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ABSTRACT

This study treats the longitudinal resonance of waves and
energetic electrons in the eartn's magnetosphere, and the possible rcle
this resonance may play in generat 'ng various magnetospheric phenomena.
The first part of the study is concerned with the derivation of
time-averaged nonlinear equatioas of motion for energetic particles
lonygitudinally resonant with a whistler mode wave propagating with
non=-ilero wave normal, It is shown that the wave magnetic forces can be
neglected at lower particle pitch angles, while they become equal to or
larger than the wave electric forces for a>30° The time-averaged
equations of motion were used in test particle simulations which were
done for a wide range of wave amplitudes, wave-normals, particle pitch
angles, particle parallel velocities, and in an inhomogeneous medium
such as the magnetosphere. It was found that there are two classes of
particles, trapped and untrapped, and that the scattering and energy
exchs.nge for those two groups exhibit significantly different behavior.
The trapped particles are characterized by a bounded phase variation
(with respect to the wave) which is less then 27, whereas the phase
variation of untrapped particles is unbounded. It is also found that
the trapping of the particles requires that the wave amplitude exceed a
certain threshold value, and that the trapped electrons become space
bunched due to the interaction. The full distribution simulations
indicate that the axpected particle precipitation is considerably
emaller (one order of magnitude) compared to gyroresonance~induced
precipitation for wives of comparable amplitude, which shows that the
scattering efficiency of the longitudinal resonance is small. The
amplitude threshold effect, together with the space bunching effect, was
found to support one of the mechanisms suggested to explain whistler

pracursors.
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I, INTRODUCTION

A. ORGANIZATION OF MATERIAL

This study treats longitudinal resonance interactions between
energetic electrons and VLF waves in the earth's magnetosphere. The aim
was to derive suitable analytical methods for test particle studies, and
then to use those methods to investigate various aspects of the
longitudinal resonance process,

The first part of the study is concerned with the derivation of
equations of mction and their applications to the longitudinal resonance
for a wide range of magnetospheric parameters. The second part gives
the results of the numerical simulation of wave=-particle interactioms.
The numerical simulations are done using a test particle approach to
determine the perturbations of pitch angle for various wave functionms.
Also investigated are the perturbations of the full particle
distribution and the energy exchange process.

In conclusion the longitudinal resonance interaction is compared
to the cyclotron resonance interaction, and is related to phenomena

observed in the magnetosphere.




B. WAVE~PARTICLE INTERACTIONS IN THE MAGNETOSPHERE

The magnetosphere, a magnetized region extending from about 1000
lon altitude up to distance of roughly 100,000 km from the earth, is
filled with both 'cold' and 'hot' plasma; the cold plasma consists of
electrons and protons with energies in the 0.l-1 eV range, while the hot
plasma consists of energetic particles with?higher energies in the range
from 100 eV to tens of MeV. The vold plasma together with the earth's
static magnetic field determines the wave propsgation properties of the
megnetosphere. The hot plasma is a source of energetic particles which
participate in the wave~particle interactions that result in radio wave
emigsions. As seen from both ground and satellite observations the
magnetosphere supports numerous modes of wave propagation., It can be
shown that the hot plasma, due to its very low density, does not affect
the wave dispersion properties of the magnetosphere, i.e. the dispersion
of waves can be explained assuming that only cold plasma is present.

It is known that very-low-frequency waves can propagate in the
magnetosphere with phase velocities much smaller than the velocity of
light, and that those waves, called whistler-mode waves, can undergo
interactions with energetic particles both through longitudinal
resonance and cyclotron (gyro) resonance. In longitudinal resonance the
particle parallel velocity is matched to the wave phase velocity,
whereas in the cyclotron resonance the doppler-shifted frequency of the
wave (shifted due to the particle parallel velocity) matches the
gyrofrequency of the energetic particle. Both types of interactions may

induce perturbations of the energetic particle distribution through

s
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piltch angle scattering, and may also result in different types of radio
wave emissions, wave amplification (growth) and wave attenuation. The
purpose of this study is to investigate the longitudinal resonance
interactions of energetic particles with whistler mode signals
propagating at an oblique angle to the static magnetic field. The
approach taken is to use a test particle analysis and to study how the
resonance process depends on various parameters. The particle
trajectories are then used to estimate other effects such as wave
growth/damping and particle trapping and precipitation. The trajectory
calculations were done using a set of nonlinear equations of motion

which are averaged over one gyroperiod [Inan and Tkalcevic, 1982].

C. PREVIOUS WORK ON LONGITUDINAL RESONANCE

The longitudinal resonance process has been invoked by many
authors to explain various magnetospheric wave phenomena, One of the
early works considered the traveling-~wave-tube type of process as a
generation mechanism for VLF emissions [Gallet and Helliwell, 1959], and
this process was also considered for amplification of whistler mode
signals [Brice, 1961]. The traveling-wave=~tube mechanism was also
considered by Dowden [1962] as a possible mechanism of hiss generation.
Bell [1964) derived linearized solutions for the trajectories of
longitudinally resonant particles, but these have not been extended to
cover the nonlinear regime. The various emission-generation theories
have been reviewed by Brice [1964], including both Cerenkov radiation

and the traveling wave amplification hypothesis. The Cerenkov mechanism




is a process in which charged particles radiate electromagnetic waves as
they travel through a medium. The necessary condition for the existence
of this type of radiation, called a coherence condition, is easily
found, and is the same as the condition required for the longitudinal
interaction between the wave and the particle. Therefore, it is evident
that those two processes, the longitudinal resonance interactions and
Cerenkov radiation, are based on the same physical principle.

The Cerenkov radiation mechanism has been suggested by many
authors [Ellis, 1959,1960; Dowden, 1960; McKenzie, 1963] 1in order to
explain VLF hiss., The problem of stability of whistler mode signals,

. the possibility of wave growth, accounting both for longitudinal
and gyroresonance effects, was discussed by Kennel and Petschek [1966],
Kennel and Thorne [1967], and also by Brinca [1572]. The work on
radiation from moving charged particles, which includes Cerenkov
radiation, includes the analysis done by Liemohn [1965], Mansfield [1967],
and Seshadri [1967]. A good review of work done on Cerenkov radiationm,
along with additional analysis of the hiss power density spectrum, was
given by Taylor and Shawhan [1974]. Their work gives examples of the
power sgpectral density of hiss, both measured [Gurnett, 1966; Gurnett
and Frank, 1972], and calculated [Jorgensen, 1968; Lim and Laaspere,
1972]. Swift and Kan [1975] showed that an electron beam can excite a
whistler mode instability near the resonance cone through the
longitudinal resonance interaction. Maggs [1976] and Kumagai at al.
[1980] investigated beam amplification due to Cerenkov radiation from
longitudinally resonant electrons, and considered this typec of beam

instability as a generating mechanism of VLF hiss. The whistler




precursor generation mechanism of Park and Helliwell {1977] was based on
modifications of the particle distribution function achieved through
long.rwdinal interaction between whistlers and energetic electrons.

Moet of the above studies were primarily concerned with wave
growth calculations using the wave dispersion relation. On the other
hand, the detailed nonlinear motion of longitudinally resonant particles
was studied only for the case of ele;trostatic waves [Nunn, 1971; 1973].
Palmadesso [1973] derived equations of motion for a case of oblique
propagation, and usnd particle trajectories to estimate the nonlinear

time dependent Landau damping rate of the wave,

D. CONTRIBUTIONS OF THE PRESENT WORK

The motion of electrons longitudinally rescnant with a whistler
mode wave propagating at an angle to the static magnetic field is
represented by a simple set of equations motion which are averaged over
the cyclotron period. It is shown that these nonlinear equations are a
very accurate representation of the electron motion for a wide range of
magnetospheric parameters.

Using the time-averaged nonlinear equations of motion in
numerical simulations involving whistler mode signals propagating in an
inhomogeneous medium it wrcs found that the effects of wave magnetic
forces can be neglected for low pitch angles, high wave normel angle,
and/or high normalized wave frequency. At the higher pitch angles the

wave magnetic forces become very important and it is necessary to
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include the additional force terms as derived.

The sample calculations indicate that there are two classes of
electrons, distinguished by the behavior of their phaces with respect to
the wave. In a case when the phase variation is bounded, i.e. less then
27, the electron is said to be trapped, whereas unbounded phase
variation characterizes the untrapped electrons. The scattering and
correspoﬁding energy exchange for the trapped and untrapped electrons
exhibit significantly different characteristics.

It is also found that the trapping of electrons is easier under
conditions of spatial amplitude variation of a na:rowband signal rather
than for a constant amplitude. Analysis was done for a constant
amplitude CW signal, a CW signal amplified at the equator through
gyroresonance, and also for a spatial amplitude variation of the pulse
formed by a nonducted signal.

It i8 also shown that the longitudinal resonance process
involves a wave amplitude threshold effect, i.e. the trapping of
electrons 1s possible only if the amplitude of the wave parallel
electric field Eu exceeds a certain value. The trapped electroms also
become space bunched and temporarily increase the electron density over
a particular range of parallel velocities.

The full distribution results show that the expected
precipitation is small when compared to gyroresonance-induced
precipitation for waves of comparable amplitude. In general, the
results jndicate that the longitudinal resonance scattering efficiency
(scattering vs, amplitude) is considerably smaller, i.e. the

efficiencies of the two processes differ by as much as an order of




magnitude.

The amplitude threshold effect was tested on whistler
precursors, and it was found that the whistler amplitudes are well
correlated with the occurrence of precursors, i.e. only whistlers with
amplitudes above a certain threshold resulted in precursors. This
provides support for the whistler precursor generaticn mechanism
suggested by Park and Helliwell [1977], which involves longitudinal
resonance interactions, and therefore it should exhibit a threshold

effect as indicated by the measurements,




II. BASIC PHYSICS AND TIME AVERAGED EQUATIONS OF MOTION

A. MOTION OF CHARGED PARTICLES IN EARTH'S MAGNETIC FIELD

Motion of the charged energetic particles in the magnetosphere
is governed by the earth's magnetic field. The earth's field in the
inner magnetosphere can be approximated by the dipole model with the
magnetic field s*rergth B, given as

1
/2 wb/m?  (2.1)

B, = 0.312:10 *(R_/R)*+(l + 3sin’})

where A\ is the geomagnetic latitude, R is geocentric radius, and Ro is
the radius of the earth. The axis of the magnetic dipole is inclined
with respect to the rotation axis by 11°,

The motion of a particle in the magnetosphere is uniquely
described by either the parallel and perpendicular velocities of the
particle, v, and v, respectively, or by the parallel (perpendicular)
velocity and pitch angle @ = arctan( v, / v, ). Fig. 2.1 shows a
typical geomefry with the definitions of v, , v, , and a .

It can be shown that for a spatially changing mégnetic field,
such as the earth's magnetic field given by Eq.2.l1, charged particles
will bounce forth and back along the field line between the mirror ?
points [Northrop, 1963; Buneman 1980]. This is so because the particle !

perpendicular velocity must change in order to satisfy adiabatic
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invariants, while the total kinetic energy of the particle must remain
constant. The first adiabatic invariant is the invariance of the
orbital magnetic moment, given as

W,./B = constant (2.2)

where W, is the perpendicular kinetic energy of the particle.

Mirror Points
a=90° v,=0

FIGURE 2.1 DIPOLE GEOMETRY AND SYMBOLS USED FOR PARTICLE IDENTIFICATION.
Note that the z-axis is aligned with the magnetic field line

and that both the wave and the particles travel in the +. direction.

Particle orbits are described in terms of equatorial values of v, and a.
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The second adiabatic invariant requires that the magnetic flux
through the circle described by the particle gyrating around the field
line remains constant, or

r; X B = constant (2.3)

where Ty is the electron gyroradius.
Thus if the magnetic field 5; increases, the perpendicular
kinetic energy W, must also increase according to Eq. 2.2. Furthermore,
the parallel energy W, of the particle must decrease so that the total
energy W, + W, remains constant. Therefore, the particle pitch angle
a=arctan (\[—%‘l—— ) increases as B increases up to the point where
o = 90°, At this point the parallel velocity of the particle has been
reduced to zero, and the particle begins to travel in the opposite
direction along'the gsame field line. When the particle reaches the
conjugate point where again o = 90°, the process repeats. Hence the
particle bounces back and forth along the magnetic field line between
the two mirror points where v, = 0.

Finally, the motion of a particle trapped along a field line can

be described by the following equations

2
dv, Vo dBo
(R . S A L]
dt 2Bo dz (2.4)
dv, - Vu Vi dBo
ac - T 2B, | dz (2.5)

which can be derived from the first adiabatic invariant and the law of

P
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energy conservation,

B. LONGITUDINAL RESONANCE

The bounce motion of the particles can be affected by resonant
interactions between waves and the particles. The resonance condition
is satisfied whenever the doppler-gshifted frequency of the wave seen by
the particle is equal to an integral multipla of the particle

gyrofrequency, i.e.
w=k,v,= me m=0,+1,+2,+3,... (2.6)

where w is the wave frequency, k, is the wave number in the direction of
the static magnetic field, and wH is the particle gyrofrequency.

The resonance condition given by Eq. 2.6 can be furtkr divided
into three subgroups according to different values of the parameter m.
For m>0 we have the resonance condition for the m—-th order
gyroresonance; m<0 is the resonance condition for the m-th order
anomalous gyroresonance; m=0 yields the resonance condition for the

longitudinal or Landau resonance. The last condition is given as

w=-k, v,= 0 (2.7)
or
vp“- v, (2.8)

e P et R AR, R 1 r e monie




12

where vp" is the wave phase velocity measured in the direction of the
static magnetic field.

Before discussing the longitudinal resonance we should note that
this resonance (m=0) is fully separable from the gyroresonances (m#0),
since the longitudinal resonance is possible énly when the wave and the
particles travel in the same direction, while the gyroresonance
condition is satisfied only if the wave and the particles travel in the
opposite direction. This separability of the different resonances makes
their analysis much simpler. It is still possible for the same particle
to interact simultaneously in both resonances with two different waves
that satisfy corresponding resonant conditions. In this report we shall
limit ourselves to discussion of the longitudinal resonmance, although a
comparison with the gyroresonance mechanism is given later in the text.

The condition given in Eq. 2.8 is the necessary condition for
the longftudinal resonance. However, in order for the particle and the
wave to exchange energy through the particle trapping process, the
parallel component of the wave electric field must have a non-zero
value. Therefore, even if the particle parallel velocity matches the
wave phase velocity there will be no energy exchange between the
particle and the wave if E, = 0., The direction of the energy exchange
(whether wave or particle gains energy) depends on the initial velocity
of the particle v,,. In the case when v, 1is initially less than the
phase velocity vp" the particle will gain energy; if the initial v, is
larger than vp" the particle will lose some of its energy. We shall now
present a simple analytical model for the longitudinal resonance and

trapping process similar to that given by Seshadri [1973].

kb
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Let us assume that the longitudinal component of the wave

electric field, propagating in the homogeneous medium, is given by
Ey (s,t) = Elb sin(k,*s = wet) (2.9)

where s is the space coordinate. Eq. 2.9 is written in the laboratory
coordinate system, but it is useful to do the analysis in the wave frame
which moves at the phase velocity vp » In this case a new space

"

coordinate z is defined as

z=8 = vp,t (2.10)
Now, Eq. 2.9 can be rewritten as
E, (s,t) ~ E, sin [k, (s - t—' )] (2.11)
and using Eq. 2.10 and v, = “'—;- Eq. 2.11 simplifies to
E.(2) = E,, sin(k, 2) (2.12)

The electric field given by the Eq. 2.12 is static in the wave
frame and it is possible tc derive a corresponding scalar potential
$(z), by integrating E,(n) where n is a dummy variable.

z
o(z) = - SE(n) *dn (2.13)

o

Y
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9(z) = = SE,,osin(k,,n) dn (2.13a)
o
Eug

o(2) -'E:- (cos(k,z) - 1) (2.13b)

Next we consider an electron (a similar derivation is possible for other

types of charged particles) and its potential energy wp(z) which, in the

wave frame is given by

Wp(z) = - ad(2z) (2.14)
TEno 2.14
wp(z) - (1 - cos(kuz)) -wp (1 - cos(k,z)) (2.14a)

max

The constant nf the integration 1is chosen such that the minimum
potential energy given by Eq. 2.l4a is zero., Thus, the potential energy
of the electron is a periodic function, as shown in Fig. 2.2,

It can be shown that the possibility of an electron being
trapped depends on the initial kinetic energy of that electron measured
in the wave frame. In a case when the initial kinetic energy of an
electron, placed at z at the time t=0, is larger than the potential
energy given by Eq. 2.l4a, wpmax,there is no net interaction between
the wave and electron, regardless of the electron initial velocity. The
electron simply slides up and dowm the potential well as it moves either
forward or backward through the wave, and there is no net energy
exchange when averaged over one wavelength.

However, if the kinetic enezgy of the electron in the wave

frame, Wk(t-O), is less than the potential energy given by Eq. 2.l4a,
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a)
Ey(2)
A
ANAYWANY S
Ky
b) VXP
7r)2 t=0 ZrB K”";

FIGURE 2.2  PARALLEL ELECTRIC FIELD AND THE CORRESPONDING POTENTIAL

ENERGY. Both the parallel electric field E, and poten-
tial energy W, of the electron are periodic functions in a reference
frame moving at at the parallel phase velocity Vpu- In (b) zg indi-
cates the bottom of the potential well.
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meax as shown in Fig. 2.2 the electron is trapped in the potential

well. The trapping condition is then given as

é- m (v .-Vp”)2 < meax (2.15)

1 eE

E m (Vu 'Vpu)z < R""O (2. 158)
ZeEno

|V.. - Vp“ |< —ul-l(T (20 15b)

Rewriting the inequality of Eq. 2.15b as
2eEuo zeEuo
Vou~ , - <V, < vpu+/ ~— (2.16)

we have a range of velocities fcr which it is possible to trap an
electror, Therefore, all electrons with parallel velocities that

satisfy Eq. 2.16 are trapped in the wave potential well. The trapping

velocity bandwidth v, is given as

2eE,q
mk

ve = (2.17)
Furthermore, it can be shown that the total energy, AW, exchanged i
between the wave and electrons during the trapping process 1is
vp,. +ve
AW = sf(v") AE dv, (2.18)
Vpu = Ve

where £(v,) is the electron distribution function; AE is the amount of
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energy exchanged through trapping of a single electron, and it is
expressed as
1 2

2 1
AE = -é-m <Vp"+ 0") - ?m V“ (2019)

AL = = nm vp“(v“ -v

o p“) (2.19a)

wnere ¢, is a time-varying periodic function describing the oscillation
of an electron at the bottom of the potential well. Expanding f(v,) in

a Taylor series around v, = Vp, e obtain

9f(v,)
vbz 3V“

£(v,) = f(vb2 + (v, = (2.20)

vll- vp "

and finally substituting Eq. 2.20 in Eq. 2.18 the total energy exchanged

in the trapping process, AW, ig given as

2= -2n g v f () (2.21)
The result derived in Egq. 2.21 shows that the net energy
exchanged between the trapped electrons and the wave depends on the
slope of the distritution function at a point where the electron
velocity is equal to the phase velocity of the wave. In the case when
the number of electrons moving faster is larger than the number of
electrons moving slower than the phase velocity, the wave gains energy
and its amplitude grows. Similarly, if the number of slow electrons is

lavrger than the number of fast electrons, the amplitude of the wave is

v
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reduced.

The above analysis, using a longitudinal plasma wave and
one~dimensioral distribution function £(v,), has demonstrated that it is
possible to have wave damping in the absence of collisions, also known
as Landau damping. It was also shown that the wave amplitude grows if
the slope of the distribution function is positive. However, the
expressions for the energy exchange were derived assuming that the
particles are already trapped. It was also assumed that the medium is
homogenenus, and that both the wave and the distribution function are
one-~-dimensional.

In the magnetosphere Eq. 2,18 is still valid, but the trapping
process is governed by the particle equations of motion. Thus in order
to find the energy exchanged between a wave and particle ( AE in Eq.

2.18) it is necessary to derive the equations of motion for a single
particle when it is in longitudinal resonance with waves in the mag-

netosphere.

C. NONLINEAR EQUATIONS OF MOTION FOR LANDAU RESONANCE

INTERACTIONS WITH A WHISTLER MODE WAVE

Now we consider an elliptically polarized wave propagating in
the -old plasma of the magnetosphere with a static magnetic field EB-
The wave frequency f is assumed to be less than the electron

gyrofrequency fy ; in that case there is only one propagating wave

i
:
B

A
A

B
R
4
/
i
i

[Ratcliffe, 1959; Budden, 1961], which is called a whistler wave.
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In the most general case all Cartesian components of the wave
electric E, and magnetic field B, have non-zero values. All of these
components can be expressed in terms of 6z through the cold-plasma
dispersion relation. Without any loss of generality the wave vector k
is confined to the x-z plane, at an angle 8 from the st.tic magnetic

field. The coordinate system used is shown in Fig. 2.3.

P |

Z V“

aly

Plane of Constant
Wave Phase

FIGURE 2.3 COORDINATE SYSTEM FOR THE EQUATIONS OF MOTION. The wave
vector k is at an angle g frem the static magnetic field B,.
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We also assume propagation as exp i(w t - ker). Using a plasma

dispersion relation [Stix, 1962]

€, - n’cos?8 = ie, n’sind cosé &
ey €, - n? 0 & | =0 (2.22)
n?sing cos 0 En - n’sin’e &,

all elactric field components can be expressed in terms of Gz as follows

6, = E, cos( wt - keT) (2.23)
2
n“sinb-en =
= E, cos ( wt = ker (2.24
& n2sinfcosh " ( ) )
2 - -— —
8, = —x LI g g (ue - ©T) (2.25)
n2-¢g,n2sinbcosd
2 2 wy 2
where €,= 1 - 923 €21 = -EE——, Ex™ i _Yp . The refractive index
w? wz-w§ w wz-wﬁ

n can be derived from Eq. 2.22 as (QL approximation)

2
fD

(2.25a)
f(fycosd -~ £ )

n’= 1+

Using Maxwell's equation V x E = - %%-the wave magnetic components are

3y = - 159.:2__5}, (2.26)
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k cosd k sin®

&ly - &, - m &, (2.27)
k sind

3, m 5y €2,28)

which can be also expressed in terms of &, using Eqs. 2.23, 2.24, and
2,25,
The variation of th: total electron velocity v is governed by

the Lorentz force equation

&

T

-q[E+vx @ +3, )] (2.29)

where m and q are electron mass and charge. For the case when

B, ] << |'B, |, the electron gyromotion can be agsumed to be unaffected
by the wave to the first order, so that the Cartesian components of the

electron velocity vary as

Vz =V, (2.30)
% = Vv, cos (wgt + B8,) (2.31)
w = v, sin (gt + Bo) (2.32)

where wy is the electron gyrofrequency and g, is the initial cyclotron

phase. Furthermore, as long as the wave field is much smaller than the .

earth's magnetic field, it is permissible first to derive the force

applied to an electron by the wave fields and then to superimpose the
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adiabatic variation of v, and v,. Therefore, the perturbation of the

electron motion induced by the wave fields only is given by

m = q[E, + 7 x 8] (2.33)

It is useful to examine each Cartesian component in Eq. 2.33 separately.

These three components are given as

Fx = q[8x + vyB,~ v,3,] (2.34)
Fy = q[5y + vyBy- vi3,] (2.35)
F, = q(6, + vxﬂy- vyﬂx] (2.36)

Before investigating those equations we simplify cos( wt - E;;), which

can be expressed as

cos( wt - k cosBs z - k sinf- x) (2.37)
or letting Y = wt - k cos® z 1in Eq. 2.37 we have

cos(Y -k siﬁe x) (2.38)
Eq. 2.38 can be further simplified using the fact that

x = m-%*- sin(wyt + B,) | (2.39)

R 038 b Lk B
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which is derived by integrating Eq. 2.3l. Finally, replacing x in
Eq. 2.38 by (2.39)

cos( wt - k°r) = cos(y = n sing ) (2.40)

v,k sinf
wH *

Now, using the result derived in (2.40) we can rewrite three

where ¢ = wyt + 8 and n =

Cartesian components of the Lorentz force as

Fx* q [Exsin(Y - N sin¢ ) + v, sin¢ By sin(Y - N sind )

- vy By cos(Yy - n sin¢ )] (2.41)

Fy= q [Eysin(Y - n sin¢ ) + v, Bx sin(Y - N sin¢ )

= v,cos9 Bz sin(Y - N sin¢ )] (2.42)

Fz= q [Ezcos(Y - n sind ) + v, cosé By cos(Y - N sind )

- v,sind By sin(Y - N sin¢ )] (2.43)

Note that Ex, Ey , Ez , Bx , By , and Bz are the real
magnitudes of the fields, with the phase differences taken separately

into account through sin
cos

(Y=-nsing ) terms.
At this point we have three equations which can be used to
describe the motion of particles in resonance with a whistler wave.

However, it is desirable to reduce the number of required equations to

simplify numerical simulations. In this case it is useful to combine
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the x and y couponents of the Lorentz force in one perpendicular
component. This is done by taking the time derivative of the square

of the perpendicular velocity vf = v; + v?

2 o 2 2 ,d_
vimvet /g (2.44)
dv, dvy dvy
v"dt vxdt + v}’dt (2.44a)
and multiplying it by m/v,
0 Vin p Vx 4V o Yy dVy (2.45)
de v, dt v, dt
V. dv‘_ de
Ho:ever, ﬁ = cos ¢ , —% =sin¢ , m — T =F,, m_ " Fg, and
m T"é& = Fy, and (2.45) reduces to
Fi = cosd Fy + sing FY (2.46)

Now, combining Eqs. 2.46, 2.41, and 2.42 the perpendicular force term is

F,= cos¢ {q [Exsin(Y -nsin$ ) + v,sing By sin(y -nsin¢ )
- v, By cos(y -nsing )]}
+ sind {q [Eysin(y -nsind )} + v, By sin(y -nsing )

- v,cosp B, sin(y -nsind )]} (2.47)

The motion of a particle is now described in terms of the

parallel and perpendicular forces, given respectively by Eqs. 2.43 and

i

seden . TR L

VST AP TR
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2.47. 1f the 222 (Y = nsin ¢ ) terms in these equations are expanded
(Appendix A), the result is an infinite series of harmonics at
frequencies nuwy, with amplitudes given by Jn(n). In a general
formulation all terms must be kept and Eqs. 2.43 and 2.47 must be used
as they stand. However, the equations can be considerably simplified
when time averaged over one cyclotron period, TH ,» because the higher
order force terms (n 2 2) vanish. Also, qualitatively, the vxsy term
should average out to zero since wave phase does not vary in the
y=-direction. In the next section we present the necessary conditions
for the averaging to be valid, along with the time averaged equations of

motion.
D. TIME AVERAGING OF EQUATIONS OF MOTION
Before averaging Eqs. 2.43 and 2.47 over one gyroperiod we have
to make sure that the wave phase vériations, as seen by the particles
during one gyroperiod, are negligible. For the small field case this
condition can be stated as
w = kev << wy (2.48)

which would certainly be the case for the Landau resonance described by

W - kov = 0 (2.49)
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Note that Eq. 2.49 1is the equivalent of Eq. 2.8.

We have stated condition (2.48) assuming small amplitude waves.
This requires that the wave field be small enough that it cannot move
the particle by a substantial fraction of a wavelength during a

gyroperiod. This condition can be stated as

1 c
a_|l— << = 2.50
l plfz py (2.50)
H

where ap 1s the peak parallel acceleration, c¢ is the speed of light, n
is the refractive index, f = %; is the wave frequency and fu = %ﬁ is
the electron gyrofrequency. The peak value of the parallel acceleration
%,during a gyroperiod can be taken to be that for ¢ = %1 and

Y=-nsing = g-. From Eq. 2.43 we have
lapl = 13 (E, - vyBp | (2.51)
In a order to express E, in terms of B,; we have from Eq. 2.25

&y = 0,6, (2.52)

€y n2$ine-€u - EZ
n?-¢ n?sinfcosd &,

where p,= 1 « Substituting Eq. 2.52 in Eq. 2.26

k cos@
Bx - - -—-:;-—- P,E, (2.53)

or
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By w
Bz = - pz kcos8 (2.54)
Furthermore, for the near resonant particles —%— = y_ = v, and
kcosb p

Eq. 2.54 yields

Ez.__Bx_v
Pz

(2,55)

Replacing the E; in Eq. 2.51 with the above expression the peak

acceleration |ap| is

,apl-l_:T' (= %!:_ V= vJ.Bx)l (2.56)
9 1
Ia'pl' o Bx Ve (14 W) (2.56a)

where tan o = Ya .
Vau
The final step is to substitute (2.56a) in (2.50) in order to
get the condition on wave intensity for which the averaging of equations

(2.43) and (2.47) 1is valid;

nfic  |pz|tana
qv,nf  1+|p,|tana

By << B, = (2.57)

Thus By represents the upper limit on wave magnetic field intensity.
Note that Bx is equal to the total transverse By for circularly
polarized whistler waves. Assuming By to have a value much higher
( > 100 times ) than the typical field intensities for whistler mode

waves in the magnetosphere [Burtis and Helliwell, 1975], as shown later
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in the text, we shall now time average Eqs. 2.43 and 2.47 over one

gyroperiod. In doing so we use the identities derived in Appendix A,

The averaged equations of motion become

dvz .

<ma-t—>-<q¢z>-<qu$x> (2.58)
dv,

<m;t—>-<qﬁy>-<qu$x> (2.59)

or

dva v, cosf J1(n)
n e g E gy [l - T b J:(ﬂ) ] sin( ut - k z cos8)  (2.60)

dv,

vy kcos$
m 5ot - afz Bz Ji(n) [1 - =

m ] sin( wt - k z cos® ) (2.61)

d dv
Since the brackets on the left hand sides are dropped, a{-'l-and Et':i

should be understood to be the average rates of change of v, and v. ,
respectively.

Finally, for an inhomogeneous medium with Eo variable as in the
magnetosphere, the adiabatic variations of vy and v. can be superposed
on the wave-induced perturbations as long as the variation of io in one
wavelength is negligible. Thus the complete averaged nonlinear

equations of motion become

B R TR

dwv,
de

. _ v keos8 J3(n
m EzJo(m [1 P Y

;]sin(mt-kzcose ) - Y 932

2Bp dz ‘_

(2.62) ‘
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dv - 9 v, kcosd v, v, dB
7 - pE,J (M) [N —— Jsin(wt-kzcosd ) + -————-ZBO d—-p—z

(2.63)
We shall diseu;sruhe relative importance of the different terms
in Eqs. 2.62 and 2.63 in the next section.
E. DISCUSSION OF FORCE EQUATIONS
Two terms of the parallel force ave:
<q §,> = q E;J5(n) siny (2.64)
<q vy By> = ~ q E;J;(n) pztan o sin y (2.65)

Also note that using (2.49)

8 8
n=v, Kesind W 0 _lﬁ.ﬁfi_v‘. (2.66)
wy wy w :
o | ;
n=-— tan @ tan a (2.60a) m
Wy

for near-resonant particles.
The term in (2.64) proportional to QE,Jo(n) is similar to the

qEz term that would be éneiﬁnt in the case of electrostatic waves. The

o p—————




30

Jo(n) represents the fact that the E; field seen by the particle at
different points in its transverse orbit s changing since E, has a
transverse phase variation given by k x ein 8 . The term in (2.65)
represents the effect of the q VxB force, and the fact that since the
plane of rotation of the particle and the wave polarjzation ellipse are
at an angle ( % - 0), there is a net longitudinal acceleration even
after averaging over one gyroperiod. For cases in which (2.64) is the
dominant term, the equations of motion for interaction with whistler
mode waves are much the same as those for electrostatic waves [Numn
1971, 1973].

Before comparing the relative magnitudes of (2.64) and (2.65)
for the range of the parameters in the magnetosphere it should be noted

-

d
that -%% » 8iven by Eq. 2.61, becomes very small for near-resonant

- v.kecosd Vo
particles with va = vp, . In this case 1l - -————— = ] = = 0,
w Veu

and the perpendicular motion of the particles is primarily governed by
the adiabatic term of Eq. 2.63. In the following figures we present the
magnitudes of (2.64) and (2.65), as well as the longitudinal !
polarization 0, as a function of different parameters.

Figure 2.4 shows a plot of the longitudinal polarization 9, as a
function of the wave normal angle & , for different values of normalized

g

dispersion relation [Stix, 1962]. The longitudinal polarization is

frequency g The results are computed by using the cold plasma i

Pz = gl » as defined in (2.52), A plasma frequency fp = 180 kHz, .
z

corresponding to 400 el/c¢ at the magnetic equator at L = 4, along with

the equatorial gyrofrequency fi = 13.65 kHz, were used in computing p, .

For fp >> fy the value of P, 1is not strongly dependent on fp. Note from




e+ 3k

R SR

31

ORIGINAL PAGE 19
OF POOR QUALITY

102
fp=180 kHz
f,=13.65 kHz
10'
10°}-
_ 0.9
N
w
\>~
X
10 |-
10 “|-
1()-3 1 ! ] 1 ]
15 30 45 60 75 90
@ (degrees)

FIGURE 2.4 MAGNITUDE OF THE WAVE LONGITUDINAL POLAR-

IZATION |pz| = lsy/ﬁzl AS A FUNCTION OF
WAVE NORMAL ANGLE ©. |p,| is shown for three different
normalized frequencies.

2 e b —
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Fig. 2.4 that p; is in general higher at lower frequencies and decreases
with increasing 6 . Also recall that for longitudinal propagation,
i.e., 8 = 0°, E; = 0 and there is no interaction between the particles
and the waves,

Figures 2.5, 2.6 and 2.7 compare the peak magnitudes of the two
terms as given by (Z2.64) and (2.65) for various parameters. Figure 2.5
shows variation of both terms with pitch angle a , for various wave
normal angles 6 and £ = 0.5 f4. It can be seen that the <qvyByx> term is
negligible for lower pitch angles, while it becomes equal to or larger
than the <q&z> term for a>30°., As long a<30°, the <q&z> term alone can
be used to compute the motion of the Landau resonant particles with less
than 10Z error.

Figure 2.6 shows the dependence on the wave normal angle for
various pitch angles & and for £ = 0.5 fy. The resonance cone angle for
this frequency is =60° as shown. This result indicates that for any
pitch angle o , the <qu$x>_term is more important at lower wave normal
angles, but that there is a strong dependence on pitch angle as was also
indicated in Figure 2.5. For 8 approaching zero J;(n) goes to zero and
Pz approaches infinity. As a result, the <qu$x> term will go to zero
and may be approximated by -qEzsinytanza(l - £/£4)/Q2 + 2£/fy) for small
values of 6 (Appendix A).

Finally, Figure 2.7 shows the variation of the terms with

normalized frequency f£/fy. The curves are for a = 40° and three

G NI el A

different values of wave normal angle 6. It can be seen that the
magnetic field term is more important at lower frequencies, although the

dependence on frequency is not as strong as that on 8 and a .
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2.0
f/f,=0.5
1.80 H
|
— (q&p
1.6 - (qugx>

10 20 30 40 50 60 70
a (degrees)

FIGURE 2.5 NORMALIZED PEAK MAGNITUDES OF THE <qvyByx>

AND <q&z> TERMS AS FUNCTIONS OF PITCH AN-
GLE a. The results shown are for f = 0.5 fy, and for
three different wave normal angles 8 .
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FIGURE 2.6 NORMALIZED PEAK MAGNITUDES OF THE <qwv %.ﬁ>
AND <q&,> TERMS AS FUNCTIONS OF WAVE NO -

MAL ANGLE ©. Both terms are calculated for three dif-

ferent pitch angles. The resonance cone angle for

f = 0.5 fy is =60° as shown.
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We can also use Fig. 2.4 to show that the upper limit on wave
magnetic field intensity is really satisfied, as it was assumed when
averaging the equations of motion. For the parameters of Fig. 2.4, and
f=5KkHz, o = 45° , and 0 = 30°, By = 1.3x 10° pT, a value much
larger than the typical field intensities in the 0.1 to 100 pT range for
whistler mode waves. Therefore, the required small wave condition for
the averaging over one gyroperiod 1is easily achieved in most cases.

We have presented a simple set of equations describing cyclotron
averaged motion of Landau resonant particles in a whistler mode wave
propagating at an angle to the static magnetic field. We have argued
that for the parameters of the earth's magnetosphere and for f < fg , as
it is the case for the whistler mode waves, this would be a very
accurate description of the near resonant particles. The fact that the
equations are compact and simple makes them suitable for analytical as
well as test particle computer simulation studies presented in the next

chapters.

4o reaake




III. ANALYTICAL STUDY OF LONGITUDINAL RESONANCE INTERACTIONS

A, INTRODUCTION

In the preceding chapter we derived a set of equations of motion
(Eqs.2.62, 2.63) for an electron interacting with a whistler mode wave
through a longitudinal resonance process. Before using those equations
in numerical simulations it is useful to have a semi-quantitative
analysis of that interaction process, the purpose of which is to:

a) Determine, qualitatively, the effects of different
parameters on the resonance process, and to

b) Provide a reference for the testing and explaining of
numerical results.

From the equations of motion and the resonance condition it is
evident that the most important factors that affect the interaction

process are:

1) The magnitude of the wave parallel electric field E.
2) The magnitudes of Bessel terms in the equations of motion
3) The wave phase velocity Vpu

4) The electron parallel velocity v,
The variations of Bessel terms have already been discussed in Section

I1.E.

In the following text we discuss the remaining parameters
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starting with calculations of expected magnitudes of E, in the
magnetosphere., Next we calculate the wave phase velocity Vpu and
analyze the resonance condition vpu® vy for a wide range of
magnetospheric parameters. We also stress the importance of the phase
between a wave and the in.eracting electrons and examine its variations.
Finally, we discuss the energy exchange between the wave and electrons
through the longitudinal resonance interaction in an inhomogeneous

medium such as the magnetosphere,

B. RELATION OF E: TO By AND MAGNITUDE OF E. FOR

WHISTLER MODE WAVES

Two equations of motion of an electron (Eqs.2.62, 2.63) are
given in terms of the wave parallel electric field E« (E,). However, it
is useful to relate E, to the wave perpendicular magnetic field B, (By)
because most often wave amplitudes are given and referred to in terms of
B.. We proceed now with a derivation of the quantitative relationship
between E, and B. .

Using the plasma dispersion relation (Eq. 2.22) it follows that
n® sin cos@ E, + (en-n®sin®8 ) E, = 0 (3.1)

or

2
w
n? sing cos@ E .=~ (1 - '-Pz— - n’sin?0 ) E, (3.1a)
w
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Furthermore, from Maxwell's equation V X E = -g%- we have

k cos§ E, - k sinf E, = wBy (3.2)

Note that we use only amplitudes of 5: and gy, Ez and By’ because
both 52 and Qy vary as cos(wt - ko).

Now, substituting Ex from (3.2) in (3.la) we have

w_ 2
n?sin® cosg ( wBy+ ksinfE, ) = =(1- & - n%sin?y) E (3.3)
k cosfd w? z
or
2
n°sin6 wB w,2
== 4 (n%sin%) + 1 - = n’sin% ) E_ = 0 (3.4)
k w? z
Finally,
2
i
g, - — im0 B, (3.5)
k(5 -1
W
or
in6
Eu = cn=sa B.; (3.6)
fpzlfz -1

Equation 3.6 relates L, to B. for whistler mode waves, and it
can be further simplified if fpz>> f-fH when it becomes possible to use

the QL approximation for the refractive index. The refractive index is
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then given as

fZ
- P
f(fH cosb - f) (3.7)

n

and substituting (3.7) for n in Eq. 3.6 the final result is

c ginb
E, = E'(fnlf) cos® -~ 1 Dae (3.8)

Eq. 3.8 was also derived by Helliwell [1965]. It relates Eu to B, for
whistler mode signals assuming that QL approximation for a refractive
index 1is valid.

Equation 3.6 can be applied to any whistler mode signal,
although it is possible to derive similar equations for scme special
cases of propagation. One such special case is a whistler mode signal
propagating in the Gendrin mode. This mode of propagation is
characterized by the Gendrin angle GG which can be found by setting
é% (n cos® ) = 0, The resulting wave normal angle OG is

£
cosBG - 2?— (3.9)

H
It clearly follows from Eq. 3.9 that the propagation in the
Gendrin mode is possible only if £ < EH/2 and that eG varies from 0° to
90° as f/fu decreases from 0.5 to 0. The interesting properties of

propagation at the Gendrin angle are summarized as follows:

1) Substituting (3.9) in (3.7) the refractive index is
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ng(8g) = & (3.10)

i1) The phase velocity in the direction of 36 is

vg c fH
vP"G - cos GG - 5'?; (3.11)

i11) The group refractive index and velocity are

£
ng®g) = g Bg) = ¢ (3.12)

f
vgc(ec) = vb - c §; (3.13)

iv) The group ray refractive index and velocity are

£
ng_ (6.) = ng (68.) cosf, = 2 —£ (3.14) |
SrG G 8G G G fH 1
£ .
¢ H
v = v W o — (3.15)
SrG Pug 2 fp

Figure 3.1 illustrates the shape of the refractive index curve

for £/£ < 0.5, and also shows the Gendrin angle SG . The second angle

S T

indicated in Fig.3.1,0 is the resonance cone angle where the

R 1 4
refractive index becomes infinite.

Thus, waves propagating at the Gendrin angle have their wave

H
4
t
%
s
a
-
e
#
o
i
;

packets traveling in the direction of 5; with the velocity vgrc » Which

is identical to the phase velocity in that direction Vpu s and both
G
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velocities are independent of the wave frequency. This property makes
Gendrin mode waves rather interesting for longitudinal resonance
interactions since electrons in resonance with those waves, i.e.
Vo = Vpu = vg; » do not drift through the wave packet during the

interaction as they do in the most general case when the wave phase and

ray group velocities along the magnetic field line are different.

RAY

8

6 1 & +

R

FIGURE 3.1. REFRACTIVE INDEX éURFACE FOR f<fy/2. OR indicates the
resonance cone where n+©, 6¢ is the Gendrin angle, for
which the ray is aligned with the static magnetic field.

Returning to the derivation of the parallel electric field for
the Gendrin mode waves we can substitute n(ec), coseG and

sinec = [1 - cos?8_ for n, cosf and sin® in Eq. 3.8 assuming that

G
fpz/f-fn << 1 is valid. The final result is then

4f?

£
Euc = C ’B‘_ "f'- l- 'é;z' (3016)

P

Note that Eq. 3.8 represents the most general expression for E,




(allowing for the QL approximation) and can also be used to compute

E.g , whereas Eq. 3.16 is valid only for the Gendrin mode. At this
point we can use Eqs. 3.8 and 3.16 to plot the magnitude of the parallel
electric field E, as a function of frequency. Three curves shown in
Figure 3.2 are calculated for different values of the wave normal angle
(30°, 50° and 70°), while the wave perpendicular magnetic field B, is
taken to be 10 pT. This figure clearly shows the resonance cone effect;
for a fixed wave frequency f the parall :1 electric field E, increases as
the wave normal angle increases and E. approaches infinity as © -+ OR .
The resonance cone angle GR can be found from Eq. 3.7 whicnh yields (for
the QL approximation) cosGR = éi and GR as a function of frequency
is illustrated by the dashed line in Fig. 3.2. At this point we recall
that an upper limit on the magnitude of E, was already set during the
derivation of aquations of motion when they were time-averaged.

Although this limit is not exceeded in most practical cases it is
possible that those equations become invalid in a situation when

6 - 6R<<0.5°. In such a case it would be necessary to use the complete
equations of motion (Eqs. 2.41, 2.42 and 2.43).

Figure 3.3 shows the wave parallel electric field Eu as a
function of frequency and parametric in B. (10, 20 and 30 pT), while the
wave normal angle 8 for all curves is 30°. Figure 3.4 shows the wave
parallel electric field E,g for the Gendrin mode propagation as a
function of frequency and parametric in B,. The dashed curves show GG
andeR as functions of frequency. By setting é%'E"G(GG) = 0 it can be

shown that E,. reaches a maximum at the frequency £ = 0.354 fH at which

G

BG = 45° This result is interesting in the light of data on chorus
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activity obtained by 3urtis [1974]. It was found that in the equatorial
region there are often csserved two narrow bands of chorus, [he upper
band is commonly centered just above half the electron gyrofrequency,
0.5 £y, while the lower band is centered near 0.35 fy. Therefore, it
may be speculated that the chorus lower band is made up of waves
propagating in the Gendrin mode and that those waves are amplified
through the strong longitudinal resonance due to their maximum E"G .
This wave growth could then account for the observed peak of chorus
activity.

Finally, Figure 3.5 shows E, as a function of wave-normal angle
0 ; different curves in that figure correspond to different wave
frequencies, while the B, 1s 10 pT. Again we see the resonance cone
effect where E, ** as 9+0R .

All of the above calculations were done at the equator of the
the magnetic field iine given by L = 4 and assuming Neq™ 400 el/cc.
Similar calculations can be carried out for different L values and
corresponding values of neq’ Figure 3.6 shows the results of such
calculations for a range of L values; corresponding values of “eq used
in those calculations are shown in Figure 3.7, with a plasmapause,
cnoracterized by the sharp decrease of electron density, located at
L = 4, The wave parallel electric field Es 1is also normalized by B. and
given in uV/m/pT. From this figure it is evident that Eu for a given L
value increases as the frequency of the signal increases, as already
found before (see Fig. 3.2). Furthermore Eu is larger outside than

inside the plasmapause, a fact which is directly related to lower

electron density outside the plasmapause.
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f=13 kH2 12 "

10

L=4
Neq = 400 el/cc
feq = 1365 kHz

fpgq =180 kH2
1 i L
80

®[°]

FIGURE 3.5 PARALLEL ELECTRIC FIELD E, AS A FUNCTION OF WAVE NORMAL

ANGLE 8. Different curves correspond to different wave
frequencies. Note that E, -+ ® as 6 -+ OR.
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A
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= 10 kH2z
E | 9/
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5 ®=30
1 -
N 4~ _E_E_E,,_c-n-sin®
- B, B, ¢
L y 1 f
| 3/ £
f
i 2 ——PLASMAPAUSE
" Ji(///////////////’
0.1 ] ! l '
3 4 5 6
L

FIGURE 3.6 NORMALIZED PARALLEL ELECTRIC FIELD E./B, AS A FUNCTION

OF L VALUE. The normalized parallel electric field
E./By is computed for different wave frequencies and the equatorial
density profile shown in Fig. 3.7.
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Summarizing, a stronger E, (for a given B,) can be achieved by
increasing the wave frequency, or by raising the wave-normal angle, or

both.

1000

500

100+

50 e— Pt ASMAPAUSE

Neq [el/cc)

1 ] |
3 4 S 6
L

FIGURE 3.7 EQUATORIAL ELECTRON DENSITY AS A FUNCTION OF L VALUE.
The plasmapause is located at L = 4.
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An additional increase in E, is also possible for waves
propagating outside the plasmapause. However, waves with high
wave=normal angles are usually associated with a non-ducted mode of wave
propagation which in general is not field aligned, whereas in the ducted
mode the wave normals are very nearly aligned wicth the magnetic field
[Smith et al. 1960]. In the latter case guiding is based on the
presence of linear field-aligned enhancement (or depression) of
ionization referred to as a duct. Therefore, the effects of the
longitudinal resonance involving ducted waves are limited by the low
wave~-normal angles of propagation at which magnitudes of the parallel
electric field are low (see Fig. 3.2). There are other possibilities
for wave guiding along the field line not limited to low wave-normal
angle waves, such as when the plasmapause acts as a one~sided duct (Inan
and Bell, 1978]. Still another possibility is to have a non-ducted wave
which propagates in a field-aligned mode over a portion of the
magnetospheric path. Although those waves usually remain field aligned
only for a short period of time, their large E, may be sufficient to
cause a strong longitudinal resonance interaction.

The importance of field aligned propagation arises from the fact
that electrons in the magnetosphere follow the earth's magnetic field as
explained in Section II.A. Thus, if the ray path is not field aligned,

or is only partially aligned, the interaction may be relatively weak.
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C. RESONANCE CONDITION vy = Vpu

Beside the equations of motion another important factor to be
considered is the resonance condition v, = Vpo (Eq.2.8). As discussed
above, this condition requires that the wave phase velocity in the
direction of 5; match the particle velocity in that direction. lowever,
for an inhomogeneous medium such is the magnetosphere, both the phase
velocity Von and the electron parallel velocity v, are variable and
their variations depend on the magnetospheric model. Hence, in a case
when the resonance condition is satisfied for a given wave and electron
at some location in the magnetosphere, it will not in general hold at
some other location. For that reason it is necessary to study how Vpu
depends on different models used to represent electron density along the
field line. It 1s also essential to examine variations of both phase
and parallel velocities with latitude and to study variations of v. for
different pitch angles.

First, let us consider the phase velocity in the direction of 3;

which is given as

]

5~ cost (3.17)

Vpn =
where n is the refractive index given by Eq. 3.7. Using Eq. 3.17 it is
a simple task to calculate the phase velocity of a whistler mode wave
for a2 wide range of parameters. Figure 3.8 shows the equatorial phase
velocity as a function of L value; values of n used here are again

eq
those of Fig. 3.6. Figures 3.9a,b show the phase velocity as a function
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FIGURE 3.8

EQUATORIAL PARALLEL PHASE VELOCITY AS A FUNCTION OF L
VALUE. Values of neq used to compute vp, are those
of Fig. 3.7.
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(a)

(b)

FIGURE 3.9

SITY ALONG THE FIELD LINE.
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Vp" [km/s]
DE -1 Model
L=4
neq= 400 el/ce
f= 3000 Hz
30000 ® = 30°
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10000-!
L P - i -l 1 . ) . 1
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Neq = 10 el/ce
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PARALLEL PHASE VELOCITY AS A FUNCTION OF LATITUDE FOR
DIFFERENT MODELS OF THE DISTRIBUTION OF ELECTRON DEN-

In (a) electron density along the field

line is represented by the diffusive equilibrium model DE-~1, whereas
in (b) the electron density is calculated the collisionless model R-4.
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of latitude; Fig. 3.9a shows a typical shape of Vpu inside the
plasmapause, while Fig. 3.9b shows vpr outside the plasmapause. The
difference between Figs. 3.9a and 3.9b reflects not only the assumed
equatorial electron densities neq s but also the electron density
distribution along the field line., Figure 3,98 is calculated using a
diffusive equilibrium model [Park,1972], which is usually used inside
the plasmapause. On the other hand, the electron density model of
Fig. 3.9b is a collisionless model [Park, 1972] with the electron

density along the field line approximated by

) (3.18)

where A 1s the latitude.

Evidently, from Fig. 3.9, the phase velocity of whistler mode
waves outside the plasmapause exceeds that found inside. Therefore, the
parallel velocity of an electron, which has to match the phase velocity
of the wave, is also larger outside the plasmapause. Since the
electrons are moving faster when interactions take a place outside the
plasmapause the corresponding interaction times are shorter compared to
interaction times inside the plasmapause, Thus, the effects of a
stronger wave parallel electric field Ens , related to propagation
outside the plasmapause, tends to be offset by a reduced interaction
time.

The parallel velocity as well as the wave phase velocity varies
with latitude, as already shown in Section II.A, but the two variations

are generally different. By combining the first adiabatic invariant and
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the law of energy conservation we find that the parallel velocity is

given by

»J 4 - 3cos?) 2

Vi = Vuegq 1+tan2aeq- ——-c—;—s-;—— tan aeq (3.19)

where Vugq 1s the electron equatorial parallel velocity, O‘eq is the
equatorial pitch angle and A is latitude.

]

eq

i .
Vlleq 10
1.21'
1.0 40°

Al°]
FIGURE 3.10 NORMALIZED ELECTRON PARALLEL VELOCITY AS A FUNCTION OF
LATITUDE. Different curves correspond to different
equatorial pitch angles. Note that the mirror point latitude, where
vs = 0, decreases as the equatorial pitch angle increases.

Figure 3,10 shows the normalized parallel velocity as a function
of latitude for different values of the equatorial pitch angle. This
figure also shows mirror point latitudes where v, = 0., From Figs. 3.9
and 3.10 it is evident that the resonance condition for a given wave and
electron may, or may not, be satisfied depending on the ratio of the

equatorial phase and parallel velocities. Typical examples shown in
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Fig. 3.11 are for three different racios of the equatorial velocities.
Note that the parallel velocities shown in Fig. 3.1l represent the
unperturbed motion of electrons, i.e. Fig. 3.1l shows only adiabatic
variations of v,. Although the adiabatic motion of electrons is altered
by the wave-particle interaction, the electrons are identified in terms
of their initial unperturbed equatorial parameters which simplifies the
problem of comparing properties of different electrons,

Those different variations of vps and v, with latitude and their
effects on the interaction process, along with effects of other factors

are further discussed in the chapters on numerical results.

D. PHASE BETWEEN WAVE AND ELECTRON IN LONGITUDINAL RESONANCE

In Chapter II it was shown that the electrons trapped in the
wave potential well execute an oscillatory motion around the bottom of
the potential well. In general the analytical solution of the equation
of motion for that case is very complex, but it is possible to derive an
approximate solution if the maximum amplitude of the oscillation remains
relatively small. From Eq. 2.12 the parallel electric field Eu , as

seen by electrons in the wave frame, is given by

En = Euo Sin(ku'Z) (3.20)

Therefore, the force exerted on an electromn is
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3) Viieq* Vplieq 1
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©) Vieq> Vpiteq Y Vo
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FIGURE 3.11  RELATION BETWEEN v, AND v, ALONG THE FIELD LINE.

Depending on the ratio of 3" there may be

eq’/Vp,e
one (a), none (b), or two (c) latitudes at WhiBh®Pne longitudinal

resonance condition v, = vp" is satisfied.
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d’z
m 2 b q E"osin(k".z) (3.21)
dt

which, for a small amplitude oscillation where sin(k,-z) = k,+z, can be

written as

wtr? d 2 z

i 1 Eugkuez (3.22)

The solution of Eq. 3.22 is
z =z, sin(mt-t) (3.23)

where zp is the position of the bottom of the potential well as shown in
Fig. 2.2, z is the position of the electrom and w, is the period of

e E"O ku
oscillation given as w_= [ ——— . It should be noted that although

t m
this oscillation period is computed for a homogeneous medium, this
result can also be used in the case of a slowly varying medium such as
the magnetosphere. Now, dividing Eq. 3.23 by the wavelength, we obtain

the relative phase between the reference point at the potential well

bottom and the electron. This relative phase is

Zg
¢, = Tk Sin(wt° t) (3.24)

¢r = ¢B sin(wt't) (3.24a)

The relative phase between the wave and the trapped electron is

also oscillatory in its nature and the phase variation is bounded such

S e A A ILGE

Fr e IR
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that ¢B'<360°. It should also be noted that the smallest amplitude of
the phase oscillation-~ corresponds to the case of strongest trapping. On
the other hand the relative phase variation for untrapped electrons is
represented by constantly increasing (vp" > vu) or constantly decreasing

(v

v < vu) phase as those electrons drift backward or forward through
the wave, respectively.

All of the above computations, as already pointed out, are
carried out in the wave frame which moves in the z direction at the
phase velocity Vpue In order to determine the total phase variation let
us again assume propagation as exp i(w°t --E;;). The instantaneous
frequency w; can be found by taking the time derivative i% (wet - E;;)

which yields
w, =w-kdE (3.25)

where wi.is actually the Doppler shifted frequency of the wave as seen
by an electron placed at a location defined by radius vector r. It is
possible to rewrite Eq. 3.18 in the same form as that of Eq. 2.6 by
using %%: =V and substituting m oW, for w, . Equation 3.24 can now be
used to examine a behavior of the total phase between a wave and an
electron., First, rewriting (3.25) we have

W = - k".V“ (3'26)

1f wy = 0 Eq. 3.26 reduces to Eq. 2.7, or
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VP" = Va (3-27)

which 1is the original longitudinal resonance condition. Therefore, 1if

Ve = vp" tie relative phase ¢r remains constant (Eq. 3.24a).

However, if an electron has a parallel velocity which does not
match the wave phase velocity exactly the instantaneous (Doppler
shifted) frequency wi has a non-zero value. In that case both the sign

and the magnitude of w, depend on the difference between the parallel

i

velocity and the phase velocity; when vu < Vpus W is positive and its

i

magnitude increases as v, decreases assuming that vy, is constant; in a

case when va > v, the instantaneous frequency w, is negative and its

i

magnitude increases as v, increases, again assuming a counstant Vpus

When w; is known the total phase shift can be expressed as

¢ = Swidc (3.28)
t
oY as
w
¢ = S;—;i- ds (3.29)

where we have used the identity dt = if% .

Finally, Table 3,1 summarizes qualitatively the behavior of the
total phase shift as a function of vp, = V.

The phase between the wave and the electron is a very important

factor in the trapping process. It is eventually the phase that

determines if a given wave will trap any electrons, although all other

PRSP
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resonance conditions may already be met, i.e the parallel velocity is
clcse to the phase velocity and the parallel electric field is strong
enough to pull the electron into the potential wel.. There is no
trapping if the phasing is wrong, i.e. if electrons are accelerated when
trapping would.require deceleration or vice versa. The numerical
results will show that a small difference in phase, less than 10°, can
make a large difference in the behavior of electrons for which the
resonance condition Vpu = is satisfied. Furthermore, the phase
directly translates into the position of an electron within a wave
packet (Eq. 3.24) and if there is any space bunching of electrons there

must exist a corresponding phase bunching,

Velocity Conditions Vou = Vy > 0 Vpu = Vu <0

Magnitude of Total Positive and Negative and
Phase Shift increases with time decreases with time
Rate of Phase increases as Vpu = Vu increases as vpu =V,
Change with Time increases decreases

Table 3.1  PHASE SHIFT PROPERTIES OF LONGIDUTINALLY PESONANT
ELECTRON AS A FUNCTION OF PARALLEL VELOCITY CONDITIONS.
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E. ENERGY EXCHANGE

In Chapter II we have discussed the energy exchange between the
wave and trapped electrens in a homogeneous medium, For the case of an
inhomogeneous medium the energy exchanged during & longitudinal
interaction can be computed in a similar fashion. However, we shall see
later when presenting numerical results that the longitudinal resonance
in the magnetosphere may, or may not, involve trapping of electrons. It
will also be shown that electrons in both cases, whether they are
trapped or not, exchange their energy with a wave. The energy exchange
process is quite different in those two cases, but it is still possible
to use an equation similar to Eq.2.18 by using correct velocity limits
for integration and an adequate value to represent the energy exchanged
through the interaction with a single electron. It is then also
ezsential to compare contributions from both groups of electrons
(trapped and untrapr<d), and to determine whether there are situations
where the contribution from either group is negligible.

Her: we recall that in the case of a homogeneous medium the
energy is exchanged only during the trapping process, i.e. only during
the period when the electrons are acceleratzd/decelerated by the wave in
order to match ths phase and parallel velocities, and there is no net
energy exchange after that process is finished, or alternatively, an
electron has to be trapped in order to exchange its energy with a wave.
There is still an instantaneous energy exchange after the trapping is
completed because slectrons oscillate at the bottom of the potential

well, but when this instantaneous energy is averaged over one trapping

N A e BT T -

fATEWAEE ST JOwee



64

period there is no net effect. This is so because the electron's
oscillatory motion is perfectly symmetric around the bottom of the
potential well, shown by Eq. 3.20, whereas in the magnetosphere or any
other inhomogeneous medium, the energy can also be exchanged after the
electrons are trapped. This can be éxplained as follows; after an
electron is trapped its parallel velocity is véry close or equal to the
wave phase velocity and it follows the phase velocity variations as long
as that electron remains trapped. Thus, the perturbed parallel velocity
is different from the parallel velocity that a particular electron would
have in the absence of the wave. This difference, Avu, 1is directly
proportional to the phase velocity changes [Brice, 19€2] and it is given
as

v ov
bvy = (52) ds + (ng)f df (3.30)

f
where, in general, phase velocity depends on both frequency and
position. For the positive sign of Av, the electron gains energy, while
for the negative sign the wave gains energy. We shall discuss further
various aspects of Eq. 3.30 later in the text.
In the next chapters we present results of a test particle
simulation of the wave-particle interaction and illustrate various

aspects of the interaction as they were discussed in the above analysis.



IV, DESCRIPTION OF THE NUMERICAL SIMULATION

A, INTRODUCTION

In this chapter we detail procedures used in numerical
simulations of the time~averaged equations of motion., The method used
in this report is a test particle simulation. This approach uses a
single particle to find wave induced perturbations of the particle
trajectory, and it is feasible to test quantitatively the effects of
various factors already considered in a qualitative analysis presented
in Chapter III. The test particle approach can be further expanded to
determine the perturbations of a full particle distribution by computing
the effects of the wave on an adequate number of particles that are
appropriately distributed in the phase-~velocity space. However, there
are restrictions imposed on the full distribution simulations because
there is no feedback that should account for variations of the wave
amplitude as particles and the wave exchange their energies. This

feedback probiem is treated in more detail in a discussion of the

numerical results.

The actual listing of the particle code used in all simulations
presented here is given in Appendix B. Next we outline the basic

operation of the program,
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B. COMPUTATION OF PROPAGATION AND ADIABATIC MOTION PARAMETERS

The representation of the static magnetic field along the field
line is based on a centered magnetic dipole model described by
Eq. 2.1. Values of B, obtained from that equation are then used to
compute local values of the gyrofrequency fy, as well as to compute a
normalized gradient of the magnetic field é:-%;? . At the same time a
cold plasma density variation along the field line can be calculated
using two different models. One model assumes diffusive equilibrium
[Angerami and Thomas, 1964] with the electron density along the field
line given as
n 6/sy /2
NDE(r) = zz Gie (4.1)
=]
where the 61 are the relative concentrations of the ionic species, n is
the number of species, G = rb[l - (rb/r)] » Ty, 1s the geocentric
distance (in kilometers) to the base of the DE model,
Sy = 1.506T(rb/7370)2(1/4i-1), and T is temperature at the base of the
DE model (r = 1000 km). A second model is a collisionless model for which
the density is given by Eq. 3.18. The input parameters needed to uniquely
define the field line and propagation properties are L value, the
equatorial cold plasma density neq’ the wave frequency f, and the
wave-normal angle 6. Given those parameters the program divides the
entire field line in spatial segments 10 kilometers long and than

dB,

computes, and stores, values of vp“(z), k,(z), and ﬁL'TE? for each
o

segment; 2z is a distance between the equator and a particular 10 km
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segment measured along the field line. The stored values of 'El; %cl ’
as seen from Eqs. 2.62. and 2.63, are used to compute adiabatic terms in
the equations of motion. All of the above computations can be done
either for a general whistler mode wave or for the Gendrin mode wave.

In the latter case the program also computes, and stores, values of
8g(z) and E,g(z). In addition the program also computes, and stores,
values of wave phase change given as gkudz. In contrast to other
parameters the values of jkudz are noi symmetric about the equator and
depend on the latitude where the particles are started. This starting

latitude, i.e location where particles start their motion along the

field line, is also one of the input parameters.

C. NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION

Before we start with simulations each particle must be uniquely
defined by an appropriate set of parameters. Those parameters then
describe the particle's position in phase-velocity space. For particles
in the magnetospaere the velccity coordinate is uniquely given by their

equatorial parallel velocity v, and equatorial pitch angle, @,

eq eq’
As particles move along the field line their corresponding equatorial
parallel velocities can be computed with the help of Eq. 3.19. At the B
same time the local pitch angle is related to the equatorial pitch angle

through

B,(2)
sina = B sim%eq 4.2)

oeq
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where B,(z) is the local value of the static magnetic field, and Boeq is
the equatorial magnetic field.

In this report a given particle is always identified in terms of
the equatorial parameters which then simplifies the task of comparing
properties of different particles. The conversion from local to
equatorial values is made on the assumption of unperturbed particle
motion,

In addition to the velocity vy and pitch angle %e there

q
is a third parameter, the initial phase ¢° » Wwhich determines the

eq

position of a particle with respect to the wave packet at the beginning
of the interaction (this is a local, as opposed to an equatorial,
quantity). In order to examine the dependence of the interaction
results on the initial particle phase a simulation is actually done
using twelve particles uniformly distributed in phase space; the
parallel velocity and pitch angle are, however, identical for all twelve
particles. This assembly of twelve particles uniformly distributed in
phase is called a test sheet and is illustrated in Figure 4.l1. It
should be recalled that, as already emphasized in Section III.D, the
phase between a particle and a wave is directly related to the
particle's position in the z-axis direction., This is important because
if particles are distributed in phase, i.e. space, the starting time t
of the integration must be increased by At = 13%;: from particle to
particle in order to maintain a correct phase separation between the

particles in the sheet. This is especially important in particle phase

(space) bunching calculaticns where particle positions determine the
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extent of bunching.

After particles are injected at a given latitude their motion is
altered due to the wave force which is computed by numerical integration
of the equations of motion. A proper value of the starting latitude,
for interactions with a monochromatic CW signal as 1illustrated in
Fig. 4.2, was found experimentally by gradually increasing the distance
between the first resonance location and the location of particle
injection, and finding a latitude where further increase of this
distance caused no significant changes of the final results. The actual
integration of the equation of motions is done using a simple
predictor-corrector method using temporal steps with At = 0,001 msec.
This time step size was also found experimentally, and for smaller size
step there were anly insignificant fluctuations of the final results in
all of the examples presented later in the text., The integration method
itself consists in predicting a position of a given particle after
elapse of one time increment using current values of force, i.e. using
those forces acting on the particle at the beginning of the time
increment., However, after the particle reaches a new position forces
acting on it are also different, and it is necessary to recompute
(correct) the particle's position by using the average force. This
average force :. sund as a mean value of two forces, one at the
beginning and one at the end of the time interval At. This newly
computed position of the particle is then taken as a new starting point,
and the whole process is repeated.

For a case of a monochromatic CW wave particles travel along the

field line and reach the first resonance point (Fig. 4.2) where the wave

.....
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induced perturbations of particles trajectories become stronger and
stronger. At this point further behavior of the particles is very
dependent on the initial phase ¢, . Although all particles have their
motion altered by the wave forces only a certain class of particles
becomes trapped, i.e. only those with an appropriate phase, while other
particles remain untrapped. However, in both cases the integration is
continued until all particles reach their second resonant point on the
other side of the equator. After that moment the wave induced
perturbations become smaller and smaller as the difference between
particles parallel velocities and the wave phase velocity increases.
The end point of the integration is then defined as the location where
the absolute difference between the two velocities exceeds 10%. This
value was determined experimentally, and the particular latitude where
the above condition occurs is called the detrapping latitude.

As the particle moves along the field line from the starting
point toward a detrap point it has its adiabatic pitch angle variation
modified by the wave. Finally, after the particle reaches its detrap
point it will have certain Op and vup which are then transformed into
the corresponding equatorial values Qpeq and Vugq by using (4.1) and
(3.19). The difference Qyoq = Opeq 8ives the total pitch angle
change, or scattering, while the difference Av. = Vigeq ~ Vi"Feq gives
the total energy exchange through 1/2 m Av,%. The final scattering and
the amount of transferred energy are given both for each individual
particle and for a complete test particle sheet (mean value for 12
particles).

In the next chapters we study the scattering of particles and
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the energy exchange process for different wave functions and a wide

range of particle initial parameters.




V. NUMERICAL ANALYSIS OF THE INTERACTION

A. INTRODUCTION

In the previous chapters we have derived a set of equations of
motion for longitudinally resonant electrons, and we have studied
analytically various aspects of the resonance process. Those analytical
studies are now complemented by the results of the numerical simulation
analysis. Numerical results should further illuminate the physics of
the interaction process, and enable us to compare the effects of various
parameters on a quantitative basis, i.e. in terms of scattering and
energy exchange cfficiencies. The behavior of individual electrons and

sheets is studied for a wide range of the parameters such as Eu., s Ly

feq
aeq’ ¢o, and for different wave functions, i.e. for different wave
amplitude variations along the field line. In our calculations we have
used three different types of wave functions as they are described
below:
a) Monochromatic CW wave'with a constant wave amplitude along
the field line.
b) One-sided wave function characterized by a very weak wave on
one side of the equator and a strong wave on the other side.
The transition region between the above regions is taken to

be 1000 km long and starting at the equator. Such a wave

function can be created through a gyroresonance »rocess.
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¢) Spatial amplitude pulse formed by a non-ducted wave
when 1its ray path 1is partially field aligned.
In the following discussion we present results of the numerical

simulations.

B. SCATTERING OF A SINGLE SHEET INTERACTING WITH CW SIGNAL

For a case of monochromatic CW signal the interaction geometry
is already shown in Fig. 4.2, with electrons being injected at —15°
latitude. WAll electrons are identified in terms of theilr equatorial
parameters, V”eq and aeq , with the initial phase ¢° being a third
parameter. First, we consider scattering of a single sheet (12
electrons uniformly distributed in ptase at the injection point) as a
function of the initial equatorial rarallel velocity Vueqoo Other

parameters for this example are listed in Table 5.1 below.

Field Line L =24

Equatorial Electron Density neq- 400 el/cc
Equatorial Gyrofraquency fH = 13,65 kHz
Equatorial Plasmafrequency fp = 180 kHz

Wave Amplitude B, = 10 pT

Wave Frequency f = 3 kHz

Wave Normal Angle 8 = 30°

Equatorial Parallsl Phase Velocity vb"e; 9.924 10° m/s

Table 5.1  PARAMETER VALUES FOR THE EXAMPLE CASE

M -



At this point we should note that we have used two
approximations in numerical computations. First, it is assumed that the
wave-normal angle is fixed, and second, the wave amplitude is also
treated as thtough it has a constant value. However, it is well known
that in the magnetosphere both wave-normal angle and wave amplitude
change with location. The wave-normal angle changes as dictated by the
guiding mechanisms [Helliwell, 1965] which is true for ducted waves,
whereas wave-normals of nonducted waves can be found using ray-tracing
analysis [Kimura, 1966, Burtis, 1974], The wave amplitude variation
arises from the inhomogeneity of the magnetosphere, and it is feasible
t> use 2@ slowly-varying medium analysis to calculata those variations
[Budden, 1961]. From ray-tracing and amplitude calculations it is
obvious that both the wave-qormal angle and the wave amplitude may
change significantly along the field line, and affect the longitudinal
resonance interaction. Nevertheless, if the interaction region is
relatively small, the changes of wave properties are also small, and it
is permissible to assume as a first order approximation that the
wave-normal angle and wave amplitude are constant quantities. If there
is a need four even more accurate analysis it is feasible to use
ray-tracing along with WKB solution to derive exact solutions for both 6
and B, , and then incorporate those results in the longitudinal
resonance calculations.

The mean scattering, <Aaeq> (< > denotes averaging over the
initial phases), of a single sheet of electrons as a function of sheet

equatorial parallel velocity is illustrated in Figure 5.1. The wave
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intensity B, = 10 pT corresponds to E,= 15 uV/m. A solid curve shown in
that figure indicates the mean final scattering of a sheet at the end
point of the integration of equations of motion (as defined in Fig.
4,2), while the dashed curve represents the mean scattering of a sheet
cﬁmputed at the equator. Comparing the equatorial, i.e. cumulative
scattering when electrons reach the equator, and the final scattering it
is obvious that the final scattering is, on average, one order of
magnitude smaller than the equatorial scattering. It is also clear from
Fig. 5.1 that the equatorial scattering is negative, i.e. the mean
equatorial pitch angle of twelve electrons forming a sheet is lowered.
To explain those results shown in Fig. 5.1 it is useful to study
trajectories of individual electrons. For example Figure 5,2
illustrates typical electron trajectories and energy variatiors
calculated for interactions with a monochromatic CW signal. Four
electrons shown in Fig. 5.1 belong to a test sheet specified by

vy =

€qo qu eq
are their initial phases ¢° as indicated in Fig., 5.1 and defined in

’ andaeq = 10°., A main difference between those electrons

Fig. 4.1. The left column of Fig. 5.2 shows energies of the four
electrons as a function of interaction time, while the right column of
the same figure illustrates variaticns of both parallel and phase
velocities as a function of latitude. Note that the time scale and the
latitude scale cover the same portion of the field line. Next consider
Fig. 5.2a where, as the electron approaches the equator, the parallel
velocity becomes better matched to the wave phase velocity, and the wave
effects become more cumulative. Those wave effects cruse the

oscillations of va and E, and as the electron comes closer to the
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FIGURE 5.2  SINGLE ELECTRON TRAJECTORIES FOR B, = 10 pT. The electroa
energy and parallel velocity are shown as a function of
latitude as it interacts with CW wave. The initial parallel velocity
Vieoq = Vpneq, and o = 10° for all electrons. The initial phase ¢, is
30° in (a), 90° in (b), 120° in (c), and 270° in (d).
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equator the amplitudes of the oscillations increase. At the point

t = 0,52 sec (A= =3,5° ) the parallel velocity of the electron equals
the phase velocity, and that point is called the first resonance point.
Electrons shown in Figs. 5.2b, 5.2c, and 5.2d exhibit similar behavior
before they reach the first resonance point. However, after electrons
travel beyond the firat’resonance only the top three electrons shown in
Fig. 5.2 are accelerated by the wave in such a manner that their
parallel velocities become larger than the phase velocity. It 1s also
clear from Figs. 5.2a, 5.2b, and 5.2c that this increase of the parallel
velocity is accompanied by an increase of the total energy of the
electrons. After those electrons have traveled beycnd the first
resonance their motion, as they travel across the equator, is still
affected by the wave, but the parallel velocity remains larger than the
phase velocity. However, on the other side of the equator the phase
velocity again starts to increase and the electrons approach their
second resonance point., At this second resonance point the =lectrons
are decelerated by the wave and consequently their energy is also
decreased. Thus the electrons shown in Figs, 5.2a, 5.2b, and 5.2c are
being accelerated at the first resonance point and then decelerated at
the second resonance point. The amount of acceleration and deceleration
in general depends on the actual phase between a given electron and the
wave, and as a final result electron energy can be unchanged (Fig.
5.2a), increased (Fig. 5.2b) or dec<cased (Fig. 5.2c). Compared to
those top three cases (Figs. 5.2a, 5.2b, S.2c) a fourth electron
trajectory illustrated in Fig. 5.2d is quite different. This electron

became trapped after the first resonance interaction and its parallel
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FIGURE 5.3 SINGLE ELECTRON TRAJECTORIES FOR B, = 10 pT. The electron
parallel velocity v, and phase ¢ as a function of time.

Time t = 0 indicates occurrence of the first resonance. Other parameters

are the same as those in Fig. 5.2.
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velocity, as well as the total energy, shows oscillatory behavior which
is characteristic of the trapped electrons.

Figure 5.3 is a time expanded view of the electron's behavior
during a 400 msec window centered around the first resonance point at
t = 0 msec. This figure shows both parallelivelocity and electron phase
behavior. From the phase diagrams it follows that the phase is
increasing before the first resonance, with the rate of increase
decreasing as electrons approach the first resonance point. This type
of phase variation is consistent with that found analytically in Chapter
III. At the resonance point the phase does not change, i.e. it becomes
constant, and the first derivative is equal to zero, as indicated in
Fig. 5.3. After the first resonance untrapped and trapped electrons
undergo different phase variations. Untrapped electrons are associated
with a constantly decreasing phase as a result of v, > Vpu o while
trapped electrons exhibit an oscillatory phase behavior as they
oscillate at the bottom of the potential well. Note that an electron is
considered to be trapped if it executes at least one complete phase
oscillation., Figure 5.3 also clearly illustrates significance of the
phase between electrons and a wave. By comparing the phase behavior of
the alectrons shown in Figs. 5.3c and 5.3d, we see that the difference
in their phases at the resonance point (t = 0 msec) is less then 5
degrees, but the electron of Fig.5.2c is not trapped, whereas the 14
electron of Fig. 5.2d 1is trapped.

Those four sample trajectories are representative of typical i
perturbations of electron motion induced by the wave forces. Finally, g

to explain the results of Fig. 5.1 where the equatorial scattering is
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FIGURE 5.4 NORMALIZED ENERGY OF TEST SHEET AS A FUNCTION OF LATITUDE.

The normalized energy of a test sheet (12 electrons) in-
creases about 2.57 around the equator when those electrons interact
with a CW gignal. The sheet initial parallel velocity is Vigq ™
and 0 = 10,
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larger than the final scattering, the energies of all 12 electrons are
added together and plotted as a function of latitude in Figure 5.4.
From this figure it immediately follows that there is a region around
the equator where the normalized total energy of the electron sheet is
increased. This energy increase is on average about 2% of the initial
total energy, and it is limited to latitudes between =-4° and 4°, The
jump in the energy is caused by the acceleration of untrapped electrons
such as those shown in Figs. 5.2a, 5.2b, 5.2c, while the energy envelope
oscillations are caused by trapped electrons such as that of Fig. 5.2d.
In the particular example there were 7 untrapped electrons and 5 trapped
electrons. Beyond A = 4° the total energy of the sheet returns almost
to the initial level. Here we recall that an increase of the electron
energy yields a decrease of the pitch angle, while a decrease of the
electron energy yields an increase of the pitch angle. Bearing this
relation in mind it is then easy to explain the results of Fig. 5.1 by
translating energy variations shown in Fig. 5.4 into pitch angle
variations. This transformation immediately reveals that the equatorial
scattering is negative and larger than the final scattering, again as
indicated in Fig. 5.1. It also explains why the final scattering can be
both positive or negative because the final energy can be either larger
or smaller than the initial energy. The final scattering appears, due
to its randomness, as though it resulted from an incoherent interaction.
On the other hand the equatorial scattering appears to be much less
random implying a larger degree of coherence. This indicates that
coherence of this particular type of longitudinal interaction is

position dependent, and it is necessary to examine electron trajectories
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rather than to rely only on scattering results,

The energy gained by the electrons is extracted from the wave
which means that the wave amplitude must be reduced around the equator.
For test particle studies involving only twelve particles this
attenuation of the wave amplitude is negligible, but it should be
considered in full distribution computations where significant loss of
the wave energy will cause a strong wave attenuation and consequently
weaken the interaction process.

From Fig. 5.3d it follows that the trapping period is about 82
msec. Because the medium inhomogeneity is very small around the equator
this trapping period can be also computed using a relation derived for

the homogeneous medium

1 m
t 2‘" eE " k"

(5.1)

Using (5.1) with k, = 1.9 10 %and E, = 15 uV/m, the trapping period is
computed to be 81.5 msec, which is in very good agreement with the
numerical result. It is also easy to check the oscillation period of v,
for untrapped electrons. For example consider the electron shown in
Fig. 5.2b and its parallel velocity at t = 100 msec. The period of
parallel velocity oscillation at that point is about 20 msec, which may
also be found by computing the doppler shifted frequency of the wave
wy= w =k Taking w = 27+ 3000 rad/sec, ku = 1.9 103, and va =
10100 km/sec yields w, = 331 rad/sec; the equivalent oscillation period

is of about 19 msec which is in a good agreement with numerical results.

As mentioned earlier results shown in Figs. 5.2, 5.3, and 5.4
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are calculated for a sheet with initial equatorial parallel velocity

Vieqq equal to the equatorial phase velocity v of a wave, For

p"eq
purposes of comparison, Figure 5.5 shows the parallel velocity behavior
of four electrons, from a sheet with Vneqo = 1,050 Vpneq® and again as
a function of latitude. The motion of the electrons is similar to that
showvm in Fig. 5.2. The possibility of trapplng, or not trapping,
depends on the initial phase ¢° of nrach individual electron, and the
final scattering can be both positive and nc¢gative.

The above results suggest that the longitudinal resonance
interaction with a monochromatic CW signal is confined to a relatively
small region around the equator. The controlling factor in the

interaction is the variation of phase ¢ which determines if electromns

become trapped or not, and affects the amount of exchanged energy.

C. SCATTERING OF A SINGLE SHEET INTERACTING WITH CW WAVES

AMPLIFIED AT THE EQUATOR THROUGH THE CYCLOTRON RESONANCE

Next we consider the séattering of single electron sheet
interacting with a monochromatic CW wave whose amplitude 1is increased
through the gyroresonance process. The amplification process of.CW
waves takes place close to the equator [Helliwell, 1967], and in our
calculations the growth region is taken to be 1000 km long. The wave
amplitude, before it reaches the equatorial growth region, is 0.l pT.

Figures 5.6 and 5.7 illustrate the scattering of a single sheet

as a function of the initial parallel velocity Vieqo ° In all
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computations the wave caplitude is B, = 10 pT, or E, = 15 pV/m, while
the equatorial pitch angla is taken to be 10°, 30°, 50°, and 70°. The
total sheet scattering is computed twice for each parallel velocity
increment; once it is computed using complete averaged equations of
motion, and once using only the qE term of Eq.2.61 as though the wave is
electrostatic, i.e. it is assured that Jo(n) = ] and J; (") = 0. As
discussed earlier, the effects of the Bessel terms, i.e. the effects of
the wave magnetic field forces, should become significant at larger
pitch angles, while at lower pitch angles the difference between the two
computa.ional methods 1s expected to be small. From Fig. 5.6a, which is
calculated using qéq = 10°, it is evident that the two methods produce
very similar results, as expected. On the other hand, as the pitch
angle increases the difference between the results becoumes much larger
and for aeq = 70° there is almost no scattering if we exclude the Bessel
terms from the equations of motion (Fig. 5.7b), whereas the scattering
calculated using the complete equations is about :-£€° at Vieq * Vpueg®
Those examples confirm the results of Chapter II, where it was found
that the Bessel terms will be a very important factor in governing the
motion of electrons with high pitch angles. This is especially true for
the J1(n) term, which represents effects of the wave magnetic force, as
already indicated in Figs. 2.5, 2.6 and 2.7.

As discussed earlier the longitudinal resonance interaction
depends strongly on the wave amplitude. This wave amplitude dependence
is depicted in Figure 5.8. Three different curves shown in that figure
represent scattering of sheets with three different initial parallel

velocities Vueqq * A sheet with Vueqy, = Vpueq has the optimal parallel

-
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velocity as required by the resonance condition. Two other sheets with

= 0,995 v and Vieq, ™ 1.005 Vpueq are slightly off the

Vueqo preq

resonance when they encounter the wave growth region at the equator; the
first 1s slower and the :econd is faster than the phase front of the
wave, respectively. The effects of different sheet velocities are best
illustrated by corsidering the amount of pitch angle scattering for a
given wave amplitude. The particle sheet with Vieq ™ Vpreq is scattered
about = 0.1° when interacting with a relatively weak wave with B, =5
pT. On the other hand, the other two sheet¢ require a wave with B, = 18
pT to achieve the same amount of scattering. Below B, = 18 pT
scattering of the sheet with vugq = 0.995 Vpreq 1s small and negative,
whereas scattering of the sheet with Vieqg ™ 1.005 Vpieq is also small,
but positive. We recall from Section III.E that the direction of energy
exchange depends on the relative magnitudes of the parallel and phase
velocities; if an electron is faster than a wave it is decelerated and
loses its kinetic energy; if an electron is slower than a wave it is
accelerated and gains kinetic energy. An increase, or decreasz, of the
kinetic ere2rgy is accomplished by changing the parallel velocity of the
electron through the resonance process. If the parallel velocity of an
electron is increased, its equatorial pitch angle becomes smaller, or
equivalently, if the parallel velocity of an electron is decreased, its
equatorial pitch angle becomes larger. It is this type of process that
explains the behavior of the two sheets with Vieq, = 0.995 vp,eq and
Vieq,™ 1.005 Vpueq for B, < 18 pT. It may be wondered why a sheet with
Vueq, = Vpreq does not show similar behavior, and what is happening when

B, > 18 pIl in the other two cases. The answers may be found by
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examining trajectories of individual test electrons. From those results
it was found that for weak waves all electrons remain untrapped
regardless of their initial parallel velocities. As long as the electron
is not trapped, i.e as long as the electron parallel velocity does not
follow the phase velocity variation, the longitudinal interaction is
generally limited to two relatively small regions around the two
resonance points. In our case the interaction is further limited to
only one side of the equator where the wave amplitude is sufficiently
strong. Next, as the wave amplitude increases beyond the equator the
interaction becomes stronger, and from the trajectory calculations, it
is evident that some electrons become trapped. This transition between
the untrapped and trapped mode of the longitudinal interaction is
characterized by a significant increase in the scattering. The
amplitude threshold at which the trapped mode scattering overtakes the
untrapped mode scattering depends on the initial parallel velocity Vieqq s
as shown in Fig. 5.8. The threshold amplitude for Viaq, ™ Vpheq is as
low as B, = 3 pT, with a relatively smooth transition between the two
interaction regimes., The amplitude threshold in the two other cases is
about B, = 18 pT with a much sharper transition between two interaction
regines.

The individual particle trajectories are illustrated in Figures
5.9, 5.10, and 5.11. Figure 5.9 shows parallel velocities and phases of
four electrons with Vieq, ™ Vp'eqr O - 10° , and different initial
phases ¢° , as functions of latitude and time, respectively., The wave
amplitude is B,= 10 pT. As in the case for a CW signal the parallel

velocity variation of those electrons is controlled by the phase
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Shown here

are the parallel velocity and phase variations around the

Fig. 5.9.

Other parameters are same as those in
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variation, For example, the electron trajectory of Fig. 5.9a indicates
absence of trapping because of an improper phase, whereas the number

of oscillations for trapped electrons in the other three cases also
depends on the phase at the moment when the parallel velocity equals the
wave phase velocity. Figure 5.10 depicts a time expanded view of the
electron trajectories around the first resonance point. Before
analysing those trajectories we recall from section II.B that the
variation of Z, is described, in the vave frame, as cos kuz, and that
the bottom of the potential well is at 2y as shown in Figure 2.2, In
Figure 5.10 the time t = 0 indicates the first resonance where

V= vp" . The phase at this point is a crucial factor governing the
further motion of a particular electron. For example, the phase of
electron shown in Fig, 5.10a is such that it is strongly decelerated and
by the time of phase reversal, i.,e., electron acceleration, the parallel
and wave phase velocity are too different for trapping to be possible.
Observing the phase of the electron in Fig, 5.10b at t = 0 we find this
phase to be significantly smaller than the phase in Fig. 5.10a. Due to
this different phase the second electron is less decelerated, eventually
becomes trapped, and executes one oscillation at the bottom of the
potential well., For the next two electrons shown in Figs. 5.10c and
5.10d the phases at t = 0 are even smaller resulting in an increasing
number of oscillations. We note that the amplitudes of both velocity
and phase oscillations decrease as the phase at t = 0 decreases. In the
example shown in Fig, 5.10d the phase at t = 0 is very close to the
optimal 90 ° which then results in the strongest trapping. As discussed

earlier the 90° phase indicates that an electron is exactly at the




97 ORIGINAL PAGE 19
OF POOR QUALITY

V(km/sec) V(km/sec)
12600, 12800,

9800 |
-4

]
800-6

V(km /sec) V(km/sec)

13000 13200,

9800

A A (%)
(c) (D)

FIGURE 5.11  SINGLE ELECTRON TRAJECTORIES FOR B = 30 pT. The electron
parameters are same as those in Fig. 5.9.



bottom of the potent.ial well. To illustrate the effects of wave
amplitude Figure 5.11 shows the same four electrons, but the wave
amplitude 1is increased to B, = 30 pT. In this case even the first
electron becomes trapped, and the other three electrons now remain
trapped for longer periods of time.

Figure 5,12 shows the scattering of individual electrons as a
function of their initial phases q: for three different wave amplitudes.
This figure confirms the importance of phase as a controlling factor in
the longitudinal resonance intevaction. Figure 5.12 shows that it is
possible to achieve a significant increase of the scattering efficiency
by changing the inital phase q, from 0° to 180°. We summarize the
results of the above analysis in Figure 5.13 which shows the normalized
total energy of a single sheet as a function of latitude. The initial
equatorial parallel velocity equals the equatorial phase velocity and
wave amplitude is B, = 10 pT. Before electrons reach the equator the
wave amplitude is very small and there are no significant changes of the
sheet energy. After the equator crossing the wave amplitude starts to
increase and electrons become trapped. As long as those electrons
remain trapped their parallel velocities increase and so does the total
energy of the electron sheet. As the electrons move away from the
equator some of them become detrapped, but the energy increase continues
up to the point where the last electron becomes detrapped. At that
point the energy of a sheet has reached its maximum and remains
constant. From Figure 5.13 we see that the particular sheet has gained
about 4.6% over the initial energy. The energy gain region 1is between

A= 1° and A = 7°, Recall that this energy increase must be accompanied

98




ORIGINAL PAGE IS

99
OF POOR QUALITY

L=4
Neq =400el/cc
f=3000 Hz

®:=30°

Vieg® Yplleq \
2 b / % B.*30pT

1F
OS5k
0 -
-0.1
o) 60 120 180 240 300
o, [°]
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The difference <Es> - <Eo> represents the amount
of energy gained by electrons.
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by wave attenuation which is not considered in the test particle
studies, i.e there is no feedback to account for wave amplitude changes.
The feedback effects can be neglected in a test particle simulation
where the number of electrons is si:all, but they must be considered in a
full distribution analysis.

Next we take into account the scattering efficiency dependence
on the wave-normal angle. Figure 5.14 shows <Aagq> vs. for B, = 10
pT,aeq = 10° and v"eqo = Vphgq The wave function corresponds to one
given in Fig. 5.3. Also shown are the initial energy of the sheet, <E >
and the final energy‘<Es>. We have found earlier that the main effect
of the wave-normal angle increase is seen through an incrzase of E, .
Thus, as the wave normal increases the longitudinal interactions become
more effective, as indicated in Fig. 5.14. Furthermore, when the
wave-normal approaches the resonance cone electrons are scattered by as
much as =5.5°, and the sheet energy is increased about five times. For
such a strong interaction the wave amplitude would most likely be
heavily attenuated, although to find the exact solution it 1s necessary
to include a previously discussed feedback term. The inclusion of the
feedback term would than probably diminish the scattering effects as the
wave amplitude becomes smaller with the increasing scattering.

In Chapter II we discussed the possibility of space bunching of
electrons through the longitudinal resonance process. Figure 5.15 shows
the phases of rine electruns from a sheet with Vieq, = Vpreqs Ceq * 10°
and inter:icting with a 30 pT wave. Three remaining electrons are
omitted from this figur. because they are very weakly trapped as already

i1llustrated in Fig. 5.12. Initially all electrons are uniformly
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distributed in phase space and maintain this phase separation as they
approach the equator. At the equator they reach a wave growth region
and trapping takes place. As electrons become trapped around t = 0,21
sec their maximum phase separation is reduced to about 150°, and can be
as small as 50° at the moment when all electrons reach the bottom of
potential well nearly simultaneously at t=0.21, t =0.24, and t=0.27 sec.
Thus the original spacing between the electrons is reduced and we have
a case of space bunching. In this particular example 9 out of 12
electrons are bunched in about a half of rhe original separation. Thus,
the density increase is roughly 9/12 x 360/150, or about 1807 of the
initial density for Vneqo = Vpneqe For other velocities the density
increase is smaller because the resonance condition is not satisfied
exactly at the equator. Note that after a few initial oscillation
periods electrons go out of phase and start to reach the bottom of the
potential well at different times. It is possible to have a new
synchronization later in time, as occurs at t = 0,54 and t = 0.565 sec
(Fige 5.15). This problem may be understood as though we have 9
harmonic oscillators with slightly different periods of oscillation
caused by different phases at the moment those electrons entered the
trap.

Figure 5.16 shows <80 .q> vs.v. ,and <AE>vs. v, for
interactions taking place inside and outside the plasmapause. Those
results clearly show that interactiorc cutside the plasmapause result in
less scattering, but in more energy exchange, than those interactions
inside the plasmapause. This interesting result may be explained as

follows; as n,, drops outside the plasmapause the wave phase velocity

q




104

QUALITY

ORIGINAL prap

SNOILOVYIINI 3JONVNOSIY TYNIGNLIONOT JHL OL 3NC ONIHINNG 3ISYHd  SL°S JWN9Id

}
80 L0 90 S0 v.nnvvv
T T T 7\
0zl
I
>
|~ 1002 %
=
-108¢
1 1 || L
4} ot 8 9
X
v .
.O - m 0] ~ OO v
v \A’..»/q .“A"»‘«.»JPJ: \%w«\\ﬂ"rs.
AT N\ ozt
SN, W,
>
wn
00Z m
"o
\x_omu
]
z Y-

A

lo] X 3GN1LLIVY




ORIGINAL PAGE 13
OF POOR QUALITY

105

*<@V> a8ueyoxs £3aaus Buypuodsaiiod ay3 siordap
(9) aT1ym * <Pn; Bur1033E08 UESW B3 ST (®) Ut umoys  -35OYdYWSYId IHL 3AISLNO
ONY 3GISNI SNOILIVYIINI 3IONVNOSIY IVNIGNLI9NOT 40 S193443 3IHL N3I3IMLIE NOSIYVIWOD  91°G 3dN9I4
3ISNVAVNSYId 3A1ISLNO

~001 -
3ISNVAVWSY1d 3QISNI
o W9 =y oy ne 6zgu =*P"°0;
/ // d apisury_ -OS -
/ \ WeA=!!A 10} po BBZ - 3
; N
badyy I ou LN ol o
bay, N T~ = l,..\..,l..\..\.v\.ﬁuﬁll,l.
A ! . ]
/. .s // ‘.\O
’\C ‘I .\. lom
e, P
/.:’.'0..\ o
) ¢3)-C=am oo
[Ae)caw)
ASNVAVWSY1d 3AISNI

¢0-
1'0-

ISNVdVYWSVId 30iS1N0

apisino

o . PS04 /19 Ol = bay ¢0
9s/W 01 x LT9 = A 29/12 00y = *P"*Ubay —o_AeoU<v
apisu
23s/u (Ol x Z6'6 = P*nd, dot="Tg v=1

o0€=@ 2ZH 000€E=}
(e) |



106

increases and the parallel resonant energy becomes higher, Higher
energy electrons move faster through the wave and hence have a shorter
time to be scattered. Note that although the resonant energy is about
288 eV for Deq ™ 400 el/cc it 1is 11529 eV for Ngq = 10 el/ce. Because
of that difference in resonant energies even a relatively small
scattering outside the plasmapause results in energy changes that are
larger compared to those found inside the plasmapause.

This concludes our discussion of single sheet scattering
interacting with a one-sided wave function. In the next section we

present results involving sheet scattering by a spatial pulse.

D. SCATTERING OF A SINGLE SHEET INTERACTING WITH A SPATIAL PULSE

In this section we examine the scattering.of a single electron
sheet as it moves through a spatial amplitude pulse formed by a
non~-ducted wave when its ray direction'stays field aligned for a certain
portion of the wave path. As depicted in Figure 5.17a the ray direction
is field aligned between A = = 10° and A = = 7°, which is equivalent
to 1000 km in length. Other interaction parameters are specified in the
szae figure., The interaction is studied for a wide range of initial
parallel velocities, Av,, as illustrated in Figure 5.17b. The minimum
parallel velocity 1s 1.012 Vphaq s the maximum parallel velocity is 1,106
Vpteqs and the parallel velocity increment is 0.001 Vpueq. The wave
amplitude is assumed to be zero everywhere except for = 10° < A< =7°,

The scattering results are shown in Figure 5.17. To explain those
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results we can use Figure 5.17b as follows; when the initial parallel
velocity is small, for example Vipeq ® 1.012 Vpueq? the latitude of the
first resonance point is also small, i.e. it is close to the equator.
Hence, as those electrons travel up the field line toward the equator
they encounter the spatial amplitude pulse but parallel and phase
velocities are rather different resulting in a very weak interaction.

As the initial parallel velocity of a sheet is increased the first
resonance point moves away from the equator and closer to the amplitude
pulse, and the two velocities become better matched. This better
velocity match results in a stronger inte;action and a negative
scattering <Aaeq> « A negative sign of <A°Eq>' means that electrons are
accelerated. This acceleration is consistent with the relative ratio of
two velocities; namely, before electrons reach the first resvnance point
their velocity is less than the wave phase velocity in which case
electrons are accelerated in order to match the phase velocity.
However, further increase of the parallel velocity beyond 1.082 Vpueq
results in a change of sign of the effective scattering. This occurs
when the first resonance point falls within approximately +0.5° of the
pulse front edge at - 10°. The principal difference is that electrons
become trapped as they interact with the pulse, whereas for lower
parallel velocities there were no trapped electrons. When trapping
takes place the parallel velocity follows the phase velocity, which
decreases as electrons approach the equator, and this results in a
positive sign of scattering <Aaeq> in Fig. 5.18, Furthermore, as the

parallel velocity is increased beyond 1.094 Vpueq the first resonance

moves even further down the field line and interactions become small
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FIGURE 5.17  INTERACTION WITH SPATIAL AMPLITUDE PULSE

EXTENDING BETWEEN A=-10° AND A=-7°. Shown
in (a) is the position of spatial pulse on the field line.
The range of affected initial parallel velocities is shown
in (b).
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FIGURE 5.19  INTERACTION WITH SPATIAL AMPLITUDE PULSE EXTENDING

BETWEEN A=7° AND A=10°. The format is the same as
that of Fig. 5.18.
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again, The shaded area in Flg. 5.17a indicates the trapping velocity
bandwidth A'vt which is also indicated in Fig. 18. When comparing
areas of positive and negative scattering in Fig. 5.18 they turn out to
be approximately the same which means that the energy exchange is small,

This example is a good illustration of the different features of
the longitudinal resonance interaction. We see that the electron
behavior is very dissimilar in cases with and without trapping.
Untrapped electrons change their velocity depending on the relative
ratio of phase and parallel velocities, while trapped electrons become
space bunched and their parallel velocity follows the wave phase
velocity.

Figure 5.19 {llustrates a similar type of interaction as the one
discussed above, only the spatial amrlitude pulse is on the other side
of the equator. The corresponding scattering results are shown in
Figure 5.20. Those results may be explained using the same analysis as
the one used in the previous example. The trapping occurs when the
first resonance point is close to the pulse front edge at A = 7°, ;
although the trapred electron scattering is now negative as the phase -
velocity increases. The untrapped particle scattering is positive
because the phase velocity is smaller than the parallel velocity before

the resonance point is reached. !




VI. FULL DISTRIBUTION SIMULATIONS

A. INTRODUCTION

In ~hapter V we have presented results of single sheet
simulations. The purpose of that analysis was to clarify various
aspects of the longitudinal resonance process, In this chapter we carry
those calculations one step further by increasing the number of test
electrons in order to simulate a full distribution. Such calculations
are interesting for two reasons:

1) It is possible to calculate a precipitated £flux, and

2)‘It is feasible to estimate wave amplitude changes due’

to the energy exchange.

In the following examples of full distribution calculations
electrons are assumed to interact with a one-sided wave function. As it
was already shown in Chapter V, this type of wave function may produce a
significant amount of scattering, whereas interactions with narrowband
signals (not amplified through gyroresonance) may result in a very small
final scattering. Therefore, based on those results, it appears that
the constant amplitude CW signals represent a very weak source of
precipitation, although those CW waves still may have some amplitude
variations around the equator as a consequence of the interaction with
electrons,

The energetic electrcn population is readily described in terms

13
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of an equatorial distribution function feq (V"eq'aeq)' From this point
on we drop the subscript 'eq', and all quantities reprasent equntorial
values unless specified otherwise. The distribution function is given
in v, - o space because it is a convenient representation which directly
shows the pitch angle scattering, 4a , and it is easy to determine a
normalized velocity Vu/vp; which is one of the prime factors affec "ing
the interaction process. The velocity space volume element is then

)
given as vi ing

dadv,d¢ [Inan, 1977].
cos a
Now we recall results of Figures 5.6 and 5.7 showing the mean
scattering of a single sheet as a funccion of the sheet initial parallel
velocity. From those figures it is evident that the trapping velocity
range considered is limited to a narrow strip around v, = vpu , While

the pitch angle range extends from % to o . The value of A ax DAY

max
be as large as 90°, and specifically in our calculations it may be
limited to a slightly lower value due to time averaging in the equations
of motion. The angle a; = 5.5° is the nominal loss cone angle for the
dipole field lire L = 4, i.e. all electrons with pitch angles lower than
5.5° have mirror points at ionospheric heights (h < 200 km) and are
assumed to be lost through precipitation. As already shown in Figs. 5.6
and 5.7, the trapping velocity bandwidth increases with increasing pitch
angle due to the <¢ffects of the wave magnetic field forces. This

trapping velocity bandwidth Av,. is about 0,47 of v, for o = 10°, and

plleq
about 1% of vp"eqfor a = 70°. Again, it should be noted that this
velocity bandwidth refers to the trapped electrons only. The untrapped
electrons have a quite different behavior; if the initial parallel

velocity is smaller than the lower trapping velocity limit the
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scattering 1s negligible because the wave phase velocity and the
parallel velocity of the electron are never matched along the field
line. On the other hand, if the initial parallel velocity of an
untrapped electron is larger than the upper trapping velocity limit
there are always two resonances; at the first resonance scattering 1y
negligible because the wave amplitude is very small, whereas at the
second resonance point, where the electron parallel velocity exceeds the
wave phase velocity, the untrapped electrons are decelerated. All of
the above mentioned classes cf electrons are illustrated in Figure 6.l.
The scattering of untrapped electrons is much smaller than it is for the
trapped electrons, but the interaction velocity range for untrapped
electrons is larger than the trapping velocity bandwidth. The effects
of trapped and untrapped electrons on the wave amplitude are exactly
opposite; the trapped electrons are accelerated and the wave loses
energy, whereas the untrapped electrons are decelerated and the wave
gains energy. This dissimilar behavior of trapped and untrapped
electrons indicates that, in order to calculate a net transfer, it is
necessary to consider a wide range of initial parallel velocities of
electrons which then requires a very large number of test electroms.
While the wave amplitude variation calculations require a large number
of test electrons the precipitation calculations may be carried out by
considering a significantly smaller number of electruns, because only a
certain class of electrons can be scattered into the loss cone, 1i.e.
only trapped electrons with sufficiently small initial pitch angles are
precipitated in the ilonosphere.

From Fig. 6.1 it is obvious that there is always an amax'<17/2
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such that electrons withcx>amax cannot be scattered into the loss cone.
As noted above those scattered electrons must have been trapped, i.e
only trapped electrons may have their pitch angles decreased by the
amouqt required for precipitation. Based on the above limits for v,
and o it 1s feasible to define a region in v, - o space (cross-shaded in
Fig. 6.1) containing electrons that can be scattered into the loss comne.
This region in the v, - o space is further divided into a number of mesh
points identified by their v, and a , and this mesh then represents the
initial distribution. The number of electrons at each mesh point is
equal to twelve, reflec :ing the fact that electrons are uniformly
distributed in phase, Figure 6.2a illustrates the unperturbed
distribution function: note that we use the number density of electrons
Np rather than f(vs ,®). The number density and f(vs ,Q) are related

through [Inan, 1977]:

sina

Np = 21 f(v,a) va Avy, Aa (6.1)

cos’a

Using Eq. 6.1 it is also possible to find the actual number of
electrons represented by a single test electrnn.

During the interactions the initial distribution of electrons
(Fig. 6.2a) 1is perturbed by the wave, and the final distribution is
shown in Figure 6.2b. Note that the velocity mesh size is different in
Figs. 6.2a and 6.2b, since the energy of the electrons tends to be
significani..y increased through the interaction process. Beside an
overall increase in electron energies, three electrons are scattered

into the loss cone. In the next section precipitation fluxes are

3
#
2
3




118
ORIGINAL PAGE IS
OF POOR QUALITY

LOSS
(A) CONE a
A Q b —
0.998 12 (12 12|12 (12|12 (1212 {1212 i
0.990 1202 {12)i2fn2{i2f2]{2]12{n2 avy,
1.000 12 (1212 |12|12]12|12] 1212 ] 12| |V
1.010 12122 |2{i2]12]12]12]12]12
1.020 12(12f12)12]12]1212|12]12]12
Viteq ‘
Vpileq
INITIAL
(8) DISTRIBUTION =
1.000 F====-/_ o e s e
100 29(32|28|31|31|27]34]|28(33]|29] 1
1 200 1 |29]|28[29(26]28|30]|27|29{27(27
' 2|s 12122111
1.300
1.400
Vileq
Voileq
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computed for three particular cases.

B, PRECIPITATED ELECTRON FLUX

Here we compute the precipitated electron fluxes involving a
one-gided wave function, and for three different maximum wave
intensities (E, = 50, 150 and 250 uV/m). The maximum initial pitch
angle considered in these calculations is 10°, since there are no
electrons with a > 10° scattered into the loss cone even when the
electrons interact with a very strong wave, i.e. E, = 250 uV/m. The
initial unperturbed number density function is the same in all three
examples, and was already shown in Fig. 6.2a. Furthermore, the

distribution function is taken as
A
f(v,a) = g(a) (6.2)

where A is a constant and g(d) is some function of pitch angle. In our

calculations g(a) is assumed to be an isotivpic function given by

g =gi1(a) =1 a>a (6.3)

1lc

R T

DEPUPPE

The following analysis is similar tn that presented by Inan

[1977], although in his work electron scattering was due to
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gyroresonance interactions. First, before computing the precipitation,
it is feasible to compute the wave induced pitch angle perturbations
given by f£(a) which is obtained by integrating £(v.,a) over the velocity
range of interest. In our examples, involving a 5 kHz wave, it is found
that the maximum parallel velocity after the interaction is

Vipax = 1.8vpn, whereas the minimum parallel velocity is vupin=0.98 vp,.

The equatorial phase velocity vpu for a 5 kHz wave is 11.23 10 m/sec.

Thus the pitch angle distribution is given by

vy = 1.8 Vpu

f(a) = 27 S £(vy,a) vidv, (6.4)
vy = 0.98Vpu

remembering that electrons are uniformly distributed in initial phase,
which results in thé factor 2T 4in Eq. 6.4.

Figure 6.3 shows the normalized pitch angle distribution f(a) as
a function of @ for different wave intensities. The dashed curves show
the initial unperturbed distributions, whereas the solid curves indicate
the final distributions. These results show that the longitudinal
resonance interaction requires rather strong waves in order to scatter
electrons into the loss cone. For a wave with E, = 50 UV/m (B,= 14 pT)
the perturbations are very small, and only a few electrons are scattered
below Q. e When the wave amplitude is increased the loss cone starts to
fill with electrons, and also electrons with higher pitch angles are
scattered down to lower pitch angles. This process is best illustrated

in the case of a 250 uV/m wave, where the loss cone is filled with
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electrons having a wider range of initial pitch angles than the
electrons reaching the loss cone in the two other cases.
The total number density of electrons precipitated in the

velocity range 0.98 Vpu to 1.8 Vpu 18 given by

dlc 1.8"p”
2 sina e
N =27 £(va,a) v dv,da L3(1+3sin2 1)) (6.5)
cos'Q
0 0.98vp.

1
where the factor L3(1+3sin2 ) )/z accounts for the convergence of the
field line going from the equator to ionospheric heights. The

precipitated energy deposition rate is computed in similar fashion by

2
including the energy weighting factor % m ML in (6.5) which then
cos?a
yields
ak 1-8Vp"
va vi Yy
Q= 2m £(v,,a) v3 1/2m——-~ dv,da L3 (1+3sin? ) )/2 (6.6)
cos’a cos2a
o 0.98Vp"

The integrals in Eqs. 6.5 and 6.6 are easily evaluated by a numerical
integration. For the three examples considered the normalized energy

deposition rate, defined as QN = Q/A where A is defined in Eq. 6.2, are:
Es = 50 uV/m Q - 0.9652+10™" erg/cm®/sec

Esw = 150 uV/m Q = 0.8129+1072 erg/cm?/sec

Ew = 250 uV/m Q = 0.3565+10°!! erg/cm?/sec

.
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To compute the total energy deposition it is necessary to
evaluate the constant A. This can be done by computing the total number

density NE in el/cc in the specific velocity range 0.98-1.8 Vpu » In

this case
m l.vau
NE - 211'5 S -‘-,é,;- v? sina dv do (6.7)
0 0.98vp"

The above integral yields

A = 2x10° Ng (6.8)
Finally, to compute A it is necessary to estimate Ng from the

reported measurements. From Schield and Frank [1970) we find that N = 1

el/cc in the 1-2 KeV range and that the number density varies as v~ *with

velocity (E~? with energy). In our case the electron emergies are

E
increases with decreasing electron energy. Substituting NE = 10 el/cc

300~1000 eV which results in N_ = 10 el/cc, since the number density N

in Eq. 6.8 we find that A = 2x10°,
The next step is to compute the absolute energy deposition rates

by multiplying the normalized rates QN by the constant A, The results

are shown below:

§
4
kc

E, = 50 uV/m Q = 1.94x10"%erg/cm?/sec
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E, = 150 uV/m Q = 1.66X10"*erg/cm®/sec

Evw = 250 uV/m Q= 7.40*10’3er3/cm2/sec

The above values indicate that the fluxes precipitated by a 5
kHz wave, which is amplified at the equator through the gyroresonance
interaction, are rather small, especially when compared to those
computed for gyroresonance interactions. Results for the gyroresonance
process calculated by Inan [1977] indicate flux levels of 0.01-0.2
erg/cmz/sec for a 10 pT wave. Note that 10 pT corresponds to E, = 30
uW/m for 6 = 30° and £ = 5 kHz. Thus, the scattering efficiency is
considerably higher for the gyroresonance than it is for the

longitudinal resonance.

C. ENERGY EXCHANGE AND BALANCE

From the analytical and numerical studies it is evident that the
scattering of electrons is always associated with energy transfer, i.e.
if electrons gain energy then the wave is attenuated, or if electrons
lose energy then the wave is amplified. Also, a large scattering is
always associated with a large energy exchange. Such behavior
constitutes another major difference between the longitudinal and the
gyroresonance processes; namely, electrons can be scattered
significantly through the gyroresonance interacticns with a very small
amount of energy transfer. This is explained by the fact that in

gyroresonance it is the momentum transfer that causes pitch angle
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changes, whereas the energy remains almost unchanged [ Inan, 1977].

The total energy balance calculations for the longitudinal
resonance process are extremely complicated as they involve a large
number of electrons. As indicated in Fig. 6.1 the electrons with
parallel velocities close to the wave phase velocity become trapped
which then results in scattering from -0.2° up to -6° for pitch angles
from 10° to 70°, respectively. The scattering of untrapped electrons is
smaller and positive, about 0.05-0.1° on the average. However, only a
fraction of the electron population becomes trapped, while the number of
untrapped electrons is much larger. From the sample calculations it
was estimated that the upper velocity limit for untrapped electrons can
be as high as 1.30 Vpn » i.e. even if the initial parallel velocity of
the electron is v, = 1.30 Vpn the electron is still scattered more than
+0,005°, The scattering of +0.005° represents a practical threshold of
resolution for the numerical integration method used in our simulations.
This resolution limit was found by setting E, = 0 uV/m, i.e. computing
only the adiabatic motion of the electrons and comparing the initial and
the final pitch angles. Theoretically, the difference between these two
pitch angles should be zero, whereas the numerical results have shown
#0,005 fluctuations, which are than used as the limit of accuracy
(resolution)., These fluctuations are primarily due to the integration
scheme, which uses linear interpolation. Returning to the energy
exchange problem, it is evident that both trapped and untrapped
electrons play important roles, and it is rather difficult to £find an
exact solution to this problem as the number of electrons involved is

very large.
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However, it i3 possible to estimate the energy transfer as
follows; let us consider the example of Fig. 5.7a (solid curve) showing
scattering as a function of the initial parallel velocity for a fixed
initial pitch angle a = 10°. This curve can be replotted substituting
energy changes for pitch angle changes and also expanding the velocity
range. Note that these results must be weighted by an appropriate
function to account for different number densities at different
velocities. This weighting function is assumed to have a v?
characteristic (Eq. 6.1). Figure 6.4 shows both unweighted and weighted
energy transfer, i.e, the average energy gain (loss) per electron with a
given initial parallel velocity, as well as the weighting function
(dashed curve). Now it is possible to use a numerical integration to

estimate the total energy balance for this particular case.

The total energy exch.nge is given as

Ez(l .03Vp")
AE = S dE (6.9)

E](O -99VP'|)

where AE represents the total energy exchanged through the longitudinal
interaction with electrons whose initial parallel velocities are in

0.99-1.03 vps range, and all those electrons have the same pitch angle
a = 10°., The quantity dE gives the weighted amount of energy exchanged
per electron at a particular parallel velocity, and it is showm in Fig.
6.4, The final result of the above integration is AE = 0.03 eV. Though

this number is obtained using only twelve electrons it is evident that

e e e ey e+ o ern
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the total energy exchange at the particular pitch angle is very small
even when the actual number of electrons is much larger.

To compute the overall energy balance similar calculations
should be done for other pitch angles. A rough estimate using Figs. 5.6
and 5.7 indicates that the total energy transfer is very small, since
the positive and negative scattering cancels out, i.e. the total area
underneath <Aaeq> curve is approximately zero.

Summarizing, it appears that both the precipitation and wave
amplitude amplification (attenuation) for our sample case are small,
Thus, it may be very difficult to observe the presence of this type of
longitudinal interaction using ground observations. Another possibility
for detection would be to use satellite borne particle detectors and
to measure a relatively sharp depletion or electron density around
Va = vpn o However, the problem is that particle detectors measure
energies and pitch angles rather then parallel velocities and pitch
angles, Note that the problem arises from the fact that the n;trow
range of parallel velocities which are affected (and wide range of pitch
angles) maps into a wide range of energies (and pitch angles).

For example, if the parallel velocity equals the phase velocity,
Vu = Vpu and pitch angles vary from 5° to 70°, the corresponding
electron energles vary from E_ to Eo(1+:an270°)/(1+tan25°) = 8,48 E,
where Eo is the energy of the electrons with 5° pitch angle. Beside the
above mentioned spreading effect, which tends to dilute the effects of
the longitudinal resonance when measured on an energy basis, the

particle detector resolution itself may pose a problem. The typical
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resolution of particle detectors is about 2,5°- 5° in pitch angle, and
about 157 in Eo’ where Eo is the energy of interest, For example, {f we
want to measure the density of electrons with energy E = 2E_,, and pitch
angle O = 45°, the corresponding resolution cell would be as shown in
Figure 6.5. n the other hand, the longitudinal resonance will tend to
remove electrons from a narrow velocity band around Vph, leaving a
depletion region in the distribution (Fig. 6.5). The width of the
depletion region is very amall, so th:st it occupies only about 30% of
the resolution cell, ‘s indicated in Fig. 6.5. Therefore, even if we
remove all of the electrons from this depletion region. the particle
detector would see only a 307 decrease in the number of electrons within
the resolution cell., We recall from Chapter V that lengitudinal
resonance Interactions, involving moderate amplitude waves, result in
trapping of only about 307 of the electrons that satisfy the resonance
condition (we considered only the trapped electrons, because only those
electrons undergo sufficient change in vu to be moved from one
resolution cell to another). Thus the maximum total depletion factor
for the resolution cell is estimated to be about 107, On the other
hand, typical particle detector measurements (e.g. Kimura at al., 1982)
indicate large temporal variations of the electron flux, approaching on
order of magnitude in intervals as short as 50 sec. Fo. that reason the
particle detector sensitivity is reduced, because it becomes very
difficult to distinguish between variations due to spatial changes in
particle distribution and wave induced variations. Thus, present
particle detectors are probably not capable of detecting perturbations

of the electron distribution due to longiiudinal resonance interactions,



VII. APPLICATIUNS TO MAGNETOSPHERIC PHENOQMENA

Although it was found that the scattering efficiency of the
longitudinal resonance process is small, it is possible that the
bunching effects of the process may have important magnetospheric
applicatior . In this chapter we consider applications of the
longitudinal resonance to the generation of whistler precursors and to
the generation of broadband VLF hiss. We also discuss the size of the

internal electric field created ix the bunching process.

A. GENERATION OF WHISTLER PRECURSORS

Whistler precursors are discrete rising tone emissions that
precede two-hop whistlers, starting shortly (2.1-0.3 sec) after the
one-hop delay. The precursor may consist of one or more discrete
emissions. For the particular measurements of August 2, 1973, the
number of emissicns varied from one to seven. Figure 7,1 illustrates
three typical cases of precursors showing both one~hop whistlers
(recorded at Siple, Antarctica), and precursors with corresponding ;
two-hop whistlers (recorded at Roberval, Canada). There is no precursor &
in Fig, 7.1b, illustrating the fact that not all whistlers propagating
on the same path trigger a precursor. Figure 7.1d depicts a single

emission precursor, while Fig. 7.1f shows a multi-emission precursor.
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FIGURE 7.1  SPECTROGRAMS OF WHISTLER PRECURSOR EVENTS RECORDED AT
SIPLE/ROBERVAL CONJUGATE STATIONS. The causative spheric
is marked with an arrow, and the whistler component which triggers the
precursor is marked by a W. (b) shows no precursor, (d) shows a single
emission precursor, and (f) shows a multi-emission precursor event.
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FIGURE 7.1.

(b) shows the corresponding amplitude

variation in a 300 Hz bandwidth, and (c) indicates the rate of
frequency change of the frequency-tracking filter used.
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These particular data were analyzed by Park and Helliwell [1977], and it
was found that the precursors were triggered only by the whistlers
propagating in one particular duct, and that the precursors themselves
propagated in the same duct. The duct parameters were L = 3,6 and
equatorial electron density Ngq ™ 440 el/cc. The center of the
plasmapause was located at about L = 4,2 where the equatorial electron
density dropped by factor of ten. Figure 7.2 shows an expanded
frequency-time spectrogram of the precursor at 1400:03 UT, along with
amplitude and frequency changes measured using a frequency~tracking
filter. The growth rate deduced from that figure is about 105 dB/sec,
and the rate of frequency change is about 6.5 kHz/sec.

Park and Helliwell [1977] have reviewed different proposed
generating mechanisms for precursors, including the hLybrid mechanism
suggested by Helliwell [1965] and Dowden [1972]. This is based on the
presence of hybrid whistlers, which first propagate in the earth-
ionosphere waveguide to the conjugate hemisphere and than return through
the magnetosphere and trigger precursor emissions. Other mechanisms
include one proypnsed by Reeve and Rycroft [1976] in which the nonducted
whistler is reflected in the conjugate hemisphere at the lower hybrid
resonance (LHR) frequency, and is then deflected by the plasmapause such
that it enters the duct near the equator, triggers the precursor through
the gyroresonance, and then leaves the duct. A third mechanism
involving a nonlinear multiple wave interaction known as parametric
decay has been suggested by Reeve and Boswell [1976].

Considering various precursor mechanisms for the Aug. 2, 1973

case, the hybrid-vhistler hypothesis can be immediately excluded hecause
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there was no evidence of hybrid whistlers. The mechanism suggested Ly
Reeve and Rycroft [1976] requires special propagation conditions which
are difficult to apply to multi-component precursors with a wide range
of starting frequencies (~1 kHz for the example shown in Figure 7.l1f).
Furthermore, the L-shell values of the duct and the plasmapause differed
by more than the 0.15 required by their model. Finally, the parametric
decay mechanism cannot explain the multicomponent precursors; hence Park
and Helliwell [1977] have suggested a new mechanism.

The new mechanism is illustrated in Figure 7.3 and its time
sequence 1is described below:

a) A lightning impulse in the northern hemisphere produces a
whistler propagating toward the equator.

b) The whistler wave train signal and the energetic electrons
streaming toward the equator interact with one another through the
longitudinal resonance process.

¢) Due to the longitudinal interaction, electrons become space
bunched, which then temporarily increases the electron flux within a
certain range of parallel velocities.

d) This enhanced electron flux reaches the equator while the
whistler signal that caused the bunching continues to travel toward the
southern hemisphere.

f) After crossing the equator the enhanced electron flux
interacts with northward traveling power line harmonic (PLH) waves
through the gyroresonance process, The enhancement of the electron flux
is sufficient to lower the threshold of this interaction below the level

required for triggering of an emission by one or more lines of PLH
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waves. These emissions travel toward the northern hemisphere.

g) While the triggered emission (precursor) travels toward the
northern hemisphere, the one-hop whistler reaches the conjugate point in
the southern hemisphere, where it is reflected. It then travels back to
the northern hemisphere.

h) The precursor reaches the northern hemisphere followed by a
two-hop whistler, resulting in a frequency-time spectrograms similar to
those depicted in Fig. 7.1.

The detailed timing of this process was worked out by Park and
Helliwell {1977] and it was shown that this mechanism can explain
different properties of the Aug.2, 1973 precursors such as variable
starting frequency, multicomponent emissions and variable starting time.
However, there are some special requirements that have to be met in
order for this mechanism to work. First, the enhancement of the
electron flux achieved through longitudinal resonance must be large
enough and should last about 200 ms, so as to provide both the threshold
for triggering through gyroresonance as well as the temporal growth time
required for emission generation. Second, the PLi waves (which
obviously must be present for this mechanism to work) must have
amplitudes such that they approach the triggering threshold level.

PLH activity appeared from time to time in the August 2, 1973
case; during some intervals it dominated the VLF spectrum. Park and
Helliwell [1977] found that the PLH propagated in the same duct with the
precursor; this suggests that PLH waves were present at the time of the
precursor observations and, when not detected, were probably close to

the threshold for triggering emissions through cyclotron resonance.
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As already stated the gyroresonance triggering mechanism will
work only if the electron density perturbations achieved through the
longitudinal resonance result in an electron flux increase which lasts
at least ~200 ms. The 200 msec requirement is asgociated with a typical
temporal growth time [stiles and Helliwell, 1977], i.e. a typical delay
from onset of temporal growth to emission triggering. This flux
increase can be achieved, in principle, through electron bunching. We
have shown in Chapter V that the longitudinal resonance interaction
results in significant space bunching, which in our particular case of a
monochromatic signal was about 180Z%, i.e. the electron density was
enhanced roughly by factor of two at v, = Vou? with the density
enhancement decreasing for other parallel velocities.

However, in order to explain multi-component precursors it is
necessary to increase the electron flux over a relatively wide range of
parallel velocities. At each velocity the flux increase should last for
about 200 msec. To illustrate this process we consider a multi-
component precursor consisting of two emissions with starting
frequencies f; = 2 kHz and £, = 3 kHz, and assume that those emissions
are triggered at the equator, although the triggering location must be i
slightly off the equator to account for the rising frequency-time g
characteristics. From the gyroresonance condition at the equator
f(l+ V"eq/Vpueq) = f;; the parallel velocities at which the flux must be
increased are Vueqy * 76.6 10° m/s and Vieqy = 57.1 10° m/s, where we
used fHeq' 18.7 kHz and fpeq = 188.8 kHz. Thus the whistler interacting
with the energetic electrons must be able to produce an increased flux

at those two velocities for 200 msec. We also recall from Chapter III
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that the parallel velocities vu) and vy vary along the field line as
indicated in Fig. 3.11, and that the electrons with higher pitch angles
mirror closer to the equator.

Next we recall that the longitudinal resonance condition is
given as va = Vp, = ¢ fs&(fu - f_)lh/fp » which yields the resonance
frequency f = 1/2 (;Ht[fﬁ - 4(Vufp/cfﬂy&) (the pius sign gives f >fy/2,
where the waves become unducted, so we can disregard that solution),
The resonance frequency changes as we change the parallel velocity.

For example, if we consider electrons with Vueql and Vneqz and assume
a = 10°, their parallel velocities at 50° latitude are Vi, = 0.30 Vugq,®
22,9 10% m/s and Vuz' 0.30 Vueqz- 17.1 10a m/s, and the corresponding
resonant frequencies are f; = 2,65 kHz and £ = 2 kHz. Thus a whistler
train of appropriate frequency range can interact with electrons with
different parallel velocities, such that when those velocities are
mapped back to the equator they satisfy the gyroresonance condition at
different frequencies. If the perturbations of the electron flux at
those different velocities are large enough and last long enough (~200
msec), they could result in emission triggering at those frequencies.
This would then provide a basis for explaining the generation of
multi-emission precursors.

We want first to illustrate that the flux perturbation at a
given parallel velocity (actually in a narrow range of about 17 around
that velocity) can last longer than 200 msec. In order to do that we
recall the results for the interaction with a spatial pulse from Chapter
V. From Figs. 5.17, 5.18, 5.19, and 5.20 we see that a 1000-km=-long

spatial pulse can trap electrons in a narrow band of velocities (=2%),
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and that those electrons beside being trapped, i.e. space bunched,
undergo pitch angle scattering on the order of a few tenths of a degree.
Although this spatial pulse is stationary and monochromatic, the results
from that analysis can be related to the whistler train if we consider
the whistler train to be composed of segments of approximately constant
frequency. We consider one of those segments with frequency f = 2 kHz;
the group velocity of that segment at 50° latitude (L = 3.6) is about

30 10% m/s , and 1f it interacts with electrons for about 2000 km (this
is comparable to the length of the spatial pulse considered in Chapter
V) the total interaction time is about 70 msec. On the other hand, as
long as an electron is trapped it does not matter if the trapping signal
i3 a stationary amplitude pulse (not moving along the field line) or a
moving segment of a whistler. If the length of the interaction region
in the two cases 1is comparable, the trapping and scattering effects
should also be comparable.,

This segment of the whistler is therefore capable of increasing
the flux in a narrow band of parallel velocities, but this increased
flux should last at least 200 msec at the equator in order to provide
the basis for emission triggering. The total duration of the flux
perturbation depends on the latitude at which the resonance takes place,
and on the pitch angle of the electrons involved. For example, if we
want the triggered emission to start at 3 kHz it is necessary to
increase the electron flux in a narrow band of velocities around
Vg ™ v"eqz, as noted above. However, electrons with v .= v"eqz will have
different pitch angles at the equator, and will thus mirror at diffe;ent

latitudes (see Fig. 3.10). For a = 10° the mirror point is at 53°

e e R e+ 7
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latitude, while for a = 50° the mirror point is at 20° latitude. Thus
our whistler segment at 2 kHz, as it travels toward the equator (from
higher latitudes toward lower latitudes), first encounters electrons
with a= 10° at about 50° latitude (the time of this encounter is the
reference time t = 0). As noted earlier, if the interaction lasts for
about 70 msec, it should be sufficiently long time to bunch the
electrons. During those 70 msec both wave and electrons move from about
50° to about 48° latitude. After the interaction is over it takes about
0.43 sec for the bunched electrons to reach the equator, or essentially
the travel time from 48° latitude to the equator. When the electrons
arrive at the equator they have v, = V“eqz (we have neglected the
parallel velocity changes due to the interaction, as it is assumed that
the scattering is small). Furthermore, as our whistler segment gets
closer to the equator it interacts with electrons with progressively
higher pitch angles. The arrival time at the equator for those
electrons with higher pitch angles can be calculated using the above
described method. For a = 50° the interaction occurs at 20° latitude,
and those electrons arrive at the equator at t = 0.69 sec (0.5 sec for
whistler travel time from 50° to 20° latitude, ~0.1 szc for the
interaction, and 0.18 for particle transit from 20° to the equator).

Thus the perturbation at the equator would last about t = 0,69 = 0,43 =

Sl Tt

0.26 sec, which is sufficient for the development of emission

Chlm i i

triggering. Computations for the whistler segment with f = 2.65 kHz

indicate that the corresponding flux perturbation lasts about 210 msec.

G L

Therefore it is found that the electron flux perturbsation may last long

enough and may cover a sufficiently wide range of parallel frequencies.
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Note that similar computations were done by Park and Helliwell [1977],
but without consideration of the interaction time.

As noted earlier in Chapter V, this perturbation (space
bunching) 1is associated with an amplitude threshold of the waves driving
the longitudinal resonance. This suggests that one could measure the
amplitudes (on the ground) of whistlers with and without precursors, and
therefore test for the presence of the threshold. Such ampliiude
measurements were made on one-hop whistlers recorded at Siple,
Antarctica, and propagating at L = 3,6 on August 2, 1973. The data were
taken at two frequencies, 4000 Hz and 4600 Hz, using a bandpass fil%er
with Af = 300 Hz, This provided the temporal resolution needed to
distinguish a particular whistler component connected with precursor
generation from other multipath components. The results of those
measurements are shown in Figure 7.4 as amplitude vs. time diagrams.

The whistlers without precursors are indicated by crosses, the whistlers
with single emission precursors are indicated by circles, and the
whistlers with multicomponent precursors are indicated by squares, where
the numbers above the squares represent the number of individual
emissions forming a single precursor event.

Figure 7.4 shows that the amplitudes of the one-hop whistlers
decreased, on average, from =15 dB (0 dB level corresponds to 100 uV/m)
to about =22 dB for £ = 4600 Hz. For f = 4000 Hz the average amplitude
decreased from -~13 4B to about =17 dB in the same period of time between
1335 UT and 1415 UT. This overall decrease of the whistler amplitudes
i3 most likely a result of increased absorption in the ionosphere

because of transition from nighttime to daytime conditions (sunrise time
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was around 1400 UT)., Helliwell [1965] has shown that there is a
significant increase in the ionospheric absorption at VLF for the
night-day transition, sad that the amount of the absorption increases
rapidly with increasing frequency. This prediction is consistent with
the above observations; the amplitude level at 4000 Hz dreps about 4 dB,
whereas the amplitude level at 4600 Hz drops about 7 dB. If we further
agsume that the maximum ionnspheric absorption occurs in the D region at
about 100 km altitude [Helliwell, 1965] it is possible to estimate the
duct exit point using the path L value as one coordinate and sunrise
time at 100 km altitude as the recond coordinate. From Fig. 7.4 we see
that the amplitudes of the whistlers start to decrease around 1355 UT
which is then assumed to indicate the beginning of sunrise effects. On
the other hand calculations show that for sunrise times of 1355 UT and
1405 UT at 100 lm alti ude, the terminator reaches the latitudes of 71°S
and 72°S, respectively. This period of time (1355~1405 UT) is the time
when the whistlar amplitudes are rapidly decreasing (Fig. 7.4),
suggesting that the latitude of the whistler duct exit point was between
71°s and 72°S. Because the whist'zr duct was on L = 3.6, we can find
where this line intercepts the above latitudes; the result is shown in
Figure 7.5. The estimated location of the duct exit point lies in the
north-west direction from Siple Station, at a distance of about 490 km
for 71°S latitude, and about 830 km for 72°S latitude.

A more important feature of Fig. 7.4 1s the presence of a
threshold level that a whistier amplitude must exceed in order to
trigger a precursor. This amplitude threshold is most clearly seen

between 1335 and 1350 UT. As found earlier in Chapter V, such hehavior
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is one of the characteristics of the longitudinal resonance interaction,
which then supports the precursor generation mechanism suggested by Park
and Helliwell [1977]. We note that the apparent gap in the precursor
activity between 1350 and 1400 UT is artificial. At least five
precursor events were observed at Roberval, but it was not possible to
measure the corresponding amplitudes of the one-=hop whistlers due to the
operation of a VLF transmitter at Siple (receiver preamplifier muted).

In the next period of time, between 1400 and 1415 UT, the
precursor activity still exhibited a threshold, although not as clearly
as before. The presence of many multicomponent precursors indicates
favorable triggering conditions for the gyroresonance interaction
between electrons and PLH waves. This is supported by the level of
spontaneous magnetospheric emissions, which increased sharply around
1400 UT, and strong PLR (power line radiation) which was observed for a
period of a few minutes.

The data show that the precursor generation was associated with
an amplitude threshold in the driving whistler, but the model suggested
by Park and Helliwell [197i]also requires that the space bunching
produced by the one~hop whistler be sufficient for triggering emissions.
As 1t was found earlier, the space bunching process can roughly double
the electron density (flux). According to Helliwell and Inan [1982] who
proposed a feedback model to explain VLF growth and discrete emission
triggering in the magnetosphere (through gyroresonance), a doubling of
the electron flux is usually sufficient to result in the triggering of
emissions. In their model the loop gain G is directly proportional to

the electron flux. For G<l the system acts like an amplifier, while for



147

G>1 the system becomes unstable and can generate emissions. Therefore,
a doublinz of the flux could easily boost the loop gain G to a value
larger than unity and thus result in triggering.

Thus the precursor generating mechanism suggested by Park and
Helliwell [1977] appears to be supported by the results found for the
longitudinal resonance, including both the amplitude threshold and the
level of the density bunching.

In the next section we discuss some other aspects of the
longitudinal resonance interaction that may be important in other

magnetospheric processes.

B. VLF HISS

One of many magnetospheric processes for which the generatirg
mechanism is not certain is VLF hiss, most often observed on the ground
as relatively broad band (several kilohertz) noise. VLF hiss often '
shows no discrete structure, having the appearance on a spectrogram of
band-limited white noise, This type of spectrum is characteristic of

auroral and plasmaspheric hiss, whereas mid-latitude hiss usually shows

4

some kind of discrete structure. Therefore, the hiss generating
mechanism must be such that it can explain the generation of relatively
wideband signals, and also account for the observed amplitudes of such
signals.

An electron propagating in a dielectric medium does not radiate

as long as its velocity remains less than the phase velocity in that
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medium; if the electron velocity is larger than the phase velo:city we
have a case of Cerenkov radiation. The two situation are depicted in
Figure 7.6, and we note that the electron radiates at only one angle
when v, > c/jE;. However, in the case of a dispersive medium different
frequencies are radiated in different directions, as shown in Figure
7.7. In the magnetosphere the radiated frequencies are within the VLF
range. Thus if the amplitude of the Cerenkov radiation is large enough
it could account for the hiss generation. It should be noted that the
condition for Cerenkov radiation is exactly the same as the condition
for longitudinal resonance, i.e. the electron velocity must match the
phase velocity (in the direction of electron travel) in a particular
medium,

In the magnetospheric case it can be shown that there are in
general two Cerenkov frequencies radiated at each angle, and that the
radiation condition is not met when the parallel velocity exceeds the
critical velocity Vi, [Brice, 1964]. The critical velocity corresponds
to propagation in the Gendrin mode, which was defined in Section III.B.
As noted earlier, the broadband nature of Cerenkov radiation makes it
interesting as a possible source of VLF hiss, and it was considered by
many authors [Ellis, 1959,1960; Dowden, 1960; McKenzie, 1963; Liemohn,
1965; Mansfield, 1967; Seshadri,1967; Jorgenson, 1968; Lim and Laaspere,
1972; Taylor and Shawhan, 1974]. However, all of the power density
calculations fell short of explaining the observed power density of VLF
hiss, indicating that incoherent Cerenkov radiation is not sufficiently
strong to account for VLF hiss, For this reason other mechanisms were

suggested which are still based on the Cerenkov radiation, but in which
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radiation 1is either coherent [Taylor and Shawhan, 1974], or amplified
through interaction with an electron beam [Swift and Kan, 1975; Maggs,
1976]. In the case of the coherent radiation it is assumed that the
radiation from n electrons is in phase, resulting in P = n?P, where P is
the power radiated by each electron. On the other hand, if all n
electrons radiate incoherently (random phase) the total radiated power
is given by P = nP,

Due to the n’ dependence, a relatively small number of electrons
radiating coherently could produce power levels which are in agreement
with the measaraments., Thus the problem is to identify a process that
could result in electron bunching such that the bunch dimensions are
much less than a wavelength (smaller dimensions mean greater coherence).
As already shown, the longitudinal resonance interactions may produce
such bunches of electrons, and it may be speculated that the radiation
coherence needed to explain VLF hiss is created in the following way:
(1) first a strong signal bunches a significant number of electrons
(stronger waves would produce better coherence), and (ii) the bunched
electrons become detached from the bunching wave. The detachment may be
due to difference in phase and group velocity, as is the case for the
whistler mode where the phase and the group velocity are always
different (except for f = fy/2). FKor example, consider a pulse with
f <fy/2 so that vg > Vvp,. Electrons trapped by this pulse will have

Yy = Vp,» but because the wave energy propagates with Vg > Vi, those

electrons slide backwards through the pulse, and eventually emerge from

BT S O R

the tail end of the wave packet. Such a blob of electrons could radiate

coherent Cerenkov radiation.
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However, it remaing to be seen how long this blob of electrons
remains bunched, because it may contain electrons with different pitch
angles and different parallel velocities. For the moment let us assume
that all electrons have the same parallel velocity, but different pitch
angles which means that they have different variations of parallel
velocity as required by their adiabatic motion. Thus, for a given
spread in pitch angle it may be determined how long it takes the
geparation between the low and high pitch angle electrons to become
larger than the wavelength, which than destroys the radiation coherence.,
The sample calculations have shown that the coherence time for a given
initial spread in pitch angles depends strongly on the latitude where
the electrons become detached from the bunching wave, i.e. on the
latitude at which their motion begins to be entirely governed by the
static magnetic field. For example, assuming the initial range of pitch
angles to be from a = 10° to a = 20°, and detachment at 20° latitude
(electrons are moving toward the equator), it takes only about 1 msec
before the separation between 10° and 20° electrons becomes larger than
one wavelength. On the other hand, if the detachment occurs at 1°
latitude (for the same initial range of pitch angles) it takes about 0,2
sec for the same process to occur. Note that after 0.2 sec the
electrons reach 4° latitude, but on the other side of the equator.

A blob of electrons created through the longitudinal resonance
interaction and with a spread in pitch angle only could radiate
coherently for a substantial period of time (few tenths of second).
However, the electrons within a blob have slightly different parallel

velocities, e.g. a typical spread in parallel velocity is about 400
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lm/sec (Figs. 5.10 and 5.15). Thus it will take only about t = 2/400 =
5 msec for those electrons to become separated more than a wavelength at
the equator, assuming the wavelength to be 2 km at the equator, From
this result it is evident that spreading due to the finite range of
parallel velocities occurs much faster than the spreading due to a
finite range of pitch angles, and that the life time of the blob is
about one hundredth of a second. We also note that the blob of
electrons could further be dispersed due to interaction with other
waves,

Thus it is possible that the short life time during which the
blob can radiate coherently, together with the fact that there may not
be many electrons within a single blob, makes the radiated power level
insufficient to account for the observations. However, there could be
more than one blob formed through the above described process, which
could further enhance the radiation (as long as the radiation from
different blobs does not interfere). Even stronger radiation effects
could probably be achieved if the velocity of the electron blob equals
the critical velocity, because in that case all radiated frequencies
satisfy the Gendrin condition given in Chapter II. The enhancement of
radiation 1s expected because for the Gendrin mode the ray direction is
field aligned for all radiated frequencies, and the group velocity is
independent of the wave frequency so that wave packets radiated at
different frequencies travel together [Helliwell, private communication].

Another explanation for VLF hiss generation is based on

amplification of incoherent Cerenkov radiation through the wave-beam

interaction where the beam provides for the 'bump-on-tail' distribution.
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As mentioned earlier, a distribution function which has a positive
slope, as 13 the case for the bump-on-tail distribution, may result in

Landau growth,

C. COMMENTS ON THE INTERNAL FIELDS OF THE BUNCH

At this point we should note that space bunching always gives
rise to an internal electric field through the Poisson equation. This
electric field will then act to debunch the electrons, as it opposes the
wave bunching field. Although this effect can be neglected in test
particle simulations where the number of 2lectrons is small, it may
become important depending on the actual flux of particles. We have
shown that significant bunching occurs for a parallel electric field
around 50 uV/m and higher, so that we choose 5 uV/m as the limit for the
internal field, i.e. we assume that internal fields up to 5 uV/m do not
significantly affect the bunching process. Using the 5 uV/m field we
can find an electron density N that is needed to produce that field. 1In
Chapter IV we showed how the twelve test electrons are uniformly
distributed in phase before the interaction, and in Chapter V (Fig.
5.15) we showed that the same electrons are compressed in phase space,
i.e. space bunched. The typical compression is about 90° in phase, or
500 m assuming A = 2 km,.

At the same time each single test electron actually represents a
large number of electrons in the real distribution, i.e. each test

electron represents a sheet of electrons. Thus the question is, 1if we
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have twelve initially equidistant sheets of electrons, and we displace
those sneets so that the total displacement is 500 m, what is the
maximum electron density for which the internal field (due to the
compression of the sheets) does not exceed 5 uV/m? It turns out that
this computation 1is rather simple, and the electron density is given as
[ Buneman, 1980]

EoE
N @& =

e As .1
where E 1s our maximum allowable internal field (negative), and As the
total displacement of the sheets. Using E = 5 uV/m, As = 500 m, and
€,™ 8.854 10 2 we find N = 0.55 el/m' which is the maximum allowable
density, i.e. densities larger than this produce internal fields
stronger than 5 uV/m, which can reduce the bunching effects. When the
density of the electrons is known we can relate it to the electron flux
as discussed below,

It was shown that trapping occurs in a narrow range of parallel
velocities centered around the wave phase velocity, so we use 17 as a
typical value. The next step is to compute the actual number of
electrons in that velocity range, and then to compare with the
previously computed N = 0.55 el/m’ . The electrons are assumed to have
an initial energy of 300 eV and a = 10° , so that the corresponding
parallel velocity is v, = 9.654 10° m/s. In that case the total number
of electrons, within 1% velocity range around v,, is given as (assuming

an isotropic distribution in pitch angle)
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v
A
v? sina dv da (7.2)
v

where A is a constant that can be deduced from the flux. It can be
shown [Inan, 1977] that for E = lkeV and a = 90°, A = 2 ¢, where ¢ is
the differential energy spectrum for 1 keV electrons with a= 90°, Note
that this relationship between ¢ and A holds only for a v 'distribution,
and it is necessary to use a different relation for other distributions.

Thus, substituting for A in Eq. 7.2, and integrating we have (n ¥ 3)

Va

y-ont2+l
N - 41rA - ————————— (7-3)
n=-2-1

whereas for n = 3 we have

Ve

N =4TAln v (7.3a)

Vi

and Table 7.1 shows the results for various values of the differential
flux ¢ (1 kev, o= 90°) and various values of n (the constant A is given
as %;Ei%]n/2¢ where m is the electron mass).

Thus, from Table 7.1 we can find the values of n and ¢ for which
the electron density is lower than 0.55 el/m’, i.e. we see when it is
possible to have bunching without creating a strong internal electric
field which may significantly decrease the bunching effects. Also note

that only the trapped electrons contribute to the internal field.
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r
Flux n A N (el/m’)
(el cm 2sr !s !kev)

10° 3 1.3 1077 1.3 1072
108 4 2 10 21658
10° 5 2.9 10*° 3.1 10°
10° 6 4.4 10°° 6.8 10'°
10* 3 13107 1.3 1077
10* 4 2 10° 2,17

10* 5 2.9 10'° 31

10* 6 4.4 10%" 6.7 10°
10% 3 1.3 107%° 1.3 107°
102 4 2 10? 0.02

102 5 2.9 10'7 0.31

102 6 4.4 102 6.7 10"

TABLE 7.1 Total number of electrons within 17 velocity
bandwidth for 300 eV electrons as a function of flux and
various distribution functions. .

Because most of the flux measurements are made at higher energies the
exact fluxes and distributions at lower energles are uncertain, but as
those data become available Table 7.1 can be used as a guide to
determine 1f the bunching of the electrons is affected by the internal
fields. Present measurements indicate that the flux can be on the order
of 10° to 10° , and the exponent n can vary between 3 and 5 [Kimura,
1982; Shield and Frank, 1970].

We have presented two examples in which longitudinal resonance
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interac*ions may play an important role, along with an analysis of the
limiting electron flux for the bunching. We conclude our discussion

with a summa.y and suggestions for future work.



VIII., CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

A, SUMMARY

We have analyzed the nonlinear longitudinal resonance
interactions between energetic electrons and coherent VLF waves in the
magnetosphere, The longitudinal resonance, which may result either in
wave growth or wave damping, and also causes space bunching of energetic
electrons, was numerically simulated using time averaged nonlinear
e2quations of motion. The simulations were done for single electroms,
sheets of electrons, and a full distribution of electrons. Those
studies, done for different types of wave functions, have shown how the
the wave forces modify the electron trajectories, and that the
trajectory perturbations result in nonlinear pitch angle scattering.

The nonlinear pitch angle scattering variations have been studied for a
wide range of the initial pitch angles, wave amplitudes, cold plasma
densities and wave normal angles. It was found that there are two basic
groups of electrons, trapped and untrapped, where the trapped electrons,
in contrast to the untrapped electrons, are trapped in the potential
well formed by the '‘wave. The trapped electrons cause the space bunching
which increases the electron flux at certain parallel velocities.

The nonlinear scattering for the longitudinal resonance is found
to be much smaller compared to that for the gyroresonance interactions,

indicating a higher efficiency for the gyroresonance process. This is
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so because the scattering for gyroresonance is achieveu *:. “ugh the
conversion of perpendicular momentum of the electron into parallel
momentum with very small energy exchange between the wave and electromns,
while the scattering for the longitudinal resonance is solely based on
the energy exchange. Due to the smaller scattering efficiency a full
distribution simulation produced only small precipitated fluxes, i.e.
for moderate strength VLF waves the precipitation due to the
longitudinal interactions is below the detectable level of about 0.0l
ergs/cm’/sec.

In a study of magnetopsheric applications we found support for a
mechanism proposed by Park and Helliwell [1977] to explain whistler
precursors. We conclude that the longitudinal resonance is a likely
candidate to drive a process ir which a whistler wave perturbs the
particles along a field line through longitudinal resonant bunching.
This bunching has the effect of creating an enhancement, near the
equator, of particle flux in a particular parallel velocity range. The
enhancement is of suffici»at amplitude and duration to permit a
gyroresonance interaction with wave activity such as power line
harmonics. We find that the longitudinal resonance is not at first look
a likely process for creating coherence in Cerenkov process of hiss
generation, but that features of the longitudinal resonance may merit
further study in this direction. Also presented was an analysis of the
limiting electron flux for the bunching, i.e. we estimated the electrom
density at which the internal fields of the bunch may become large

enough to affect the bunching process.
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B. SUGGESTIONS FOR FUTURE WORK

In our presentation we have shown the results of computer
simulation of the nonlinear longitudinal resonance interactions with
constant frequency whistler mode waves in the magnetosphere. This work
could be further extended as described below:

i) We have indicated in Chapter V that both the wave amplitude
(E,) and the wave normal angle are treated as though they are constant
quantities., It was said that this approximation will be valid as long
as the interaction region is small, but there may be cases where it is
necessary to include effects due to the variation of those quantities.
The wave amplitude can be computed as a function of position using a
standard WKB approach, while the wave normal angle variations can be
calculated using a ray tracing analysis. Those additional computations
could either be done separately and entered as data, or they could be
added to the existing code.

i1) Another extension of the present work could deal with CW
pulse signals propagating along the field line. In this case it should
be realized that the wave group and parallel velocities have in general
different values (except for the Gendrin mode) which poses additional
problems. It can be easily visualized that an electron trapped in the
wave potential well, i{.e. an electron whose parallel velocity is very
close to the wave phase velocity, has to slide either backward or
forward through the wzve packet when the group velocity is either

smaller or larger than the phase velocity, respectively; for f < fH/Z
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the whistler mode group velocity always exceeds the phase velocity. In
the case of a CW pulse signal it would also be possible for electrons to
enter the wave packet from both ends, depending on the ratio of their
parallel velocities and the group velocity of the pulse.

From the above discussion it is obvious that this problem would
require significant changes in the present program, but could also
reveal some additional features of the longitudinal resonance.

1ii) Another extension of the work presented here would be to
investigate the longitudinal interaction for the case of variable
frequency pulse signals. In this case the calculations would have to
take into the account the fact that different frequencies of the signal
interact with different electrons, and also at different locations along
the field iine. It should be feasible to investigate the behavior of
whistlers interacting with energetic electrons by approximating the
whistlers with an appropriate number of segments of linearly changing
frequency, as was done in the discussion of the precursor.

iv) It was noted earlier that the wave amplitude may be
significantly changed due to the interaction, especially in a full
distribution simulation. Although in our particular case in Chapter VI
it was found that the total energy exchange is small, it will change for
other distribution functions. For example, if we assumed a v~% instead
of a v dependence, there would be many fewer electrons at higher
parallel velocities, as the weighting function would change from v2 to
vt (see Fig. 6.4). In this case there would be more energy transferred
from the wave to the trapped electrons compared to the energy

transferred from the untrapped electrons to the wave, and the final

PR
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result would be wave attenuation, Thus in cases like this it may become
necessary to include an energy feedback term that accounts for the
amplitude changes. However, for a single particle simulation this

feedback effect is very small and can be omitted.
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APPENDIX A: USEFUL IDENTITIES

Below is the list of identities used in the derivation of time averaged
equations of motion, as well as the derivation of an approximation for
the <quf3x> term for small 9.

cos(y = nsing) = cos ycos(nsing) + siny sir(nsing)

sin(y - nsin¢g) = siny cos(nsin¢) - cosy sin(nsing)

cos(Nsing) = Jo(M) + 2 J2(N) cos(29) + 2 Ju(N) cos(4d) + ...

sin(nsing) = 2 Ji(N) sin(d) + 2 J3(n) sin(39) + 2 Js(n) sin (5¢) + ...

2m

cos(Y - Nsind) dd = Jo(N) cosY

o
2m

55
|

sing cos(y = nsing) d¢ = J;(n) siny

™
cos ¢ cos(y - nsing, dp = 0

27
sin(Y - rsingd) d¢ = Jo(N) siny

2w ‘
sin¢ sin(y = nsin¢g) dp = - J, (N) cosy

T

Y cosd sin(y - nsin¢) do = 0

[o]
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The <qufo> term (Eq. 2.62) 1s given as

v, k cos@

< > =
quEBx =qEuJ; (n) siny pz =

For small 6 sin 6%6, cos§ = 1, and tanf~f so that n = Bw— tang tang,
H

as already found in Section II.C. Furthermore, we note that

v, k cos6 v"-m-*l v,
= cogf = ~—— |
w w vpll

and that near the resonance Vpu ¥V, SO that

v, k cosf Vs

w

’

Therefore, <qu3y> = -qE..sinytanaonl(n), and for small 6

0 tano
Ji(n) = 1 - witam
2 ZwH

Also, for small ¢, pzis given as

1 1 - w/w

T Wy 1T ¥ wlw

1
Pz 5 -

H
H
Substituting for J, (n) and P, in the expression for <qu3x>, the final

result 1is

1l - u)/wH

> = o 2y —t
<qu$x qEwsinytan®a 2(L + w/wH)
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APPENDIX B: PROGRAM LISTING

ANGLES ARE IN RADIANS EXCEPT IN INPUT AND OUTRUT

DIMENSION Z(3020),PHI(252J),82(3097),WN(3Q34),VP(32L7)
DIMENSION FDAT(20),ENDAT(10),ALPDAT(12) ,KTEMP(40)

OIMENSION BESEL(2),ETA(3529),8MULT(3029)

OIMENSION RKDZ(3907),RKDZL(39909),CTHG(3022)

OIMENSION AMPLOW(3063),AMPLHI(3309)

comioM DVPA,EQALD,ALGRD,VPA,FVPA(423),SDIST,ALEQ,A,SVPA,FDIST(18
#,400),EQAL ,FPDIST(189),PI,EM,EL,RPHI,VPE,E,EV,KMAX,VMIN, VPMAX,
ALMIN,ALMAX,ALDC(12),R,RO,VPAEQ,EPA,EVDC(12),IG,EPAG(3304)
COMMON/BLOCKL/ KFDIST(180,400),IFDIST(188,28)

COMMON/BLOCK2/ SFDIST(18%),11AS,IIAF,NVG,ALFALO,ALFAHI
+ALFA(35),JL0,JHI

COMMQN/BLOCKS/ TC(402,12),CARGU(4DD,12),VPHA(ADD,12)
+VPARA(409,12) ,ENER(850,12),PBCARGU(505,12),P3VPH(505,12),
PBVPA(S06,12),TMIN,TMAX,TR(12),TTRACE(12),INDEX(12),

MLO,MHI ,MSTEP ,TEN(859),TPB(S¥S),DISTAN(852),DISTANL(5406)

Z=ARC LENGTH, PHI=INVARIANT LATITUDE,
8Z=(1/8)*DB/DZ, WN=WAVE NUMBER K, VP= PHASE VELOCITY

IREAD IN ALL NECESSARY DATA

CHOOSE GENDRIN MODE OR NOT (IG=1 OR 1G=2)
READ(G,350) IG

FORMAT(12)

READ(S,350) ICONT99

READ(S5,359) ICONTS8S

COLLISIONLESS MODEL OR DIFUSSION MODEL (ICLM=1 OR ICLM=g)
GET MODEL PARAMETERS TE,XIO,XIH,XIHE,ENEQ

READ(5,351) ICLM,POVER,TEMP,XIQ,XIH ,XIHE,ENEQ
FORMAT(12,6F19.5)

THE WAVE AMPLITUDE IS OIFFERENT IN THE CASE OF GENDRIN MOOE

THAN IT IS IN NON-GENDRIN CASE. GENDRIN ODE WAVE INTENSITY IS
BW WHILE NON-GENDRIN MODE WAVE INTENSITY IS LABELED EPA.

THE PROPER SETTING OF WAVE INTENSITIES IS DONE IN FOLLOWING WAY:
1) GENDRIN MODE

WAVE INTENSITY IS BWsCONST*2w+[BW WHERE I8WLOCIBW<SIBWHI.

IBWLO AND IBWHI ARE READ FROM INPUT CARD DECK. AT THE SAME TIME
EPA IS NOT USED WHICH IS ACCOMPLISHED SETTING IELO=IEHI=l

2) NON-GENDRIN MODE
WAVE INTENSITY IS EPA=CONST*2*+*IE WHERE I[ELOCIECIEHI.
AT THE SAME TIME GENDRIN MODE IS SUPPRESED USING IBWLO=IBWHI=1

READ(5,352) IBWLO,IBWHI,1ELO,IEHI
FORMAT(412)

FREQUENCY ITERATION :
ENTER THE MUMBER OF DIFFERENT WAVE FREQUENCIZS AND THEY WILL BE READ =
FROM INPUT CARD DECK ;

ki
;
READ(S5,350) INFREQ q
DO 1013 ICNT=1,INFREQ 4
READ(5,353) FDAT(ICNT)
CONTINUVE
FORMAT(F12.5)

1
b
!
i

o3

READ L VALUE AND ANGLE BETWEEN K&39 (THETA)

READ(S,354) EL,THETA
FORMAT(2F14.5)
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DEFIME DIRECTION OF PROPAGATION
IWD=l =-=> POSITIVE DIRECTION
IW0=-1 --> NEGATIVE DIRECTION

READ(S,350) IWD
PARAMETERS ALONG FIELD LINE PRINTED IF ICONTI=l
READ(S5,358) ICONT!

FULL DISTRIBUTION USED IF IFULL=1, ADIABATIC APPROXIMATION USED
dEVOND RESONANCE POINT IF lADIA=]l, DIFFUSION COEFFICIENTS
COMPUTED IF IDIFFs=l

PROGRAM CAN TRACE EITHER A SINGLE PARTICLE OR GIVEN DISTRIBUTION
GIVEN BY THE DISTRIBUTION FUNCTION FDIST(VPARALEL,ALFAEQ).

1) SINGLE PARTICLES TRACING

TO DO SINGLE PARTICLE TRACING IT IS NECCESSARY TO SPECIFY ITS
PARALLEL VELOCITY AND EQUATORIAL PITCH ANGLE.

THIS IS DONE DEFINING TWO PARAMETERS: IV (LOOP 2906)

AND IA (LOOP 234).

GIVEN RANGE IVLIVS,IVF] PARTICLE VELOCITY IS GIVEN AS
VPAI=VMIN*(1+(1V=1)/10)*1.95 AND PITCH ANGLE IS READ FROM
INPUT CARD DECK USING IA AS POINTER WITH RANGE C(IAS,IAF].

2) FULL DISTRIBUTION TRACING

IN THE CASE OF FULL DISTRIBUTION ALL DATA CONCERNIG SINGLE PARTICLE
WILL BE NEGLECTED. THE INITIAL DISTRIBUTIOM IS GIVEN BY THE NUMBER
OF BINS IN VELOCITY AND PITCH ANGLE RANGE.

NUMBER OF VELOCITY BINS IS READ AS INPUT DATA (NVG) SAME AS PITCH AN
RANGE (I1AS,IIAF].

READ(S5,355) IADIA,IFULL,IDIFF
FORMAT(312)

IF(IFULL.EQ.1) GO TO 1015
READ(5,352)1vS,IVF,lAS, IAF
DO 1914 ICNT1=]AS, IAF
READ(5,353) ALPDAT(ICNTI)
CONTINUE

GO TO 1916

READ(5,341) NVG,II1AS,IIAF,VRANGE,VINITL
FORMAT(312,2F10.5)
CONTINUE

IF(IFULL.EQ.]1) IVSs=]
IFCIFULL.EQ.1) IVF=]
IFCIFULL.EQ.1) lAS=]
IF(IFULL .EQ.1) 1AF=1l

PRINT PHASE ANGLE YES=1, NO=g
READ(S5,363) ICONT2,MLO,MHI ,MSTEP,TMIN,TMAX
FORMAT(412,2F10.5)

READ THE STARTING LATITUDE WHERE TRACING SHOULD BEGIN
READ(5,353) SRPHID

READ VWVAVE AMPLITUDE INFORMATION
READ(S5,350) IGROW

READ(5,358) XPHIOD.XLEN,XAMPL
FORMAT(3F10.6)

READ(&.350) ICONTS

READ(5,352) ICONT2S5

READ(5,353) XMAX

READ(5,353) VDELTA
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136 [~
136 C
137 c ITERATE FOR BW IN GENDRIN MODE. IF GM IS NOT USED SET lBws],l
138 WRITE(S,7057) 16,ICLM,TEMP,XI0,XIH,XIKE ,ENEQ
139 7637 FORMAT(213.5F17.5)
1e2 WRITE(6,7008) IBWLO,IBVWHI,IELO,IEHI,INFREQ,FDAT(])
141 7068 FORNAT(SI3,F10.5)
142 WRITE(6,7009) EL,THETA,IWD,ICONT1,IADIA,IFULL,IDIFF
143 7639 FORMAT(2F10.5,513)
144 WRITE(6,7018) IVS,IVF, IAS IAF,ICONT2,SRPHID,ALPDAT(1)
148 708 FORHAT(513 2F10. 5)
146 DO 218 IBW'!BWLQ IBWHI
147 BW=3,75E-12%2"*1BW
148 DO 208 lEF=1,INFREQ
149 FsFDAT(IEF)
150 C
151 Crermemccncncccncccncvnnenwcecerecsnncecccerecccercccccccacacaca
lgz c DEFINE ALL NEEDED CONSTANTS
183 c
154 E=]1.6921E-19
165 C=2.9978E8
156 PI=3.1416
1567 RO=6.37E6
158 PHIO=ATAN(SQRT(EL-1.))
189 A=3,14156927/1880.
169 EM=9.1066E-31
161 DZ=1.E4
162 R1=7.37E6
163 CTHaCOS(THETA*A)
154 STheSIN(THETA®A)
165 OM=2 ,*PI*F
166 BOLTZ=1.3805E-16
167 EMI=9.1066E-28*1837.
168 G1=982.67*RO*RO/R1/R1
169 OMS'(P!/IZ /3604.)*%2
170 Commemoccccccancnccucvcwnana et Ll Ll D i el DL DL L DL Ly
171 C
172 c TEST PROGRAM FOR FULL DISTRIBUTION
173 IF(ICONT88.£EQ.0) GOTO 713
174 WRITE(6,3958)
1;2 3558 FORMAT(////'TEST BESSEL FUNCTION COMPUTATIONS'//)
1 ARG=0 .
177 CALL RESJR(ARG,!,BESEL,IER)
178 WRITE(6,3956) ARG BESEL(I) BESEL(2)
179 39566 FORMAT(3F12 4)
180 ARG=1.
181 CALL BESJR(ARG,1,BESEL,IER)
182 WRITE(6,3956) ARG,BESEL(1),BESEL(2)
183 713 CONTINVE
184 C
185 Crmmemencnanemnascncnne= detde bt bl b AL DL LA DL LD L LI DL DL DI DD
186 c DENSITY MODEL DATA ARE READ FROM INPUT CARD DECK
187 C COMPUTE PF(PLASMA FREQUENCY), FH (GYROFREQ.) AND RIND(REFRACTIVE
168 C INDEX) ALONG GIVEN FIELD LINE USING QL APPROXIMATION.
189 c ALSC CIOMPUTE WN(WAVE NUMBER IN MAG. FIELD DIRECTION) AND VP(PHASE .
190 C VELT. 7Y JN MAG. FIELD DIRECTION). 3
191 C “IN) AND PHI(N) GIVE POSITION ALONG THE LINE. 3
192 C WN AND VP ARE DIFFERENT FOR GENDRIN AND NON-GENDRIN MODES. b
193 c 4
154 ¢ 3
195 HH=BOLTZ*TEMP/EMI/G1*1.E-2 3
196 C SCALE HEIGHTS ARE CONVERTED TO METERS é
187 HHE=HH/4., ]
198 HO=HH/16. :
199 GPHEQ=R1-R1*R1/RO/EL-OMS/2./G1/RO/EL*((RO%EL )**3-R]**3)
2902 ENFAC=XIH*EXP(-GPHEQ/HA)+XIHE*EXP( -GPHEQ/HAE ) +XIO*ZXP(-GPHEQ/HO)
291 ENFACSENEQ/SQART(ENFAC)
292 N=}
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293 Z(N)=g,
204 PHI(N)=g,
208 R=RO%EL
205 CDEL=],
207 BZ(N)wg,
<28 FPeSQRT(80.6"ENEQ™1.E6)
2929 FH«8,/36E8/EL*"3
219 RINDesFP/SQRT(F*(FH*CTH=F))
211 C VP(N) IS FHASE VELOCITY IN MAG FIELD DIRECTION
212 c IF GENDRIN MODE USED THAN NEXT LINES EXECUTED, OTHERWISE
213 C GO TO 1!
214 c
218 IF( 16 .NE. 1 ) GO TO 11
216 VP¢N)=C/2 . *FH/FP
217 CTHG(N)=2 ,*F/FH
218 WN(N)=2 *PI*F/VP(N)/CTHG(N)
219 EPAG(N)=C*BW*F/FP*SQRT(1.-4.*F*F/FH/FH)
2209 GO TO 12
221 11 VP(N)=sC/RIND/CTH
222 WN(N)sRIND/C*2.*PI*F
223 12 RKGZ(H)=g,
224 C
225 c NEXT LOOP (LABEL 10) COMPUTES ALL MEDIUM PARAMETERS ALONG GIVEN
226 c FIELD LINE
227 c
228 12 N=N+1 -
229 Z(N)=Z(N=-1)+D2
239 PHI(N)=PHI(N=-1)+DZ*CDEL/R
231 CPHI=COS(PHI(N))
232 SPHI=SIN(PHI(N))
233 R=RC*EL*CPHI*"2
234 SRFeSQRT(1.+3*SPHI**2)
235 CDEL=CPHI/SRF
236 SDEL=2,*SPHI/SRF
237 BZ(N)=3./R*(SPHI*CPHI*CDEL/SRF/SRF+SDEL)
238 c BZ IS DELTA B OVER DELTA Z DIVIDED BY 8
239 Z(N)=R0O/2./SQRT(3.)/COS(PHIQ)**2*(ALOG(SQRT(3.)*SPHI+SRF)
240 1 +SQRT(3.)*SPHI*GRF)
241 GPH=R1-R1*R1/R-OMS/2./G1/RO/EL*(R**3-R1**3)
242 ENSXIHYEXP(~GPH/HH)+XTHEYEXP( ~CPH/HHE )+XIO"EXP(~GPHN/HO)
243 EN=SQRT(EN)*ENFAC
244 IFCICLM.EQ.1) EN®ENEQ*(RO*EL/R)**POWER
248 FP=SQRT(8O.6"EN*1.£6)
246 FH=8,736E5*(RO/R)**3*SAF
247 RIND=FP/SQRT(F*(FH*CTH~F))
248 FACT1=1=(FP/F)**%2
249 FACT2s1~FP**2/(Fn*2-FH""2)
259 FACT3e(FH/F)I"FP""2/(F**2-FH**2)
281 IF(IG.NE.1) GO TO 14
252 VP(N)=C/2.*FH/FP
253 CTHG(N)=2.*F/FH
254 UN(N)=2 , *PI*F/YP(N)/CTHG(N)
255 RIND2s(FP/F)**2
2886 STHG2=1-CTHG(N)"*2
287 STHG=SQRT(STHG2)
238 EPAG(N)=C*BV*F/FP*SQART(1.-4.*F*F/FH/FH)}
259 RKDZ(N)=(LUNCN)+WNIN=-1))/2.%*DZ*CTHEG(N)+RXDZ(N=-1)
269 GO TO 1§
261 14 WH(N)2RIND/C*2 . *PI*F
262 VP(M)=C/RIND/CTH
263 RKDZ(N)=(WN(N)+WN(N=1))/2.%DZ*CTH+RKDI(N=-1)
264 CTHG()=CTH
265 RIND2=RIND**2
268 STHGZ=STH"*2

267 STHG=STH



263
269
279
271
e72
273
274
278
27§
277
278
279
289
281
282
283
284
285
286
287
298
289
299
291
292
293
294
295
296
297
298
299
309
301
342
222

WWWW
anhy
NGO &

2408

w W
-
[~XT]

GWWWLWWWWWWW
\) Pt gt et Pt gt Pudt Gt Dut Do
ROUOBNGOG&WN~

w
NN
N >

ORIGINAL PAGE IS

OF POOR QUALITY 170

18 IF (VPO .GT, VPIN=1)) VPMAX=VP(,
BMULT(N)=FACT3/(RIND2-FACT2)*(R1, u2*STHG2-FACT!)/RIND2
1 /STHG/CTHG(N)
ETA(N)=sWN(N)*STHG/FH
MMAX =N
IF (R.GT,RO0) GO TO 19
c Al.L PARAMETERS COMPUTED
Nwg@
RPHI=SRPHID"A

46 NeNe+l
IF(ABS(RPHI).GT.PHI(N)) GOTO 46
INDMAX =N
RKDZL(N)=@,

47 N+-1
RKOZL(N)=(WN{N+12+WNIN))/2,*DZ*CTH+RKDZL(N+1)
IF(N.GT.1) GOTO 47
DO 48 Ns=] , NMAX

48 RKDZ(N)=RKDZ(N)+RKDZL(1)

c---_----------------------nv-----------------------------------
c
c TO PRINT PARAMETERS ALONG FIELD LINE ICONTl=]
c
IF(ICONT!.NE.1) GO TO 6400
[=9
6942 Ha[~10+1
IF(N.GT.NMAX) GO TO 6208
PHID=PHI(N)/A
WRITE(6,.6201) PHID,Z(N),EPAG(N),VP(N),CTHG(N) ,WN(N)
6201 FORMAT(F10.2,5E12.4)
Isl+]
GO TO 6292

6508 CONTINUVE

THIS CODE WILL BE EXECUTED IF VARIA3LE AMPLITUOE WAVE
IS USED PROGRAM
IF(IGROW.NE.1) GO TO 8061
XPHIO=XPHIOD*A
XSTART=R0/2./SQRT(3.)/COS(PHIO)**#2*(ALOG(SQRT(3,)*SIN
1 (XPHIO)+SQRT(1.+3.*SIN(XPHIO)»**2))+SQRT(3.)*SIN(XPHIO)*
2 SQRT(1.+3.*SIN(XFHIO)**2))
XEND=XSTART+XLEN~1000.
DO 8032 I=1,39000
AMPLOW( 1 )=@,
8032 CONTINUE
00 8233 I=],3009
AMPLHI(I )=g.
IF((PHI(I).GT.0.12217).AND.{(PHI(I).LT..17453)) AMPLHI(1)=45.E~-6
8333 CONTINUE
8961 CONTINUE

AMPLITUDE DATA STORED

OO0 00

OO0

el
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340
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383
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357
388
359
359
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379
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373
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376
377
378
379
389
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382
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385
386
287
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—
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49

41
42
43

OoO00O0O000
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1722
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INITIALIZE FINAL DISTRIBUTION FUCTION TO g IF FULL DISTRIBUTION
IS USED N PROGRAM.

THE INITIAL DISTRIBUTIOM IS SET UP ACCORIDINGLY TO NVG FOR VELC
BIN AND IIAS AMD IIAF FOR PITCH ANGLE 3Iil.

THE FIMAL DISTRIBUTION BINS ARE COMPUTED FOR VELOCITY TO GIv:l
THE BEST RESOLUTION AND FIXED FOR PITCH ANGLE (@.5 DEGREE IN
2-90 RANGE)

IF (IFULL.EQ.Z) €GO TO 43

J FOR ALPHA GOES FROM 1-1880

NVG IS NUMBER OF GRIDS IN VPARALLEL IN INITIAL DIST FUNCT
DVPA=VP( 1 )*YRANGE/(NVG+1)

K=1

FVPA{1)=g.25*VP(1)

KaK+1

FVPA(K)sFVPA(K=-1)+DVPA*192
IF(FVPA(K) . LT.(VP(1)*3.24)) GOTO 484
KMA X =K

00 42 K=1,KMAX

CO 41 J=1,182

IF(K.LT.21) IFDIST(J,K)=g
KFDIST(J,K)=o

FOIST(J,K)=@.

CONTINUE

CONTINUE

PARTICLE TRACING STARTS

ITERATE FOR WAVE INTENSITY

FOR GENDRIN MODE WAVE INTENSITY IS SPECIFIED BY
MAGMETIC COMPONENT NEAR BEGINNING CF PROGRAM,

NEXT DO LOOP SHOULD HAVE ONLY ONE LOOP (IBWLO=IBWHI=])
00 297 lE=I1ELO,IEHI

EPA=45.E-6

IF (ICONT25.EQ.9) GOTO 42880

EPA=] . E-6"*XMAX

IF(EPA.EQ.J) IMAX=]

IF (CPA.NE.Z) IMAX=12

FOR GENDRIN MODE EPA IS REPLACED BY EPAG(1) FOR OUTPUT PRINTING
IF (1IG.EQ.1) EPA=EPAG(1)

VFMIN=L.ELE

INITIALIZATION OF PLOTTING DATA ARRAYS

IF:ICONT2.EQ.0) GOTO 1721
DO 1716 I=1,12
TR(L)=100.

DO 1717 [=1,850

DO 1761 J=1,12
ENER(I,J)=-1.

CONTINUE

CONTINUE

DO 1718 I=1,12

DO 1719 U=1,505
Ir(J.c7.499) GOT0 1729
TC(J,I)=1.E36
CARGU(J,1)=1.EJ6
VPHA(J,)=1.E36
VPARA(J,I)=1.E36
PBCARGU(J,I)=! . E36
PBVPH(J,I1)=1,.E36
PBVPA(J,1)=1.E36
COMNTINUVE

CONTIMUE
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20 1762 I=},8540

IF(I.GT.505) GOTO 1753

TPB(1)=1.£36

CISTANI(I)=1.E35

TENCI)=} E36

DISTAN(I)u!l E26

CONT INUE

CONTINUE

VFMAX=0.

JCOUNT=g

EQOTOT=4a.

EFTOT=2.

ALFALO=1.E1Q

LLFAN =g,

IF(IFULL.EQ.@) VINITL=1.
VMIMNsVINITL*VP(])

ITERATE FOR PARTICLF VELOCITY

IVS AND iVF ARE VELOCITY RANGE DATA FOR SINGLE PARTICLE TRACING
IF (IFULL.EQ.1) IVF=IVS

DO 206 1V=IVS,IVF
VPAI=sVMIN™(1,192+1V*0.001)

IF (ICONT25.EQ.&) GOTO 4281
VPAL=VP(1)*VDELTA

11vS=]

IFC(IFULL.EQ.0) NVG=g

1IVF=iNVG+1

IF (IFULL.FQ.Z) IIVFs=IIVS

00 205 TIvslIVYS,IIVF
VPALI=VMIN+DVPAR(IIV-1)
IF((IIV.EQ.TIVS).AND.(IFULL.EQ.1)) VSTART=VPAI!
IF(CLIV.EQ.IIVF).AND.(IFULL.EQ.1)) VEND=VPATIL
IF (IFULL.EQ.!) SVPA=VPAII

IF (IFULL.EQ.Z) SVPA=VPAI

ITERATE FOR EQUATORIAL PITCH ANGLF
IAF AND IAS ARE PITCH ANGLE RANGE DATA FOR SINGLE PARTICLE TRACING
IF (IFULL.EQ.1) IAF=lAS

0O 204 IA=IAS,IAF

ALEQI=ALPDAT(I1A)

I1IAS AND IIAF ARE PITCH ANGLE RANGE FOR FULL DISTRIBUTION
IFCIFULL.EQ.Q) I!lAF=]

IFCIFULL.EQ.Q) T11ASal

IF (IFULL.EQ.7Z) JTIAF=IIAS
ALMIN=5,25+8.5*]1AS

ALMAX=5,25+9 T*(]1AF

D0 293 1IA=I1AS,IIAF
ALEQII=5.25+7.8%11A

IF (IFULL.EQ.1) ALEQ=ALEQII

IF (IFULL.EQ.Q2) ALEQ=ALEQ!

If (IFULL.EQ.Q) WRITE (6,998) ALEQ
ALEQ IS IN DEGREES

FORMAT(1H1l,' FQ PITCH ANGLE=',F?7.3/)
ITERATE FOR BETA

DO 292 1I=],1MAX

BETAD=3¢.*I1-32.

BETA=GETAD*A

STARTING LATITUDE IS INPUT DATA
RPHI=SRPHID*A

SPHI=SIN(ASS(RPHI))
CPHI=COS(ABS(RPHI))
SRF=SQRT(1.+3,*SPHI*"2)
SaR0/2./SART(3. :/COS(PHIO)**2~(ALOG(SQART(3.)
*SPHI+SRF)+SQRT(3.)*SPHI*SRF)

IF (RPHI.LT.Q: S=@.-S
TANS=TAN(ALEU™A)**2
FHRAT=SORT(1.+3.*SPHI**2)/CPHI**6
VPA=SVPA*SQRT(1.+TANS-FHRAT*TANS)
SVPE=SVPA*TAH(ALEQ*A)
VPEaSVPE*SGRT{FHRAT)

* BERRR i ol W AT 2 L
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EQ=CM/2.*(VFZ"VPE+VPA*VPA)

EVO=EQ/E

IFCIFULL.EQ.1) GOTO 128

IFCI.ME.1) GOTO 138

[FCICONT25.EQ.1) RATIO=VDELTA

IFiICONT25.EQ.J) RATIO=VPAI/VMIN

CONTINUVE

IF((I.EQ.1).AND.(IFULL.EQ.J)) WRITE(6,7051) SRPHID

FORMAT(' TRACING STARTS AT ',F5.2,' DEGREES LATITUDE')
IF(IGROW.EQ.1) EPAsXAMPL

IF(CIFULL.EQ.2).AND.(I.EQ.1)) WRITE(6,999) EL,ENEQ,F,SVPA,EVO,EPA
+VPA,VP(1),RATIO

FORMAT (' EL=',F5.2,3X,'EQ DEN=',F6.1,'CM-3',3X,'FREQ=',~3PF6.3,
'KHZ',3X,'EQ PAR VEL=',QPE1Z.3,' M/SEC',3X,'INIT ENERGY=',E12.6,
' EV',3X, EPAs' E10.4,'V/M'/' VPA=' ,E11.4,'M/S",h3X,

' EQ PHASE VEL=',E11.4,'M/S',3X, 'RATIO(VPAR/VPHASE)=' F7.5)
IRDONE=Q

iROON=g

ITi=g

[T2=9

IC=0

INU=0O

1C2=4

IMDONE=Q

IMIRR=@

T=g.

DT=2.90Q1

IT=g

N=]

N=N+1

IF (ABS(S).GT.Z2(N})) GO TO 192

NU=N

HisnN=-1

IF(I.EQ.1) WRITE(6,49) INDMAX,NL,HNU

FORMAT(//315//)
VPHASE=IWD*(VP(NL)+(VP(NU)=VP(NL))I*(ABS(S)=Z(NL)}/(Z(NU)I=-Z(NL)))
IF (VPA.GE.(VPHASE*IWD)) ITEST=1

IF (VPA.LT.(VPHASE*IWD)) ITEST=-~1
BZF=(BZ(NU)-BZ(NL))*(ADBS(S)=Z("\L))}/(Z(NU)=Z(NL)})+BZ(NL)
IF(S.LT.@.) RKDZ1=RKDZL(NL)

IF(S.GE.Q.) RXDZ1=RKDZ(NL)

IF(S.LT.@.) RKDZ2=RKDZL(NU)

IF(S.GE.Q@.) RKDZ2=RKDZ(NU)
RKF=IWD*(RKDZ1+(RKDZ2~-RKDZ1)I*(ABS(S)=Z(NL))/(Z(NU)-Z(NL))

)

IF (S.LT.9.) BZF=-1%E2ZF

CARG=OM*T-RKF +BETA

F(CIGROW.EQ.1).AND.(S.LE.Z.)) EPA=AMPLOW(NU)
IF((IGROW.EQ.1).AND.(S.GE.Z.)) EPA=AMPLHI(RU)
IF(ICONT99.EQ.9) GOTO 3798

COSINE=CTH

IF(IG.EQ.1) COSINE=(CTHG(NU)+CTHG(NL))/2.
TERMI=VPE*(WN(NU)+WH(NL))/2.*COSINE/F/2./P1
ARG=(ETA(NU)+ETA(NL))/2.*VPE

CALL BESJR(ARG,1,BESEL,IER)
TeRM3=BESEL(1)*(1-TERMI*(BMULT(NU)+2MULT(NL))/2.*BESEL(2)
/BESEL(1)}

GOTO 3799

TERbN3=].

CONTINUE

IfF( 16 .NE. 1 ) GO TO 590°
EPAF=EPAG(NL)+(EPAG(NU)-EPAG(NL))I*/ ABS(S)=Z(NL))/(Z(NU)=Z(NL))
VPATsVPA-VPE¥®2/2 . *BZF*DT-E/EM®EPAF*TERMINCOS(CARG 0T

GO TO 5901

[ T W
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VPATa\VPA-VPE¥"2/2  *BZF*DT-E/EM*EPA*TERMI*COS(CARG)™DT
ST=S+(VPAT+VPA)/2.%0T

NUQ=NHU

IF (ABS(ST).LE.ABS(S)) GO TO 141

HU=NU=-1

NU=NU+1

IF (ABS(ST).GT.Z(NU)) GO TO 182

NL=NU-1

GO TO 194

NL=NL+1

NL=NL -1

IF (ABS(ST).LT.Z(NL)) GO TO 193

NU=NL +1

CONTINUE

BZS=(BZ(NY)-BZ(NL)

IF(S.LT.Q.) RKDZ1=RKDZL(NL)

IF(S.GE.Z.) PKDZ1=RKDZ(NL)

IF(S.LT.Z.) RKDZ2=RKDZL(NU)

IF(S.GE.Q.) RKDZ2=RKDZ(NU)

RXS=I\WD*(RKDZ1+(RKDZ2-RKDZ1 )*(ABS(ST)~Z(NL))/(Z(NU)=Z(NL)
))

IF(ST.LT.f.) BZS=-1*B2Z35

CARG=OM*T-0.5"(RKF+RKS)+BETA

IF(CICONT99.EQ.9) GOTO 3715

COSINE=CTH

IF(IG.EQ.1) COSINE=(CTHG(NU)+CTHG(N".))/2.
TERM1I=VPE*(WN(HNU)+WN(NL))/2.*COSINE/F/2./P1
ARG=(ETA(MU)+ETA(NL))/2."*VPE

CALL BESJR(ARG,1,BESEL,IER)
TERM3I=BESEL(1)*(1-TERM1*(BMULT(NL ) +BMULT{(NU))/2.*BESEL(2)
/BESEL(1))

GOTO 3716

TERM3=1.

CONTINUE

IF(IG.NE.1) GO TO SG£S

EPASSEPAG(NL )+(EPAG(NU)-EPAG(NL ) )*(ABS(ST)-Z(NL))/(Z(NU)-Z(NL))
VPATaVPA-VPE*"2/4 . *(BZF+8ZS)*DT-E/EN*(EPAF+EPAS)

/2. *TERM3*COS(CARG)*DT

GO TO 2409
VPAT=VPA-VPE**2/4 ,*(BZS+BZF )*DT-E/EM*EPA*TZRM3*COS(CARG)*DT
IF(IG.EQ.1) EPATEM=(EPAF+EPAS)/2.

IF(IG.NE.1) EPATEM=EPA

IF(ICONT99.EQ.Q) GOTO 3726

TERM2aVPAT*(WN(NL )+WN(NU))/2.*COSINE/F/2./P1
TERMA=BESEL(2)*(BMULT(NU)+BMULT(NL))/2.*(1-TERM2)
VPE=VPE+VPAT*VPE/4.*(BZS+B2ZF )*DT+E/EM*TERM4*COS(CARG)*DT
*EPATEM

GOTO 3727

VPE=VPE+VFET"VPAT/4.*(BZS+BZF )*DT

CONTINUE

SC=S+(VPA+VPAT)/2.*DT

CHECK FOR EQUATOR CROSSING

IF ((SC*S).GT.0) GO TO 2441

CALL EQCONV

IFCIFULL.EQ.Z) WRITE(6,2422) T,EV,EQALD, "RDONE

FORMAT (' EQUATOR XING',3X,'T=',F7.4,3X,'ENERGY="',EB8.3,'EV’',
3X,'EQ PITCH AWGLE=',F6.3,3X,'NO OF RESONANCES=',I3)
IRDONE=2

CONTINUE

FIND MIRROR POINT

IF (IMDONE.EQ.1) GO TO 2599

IF ((VPA*VPAT).LT.J) IMIRR=]

IF (IMIRR.NE.1) GO TO 25499

CALL EQCONMV

IF (IFULL.EQ.®) WRITE (6,253) H,RPHID,S,T,EV,EQALD
FORIMAT (' MIRROR POINT',3M,'H=s' ,E12.5,' KM',3%,'PHI=",F7.3.3X,
‘S=',E12.5,3X,'T="',F7.4,3X, 'ENERGY="',E8.3,'EV',3X,

'EQ PITCH ANGLE=',F6.3 )

IMDONE=]

GO TO 312
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VPA=VPAT

ENGY=EM/2./E*(VPE*VPE+VPA*VPA)

ERROR=ENGY~EQ/E

AL=ATAN(VPE/VPA)

IF(ABS(SC).LE.ABS(ST)) GO TO 185

NUs=iu-1

NUajU+1

IF (ABS(SC).GT.Z(NVU)) GO TO 1986

NL=NU-1

GO TO 128

NLeNL+1

NL=NL-1

IF (ABS(SC).LT.Z(NL)) GO TO 197

NU=NL+1

CONTINUE

NUO=NU

S=SC
RPHI=(PHI(NU)=PHI(NL))*(ABS(S)=Z(NL))/(2Z(NU)=Z(NL))+PHI(NL)
IF (S.LT.0.) RPHI=g.=-RPHI

RPHID=RPHI/A

R=RO"EL*COS(RPHI )**2

H=(R=-RO)/1000.
VPHASE=IWD*(VP(NL)+(VP(NU)-VP(NL))*(ABS(S)=Z(NL))/(Z(NU)-Z(NL,))
FIND RESONANCE POINT

IF ((VFA*IWD).LT.0) GO TO 259

IF (((VPA-VPHASE)*ITEST).LE.&) GO TO 251

GO TO 250

CONTINUE

IF((IFULL.EQ.2).AND.(IRDON.EQ.Q)) TR(I)=T

IRDON=IRDON+1

IF(IFULL.EQ.Y) GOTO 137

CARGD=CARG/A

IFCAES(CARGD).LT.36Q.) GOTO 138

IF(CARGD.GT.Z.) CARGD=CARGD-364.

IF(CARGO.LT.@.) CARGD=CARGD+364.

GOTO 139

IF(CARGD.LT.2.) CARGD=CARGD+3ESD.

CONTINUE

IFC(IFULL.EQ.Z).AND.(IRDONE.EQ.Q)) WRITE(G,252) VPHASE,R,RPHID,S,T
» CARGD

FORMAT (' RESONANCE VEL=',E12.5,5X,'AT R=',E12.5,5X,'PHI=',F7.3,
€EX,'Ss',E12.5,5X,'T="',F7.4,3X, 'BETAs"',F7.2)
IRDOME=IRDONE +1

ITEST=@-1TEST

CONTINUE

T=T+2T

THE NEXT CARD ,GO TO 399, BYPASSES WRITING OF PHASE ANGLI

SAMPLING OF PLOT DATA
IF({ICONT2.EQ.2).0R.(IFULL.EQ.1)) GOTO 1732
RESONANCE POINT SAMPLING

IF(T.GT.5.92) GOTO 1732

[T=IT+1

IFCIT.LT.29) GOTO 1726
IFCABS((VPA-VPHASE)/VPA}).GT.Z.18) GOTO 1729
IF((T-TR(1)).GT.2.20" GOTO 1729
CARGD=CARG/A

IF(ABS(CARGD).LT.369.) GOTO 1728
IF(CARGD.GT.0.) CARGD=CARGD-364.
IF(CARGD.LT.2.) CARGD=CARGD+364

GOTO 1727
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IC=IC+1

IF(CIC.LT.1).OR.(IC.GT.48%)) WRITE(6,1741) I,T,IC
FORMAT(/' FIRST RESOMANCE ERROR (BAD INDZX)',IS,F13.5,15)
IFCCIC LT.1).0RL(IC.GT.402)) GOTO 1728

TC{IC, 1)=T

CHRULCTIC, I )=CARGD

VPiid ¢, [ )mVPHASE/ 1000 .

VFIRA12,1)=VPA/ 1000,

IT=2

ENERGY SAMPLING (EVERY 6 MSEC)

ITI=sITL+]

IF(ITI.LT.60) GOTO 1732

IND=INT(T*1090/6)+1
IFCCIND.LT.1).OR.(IND.GT.858)) WRITE(G,1742
FORMAT(/' TOTAL ENERGY ERROR (BAD INDEX)',!
IFCCIND.LT.1).0R.(IND.GT.858)) GOTO 1738
ENERCIND, 1 )=ENGY

IFCL.EQ.1) DISTANCIND)=PHI(NL)/A
IF((1.EQ.1).AND.(S.LT.2.)) DISTAN(IND)==1.*PHI(NL)/A
IT1ag

CONTINUE

) I,T
5.Fl8

PHASE BUNCING DETECTION (TMINCKTC<TMAX)

IF((T.LT.TMIN).OR.(T.GT.TMAX)) GOTO 1732

IT2=1T2+1

IF(IT2.LT.20) GOTO 1732

[C2=1C2+1

IF((IC2.LT.1).0R.(IC2.GT.505)) WRITE(6,1743) I,T,IC2
FORMAT(/' PHASE DATA ERROR (BAD INDEX)',I5,F192.5,15}
IF((IC2.LT.1).0R.(IC2.GT.585)) GOTO 1732

CARGD=CARG/A

IF(ABS(CARGD).LE.360.) GOTO 1779

IF(CARGD.LT.Z.) CARGD=CARGD+359.

IF(CARGD.GT.369.) CARGD=CARGD-367.

GOTO 1778

CONTINUE

PBCARGU( IC2,I)=CARGD

PEVPH(IC2,l)=VPHASE/ 1999,

PBVPA(IC2,1)=VPA/190M.

IF(I.EQ.L1) TPB(IC2)=T

IF(I.EQ.1) DISTANL(IC2)=PHTI(NL)/A

IF((I.EQ.1),AND.(S.LT.2.)) DISTANI(IC2)==1.*PHI(NL)/A

1729

IF(IRDONE.GT.10) INDEX(I)=]

IF(IRCONE.LE.18) INDEX(1)=g

CONTINUE

IF (T.GT.1#) GO TO 229

TEST FOR DETRAPPING. IF PARTICLE VEL DIFFERS FROM WAVE VEL B8Y
MORE THAN SPECIFIED AMOUNT, NO INTERACTION 1S ASSUMED AND ALL
PARTICLE PARAMETERS CALC FROM ADIABATIC THEORY

If (IADIA.EQ.J) GO TO 3180

IF ((VPA*IWD).GT.9.AND.IRDONE.GT.O.AND.(ABS(VPHASE-VPA)/VPHASE).
GE.Z.2) GO TO 31!

IF (R.LT.(RO+1.ES)) GO TO 291

GO T0 119

CONTINUE

CALL EQCONY

IF (IFULL.EQ.Z) WRITE (6,4969) H,RPHID.S,T,EV,EQALD

FORMAT ( 'LAMDING POINT',3X,'H=',E12.5,' XM',3X,'PHI=',F7.3,23X,
‘Ss' E12.5,3X,'T=",F7.4,3X, 'ENERGY="',EB.5,'EV"',3X,

'EQ PITCH ANGLE=',F6.3 )

GO TO 312

CALL EQCONV
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IF (JFULL.EQ.0) WRITE (6,313) W,RPHID,S,T,EV,EQALD
FORMAT (' DETRAP POINT',3X,'Hs',E12.5,' KM',2X,'PHI=',F7.3,3X,
"S»' ,E12.5,3X,'T=',F7.4,3X, 'ENERGY="' EB3.3,'EV"',3X,

'EQ PITCH ANGLE=',F6.2 )

IfF (IFULL.EQ.1) CALL DFUNC

IF PARTICLE CROSSES EQUATOR, IRDONE PRIMTED HERE IS COUNTED
FROM EQUATOR CROSSING.

IF(IFULL.EQ.O) WRITE(6,314) BETAD,IRDONE

FORMAT(' BETA=',F7.2,5X,'NO OF RESONANCES=',I3/)
ALDC(I)=EQAL

EVDC(I)=EV

EQOTOT=EQTOT+EVC

EFTOT=EFTOT+EV

IF(VPAEQ.LE.“FMIN) VFMIN=VPAEQ

IF(VPAEQ.GE.VFMAX) VFMA{=YPAEQ

IF(EQALD.GT.ALFAHI) ALFAHI=EQALD

IF(EQALD.LT.ALFALO) ALFALQ=EQALD

JCOUNT=JCOUNT+1

TTRACE( 1) =T

CONTINUE

IF (IFULL.EQ.O.AND.IDIFF.EQ.1) CALL DIFCO
IF(CICONT2.EQ.1).AND.CIFULL.EQ.2)) CALL PLOTTING
CONTINUE

CONTINUE

CONTINUE

CONTINVE

IF (IFULL.EQ.1) CALL SUMARY

IFCIFULL.EQ.!) WRITE(6,3289) VSTART,VEND,VFMIN, VFMAX
FORMAT(////' DISTRIBUTION FUNCTION PARAMETERS'///

' SVPAMIN=',E10.4,' SVPAMAX=',E19.4,' FVPAMIN®' E10.4,
' FVPAMAX=',E10.4//)

IF{IFULL.EQ.1) DVPAl=DYPA™1Q

IFC(IFULL.NE.1) GOTO 3504 !
VRITE(6,3290) DVPA,DVPAL

FORMAT( /' INJTIAL VEL. BIN=',E19.4,' FINAL VEL. BIN='
E18.4)

KI=sINTC(VFMIN-FVYPA(1))/DVPAL)+1 ’
K2=INT((VFMAX-FVPA(1))/0VPAL)+]

J1=sINT(ALMAX*2)+2

VRITE(6,3510) JCOUNT

IF(JHI.LT.35) GOTO 517

WRITE(6,3395)

FORMAT( /' FINAL DISTRIBUTION (# CF PARTICLES PER CELL)')
FORMAT(////' TOTAL NUMBER OF TRACED PARTICLES WAS=',16//)
D0 3501 K=Ki1,K2

00 3542 J=1,J1

PITCH=J*9.5-9.25

WRITE(6,3503) PITCH,K,KFDIST(J,K)

CONTINUE

CONTINUE

FORMAT(F12.4,14,' & OF PARTICLES=',I4)

CONTIMUE

WRITE(6,3G619)

FORMAT(//' INITIAL DISTRIBUTION AFTER SCATTERING'/)

DO 3623 K=1,28

DO 3674 J=1,J1

IF(K.GT.(NVG+1)) GOTO 3685

PITCH1=J*0.5-0.25

VIRITE(6,3605) PITCHL,K,IFDISV(I, K,

CONTINUE

CONTINUE

FORMAT(F12.4,14,' NUMBER OF PAR".CLES=',I4)

CONTINUE

DIFEN=EFTOT-EQOTAT

WRITE(6,3642) DIFEN

FORMAT(/' TOTAL ENERGY EXCHANGE (EV)=',El10.4)




7866
787
788
789
790
7¢1
792
793
794
798
796
797
798
799
802
8
832
803
824
838
806
897
808
8g9
8l1a
81l
812
813
8l4
815§
glé
817
818
819
822
g2l
822
823
824
825
826
827
828
829
839
831
832
833
634
835

000

692
643

606

605
624
641
3504
267

8201

8081
1

9029
1

9034

9206
90%S
9933

208

209
3041
219

ORIGINAL i 1y 178
OF POOR QUALITY

FULL DISTRIBUTION TABLE

IF((JHI-JILO).GT.32) GOTO 621

00 642 J=1.32,2

ALFA(J)=)*Y.5-0.25

WRITE(6,603) (ALFA(J),J=1,32,2)

FORMAT(1H1, 'EQUATORIAL DISTRIBUTION FUNCTION (# OF PARTICLES)'
/' VPARALEL (KM/SEC)',50X,' PITCH ANGLE (DEG)'
/8X,16F6.2/94,32(' 1'))

IF(K1.GT.1) Kl=K1~-1

IF(K2.LT.400) K2aK2+]

DO 644 KsK1l,K2

VEL=FVPA(K)/1500.

0O 606 J=1,33

KTEMP(J)=KFDIST(J,K)

WRITE(6,605) VEL,(KTEMP(J),Jd=1,33)
FORMAT(1X,FB.8,'~-- ',33(12,' '))

CONTINUE

CONTINUE

CONTINVE

CONTINVE

IF(IGROW.NE.1) GOTO 9923

WRITE(6,8201)

FORMAT(/' WAVE AMP.ITUDE DATA')

WRITE(6,8081) XSTART,XEND,XLEN,XAMPL

FORMAT(/' START=',El12.4,' END=',E12.4,' LENGTH=',F18.3,' AMPL="'
+E12.4)

PHI1=PHI(NTOP)/A

PHI2=PHI(NBOT)/A

WRITE(6,9920) PHIIl,PHI2

FORMAT(/' ABSOLUTE VALUES OF STARTING 'ND ENDING LATITUDE AFRE:
‘yF10.5,3X,F19.5)

IF(ICONTS.EQ.1) GO TO 9402

GO TO 9943

CONTINUE

VRITE(6,9004)

FORMAT(/' WAVE AMPLITUDE DATA')

CO 9448 11=1,3000,18

WRITE(6,9006) II1,2(11),AMPLOW(T1),AMPLHI(II)
FORMAT(I1S,3X,3(E12.4,3X))

CONTINUE

CONTINUE

CONTINUE

GO TO 214

WRITE (6,3901)

FORMAT (///' INTEGRATION TIJE EXCEEDS 1@ SEC LIMIT')
CONTINUVE

STOP

END

b
i
%
i
%
5
4
1




836
837
638
839
840
841
842
G643
844
8465
846
8a7
€48
849
8549
851
852
853
8S4
865
856
857
853
859
864
861
862
863
864
€65
266
867
€68
359
879
871
872
873
874
875
876
877
878
879
8849
g8l
882
8833
884
885
386
€87
888
e89
€90
891
€92
93
894
14
896
897
898
899
999
g9g1
932
°93

179
¢
1
3
2
6
19
11
¢
¢
21
20
c
c
¢
23
22
24
c
c
c
c
61
62
c
c
¢
¢
c
c
50
c

WN »~-

-

ORIGINAL PAGE 13
OF POOR QUALITY

SUBROUTINE PLOTTING

COMMON/BLOCK3/ TC(4903,12),CARGU(422,12),VPHA(40D,12),
VPARA(4Q0Z,12),ENNER(8B5A,12),PBCARGU(35D5,12),PEVPH(5A5,12)
+PBYPA(SAS5,12),THIN, TMAX,TR(12),TTRACE(12),INDEX(12)

yMLO (MM (MSTEP, TEN(BED),TPB(505),DISTAN(85Z),DISTANI(5A3)
DIMENSION SAVE(354),XX1(858J),XX2(420),XX3(409,2),4XX4(429),
TLO(12),THI(12)

TMAX1=g,

DO 1 J=1,12

IF(TTRACE(J).GT.TMAXI) TMAXI=TTRACE(J)

CONTINUVE

DO 2 J=1,12

00 3 I=1,400
IFCCINT(TC(I,J)*19808)~INT(TR(J)*18200)).EQ.F) INDEX(J)=]
CONTINUE

CONTINUE

WRITE(6,6) TMAXI

FgRMAT(///' PLOTTING ROUTINE STARTED'//' MAXIMUM TRACING TIME='
+F19.5)

0O 10 J=1,12

WRITE(G6,11) J,TR(J),TTRACE(J)

FORMAT(*' PARTICLE#',12,' FIRST RES.=',F10.5,' END=',F10.5)

FILL UP ENERGY ARRAY

00 29 J=1,12

00 21 1=1,850

IF(ENER(I,J).LT.@.) ENER(I,J)=ENER((1-1),J)
CONTINUE

CONTINUE

SUM ENERGIES FOR ALL PARTICLES

D0 22 I=1,859

TEMP =2,

DO 23 J=1,12

TEMP=TEMP+ENER(I,J)

ENER(I,1)=TEMP/1002.

ENER(I,2)=ENER(I.1)/ENER(1,1)

WRITE(6,24) ENER(1,1),ENER(B59,1)

FORMAT( ' TGTAL ENERGY DATA'//' INITAL ENERGY (EV)',E12.4/
* FINAL ENERGY (EV)s',E12.4)

SET UP TIME ARRAY

11=INT(TMAXI*1000/6)+1Q
DO 64 I=1,859
IF(I.LE.II) GOTO 61
TEN(I)=1.E36
ENER(I,1)=1,E36
ENER(I,2)=].E36

GOTO 62

TEN(I)=]1*0,006

CONTINUE

PLOT ENERGY VS. TIME (DISTANCE)

DEFINE CURVE WINDOW

KK=1 . :
FORMAT(' THIS IS STEP',13) . !

CALL AGSETF('GRID/LEFT.',n.12) -
CALL AGSETF('GRID/RIGHT.',0.92) :
CALL AGSETF('GRID/BOTTOM.',9.19) i
CALL AGSETF('GRID/TOP.',3.85) :
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180
994 c
905 o DEFINE BACKGROUND
906 c
907 c CALL AGSETI('BACKGROUND.',3)
98
9909 c TURN ON WINDOWING
919 c
911 CALL AGSETI('WINDOWING.',1)
912 c
913 CALL AGSETF('LABEL/NAME.','L")
914 CALL AGSETI('LINE/MUMBER.',109)
918 CALL AGSETP('LINE/TEXT.',' ENERGY (KEV)S',1)
916 CALL AGSETF('X/MINIMUM.',2.2)
917 CALL AGSETF('X/MAX.',TMAXI)
918 CALL AGSETI('BOTTOM/MAJOR/TYPE.',1)
919 CALL AGSETF('BOTTOM/MAJOR/BASE.',2.5)
3%? c CALL AGSETI('BOTTOM/MINOR/SPACING.',4)
922 CALL AGSETF(1!1HLABEL/NAME.,1HB)
923 CALL AGSETI('LINE/NUMBER.',~190)
92; CALL AGSETP(1OHLINE/TEXT.,11HTIME (SEC)S,1)
92 c
926 c LOAD TEMP ARRAYS WITH DATA
27 DO 63 I=1,852
923 63 XX1(I)=ENER(I,1)
929 c
933 c CALL EZXY(TEN,XX1,850,22HTOTAL ENERGY VS. TIMES)
931
932 00 64 I=1,850
933 64 XX1(I)=ENER(I,2)
234 c
9236 CALL AGSETF('LABEL/NAME.','L"')
936 CALL AGSETI('LIME/NUMBER.',190)
9;7 CALL AGSETP('LINE/TEXT.','E/EZS',1)
938 c
929 CALL EZXY(TEN,XX1,859,27HMORMALIZED EMERGY VS. TIMES)
944 c
941 C
942 c RESET X AND REDEFINE ‘'MICE’
943 c
944 CALL AGSETF('X/MAX.',1.E36)
945 CALL AGSETI('X/NI.',2)
946 c
34; g PLOT ENERGY VERSUS LATITUNDE .
4
949 CALL AGSETF('X/MIN.',1.E36)
969 CALL AGSETF('X/MAX.',1.E36)
€51 CALL AGSETF(11HLABEL/NAME.,1HB)
962 CALL AGSETI('LINE/NUMBER.',~109)
953 CALL AGSETP(1QALINE/TEXT.,19HLATITUDE (DEGREES)S,1)
€54 CALL EZXY(DISTAN,XX1,850,31HNORMALIZED ENERGY VS. LATITUDES)
968 c PLOT RESONANCE DATA
966 c
987 XMAXI=@.
958 KMINI=1000.
959 00 65 J=1,12
a6y D0 66 I=1,408
961 IF(TC(1,J).GT.1008.) GOTO 67
962 66 TC(I,J)=(TC(I1,J)=-TR(J))*1930.
963 67 THI(J)=TC({I-1),J) :
964 IF(THI(J).GT.XMAXT) XMAXI=THI(J)
9665 65 CONTINUE ’
9686 00 68 J=1,12
967 TLO(J)=sTC(1,d)
€63 IF(ABS(TLO(J) ) . LT.ABS(XMINI)) XMINI=TLO(J)

OO TP T MR 1 o LNRGE RERETEPR S RE TSR
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WRITE(6,69) J,TLO(J),THI(J)

FORMAT( ' RESCMANCE «',13, 'TMIN=',F15.4, ' TMAX=' F19.4)
XMAXIsINT(XMAXI/12.)*12, '

XMINT=INTCHMINIZ LD, )" 8.

IFCABS(XMINI) . GT.203.0) XMINI==223.9

WRITE(6,130) XMINI, XMAXI

FORMAT(/' RESOMANCE TIME WINDOW'/' TMIN=',Fl1@.4/' TMAX}='
WFlu.477)

SET XMIN AND XMAX

CALL AGSETI('X/NI.',~1)

CALL AGSETF('Y/MIN.',0.9)

CALL AGSETF('Y/MAX.',360.9)
CALL AGSETI('LEFT/MAJOR/TYPE.',1)
CALL AGSETF('LEFT/MAJOR/BASE.',59.9)
CALL AGSETI('LEFT/MINOR/SPACING.',5)
CALL AGSETF('X/MI.' ,XMINI)

CALL AGSETF('X/MA."' ,XMAXI)

DO PHASE PLOTS

CALL AGSETF('LABEL/NAME.','L"')
CALL AGSETI('LIME/NUMBER.',100)
CALL AGSETP('LINE/TEXT.','PHASE (DEGREES)S',1)

CALL AGSETF('LABEL/NAME.',1HB)
CALL AGSETI('LINE/NUMBER.',-100)
CALL AGSETP(1JHLINE/TEXT.,12HTIME (MSEC)S,1)

SET BOTTOM AXIS PARAMETERS

CALL AGSETI('BOTTCM/MAJOR/TYPE.',
CALL AGSETF{ '80TTOM/MAJOR/BASE.'

v1)
+55.9)
CALL AGSETI('BOTTOM/MINOR/SPACING.',4)

00 123 J=1,12

00 192 I=],558

XX1([)=1.E36

ENER(I,1)=1.E36

ICNT=1

EMER(ICNT,1)=CARGU(ICNT,J)

RALCICNT )=sTC(ICNT,J)

ICNT=2

D0 104 1=2,400
DIFF=ABS(CARGU((I-1),J)-CARGU(I,J))
IF(DIFF.LT.182.4) GOTQ 190%
ENER(ICNT,1)=367 . 0+CARGU(I,J)
IF(CARGU(I,J).GT.CARGU((I-1),J)) ENER(ICNT,1)=sCARGU
(1,0)-362.9

XX1CICNT ))=TC(I,2)

ICNT=ICNT+1

ENER(ICNT,1)=1.E36
XXLCICNT)=TC(],Jd)

ICNT=ICNT+1
ENER(ICNT,1)=CARGU((1-1),0)-360.4

IF(CARGU(1,J).GT.CARGU((I=~1),J)) ENER(ICNT,1)=CARGU((I-1),J)

+360.2
XXLCICNT)=TC((I-1),d)
ICNT=ICNT+1
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EMER(ICNT, 1 )=CARGU(I,J)

XXLOICHT )=TC(T,J)

ICNT=ICNT+1

CALL £ZMXV(XX1,ENER,857,1,850,15HPHASE VS, TIMES)
CONTINVE

CALL AGSETF('Y/MINIMUM.',1.£36)

CALL AGSETF('Y/MAXIMUM.',1.E36)

CALL AGSETF('LEFT/MAJOR/TYPE.',!.E35)
CALL AGSETF('LEFT/MAJOR/BASE.',1.E36)
CALL AGSETF('LEFT/MINOR ‘SPACING."',1.E36)

PLOT VP AND VPA VS. TIME

CALL AGSETF('LABEL/NAME.','L"')
CALL AGSETI('LINE/NUMBER.',129)
CALL AGSETP('LINE/TEXT.','VELOCITY (KM/SEC)S',1)

DO 72 J=1,12

00 73 I=1,409

XX2(1)=TC(],J)

XX3(1,1)sVPHA(L,J)

XX3(1,2)=VPARA(T,J)

CONTINUE

CALL EZMXV(XX2,XX3,400,2,402,18HVELOCITY VS. TIMES)
CONTINUVE

PLOT PHASE BUNCHING
SET X,Y AND LABELS

CALL AGSETF('VY/MLl.',40.9)

CALL AGSETF('Y/MA.',320.9)

CALL AGSETI('BOTTOM/MAJOR/TYPE.',1)
CALL AGSETF('BOTTOM/MAJOR/BASE.',Z.05)
CALL AGSETI('BOTFTOM/MINOR/SPACING.',4)

CALL ACSCETF('LABEL/NAME.','L"')
CALL AGSETI('LINE/NUMBER.',100)
CALL AGSETP('LIME/TEXT.','PHASE (DEGREES)S',1)

CALL AGSETF('LABEL/NAME.',1HB)
CALL AGSETI('LINE/NUMBER.',=-100)
CALL AGSETP(1JHLINE/TEXT.,11HTIME (SEC)S,1’

DO 4543 J=1,12

00 401 1=1.850

IF(I.GT.595) GOTO 402
IFCINDEX()).EQ.2) ENER(I,J)=1.E36
IFCINDEX(J).EQ.1) ENER(I,J)=PBCARGU(I,J)
GOTO 403

ENER(I,J)=1.E36

CONTINUE

CONTINUE

CONTINUE

DO 419 I=1,850

IF(I.LE.S505) XX1(I)=sTPB(I)
IF(1.GT.505) XX1(I)=1.E36
CONTINUE ’
TMINI=THIN

TMAXII=TMIN+D.!
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00 207 1=1,20

IF(TMAXII.GT.TMAXI) GOTO 221

CALL AGSEYF('M/MIN.',THINI)

CALL AGSETF('X/MAX.' ,TMAXII)

CALL EZMMY(XX],ENER,650,12,059,15HPHASE VS, TIMES)
TMINI=sTMINI+a.1

THMAXIIsTHMAXIL+D.]

CONTINUE

RESET X

CALL AGSETF('X/MAX.',TMAX)

CALL AGSETF('X/MIN.',THIN)

CALL AGSETF('BOTTOM/MAJOR/TYPE.',1.E36)
CALL AGSETF('BOTTOM/MAJOR/BASE.',1.E36)
CALL AGSETF('BOTTOM/MINOR/SPACING.',1.36)

PLOT VPALVPHASE VS. TIME

CALL AGSETF('VY/MI.',1.E36)}

CALL AGSETF('Y/MA.',1.E36)

CALL AGSETF('LABEL/NAME.','L"')

CALL AGSETI('LINE/NUMBER.',108)

CALL AGSETP('LINE/TEXT.','VELOCITY (KM/SEC)S',1)
CALL AGSETF('LABEL/NAME.',1HB)

CALL AGSETI('LIME/NUMBER,',~108)

CALL AGSETP(1QHLINE/TEXT.,11HTIME (SEC)S,1)
00 119 1=1,859

IF(I.LE.S505) XX1(1)=sTPB(I)

IF(1.GT.505) XX1(1)=]1.E36

CONTINUE

00 111 J=]1,2

DO 112 1=1,859

ENER(I.J)=1.E36

CONTINUE

Do 113 J=1,12

DO 114 I=1,505

EMER(I,1)=PBVPA(I,J)

ENER(1,2)=PBVPH(I,J)

CALL EZMXY(XX1,ENER,85%,2,850,18HVELOCITY VS. TIMES)
CONTINUE

PLOT VELOCITY VS. LATITUDE

DO 409 I=],850

IF(I.LE.535) XX1{(1)=DISTAN1(1)

IF(1.6T.505) XX1(1)=1,E36

CONTINUE

CALL AGSETF{'X/MAX.',1,E36)

CALL AGSETF!'X/MIN.',1.E36)

CALL AGSETI('X/NI.',2)

CALL AGSETF('LABEL/NAME.',1HB)

CALL AGSETI('LINE/NUMBER.',-100)

CALL AGSETP(1OHLINE/TEXT.,194LATITUDE (DEGREES)S,1)

DO 2480 J=1,12

DO 321 I=1,506

ENER(I,1)=PBVPA(L,J)

EMER(I,2)=PBVPH(I,J)

CALL EZMXVY(XX1,ENER,259,2,850,224VELOCITY V5. LATITUDES)
CONTIHUE

CALL AGSETI('X/NI.',-1)

v
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PLOT EACH PHASE CHANGE SEPARATELY

CALL AGSETF( 'LABEL/MNAME.','L")

CALL AGSETI('LIME/MUMBER.',189)

CALL AGSETP('LIME/TEXT.', 'PHASE (DEGREZES)3Z',1)
CALL AGSETF('LABEL/NAME.',1HB)

CALL AGSETI('LIME/MUMBER.',-190)

CALL AGSETP(IOHLINE/TEXT.,11HTIME (SEC)S,!)
CALL AGSETF('X/MI.' ,TMIN)

CALL AGSETF('X/MA.' ,TMAX)

CALL AGSETF('Y/MIN.' .0.8)

CALL AGSETF('Y/MAX.',360.0"
CALL AGSETI('LEFT/MAJOR/TVPE. ",
CALL AGSETF('LEFT/MAJOR/RASE."',
CALL AGSETI('LEFT/MINOR/SPACING
00 122 J=1,12

00 121 I1l=],85%

XX1(Ill)=] .E36

EMER(II,1)e]l . E36

ICNT=1

EMER(ICNT,1 '«P8CARGU(ICNT,J)
RXLCICNT )=TPB( ICNT)

ICNT=2

00 123 [=2,505
DIFF=ABS(PLCARGU((I-1),J)=PBCARGU(!,J))
IF(DIFF.LT.180.9) GOTO 124
EMER(ICNT,1)=369,+PBCARGU(I,J)
IF(PBCARGU(I,J).GT.PBCARGU((I-1),J)) ENER(ICNT,!)=
PBCARGU(1,J)-362.9

XXICICNT )=TPB( 1)

ICNT=ICNT+1

ENERCICNT,1)=1 .E36
XX1(ICNT)=TPB(1I)

ICNT=ICNT+1
ENERCICNT, 1 )=PBCARGU((I~-1),J)-360
IF(PBCARGU(I,J).GT.PBCARGU((I-1),
PBCARGU((I-1),J)+360.0

XX1CICNT )=TPB(I-1)

ICNT=ICNT+1
ENER(ICNT,1)=PBCARGU(! ,J)
XX1(ICNT )=TPB(I)

ICNT=ICNT+1

CALL AGSETF('Y/MI.',9.8)

CALL AGSETF('Y/MA.',364.9)

CALL EZMXY(XX1,ENER,854,1,850,15HPHASE VS. TIMES)
CONTINUE

WRITE(G,181)

FORMAT(///' ALL DONRE t1i°')

RETURN

END

1)
63.9)
', 8)

g
)

J)r) ENER(ICNT,1)=

SUBRCUTINE EQCONV

coimoM OVvPA,EQALD,ALGRD,VPA,FVPA(409),SDIST,ALEQ,A,SVPA,FDIST(18
J,409),EQAL ,FPDIST(1390),P1,EM,EL ,RPHI ,VPE,E,EV,KMAX,VMIN,VPMAX,
ALMIN.ALMAX,ALDC(12),R,RO,VPAEQ,EPA,EVDC(12),!IG,.EPAG(320)
SF=SORT(1.+3.*SIN(RPHI)**2)

WPA=EM/2."VPA*VPA

WPE=E/2.*VPE"VPE

EV=(\UPA+WPE)/E

WPECQ=4WPE/SF/(RO®EL/R)**3

WPAEQ=\WPA+WPE-YWFEEQ

VAAEQaSQRT( 2. *WPAEQ/EM)

EQAL =ATAN(SQRT(WPEEQ/WPAEQ))

ECaLO=EQAL/A

RETURN

END
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SUCROUTINE DFUNC

COMMON DVPA,EQALD,ALGRD,VPA,FVYPA(403).SDIST,ALEQ.A,5YPAFDIST(18
9,203),EQAL ,FPDIST(1E0} ,PT . EM,EL,RPHI,VPE.E EV, KMAMN, VTN, VPHAX,
ALMIN ALMAX,ALDC(12),R,RO,VPAEQ,EPA,EVDC(12),IG,EPAG(3399)
COHMCH/BLOCKL/ KFDIST(189,499),1FDIST(138,29)

IDENTIFY SLOT FOR FVPA AND EQALD

JeINT(EQALD/@.5)+!

ALGRD=J*7.5-90.2S

KaINT((VPAEQ=-FVPA(1))/DVPA/1Q)+]

KFDIST(J,K)sKFDIST(J,K)+1

KIsINT((VPAEQ-VMIN)/DVPA)+1

IFC(KLI.LT.1).,0R.(KI1.GT.2%)) GOTO 4

IFDIST(J,K1)=IFDIST(J,K1)+1

CONTINUE )

IF (ALEQ.GE.5.5) SDIST=(COS(ALEQ®*A)/SVPA)**4

IF (ALEQ.LT.5.5) SDIST-9.
FOIST(J,K)®FDIST(J,K)+SDIST/12.¥(FVPA(K)/SVPAI**2*SIN(ALGRD*A)
/SIN(ALEQ*A)*(COS(ALEQ®A)/COS(ALGRD>¥A))**3

RETURN

END

SUBROUTINE SUMARY

COMMON DVPA,EQALD,ALGRD,VPA,FVPA(40%),SDIST,ALEQ,A,SVPA,FDIST(18
9,4%0),EQAL,FPDIST(188),P1,EM,EL,RPHI,VPE ,E,EV,KMAX,VMIN,VPMAX,
ALMIN,ALMAY,ALDC(12),R,RO,VPAEQ,EPA,EVDC(12),1G,EPAG(3209)
COMMON/BLOCK2/ SFDIST(1849),11AS,I1AF ,NVG,ALFALO,ALFAHI
WALFA(35),JL0,JH!

EMIN®=EM/2, *VMIN*VMIN

EMAX=EM/2, *VPHAX*VPMAX

EFMIN=EM/2.*FVPA(1)*FVPA(L)

EFMAX=EM/2 . *FVPA(KMAX)*FYPL({KMAX)

EVMIN=EMIN/E

EVIMAX=EMAX/E

EVFMIMNSEFMIN/E

EVFMAX=EFMAX/C

IF{ IG .NE. 1 ) WRITE(6,59)EPA

IF(IG .EQ. 1) WRITE(6,51) EPAG(1)

FORMAT(1H1,' EQ PAR E FIELD FOR GENDRIN MODE=',%18.4,' V M=1'//)
FORMAT (1Hi,' PARALLEL WAVE ELECTRIC FIELD=',E17.4,' VOLT M=1'//)
WRITE (6,6)

FORMAT (- INTEGRATION RANGE'//)

WRITE (6,5) VMIN,EMIN,EVMIN

FORMAT (' MIN INITIAL VEL=',E18.4,' M SEC-1',3X,E10.4,' JOULES',
3X,Eig0.4,' EV'/)

WRITE (6,4) VPMAX,EMAX,EVMAX

FORMAT (' MAX INITIAL VEL=',E19.4,' M SEC-1',3X,E10.4,' JOULES',
3X,E10.4,' EV'/)

WRITE (G,3) FVPA(L),EFMIN,EVFMIN

FORMAT (' MIN FIWAL VEL=',E19.4,' M SEC-1',3X,E!0.4,' JOULES',
34,E15.4,"' EV'/)

VIRITE (6,2) FYPA(KHMAX),EFMAX,EVFMAX

FORMAT (' MAX FINAL VEL=' E189.4,' M SEC-1',3X,E10.4,' JOULES',
3X,£12.4," EV'/)

VRITE (6,1) ALMIN,ALMAX

FORMAT (' INITIAL PITCH ANGLE RANGE=',2F6.2,3X,' DEGREES'/)

00 67 J=1,180

SFDIST(J)=0.

FPDIST(J)=g.

DO 11 J=',189

CO 10 K=1,KMAX

FPDIST(J)=2 . *PI™FDIST(J,K)I*FVPA(K)**2*DVPA*IJ+FPDIST(J)

CONTL!HUE

Ké=2NVG+1 :
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00 '09 J=IIAS.IIAF

PITCC=2J*0.5+5.25

CO 101 K=} Ks$

IF(PITCHR.GT.5.5) DIST=(COS(RPITCHI*A)/(VMIN+DVPAT{K=1)))**4
IF(PITCH3.LE.5.5) DIST=7.

SEDIS (J+11)a2. . *PI*DIST*(VMIN+DVPAT(KX=1))*"2"DVPA+3IFDISTII+11)
CONTINUE

CONTINUE

FINAL PITCH ANGLE DISTRIBUTION FUNCTION

WRITE (6,20)

FORMAT(////* FINAL PITCH ANGLE OISTRIBUTIGN'//*' PITCH ANGLE',SX,
"NORM DIST FUNCT',8X,'INIT NORM DIST FUNCT'//)
JLO=INT(ALFALO*2)

JHI=INT(ALFAHI*2)+1

IF((ITAS+11).LT.JLO) JLO=I1AS+]11

IFCIRI.LT.CIIAF+11)) JHI=ITAF+11

D0 21 J=JLN,JHI

ALGRD=J*2.5-2.25

WRITE(6,22) ALGRD,FPDIST(J),SFDIST(J)
FORMAT(F7.2,8%,E12.4,8%,E12.4)

PRECIPITATED PARTICLE AND ENERGY FLUX
JLOSS=iNT(5.25/9.5)+1

PFLUR=D.

EFLUX=7.

DO 31 J=1,JL0SS

DO 30 K=l ,KMAX

EQAL=(J*7.5-9.25)*A
ACCUM=FDIST(J,K)*FVPA(K)**2*SIN(EQAL)/COS(EQAL)**3*DVPA
*1g=J.5%A

PFLUX=PFLUX+ACCUM

EFLURSEFLUX+ACCUM*G S*M*(FVPA(K)/CCS(EQAL))"*2
CONTINUE

CONVERT FLUXES TO ICNOSPHERIC VALUES AT 189 KM
PHII=ATAN(SQRT(6372.*EL/6472.~-1.))
FAC=SOQORT(1.43.*SIN(PHII)**2)*EL™**3

PFLUX=PFLUX*FAC

EFLUN=EFLUX*FAC

EVFLUX=EFLUX/E

WVRITE (6,49) PFLUX,EFLUX,EVFLUX

FORMAT (//' PRECIPITATION FLUX=',E1J.4,' M-2 SEC-1'//' ENERGY FLUX
=' E1J.4,' JOULE M-2 SEC~1 OR ' ,El@.4,' EV SEC-1")
FLUXES ARE NORMALIZED TO Fsvaw-4

RETURN

END
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1341 c

1342 SUBROUTINE DIFCO

1343 c

1344 comMMCY DVPA,ENALD,ALGRD,VPA,FVPA(LTT),SDIST,ALEQ.A,SYPA FDIST( 1S
1345 1 6,400, ECAL.FPDIST(18), P, EM,EL, P74 ,YPE ,E,EV KHMAN ,VMIN,VPHAX,
1246 2 ALAINLALMAX,ALDCCOL12),R,RO,VPAEQ,L? «,EVOCI12),1G ,EFAG(255T)
1247 c ALDC IS IN RADIANS,ALEQ IM DEG

1348 S5=9

1249 €z=0

1259 CS=5

1331 CS2a=g

1352 SS=4

1383 SCS=0

1364 SE=4.

1355 DO 12 I=1,12

1356 S=S+(ALDC(I)-ALEQ™A)/12.

1387 §2=52+(ALDC(I)-ALEQ*A)**2/12,

1388 C3=CS+(COS(ALDC(I))-COS(ALEQ*A))/12.

1259 12 CS2sCS2+(COS(ALDCII))-COS(ALEQ™A))*=2/12.

1262 €D=S/A

1361 §2=SQRT(S2)/A

1262 VRITE(6,20) §,5D,52.,CS,CS2

1363 20 FORMAT(//' DEL AL=',E18.4,' RAD OR ',F3.3,' DEG',3X,'DEL AL R
1364 1 MSs=' E10.4,' DEG',3X,'DEL COS AL=',E10.4,3X,'DEL COS AL SQ=',
1263 2 Elg.4)

1366 Co 11 I=1,12

1257 SSaSL+(ALDC(I)-S~ALEQ*A)**2/12.

1368 11 SCS=SCS+(COS(ALDC(I)})-COS(S+ALEQ*A))**2/12.

13689 SS=SQRT(SS)/A

1378 WRITE (6,21) §S,SCS

1371 21 FORMAT (' REFENENCE CHANGED TO AVE SCATTERED PITCH ANGLE',SX,
1372 1 'DEL AL RMS=', E10.4,5X,'DEL AL COS SQ=',E12.4)

1373 00 37 1a1,12

1374 39 SE=SE+EVDC(I)/12.

137% WVRITE(6,31) SE

1278 31 FOAMAT(' AVE FINAL EMERGY=',E12.6,' EV')

1377 RETURN

137 4D
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