%

WEHAT HAVE WE LEARNED IN THE LAST 6 YRARS » Iq E; :} :3 22 23 {S

7

MEASURING SOFTWARE DEVELOPMENT TECHNOLOGY
BY

FRANK E. McGARRY
GODDARD SPACE FLIGHT CENTER

In late 1976, the Goddard Space Flight Center (GSFC) i{nitiated effort.. to create
a software laboratory where various softvare development technologier and
methodologies could be studied, measured and enhanced. This laboratcry became
known as the Software Engineering Laboratory (SEL), and since its inception has
been actively conducting studies and experiments utilizing flight dynamics
projects in a production environment. The SEL evolved to a full partnership in
the efforts between GSFC, the University of Maryland and Computer Sciences
Corporation (CSC).

The approach that the SEL has taken in carrying out the studies has been *o
apply varying methodologies, tools, management concepts, etc. to software
projects at Goddard; then to closely monitor the entire development cycle so
that the entire process and product can be compared to similar projects
utilizing somewhat different approaches. This monitcring function led to a need
to collect, store and interpret great amcunts of data pertaining to all phases
of the scftware process, product, environment and problem. This data collection
and data processing process has been applied to over 40 software project.
ranging in size from 2,000 lines of code to approximately 120,000 lines of code
with the typical project running about 55,000 lines of code.

The data that has been collected (and is still being collected) and interproted
for these projects comes from 5 sources:

l. Data Collection forms utilized by programmers, managers and support
personnel. Typical types of data collected include:

Error and Change Information

Weekly Hours and Resources

Component Effort (hours expended on each component by week)
Project Characteristics

Computer Run Analysis

Change and Growth History (week by week records of source code)

©C 00000

(Additional Information is contained in references 1 and 2)
2. Computer Accounting Information
3. Personnel Interviews-during and after the development process
4, Management and Technical Supervizor Assessments

S. Tools-used to extract data and measures from source code

F. McGarry
NASA/GSFC
1 of 34

For the more than 40 projects which have been monitored, approximately 21,000
forms have been processed and are continually used to perform studies of the
software development process., To support the storage, validation and usage of
this {nformation, a data base was designed and buflt on a PDP~11/70 at Goddard.
(Reference 3)

Approach (Chart 2)

The steps that have been taken to carry out the {nvestigation within the SEL
have been:

1. Develop a profile of the software development process as it is
'now', First we must understand what we do well and what we do not so well so
we can build a baseline of current characteristics whereby later we can honestly
measure change.

2, Experiment with sfmilar type projects. The second step has been to
apply select tcols, methodologies and approaches to software projects so they
can be studied for cffect,

3., Measure the process and product. As projects are developed which
are utilizing different software development techniques, the SEL uses the
extracted data to determine whether or not the applied technology has made any
measurable fmpact on the software characteristics (This may include reliability,
productivity, complexity, ete.).

Environment (Chart 3)

The projects which have been monftored and studied are primarily all flight
dynamics related software systems. This software includes applications to
g1, ort attitude determination, attitude control, maneuver planning, orbi:

adlust and general mission analysis.,

The attitude systems normally have ry similar characteristic and all are
designed to utilize graphics as well as to run in batch mode. Depending on the
problem characteristics, the typlcal attitude systems range in size from 30,000
to over 120,000 lines of ccde.* The percentage of reused code ranges from less
than 10 percent to nearly 70, percent with the average software package being
comprised of approximately 30 percent reused code.

The applications are primarily sclentific in nature with moderate reliability
requirements and norm,ily 4are not required to run in real time. The development
period typically runs for about 2 years (from Requirements Analysis through
Acceptance Testing). The development computers are typically a group of IBM
§/360's which have very limited resources and where reliability is quite low
(typirally less than 3 hours MTBF)

Detaliis describing the environment can be found in Reference 1.

*Here, a line of code is any 80 byte record processable by a compilar or
assemdler (i.e., comments are included)

F. McGarry

NASA/GSFC
Y oof 34

Experiments Completed (Chart 4)

As was mentioned earlier, the SEL has monitored over 40 software development
projects during the 6 years of operation., During this time period, numerous
methologies, mudels, tools and general software approaches have been applied and
measured. The summary results to be presented are based un these projects. The
summary will be divided into 3 topic areas:

1. Profiles of the Development Process
2. Models
3. Methodologies

F. McGarry
NASA/GSFC
3 of 34

Protiles of the Development Process (Charts 5 thra 12)
The tivst step (o attempting to measure the eftectiveness ot any sottware
technology I to generate a baseline or protile of how one typically pertorms
his job. Then as moditind approaches arve attempted on similar projects, the
cftects may be apparent by comparison,

Resoutces Allocatton (Chavt /)

e met ot banice intormatfon that ove may want to understand {8 just where do
programmers spend thetr time. When the SEL looked at namerous projects to
wnderstand where the time wan spent, {t found that the SEL environment deviated
somewhat trom the old 40-20-40 rule, Typically projects tndicated that when the
total hours expended were based on phase dates of » project (1.e,, a specitic
data dettned the absolute completion of one phase ot the cycle and the beginning
ot the next phase) the breakdown was less than 295 percent tor design, close to
SO percent tor code and about 30 percent tor fategration and test,

When the programmervs provided weekly data attributing their time to the activity
that they telt thev were actually dotng, nwo matter what phase of software
development they were ing the protile looks quite different, The 3 phases
(destpns, code, test) ecach consumed approximately the same percent effort and
over 25 percent ot the time was attributed to 'other' activities (such as
travel, tratnfnyg, unknown, etce.). The SEL has continually found that this
ettort (other) exists, and cannot easily be reduced, and most probably should be
accepted an o given, The SEL has tound {t to be a mistake to attempt to
fncrease productivity merely by eliminating major portions of this 'other'time.

Development Resources (Chart 8)

Another area of concern to the SEL in defining the basic profile of software
development, was that of staffing level and resource expenditure profiles. Many
authorities subscribe to the point that there i{s an optimal staffing level
profile which should be tollowed for all software projects. Such profiles as a
Rayleigh Curve are suggpested as optimal, Chart 8 depicts characteristics of
classes ot projects monftored {n the SEL and shows the ditference {n
productivity and reliability tor groups of projects having difterent statfing
level protiles, Although the Rayvleigh Curve may be acceptable for some
projects, the SEL has found that wide varfations on these characteristics still
lead to a successtul projects. The SEL has also found that extreme deviations
may be {ndfcative ot problem sottware. T

(hetatled tnformation can be tfound tn Reference 4 and 5)

1. MeGany
NASA/GSEC
4 of 34

Productivity for large vs. small systems (Chart 9)

The common belief by many software managers and developers is that as the size
of a software system increases, its complexity increases at a higher rate than
the lines of code increase. Because of this fact, it is commonly believed that
1. the effort equation

E = a1b
where E = effort of person time
where I = lines of code

that the value of b must be greater than 1., The projects that the SFL has
studied have beeu unable to verify this belief and instead have found the value
of b to approximate .92 in the SEL environment, The fact that this equation is
nearly linear leads to the counter intuitive po'nt that a project of 150,000
lines of code will cost approximately 3 times as much as a 50,000 lines of code
project-instead of 4 or 5 times as much as is often commonly believed.

(Furcher details can be found in Reference A.)

Productivity Variation (Chart 10)

Another characteristics that the SEL has been interested in studying has been
the variations in programmer productivity. Obviously one would want to increase
the productivity by whatever approach found to be cffective, but first we must
clearly understand what the baseline characteristics of productivity are
(minimum, maximum, average, difference betwenn small and large projects, etc.);
only then will we know if we have improved or not in the years to come,

As has been found by other researchers in varying environments, the productivity
of dif.erent programmers can easily differ by a factor of % or 10 to l. The SEL
did ‘ind that there was a greater variation (from very low productivity of .5
l.0.c/hour to 10.8 1.0.c./hour) in small projects. The probable reason for this
is that newer people are typically put on smaller projects and the SEL has found
extreme differences in the relatively inexperienced personnel.

Reusing Code (Chart 11)

As was stated in the introduction, projects being developed in the SEL
environment typically utilize approximately 30 percent old code. Although it is
obviously less costly to integrate existing code into s system rather than
having to generate new code, there is some cost that must be e.tributed fo
adopting the old code. The development team must test, integrate and possibly
document the old code, so there is some overhead. By looking at approximately
25 projects ranging in size from 25,000 lines of code to over 100,000 total
lines of code and ranging in percent of reused code from 0 percent to 70
percent, the SEL finds that by attributing a value of approximately 20 percent
overhead cost to reuse code, the expenditures of the 25 projects can best be
characterized. Now the SEL uses the 20 percent figure for estimating the cost
of adopting existing code to a new software project.

F. McGarry
NASA/GSFC
S of 34

Error Characteristics (Chart 12)

One of the other characteristi(s of a software environment that is of great
concern to developers and managers {s that of expected software reliability and
that of overall software error characteristics. Before attempting to improve
software reliability or before attampting to

minimize the {mpact that software errors may have, the SEL had to first
understand the error characteristics of the typical applications software in the
Stl. environment,

By collecting detailed error report data and through the monitoring of numerous
applications projects many error characteristics have been studied,

Several pleces of information which are depicted in Chart 12 and which are based
on 1381 error reports from approximately 15 projects include:

o Most errors are local to one component (subroutine or function)

o Less than 10 percent of errors were attributed to faulty
requirements

o A great percent of errors (48 percent) were estimated to be trivial
to correct (less than 1 hour)

o A very low percent of errors (7 percent) were estimwted to be a
major effort to fix (greater than 3 days)

(Further statistics and more detailed explarations can be found in References 7
and 8).

F. McGarry
NASA/GSFC
6 of 34

Models (Charts 1} through 16)

A second get of studies that the SEL has actively pursued I8 that ot evaluating,
reviewing, and developlog sottware models, This (ncludes resource models,
reliability models as well as complexity metvies,

Measures tor Sottware (Chart 14)

The SEL has attempted to ut lice various avatlable sottware metrics (o
characterize the sottwate products gencrated, Such metvics as the MeCabe
Cyclomatic Compiexfty, Halstead Leagth, and lHones ot code were only a tew ot the
measures that were reviewed,

1t ia commonly believed that the size ot a component or the compl xity ot a
component will be divectly corvelated to the velfability ot that component, One
set ot studles pertormed {0 the SEL attempted to verity this belict, By taking
over 9% modules which had very detafled records of evvor data, the SEL compated
the correlations ot 4 charactervistics ot the components, The chavactervistic
facluded total lines ot code, executable lines ot code, Cyclomatic Complexity
and Halstead Length, The resultant correlations ave dipfceted (n Chart 14, which
shows a very high divect corvelation tor the 4 measures.

A scecond study was pertormed whetre the ertor tate ot ecach ot the components was
plotted agatnst size as well as against Cyctlomat {c Complexitv. The SEL expected
te show that targer components have higher ervor rates than smallev components
amd that components ot higher complexity vating had higher crrvor vates, The
plots on Chart 11 shiow that the tesults were counter-intuitive, The SEL has
becn unable to verity that larger ov wore complex componeats {ndeed have higher
Cerror rates,

Cost Models (Chavt ™)

In addition to the studies made pertaining to vartous measuves tor

sottware, the SEL has also utilized the cost data collected tvom the many
projects to calibrate and evaluate varlous avaflable tesource est{mation models.
No attempt was [ntended to quality one wmodel as belug any better than another,
The oblective ot the studies was to better understand the seusftivities ot the
various models and to determine which models seemed to characterize the SEL
sottware developwent environment most cons{stently,

In studyiny these tvesource models, 9 projects which were somewhat stmilar (n
size were used as experimental projects, Each ot the models was ted complete
and accurate data trom the SEL data base and each was calibrated with nominal
sets of profects as completely as the experimenters could, Summary vesults,
which ave pgiven {n Chatrt 15, {fudicate that, occastonally, some models can
accurately predict ettort requirved tor a sottware project, The SEL has

b MeGarny
NASA GSHC

MRV ERE

reftterated what many otherv sottware developers and managers claim. Cost models
should never be used as a sole source ot estimation, The user wmust have access
to experienced personnel tor estimating and

must also have access to a corporate memory which can be used to calibrate and
reintorce someones estimate ot cost, Resource models can only be used as a
supplemental tool to retntorce ones estimate ovr to tlag possible
fnconsistencies,

More detatled {ntormat fon on the SEL studies can be tound {n Reterence 1, 9, 10,

Y

Relfability Models (Chave lo)

Another type ot model that the SEL has spent some efforts {n understanding and
calibrating {8 the relfability model., Although numerous approaches have been
suggested as to Just how one best predicts the level ot errvor proacness that
sottware may have, the SKL has only pertormed any extended studios on one
mode L -that which {8 attributed to John Musa. The model {s a waximum likelihood
mothod and the SEL attempted to apply detafled tault reports trom 2 separate
projects to the model (0o an attempt to determine {f the model could accurately
predict vematning taults (n the sottware,

Chart lo indicates that one of the experiments was quite successtul and one of
the expertments was not successtul, 1t should be noted that during and atter
these experiments, John Musa reviewed the results and the data very carefully
and he has poianted out some possible deticiencies tn the 8Kl data which could
possibly lead to erroncous results o this application of the reliability model.
One such plece ot data {s the granularity with which computer CPU time is
recorded between veported taults. The SEL data {s not as accurate as the model
calls tor,

The charts show that tor experiment 1, the model quite accurately predicted a
level ot reliabflity atter approxfmately 1/2 of the total uncovered faults were
reported, The chart also shows that tor experiment 2, the model was still
predicting a very high number ot errvors to be sti{ll {n the sotftware, when in
tact a minfmal set werte ever uncovered during the several years of operation for
that systoem.

More detatled discusstons can be tound {n Reference 1 and 11,

o MeGanny
NASA/GSIC
8ol 34

Methodologies (Charts 17 through 20)

As was mentioned earlier, one ot the major objectives of the SKEL has been to
measure the effectiveness ot various software development methodologies. The
SEL has utilized selected development approaches in different applications
software tasks and then has analyzed the process and product to study the
relative ifmpact of the approach, A summary of some of the results of the
experimentation process {s presented here,

Use of An Independent Vervification and Validation Team (Chart 18)

Many software managers, developers and organizations have advorated the usage of
an independent IVAV team during the software development process. The major
advantage ot following such an approach, {t is claimed, will be the {mprovement
in software reliabil{ty, quality, visibility, but not necessarily an {mprovement
in overall software productivity,

In an attempt to evaluate the {mpact that the usage of an IVAV team may have on
the SEL environment, 31 candidate projects were seclected to utilize the
methodology ot an IV&V. Two of the projects were very typical flight dynamics
systems, cach containing over 50,000 lines of code while the third was a smaller
flight dynamics project comprised of about 10,000 lines of code. In addition to
the 1V&V approach being applied to the projects, the development teams veiflized
the commonly tollowed standards and approaches normally used by development
efforts within the SFL environment,

The projects lasted approximately 18 months, and the IV&V effort was active for
the entite duration of the project. The size of the 1VAV effort was about 18
percent of the effort of each of the large development efforts. A series of
measures was defined near the beginning of the experiment by the SEL. These
measures would be used to determine whether or not the applicatfon of the 1VEV
approach was cost effective {n the SEL environment,

A summary of some of the measures i{s depicted {n Chart 18. The results here
fndicate:

o total cost of the project increased-as expected

o productivity of the develepment teams (not counting the cost of
1IVAV) was among the lowest of any previous SEL monitored project.

o rates of uncovering errors found earlier in the development cycle
was better

o cost rate to fix all discovered errors was no less than in any
other SEL projects

o reliability of the software (error rate during acceptance testing
and during maintenance and operations) was no different than other SEL projects

F. MeGainy
NASA GSEC
9 of 34

The conclusion of the SEL, based on these 3 experiments, was that the IV&V
methodology was not an effective approach in this SEL environment.

(A more detailed description can be found in Refereunce 12).

Effects of MPP on Software Development (Chart 19)

In an attempt to determine {f the utilization of Modern Programming Practices
(MPP) has any impact (either favorable or unfavorable) on the development of
software, a set of 10 fairly large (between 50,000 l.o.c. and 120,000 l.o.c.),
and fairly similar projects (same development environment, same type of
requirements, same time constraints) was closely examined. These projects all
had been developed in the SEL environment where detailed information was
extracted from the projects weekly and where each project had & different level
of MPP enforced during the development process.

The MPP's ranged from variocus design approaches (such as PDL, Design Walk
Throughs, etc.) to code and test methodologies (such as structured code, code
reading, etc.), to various integration and system teating approaches. All of
the possible MPP's were rated and scaled as to the level to which the practice
was followed for each project (the rating was done by the SEL researchers, not
by the software developersg). The only purpese of this exercise was to depict
trends and not to prove that any one single practice was more effective by
itself than any other.

The level to which MPP's were utilized were plotted against productivity and
against error rate, Chart]9 indicates that the application of the MPP has
favorably affected productivity by about 15 percent for these experiments. The
results of software reliability vs MPP is very questionable. The SEL Is still
continuing analysis of additional data. The chart shown is obviously /ery
inconclusive.

(More details of this effort can be found in Reference 13).

Subjective Summary of Effective Practices (Chart 20)

The previous chart indicated that productivity can be improved by an appreciable
amount if certain, select practices are applied to the software development
process. One obviously next would ask, which practices are the most effective?
The SEL has been attempting to analyze the available data from the 40
experiments it has conducted to answer this very question. As was fcated
earlier, the SEL feels that these types of experiments can only depict trends
and cannot accurately isolate one practice as measurable on its own. Whether or
not this can be done, or whether one should ever attempt it is questionable.,
Most software development methodologies represent an integrated set of practices
that only are effective when they are applied in a combined, uniform fashion.
Most practices do not make sense, or at least cannot be effective as a stand
alone approach.

F. McGarry
NASA/GSFC
10 of 34

A summary ot the trends that the SEL has discovered for specific experiments
conducted is represented i{n Chart 20. This chart {8 a combination of
experimental results and subjective information from the experimenters and uservs
and should only be viewed as depicting trends {n various apprcaches. No
numerical value of {fmpact can realistically be assigned to the individual
practices tested. It scems that practices such as PDL, code reading and
librarian have proved most beneficial while such techniques as automated flow
charters, requirements languages and the axriomatic design approach have been
unsuccessful in the SEL.

Cost of Data Collection (Chart 21)

The SEL has been in existence for about 7 years and has been collecting detailed
software development data tor over 6 ycars, Numerous cxperiments have been
conducted in an attempt to understand and measure varfous methodologies for
developing software. In support of these efforts, one of the most critical and
difficult elements of the entire experimentation process is that of data
collection,

The data collection process is time consuming, frustrating, sometimes
unrewarding, and most assurably is expensive. Chart 21 shows the overhead cost
that the SEL has experienced over the past & years. To accurately collect data
from the development tasks, the SEL finds that there is a 3 to 7 percent
overhead price on the development effort. To process the data that has been
collected (vertfication, encoding, data entry, storage, etc.), the SEL has spent
approximately an additional 10 to 12 percent of the development effort. Finally,
the SEL experiences indicate that one can spend up to an additional 25 percent
of the development effort to perform the detailed analysis of the data that has
been collected. This includes support before, during and after the experiments
in defining the data to be collected, monitoring the development data and
effort, formulating hypothesi{s and performing analysis of the completed
experiments. The product of the analysis consists of papers, reports, and
documents.

(Detailed information on cost can be found in Reference 2).

Summary (Chart 22)

In summary, the SEL has had much experience with the data collection process and
with the experimentation process., Many of {ts attempts have been rewarding and
many have been fruftless, but the SEI, feels attempts to assess approaches to
software have to be conducted {f we are ever to evolve to a more productive
approach to developing software,

F. MeGarry
NASA,GSFC
11 of 34

REFERENCES

l. Software Engineering Laboratory, SEL 81-104, The Software Engineering
Laboratory, D.N. Card, F. E. McGarry, G. Page, et, al., February 1982

2. SEL, 81-101, Guide to Data Collection, V. E. Church, D. N. Card,
F. E. McGarry, et. al., August 1982

J. SEL, 81-102, Software Engincering Laboratory (SEL) Data Base Organization
and User's Guide, D. C. Wyckoff, G. Page, F. E. McGarry, et, al,, March 1983

4, Zelkowitz, M. V., "Resource Estimation for Medium Scale Software Projects”,
Proceedings of the Twelfth Conference on the Interface of Statistics and
Computer Science, New York, Computer Societies Press, 1979

5. Batley, J. W., and V. R, Basili, "A Meta-Model for Software Development
Resource Expenditures”, 'Proceedings of the Fifth International Conference on
Software Engineering', New York; Computer Societies Press, 1981

6. Basili, V. R., and K. Freburger, 'Programming Measurement and Estimation in
the Software Engineering Laboratory', Journal of Systems and Software,
February 1981, Volume 2, No. |

7. SCL 81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

8. Basili, V. R., and B, T, Perricone, Software Errors and Complexity: An
Empirical Investigation, University of Maryland, Technical Report TR-1195,
August 1982

9, SEL 80-007, An Appraisel of Selected Cost/Resource Estimation Models for
Software Systems, J. F. Cook, F. E. McGarry, December 1980

10, Basili, V. R., 'Software Engineering Laboratory Relationships for
Programming Measurment and Estimation’', University of Maryland, Technical
Memorandum, October 1979

1l1. SEL 80-005, A Study of the Musa Reliability Model, A. M. Miller,
November 1980

12. SEL 81-110, Performance and Evaluation of an Independent Software
Verification and Integration Process, G. Page. and F, McGarry, September 1982

13. SEL 82-001, Evaluation of Management Measures of Software Development,
p. Card, G. Page, F. McGarry, September 1982

F. McGarry
NASA/GSFC
12 of 34

MEASURING
SOFTWARE DEVELOPMENT
TECHNOLOGY

OR

SHOULD PROGRAMMERS DO IT
TOP DOWN ?

PE JO bI
J4SD/VSYN
ALenOW “ 4

SEL APPROACH TO SOFTWARE
TECHNOLOGY ASSESSMENT

SOFTWARE EXPERIMENTS IN PRODUCTION ENVIRONMENT:
NASA APPLICATIONS

e DEVELOP PROFILE OF ENVIRONMENT
(SCREENING)

o EXPERIMENT WITH PROPOSED
TECHNOLOGIES {CONTROLLED)

o MEASURE IMPACT AND/OR ASSESS
TECHNOLOGIES

CHART 2

EXTRACT DETAILED DEVELOPMENT
DATA

DETERMINE CHARACTERISTICS OF
DEVELOPMENT PROCESS

APPLY VARIOUS TECHNOLOGIES
(METHODS, MODELS, AND TOOLS) TO
APPLICATIONS PROGRAMS

EXTRACT DETAILED DEVELOPMENT
DATA

DEFINE MEASURES FOR EVALUATION

COMPARE EFFECTS OF USING OR NOT
USING APPROACHES IN QUESTION
(SIMILAR PROJECTS)

DETERMINE EFFECTIVENESS OF
TECHNOLOGIES IN QUESTION (WHICH
ONES HELP AND BY HOW MUCH)

IN-PAG-(2c)

bt Jo ¢
JdSH/VSYN
Ao “4

SOFTWARE ENVIRONMENT

DEVELOPMENT LANGUAGE FORTRAN (15% MACROS)

SOFTWARE TYPE SCIENTIFIC, GROUND-
BASED INTERACTIVE,

NEAR-REAL-TIME

SIZEciiiiiiiiiiteiiiceanannas TYPICALLY~60,600 SLOC
(2,000 TO 110,000)

DEVELOPMENT TIME 16 TO 24 MONTHS (START
DESIGN TO START
OPERATIONS)

STAFFINGciiiviiinnaen. 6 TO 14 PERSONS

DEVELOPMENT SYSTEM,........ IBM S/360 (PRIMARILY)
VAX-11/780

PDP-11/70

IN-PAG(2)

CHART 3

pe 10 91
J4SDH/VSYN
Auenow "4

EXPERIMENTS WITHIN THE SEL
1977 THROUGH 1982
BASIS FOR SUMMARY INFORMATION
AND CONCLUSIONS

LABORATORY EXPERIMENTS 46 PROJECTS
INFORMATION MONITORED 1.8 MILLION SLOC
PROGRAMMERS/MANAGERS

REPRESENTEDcccteeee. 150 PEOPLE

DATA EXTRACTED 20,000 FORMS
METHODOLOGIES APPLIED 200 QUALIFYING PARAM-

ETERS AND VARIOUS
MODELS, TOOLS, AND
METHODOLOGIES

IN-PAG-12*)

CHART 4

AREAS OF DISCUSSION

e PROFILES
e MODELS
e VIETHODOLOGIES

IM-PAG-(2*)

CCCCCC

by JO N,
DASH/VSVN

RYHURRITY

PROFILES

CHART 6

IM4-PAG-(2°)

WHERE DO
PROGRAMMERS SPEND THEIR TIME?

DATE DEPENDENT PROGRAMMER REPORTING

DESIGN
22%

DESIGN 21%
OTHER 27% ’

CODE 28%
TEST 23%

vE JO 61
JdSD/VSVN

IM-PAG2*)

Auenop "4

CHART 7

PE JO 0T
J4S9O/VSYN
Auendn ‘g

EFFORT

PROFILES OF DEVELOPMENT RESOURCES
HOW MANY ROADS TO COMPLETION?

[]
-
[]

[]

/
o o - - —-————'——'—————————

/

L __

/

e o — — a ————

e e e o o ————

CHART 8

DESIGN CODE AND SYSTEM ACCEPTANCE
UNIT TESTING TESTING TESTING
TIME —»
PRODUCTIVITY RELIABILITY
PROFILE (SLOC/HOUR) {ERRORS/K SLOC) e RELATIONSHIP BETWEEN
) PROFILE AND
RAYLEIGH CURVE - . PRODUCTIVITY
- 44-46 uP 7102 NO RELATIONSHIP
o

----- 2.7-47 UP 7102 BETWEEN PROFILE AND
seescne 2.7-29 UP TO 2 RELIABILITY

4-PAG-a™)

Pt Jo 1T
JDASD/VSYN
AR ‘4

STAFF-MONTHS OF EFFORT

ARE LARGE PROGRAMS
HARDER TO BUILD THAN SMALL ONES?

A 1 1 1 1] A i 1 1 1 A 1 1 1 I L A 3
0 0 20 330 40 5 e 70 & 9% W 119 B 2

DEVELOPED LINES OF CODE (THOUSANDS)
CHART 9

‘i

Py oo

2ASH/VSVYN
AUBOOW

PRODUCTIVITY VARIATION (SLOC/HOUR)?

LS o U o MAX
¢ s
5 MAX 5
BY PROJECT B ™
(ALL CHARGES) ‘“r AVG ‘" AVG} 45
3 MiN 7 -
2 3_. 2 MiN 34
1 2.7 1 1.9
0 []
LARGE PROJECY SMALL PROJECT
12 - 2pe
1M = 1M1= MAX
10 b= 108
9 - . o
s MAX sl
BY PERSON 7} ¢
(PROGRAMMER ONLY) 6l AVG sl aval 13
5= 5 L
7.9
- s
31k 5.4 § 52
2 - 2k MIN
1 : 1F 0.5
0 I 0.9 ° i

LARGE PROJECT

1I\ LARGE PROJECT IS GREATER THAN 20K SLOC.

CHART 10

SMALL PROJECT
PEOPLE ARE THE MOST IMPORTANT METHODOLOGY

I-PAG-(20°)

LSRN

QA8 VSVYN

TS N |

PRODUCTIVITY (SLOC/HOUR)

12.5

10.0

7.5

5.0

2.5

0.0

ASSESSING REUSED CODE

O¢ e
i quRED Sto 3
C

CHART 11

DEVELOPED SLOC °
4 °
i d X : xr ¥ o
¥] |
DEV SLOC NEW - 0.2 OLD DEL SLOC
A 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 100
NEW CODE (77)
BUPAG (20°)

ERROR CHARACTERISTICS
(MEASURED DURING IMPLEMENTATION)

TYPES OF ERRORS EFFORT TO CORRECT

OESIGN OR
IMPLEMENTA-
TION OF SEVERAL

COMPONENTS
16%

DESIGN OR
IMPLEMENTATION
OF A SINGLE
COMPONENT
82%

LESS THAN
1 HOUR
a@a%

LESS THAN
1 DAY
7%

REQUIRE-
MENTS
%

SAMPLE OF 1381 REPORTS

o MOST ERRORS ARE EASY TO CORRECT
e SEVERAL-COMPONENT ERRORS ARE LESS THAN EXPECTED
e REQUIREMENTS ERRORS ARE LESS THAN EXPECTED

IN PAQ (2"}

CHART 12

F. McGarry
NASA/GSFC
24 of 34

MODELS

N-PAG-{D)

CHART 13

F. McGarry
NASA/GSFC
25 of 34

Pe JO 9T
JDASH/VSYN
iegop 4

SOFTWARE MEASURES IN THE SEL

oy,

RELIABILITY
(ERRORS PER LINE OF CODE)

HALSTEAD LENGTH

McCABE COMPLEXITY
EXECUTABLE LINES
TOTAL LINES

SAMPLE OF 688 MODULES

RELIABILITY
(ERRORS PER LINE OF CODE)

”s

"un

nts

LIN:S OF CODE

CHART 14

CORRELATIONS
TOTAL EXECUTABLE McCAPE HALSTEAD
LINES LINES COMPLEXITY LENGTH
0.85 0.91 091 1.00
0.81 0.87 1.00
0.84 1.00
1.00

IM-PAG Oc*)

ALIVNO ¥OOd 40
S| 39Yd VYNIDIHO

oo 7
DASH VSVN
AHEOOW

COMPARISON OF COST MODELS

ACTUAL PERCENTAGE OF ERROR IN PREDICTION

EFFORT
PROJECT (MM) DOTY PRICE S3 TECOLOTE SEL cocomo

1 79 +65 +8 -4 -6 -
2 96 +30 +6 -25 -22 +1
3 40 +65 +6 -8 +93 —
5 98 +74 0 +3 -2 +2
6 116 +123 + 36 +35 -3 -
7 91 +52 +14 -12 ~-14 -
8 99 +127 +7 +36 +14 +53
9 106 - — — -24 +16

SOMETIMES, SOME MODELS WORK WELL

IM-PAG-(>°)

ChART i°

2z
® 5

c»nx
-3 O
wx O
AOS
m-l
mn<
(]

NUMBIER OF FAILURES PREDICTED

PREDICTING RELIABILITY
(MUSA MAXIMUM LIKELIHOOD METHOD)

PROJECT A

NUMSER OF FARURES OSSERVED

NUMBSER OF FAILURNES PREDICTED

PROJECT B

0
ALvNd yood 4
Si Aovd WNIOWO

WE DON'T KNOW ENOUGH ABOUT RELIABILITY MODELS

CHART 16

METHODOLOGIES

N-PAG-D*

CHART 17

F. McGarry
NASA/GSFC
29 of 34

MAN-MONTHS/K SLOC

ERRORS/K ExLOC

P€ JO 0F
J4SD/VSVN
Aendp 4

A LOOK AT Iv&aV METHODOLOGY

| 30%d TYNIDIHO

[

(BASED ON RESULTS FROM 3 EXPERIMENTS) Q
_ 5]
? wav = ° MAX o
——————————————— oL 718 VeV =
T MAX ~—~= ol o
AVG SE 7 [
o >
MIN 22 o ™ AVG| 783 c
1k 20 s 68 745 '_2
1.8 Duw
12 ob % e | 4
C: [2.7
0 & e |
e COST INCREASED e MORE ERRORS FOUND EARLY
4r 1.2 MAX ~
MAX .o_z S AVG L wvav '
3t 58 .
_________ | __Wav 35 s [roen
'
2} ave| 33 52 (X | V™ L2
%E o4
- 23 55 s
14 0 02
MIN 59
e RELUIABILITY NOT IMPROVED o ERROR CORRECTION COST NOT DIFFERENT

o IF YOU MULTIPLY ERRORS FOUND EARLY BY A LATENCY
FACTOR, IV&V LOOKS GOOD

o IF YOU EXAMINE ALL MEASURES, IV&V LOOKS BAD

INPAS-OM

CHART 18

L]

pe JO [¢

J4SD/VSVYN
Auenop 4

DEVELOPED LINES
OF CODE PER HOUP.

EFFECTS OF MIPP
ON SEL SOFTWARE DEVELOPMENT

PRODUCTIVITY ERROR RATE
\ '
- ! -
5.0 ! lg o® O 2.6 °
I ! Zon
4.0} I ° 1 - w
o0 | |& 52
O -d
30k ° ! P In
)) ®lu - w 1.0
Wi, 19 €S
2.0r g% :3 ag
3 iz OF [AVERAGE ERROR RATE ~~_ |
]—
0.0 | ! 4 lx 1 w 0.0 lo 1 -840l
500 1000 1500 500 1000 1500
INDEX OF MODERN INDEX OF MODERN
PROGRAMMING PRACTICES PROGRAMMING PRACTICES

e PRODUCTIVITY IS ABOUT 15 PERCENT HIGHER
e RELIABILITY IS HIGHLY VARIABLE

34-PAG-(2d°)
CHART 19

bt Jo Te
J4SD/VSVN
AeOOIW ‘g

OVERHEAD COST

WHAT HAS BEEN SUCCESSFUL IN OUR ENVIRONMENT?

’
’
U4
A - O\ Y
PROBLEW STRUCTURED
AXIOMATIC ANALYSIS 47
DESIGN 7
’
’
’
’
’
AUTOMATED e
FLOW ’

CHARTERS J

SIMULATED
CONSTRUCTS
coDE

A Avartons

"
,”
b
BENEFIT MPAGIR"
CHART 20

AU 00 B0 a0

COST OF DATA COLLECTION
(AS A PERCENTAGE OF TASKS BEING MEASURED)

SEL
EXPERIENCES
OVERHEAD TO TASKS (EXPERIMENTS) 3—-7%
e FORMS
e MEETINGS
® TRAINING

e INTERVIEWS
e COST OF USING TOOLS

DATA PROCESSING 10—-12%
@ COLLECTING/VALIDATING FORMS
® ARCHIVING/ENTERING DATA
e DATA MANAGEMENT AND REPORTING

ANALYSIS OF INFORMATION UP TO 25%
o DESIGNING EXPERIMENTS
® EVALUATING EXPERIMENTS
e DEFINING ANALYSIS TOOLS

CHART 21 THPAG-Be*)

ooy
D:ASH VSVN

Anenaw

pE J0 vt

JASH/VSVN
AURDOW Y

SUVMIMARY

DATA COLLECTION IS EXPENSIVE — BUT
VERY, VERY IMPORTANT

WE MUST UNDERSTAND WHERE WE ARE
BEFORE HEADING SOMEWHERE ELSE

EXPERIMENTATION WILL PAY FOR ITSELF (TRY
SOMETHING NEW)

MPP CAN FAVORABLY IMPACT PRODUCTIVITY
AND RELIABILITY

SOME METHODOLOGIES BUY YOU NOTHING
(OR EVEN WORSE)

MODELS MUST BE UTILIZED WiTH GREAT
CARE

CHART 22

IMN-PAG-(2>*)

