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PHoToELAsTIC (2-D, 3-D, MICROPHOTOELASTIC, DYNAMIC,
BIREFRINGENT COMPOSITES, BIREFRINGENT
COATINGS)

MOIRE
STRAIN GAGES
INTERFEROMETRIC AND HoLoGrRAPHIC METHODS

NoNDESTRUCTIVE EvALUATION (ULTRASONICS, ACOUSTIC
EMISSTION, X-RAY, THERMOGRAPHY)

FRACTOGRAPHY

Experimental methods

STRESS-OPTIC LAW

01 = 0y = 2nf/t
where
0 - 0, = difference of '"secondary"
principal stresses
n = fringe order
f = material fringe value
(constant for material)
t = specimen thickness

Photoelastic method
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1 AR
e =3z (F)
S R
g
where
S = gage factor (function of alloy and backing
& of gage)
AR
= (B-a) S_AT + vyAT
(RAT 24

o = thermal coefficient of expansion of gage material
g = thermal coefficient of expansion of base material

y = coefficient of resistivity of gage material

Electrical resistance strain gages

59 lines per inch ———

Fringes due to
rotation alone

Fringes due to
difference in
pitch alone

Fringes due to
combination of
rotation and
difference in pitch

Mechanism of formation of Moire fringes



Strain-optic law:

NE
c c_ s _ _s _ £ _
€1 - €3 - €17 €3 = 7 = NF,
where

fE = strain fringe value

N = fringe order

h = coating thickness

e¢,s = refer to coating and specimen, respectively,

Conditions at boundary:

At interface between coating and specimen,

At top surface of coating,

c _.¢cc¢c _ _.¢c s

€22 7TV f11 Vo1
Principal strain along boundary,

Nfe 1

s
e = o s —
1 1+ ¢

Photoelastic coating method (refs. 1 to 4)
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Holographic processes
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Ultrasonic pulse echo method
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Failure model of unidirectional composite under longitudinal tension (ref

. 5)



Sequence of photographs showing distribution of fiber breaks
in unidirectional composite under longitudinal tension
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Sequence of photographs showing distribution of fiber breaks
in unidirectional composite under longitudinal tension
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Transient isochromatic fringe patterns in a glass-plastic
composite model under dynamic tension  (Camera speed:
200,000 frames per second)
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Failure pattern in model of preceding figure
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Stress—strain curves of (%0) angle-ply glass/epoxy laminates
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(06/+45%/0%1

Characteristic failure patterns of three graphite/S-glass/high~
modulus epoxy specimens under uniaxial tensile loading

Isochromatic fringe patterns around hole in [0/%45/0/90] boron/
epoxy specimen for applied uniaxial stresses of 166 MPa (24.0
ksi), 225 MPa (32.6 ksi), and 293 MPa (42.4 ksi)
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Typical failure pattern around hole in [0/i45/0/§5]s boron/epoxy

-gpecimen under uniaxial tensile loading

206 MPa (29.9 ksi)
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Sequence of Moire fringe patterns corresponding to vertical
displacements in [0/%45/0/90]g glass/epoxy specimen at various

applied uniaxial stresses
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Strength reduction as a function of hole radius for [02/i45]2
graphite/epoxy plates with circular holes under uniaxial
tensile loading

Approximate Stress Distribution

4

o, (1,0 =og [1+g e 2+ ol 4G (k- 3 (507
o, = far field stress
p = x/a

ko = anisotropic stress concentration factor

Strength Reduction Ratio

S

2
e P L I Y

il

= a8
a+a°
a = characteristic length dimension
S = strengths of notched and unnotched laminates, respectively.

yy' o

Strength reduction of uniaxially loaded composite plate with hole
according to average stress criterion
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Oy = 102 MPa (14.8 ksi) o, = 128 MPa (18.5 ksi)

Moire fringe patterns around crack in glass/epoxy composites [0/90/0/56}3
at three levels of applied stress

R PZ
soad

162 MPa (23 ksi) 202 MPa (29 ksi)

o Rl

243 Pa (35 ksi)

Isochromatic fringe patterns in photoelastic coating around 1.27-cm
(0.50 in.) crack of [0/*45/90]4 graphite/epoxy specimen at various
levels of applied stress
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166 MPa (24 ksi)

261 MPa (38 ksi) 285 MPa (41 ksi)

293 MPa (42 ksi)

Isochromatic fringe patterns in photoelastic coating of [0/%45/90]4
graphite/epoxy specimen with 2.,54-cm-diameter (1 in.) hole under

equal biaxial tensile loading
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Fringe order and circumferential strain at two locations on the hole

boundary for [0/+45/90]g graphite/epoxy specimen with 2. 54—cm-d1ameter

(1 in.) hole under equal biaxial loading
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Failure pattern in [0/%45/90}4 graphite/epoxy specimen with 1.91-cm-
diameter (0.75 in.) hole under equal biaxial tensile loading
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Strength reduction as a function of hole radius for [0/%45/90]g graphite/
epoxy plates with circular holes under 1:1 biaxial tensile loading

328




Ogx = 152 MPa Ogx = 202 MPa Oxx = 253 MPa
(22 ksi) (29 ksi) (37 ksi)

Moire fringe patterns around crack in uniaxially loaded [0/£45/90]4 graphite/
epoxy specimen for three levels of applied stress
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Crack opening displacement and far-field strain for [0/#45/9014
graphite/epoxy specimen with a 1.27-cm (0.50 in.) horizontal crack
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Failure patterns in [0,/%45]4 graphite/epoxy specimens with holes of
various sizes under uniaxial tension (Hole diameters are 2.54 cm
(1 in.), 1.91 cm (0.75 in.), 1.27 cm (0.50 in.), and 0.64 cm (0.25 in.)

A - audible failure
B - audible failure
C

- visible delamination on vertical axis
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Vertical strains along horizontal axis of [0,/%45]g graphite/epoxy specimen
with 1.91-cm-diameter (0.75 in.) hole under uniaxial tensile loading
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Specimen no. 43; Bo/E; Specimen no. 45; Bo/E;
[:‘:45/02/0]S [02/t45/0]S

Failure patterns of boron-epoxy tensile panels with holes

[0,/445/0] [+45/0,/0]

Isochromatic fringe patterns in photoelastic coating around hole in boron/

epoxy specimens of two different stacking sequences (Oy = 392 MPa (56.8
ksi))
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[0/90/0/90]S . [45/90/0/-45] 4 [-1_-45/0/-.I:45]S [+45/445]4

Failure patterns of boron-epoxy panels with holes of various laminate constructions

[0/90/0/9014; Oy = 170 MPa (24.6 ksi) [£45/%45] g3 Oy = 77 MPa (11.1 ksi)

Isochromatic fringe patterns in photoelastic coating around hole in boron/epoxy
specimens’ ’
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Failure patterns in uniaxially loaded [0/%45/90]y graphite/epoxy plates with
cracks of various lengths = (Crack lengths are 0,64 cm (0.35 in.), 1.27 cm
(0.50 in.), 1.91 cm; (0.75 in.), and 2,54 cm (1.00 in.)
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HALF NOTCH SIZE, @

Strength reduction as a function of notch size for [0/+45/90]g graphite/epoxy
plates with circular holes and horizontal cracks under uniaxial tensile loading
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° HALF CRACK LENGTH, a

Critical stress intensity factor as a function of crack length for [0/-’:45/90]S
graphite/epoxy plates with horizontal cracks under uniaxial tensile loading
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Stress transformations of the far-field biaxial state of stress around a crack.
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Biaxial loading of {0/i45/90]S graphite/epoxy specimens with cracks

Oy

SRR

y = 260 MPa (37.7 ksi) o.,., = 278 MPa (40.3 ksi)
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Isochromatic fringe patterns in photoelastic coating around 1.27-cm (0.5 in.)

crack in (0/%45/90)g graphite/epoxy specimen under biaxial loading -
ny = 2.0304, at 30 deg with crack direction
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Comparison of experimental and theoretical results for strength ratio for
[0/£45/90] graphite/epoxy plates with cracks under biaxial loading
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Front surface Back surface.as viewed from
the front through the specimen
(ref. 6)

Thermally induced holographic fringe patterns in fatigue-loaded [0/%45/9014
graphite/epoxy specimen with circular hole

TBE enhanced X-ray photographs showing fatigue-induced damage in [(0/+45/90)4],
graphite/epoxy specimens
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Pen-1ift scan

Analog scan (normal)

Analog scan (perspective)

Ultrasonic C-scans of [O/i45/90)s]2 graphite/epoxy specimen with a film patch
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Flaw growth under spectrum fatigue loading in [(O/i45/90)s]2 and [09/£45] 94

graphite/epoxy specimens with four types of initial flaws
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Acoustic emission and corresponding load spectrum as a function of elapsed time for
.[02/i45] 2s graphite/epoxy specimens with holes (Time increases from right to left)
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