuse code, the expenditures of the 25 projects can best be
characterized. Now the SEL uses the 20 percent figure for estimating the cost
of adopting existing code to a new software project.

F. McGarry
NASA/GSFC
5 of 34

f

Error Characteristics (Chart 12)

One of the other characteristics of a software environment that is of great
concern to developers and managers is that of expected software reliability and
that of overall software error characteristics. Before attempting to improve
software reliability or before attempting to
minimize the impact that software errors may have, the SEL had to first
understand the error characteristics of the typical applications software in the
SEL environment.

By collecting; detailed error report data and through the monitoring of numerous
applications projects many error characteristics have been studied.

Several pieces of information which are depicted in Chart 12 and which are based
on 1381 error reports from approximately 15 projects include:

o Most errors are local to one component (subroutine or function)

o Less than 10 percent of errors were attributed to faulty
requirements

o A great percent of errors (48 percent) were estimated to be trivial
to correct (less than 1 hour)

o A very low percent of errors (7 percent) were estimLf.ed to be a
major effort to fix (greater than 3 days)

(Further statistics and more detailed explanations can be found in References 7
and 8).

F. McGarry
NASA/GSFC
6 of 34

Models (Charts I1 through Ili)

A second set tit studies that the SFT has act (vety t ►ut'rstled is that of eve ► l tut t ilig
reviewing, and developing sottware models. 'Phis i t ► r l tides t'esource node 1 s ,
rt• liatilllt y models as well :ls complexit y illetrit's.

Measures tut' Sottware	 (Charl Ins)

The SEL lilts atten ► pted to tit.li:e various avrliIahIt , s tit t Wit re metrics to
charact er i re the sot t ware produr: s F;rnerat ed . sm-11 islet r t es its the MrCahe
Cveloulatic Complexit y , Halstead Length, and title•, of code were onlV :► tew of the
invilsilres thill wet'e rt'Vlt'wed.

It is commotlIV believed that the site of it comp mt, tit or the ronlpl • x(t y of it
ro11111ollellt wi 1 1 be t i rect IV vorl't . lat ed t o t tit , re l i abt I i t y t i t t hat colilp011e11t .	 illle
set of studies Ile 1 , tot'uleit in the 1,FL litte tit ptett to verit y this beIiet.	 ltv taking
over W)o Itlodules which had vet'V detai lets records of errot ditta, the SKI, co ►llptlted
the col relrlt ions of 4 ollill'Nrtet'ist its of t he components. 	 The rha VAC tet'INt t
t lit . luded total lines of rude, executable lilies of rode, CVrlon ► at t 	 Coulp text tV
allit lilt l -it rrtit LoligtIt.	 The resultant coIrelatiolts sere itipi . ted (n Cllr► rt 14" which
shows a ver y hi Of direct rol't'elrt(ton tot' the 4 niviistires.

A second st flit v wits lit , rtol'med
plotted agailist site as well
tt . show that Ial-got componen
and t hilt component N of Ifighe
111 of N on CI 1:11 . 	 1 1 show t teat
been limb le t o VvI . i t v t heat l
ert't1r t'Ates.

-CoNt Models	 (%'hal(I'1)

where t he et'rot rat e of earl ► of t he Component s was
its :lF;ainNt Cvt lon►rtt is Complexit y .	 The SK1, exported
N helve higher error rates thills stunt ter components
contplexitV vat ilig had Itigher error rates. The

he resII 1 t N wet'e count er - tilt tit c i ve .	 The I.W.I. hat►
rger or more complex r0111110tleuts indeed have 111 it her

In add it ion to the studies made veI . t:tinifig to various megtsitrees tot'
s ill t wet re, the SKI, hits also tit ilifed the cost fiat:l col lested from ttie manv
protects to ell Ii bra te and ev:tIt ► r► tt- vat'iorts available resource estimation utodeIs.
No at t e ill pt wits lilt ended to (list% l i t v one ntt ► dt• l as he i fig allV het t v t hall :toot her .
The oblect ive of the ,oldie .- was to het tel' undt • rstand tiro st its it ivitit's of the
various models rind to detern ► ilie which models seemed to rhat'acterire the SF:I.
sot tware developloollt enviroclnient most consistetit lv.

111 studyilig these resource models, 9 protects which were somewhat sittli lilt- in
size were used its experimental protects. Enell of the n ►odels was ted collylete
and accul• rtte data trolls the SKL data base and each wets calibrated with nomi lilt I
sets tit pro .lects its comp leteIV as the expet'itt►entel's cost ltt. Stmunar y results,
wilt ell are given in Clutvt IS, i flit lcitte that. uccrlNtorlaIIV	 Nome models call
accut'vteIV lived tet et tort required for it sottwat'e pro_Ioe . The SKI, has

I MA'am
NASA
• of 4

4
t
Y

ore detrlt led discussions caul he tound tit Reterenev 1 and II.

a
1

1' . ntA;;ll l l
NASAiGSIT
S of i4

i

reitterated what manv other software developers and Managers claim. Cost models
should (lever be used as it sole stltlree of est (mat i oil . The user inui;t have access
to experienced personnel lot . est (mitt illy; anti
must also have access to it corporrtte memory which can be used to calibrate and
t'eillltlrce someolles est (mate of cost . Resource models call ollly be tined its a
Nupplrmrntal tool to retntorce ones entimate or to flag possible
inconsistencies.

More detailed intol-mat ion on the SEE studies can be found to Reterence 1, q , Ill,
tl

ReIiitbiIit y Models	 (('hart I

Another tvpe of model that the SFL has spent some efforts in understanding and
calthrating is the reliab(lity model. Although mtmerous approaches have been
stthgested as to)list how tine best predicts till` level o f error proacttess that
software may have, the SFI, has only performed any extended stud Lis oil
modal-thitt which is 11ttr(bited to Johtl Minn. The model is a wnxtmum likelthood
tw-thud rend the SI?L attempted to apply detailed fault reports trom 2 separate
protects to the model in an Attempt to determine it the model could accurately
predict renlailtilig taint:: in the sottware.

('hart to indicates that tine of the experinCIlts was ytltte successful and Otte of
the experin►ents was not successful.	 It should he noted that during and otter
these exllerintents, Joltll Musa reviewed the results and the data very carefully
and he has pointed out some possible dettctencies tit 	 SF.I. data ► which could
possibly lead to erroneous results tit 	 application tit the reliability model.
(tae such piece of ditta is the ftritnularity with which computer CPU time is
rrcoly ded bet wren reported t :nl l t s . The S'Fl, data is not as accurate as the model
calls tor.

The charts show that for expertlnent I, the model yutte accurately predicted it
level of reltabtltty attar approxiauttely 1/2 of the total uncovered tattlts were
reported. The chart also shows that for experiment 2, the model was lit tll
predicting it very high nutttber of errors to be st i t l tit 	 software, when in
tact a millin►al set were ever uncovered during the several years of operation for
that system.

Methodoleiei	 (Charts 11 through 20)

As was mentioned earlier, one of the major objectives of the SM, has been to
measure the effectiveness of various software development methodologies. The

SF.I, has utilized selected development approaches in different applications
software tasks and then has analyzed the process and product to study the

relative impact of the approach. A summary of some of the results of the
experimentation process is presented here.

Use of An 1!A!! dent Verification and Validation Team (Chart 18)

Many software managers, developers and organizations have advocated the usage of
an independent IV&V team during the software development process. The major
advantage of following such an approach, it is claimed, will be the improvement

in software reliability, qualtty, visibility, but not necessarily nn improvement
In overall software productivity.

In
all

attempt to evaluate the impact that the usage of an IV&V team may have on
the SEI, environment, I candidate projects were selected to utilize the

methodology of an IV&V. Two of the projects were vary typical flight dynamics
systems, each containing over 50,000 lines of code while the third wits it smaller
flight dynamics project comprised of abort 10,000 lines of code. In addition to
the IVSV approach being applied to the projects, the development teams utilized

the commonly tollowed standards and approaches normally used by development

efforts within the SEL environment.

The projects lasted approximately Iii months, and the IM effort was active for

the entire duration of the project. The sire of the IV&V effort was about 18
percent of the effort of each of the large development efforts. A series of
measures was defined near the beginning of the experiment by the SEL. These

measures would be used to determine whether or not the application of the IV&V
approach was cost effective in the SEL environment.

A summary of some of the measures is depicted in Chart 18. The results here
indicate:

o total cost of the project increased-as expected

o productivity of the development teams (not counting the cost of
IV&V) was among the lowest of any previous SEL motif to yed project.

o rates of uncovering errors found earlier in the development cycle
was better

o cost rate to fix all discovered errors was no less than in any
other SEL projects

o reliability of the software (error rate during acceptance testing
and during maintenance and operations) was no different than other SEL projects

F. MCGa1n
NASA (;SI:C
Q o f ?4

The conclusion of the SEL, based on these 3 experiments, was that the IV&V
methodology was not an effective approach in this SEL environment.

(A more detailed description can be found in Reference 12).

Effects of MPP on Software Development (Chart 19)

In an attempt to determine if the utilization of Modern Programming Practices
(MPP) has any impact (either favorable or unfavorable) on the development of
software, a set of 10 fairly large (between 50,000 l.o.c. and 120,000 l.o.c.),
and fairly similar projects (same development environment, same type of
requirements, same time constraints) was closely examined. These projects all
had been developed in the SEL environment where detailed information was
extracted from the projects weekly and where each project had i, different level
of MPP enforced during the development process.

The MPP's ranged from various design approaches (such as PDL, Design Walk
Throughs, etc.) to code and test methodologies (such as structured code, code
reading, etc.), to various integration and system testing approaches. All of
the possible MPP's were rated and scaled as to the level to which the practice
was followed for each project (the rating was done by the SEL researchers, not
by the software developers). The only purpose of this exercise was to depict
trends and not to prove that any one single practice was more effective by
itself than any other.

The level to which MPP's were utilized were plotted against productivity and
against error rate. Chart 19 indicates that the application of the MPP has
favorably affected productivity by about 15 percent for these experiments. The
results of software reliability vs MPP is very questionable. The SEL is still
continutog analysis of additional data. The chart shown is obviously eery
inconclusive.

(More details of this effort can be found in Reference 13).

Subjective Summary of Effective Practices (Chart 20)

The previous chart indicated that productivity can be improved by an appreciable
amount if certain, select practices are applied to the software devel3pment7
process. One obviously next would ask, which practices are the most effective?
The SEL has been attempting to analyze the available data from the 40
experiments it has conducted to answer this very question. As was Fcated
earlier, the SEL feels that these types of experiments can only depict trends
and cannot accurately isolate one practice as measurable on its own. Whether or
not this can be done, or whether one should ever attempt it is questionable.
Most software development methodologies represent an integrated set of practices
that only are effective when they are applied in a combined, uniform fashion.
Most practices do not make sense, or at least cannot be effective as a stand
alone approach.

F. McGarry
NASA/GSFC
10 of 34

A summary of tho trends that the SFI, tins discovered for specific experiments

conducted is represented to Chart 20. This chart is it 	 of

experimental results and subjecttve information from the experimenters and users

and should only be viewed its depicting trends in various approaches. No

numerical value of impnet can realistically be assigned to the individual
practices tested. It seems that practices such as PDL, code reading and

librarian have proved most beneficial while such techniques as automated flow

charters, requirements languages and the axriomatic design approach have been
unsuccessful in the SFL.

Cost of Data Collection (Chart 21)

The SEL has been in existence for about 7 years and has been collecting detailed

software development data for over 0 years. Numerous experiments have been
conducted in an attempt to understand and measure various methodologies for
developing software. in support of these efforts, one of the most critical and

difficult element:; of the entire experimentation process is that of data

collection.

The data collection process is time consuming, frustrating, sometimes

unrewarding, and most assurably is expensive. Chart 21 shows the overhead cost

that the SEL tins experienced over the past O years. To accurately collect data
from the development tasks, the SEL finds that there is it I to 7 percent

overhead price on they development ef fort. To process the data that tans been
collected (verification, encoding, data entry, storage, etc.), the SEL has spent

approximately an additional 10 to 12 percent of the development effort. Finally,
the SEL experiences indicate that one can spend up to an additional 25 percent
of the development effort to perform the detailed analysis of the data that has

been collected. This includes support before, during and after the experiments
in defining the data to be collected, monitoring the development data and
effort, formulating hypothesis and performing analysis of th. completed

experiments. The product of the analysis consists of papers, reports, and

documents.

(Detailed information on cost can be found in Reference 2).

Summary (Chart 212)

In summary, the SEL tins had much experience with the data collection process and
with the experimentation process. Many of its attempts have been rewarding and

many have been fruitless, but the SEL feels attempts to assess approaches to
software have to be conducted if we are ever to evolve to it 	 productive
approach to developing; software.

F. MCG'aln
NASA,GSFC
1 I of 34

REFERENCES

1. Software Engineering Laboratory, SF:L 81-104, The Software Engineering
Laboratory, D.N. Card, F. E. McGarry, G. Page, et. al., February 1982

2. SEL, 81-101. Guide to Data Collection_, V. E. Church, D. N. Card,
F. E. McGarry, et. al., August 1982

3. SEL, 81-102, Software Engineerin Laboratory (SEL) Data Base Organization
and User's Guide, D. C. Wyckoff, G. Page, F. E. McGarry, et. al., March 1983

4. Zelkowitz, M. V., "Resource Estimation for Medium Scale Software Projects",
Proceedings of the Twelfth Conference on the Interface of Statistics and
Computer Science, New York, Computer Societies Press, 1979

5. Bailey, J. W., and V. R. Basili, "A Meta-Model for Software Development
Resource Expenditures". 'Proceedings of the Fifth International Conference on
Software Engineering', New York; Computer Societies Press, 1981

6. Basili, V. R., and K. Freburger, 'Programming Measurement and Estimation in
the Software Engineering Laboratory', ,Journal of Systems and Software,
February 1981, Volume 2, No. 1

7. SEL 81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

8. Basili, V. R., and B. T. Perricone, Software Errors and Complexity: An
Empirical Investigation, University of Maryland, Technical Report TR-1195,
August 1982

9. SEL 80-007, An Appraisel of Selected Cost/Resource Estimation Models for
Software Systems, J. F. Cook, F. E. McGarry, December 1980

10. Basili, V. R., 'Software Engineering Laboratory Relationships for
Programming Measurment and Estimation', University of Maryland, Technical
Memorandum, October 1979

11. SEL 80-005, A Study of the Musa Reliability Model, A. M. Miller,
November 1980

12. SEL 81-110, Performance and Evaluation of an Indeyendent Software
Verification and Integration Process, G. Page. and F. McGarry, September 1982

13. SEL 82-001, Evaluation of Management Measures of Software Development,
D. Card, G. Page, F. McGarry, September 1982

F. McGarr
NASA/GSFC
12 of 34

I--
I-

0
2

Q

LLI
:&

en
a:

a.
'-'0

>

LLI ,....
2...1'-'

:&
2

_L
L

lO

:E;:
a: >...1
~
L
U
O

a:
C

o

-I-CI::

c
n

Q
Z

0

C
C

Q

<:
::: w

C
LLI::I:

'-'a.
LLla: CJ

°
0

:
E
C
~

fl-
Q

...I

0
:
)

en
0 ::I:
en

F.
M

cG
arry

N
A

SA
/G

SFC

1.3 o
f 34

-;:-Z"'n
->"
o t:n::
-,>r.
w-CJ
,f::o.CJ~ t:n..,

'Tl-<
~

SEL APPROACH TO SOFTWARE
TECHNOLOGY ASSESSMENT

SOFTWARE EXPERIMENTS IN PRODUCTION ENVIRONMENT:
NASA APPLICATIONS

• DEVELOP PROFILE OF ENVIRONMENT - EXTRACT DETAILED DEVELOPMENT
(SCREENING) DATA

- DETERMINE CHARACTERlmCS OF
DEVELOPMENT PROCESS

• EXPERIMENT WITH PROPOSED - APPLY VARIOUS TECHNOLOGIES
TECHNOLOGIES !CONTROLLEDJ (METHODS, MODELS, AND TOOLS) TO

APPLICATIONS PROGRAMS

• MEASURE IMPACT AND/OR ASSESS
TECHNOLOGIES

- EXTRACT DETAILED DEVELOPMENT
DATA

- DEFINE MEASURES FOR EVALUAnON

- COMPARE EFFECTS OF USING OR NOT
USING APPROACHES IN QUEsnON
(SIMILAR PROJECTS)

- DETERMINE EFFECTIVENESS OF
TEC,HNOLOGIES IN QUESTION (WHICH
ONES HELP AND BY HOW MUCH)

CHART 2 DUtA8-Qc.,

-z~ v.» .
c(l)S: -.»",
w-;;;,;C")
~ IoJ co

(I)"'"
~"'"
1"')'<

SOFTWARE ENVIRONMENT

DEVELOPMENT LANGUAGE ••.••••••• FORTRAN (15% MACROS)

SOFTWARE TYPE ••••••••••••••.••••• SCIENTIFIC, GROUND
BASED INTERACTIVE,
NEAR-REAL-TIME

SIZE ••••••••••••••••••••••••••••••••• TYPICALLY"'&O,OOO SLOC
(2,000 TO 110,000)

DEVELOPMENT TIME •••••••••••••••• 16 TO 24 MONTHS (START
DESIGN TO START
OPERATIONS)

ST AFFI NG ••••••••••••••••••••••••••• 6 TO 14 PERSONS

DEVELOPMENT SySTEM •••• , •••••••• IBM S/3&O (PRIMARILY)
VAX-11/780
PDP-11170

3:M-PAG-Cr1

CHART 3

;:;:Z"'M
~. >.
Ctll:: -, > r.
(.u--C'l
~o~

til
"'M~
r')

EXPERIMENTS WITHIN THE SEL
1977 THROUGH 1982

BASIS FOR SUMMARY INFORMATION
AND CONCLUSIONS

LABORATORY EXPERIMENTS 46 PROJECTS

INFORMATION MONITORED 1.8 MILLION SLOC

PROGRAMMERS/MANAGERS
REPRESENTED 150 PEOPLE

DATA EXTRACTED 20,000 FORMS

METHODOLOGIES APPLIED 200 QUALIFYING PARAM
ETERS AND VARIOUS
MODELS, TOOLS, AND
METHODOLOGIES

~AQ.CPI

CHART 4

2
I

0 en
en

en
w

::»

-~

u
0

en
..I
0

en
V

"l

l-

e
en

e
0::

w

cot:
:t

..I
..I

0
v

LL.
-

w

:c
LI.

e
0

0
I-

0
cc

w

:E
s

en
a.

I
~

c(
•

•
•

LLI
CC
c(

F.
M

cG
arry

N
A

SA
/G

SFC

\7 o
f 34

U
)

W

...I
-U

.
o a:::
a.

F.
Md;"II~

N
A

SA
/(;SF

C

. S
llf .\ol

;:oZ"'Tl >.
o til is:
-,>'"'
W- Cl
-I:>Cltoo

til""
"'Tl-<: n

WHERE DO
PROGRAMMERS SPEND THEIR TIME?

DATE DEPENDENT PROGRAMMER REPORTING

TEST
30%

DESIGN
22%

CODE
48%

CHART 7

OTHER 270/0
DESIGN 21%

CODE 28%
TEST 23%

3M-PAG-trt

NZ'Tl 0>
o til 3: -.>n
W-o
~o",

til ...
'Tl-<
(")

t
Il:
o
IL
IL
IU

PROFILES OF DEVELOPMENT RESOURCES
HOW MANY ROADS TO COMPLETION?

., ..
• I •

: I •
• I • • •

• I •
: I ••
• I • • • , ._._. I •

I . .--' 1 __ • I •
~ I .• • .-. , 1- •

/' I •. -" • . ,..-t--_ .)c.- I " •
," ", I - - I· ,,"' I ,. . ", -- . " " . ~// ----t - I" , •

• /,/ ••• I ••••• I. , • , •

,/ •••• I •••••••••• j I" , ..
/ •• I 1 I' ".

/ •• I '- '.
/ ••• I I I ". "\

./ /.. I I '- ~\
/.. I I "'

~. ,.,. I I
• , I

PROFILE

•••••••

DESIGN

PRODUCTIVITY
(SLOC/HOUR)

RA YLEIGit CURVE

4_4-4.6

2.7-4.7

2.7- ·2.9

CODE AND
UNIT TESTING

TlME-.
RELIABILITY

(ERRORS/K SLOC)

UP TO 2

UPT02

UP TO 2

CHART 8

SYSTEM
TESTING

ACCEPTANCE
TESTING

• RELATIONSHIP BETWEEN
PROFILE AND
PRODUCTIVITY

• NO RELATIONSHIP
BETWEEN PROFILE AND
REliABILITY

JMP-.a..,

.,
!'

• I
p

o

II
II

\

•
. \

r-.
\

U
)

\
~

W

\
~

2
-;

\
~

0
"p

\

'\

..
\

-
0::1

\~
\',...

rn

""
\"

~
Q

Z

~

\
II

C

ICC
-.~

\
III

rn

cc:E
~~

\
I

=
 0

\
~

a:U
)

\
~

"2
~

- ..
~
 .

III
Q

0

4
:

•
0

..
a::I:

u
8

0-.
U

.
I-

"
-I-

..
0

Q:::;

&I
rn

~

W
e

:r::
LI.I

u

"
2

• -
•

...
1:1:-

2 fa
cc :l

A
.

.... m

I
9

w
o

LI.I
•

Iil
~

a: ...
•

C
a:

Q

I

W

iii
e a:

~

CC
,

:I:
•

•
I

I
I

•

~HO:l:l:J :10 S
H
~
N
O
W
·
:
I
:
l
V
 ~
s

F. M
cG

arry
N

A
SA

jG
SFC

21

o
f 34

,~Z ~

'.J>' -::. ::n::: -.>,.. .
. ~~ c: :.:

til = -,4"
~~

PRODUCTIVITY VARIATION (SLoe/HOUR) 1

BY PRO.lECT
CALL CHARGES'

BY PERSON
CPROGRAMMER ONLY)

•
1

I

5

4

3

2

1

MAX -AVG

MiNI, 4.1
3.1

2.7

o ' , •

12

11

10

9

8

7

6

5

4

3

2

LARGE PRO.JECT

MAX

AVG

1.9

5.4

~r rrr1 I I
LARGE PRO.JECT

•
1

•
5
4

3

2
1

MAX

_(:IJ
1.-

.' '---I I

12~ 11 ,.
I

•
1

SMAU PRO.JECT

MAX

AVG" 11.&
.---

5.2

SMAll PRO.JECT

PEOPLE ARE THE MOST IMPORTANT METHODOLOGY

1 A LARGE PRO.lECY IS GREATER THAN 20K SLOC. ~a.·1

CHART 10

t4 Z ~ '.,.. .,.. - -..,
- :r. 7' ;:..-;;':C . ,... -,...
~ .- '"' :!:=

,:.:.

12.5

a:
::l 10.0 o
:t:
----U
o
~ 7.5
(/)

> -:> - 5.0 I
u
~
c
o
a:
Go

2.5 ~

0.0
0

ASSESSING REUSED CODE

•
OfL1"fllfO

Sl.Oe

DEVELOPED SLoe
y y

~

•)(

x
DEV SLoe NEW - 0.2 OLD DEL SLoe

10 20 30 40 50 60

NEW CODE ("i;)

CHART 11

•
)(

•
•

)(

)(

•

70

•

x

••
J(If

80

•

• .x
x

J(•

90 100

J34.PAG a.-I

ERROR CHARACTERISTICS
(MEASURED DURING IMPLEMENTATION)

TYPES OF ERRORS

DEIION OR
IMPLEMENTATION

OF A SINGLE
COMPONENT

12'"

SAMPLE OF 1311 REPORTS

EFFORT TO CORRECT

USS THAN
1 DAY
37%

lEIS THAN
1 HOU'1

4'~"

• MOST ERRORS ARE EASY TO CORRECT

• SEVERAL-COMPONENT ERRORS ARE LESS THAN EXPECTED

• REQUIREMENTS ERRORS ARE LESS THAN EXPECTED

CHART I~

". rAO "."

F. McGarry
NASA/GSFC
24 of 34

en
...-LLI
Q

o :IE

M

-

F. M
cG

arry
N

A
SA

/G
SFC

2S of 34

NZ'Tl
0-;1> .
CVl:;:
-';I>r.
w-::'l -'" n :.: Vl-O

;!5~

SOFTWARE MEASURES IN THE SEL

III ' II

Q
o
U
~

~o
_III
.... 2
iii::;
~II:
.... 111
IIIG.
II:UJ

II:
o
II:
II:
III

n';~.

, ,

.n,",11

1
1
1

,.,
• I • I
, 1

" 1

1
I 1·1'1
... '"

. I ~ II
I III ", ..

·I-h. ,.
I "IHto •.•

I'

McCABE COMPLEXITY

HALSTEAD LENGTH

McCABE COMPLEXITY

EXECUTABLE LINES

TOTAL LINES

SAMPLE OF 688 MODULES

TOTAL
LINES

0.85

0.81

0.84

1.00

1 1

,' ... ,

iii rt~ I,

Q
o
U
~

~O
_III :2
ID::;
~a:
.... 111
IIIG.
II:UJ

II: o
II:
II:
!!!

.O';~

"-
ft.. ... :--;

fU

"".-

1
II

1

" "' .", II I
1 1 , ~
,. :1111
I· 11 • r 1

I VI" I
In .. ~I Ulf I
:,! ;, .. #.-:"I:U I

~ .:. 1 I ••
. 1f.1

lINa:S OF CODE

CORRELAnONS

EXECUTABLE
LINES

0.91

0.87

1.00

CHART 14

McCAPE
COMPlEXITY

0.91

1.00

HALSTEAD
lENGTH

1.00

"I~ ,-

J:M.I'AG-Ck°'

00
","::0
.,,(5
0-
O~ :ur-
O-a
C>
»Q
rill

~ii

COMPARISON OF COST MODELS

ACTUAL PERCENTAGE OF ERROR IN PREDICTION
EFFORT

PROJECT (MM) DOTY PRICE S3 TECOLOTE SEL COCOMO

1 79 +65 +6 -4 -&

2 9& +30 +& -25 -22 +1

3 40 +65 +6 -8 +93

5 98 +74 0 +3 -2 +2

6 116 + 123 +-36 +35 -3

7 91 +52 + 14 -12 -14

8 99 + 127 +.7 +36 +14 +53

9 10& -24 + 16

t.J~~
J, .

SOMETIMES, SOME MODELS WORK WELL
.,

-:. r:z::
-. >- ~ J34..PAG-CZb-'
' .. J ,... _ ~

+- -. '"' :r.=
~

(hART l' "':

NZ"'11
00 >.
o rI2::: -.>n
w-- C"l
""C"lco rI2""

"'11~
I"')

:~
Q ..

t
ii
1 ..
== -
II

3 : ..
Q !II

i a
j ..
-

PREDICTING RELIABILITY
(MUSA MAXIMUM LIKELIHOOD METHOD)

PROJECT A

Q

•

-
-

!i
ra
f
• 1-; 0_

PROJECT B

..

I _ "'""" ~_ z_ --~ ---------------- ..
--------,.

AC:YUAI. -
.•• ~ •• _'.fa

-"OI""UMS~

••• ~ •• _N _____ W ____ _

_01"""-. WI.

WE DON'T KNOW ENOUGH ABOUT REUABIUTY MODELS

CHART 16

00
~x

8~
»J:
.o~ c,.
pC>
r-rr:.

~Ui

en
LLI

CJ
o ...I
o Q

o :c ... LLI
I

F. M
cG

arry
N

A
SA

/G
SFC

29 of 34

WZ'Tl 0>·
om:: >n
woC')
~rn~
~~

u 3
o
-'
(I)

:.:

,..
z o
:E 1
2

A LOOK AT IV&V METHODOLOGY
(BASED ON RESULTS FROM 3 EXPERIMENTS'

-- --- ---MAX---
r---

AVG

MIN
2.0

1.1
1.2

2.2

III
a::-
olf
11.-
lUG
III Z azlii;
::till
o~

MAX

AVGI JI.3

IV&V

74.5

OIl
:E

0_' ~~~L-~-L~L
• COSTINCREASED

1I.:e
CD III
a:~
0-a:> a: CD ...

MIN' •• 4
R.7

RL' __ -L __ ~ __ -L __ ~ __ ~ __ ~

• MORE ERRORS FOUND EARLY

4

U
9 3
Ie
III

~ 2
CI)
a:
o
a: 1 a:
III

o

MAX

IV&V --------
AVG 3.3

2.3
1.4

MIN

• REUABIUTY NOT IMPROVED

e:
~o _a:
oa: uw
w" >U -w
"c ja:
111 0
a: U

IV&V

, •• 1 .• 1.12

I.a

~.I' • • •

• ERROR CORRECTION COST NOT DIFFERENT

• IF YOU MULnPLY ERRORS FOUND EARLY BY A LATENCY
FACTORr IV&V LOOKS GOOD

• IF YOU EXAMINE ALL MEASURESr IV&V LOOKS BAD
~

CHART 18

!'

00
",,:;0

"e 02
O~
:Dr-
.0'0
C~
".n
r-1'I1 =4_
-< ".

wz"" ->-
OrJ'la::;
-'>n
w-C'l -,"C'lc:.

rJ'l-'
",,-<!
(')

EFFECTS OF MPP
ON SEL SOFTWARE DEVELOPMENT

PRODUCTIVITY
I
I
I •••
I

I • I D: I
f3=» 4.0 .. I II:
!~ I I:::;
-' a: 3.0 • • .Iu.
Ow I 1

0 ~IL :XIl: ':X o ~ 2.0 =» I ~ I::;)
iilo 3: 1... 1%
> U 0 10 ~c:J
w u. -' I '=
0

0
I -'" 0.0

500 1000 1500

INDEX OF MODERN
PROGRAMMING PRACTICES

C 2.0
:2 c(cn
cn W
::;)2
O::::i
%0
I-w
a: ~ 1.0
wO
Il.-'

CC
W

o iii

ERROR RATE

•

• •
a:0
a:
w

~.O. --------S=.r-----~~~~::~~ , ... ' -
500 1000 1_

INDEX OF MODERN
PROGRAMMING PRACnCES

• PRODUCTIVITY IS ABOUT 15 PERCENT HIGHER

• RELIABILITY IS HIGHLY VARIABLE

3M-PAG-C2II-t

CHART 19

WZ"r'l
t,j> .

01"'-13:
-,>'"'
W'- C')
"""C')~ til ...

~..";!

t
en
o
u
o
c:c
1.11
%
CIt:
1&1
> o

WHAT HAS BEEN SUCCESSFUL IN OUR ENVIRONMENT?

f:::::\
\::J

.~

~
~~
veJ

COM .,. e~
ES:ir'

~' r.:::::; - (.-, I.:::.

tOO£) -- ~_lSrnJ \ lOT
",_ AUlllTOIlS PUlIS

"
BENEm

CHART 20

.... ,......

.0

.,~

~, * ~
........ :..
.:;) .~
... ~ '1>", .
.0-:; r-
:~~ r~

-4'

COST OF DATA COLLECTION
(AS A PERCENTAGE OF TASKS BEING MEASURED)

OVERHEAD TO TASKS (EXPERIMENTS)
• FORMS
• MEETINGS
• TRAINING
• INTERVIEWS
• COST OF USING TOOLS

DATA PROCESSING
• COLLECTING/VALIDATING FORMS
• ARCHIVING/ENTERING DATA
• DATA MANAGEMENT AND REPORTING

ANALYSIS OF INFORMATION
:- z ~ • DESIGNING EXPERIMENTS
~ ~ ~ • EVALUATING EXPERIMENTS
;:~t • DEFINING ANALYSIS TOOLS

CHART 21

SEL
EXPERIENCES

3-7'90

10-12%

UP TO 25%

1M-ftAG-Gc-.

SUMMARY

• DATA COLLECTION IS EXPENSIVE - BUT
VERY, VERY IMPORTANT

• WE MUST UNDERSTAND WHERE WE ARE
BEFORE HEADING SOMEWHERE ELSE

• EXPERIMENTATION WILL PAY FOR ITSELF (TRY
SOMETHING NEW)

• MPP CAN FAVORABLY IMPACT PRODUCTIVITY
AND RELIABILITY

• SOME METHODOLOGIES BUY YOU NOTHING
(OR EVEN WORSE)

~~~ • MODELS MUST BE UTILIZED WITH GREAT 
CCIl:::;: 

~~2 CARE 
CIl:! 

;!j'-< CHART 22 

3M-PAG-aIt-1 


