STRENGTH THEORIES OF COMPOSITES:

• .

STATUS AND ISSUES

Edward M. Wu Lawrence Livermore National Laboratory University of California Livermore, California

Central Issues

Under Uniopial Stress

Fiber controlled? or Fiber dominated? < _____ Matrix controlled? or Matrrix dominated? {< ______

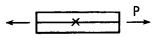
Should tensile & compressive strength be related?

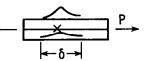
Under Bombined Stress

Are longitudinal & transverse strength independent? or coupled? $\leftarrow \stackrel{\uparrow}{=} \rightarrow \leftarrow \downarrow \stackrel{\uparrow}{=} \stackrel{\uparrow}{\mapsto} \qquad \stackrel{\uparrow}{=} \stackrel{\uparrow}{\downarrow}$

ROLE OF MATRIX BINDER IN LONGITUDINAL STRENGTH (REFS.1 AND 2)

MATRIX BINDER PROVIDES LOCAL REDUNDANCY

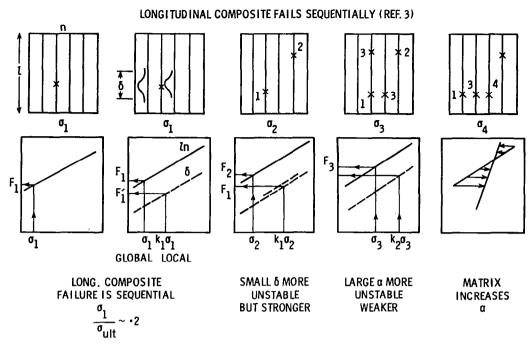




 $\delta = \text{INEFFECTIVE LENGTH} \\ \sim \ 10 \ \text{d}$

FIBER BREAK	NO. OF LOA	T MATRIX D CARRYING ERS	NO. OF LOA	MATRIX D CARRYING ERS
0	3	P/3	3	P/3
1	2	P/2	3-8	~ P/3-

LONGITUDINAL STRENGTH DEPENDS ON MATRIX EFFECTIVENESS PARAMETER $\delta \left(E_m E_f, \sigma_m \sigma_{\text{INTERFACE}} \right)$



ŗ

LONG COMPOSITE FAILURE IS SEQUENTIAL, NO WELL-DEFINED PLANE OF FAILURE

LONGITUDINAL STRENGTH: FIBER-DOMINATED OR FIBER-CONTROLLED

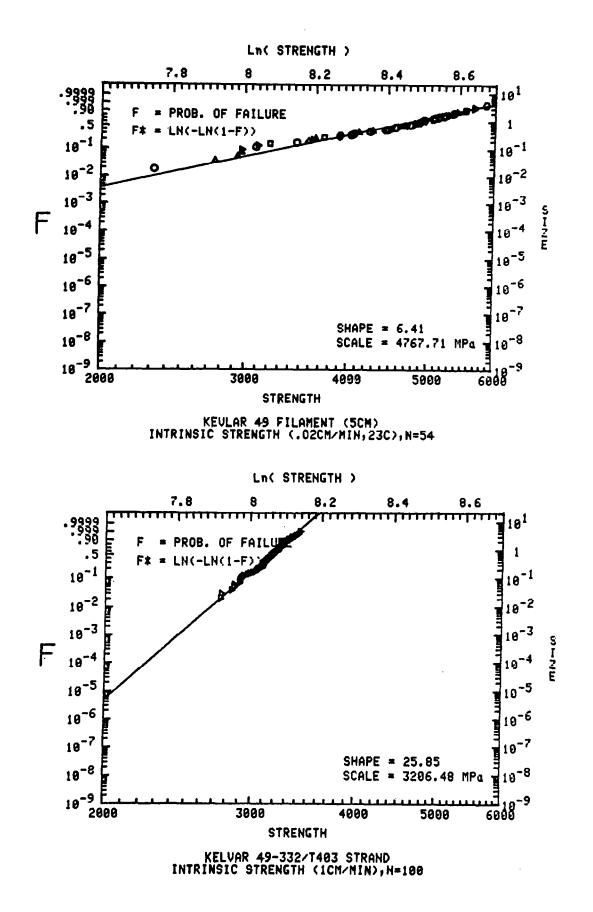
HIGH LONGITUDINAL STRENGTH OF FIBER IS DUE TO:

DEFECTS ARE MINIMIZED BY SMALL FIBER DIAMETER $\bullet^{\bullet} \bullet \sigma_{ult} \sim 600 \text{ ksi}$ (STEEL $\sim 200 \text{ ksi}$)

BUT EXISTENCE OF A SINGLE FLAW LEADS TO FAILURE (WEAKEST LINK OF CHAIN)

•• LARGE SCATTER	FIBER	COEFF. OF 20%	VAR. S	HAPE 6-8
• • DANGE SCATTER	STEEL	3-5%		25-50
BUNDLE STRENGTH BUNDLE SCATTER	MA 55	••••	N I THOUT MATR1X 350 ksi 20-25%	

LONGITUDINAL COMPOSITE STRENGTH IS FIBER-DOMINATED WITH SUBSTANTIAL MATRIX INFLUENCE

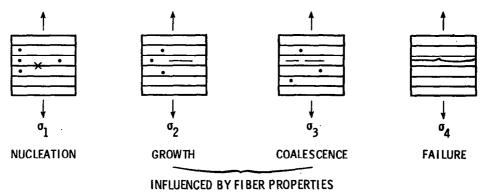


175

. ..

111

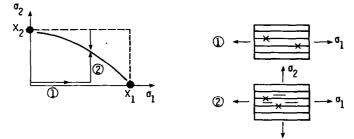
1-1



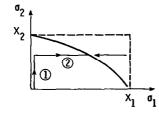
TRANSVERSE STRENGTH: MATRIX-DOMINATED OR MATRIX-CONTROLLED (REF. 4)

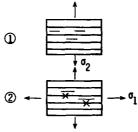
TRANSVERSE STRENGTH IS MATRIX-DOMINATED, INFLUENCED BY FIBER AND PACKING, NOT WELL-DEFINED PLANE OF FAILURE

STRENGTH COUPLING UNDER COMBINED STRESS



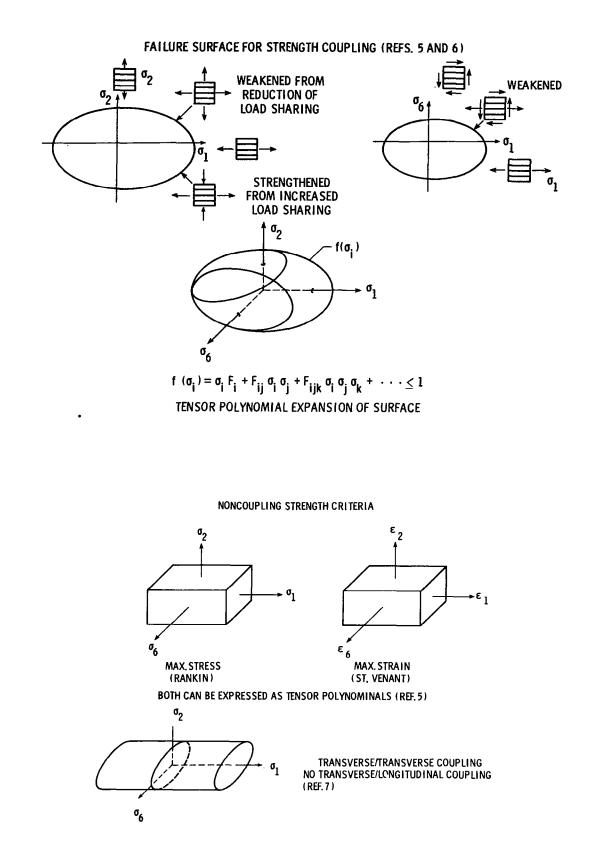
 BROKEN FIBER INITIATES TRANSVERSE CRACK, THEREFORE REDUCES TRANSVERSE STRENGTH



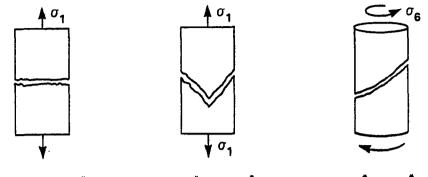


STRENGTH COUPLING
IS EXPECTED FROM
PHYSICS OF FAILURE

 TRANSVERSE CRACK REDUCES LOAD TRANSFER, INCREASES δ. REDUCES LONGITUDINAL STRENGTH



FAILURE TESTS REQUIRES WELL-DEFINED FAILURE MODES



if $\sigma_1^* < 2\sigma_6^*$

if $\sigma_1^* > 2\sigma_6^*$ Combine failure $\sigma_1^* < \sigma_6^*$

Tensile failure mode

Combine failure mode Tensile failure mode

Plane of Failure does not necessarily correspond to applied stress

Plane of Failure of composites are seldom well defined

Failure Criterion based on applied stress is NOT Mechanistic; it is Operational

CONSISTENCY IN STRENGTH THEORY FORMULATION

	Output		<u>Mti co</u>	nstant	Input
Deformation {	$\boldsymbol{\epsilon}_{ij}$	=	S _{ij}	k1	σ_{kl}
	$\boldsymbol{\epsilon}_{ij}$.	α_{ij}		ΔΤ
Strength	σ _{ij}	=	()	σ_{ij}
		σ _{ii} <	σ_{ij}^* uniaxia	al	
		σ _{ij} < f ([σ <mark>*</mark>]) combi	ned	
$f(\sigma_{ij}) = F_{ij} \sigma_{ij} + I$	$F_{ijkl} \sigma_{ij} \sigma_{kl} + F$	= _{ijklmn} σ _{ij}	σ _{kl} σ _{mn} + .	••	
F _{ij} etc material d	constants dim	ensions	1 stress	$\int \frac{1}{\text{stress}^2}$]

• Independent of mtls coordinates

Allow mathematical operations

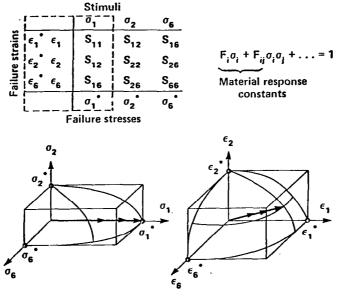
FAILURE STRENGTH MEASUREMENTS

.

Design loading conditions (direction of stress vector) which is capable of discriminating failure criteria

...

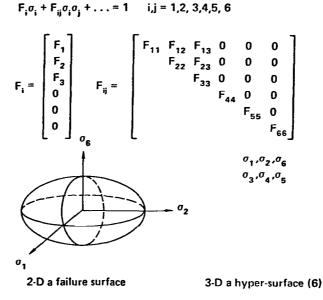
.



One dimensional stress give rise to 3D strain One dimensional strain give rise to 3D stress Consistant characterization desirable

THREE-DIMENSIONAL FAILURE CRITERION

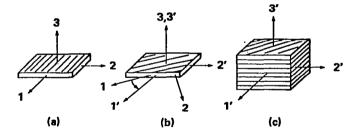
Tensor-polynominal Failure Criterion:



- How many independent tests? (12)
- What are the tests?

NO. OF INDEPENDENT TESTS

Failure tensor F_i, F_{ii} follow tensor transformation rules



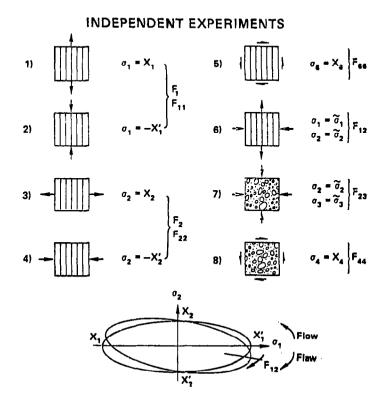
• 3-D failure criterion for lamina (a) only

Symmetry condition of orthotropic lamina 2 = 3

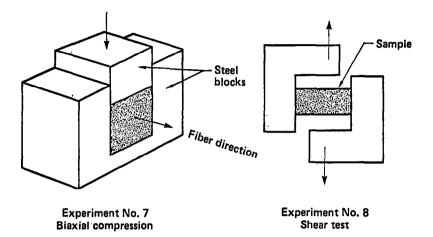
	•	
Tensor Notation	Contracted Notation	
F ₂₂ = F ₃₃	$F_2 = F_3$	ł
$F_{1122} = F_{1133}$	$F_{12} = F_{13}$	12 - 4 = 8
F ₂₂₂₂ = F ₃₃₃₃	$F_{22} = F_{33}$	
$F_{1313} = F_{1212}$	F ₅₅ = F ₆₆	

Component not associate with planer properties

 F_{2233} (F_{23}) Transverse strength coupling F_{2323} (F_4) Shear

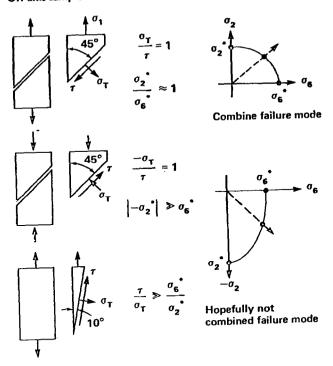


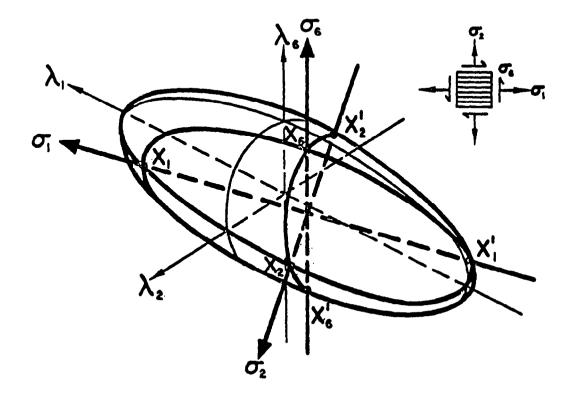
EXPERIMENTS ASSOCIATE WITH THICKNESS DIRECTION



SHOULD TENSILE AND COMPRESSIVE STRENGTH BE RELATED? FOR UNIAXIAL TENSION: $\sigma_i \neq 0$, $\sigma_i = 0$, $i \neq 1$ $F_{11} \sigma_1^2 + F_1 \sigma_1 = 1 \implies F_1 = \frac{1}{X_1} - \frac{1}{X_1}$, $F_{11} = \frac{1}{X_1 X_1}$ $\sigma_1 (F_{11}, F_1) = \sigma_1 (X_1, X_1)$ X₁ TENSILE STRENGTH $F_1 = \frac{1}{X_1} -$ ALTERNATE EQUIVALENT FORM: $\tilde{F}_{11} (\sigma_1 - \tilde{\sigma}_1)^2 = 1$ $\tilde{F}_{11} \sigma_1^2 - (2\tilde{\sigma}_1 \tilde{F}_{11}) \sigma_1 = 1 - \tilde{\sigma}_1 F_{11}$ NOW, INTERPRET $\tilde{\sigma}_1$ AS INTERNAL STRESS (A MATERIAL CONSTANT). STRESS ANALYSIS MUST OPERATE ON $(\sigma_1 - \tilde{\sigma}_1)$, WHICH IS AN OPERATIONAL INCONVENIENCE

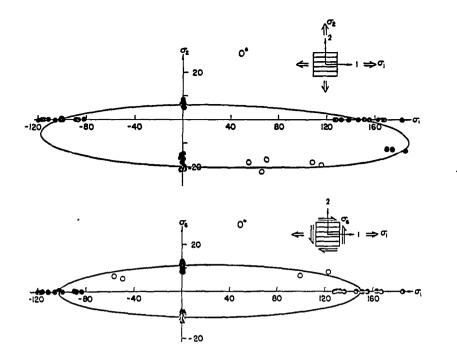
Off-axis sample to measure shear strength

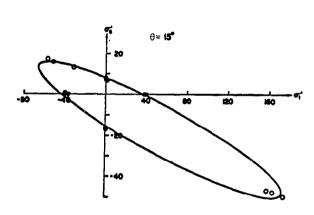


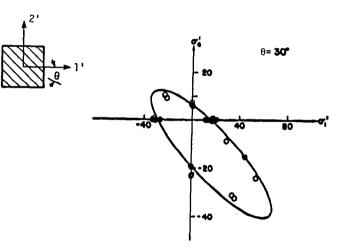


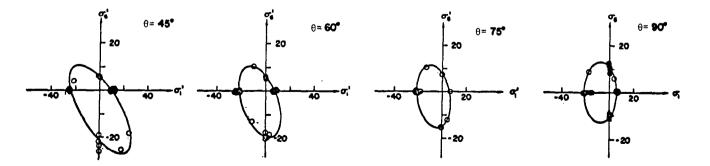
183

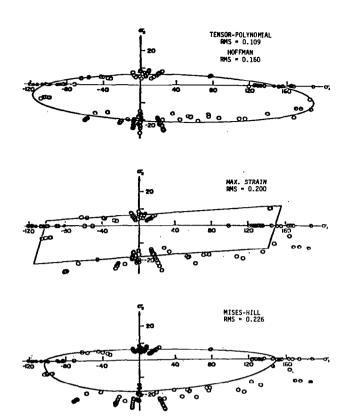
.....





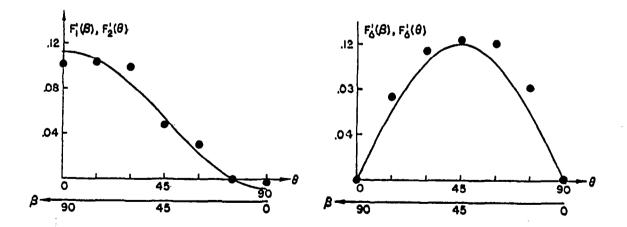


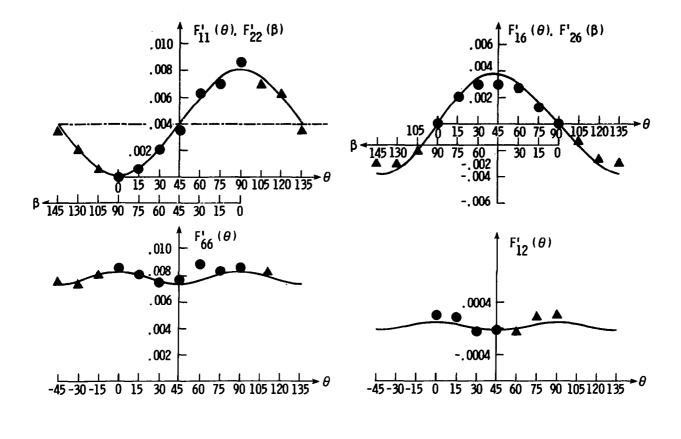




DATA INDICATES STRENGTH COUPLING

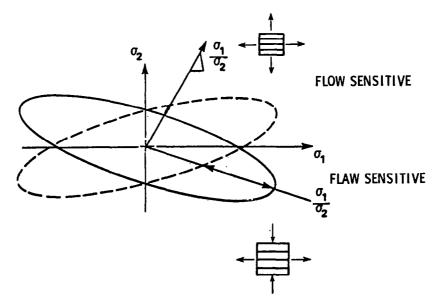
M.s.





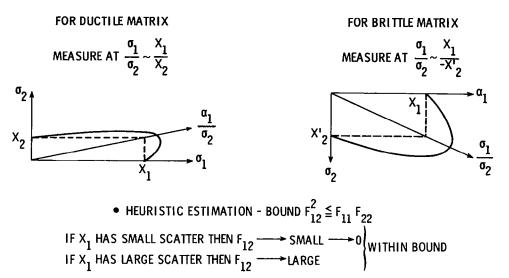
SENSITIVITY OF COMBINED STRESS EXPERIMENTS

$$\begin{split} &\mathsf{F}_{12} = (1 - \mathsf{F}_1 \widetilde{\sigma}_1 - \mathsf{F}_2 \widetilde{\sigma}_2 - \mathsf{F}_{11} \widetilde{\sigma}_1^2 - \mathsf{F}_{22} \widetilde{\sigma}_2^2) (1/2_{\widetilde{\sigma}1\widetilde{\sigma}2}) \\ &\mathsf{F}_{23} = (1 - \mathsf{F}_2 \widetilde{\sigma}_2 - \mathsf{F}_3 \widetilde{\sigma}_3 - \mathsf{F}_{22} \widetilde{\sigma}_2^2 - \mathsf{F}_{33} \widetilde{\sigma}_3^2) (1/2_{\widetilde{\sigma}2\widetilde{\sigma}3}) \end{split}$$

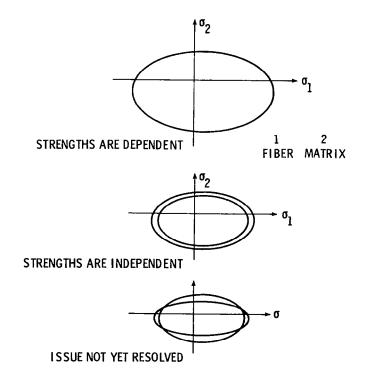


DETERMINATION OF COUPLING COEFFICIENTS

- EXPERIMENTAL MEASURMENT AT OPTIMIZED STRESS RATIO $\frac{\sigma_1}{\sigma_2}$ (REF. 5)
- SIMPLIFIED STRESS RATIO:



COMBINED STRESS, ANISOTROPIC STRENGTH



SUMMARY

- MODELING OF SEQUENTIAL FAILURE RECENT PROGRESS
- SHAPE OF COMBINED STRESS FAILURE SURFACE LONGITUDINAL AND TRANSVERSE COUPLING EXPECTED AND OBSERVED
- FOR STRENGTH-COUPLED FAILURE SURFACE, TENSOR POLYNOMIAL IS OPERATIONALLY ATTRACTIVE:
 - COUPLING COEFFICIENTS (F $_{12}$) CAN BE MEASURED OR HEURISTICALLY ESTIMATED

READILY EXTENDABLE TO 3-D AND HIGHER ORDER

MOST ISSUES IN PROPER ORDER

• PROBABLISTIC REPRESENTATION OF FAILURE SURFACE NOT YET RESOLVED

REFERENCES

- Rosen, B. W.: Tensile Failure of Fibrous Composites. AIAA Journal, vol. 2, no. 11, November 1964, pp. 1985-1991.
- Zweben, C.; and Rosen, B. W.: A Statistical Theory of Material Strength With Application to Composite Materials. J. Mech. Physics of Solids, vol. 18, 1970, pp. 189-206.
- Harlow, E. G., and Phoenix, L.: The Chain-of-Bundles Probability Model for the Strength of Fibrous Materials. Part I and II. J. of Composite Materials, vol. 12, April 1978, pp. 195-214.
- Chamis, C. C.; and Sinclair, J. H.: Ten-Deg. Off-Axis Test for Shear Properties in Fiber Composites. Experimental Mechanics, vol. 17, no. 9, September 1977, pp. 339-346.
- Wu, E. M.: Phenomenological Anisotropic Failure Criterion. Composite Materials, vol. 2 (edited by G. P. Sendeckyj), Academic Press, New York, 1974, pp. 354-431.
- Malmeister, A. K.: Geometry of Endurance Theory. Mekhanika Polimerov, vol. 2, no. 4, 1966, pp. 519-534.
- Puck, A.: Calculating the Strength of Glass-Fibre Plastic Laminates Under Combined Load. Kunstoffe, vol. 59, no. 11, pp. 780-787.