General Disclaimer
 One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

RADIOSCIENCE LABORATORY

STANFORD ELECTRONICS LABORATORIES

demartment of electrical emoimeeamg
STAAFORD UNIVERSITY - STAMFORD, CA 94305

NONLINEAR LONGITUDINAL RESONANCE INTERACTION OF ENERGETIC CHARGED
particles and vlf waves in the magnetosphere

By

Slobodan Tkalcevic

Maj 1982

Technical Report E4-2311

Prepared Under
Div: Sicn of Polar Programs of the National Science Foundation Grants WSF-DPP80-22282 and DPF80-22540

Atmospheric Sciences Section of the National Science Foundation Grant ATM80-182.48

Nationa: Aeronaltics and Space Administration Grant NGL-05-020-008

ABSTRACT

This study treats the longitudinal resonance of waves and energetic electrons in the eart n 's magnetosphere, and the possible role this resonance may play in generat.ng various magnetospheric phenomena. The first part of the study is concerned with the derivation of time-averaged nonlinear equations of motion for energetic particles lon'situdinally resonant with a whistler mode wave propagating with non-iero wave normal. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for $\alpha>30^{\circ}$. The time-averaged equations of motion were used in test particle simulations which were done for a wide range of wave amplitudes, wave-normals, particle pitch angles, particle parailel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchs.nge for those two groups exhibit significantly different behavior. The trapped particles are characterized by a bounded phase variation (with respect to the wave) which is less then 2π, whereas the phase variation of untrapped particles is unbounded. It is also found that the trapping of the particles requires that the wave amplitude exceed a certain threshold value, and that the trapped electrons become space bunched due to the interaction. The full distribution simulations indicate that the expected particle precipitation is considerably smaller (one order of magnitude) compared to gyroresonance-induced precipitation for wives of comparable amplitude, which shows that the scattering efficiency of the longitudinal resonance is small. The amplitude threshold effect, together with the space bunching effect, was found to support one of the mechanisms suggested to explain whistler precursors.

This research was supervised by Professors R. A. Helliwell and D. L. Carpenter. The author wishes to thank them for their guidance and support, and for many helpful discussions durirg the course of this work. I wish to express appreciation to Dr. C. G. Park who first interested me in problems of longitudinal resonance interaction.

I would also like to thank Drs. U. S. Inan and T. F. Bell for their cooperation and many valuable discussions. Thanks are also due to W. Terluin who drafted the figures, and to K. Dean and K. Feas who assisted with the typescript.

This research was supported in part by NASA under grant NGL-05-020-008, in part by the Division of Polar Programs of the National Science Foundation under grants DPP80-22282 and DPP80-22540, and in part by the Division of Atmospheric Sciences of NSF under grant ATM80-18248. Much of the computer modeling was done by remote job entry using the facilities of the National Center for Atmospheric Research which is sponsored by the National Science Foundation.

table of CONTENTS

Chapter Page
I. INTRODUCTION 1
A. ORGANIZATION OF MATERIAL 1
B. WAVE-PARTICLE INTERACTIONS IN THE MAGNETOSPHERE 2
C. PREVIOUS WORK ON LONGITUDINAL RESONANCE 3
D. CONTRIBUTIONS OF THE PRESENT WORK 5
II. basic physics and tine averaged equations of motion 8
A. MOTION OF PARTICLES IN EARTH'S MAGNETIC FIELD 8
B. LONGITUDINAL RESONANCE 11
C. NONLINEAR EQUATIONS OF MOTION FOR LANDAU INTER- ACTIONS WITH A WHISTLER MODE WAVE 18
D. TTME AVERAGING OF EQUATIONS OF MO'SION 25
E. DISCUSSION OF FORCE EQUATIONS 29
III. ANALYTICAL STUDY OF LONGITUDINAL RESONANCE INTERACTION 37
A. INTRODUCTION 37
B. RELATION OF E_{n} AND B_{\perp} AND MAGNITUDE OF $\mathrm{E}_{\boldsymbol{n}}$ FOR WHISTLER MODE SIGNALS 38
C. RESONANCE CONDITION $v_{11}=v_{p_{11}}$ 52
D. PHASE BETWEEN WAVE AND ELECTRON IN LONGITUDINAL RESONANCE 57
E. ENERGY EXCHANGE 63
IV. DESCRIPTION OF THE NUMERICAL SIMULATION 65
A. INTRODUCTION 65
B. COMPUTATION OF PROPAGATION AND ADIABATIC MOTION PARAMETERS 66
C. NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION 67
V. NUMERICAL ANALYSIS OF THE INTERACTION 74

TABLE OF CONTENTS (Cont.)
Chapter Page
A. INTRODUCTION 74
B. SCATTERING OF A SINGLE SHEET INTERACTING WITH CW SIGNAL 75
C. SCATTERING OF A SINGLE SHEET INTERACTING WITH CW WAVES AMPLIFIED AT THE EQUATOR THROUGH THE CYCLOTRON RESONANCE 87
D. SCATTERING OF A SINGLE SHEET INTERACTING WITH SPATIAL PULSE 106
VI. FULL DISTRIBUTION SIMULATIONS 113
A. INTRODUCTION 113
B. PRECIPITATED ELECTRON FLUX 119
C. ENERGY EXCHANGE AND BALANCE 124
VII. APPLICATIONS TO MAGNETOSPHERIC PHENOMENA 131
A. GENERATION OF WHISTLER PRECURSORS 131
B. VLF HISS 147
C. COMMENTS ON THE INTERNAL FIELDS OF THE BUNCH 154
VIII. CONCLUSION AND SUGGESTIONS FOR FUIURE WORK 159
A. SUMMARY 159
B. SUGGESTIONS FOR FUTURE WORK 161
APPENDIX A. 164
APPENDIX B. 166
REFERENCES 188
LIST OF TABLES
Table Page
3.1 Phase shift properties of longitudinally resonant electrons 62

LIST OF TABLES (Cont.)

Table Page
5.1 Parameter values for the example case 75
7.1 Total number of electrons within 1% velocity band- width around $v_{11}=v_{p_{11}}$ as a function of flux and distribution function 157

ILLUSTRATIONS

Figure Page
2.1 Lipole geometry and symbols used for particle idendification 9
2.2 Parallel electric field and the corresponding potential energy 15
2.3 Coordinate system for the equations of motion 19
2.4 Magnitude of the wave longitudinal polarization ρ_{2} as a function of wave normal angle 31
2.5 Normalized peak magnitudes of the $\left\langle q v_{y} \mathbb{B}_{x}\right\rangle$ and $\left\langle q \AA_{z}\right\rangle$ terms as functions of pitch angle 33
2.6 Normalized peak magnitudes of the $\left\langle q v_{y} \mathbb{X}_{x}\right\rangle$ and $\left\langle q \delta_{2}\right\rangle$ terms as functions of wave normal angle 34
2.7 Normalized peak magnitudes of the $\left\langle q_{y} \mathrm{M}_{\mathrm{x}}\right\rangle$ and $\left\langle\mathrm{q}_{\mathrm{z}}\right\rangle$ terms as functions of normalized frequency f / \bar{E}_{H} 35
3.1 Refractive index surface for $\mathbf{f}<\mathrm{f}_{\mathrm{H}^{\prime}}{ }^{\prime 2}$ 42
3.2 Parallel electric field E_{n} as a function of frequency for a whistler mode signal with $B_{\perp}=10 \mathrm{pT}$ 44
3.3 Parallel electric field E_{11} as a function of frequency for a whistler mode signal, parametric in B_{1} 45
3.4 Parallel electric field $E_{\|}$as a function of frequency for a whistler mode wave propagating in the Gendrin mode 46
3.5 Parallel electric field $E_{\| \prime}$ as a function of wave normal angle θ 48
3.6 Normalized parallel electric field E_{11} / B_{\perp} as a function of L value 49
3.7 Equatorial electron density as a function of L value 50
3.8 Equatorial parallel phase velocity as a function of L value 53
3.9 Parallel phase velocity as a function of latitude for different models of the distribution of electron density along the field line 54
Figure Page
3.10 Normalized electron parallel velocity as a function of latitude 56
3.11 Relation between v_{11} and $v_{p_{n}}$ along the field ilne 58
4.1 Initial uniform phase distribution of electrons forming a test sheet 69
4.2 Interaction of the wave and a test particle 70
5.1 Mean scattering as a function of parallel velocity 77
5.2 Single electron trajectories for $B_{\perp}=10$ DT 79
5.3 Single electron trajectories for $B_{\perp}=10 \mathrm{pT}$ 81
5.4 Normalized energy of test sheet as a function of latitude 83
5.5 Single electron trajectories for $B_{\perp}=10 \mathrm{pT}$ 86
5.6 Mean scattering as a function of parallel velocity 88
5.7 Mean scattering as a function of parallel velocity 92
5.8 Mean scattering as a function of wave amplitude for ampli- fied CW signal 93
5.9 Single electron trajectories for $B_{\perp}=10 \mathrm{pT}$ 94
5.10 Single electron trajectories for $B_{\perp}=10 \mathrm{pT}$ 95
5.11 Single electron trajectories for $B_{\perp}=30 \mathrm{pT}$ 97
5.12 Total scattering, $\Delta \alpha_{e q,}$ versus initial phase for different wave amplitudes 99
5.13 Normalized energy of test sheet as a function of latitude 100
5.14 Mean scattering as a function of wave normal angle 101
5.15 Phase bunching due to the longitudinal resonance 104
5.16 Comparison between the effects of longitudinal resonance interactions inside and outside the plasmapause 105

ILLUSTRATIONS (Cont.)

Figure Page
5.17 Interactions with spatial amplitude pulse extending between $\lambda=-10^{\circ}$ and $\lambda=-7^{\circ}$ 108
5.18 Mean scattering for interactions with a spatial amplitude pulse extending between $\lambda=-10^{\circ}$ and $\lambda=-7^{\circ}$. 109
5.19 Interactions with spatial amplitude pulse extending between $\lambda=7^{\circ}$ and $\lambda=10^{\circ}$ 110
5.20 Mean scattering for interactions with a spatial amplitude pulse extending between $\lambda=7^{\circ}$ and $\lambda=10^{\circ}$ 111
6.1 Simulation of the distribution function 116
6.2 Unperturbed and perturbed eiectron distribution 118
6.3 Normalized electron distributions $f(\alpha)$ 121
6.4 Energy transfer from electrons to wave for the amplified CW signal as a function of particle parallel velocity 127
6.5 Particle detector resolution and detection of longitudinal resonance effects 129
7.1 Spectrograms of three whistler precursor events recorded at the Siple/Roberval conjugte stations 132
7.2 Expanded spectrogram of the precursor at 1400 UT from Figure 7.1 133
7.3 Schematic illustrition of the whistler precursor generation mechanism 136
7.4 Amplitude of whistler components associated with the precursor activity of August 2, 1973 143
7.5 Estimated location of whistler duct exit point for the precursor events of August 2, 1973 145
7.6 Cerenkov radiation conditions in a nondispersive medium 149
7.7 Cerenkov radiation in a dispersive medium 150

A. ORGANIZATION OF MATERIAL

This study treats longitudinal resonance interactions between energetic electrons and VLF waves in the earth's magnetosphere. The aim was to derive suitable analytical methods for test particle studies, and then to use those methods to investigate various aspects of the longitudinal resonance process.

The first part of the study is concerned with the derivation of equations of motion and their applications to the longitudinal resonance for a wide range of magnetospheric parameters. The second part gives the results of the numerical simulation of wave-particle interactions. The numerical simulations are done using a test particle approach to determine the perturbations of pitch angle for various wave functions. Also investigated are the perturbations of the full particle distribution and the energy exchange process.

In conclusion the longitudinal resonance interaction is compared to the cyclotron resonance interaction, and is related to phenomena observed in the magnetosphere.
B. WAVE-PARTICLE INTERACTIONS IN THE MAGNETOSPHERE

The magnetosphere, a magnetized region extending from about 1000 km altitude up to distance of roughly $100,000 \mathrm{~km}$ from the earth, is filled with both 'cold' and 'hot' plasma; the cold plasma consists of electrons and protons with energies in the $0.1-1 \mathrm{eV}$ range, while the hot plasma consists of energetic particles with higher energies in the range from 100 eV to tens of MeV . The cold plasma together with the earth's static magnetic field determines the wave propagation properties of the megnetosphere. The hot plasma is a source of energetic particles which participate in the wave-particle interactions that result in radio wave emissions. As seen from both ground and satellite observations the magnetosphere supports numerous modes of wave propagation. It can be shown that the hot plasma, due to its very low density, does not affect the wave dispersion properties of the magnetosphere, i.e. the dispersion of waves can be explained assuming that oniy cold plasma is present.

It is known that very-low-frequency waves can propagate in the magnetosphere with phase velocities much smaller than the velocity of light, and that those waves, called whistler-mode waves, can undergo Interactions with energetic particles both through longitudinal resonance and cyclotron (gyro) resonance. In longitudinal resonance the particle parallel velocity is matched to the wave phase velocity, whereas in the cyclotron resonance the doppler-shifted frequency of the wave (shifted due to the particle parallel velocity) matches the gyrofrequency of the energetic particle. Both types of interactions may induce perturbations of the energetic particle distribution through
pitch angle scattering, and may also result in different types of radio wave emissions, wave amplification (growth) and wave attenuation. The purpose of this study is to investigate the longitudinal resonance interactions of energetic particles with whistler mode signals propagating at an oblique angle to the static magnetic field. The approach taken is to use a test particle analysis and to study how the resonance process depends on various parameters. The particle trajectories are then used to estimate other effects such as wave growth/damping and particle trapping and precipitation. The trajectory calculations were done using a set of nonlinear equations of motion which are averaged over one gyroperiod [Inan and Tkalcevic, 1982].

C. PREVIOUS WORK ON LONGITUDINAT RESOL,ANCE

The longitudinal resonance process has been invoked by many authors to explain various magnetospheric wave phenomena. One of the early works considered the traveling-wave-tube type of process as a generation mechanism for VLF emissions [Gallet and Helliwell, 1959], and this process was also considered for amplification of whistler mode signals [Brice, 1961]. The traveling-wave-tube mechanism was also considered by Dowden [1962] as a possible mechanism of hiss generation. Be11 [1964] derived linearized solutions for the trajectories of longitudinally resonant farticles, but these have not been extended to cover the nonlinear regime. The various emission-generation theories have been reviewed by Brice [1964], including botin Cerenkov radiation and the traveling wave amplification hypothesis. The Cerenkov mechanism
is a process in which charged particles radiate electromagnetic waves as they travel through a medium. The necessary condition for the existence of this type of radiation, called a coherence condition, is easily found, and is the same as the condition required for the Jongitudinal interaction between the wave and the particle. Therefore, it is evident that those two processes, the longitudinal resonance interactions and Cerenkov radiation, are based on the same physical principle.

The Cerenkov radiation mechanism has been suggested by many authors [Ellis, 1959,1960; Dowden, 1960; McKenzie, 1963] in order to explain VLF hiss. The problem of stability of whistler mode signals, … . . the possibility of wave growth, accounting both for longitudinal and gyroresonance effects, was discussed by Kennel and Petschek [1966], Kennel and Thorne [1967], and also by Brinica [1972]. The work on radiation from moving charged particles, which includes Cerenkov radiation, includes the ana! ysis done by Liemohn [1965], Mansfield [1967], and Seshadri [1967]. A good review of work done on Cerenkov radiation, along with additional analysis of the hiss power density spectrum, was given by Taylor and Shawhan [1974]. Their work gives examples of the power spectral density of hiss, both measured [Gurnett, 1966; Gurnett and Frank, 1972], and calculated [Jorgensen, 1968; Lim and Laaspere, 1972]. Swift and Kan [1975] showed that an electron beam can excite a whistler mode instability near the resonance cone through the longitudinal resonance interaction. Maggs [1976] and Kumagai at al. [1980] investigated beam amplification due to Cerenkov radiation from longitudinally resonant electrons, and considered this type of beam instability as a generating mechanism of VLF hiss. The whistler

Abstract

precursor generation mechanism of Park and Helliwell [1977] was based on modifications of the particle distribution function achieved through longi: udinal interaction between whistlers and energetic electrons.

Most of the above studies were primarily concerned with wave growth calculations using the wave dispersion relation. On the other hand, the detailed nonlinear motion of longitudinally resonant particles was studied only for the case of electrostatic waves [Nunn, 1971; 1973]. Palmadesso [1973] derived equations of motion for a case of oblique propagation, and usnd particle trajectories to estimate the nonlinear time dependent Landau damping rate of the wave.

D. CONTRIBUTIONS OF THE PRESENT WORK

The motion of electrons longitudinally resonant with a whistler mode mave propagating at an angle to the static magnetic field is represented by a simple set of equations motion which are averaged over the cyclotron period. It is shown that these nonlinear equations are a very accurate representation of the electron motion for a wide range of magnetospheric parameters.

Using the time-averaged nonlinear equations of motion in numerical simulations involving whistler mode signals propagating in an inhomogeneous medium it wrs found that the offects of wave magnetic forces can be neglected for low pitch angles, high wave normel angle, and/or high normalized wave frequency. At the higher pitch angles the wave magnetic forces become very important and it is necessary to
include the additional force terms as derived.
The sample calculations indicate that there are two classes of electrons, distinguished by the behavior of their phaces with respect to the wave. In a case when the phase variation is bounded, i.e. less then 2π, the electron is said to be trapped, whereas unbounded phase variation characterizes the untrapped electrons. The scattering and corresponding energy exchange for the trapped and untrapped electrons exhibit significantly different characteristics.

It is also found that the trapping of electrons is easier under conditions of spatial amplitude variation of a na:rowband signal rather than for a constant amplitude. Analysis was done for a constant amplitude CW signal, a CW signal amplified at the equator through gyroresonance, and also for a spatial amplitude variation of the pulse formed by a nonducted signal.

It is also shown that the longitudinal resonance process Involves a wave amplitude threshold effect, i.e. the trapping of electrons is possible only if the amplitude of the wave parallel electric field E\| exceeds a certain value. The trapped electrons also become space bunched and temporarily increase the electron denaity over a particular range of parallel velocities.

The full distribution results show that the expected precipitation is small when compared to gyroresonance-induced precipitation for waves of comparable amplitude. In general, the results findicate that the longitudinal resonance scattering efficiency (scattering vs, amplitude) is considerably smaller, i.e. the efficiencies of the two processes differ by as much as an order of
magnitude.
The amplitude threshold effect was tested on whistler precursors, and it was found that the whistler amplitudes are well correlated with the occurrence of precursors, 1.e. only whistlers with amplitudes above a certain threshold resulted in precursors. This provides support for the whistler precursor generation mechanism suggested by Park and Helliwell [1977], which involves longitudinal resonance interactions, and therefore it shoulc exhibit a threshold effect as indicated by the measurements.

A. MOTION OF CHARGED PARTICLES IN EARTH'S MAGNETIC FIELD

Motion of the charged energetic particles in the magnetosphere is governed by the earth's magnetic field. The earth's field in the inner magnetospinere can be approximated by the dipole model with the magnetic field strength B_{0} given as

$$
\begin{equation*}
B_{0}=0.312 \cdot 10^{4}\left(R_{0} / R\right)^{3} \cdot\left(1+3 \sin ^{2} \lambda\right)^{1 / 2} \mathrm{~Wb} / \mathrm{m}^{2} \tag{2.1}
\end{equation*}
$$

where λ is the geomagnetic latitude, R is geocentric radius, and R_{0} is the radius of the earth. The axis of the magnetic dipole is inclined with respect to the rotation axis by 11°.

The motion of a particle in the magnetosphere is uniquely described by either the parailel and perpendicular velocities of the particle, $v_{\|}$and v_{\perp} respectively, or by the parallel (perpendicular) velocity and pitch angle $\alpha=\arctan \left(v_{1} / v_{11}\right)$. Fig. 2.1 shows a typical geometry with the definitions of v_{n}, v_{\perp}, and α.

It can be shown that for a spatially changing magnetic field, such as the earth's magnetic field given by Eq. 2.1 , charged particles will bounce forth and back along the field line between the mirror points [Northrop, 1963; Buneman 1980]. This is so because the particle perpendicular velocity must change in order to satisfy adiabatic
invariants, while the total kinetic energy of the particle must remain constant. The first adiabatic invariant is the invariance of the orbital magnetic moment, given as

$$
\begin{equation*}
W_{\perp} / B=\text { constant } \tag{2.2}
\end{equation*}
$$

where W_{\downarrow} is the perpendicular kinetic energy of the particle.

FIGURE 2.1 DIPOLE GEOMETRY AND SYMBOLS USED FOR PARTICLE IDENTIFICATION. Note that the 2 -axis is aligned with the magnetic field line and that both the wave and the particles travel in the to direction. Particle orbits are described in terms of equatorial values of v_{11} and α.

The second adiabatic invariant requires that the magnetic flux through the circle described by the particle gyrating around the field line remains constant, or

$$
\begin{equation*}
r_{H}^{2} \times B=\text { constant } \tag{2.3}
\end{equation*}
$$

where r_{H} is the electron gyroradius.
Thus if the magnetic field \bar{B}_{o} increases, the perpendicular kinetic energy W_{\perp} must also increase according to Eq. 2.2. Furthemore, the parallel energy W_{11} of the particle must decrease so that the total energy $W_{11}+W_{\perp}$ remains constant. Therefore, the particle pitch angle $\alpha=\arctan \left(\frac{\sqrt{W_{\perp}}}{W_{11}}\right)$ increases as \bar{B} increases up to the point where $\alpha=90^{\circ}$. At this point the parallel velocity of the particle has been reduced to zero, and the particle begins to travel in the opposite direction along the same field line. When the particle reaches the conjugate point where again $\alpha=90^{\circ}$, the process repeats. Hence the particle bounces back and forth along the magnetic field line between the two mirror points where $v_{11}=0$.

Finally, the motion of a particle trapped along a field line can be described by the following equations

$$
\begin{align*}
& \frac{d v_{11}}{d t}=-\frac{v_{\perp}^{2}}{2 B_{0}} \cdot \frac{d B O}{d z} \tag{2.4}\\
& \frac{d v_{\perp}}{d t}=+\frac{v_{11} v_{\perp}}{2 B_{0}} \cdot \frac{d B_{0}}{d z} \tag{2.5}
\end{align*}
$$

which can be derived from the first adiabatic invariant and the law of
energy conservation.
B. LONGITUDINAL RESONANCE

The bounce motion of the particles can be affected by resonant interactions between waves and the particles. The resonance condition is satisfied whenever the doppler-shifted frequency of the wave seen by the particle is equal to an integral multipla of the particle gyrofrequency, i.e.

$$
\begin{equation*}
\omega-k_{11} v_{11}=m \omega_{H} \quad m=0, \pm 1, \pm 2, \pm 3, \ldots \tag{2.6}
\end{equation*}
$$

where ω is the wave frequency, k_{11} is the wave number in the direction of the static magnetic field, and ω_{H} is the particle gyrofrequency. The resonance condition gfoen by Eq. 2.6 can be furtr divided into three subgroups according to different values of the parameter m. For $m>0$ we have the resonance condition for the m-th order gyroresonance; $m<0$ is the resonance condition for the m-th order anomalous gyroresonance; $m=0$ yields the resonance condition for the longitudinal or Landau resonance. The last condition is given as

$$
\begin{equation*}
\omega-k_{11} v_{11}=0 \tag{2.7}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{p \prime}=v_{11} \tag{2.8}
\end{equation*}
$$

where $v_{p \prime \prime}$ is the wave phase velocity measured in the direction of the static magnetic field.

Before discussing the longitudinal resonance we should note that this resonance ($m=0$) is fully separable from the gyroresonances ($m \neq 0$), since the longitudinal resonance is possible only when the wave and the particles travel in the same direction, while the gyroresonance condition is satisfied only if the wave and the particles travel in the opposite direction. This separability of the different resonances makes their analysis much simpler. It is still possible for the same particle to interact simultaneously in both resonances with two different waves that satisfy corresponding resonant conditions. In this report we shall limit ourselves to discussion of the longitudinal resonance, although a comparison with the gyroresonance mechanism is given later in the text.

The condition given in Eq. 2.8 is the necessary condition for the longitudinal resonance. However, in order for the particle and the wave to exchange energy through the particle trapping process, the parallel component of the wave electric field must have a non-zero value. Therefore, even if the particle parallel velocity matches the wave phase velocity there will be no energy exchange between the particle and the wave if $E_{0}=0$. The direction of the energy exchange (whether wave or particle gains energy) depends on the initial velocity of the particle $v_{1 \prime}$. In the case when $v_{\| \prime}$ is initially less than the phase velocity $v_{p \prime \prime}$ the particle will gain energy; if the initial $v_{\|}$is larger than $v_{p \prime \prime}$ the particle will lose some of its energy. We shall now present a simple analytical model for the longitudinal resonance and trapping process similar to that given by Seshadri [1973].

ORIGINAL PAGE IS OF POOR QUALITY

Let us assume that the longitudinal component of the wave electric field, propagating in the homogeneous medium, is given by

$$
\begin{equation*}
E_{11}(s, t)=E_{16} \sin \left(k_{11} \cdot s-\omega \cdot t\right) \tag{2.9}
\end{equation*}
$$

where s is the space coordinate. Eq. 2.9 is written in the laboratory coordinate system, but it is useful to do the analysis in the wave frame which moves at the phase velocity $\mathbf{v}_{\mathrm{p}_{1}}$. In this case a new space coordinate 2 is defined as

$$
\begin{equation*}
z=s-v_{p 11} t \tag{2.10}
\end{equation*}
$$

Now, Eq. 2.9 can be rewritten as

$$
\begin{equation*}
E_{11}(s, t)=E_{1_{0}} \text { sin }\left[k_{11}\left(s-\frac{\omega}{k_{11}} t\right)\right] \tag{2.11}
\end{equation*}
$$

and using Eq. 2.10 and $v_{p_{11}}=\frac{\omega}{k_{11}}$ Eq. 2.11 simplifies to

$$
\begin{equation*}
E_{11}(z)=E_{\|_{0}} \sin \left(k_{11} z\right) \tag{2.12}
\end{equation*}
$$

The electric field given by the Eq. 2.12 is static in the wave frame and it is possible tc derive a corresponding scalar potential $\Phi(z)$, by integrating $E_{11}(\eta)$ where η is a dummy variable.

$$
\begin{equation*}
\Phi(z)=-\int_{0}^{2} E(\eta) \cdot d \eta \tag{2.13}
\end{equation*}
$$

$$
\begin{align*}
& \Phi(z)=-\int_{0}^{z} E_{10} \sin \left(k_{11} \eta\right) d \eta \tag{2.13a}\\
& \Phi(z)=\frac{E_{110}}{k_{11}}\left(\cos \left(k_{11} z\right)-1\right) \tag{2.13b}
\end{align*}
$$

Next we consider an electron (a similar derivation is possible for other types of charged particles) and its potential energy $W_{p}(z)$ which, in the wave frame is given by

$$
\begin{align*}
& W_{p}(z)=-e \cdot \Phi(z) \tag{2.14}\\
& W_{p}(z)=\frac{e E_{110}}{k_{11}}\left(1-\cos \left(k_{11} z\right)\right)=W_{p_{\max }}\left(1-\cos \left(k_{11} z\right)\right) \tag{2.14a}
\end{align*}
$$

The constant of the integration is chosen such that the minimum potential energy given by Eq. 2.14 a is zero. Thus, the potential energy of the electron is a periodic function, as shown in Fig. 2.2.

It can be shown that the possibility of an electron being trapped depends on the initial kinetic energy of that electron measured In the wave frame. In a case when the initial kinetic energy of an electron, placed at z at the time $t=0$, is larger than the potential energy given by Eq. 2.14a, $W_{p_{\text {max }}}$, there is no net interaction between the wave and electron, regardless of the electron inftial velocity. The electron simply slides up and down the potential well as it moves either forward or backward through the wave, and there is no net energy exchange when averaged over one wavelength.

However, if the kinetic energy of the electron in the wave frame, $W_{k}(t=0)$, is less than the potential energy given by Eq. 2.14a,

ORIGINAL PAGE IS OF POOR QUALITY

a)

FIGURE 2.2 PARALLEL ELECTRIC FIELD AND The CORRESPONDing Potential ENERGY. Both the parallel electric field E_{11} and potential energy W_{p} of the electron are periodic functions in a reference frame moving at at the parallel phase velocity $v_{p u}$. In (b) z_{B} indicates the bottom of the potential well.
$\mathrm{W}_{\mathrm{P}_{\text {max }}}$ as shown in Fig. 2.2 the electron is trapped in the potential well. The trapping condition is then given as

$$
\begin{align*}
& \frac{1}{2} m\left(v_{11}-v_{p \prime \prime}\right)^{2}<W_{F_{\max }} \tag{2.15}\\
& \frac{1}{2} m\left(v_{11}-v_{p \prime \prime}\right)^{2}<\frac{e E_{110}}{k_{11}} \tag{2.15a}\\
& \left|v_{11}-v_{p_{1 \prime}}\right|<\sqrt{\frac{2 e E_{110}}{m k_{11}}} \tag{2.15b}
\end{align*}
$$

Rewriting the inequality of Eq. 2.15b as

$$
\begin{equation*}
v_{p_{11}}-\sqrt{\frac{2 e E_{110}}{m k_{11}}}<v_{11}<v_{p_{11}}+\sqrt{\frac{2 e E_{10}}{m k_{11}}} \tag{2.16}
\end{equation*}
$$

we have a range of velocities for which it is possible to trap an electror. Therefore, all electrons with parallel velocities that satisfy Eq. 2.16 are trapped in the wave potential well. The trapping velocity bandwidth v_{t} is given as

$$
\begin{equation*}
v_{t}=\sqrt{\frac{2 e E_{n o}}{m k_{11}}} \tag{2.17}
\end{equation*}
$$

Furthermore, it can be shown that the total energy, ΔW, exchanged between the wave and electrons during the trapping process is

$$
\begin{equation*}
\Delta W=\int_{v_{p^{\prime \prime}}-v_{t}}^{v_{p \prime \prime}+v_{t}} f\left(v_{1 \prime}\right) \Delta E d v_{11} \tag{2.18}
\end{equation*}
$$

where $f\left(v_{11}\right)$ is the electron distribution function; ΔE is the amount of
energy exchanged through trapping of a single electron, and it is expressed as

$$
\begin{align*}
& \Delta E=\frac{1}{2} m\left(v_{p_{11}}+\hat{v}_{11}\right)^{2}-\frac{1}{2} m v_{11}^{2} \tag{2.19}\\
& \Delta E=-m_{e} v_{p_{11}}\left(v_{11}-v_{p_{11}}\right) \tag{2.19a}
\end{align*}
$$

where $\theta_{\text {I }}$ is a time-varying periodic function describing the oscillation of an electron at the bottom of the potential well. Expanding $f\left(v_{11}\right)$ in a Taylor series around $v_{11}=v_{p_{1}}$ we obtain

$$
\begin{equation*}
f\left(v_{11}\right)=f\left(v_{p}\right)+\left.\left(v_{11}-v_{p 11}\right) \frac{\partial f\left(v_{11}\right)}{\partial v_{11}}\right|_{v_{11}=v_{p_{11}}} \tag{2.20}
\end{equation*}
$$

and finally substituting Eq. 2.20 in Eq. 2.18 the total energy exchanged in the trapping process, ΔW, is given as

$$
\begin{equation*}
\Delta W=-\frac{2}{3} m \quad v_{p_{11}} v_{t}^{3} f^{\prime}\left(v_{p_{1}}\right) \tag{2.21}
\end{equation*}
$$

The result derived in Eq. 2.21 shows that the net energy exchanged between the trapped electrons and the wave depends on the slope of the distritution function at a point where the electron velocity is equal to the phase velocity of the wave. In the case when the number of electrons moving faster is larger than the number of electrons moving slower than the phase velocity, the wave gains energy and its amplitude grows. Similarly, if the number of slow electrons is larger than the number of fast electrons, the amplitude of the wave is
reduced.
The above analysis, using a longitudinal plasma wave and one-dimensional distribution function $f\left(v_{11}\right)$, has demonstrated that it is possible to have wave damping in the absence of collisions, also known as Landau dampirg. It was also shown that the wave amplitude grows if the slope of the distribution function is positive. However, the expressions for the energy exchange were derived assuming that the particles are already trapped. It was also assumed that the medium is homogeneous, and that both the wave and the distribution function are one-dinensional.

In the magnetosphere Eq. 2.18 is still valid, but the trapping process is governed by the particle equations of motion. Thus in order to find the energy exchanged between a wave and particle (ΔE in Eq. 2.18) it is necessary to derive the equations of motion for a single particle when it is in longitudinal resonance with waves in the magnetosphere.

C. NONLINEAR EQUATIONS OF MOTION FOR LANDAU RESONANCE INTERACTIONS WITH A WHISTLER MODE WAVE

Now we consider an elliptically polarized wave pxop:sgating in the zold plasma of the magnetosphere with a static magnetic field $\overline{\mathbf{B}}_{0}$. The wave frequency f is assumed to be less tinan the electron gyrofrequency \mathbf{f}_{H}; in that case there is only one propagating wave [Ratcliffe, 1959; Budden, 1961], which is called a whistler wave.

ORIGINAL PAGE IS

OF POOR QUALITY

In the most general case all Cartesian components of the wave electric \bar{E}_{W} and magnetic field $\overline{\mathrm{B}}_{\mathrm{w}}$ have non-zero values. All of these components can be expressed in terms of δ_{2} through the cold-plasmil dispersion relation. Without any loss of generality the wave vector \bar{k} is confined to the $x-2$ plane, at an angle θ from the st tic magnetic field. The coordinate system used is shown in Fig. 2.3.

FIGURE 2.3 COORDINATE SYSTEM FOR THE EQUATIONS OF MOTION. The wave vector \bar{k} is at an angle θ from the static magnetic field \bar{B}_{0}.

ORIGINAL PAGE IE

We also assume propagation as exp $1(\omega t-\bar{k} \cdot \bar{r})$. Using a plasma dispersion relation [Stix, 1962]

$$
\left|\begin{array}{ccc}
\varepsilon_{1}-n^{2} \cos ^{2} \theta & -1 \varepsilon_{x} & n^{2} \sin \theta \cos \theta \tag{2.22}\\
i \varepsilon_{x} & \varepsilon_{\downarrow}-n^{2} & 0 \\
n^{2} \sin \theta \cos \theta & 0 & \varepsilon_{11}-n^{2} \sin ^{2} \theta
\end{array}\right|\left|\begin{array}{l}
\varepsilon_{x} \\
\delta_{y} \\
\delta_{z}
\end{array}\right|=0
$$

all el.actric field components can be expressed in terms of $\boldsymbol{\delta}_{z}$ as follows

$$
\begin{align*}
& \delta_{z}=E_{n} \cos (\omega t-\bar{k} \cdot \bar{r}) \tag{2.23}\\
& E_{x}=\frac{n^{2} \sin \theta-\varepsilon_{1 \prime}}{n^{2} \sin \theta \cos \theta} E_{\prime \prime} \cos (\omega t-\bar{k} \cdot \bar{r}) \tag{2.24}\\
& \epsilon_{y}=\frac{\varepsilon_{x}}{n^{2}-\varepsilon_{\perp}} \frac{n^{2} \operatorname{nin} \theta-\varepsilon_{u}}{n^{2} \sin \theta \cos \theta} E_{1 \prime} \sin (\omega t-\bar{k} \cdot \bar{r}) \tag{2.25}
\end{align*}
$$

where $\varepsilon_{11}=1-\frac{\omega_{P}^{2}}{\omega^{2}}, \varepsilon_{\perp}=1-\frac{\omega_{P}^{2}}{\omega^{2}-\omega_{H}^{2}}, \varepsilon_{x}=\frac{\omega_{H}}{\omega} \frac{\omega_{P}^{2}}{\omega^{2}-\omega_{H}^{2}}$. The refractive index n can be derived from Eq. 2.22 as (QL approximation)

$$
\begin{equation*}
n^{2}=1+\frac{f_{p}^{2}}{f\left(f_{H} \cos \theta-f\right)} \tag{2.25a}
\end{equation*}
$$

Using Maxwell's equation $\nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t}$ the wave magnetic components are

$$
\begin{equation*}
\Phi_{x}=-\frac{k \cos \theta}{\omega} \delta_{y} \tag{2.26}
\end{equation*}
$$

$$
\begin{align*}
& s_{y}=\frac{k \cos \theta}{\omega} \delta_{x}-\frac{k \sin \theta}{\omega} \delta_{z} \tag{2.27}\\
& S_{z}=\frac{k \sin \theta}{\omega} \delta_{y} \tag{2.28}
\end{align*}
$$

which can be also expressed in terms of \AA_{z} using Eqs. 2.23, 2.24, and 2.25.

The variation of tha total electron velocity \bar{v} is governed by the Lorentz force equation

$$
\begin{equation*}
m \frac{d \bar{v}}{d t}=q\left[\bar{E}_{W}+\bar{v} \times\left(\bar{B}_{w}+\bar{B}_{0}\right)\right] \tag{2.29}
\end{equation*}
$$

where m and q are electron mass and charge. For the case when $\left|\bar{B}_{W}\right| \ll\left|\bar{B}_{o}\right|$, the electron gyromotion can be assumed to be unaffected by the wave to the first order, so that the Cartesian components of the electron velocity vary as

$$
\begin{align*}
& v_{z}=v_{11} \tag{2.30}\\
& v_{x}=v_{+} \quad \cos \left(\omega_{H} t+\beta_{0}\right) \tag{2.31}\\
& v_{y}=v_{2} \quad \sin \left(\omega_{H} t+\beta_{0}\right) \tag{2.32}
\end{align*}
$$

where ω_{H} is the electron gyrofrequency and β_{0} is the initial cyclotron phase. Furthemore, as long as the wave field is much staller than the earth's magnetic field, it is permissible first to derive the force applied to an electron by the wave fields and then to superimpose the
adiabatic variation of v_{\perp} and $v_{\|}$. Therefore, the perturbation of the electron motion induced by the wave fields only is given by

$$
\begin{equation*}
m \frac{d \bar{v}}{d t}=q\left[\bar{E}_{w}+\bar{v} \times \bar{B}_{w}\right] \tag{2.33}
\end{equation*}
$$

It is useful to examine each Cartesian component in Eq. 2.33 separately. These three components are given as

$$
\begin{align*}
& F_{x}=q\left[\epsilon_{x}+v_{y} \mathbb{B}_{z}-v_{z} \mathbb{B}_{y}\right] \tag{2.34}\\
& F_{y}=q\left[\xi_{y}+v_{z} \mathbb{B}_{x}-v_{x} \mathbb{B}_{z}\right] \tag{2.35}\\
& F_{z}=q\left[\xi_{z}+v_{x} \mathbb{S}_{y}-v_{y} \mathbb{S}_{x}\right] \tag{2.36}
\end{align*}
$$

Before investigating those equations we simplify $\cos (\omega t-\bar{k} \cdot \bar{r})$, which can be expressed as

$$
\begin{equation*}
\cos (\omega t-k \cos \theta \cdot z-k \sin \theta \cdot x) \tag{2.37}
\end{equation*}
$$

or letting $\gamma=\omega t-k \cos \theta z$ in Eq. 2.37 we have

$$
\begin{equation*}
\cos (\gamma-k \sin \theta \quad x) \tag{2.38}
\end{equation*}
$$

Eq. 2.38 can be further simplified using the fact that

$$
\begin{equation*}
x=\frac{v_{\perp}}{\omega_{H}} \sin \left(\omega_{H} t+\beta_{0}\right) \tag{2.39}
\end{equation*}
$$

original race is

OF POOR QUALITY

which is derived by integrating Eq. 2.31. Finally, replacing x in Eq. 2.38 by (2.39)

$$
\begin{equation*}
\cos (\omega t-\bar{k} \cdot \bar{r})=\cos (\gamma-\eta \sin \phi) \tag{2.40}
\end{equation*}
$$

where $\phi=\omega_{K H} t+\beta$ and $\eta=\frac{v_{\perp} k \sin \theta}{\omega_{H}}$.
Now, using the result derived in (2.40) we can rewrite three Cartesian components of the Lorentz force as

$$
\begin{align*}
F_{x}=q & {\left[E_{x} \sin (\gamma-\eta \sin \phi)+v_{\perp} \sin \phi B_{y} \sin (\gamma-\eta \sin \phi)\right.} \\
& \left.-v_{11} B_{z} \cos (\gamma-\eta \sin \phi)\right] \tag{2.41}
\end{align*}
$$

$$
\begin{align*}
F_{y}=q & {\left[E_{y} \sin (\gamma-\eta \sin \phi)+v_{11} B_{x} \sin (\gamma-\eta \sin \phi)\right.} \\
& \left.-v_{\perp} \cos \phi B_{z} \sin (\gamma-\eta \sin \phi)\right] \tag{2.42}
\end{align*}
$$

$$
\begin{align*}
F_{z}=q & {\left[E_{z} \cos (\gamma-\eta \sin \phi)+v_{\perp} \cos \phi B_{y} \cos (\gamma-\eta \sin \phi)\right.} \\
& \left.-v_{\perp} \sin \phi B_{x} \sin (\gamma-\eta \sin \phi)\right] \tag{2.43}
\end{align*}
$$

Note that $E_{X}, E_{y}, E_{z}, B_{X}, B_{y}$, and B_{z} are the real magnitudes of the fields, with the phase differences taken separately into account through $\begin{aligned} & \text { sin } \\ & \cos \end{aligned}(\gamma-\eta \sin \phi)$ terms.

At this point we have three equations which can be used to describe the motion of particles in resonance with a whistler wave. However, it is desirable to reduce the number of required equations to simplify numerical simulations. In this case it is useful to combine
the x and y cotiponents of the Lorentz force in one perpendicular component. This is done by taking the time derivative of the square of the perpendicular velocity $v_{\perp}^{2}=v_{x}^{2}+v_{y}^{2}$

$$
\begin{align*}
& v_{\perp}^{2}=v_{x}^{2}+v_{y}^{2} / \frac{d}{d t} \tag{2.44}\\
& v_{\perp} \frac{d v_{\perp}}{d t}=v_{x} \frac{d v_{x}}{d t}+v_{y} \frac{d v_{y}}{d t} \tag{2.44a}
\end{align*}
$$

and multiplying it by m / v_{\downarrow}

$$
\begin{equation*}
m \frac{d v_{\perp}}{d t} m \frac{v_{x}}{v_{\perp}} \frac{d v_{X}}{d t}+m \frac{v_{Y}}{v_{\perp}} \frac{d v_{y}}{d t} \tag{2.45}
\end{equation*}
$$

However, $\frac{v_{x}}{v_{\perp}}=\cos \phi, \frac{v_{y}}{v_{\perp}}=\sin \phi, m \frac{d v_{\perp}}{d t}=F_{\perp}, m \frac{d v_{x}}{d t}=F_{x}$, and $m \frac{d v_{y}}{d t}=F_{y}$, and (2.45) reduces to

$$
\begin{equation*}
F_{\perp}=\cos \phi F_{x}+\sin \phi \quad F_{y} \tag{2.46}
\end{equation*}
$$

Now, combining Eqs. 2.46, 2.41, and 2.42 the perpendicular force term is

$$
\begin{align*}
& F_{\perp}= \cos \phi\left\{q \left[E_{x} \sin (\gamma-n \sin \phi)+v_{\perp} \sin \phi \quad B_{y} \sin (\gamma-n \sin \phi)\right.\right. \\
&\left.\left.-v_{11} B_{z} \cos (\gamma-n \sin \phi)\right]\right\} \\
&+\sin \phi\left\{q \left[E_{y} \sin (\gamma-n \sin \phi)+v_{11} B_{x} \sin (\gamma-n \sin \phi)\right.\right. \\
&\left.\left.-v_{\perp} \cos \phi B_{z} \sin (\gamma-n \sin \phi)\right]\right\} \tag{2.47}
\end{align*}
$$

The motion of a particle is now described in terms of the parallel and perpendicular forces, given respectively by Eqs. 2.43 and
2.47. If the $\cos _{\cos }(\gamma-\eta \sin \phi)$ terms in these equations are expanded (Appendix A), the result is an infinite series of harmonics at frequencies $n \omega_{H}$ with amplitudes given by $J_{n}(\eta)$. In a general formulation all terms must be kept and Eqs. 2.43 and 2.47 must be used as they stand. However, the equations can be considerably simplified when time averaged over one cyclotron period, T_{H}, because the higher order force terms ($n \geq 2$) vanish. Also, qualitatively, the $v_{x} \mathbb{S}_{y}$ term should average out to zero since wave phase does not vary in the y-direction. In the next section we present the necessary conditions for the averaging to be valid, along with the time averaged equations of motion.
D. time averaging of equations of motion

Before averaging Eqs. 2.43 and 2.47 over one gyroperiod we have to make sure that the wave phase variations, as seen by the particles during one gyroperiod, are negligible. For the small field case this condition can be stated as

$$
\begin{equation*}
\omega-\bar{k} \cdot \bar{v} \ll \omega_{H} \tag{2.48}
\end{equation*}
$$

which would certainly be the case for the Landau resonance described by

$$
\begin{equation*}
\omega-\bar{k} \cdot \bar{v} \simeq 0 \tag{2.49}
\end{equation*}
$$

ORIGINAL PAGE ig

OF POOR QUALITY

Note that Eq. 2.49 is the equivalent of Eq. 2.8 .
We have stated condition (2.48) assuming small amplitude waves. This requires that the wave field be small enough that it cannot move the particle by a substantial fraction of a wavelength during a gyroperiod. This condition can be stated as

$$
\begin{equation*}
\left|a_{p}\right| \frac{1}{f_{H}^{2}} \ll \frac{c}{n f} \tag{2.50}
\end{equation*}
$$

where a_{p} is the peak parallel acceleration, c is the speed of light, n is the refractive index, $f=\frac{\omega}{2 \pi}$ is the wave frequency and $f_{H}=\frac{\omega_{H}}{2 \pi}$ is the electron gyrofrequency. The peak value of the parallel acceleration β_{p} diring a gyroperiod can be taken to be that for $\phi=\frac{3 \pi}{2}$ and $\gamma-\eta$ sind $=\frac{\pi}{2}$. From Eq. 2.41 we have

$$
\begin{equation*}
\left|a_{p}\right|=\left|\frac{q}{m}\left(E_{z}-v_{y} B_{x}\right)\right| \tag{2.51}
\end{equation*}
$$

In a order to express E_{z} in terms of B_{x} s we have from Eq. 2.25

$$
\begin{equation*}
\delta_{y}=\rho_{z} \delta_{z} \tag{2.52}
\end{equation*}
$$

where $\rho_{z}=i \frac{\varepsilon_{x}}{n^{2}-\varepsilon} \frac{n^{2} \sin \theta-\varepsilon_{n}}{n^{2} \sin \theta \cos \theta}=\frac{\delta_{y}}{\sigma_{z}}$. Substituting Eq. 2.52 in Eq. 2.26

$$
\begin{equation*}
B_{x}=-\frac{k \cos \theta}{\omega} \rho_{z} E_{z} \tag{2.53}
\end{equation*}
$$

or

$$
\begin{equation*}
E_{z}=-\frac{B_{x}}{\rho_{z}} \frac{\omega}{k \cos \theta} \tag{2.54}
\end{equation*}
$$

Furthermore, for the near resonant particles $\frac{\omega}{k \cos \theta}=v_{p \prime \prime}=v_{11}$ and Eq. 2.54 yields

$$
\begin{equation*}
E_{z}=-\frac{B_{x}}{\rho_{z}} v_{11} \tag{2.55}
\end{equation*}
$$

Replacing the E_{2} in Eq. 2.51 with the above expression the peak acceleration $\left|a_{p}\right|$ is

$$
\begin{align*}
& \left|a_{p}\right|=\left|\frac{q}{m}\left(-\frac{B_{x}}{\rho_{2}} v_{11}-v_{\perp} B_{x}\right)\right| \tag{2.56}\\
& \left|a_{p}\right|=\frac{q}{m} B_{x} v_{\perp}\left(1+\frac{1}{\left|\rho_{z}\right| \tan \alpha}\right) \tag{2.56a}
\end{align*}
$$

where $\tan \alpha=\frac{v_{\perp}}{v_{11}}$.
The final step is to substitute (2.56a) in (2.50) in order to get the condition on wave intensity for which the averaging of equations (2.43) and (2.47) is valid;

$$
\begin{equation*}
B_{x} \ll B_{u}=\frac{m f_{H}^{2} c}{q v_{\perp} n f} \frac{\left|\rho_{2}\right| \tan \alpha}{1+\left|\rho_{z}\right| \tan \alpha} \tag{2.57}
\end{equation*}
$$

Thus B_{u} represents the upper linit on wave magnetic field intensity. Note that B_{x} is equal to the total transverse B_{W} for circularly polarized whistler waves. Assuming B_{u} to have a value much higher (> 100 times) than the typical field intensities for whistler mode waves in the magnetosphere [Burtis and Helliwell, 1975], as shown later

ORIGINAL PAGE TG OF POOR QUALITY

in the text, we shall now time average Eqs. 2.43 and 2.47 over one gyroperiod. In doing so we use the identities derived in Appendix A. The averaged equations of motion become

$$
\begin{align*}
& \left\langle m \frac{d v_{z}}{d t}\right\rangle=\left\langle q \dot{b}_{z}\right\rangle-\left\langle q v_{y} B_{x}\right\rangle \tag{2.58}\\
& \left\langle m \frac{d v_{\perp}}{d t}\right\rangle=\left\langle q \delta_{y}\right\rangle-\left\langle q v_{z} B_{x}\right\rangle \tag{2.59}
\end{align*}
$$

or
$m \frac{d v_{u}}{d t}=q E_{Z}^{J}{ }_{0}(n)\left[1-\frac{v_{2} \cos \theta}{\omega} \mu_{2} \frac{J_{1}(n)}{J_{0}(n)}\right] \sin (\omega t-k 2 \cos \theta)$
$m \frac{d v_{1}}{d t}=-q c_{2} E_{2} J_{1}(\eta)\left[1-\frac{v_{11} k \cos \theta}{\omega}\right] \sin (\omega t-k 2 \cos \theta)$

Since the brackets on the left hand sides are dropped, $\frac{d v_{n}}{d t}$ and $\frac{d v_{\perp}}{d t}$ should be understood to be the average rates of change of v_{11} and v_{\perp}, respectively.

Finally, for an inhomogeneous medium with \bar{B}_{0} variable as in the magnetosphere, the adiabatic variations of v_{11} and v_{\perp} can be superposed on the wave-induced perturbations as long as the variation of \bar{B}_{0} in one wavelength is negligible. Thus the complete averaged nonlinear equations of motion become

$$
\frac{d v_{11}}{d t}=\frac{q}{m} E_{z} J_{0}(\eta)\left[1-\frac{v_{1} k \cos \theta}{\omega} \rho_{z} \frac{J_{1}(\eta)}{J_{0}(\eta)}\right] \sin (\omega t-k z \cos \theta)-\frac{v_{1}}{2 B_{0}} \frac{d B_{0}}{d z}
$$

$\frac{d v_{1}}{d t}=-\frac{q}{m} \rho_{2} E_{z} J_{1}(\eta)\left[1-\frac{v_{11} k \cos \theta}{\omega}\right] \sin (\omega t-k z \cos \theta)+\frac{v_{11} v_{\perp}}{2 B_{0}} \frac{d B_{0}}{d z}$

We shall discuss the relative importance of the different terms In Eqs. 2.62 and 2.63 in the next section.
E. DISCUSSION OF FORCE EQUATIONS

Two terms of the parallel force are:

$$
\begin{align*}
& \left\langle q{\delta_{z}>}=q E_{z} J_{0}(\eta) \sin \gamma\right. \tag{2.64}\\
& \left.<q v_{y} \mathscr{B}_{x}\right\rangle=-q E_{z} J_{1}(\eta) \rho_{z} \tan \alpha \sin \gamma \tag{2.65}
\end{align*}
$$

Also note that using (2.49)

$$
\begin{align*}
& \eta=v_{\alpha} \frac{k \sin \theta}{\omega_{H}}=\frac{\omega}{\omega_{H}} \tan \theta \frac{k \cos \theta}{\omega} v_{\perp} \tag{2.66}\\
& \eta=\frac{\omega}{\omega_{H}} \tan \theta \tan \alpha \tag{2.6ba}
\end{align*}
$$

for near-resonant particles.
The term in (2.64) proportional to $\mathrm{qE}_{2} \mathrm{~J}_{0}(\eta)$ is similar to the qE_{2} term that would be present in the case of electrostatic waves. The
$J_{0}(n)$ represents the fact thar the E_{2} field seen by the particle at different points in its transverse orbit $1 s$ changing since E_{z} has a transverse phase variation given by $k x \sin \theta$. The term in (2.65) represents the effect of the $q \bar{v} \times \bar{B}$ force, and the fact that since the plane of rotation of the particle and the wave polarfzation ellipse are at an angle $\left(\frac{\pi}{2}-\theta\right)$, there is a net longitudinal acceleration even after averaging over one gyroperiod. For cases in which (2.64) is the dominant term, the equations of motion for interaction with whistler mode waves are much the same as those for electrostatic waves [Nunn 1971, 1973].

Before comparing the relative magnitudes of (2.64) and (2.65) for the range of the parameters in the magnetosphere it should be noted that $\frac{d v_{\perp}}{d t}$, given by Eq. 2.61 , becomes very small for near-resonant particles with $v_{11}=v_{P_{11}}$. In this case $1-\frac{v_{\text {: } k \cos \theta}}{\omega}=1-\frac{v_{11}}{v_{P_{11}}}=0$, and the perpendicular motion of the particles is primarily governed by the adiabatic term of Eq. 2.63. In the following figures we present the magnitudes of (2.64) and (2.65), as well as the longitudinal polarization ρ_{z} as a function of different parameters.

Figure 2.4 shows a plot of the longitudinal polarization ρ_{2} as a function of the wave normal angle θ, for different values of normalized frequency $\frac{\omega}{\omega H}$. The results are computed by using the cold plasma dispersion relation [Stix, 1962]. The longitudinal polarization is $\rho_{z}=\frac{\delta_{y}}{\delta_{z}}$, as defined in (2.52). A plasma frequency $f_{p}=180 \mathrm{kHz}$, corresponding to $400 \mathrm{el/cc}$ at the magnetic equator at $\mathrm{L}=4$, along with the equatorial gyrofrequency $\mathrm{f}_{\mathrm{H}}=13.65 \mathrm{kiz}$, were used in computing ρ_{2}. For $f_{p} \gg f_{H}$ the value of ρ_{z} is not strongly dependent on f_{p}. Note from

ORIGINAL PACE [ST OF POOR QUALITY

FIGURE 2.4 MAGNITUDE OF THE WAVE LONGITUDINAL POLARIZATION $\left|\rho_{z}\right|=\left|\sigma_{y} / \sigma_{z}\right|$ AS A FUNCTION OF WAVE NORMAL ANGLE θ. $\left|\rho_{2}\right|$ is shown for three different normalized frequencies.

Fig. 2.4 that ρ_{2} is in general higher at lower frequencies and decreases with increasing θ. Also recall that for longitudinal propagation, 1.e., $\theta=0^{\circ}, E_{2}=0$ and there is no interaction between the particles and the waves.

Figures 2.5, 2.6 and 2.7 compare the peak magnitudes of the two terms as given by (2.64) and (2.65) for various parameters. Figure 2.5 shows variation of both terms with pitch angle α, for various wave normal angles θ and $f=0.5 \mathrm{f}_{\mathrm{H}}$. It can be seen that the <qvy $\boldsymbol{D}_{\mathrm{x}}$ > term is negligible for lower pitch angles, while it becomes equal to or larger than the $\left\langle q \tilde{\sigma}_{2}\right\rangle$ term for $\alpha>30^{\circ}$. As long $\alpha<30^{\circ}$, the $\left\langle q \sigma_{2}\right\rangle$ term alone can be used to compute the motion of the Landau resonant particles with less than 10% error.

Figure 2.6 shows the dependence on the wave normal angle for various pitch angles α and for $f=0.5 f_{H}$. The resonance cone angle for this frequency is $\simeq 60^{\circ}$ as shown. This result indicates that for any pitch angla α, the $\left\langle q v_{y} \mathbb{D}_{x}\right\rangle$ term is more important $i t$ lower wave normal angles, but that there is a strong dependence on pitch angle as was also indicated in Figure 2.5. For θ approaching zero $J_{1}(\eta)$ goes to zero and ρ_{z} approaches infinity. As a result, the $\left\langle q v_{y} \mathbb{R}_{x}\right\rangle$ term will go to zero and may be approximated by $-q E_{z} \sin \gamma \tan ^{2} \alpha\left(1-f / f_{H}\right) /\left(2+2 f / f_{H}\right)$ for small values of θ (Appendix A).

Finally, Figure 2.7 shows the variation of the terms with normalized frequency f / f_{H}. The curves are for $\alpha=40^{\circ}$ and three different values of wave normal angle θ. It can be seen that the magnetic field term is more important at lower frequencies, although the dependence on frequency is not as strong as that on θ and α.

FIGURE 2.5 NORMALIZED PEAK MAGNITUDES OF THE <qvy $\|_{x}$ > AND $\left\langle q E_{z}>\right.$ TERMS AS FUNCTIONS OF PITCH ANGLE α. The results shown are for $f=0.5 f_{H}$, and for three different wave normal angles θ.

ORIGINAL PAQE is OF POOR QUALITY

FIGURE 2.6 NORMALIZED PEAK MAGNITUDES OF THE <qv ${ }^{8}$ 8 AND $\left\langle\mathrm{q} E_{z}>\right.$ TERMS AS FUNCTIONS OF WAVE NORMAL ANGLE θ. Both terms are calculated for three different pitch angles. The resonance cone angle for $f=0.5 f_{H}$ is $\approx 60^{\circ}$ as shown.

ORIGINAL PAGE IS
OF FOOR QUALITY

We can also use Fig. 2.4 to show that the upper limit on wave magnetic field intensity is really satisfied, as it was assumed when averaging the equations of motion. For the parameters of Fig. 2.4 , and $f=5 \mathrm{kHz}, \alpha=45^{\circ}$, and $\theta=30^{\circ}, B_{u}=1.3 \times 10^{5} \mathrm{pT}$, a value much larger than the typical field intensities in the 0.1 to 100 pT range for whistler mode waves. Therefore, the required small wave condition for the averaging over one gyroperiod is easily achieved in most cases.

We have presented a simple set of equations describing cyclotron averaged motion of Landau resonant particles in a whistler mode wave propagating at an angle to the static magnetic field. We have argued that for the parameters of the earth's magnetosphere and for $f<f_{H}$, as it is the case for the whistler mode waves, this would be a very accurate description of the near resonant particles. The fact that the equations are compact and simple nakes them suitable for analytical as well as test particle computer simulation studies presented in the next chapters.

A. INTRODUCTION

In the preceding chapter we derived a set of equations of motion (Eqs.2.62, 2.63) for an electron interacting with a whistler mode wave through a longitudinal resonance process. Before using those equations in numerical simulations it is useful to have a semi-quantitative analysis of that interaction process, the purpose of which is to:
a) Determine, qualitativeiy, the effects of different parameters on the resonance process, and to
b) Provide a reference for the testing and explaining of numerical results.

From the equations of motion and the resonance condition it is evident that the most important factors that affect the interaction process are:

1) The magnitude of the wave parallel electric field $E_{\|}$
2) The magnitudes of Bessel terms in the equations of motion
3) The wave phase velocity $v_{p \prime \prime}$
4) The electron parallel velocity $v_{\text {I }}$

The variations of Bessel terms have already been discussed in Section II.E.

In the following text we discuss the remaining parameters
starting with calculations of expected magnitudes of $E_{\|}$in the magnetosphere. Next we calculate the wave phase velocity $v_{p \prime \prime}$ and analyze the resonance condition $v_{p \prime \prime}=v_{11}$ for a wide range of magnetospheric parameters. We also stress the importance of the phase between a wave and the in-eracting electrons and examine its variations. Finally, we discuss the energy exchange between the wave and electrons through the longitudinal resonance interaction in an inhomogeneous medium such as the magnetosphere.

B. RELATION OF En TO B_{\perp} AND MAGNITUDE OF E" FOR WHISTLER MODE WAVES

Two equations of motion of an electron (Eqs.2.62, 2.63) are given in terms of the wave parallel electric field $E_{\|}\left(E_{2}\right)$. However, it is useful to relate $E_{\|}$to the wave perpendicular magnetic field $B_{\perp}\left(B_{y}\right)$ because most often wave amplitudes are given and referred to in terms of B_{\perp}. We proceed now with a derivation of the quantitative relationship between $E_{\|}$and B_{\perp}.

Using the plasma dispersion relation (Eq. 2.22) it follows that

$$
\begin{equation*}
n^{2} \sin \theta \cos \theta E_{x}+\left(\varepsilon_{11}-n^{2} \sin ^{2} \theta\right) E_{2}=0 \tag{3.1}
\end{equation*}
$$

or

$$
\begin{equation*}
n^{2} \sin \theta \cos \theta E_{x}=-\left(1-\frac{\omega_{p}^{2}}{\omega^{2}}-n^{2} \sin ^{2} \theta\right) E_{z} \tag{3.1a}
\end{equation*}
$$

Furthermore, from Maxwell's equation $\nabla \times E=-\frac{\partial \bar{B}}{\partial t}$ we have

$$
\begin{equation*}
k \cos \theta E_{x}-k \sin \theta E_{z}=\omega B_{y} \tag{3.2}
\end{equation*}
$$

Note that we use only amplitudes of $\boldsymbol{\zeta}_{z}$ and \mathcal{B}_{y}, E_{z} and B_{y}, because both δ_{z} and \mathbb{B}_{y} vary as $\cos (\omega t-\bar{k} \cdot \bar{r})$.

Now, substituting E_{x} from (3.2) in (3.1a) we have

$$
\begin{equation*}
n^{2} \sin \theta \cos \theta\left(\frac{\omega B_{y}+k \sin \theta E_{z}}{k \cos \theta}\right)=-\left(1-\frac{\omega_{p^{2}}}{\omega^{2}}-n^{2} \sin ^{2} \theta\right) E_{z} \tag{3.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{n^{2} \sin \theta \omega B_{y}}{k}+\left(n^{2} \sin ^{2} \theta+1-\frac{\omega_{p^{2}}}{\omega^{2}} n^{2} \sin ^{2} \theta\right) E_{z}=0 \tag{3.4}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
E_{z}=\frac{n^{2} \sin \theta \omega}{k\left(\frac{\omega^{2}}{\omega^{2}}-1\right)} B_{y} \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
E_{11}=\frac{c n \sin \theta}{f_{p}{ }^{2} / f^{2}-1} B_{\perp} \tag{3.6}
\end{equation*}
$$

Equation 3.6 relates \mathbb{E}_{11} to B_{\perp} for whistler mode waves, and it can be further simplified if $f_{p}{ }^{2} \gg f \cdot f_{H}$ when it becomes possible to use the QL approximation for the refractive index. The refractive index is
then given as

$$
\begin{equation*}
n^{2}=\frac{f_{p}^{2}}{f\left(f_{H} \cos \theta-f\right)} \tag{3.7}
\end{equation*}
$$

and substituting (3.7) for n in Eq. 3.6 the final result is

$$
\begin{equation*}
\mathrm{E}_{11}=\frac{\mathrm{c}}{\mathrm{n}} \frac{\sin \theta}{\left(\mathrm{f}_{\mathrm{H}} / \mathrm{f}\right) \cos \theta-1} \mathrm{~B}_{\perp} \tag{3.8}
\end{equation*}
$$

Eq. 3.8 was also derived by Helliwell [1965]. It relates E॥ to B_{d} for whistler mode signals assuming that $Q L$ approximation for a refractive index is valid.

Equation 3.6 can be applied to any whistler mode signal, although it is possible to derive similar equations for some special cases of propagation. One such special case is a whistler mode signal propagating in the Gendrin mode. This mode of propagation is characterized by the Gendrin angle θ_{G} which can be found by setting $\frac{d}{d \theta}(n \cos \theta)=0$. The resulting wave normal angle θ_{G} is

$$
\begin{equation*}
\cos \theta_{G}=2 \frac{f}{E_{H}} \tag{3.9}
\end{equation*}
$$

It clearly follows from Eq. 3.9 that the propagation in the Gendrin mode is possible only if $f<f_{H} / 2$ and that θ_{G} varies from 0° to 90° as f / f_{H} decreases from 0.5 to 0 . The interesting properties of propagation at the Gendrin angle are summarized as follows:

1) Substituting (3.9) in (3.7) the refractive index is

ORIGINAL fRlici il

 OF POOR QUALITY$$
\begin{equation*}
n_{G}\left(\theta_{G}\right)=\frac{f}{f} \tag{3.10}
\end{equation*}
$$

ii) The phase velocity in the direction of \bar{B}_{0} is

$$
\begin{equation*}
v_{P \prime_{G}}=\frac{v_{P}}{\cos \theta_{G}}=\frac{c}{2} \frac{f_{H}}{f_{p}} \tag{3.11}
\end{equation*}
$$

iii) The group refractive index and velocity are

$$
\begin{align*}
& {n_{g}}\left(\theta_{G}\right)=n_{G}\left(\theta_{G}\right)=\frac{f}{f} \tag{3.12}\\
& v_{g_{G}}\left(\theta_{G}\right)=v_{p}=c \frac{f}{f_{p}} \tag{3.13}
\end{align*}
$$

iv) The group ray refractive index and velocity are

$$
\begin{align*}
& n_{g_{r_{G}}}\left(\theta_{G}\right)=n_{G}\left(\theta_{G}\right) \cos \theta_{G}=2 \frac{f_{p}}{f_{H}} \tag{3.14}\\
& v_{g_{r_{G}}}=v_{p_{1 \prime}}=\frac{c}{2} \frac{f_{H}}{f_{p}} \tag{3.15}
\end{align*}
$$

Figure 3.1 illustrates the shape of the refractive index curve for $f / f<0.5$, and also shows the Gendrin angle θ_{G}. The second angle indicated in Fig. 3.1, θ_{R}, is the resonance cone angle where the refractive index becomes infinite.

Thus, waves propagating at the Gendrin angle have their wave packets traveling in the direction of \bar{B}_{0} with the velocity $v_{g_{G}}$, which is identical to the phase velocity in that direction $v_{P^{\prime \prime}}$, and both

ORIGINAL PAGE IS OF POOR QUALITY

velocities are independent of the wave frequency. This property makes Gendrin mode waves rather interesting for longitudinal resonance interactions since electrons in resonance with those waves, i.e. $v_{11}=v_{p \|}=v_{g r}$, do not drift through the wave packet during the interaction as they do in the most general case when the wave phase and ray group velocities along the magnetic field line are different.

FIGURE 3.1. REFRACTIVE INDEX SURFACE FOR $f<f_{H} / 2$. θ_{R} indicates the resonance cone where $n^{\rightarrow \infty}$. θ_{G} is the Gendrin angle, for which the ray is aligned with the static magnetic field.

Returning to the derivation of the parallel electric field for the Gendrin mode waves we can substitute $n\left(\theta_{G}\right), \cos \theta_{G}$ and $\sin \theta_{G}=\sqrt{1-\cos ^{2} \theta_{G}}$ for $n, \cos \theta$ and $\sin \theta$ in Eq. 3.8 assuming that $f_{p}{ }^{2} / f \cdot f_{H} \ll 1$ is valid. The final result is then

$$
\begin{equation*}
E_{11 G}=c \cdot B_{\perp} \cdot \frac{f}{f_{p}} \sqrt{1-\frac{4 f^{2}}{f_{H}^{2}}} \tag{3.16}
\end{equation*}
$$

Note that Eq. 3.8 represents the most general expression for E_{1}
(allowing for the QL approximation) and can also be used to compute $E_{1 I G}$, whereas Eq. 3.16 is valid only for the Gendrin mode. At this point we can use Eqs. 3.8 and 3.16 to plot the magnitude of the parallel electric field E_{11} as a function of frequency. Three curves shown in Figure 3.2 are calculated for different values of the wave normal angle $\left(30^{\circ}, 50^{\circ}\right.$ and $\left.70^{\circ}\right)$, while the wave perpendicular magnetic field B_{\perp} is taken to be 10 pT . This figure clearly shows the resonance cone effect; for a fixed wave frequency f the parall $!1$ electric field $E_{\|}$increases as the wave normal angle increases and E_{n} approaches infinity as $\theta \rightarrow \theta_{R}$. The resonance cone angle θ_{R} can be found from Eq. 3.7 whicin yields (for the $Q L$ approximation) $\cos \theta_{R}=\frac{f}{f_{H}}$ and θ_{R} as a function of frequency is illustrated by the dashed line in Fig. 3.2. At this point we recall that an upper limit on the magnitude of E_{N} was already set during the derivation of aquations of motion when they were time-averaged. Although this limit is not exceeded in most practical cases it is possible that those equations become invalid in a situation when $\theta-\theta_{R}<0.5^{\circ}$. In such a case it would be necessary to use the complete equations of motion (Eqs. 2.41, 2.42 and 2.43).

Figure 3.3 shows the wave parallel electric field En as a function of frequency and parametric in $B_{\perp}(10,20$ and 30 pT$)$, while the wave normal angle θ for all curves is 30°. Figure 3.4 shows the wave parallel electric field E"G for the Gendrin mode propagation as a function of frequency and parametric in B_{\perp}. The dashed curves show θ_{G} and θ_{R} as functions of frequency. By setting $\frac{d}{d f} E_{\| G}\left(\theta_{G}\right)=0$ it can be shown that $E_{\| G}$ reaches a maximum at the frequency $f=0.354 f_{H}$ at which $\theta_{G}=45^{\circ}$. This result is interesting in the light of data on chorus

FIGURE 3.2 PARALLEL ELECTRIC FIELD E_{11} AS A FUNCTION OF FREQUENCY FOR A WHISTLER MODE SIGNAL
normal angle θ. The dashed curve shows the resonance anyle θ_{R} as a function of frequency.

ORIGNAL PAGET PG OF POOR QUALITIY

FIGURE 3.4 PARALLEL ELECTRIC FIELD E_{n} AS \& FUNCTION OF FREQUENCY FOR A WHISTLER MODE WAVE PROPAGATING IN THE GENDRIN MODE. Note that E_{10} has a maximum at $f=0.354 \mathrm{f}_{\mathrm{H}}$. The two dashed curves indicate the resonance cone and Gendrin angles, θ_{R} and θ_{G}.
activity obtained by 3urtis [1974]. It was found that in the equatorial region there are often c jserved two narrow bands of chorus. The upper band is commonly centered fust above half the electron gyrofrequency, $0.5 \mathrm{f}_{\mathrm{H}}$, while the lower band is centered near $0.35 \mathrm{f}_{\mathrm{H}}$. Therefore, it may be speculated that the chorus lower band is made up of waves propagating in the Gendrin mode and that those waves are ampiified through the strong longitudinal resonance due to their maximum $E_{\| G}$. This wave growth could then account for the observed peak of chorus activity.

Finally, Figure 3.5 shows E_{11} as a function of wave-normal angle θ; different curves in that figure correspond to different wave frequencies, while the B_{\perp} is 10 pT. Again we see the resonance cone effect where $E_{11} \rightarrow \infty$ as $\theta \rightarrow \theta_{R}$.

Al. I of the above calculations were done at the equator of the the magnetic field ine given by $L=4$ and assuming $n_{\text {eq }}=400 \mathrm{el} / \mathrm{cc}$. Similar calculations can be carried out for different L values and corresponding values of $n e q$. Figure 3.6 shows the results of such calculations for a range of L values; corresponding values of $n_{e q}$ used in those calculations are shown in Figure 3.7, with a plasmapause, cneracterized by the sharp decrease of electron density, located at $L=4$. The wave parallel electric field $E_{\|}$is also normalized by B_{\perp} and given in $\mu \mathrm{V} / \mathrm{m} / \mathrm{pT}$. From this figure it is evident that $\mathrm{E}_{\|}$for a given L value increases as the frequency of the signal increases, as already found before (see Fig. 3.2). Furthermore E_{11} is larger outside than inside the plasmapause, a fact which is directly related to lower electron density outside the plasmapause.

FIGURE 3.5 PARALLEL ELECTRIC FIELD E" AS A FUNCTION OF WAVE NORMAL ANGLE θ. Different curves correspond to different wave frequencies. Note that $E_{11} \rightarrow \infty$ as $\theta+\theta_{R}$.

FIGURE 3.6 NORMALIZED PARALLEL ELECTRIC FIELD E_{11} / B_{1} AS A FUNCTION OF L VALUE. The normalized parallel electric field E_{11} / B_{\perp} is computed for different wave frequencies and the equatorial density profile shown in Fig. 3.7.

Sumarizing, a stronger $E_{\|}$(for a given B_{\perp}) can be achieved by increasing the wave frequency, or by raising the wave-normal angle, or both.

FIGURE 3.7 EQUATORIAL ELECTRON DENSITY AS A FUNCTION OF L VALUE. The plasmapause is located at $\mathrm{L}=4$.

An additional increase in $E_{\|}$is also possible for waves propagating outside the plasmapause. However, waves with high wave-normal angles are usually associated with a non-ducted mode of wave propagation which in general is not field aligned, whereas in the ducted mode the wave normals are very nearly aligned with the magnetic field [Smith et al. 1960]. In the latter case guiding is based on the presence of linear field-aligned enhancement (or depression) of Ionization referred to as a duct. Therefore, the effects of the longitudinal resonance involving ducted waves are limited by the low wave-normal angles of propagation at which magnitudes of the parallel electric field are low (see Fig. 3.2). There are other possibilities for wave guiding along the field line not limited to low wave-normal angle waves, such as when the plasmapause acts as a one-sided duct [Inan and Bell, 1978]. Still another possibility is to have a non-ducted wave which propagates in a field-aligned mode over a portion of the magnetospheric path. Although those waves usually remain field aligned only for a short period of time, their large $E_{\|}$may be sufficient to cause a strong longitudinal resonance interaction.

The importance of field aligned propagation arises from the fact that electrons in the magnetosphere follow the earth's magnetic field as explained in Section II.A. Thus, if the ray path is not field aligned, or is only partially aligned, the interaction may be relatively weak.
C. RESONANCE CONDITION $v_{n}=v_{p \prime \prime}$

Beside the equations of motion another important factor to be considered is the resonance condition $v_{11}=\mathbf{v}_{\mathrm{p}}$ (Eq.2.8). As discussed above, this condition requires that the wave phase velocity in the direction of \bar{B}_{0} match the particle velocity in that direction. However, for an inhomogeneous medium such is the magnetosphere, both the phase velocity $v_{p \prime \prime}$ and the electron parallel velocity $v_{\prime \prime}$ are variable and their variations depend on the magnetospheric model. Hence, in a case when the resonance condition is satisfied for a given wave and electron at some location in the magnetosphere, it will not in general hold at some other location. For that reason it is necessary to study how $v_{p \prime \prime}$ depends on different models used to represent electron density along the field line. It is also essential to examine variations of both phase and parallel velocities with latitude and to study variations of $v_{\text {I }}$ for different pitch angles.

First, let us consider the phase velocity in the direction of $\overline{\mathrm{B}}_{0}$ which is given as

$$
\begin{equation*}
v_{\mathrm{p} \mathrm{\prime} \mathrm{\prime}}=\frac{c}{\mathrm{n} \cdot \cos \theta} \tag{3.17}
\end{equation*}
$$

where n is the refractive index given by Eq. 3.7. Using Eq. 3.17 it is a simple task to calculate the phase velocity of a whistler mode wave for a wide range of parameters. Figure 3.8 shows the equatorial phase velocity as a function of L value; values of $n_{e q}$ used here are again those of Fig. 3.6. Figures $3.9 a, b$ show the phase velocity as a function
original fic:.j OF POOR QUALITY

FIGURE 3.8 EQUATORIAL PARALLEL PHASE VELOCITY AS A FUNCTION OF L VALUE. Values of $n_{e q}$ used to compute $v_{p_{n}}$ are those of Fig. 3.7.

FIGURE 3.9 PARALLEL PHASE VELOCITY AS A FUNCTION OF LATITUDE FOR DIFFERENT MODELS OF THE DISTRIBUTION OF ELECTRON DENSITY ALONG THE FIELD LINE. In (a) electron density along the field line is represented by the diffusive equilibrium model DE-1, whereas in (b) the electron density is calculated the collisionless model R-4.
of latitude; Fig. 3.9a shows a typical shape of $V_{p \prime \prime}$ inside the plasmapause, while Fig. 3.9 b shows V_{p} outside the plasmapause. The difference between Figs. 3.9 a and 3.9 b reflects not only the assumed equatorial electron densities $n_{e q}$, but also the electron density distribution along the field line. Figure 3.9 is calculated using a diffusive equilibrium model [Park,1972], which is usually used inside tise plasmapause. On the other hand, the electron density model of Fig. 3.9b is a collisionless model [Park, 1972] with the electron density along the field line approximated by

$$
\begin{equation*}
n=n_{e q}\left(\frac{1}{\cos ^{2} \lambda}\right)^{4} \tag{3.18}
\end{equation*}
$$

where λ is the latitude.
Evidently, from Fig. 3.9, the phase velocity of whistler mode waves outside the plasmapause exceeds that found inside. Therefore, the parallel velocity of an electron, which has to match the phase velocity of the wave, is also larger outside the plasmapause. Since the electrons are moving faster when interactions take a place outside the plasmapause the corresponding interaction times are shorter compared to interaction times inside the plasmapause. Thus, the effects of a stronger wave parallel electric field $E_{\|}$, related to propagation outside the plasmapause, tends to be offset by a reduced interaction time.

The parallel velocity as well as the wave phase velocity varies with latitude, as already shown in Section II.A, but the two variations are generally different. By combining the first adiabatic invariant and
the law of energy conservation we find that the parallel velocity is given by

$$
\begin{equation*}
v_{\prime \prime}=v_{1 \prime} e_{q} \sqrt{1+\tan ^{2} \alpha_{e q}-\frac{\sqrt{4-3 \cos ^{2} \lambda}}{\cos ^{6} \lambda} \tan ^{2} \alpha_{e q}} \tag{3.19}
\end{equation*}
$$

where $V_{\text {"eq }}$ is the electron equatorial parallel velocity, $\alpha_{e q}$ is the equatorial pitch angle and λ is latitude.

figure 3.10 NORMALIZED ELECTRON PARALLEL VELOCITY AS A FUNCTION OF LATITUDE. Different curves correspond to different equatorial pitch angles. Note that the mirror point latitude, where $v_{11}=0$, decreases as the equatorial pitch angle increases.

Figure 3.10 shows the normalized parallel velocity as a function of latitude for different values of the equatorial pitch angle. This figure also shows mirror point latitudes where $\mathrm{v}_{11}=0$. From Figs. 3.9 and 3.10 it is evident that the resonance condition for a given wave and electron may, or may not, be satisfied depending on the ratio of the equatorial phase and parallel velocities. Typical examples shown in

Fig. 3.11 are for three different racios of the equatorial velocities. Note that the parallel velocities shown in Fig. 3.11 represent the unperturbed motion of electrons, i.e. Fig. 3.11 shows only adiabatic variations of V_{11}. Although the adiabatic motion of electrons is altered by the wave-particle interaction, the electrons are identified in terms of their initial unperturbed equatorial parameters which simplifies the problem of comparing properties of different electrons.

Those different variations of $v_{p \prime}$ and $v_{\|}$with latitude and their effects on the interaction process, along with effects of other factors are further discussed in the chapters on numerical results.

D. PHASE BETWEEN WAVE AND ELECTRON IN LONGITUDINAI. RESONANCE

In Chapter II it was shown that the electrons trapped in the wave potential well execute an oscillatory motion around the bottom of the potential well. In general the analytical solution of the equation of motion for that case is very complex, but it is possible to derive an approximate solution if the maximum amplitude of the oscillation remains relatively small. From Eq. 2.12 the parallel electric field En , as seen by electrons in the wave frame, is given by

$$
\begin{equation*}
E_{11}=E_{110} \sin \left(k_{11} \cdot z\right) \tag{3.20}
\end{equation*}
$$

Therefore, the force exerted on an electron is
a) $v_{\text {lleq }}=V_{\text {plleq }}$

FIGURE 3.11 RELATION BETWEEN v_{11} AND v_{p} ALONG THE FIELD LINE. Depending on the ratio of $v_{\text {"eq }} / v_{p, e q}$ there may be one (a), none (b), or two (c) latitudes at which the longitudinal resonance condition $v_{11}=v_{p_{1}}$ is satisfied.

$$
\begin{align*}
& \text { ORNGR. } \\
& \frac{d^{2} z}{d t^{2}}=q E_{110} \sin \left(k_{11} \cdot z\right) \tag{3.21}
\end{align*}
$$

which, for a small amplitude oscillation where $\sin \left(k_{11} \cdot z\right) \cong k_{11} \cdot z$, can be written as

$$
\begin{equation*}
\frac{d^{2} z}{d t^{2}}=\frac{q}{m} E_{110} k_{11} \cdot z \tag{3.22}
\end{equation*}
$$

The solution of Eq. 3.22 is

$$
\begin{equation*}
z=z_{B} \sin \left(\omega_{t} \cdot t\right) \tag{3.23}
\end{equation*}
$$

where z_{B} is the position of the bottom of the potential well as shown in Fig. 2.2, 2 is the position of the electron and ω_{t} is the period of oscillation given as $\omega_{t}=\sqrt{\frac{e E_{n_{0}} k_{11}}{m}}$. It should be noted that although this oscillation period is computed for a homogeneous medium, this result can also be used in the cese of a slowly varying medium such as the magnetosphere. Now, dividing Eq. 3.23 by the vavelength, we obtain the relative phase between the reference point at the potential well bottom and the electron. This relative phase is

$$
\begin{align*}
& \phi_{r}=\frac{z_{B}}{2 \pi / k_{11}} \sin \left(\omega_{t} \cdot t\right) \tag{3.24}\\
& \phi_{I}=\phi_{B} \sin \left(\omega_{t} \cdot t\right) \tag{3.24a}
\end{align*}
$$

The relative phase between the wave and the trapped electron is also oscillatory in its nature and the phase variation is bounded such
that $\phi_{B}<360^{\circ}$. It should also be noted that the smallest amplitude of the phase oscillation- corresponds to the case of strongest trapping. On the other hand the relative phase variation for untrapped electrons is represented by constantly increasing ($v_{p \prime \prime}>v_{11}$) or constantly decreasing ($v_{p \prime \prime}<v_{\prime \prime}$) phase as those electrons drift backward or forward through the wave, respectively.

All of the above computations, as already pointed out, are carried out in the wave frame which moves in the 2 direction at the phase velocity $v_{p l}$. In order to determine the total phase variation let us again assume propagation as exp $1(\omega \cdot t-\bar{k} \cdot \bar{r})$. The instantaneous frequency ω_{i} can be found by taking the time derivative $\frac{d}{d t}(\omega \cdot t-\bar{k} \cdot \bar{r})$ which yields

$$
\begin{equation*}
\omega_{i}=\omega-\bar{k} \frac{d \bar{r}}{d t} \tag{3.25}
\end{equation*}
$$

where w_{i} is actually the Doppler shifted frequency of the wave as seen by an electron placed at a location defined by radius vector $\overline{\mathrm{r}}$. It is possible to rewrite Eq. 3.18 in the same form as that of Eq. 2.6 by using $\frac{d \bar{r}}{d t}=v_{11}$ and substituting $m \cdot \omega_{H}$ for ω_{1}. Equation 3.24 can now be used to examine a behavior of the total phase between a wave and an electron. First, rewriting (3.25) we have

$$
\begin{equation*}
\omega_{i}=\omega-k_{11} \cdot v_{11} \tag{3.26}
\end{equation*}
$$

If $\omega_{i}=0$ Eq. 3.26 reduces to Eq. 2.7, or

$$
\begin{equation*}
v_{p \prime \prime}=v_{11} \tag{3.27}
\end{equation*}
$$

which is the original longitudinal resonance condition. Therefore, if $v_{1 \prime}=v_{p \prime \prime}$ tite relative phase ϕ_{r} remains constant (Eq. 3.24a).

However, if an electron has a parallel velocity which does not match the wave phase velocity exactly the instantaneous (Doppler shifted) frequency ω_{1} has a non-zero value. In that case both the sign and the magnitude of ω_{1} depend on the difference between the parallel velocity and the phase velocity; when $v_{u}<v_{p \|}, w_{i}$ is positive and its magnitude increases as v_{11} decreases assuming that $v_{p \prime \prime}$ is constant; in a case when $v_{\|}>v_{p}$ "the instantaneous frequency w_{i} is negative and its magnitude increases as $v_{1 \prime}$ increases, again assuming a constant $v_{p \prime \prime}$ •

When ω_{i} is known the total phase shift can be expressed as

$$
\begin{equation*}
\phi=\int_{t} \omega_{i} d t \tag{3.28}
\end{equation*}
$$

or as

$$
\begin{equation*}
\phi=\int_{s} \frac{\omega_{i}}{v_{p \prime \prime}} d s \tag{3.29}
\end{equation*}
$$

where we have used the identity $d t=\frac{d s}{v_{p \prime \prime}^{\prime \prime}}$.
Finally, Table 3.1 summarizes qualitatively the behavior of the total phase shift as a function of $v_{p \prime \prime}-V_{11}$.

The phase between the wave and the electron is a very important factor in the trapping process. It is eventually the phase that determines if a given wave will trap any electrons, although all other
resonance conditions may already be met, i.e the parallel velocity is clcse to the phase velocity and the parallel electric field is strong enough to pull the electron into the potential wel.. There is no trapping if the phasing is wrong, i.e. if electrons are accelerated when trapping would require deceleration or vice versa. The numerical results will show that a small difference in phase, less than 10°, can make a large difference in the behavior of electrons for which the resonance condition $v_{p \prime \prime}=v_{11}$ is satisfied. Furthermore, the phase directly translates into the position of an electron within a wave packet (Eq. 3.24) and if there is any space bunching of electrons there must exist a corresponding phase bunrhing.

Velocity Conditions	$v_{p \prime \prime}-v_{1 \prime}>0$	$v_{p \prime \prime}-v_{1 \prime}<0$
Magnitude of Total	Positive and	Negative and
Phase Shift	increases with time	decreases with time
Rate of Phase	increases as $v_{p \prime \prime}-v_{1 \prime}$	increases as $v_{p \prime \prime}-v_{1 \prime}$
Change with Time	increases	decreases

Table 3.1 PHASE SHIFT PROPERTIES OF LONGIDUTINALLY PESONANT ELECTRON AS A. FUNCTION OF PARALLEL VELOCITY CONDITIONS.

E. ENERGY EXCHANGE

In Chapter II we have discussed the energy exchange between the wave and trapped electrons in a homogeneous medium. For the case of an Inhomogeneors medium the energy exchanged during a longitudinal interaction can be computed in a similar fashion. However, we shall see later when presenting numerical results that the longitudinal resonance In the magnetosphere may, or may not, involve trapping of electrons. It will also be shown that electrons in both cases, whether they are trapped or not, exchange their energy with a wave. The energy exchange process is quite different in those two cases, but it is still possible to use an equation similar to Eq. 2.18 by using correct velocily limits for integration and an adequate value to represent the energy exchanged through the interaction with a single electron. It is then also essential to compare contributions from both groups of electrons (trapped and untraprid), and to determine whe ther there are situations where the contribution from either group is negligible.

Hera we recall that in the case of a homogeneous medium the energy is exchanged only during the trapping process, i.e. only during the period when the electrons are accelerated/deceierated by the wave in order to match the phase and parallel velocities, and there is no net energy exchange after that process is finished, or alternatively, an electron has to be trapped in order to exchange its energy with a wave. There is still an instantaneou; energy exchange after the trapping is completed because electrons oscillate at the bottom of the potential well, but when this instantaneous energy is averaged over one trapping
period there is no net effect. This is so because the electron's oscillatory motion is perfectly symmetric around the bottom of the potential well, shown by Eq. 3.20, whereas in the magnetosphere or any other inhomogeneous medium, the energy can also be exchanged after the electrons are trapped. This can be explained as follows; after an electron is trapped its parallel velocity is very close or equal to the wave phase velocity and it follows the phase velocity variations as long as that electron remains trapped. Thus, the perturbed parallel velocity is different from the parallel velocity that a particular electron would have in the absence of the wave. This difference, Δv_{11}, is directly proportional to the phase velocity changes [Brice, 19f ?] and it is given as

$$
\begin{equation*}
\Delta v_{11}=\left(\frac{\partial v_{p}}{\partial s}\right)_{f} d s+\left(\frac{\partial v_{p}}{\partial f}\right)_{f} d f \tag{3.30}
\end{equation*}
$$

where, in general, phase velocity depends on both frequency and position. For the positive sign of Δv " the electron gains energy, while for the negative sign the wave gains energy. We shall discuss further various aspects of Eq. 3.30 later in the text.

In the next chapters we present results of a test particle simulation of the wave-particle interaction and illustrate various aspects of the interaction as they were discussed in the above analysis.

A. INTRODUCTION

In this chapter we detail procedures used in numerical simulations of the time-averaged equations of motion. The method used in this report is a test particle simulation. This approach uses a single particle to find wave induced perturbations of the particle trajectory, and it is feasible to test quantitatively the effects of various factors already considered in a qualitative analysis presented in Chapter III. The test particle approach can be further expanded to determine the perturbations of a full particle distribution by computing the effects of the wave on an adequate number of particles that are appropriately distributed in the phase-velocity space. However, there are restrictions imposed on the full distribution simulations because there is no feedback that should account for variations of the wave amplitude as particles and the wave exchange their energies. This feedback problem is treated in more detail in a discussion of the numerical results.

The actual listing of the particle code used in all simulations presented here is given in Appendix B. Next we outline the basic operation of the program.

B. COMPUTATION OF PROPAGATION AND ADIABATIC MOTION PARAMETERS

The representation of the static magnetic field along the field line is based on a centered magnetic dipole model described by Eq. 2.1. Values of B_{0} obtained from that equation are then used to compute local values of the gyrofrequency f_{H}, as well as to compute a normalized gradient of the magnetic field $\frac{1}{B_{0}} \frac{\mathrm{~dB}_{0}}{\mathrm{dz}}$. At the same time a cold plasma density variation along the field line can be calculated using two different models. One model assumes diffusive equilibrium [Angerami and Thomas, 1964] with the electron density along the field Ine given as

$$
\begin{equation*}
N_{D E}(r)=\left[\sum_{i=1}^{n} \delta_{i} e^{G / S_{i}}\right]^{1 / 2} \tag{4.1}
\end{equation*}
$$

where the δ_{1} are the relative concentrations of the ionic species, n is the number of species, $G=r_{b}\left[1-\left(r_{b} / r\right)\right], r_{b}$ is the geocentric distance (in kilometers) to the base of the DE model, $S_{1}=1.506 T\left(r_{b} / 7370\right)^{2}\left(1 / 4^{1-1}\right)$, and T is temperature at the base of the DE model ($\mathrm{r}=1000 \mathrm{~km}$). A second model is a collisionless model for which the density is given by Eq. 3.18. The input parameters needed to uniquely define the field line and propagation properties are L value, the equatorial cold plasma density $n_{e q}$, the wave frequency f, and the wave-normal angle θ. Given those parameters the program divides the entire field line in spatial segments 10 kilometers long and than computes, and stores, values of $v_{p \prime \prime}(z), k_{11}(z)$, and $\frac{1}{B_{0}} \frac{d B_{0}}{d z}$ for each segment; z is a distance between the equator and a particular 10 km

ORIGINAL PAGE IS OF POOR QUALITY

segment measured along the field line. The stored values of $\frac{1}{B_{0}} \frac{d B_{0}}{d z}$, as seen from Eqs. 2.62. and 2.63, are used to compute adiabatic terms in the equations of motion. All of the above computations can be done either for a general whistler mode wave or for the Gendrin mode wave. In the latter case the program also computes, and stores, values of $\theta_{G}(z)$ and $E_{I G}(z)$. In addition the program also computes, and stores, values of wave phase change given as $\int_{2} k_{11} d z$. In contrast to other parameters the values of $\int_{2} k_{11} d z$ are not symmetric about the equator and depend on the latitude where the particles are started. This starting latitude, i.e location where particles start their motion along the field line, is also one of the input parameters.
C. NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION

Before we start with simulations each particle must be uniquely defined by an appropriate set of parameters. Those parameters then describe the particle's position in phase-velocity space. For particles in the magnetospnere the velocity coordinate is uniquely given by their equatorial parallel velucity $v_{\text {"oeq }}$ and equatorial pitch angle, $\alpha_{o e q}$. As particles move along the field line their corresponding equatorial parallel velocities can be computed with the help of Eq. 3.19. At the same time the local pitch angle is related to the equatorial pitch angle through

$$
\begin{equation*}
\sin \alpha=\sqrt{\frac{B_{0}(z)}{B_{o e q}}} \text { sin } \alpha_{o e q} \tag{4.2}
\end{equation*}
$$

ORICNAL PAGE IS OF POOR QUALITY

where $B_{0}(z)$ is the local value of the static magnetic field, and $B_{\text {oeq }}$ is the equatorial magnetic field.

In this report a given particle is always identified in terms of the equatorial parameters which then simplifies the task of comparing properties of different particles. The conversion from local to equatorial values is made on the assumption of unperturbed particle motion.

In addition to the velocity $v_{\text {"oeq }}$ and pitch angle $\alpha_{o e q}$ there is a third parameter, the initial phase ϕ_{0}, which determines the position of a particle with respect to the wave packet at the beginning of the interaction (this is a local, as opposed to an equatorial, quantity). In order to examine the dependence of the interaction results on the initial particie phase a simulation is actually done using twelve particles uniformly distributed in phase space; the parallel velocity and pitch angle are, however, identical for all twelve particles. This assembly of twelve particles uniformly distributed in phase is called a test sheet and is illustrated in Figure 4.1. It should be recalled that, as already emphasized in Section III.D, the phase between a particle and a wave is directly related to the particle's position in the z-axis direction. This is important because if particles are distributed in phase, i.e. space, the starting time t of the integration must be increased by $\Delta t=\frac{\lambda}{12 v_{p \prime \prime}}$ from particle to particle in order to maintain a correct phase separation between the particles in the sheet. This is especially important in particle phase (space) bunching calculations where particle positions determine the

ORIGINAL PALIE IS
OF POOR QUALITY

extent of bunching.
After particles are injected at a given latitude their motion is altered due to the wave force which is computed by numerical integration of the equations of motion. A proper value of the startang latitude, for interactions with a monochromatic CW signal as illustrated in Fig. 4.2, was found experimentally by gradually increasing the distance between the first resonance location and the location of particle injection, and finding a latitude where further increase of this distance caused no significant changes of the final results. The actual integration of the equation of motions is done using a simple predictor-corrector method using temporal steps with $\Delta t=0.001 \mathrm{msec}$. This time step size was also found experimentally, and for smaller size step there were only insignificant fluctuations of the final results in all of the examples presented later in the text. The integration method itself consists in predicting a position of a given particle after elapse of one time increment using current values of forse, l.e. using those forces acting on the particle at the beginning of the time increment. However, after the particle reaches a new position forces acting on it are also different, and it is necessary to recompute (correct) the particle's position by using the average force. This average force $\therefore:$: und as a mean value of two forces, one at the beginning and one at the end of the time interval Δt. This newly computed position of the particle is then taken as a new starting point, and the whole process is repeated.

For a case of a monochromatic $C W$ wave particles travel along the field line and reach the first resonance point (Fig. 4.2) where the wave
induced perturbations of particles trajectories become stronger and stronger. At this point further behavior of the particles is very dependent on the initial phase ϕ_{0}. Although all particles have their motion altered by the wave forces only a certain class of particles becomes trapped, i.e. only those with an appropriate phase, while other particles remain untrapped. However, in both cases the integration is continued until all particles reach their second resonant point on the other side of the equator. After that moment the wave induced perturbations become smaller and smaller as the difference between particles parallel velocities and the wave phase velocity increases. The end point of the integration is then defined as the location where the absolute difference between the two velocities exceeds 10%. This value was determined experimentally, and the particular latitude where the above condition occurs is called the detrapping latitude.

As the particle moves along the field line from the starting point toward a detrap point it has its adiabatic pitch angle variation modified by the wave. Finally, after the particle reaches its detrap point it will have certain α_{F} and $V_{1 F}$ which are then transformed into the corresponding equatorial values $\alpha_{\text {Feq }}$ and $v_{\text {ieq }}$ by using (4.1) and (3.19). The difference $\alpha_{\text {oeq }}-\alpha_{\text {Feq }}$ gives the total pitch angle change, or scattering, while the difference $\Delta_{v_{\|}}=v_{\text {useq }}-v_{\text {"Feq }}$ gives the total energy exchange through $1 / 2 \mathrm{~m} \Delta \mathrm{v}_{11}{ }^{2}$. The final scattering and the amount of transferred energy are given both for each individual particle and for a complete test particle sheet (mean value for 12 particles).

In the next chapters we study the scattering of particles and

the energy exchange process for different wave functions and a wide range of particle initial parameters.

V. NUMERICAL ANALYSIS OF THE INTERACTION
A. INTRODUCTION

In the previous chapters we have derived a set of equations of motion for longitudinally resonant electrons, and we have studied analytically various aspects of the resonance process. Those analytical studies are now complemented by the results of the numerical simulation analysis. Numerical results should further illuminate the physics of the interaction process, and enable us to compare the effects of various parameters on a quantitative basis, $1 . e$. in terms of scattering and energy exchange efficiencies. The behavior of individual electrons and sheets is studied for a wide range of the parameters such as $E_{11}, n_{e q}, L$, $\alpha_{e q}, \phi_{0}$, and for different wave functions, $1 . e$. for different wave amplitude variations along the field line. In our calculations we have used three different types of wave functions as they are described below:
a) Monochromatic CW wave with a constant wave amplitude along the field line.
b) One-sided wave function characterized by a very weak wave on one side of the equator and a strong wave on the ocher side. The transition region between the above regions is taken to be 1000 km long and starting at the equator. Such a wave function can be created through a gyroresonance process.
c) Spatial amplitude pulse formed by a non-ducted wave when its ray path is partially field aligned. In the following discussion we present results of the numerical simulations.
B. SCATTERING. OF A SINGLE SHEET INTERACTING WITH CW SIGNAL

For a case of monochromatic CW signal the interaction geometry is already shown in Fig. 4.2, with electrons being injected at -15° latitude. All electrons are identified in teras of their equatorial parameters, $V_{\text {"eq }}$ and $\alpha_{e q}$, with the initial phase ϕ_{0} being a third parameter. First, we consider scattering of a single sheet (12 electrons uniformiy distributed in phase at the injection point) as a Function of the initial equatorial farallel velocity v"eqo. Other parameters for this example are listed in Table 5.1 below.

Field Line	$L=4$
Equatorial Electron Density	$\mathrm{n}_{\mathrm{eq}}=400 \mathrm{el} / \mathrm{cc}$
Equatorial Gyrofrequency	$\mathrm{f}_{\mathrm{H}}=13.65 \mathrm{kHz}$
Equatorial Plasmafrequency	$\mathrm{f}_{\mathrm{p}}=180 \mathrm{kHz}$
Wave Amplitude	$\mathrm{B}_{+}=10 \mathrm{pT}$
Wave Frequency	$f=3 \mathrm{kHz}$
Wave Normal Angle	$\theta=30^{\circ}$
Equatorial Parallel Phase Velocity	$v_{\mathrm{p}_{\text {leq }}}=9.92410^{6} \mathrm{~m} / \mathrm{s}$

Table 5.1 PARAMETER VALUES FOR THE EXAMPLE CASE

At this point we should note that we have used two approximations in numerical computations. First, it is assumed that the wave-normal angle is fixed, and second, the wave amplitude is also treated as though it has a constant value. However, it is well known that in the magnetosphere both wave-normal angle and wave amplitude change with location. The wave-normal angle changes as dictated by the guiding mechanisms [Helliwell, 1965] which is true for ducted waves, whereas wave-normals of nonducted waves can be found using ray-tracing analysis [Kimura, 1966, Burtis, 1974]. The wave amplitude variation arises from the inhomogeneity of the magnetosphere, and it is feasible t'o use a slowly-varying medium analysis to calculata those variations [Budden, 1961]. From ray-tracing and amplitude calculations it is obvious that both the wave-normaj angle and the wave amplitude may change signi:icantly along the field line, and affect the longitudinal resonance interaction. Nevertheless, if the inceraction region is relatively small, the changes of wave properties are also small, and it is permissible to assume as a first order approximation that the wave-normal angle and wave amplitude are constant quantities. If there is a need for even more accurate analysis it is feasible to use ray-tracing along with WKB solution to derive exact solutions for both θ and B_{\perp}, and then incorporate those results in the longitudinal resonance calculations.

The mean scattering, < $\Delta \alpha_{e q}>\quad(<\gg$ denotes averaging over the initial phases), of a single sheet of electrons as a function of sheet equatorial parallel velocity is illustrated in Figure 5.1. The wave

FIGURE 5.1 MEAN SCATTERING AS A FUNCTION OF PARALLEL VELOCITY. Electrons interacting
with a CW signal exhibit a small final scattering (solid curve), whereas
the cumulative scattering evaluated at the equator is significancly larger (dashed cur-
ve). The final scattering is computed at the end point of the integration which is de-
fined in Fig. 4.2.
intensity $B_{\perp}=10 \mathrm{pT}$ corresponds to $E_{\| 1}=15 \mu \mathrm{~V} / \mathrm{m}$. A solid curve shown in that figure indicates the mean final scattering of a sheet at the end point of the integration of equations of motion (as defined in Fig. 4.2), while the dashed curve represents the mean scattering of a sheet computed at the equator. Comparing the equatorial, i.e. cumulative scattering when electrons reach the equator, and the final scattering it is obvious that the final scattering is, on average, one order of magnitude smaller than the equatorial scattering. It is also clear from Fig. 5.1 that the equatorial scattering is negative, i.e. the mean equatorial pitch angle of twelve electrons forming a sheet is lowered. To explain those results shown in Fig. 5.1 it is useful to study trajectories of individual electrons. For example Figure 5.2 illustrates typical electron trajectories and energy variations calculated for interactions with a monochromatic CW signal. Four electrons shown in Fig. 5.1 belong to a test sheet specified by $v_{\text {"eqo }}=v_{p_{11} \in \mathbb{C}}$, and $\alpha_{e q}=10^{\circ}$. A main difference between those electrons are their initial phases ϕ_{0} as indicated in Fig. 5.1 and defined in Fig. 4.1. The left column of Fig. 5.2 shows energies of the four electrons as a function of interaction time, while the right column of the same figure illustrates variaticns of both parallel and phase velocities as a function of latitude. Note that the time scale and the latitude scale cover the same portion of the field line. Next consider Fig. 5.2a where, as the electron approaches the equator, the parallel velocity becomes better matched to the wave phase velocity, and the wave effects become more cumulative. Those wave effects cruse the oscillations of v_{11} and E, and as th2 electron comes closer to the

FIGURE 5.2 SINGLE ELECTRON TRAJECTORIES FOR $B_{\perp}=10$ pT. The electron energy and parallel velocity are shown as a function of latitude as it interacts with CW wave. The initial parallel velocity $v_{\text {neoq }}=v_{p i e q}$, and $\alpha=10^{\circ}$ for all electrons. The initial phase ϕ_{0} is 30° in (a), 90° in (b), 120° in (c), and 270° in (d).
equator the amplitudes of the oscillations increase. At the point $t=0.52 \sec \left(\lambda=-3.5^{\circ}\right)$ the parallel velocity of the electron equals the phase velocity, and that point is called the first resonance point. Electrons shown in Figs. 5.2b, 5.2c, and 5.2d exhibit similar behavior before they reach the first resonance point. However, after electrons travel beyond the first resonance only the top three electrons shown in Fig. 5.2 are accelerated by the wave in such a minner that their parallel velocities become larger than the phase velocity. It is also clear from Figs. $5.2 a, 5.2 b$, and $5.2 c$ that this increase of the parallel velocity is accompanied by an increase of the total energy of the electrons. After those electrons have traveled beycnd the first resonance their motion, as they travel across the equator, is still affected by the wave, but the parallel velocity remains larger than the phase velocity. However, on the other side of the equator the phase velocity again starts to increase and the electrons approach their second resonance point. At this second resonance point the electrons are decelerated by the wave and consequently their energy is also decreased. Thus the electrons shown in Figs. 5.2a, 5.2b, and 5.2c are being accelerated at the first resonance point and then decelerated at the second resonance point. The amount of acceleration and deceleration in general depends on the actual phase between a given electron and the wave, and as a final result electrion energy can be unchanged (Fig. 5.2a), increased (Fig. 5.2b) or derefased (Fig. 5.2c). Compared to those top three cases (Figs. 5.2a, 5.2b, 5.2c) a fourth electron trajectory illustrated in Fig. 5.2d is quite different. This electron became trapped after the first resonance interaction and t.ts parallel

ORIGINAL FAGRE S OF POOR QUALITY

(A)

(B)

(C)

(D)

FIGURE 5.3 SINGLE ELECTRON TRAJECTORIES FOR $B_{\perp}=10$ pT. The electron parallel velocity v_{n} and phase ϕ as a function of time.
Time $t=0$ indicates occurrence of the first resonance. Other parameters are the same as those in Fig. 5.2.
velocity, as well as the total energy, shows oscillatory behavior which is characteristic of the trapped electrons.

Figure 5.3 is a time expanded view of the electron's behrvior during a 400 msec window centered around the first resonance point at $t=0$ msec. This figure shows both parallel velocity and electron phase behavior. From the phase diagrams it follows that the phase is increasing before the first resonance, with the rate of increase decreasing as electrons approach the first resonance point. This tjpe of phase variation is consistent with that found analytically in Chapter III. At the resonance point the phase does not change, i.e. it becomes constant, and the first derivative is equal to zero, as indicated in Fig. 5.3. After the first resonance untrapped and trapped electrons undergo different phase variations. Untrapped electrons are associated with a constantly decreasing phase as a result of $v_{11}>v_{p_{11}}$, while trapped electrons exhibit an oscillatory phase behavior as they oscillate at the bottom of the potential well. Note that an electron is considered to be trapped if it executes at least one complete phase oscillation. Figure 5.3 also clearly illustrates significance of the phase between electrons and a wave. By comparing the phase behavior of the electrons shown in Figs. 5.3c and 5.3d, we see that the difference in their phases at the resonance point ($t=0 \mathrm{msec}$) is less then 5 degrees, but the electron of Fig.5.2c is not trapped, whereas the electron of Fig. 5.2d is trapped.

Those four sample trajectories are representative of typical perturbations of electron motion induced by the wave forces. Finally, to explain the results of Fig .5 .1 where the equatorial scattering is

FIGURE 5.4 NORMALIZED ENERGY OF TEST SHEET AS A FUNCTION OF LATITUDE. The normalized energy of a test sheet (12 electrons) increases about 2.5% around the equator when those electrons interact with a CW signal. The sheet initial parallel velocity is $v_{\text {neq }}=v_{p n e q}$ and $\alpha=10^{\circ}$.
larger than the final scattering, the energies of all 12 electrons are added together and plotted as a function of latitude in Figure 5.4. From this figure it immediately follows that there is a region around the equator where the normalized total energy of the electron sheet is increased. This energy increase is on average about 2\% of the initial total energy, and it is limited to latitudes between -4° and 4°. The jump in the energy is caused by the acceleration of untrapped electrons such as those shown in Figs. 5.2a, 5.2b, 5.2c, while the energy envelope oscillations are caused by trapped electrons such as that of Fig. 5.2d. In the particular example there were 7 untrapped electrons and 5 trapped electrons. Beyond $\lambda=4^{\circ}$ the total energy of the sheet returns almost to the initial level. Here we recall that an increase of the electron energy yields a decrease of the pitch angle, while a decrease of the electron energy yields an increase of the pitch angle. Bearing this relation in mind it is then easy to explain the results of Fig. 5.1 by translating energy variations shown in Fig. 5,4 into pitch angle variations. This transformation imnediately reveals that the equatorial scattering is negative and larger than the final scattering, again as indicated in Fig. 5.1. It also explains why the final scattering can be both positive or negative because the final energy can be either larger or smaller than the initial energy. The final scattering appears, due to its randomness, as though it resulted from an incoherent interaction. On the other hand the equatorial scattering appears to be much less random implying a larger degree of coherence. This indicates that coherence of this particular type of longitudinal interaction is position dependent, and it is necessary to examine elestron trajectories
rather than to rely only on scattering results.
The energy gained by the electrons is extracted from the wave which means that the wave amplitude must be reduced around the equator. For test particle studies involving only twelve particles this attenuation of the wave amplitude is negligible, but it should be considered in full distribution computations where significant loss of the wave energy will cause a strong wave attenuation and consequently weaken the interaction process.

From Fig. 5.3d it follows that the trapping period is about 82 msec. Because the medium inhomogeneity is very small around the equator this trapping period can be also computed using a relation derived for the homogeneous medłum

$$
\begin{equation*}
T_{t}=\frac{1}{2 \pi} \sqrt{\frac{m}{e E_{11} k_{11}}} \tag{5.1}
\end{equation*}
$$

Using (5.1) with $k_{11}=1.910^{-3}$ and $E_{11}=15 \mu \mathrm{~V} / \mathrm{m}$, the trapping period is computed to be 81.5 msec , which is in very good agreement with the numerical result. It is also easy to check the oscillation peifiod of \mathbf{v}_{11} for untrapped electrons. For example consider the electron shown in Fig. 5.2b and its parallel velocity at $t=100 \mathrm{msec}$. The period of parallel velocity oscillation at that point is about 20 msec , which may also be found by computing the doppler shifted frequency of the wave $\omega_{1}=\omega-k_{\| V_{11}}$ Taking $\omega=2 \pi \cdot 3000 \mathrm{rad} / \mathrm{sec}, k_{11}=1.910^{-3}$, and $v_{11}=$ $10100 \mathrm{~km} / \mathrm{sec}$ yields $\omega_{i}=331 \mathrm{rad} / \mathrm{sec}$; the equivalent oscillation period is of about 19 msec which is in a good agreement with numerical results. As mentioned earlier results shown in Figs. 5.2, 5.3, and 5.4

FIGURE 5.5 SINGLE ELECTRON TRAJECTORIES FOR B ${ }_{1}=10$ pT. Electron parallel velocities as functions of latitude for a case when the initial parallel velocity is $v_{11}=1.050 \mathrm{v}_{\mathrm{p}}=\mathbf{e q}$. The pitch angle and initial phases of electrons are the same as those in Fig. 5.2 .
are calculated for a sheet with initial equatorial parallel velocity $v_{\text {" }}$ eqo equal to the equatorial phase velocity "p"eq of a wave. For purposes of comparison, Figure 5.5 shows the parallel velocity behavior of four electrons, from a sheet with $v_{11 e q_{0}}=1.050 \mathrm{v}_{\mathrm{p} \| \mathrm{eq}}$, and again as a function of latitude. The motion of the electrons is similar to that shown in Fig. 5.2. The possibility of trappirg, or not trapping, depends on the initial phase ϕ_{0} of nach individual electron, and the final scattering can be both positive and ncgative.

The above results suggest that the longitudinal resonance interaction with a monochromatic CW signal is confined to a relatively small region around the equator. The controlling factor in the Interaction is the variation of phase ϕ which determines if electrons become trapped or not, and affects the amount of exchanged energy.

C. SCATTERING OF A SINGLE SHEET INTERACTING WITH CW WAVES AMPLIFIED AT THE EQUATOR THROUGH THE CYCLOTRON RESONANCE

Next we consider the scattering of single electron sheet interacting with a monochromatic $C W$ wave whose amplitude is increased through the gyroresonance process. The amplification process of $C W$ waves takes place c]ose to the equator [Helliwell, 1967], and in our calculations the growth region is taken to be 1000 km long. The wave amplitude, before it reaches the equatorial growth region, is 0.1 pT .

Figures 5.6 and 5.7 illustrate the scattering of a single sheet as a function of the initial parallel velocity $\mathrm{v}_{\text {Ieqo }}$. In all

ORIGINAL PRGE ! 9 OF POOR QUALITY

FIGURE 5.6 MEAN SCATTERING AS A FUNCTION OF PARALLEL VELOCITY. The mean scattering is computed for the equator. The results indicate that the wave magnetic forces become important at larger pitch angles; then it is necessary to include Bessel terms in the equations of motion.
computations the wave caplitude is $B_{\perp}=10 \mathrm{pT}$, or $\mathrm{E}_{n}=15 \mu \mathrm{~V} / \mathrm{m}$, while the equatorial pitch angle is taken to be $10^{\circ}, 30^{\circ}, 50^{\circ}$, and 70°. The total sheet scattering is computed twice for each parallel velocity increment; once it is computed using complete averaged equations of motion, and once using only the qE term of Eq. 2.61 as though the wave is electrostatic, i.e. it is assured that $J_{0}(\eta)=1$ and $J_{1}(\eta)=0$. As discussed earlier, the effects of the Bessel terms, i.e. the effects of the wave magnetic field forces, should become significant at larger pitch angles, while at lower pitch angles the difference between the two computaicional methods is expected to be small. From Fig. 5.6a, which is calculated using $\alpha_{e q}=10^{\circ}$, it is evident that the two methods produce very similar results, as expected. On the other hand, as the pitch angle increases the difference between the results becomes mach larger and for $\alpha_{\mathrm{eq}}=70^{\circ}$ there is almost no scattering if we exclude the Bessel terms from the equations of motion (Fig. 5.7b), whereas the scattering calculated using the complete equations is about $\cdot \epsilon^{2}$ at $v_{\text {req }}=V_{p u e q}$. Those examples confirm the results of Chapter II, where it was found that the Bessel terms will be a very important factor in governing the motion of electrons with high pitch angles. This is especially true for the $J_{1}(n)$ term, which represents effects of the wave magnetic force, as already indicated in Figs. 2.5, 2.6 and 2.7. As discussed earlier the longitudinal resonance interaction depends strongly on the wave amplitude. This wave amplitude dependence is depicted in Figure 5.8. Three different curves shown in that figure represent scattering of sheets with three different initial parallel velocities $v_{\text {re }} q_{0}$. A sheet with $v_{\text {re }} q_{0}=v_{p \| e q}$ has the optimal parallel
velocity as required by the resonance condition. Two other sheets with $v_{\text {"eq }}=0.995 v_{\text {pueq }}$ and $v_{\text {"eq }}=1.005 v_{\text {pueq }}$ are slightly off the resonance when they encounter the wave growth region at the equator; the first is slower and the :econd is faster than the phase front of the wave, respectively. The effects of different sheet velocities are best illustrated by corisidering the amount of pitch angle scattering for a given wave amplitude. The particle sheet with $v_{\text {" }} \mathrm{eq}=\mathrm{v}_{\mathrm{p}}$ "eq is scattered about -0.1° when interacting with a relatively weak wave with $B_{\perp}=5$ pT. On the other hand, the other two sherte require a wave with $B_{\perp}=18$ pT to achieve the same amount of scattering. Below $\mathrm{B}_{\perp}=18 \mathrm{pT}$ scattering of the sheet with $v_{\text {req }}=0.995 v_{p / e q}$ is small and negative, whereas scattering of the sheet with $V_{" e q}=1.005 V_{p}$ eq is also small, but positive. We recall from Section III.E that the direction of energy exchange depends on the relative magnitudes of the parallel and phase velocities; if ar electron is faster than a wave it is decelerated and loses its kinetic energy; if an electron is slower than a wave it is accelerated and gains kinetic energy. An increase, or decreas 9 , of the kinetic energy is accomplished by changing the parallel velocity of the electron through the resonance process. If the parallel velocity of an electron is incr.eased, its equatorial pitch angle becomes smaller, or equivalently, if the parallel velocity of an electron is decreased, its equatorial pitch angle becomes larger. It is this type of process that explains the behavior of the two sheets with $\mathrm{v}_{\text {req }}=0.995 \mathrm{v}_{\mathrm{pueq}}$ and $v_{\text {ıeq }}=1.005 v_{p}=1$ for $B_{\perp}<18 \mathrm{pT}$. It may be wondered why a sheet with $v_{\text {"eq }}=v_{p}$ "eq does not show similar behavior, and what is happening when $B_{\perp}>18 \mathrm{pr}$ in the other two cases. The answers may be found by
examining trajectories of individual test electrons. From those results It was found that for weak waves all electrons remain untrapped regardless of their initial parallel velocities. As long as the electron is not trapped, i.e as long as the electron parallel velocity does not follow the phase velocity variation, the longitudinil interaction is generally limited to two relatively small regions around the two resonance points. In our case the interaction is further limited to only one side of the equator where the wave amplitude is sufficiently strong. Next, as the wave amplitude increases beyond the equator the interaction becomes stronger, and from the trajectory calculations, it is evident that some electrons become trapped. This transition between the untrapped and trapped mode of the longitudinal interaction is characterized by a significant increase in the scattering. The amplitude threshold at which the trapped mode scattering overtakes the untrapped mode scattering depends on the initial parallel velocity vieqo, as shown in Fig. 5.8. The threshold amplitude for $v_{\| E q_{0}}=v_{p \| e q}$ is as low as $B_{\perp}=3 \mathrm{pT}$, with a relatively smooth transition between the two interaction regimes. The amplitude threshold in the two other cases is about $B_{\perp}=18 \mathrm{pT}$ with a much sharper transition between two interaction regines.

The individual particle trajectories are illustrated in Figures 5.9, 5.10, and 5.11. Figure 5.9 shows parallel velocities and phases of four electrons wh.th $v_{\| e q_{0}}=v_{p \prime e q}, \alpha=10^{\circ}$, and different initial phases ϕ_{0}, as functions of latitude and time, respectively. The wave amplitude is $B_{\perp}=10 \mathrm{pT}$. As in the case for a $C W$ signal the parallel velocity variation of those electrons is controlled by the phase
ORIGINAL PAGE Ig
OF POOR QUALITY

ORIGINAL PACR IE
OF POOR QUALITY

$E_{11}[\mu V / m]$
FIGURE 5.8 MEAN SCATtERING AS A FUNCTION OF WAVE AMPLITUDE FOK THE AMPLIFIED CW SIGNAL. The effect, i.e. significant scartering is possible only if the wave amplitude exceeds a certain value. The threshold amplitude increases as the absolute difference between the initial parallel and phase velocity becomes larger.

ORIGINAL FAGE IS OF POOR QUALITY

FIGURE 5.9 SINGLE ELECTRON TRAJECTORIES FOR $B_{\perp}=10 \mathrm{pT}$. Parallel velocity and phase behavior for electrons with $v_{\text {neq }}=v_{\text {peq }}$ and $\alpha=10^{\circ}$ interacting with variable amplitude $C W$ signal. The initial electron phase is 0° in (a), 120° in (b), 150° in (c), and 300° in (d).

ORICINAL PAGE IS OF. POOR QUALITY

(A)

(B)

(c)

(D)

FIGURE 5.10 SINGLE ELECTRON TRAJECTORIES FOR $B_{\perp}=10 \mathrm{pT}$. Shown here are the parallel velocity and phase variations around the first resonance point at $t=0$. Other parameters are same as those in Fig. 5.9.
variation. For example, the electron trajectory of Fig. 5.9a indicates absence of crapping because of an improper phase, whereas the number of oscillations for trapped electrons in the other three cases also depends on the phase at the moment when the parallel velocity equals the wave phase velocity. Figure 5.10 depicts a time expanded view of the electron trajectories around the first resonance point. Before analysing those trajectories we recall from section II.B that the variation of z_{11} is described, in the vave frame, as $\cos k_{11} z$, and that the bottom of the potential well is at Z_{B} as shown in Figure 2.2. In Figure 5.10 the time $t=0$ indicates the first resonance where $v_{11}=v_{p_{11}}$. The phase at this point is a crucial factor governing the further motion of a particular electron. For example, the phase of electron shown in Fig. 5.10 a is such that it is strongly decelerated and by the time of phase reversal, i.e. electron acceleration, the parallel and wave phase velocity are too different for trapping to be possible. Observing the phase of the electron in Fig. 5.10 b at $\mathrm{t}=0$ we find this phase to be significantly smaller than the phase in Fig. 5.10a. Due to this different phase the second electron is less decelerated, eventually becomes trapped, and executes one oscillation at the bottom of the potential well. For the next two electrons shown in Figs. 5.10c and 5.10d the phases at $t=0$ are even smaller resulting in an increasing number of oscillations. We note that the amplitudes of both velocity and phase oscillations decrease as the phase at $t=0$ decreases. In the example shown in Fig. 5.10d the phase at $t=0$ is very close to the optimal 90° which then results in the strongest trapping. As discussed earlier the 90° phase indicates that an electron is exactly at the

FIGURE 5.11 SINGLE ELECTRON TRAJECTORIES FOR B $=30$ pT. The electron parameters are same as those in Fig. 5.9.
bottom of the poteritial well. To illustrate the effects of wave amplitude Figure 5.11 shows the same four electrons, but the wave amplitude is increased to $B_{\perp}=30 \mathrm{pT}$. In this case even the fizst electron becomes trapped, and the other three electrons now remain trapped for longer periods of time.

Figure 5.12 shows the scattering of individual electrons as a function of their initial phases ϕ_{0} for three different wave amplitudes. This figure confirms the importance of phase as a controlling factor in the longitudinal resonance interaction. Figure 5.12 shows that it is possible to achieve a significant increase of the scattering efficiency by changing the inital phase ϕ_{0} from 0° to 180°. We summarize the results of the above analysis in Figure 5.13 which shows the normalized total energy of a single sheet as a function of latitude. The initial equatorial parallel velocity equals the equatorial phase velocity and wave amplitude is $B_{\perp}=10 \mathrm{pT}$. Before electrons reach the equator the wave amplitude is very small and there are no significant changes of the sheet energy. After the equator crossing the wave amplitude starts to increase and electrons become trapped. As long as those electrons remain trapped their parallel velocities increase and so does the total energy of the electron sheet. As the electrons move away from the equator some of them become detrapped, but the energy increase continues up to the point where the last electron becomes detrapped. At that point the energy of a sheet has reached its maximum and remains constant. From Figure 5.13 we see that the particular sheet has gained about 4.6\% over the initial energy. The energy gain region is between $\lambda=1^{\circ}$ and $\lambda=7^{\circ}$. Recall that this energy increase must be accompanied

FIGURE 5.12 TOTAL SCATTERING, $\Delta \alpha$ eq, VERSUS INITIAL PHASE FOR DIFFERENT WAVE AMPLITUDES. The initial pitch angle is $\alpha_{\mathrm{eq}}=10^{\circ}$.

ORIGINAL PAGE is

 OF PCOK QUALITY

FIGURE 5.13 NORMALIZED ENERGY OF TEST SHEET AS A FUNCTION OF LATITUDE. The energy of the test sheet is increased as it interacts with the variable amplitude CW signal.

FIGURE 5.14 MEAN SCATTERING AS A FUNCTION OF WAVE NORMAL ANGLE. The difference < $\mathrm{E}_{s}>-<\mathrm{E}_{0}>$ represents the amount
of energy gained by electrons.
by wave attenuation which is not considered in the test particle studies, $1 . e$ there is no feedback to account for wave amplitude changes. The feedbact effects can be neglected in a test particle simulation where the number of electrons is swall, but they must be considered in a full distribution analysis.

Next we take into account the scattering efficiency dependence on the wave-normal angle. Figure 5.14 shows $\left\langle\Delta \alpha_{e q}\right\rangle$ vs. θ for $B_{\perp}=10$ $p T, \alpha_{e q}=10^{\circ}$ and $v_{1 e q_{0}}=v_{p " e q .}$. The wave function corresponds to one given in Fig. 5.3. Also shown are the initial energy of the sheet, $\left\langle E_{0}\right\rangle$ and the final energy $\left\langle E_{S}>\right.$. We have found earlier that the main effect of the wave-normal angle increase is seen through an increase of $E_{1 /}$. Thus, as the wave normal increases the longitudinal interactions become more effective, as indicated in Fig. 5.14. Furthermore, when the wave-normal approaches the resonance cone electrons are scattered by as much as -5.5°, and the sheet energy is increased about five times. For such a strong interaction the wave amplitude would most likely be heaviiy attenuated, although to find the exact solution it is necessary to include a previously discussed feedback term. The inclusion of the feedback term vould than probably diminish the scattering effects as the wave amplitude becomes smaller with the increasing scattering.

In Chapter II we discussed the possibility of space bunching of electrons through the longitudinal resonance process. Figure 5.15 shows the phases of nine electruns from a sheet with $v_{\text {ıeq }}=v_{p \| e q}$, $\alpha_{e q}=10^{\circ}$ and intericting with a 30 pT wave. Three remaining electrons are omitted from this figur because they are very weakly trapped as already illustrated in Fig. 5.12. Initially all electrons are uniformly
distributed in phase space and maintain this phase separation as they approach the equator. At the equator they reach a wave growth region and trapping takes place. As electrons become trapped around $t=0.21$ sec their maximum phase separation is reduced to aiout 150°, and can be as small as 50° at the moment when all electrons reach the bottom of potential well nearly simultaneously at $t=0.21, t=0.24$, and $t=0.27 \mathrm{sec}$. Thus the original spacing between the electrons is reduced and we have a case of space bunching. In this particular example 9 out of 12 electrons are bunched in about a half of the original separation. Thus, the density increase is roughly $9 / 12 \times 360 / 150$, or about 180% of the initial density for $V_{n e q}=v_{p u e q}$. For other velocities the density increase is smaller because the resonance condition is not satisfied exactly at the equator. Note that after a few initial oscillation periods electrons go out of phase and start to reach the bottom of the potential well at different times. It is possible to have a new synchronization later in time, as occurs at $t=0.54$ and $t=0.565 \mathrm{sec}$ (Fig. 5.15). This problem may be understood as though we have 9 harmonic oscillators with slightly different periods of oscillation caused by different phases at the moment those electrons entered the trap.

Figure 5.16 shows $\left\langle\Delta \alpha_{\mathrm{eq}}\right\rangle^{\text {s }}$ ve. v_{11}, and $\langle\Delta E\rangle v s . v_{11}$ for interactions taking place inside and outside the plasmapause. Those results clearly show that interactions cutside the plasmapause result in less scattering, but in more energy exchange, than those interactions inside the plasmapause. This interesting result may be explained as follows; as $n_{e q}$ drops outside the plasmapause the wave phase velocity

ORIGINAL FAEE SG
OF POOR QUASTTY

ORIGINAL PAGE IS OF POOR QUALITY

$$
\mathrm{f}=3000 \mathrm{~Hz} \quad \Theta=30^{\circ}
$$ InSide Plasmapause

 depicts the corresponding energy exchange $\langle\Delta E>$.
increases and the parallel resonant energy becomes higher. Higher energy electrons move faster through the wave and hence have a shorter time to be scattered. Note that although the resonant energy is about 288 eV for $\mathrm{n}_{\mathrm{eq}}=400 \mathrm{el} / \mathrm{cc}$ it is 11529 eV for neq $=10 \mathrm{el} / \mathrm{cc}$. Because of that difference in resonant energies even a relatively small scattering outside the plasmapause results in energy changes that are larger compared to those found inside the plasmapause.

This concludes our discussion of single sheet scattering interacting with a one-sided wave function. In the next section we present results involving sheet scattering by a spatial pulse.
D. SCATIERING OF A SINGLE SHEET INTERACTING WITH A SPATIAL PULSE

In this section we examine the scattering of a single electron sheet as it moves through a spatial amplitude pulse formed by a non-ducted wave when its ray direction stays field aligned for a certain portion of the wave path. As depicted in Figure 5.17a the ray direction is field aligned between $\lambda=-10^{\circ}$ and $\lambda=-7^{\circ}$, which is equivalent to 1000 km in length. Other interaction parameters are specified in the sase figure. The interaction is studied for a wide range of initial parallel velocities, Δv_{11}, as illustrated in Figure 5.17b. The minimum parallel velocity is $1.012 \mathrm{v}_{\mathrm{p}}$ eq, the maximum parallel velocity is 1.106 $v_{\text {pleq }}$, and the parallel velocity increment is $0.001 \mathrm{v}_{\mathrm{p}} \mathrm{leq}$. The wave amplitude is assumed to be zero everywhere except for $-10^{\circ}<\lambda<-7^{\circ}$. The scattering results are shown in Figure 5.17. To explain those
results we can use Figure 5.17 b as follows; when the initial parallel velocity is small, for example $v_{\text {"peq }}=1.012 v_{p " e q}$, the latitude of the first resonance point is also small, i.e. it is close to the equator. Hence, as those electrons travel up the field line toward the equator they encounter the spatial amplitude pulse but parallel and phase velocities are rather different resulting in a very weak interaction. As the inftial parallel velocity of a sheet is increased the first resonance point moves away from the equator and closer to the amplitude pulse, and the two velocities become better matched. This better velocity match results in a stronger interaction and a negative scattering $\left\langle\Delta \alpha_{e q}\right.$ ', A negative sign of $\left\langle\Delta \alpha_{e q}\right\rangle$ means that electrons are accelerated. This acceleration is consistent with the relative ratio of two velocities; namely, before electrons reach the first resonance point their velocity is less than the wave phase velocity in which case electrons are accelerated in order to match the phase velocity. However, further increase of the parallel velocity beyond $1.082 v_{p u e q}$ results in a change of sign of the effective scattering. This occurs when the first resonance point falls within approximately $\pm 0.5^{\circ}$ of the pulse iront edge at -10°. The principal difference is that electrons become trapped as they interact with the pulse, whereas for lower parallel velocities there were no trapped electrons. When trapping takes place the parallel velocity follows the phase velocity, which decreases as electrons approach the equator, and this results in a positive sign of scattering $\left\langle\Delta \alpha_{e q}>\right.$ in Fig. 5.18. Furthermore, as the parallel velocity is increased beyond $1.094 \mathrm{v}_{\mathrm{p} \| \mathrm{eq}}$ the first resonance moves even further down the field line and interactions become small

ORIGINAL PAGE IS

(a)

FIGURE 5.17 INTERACTION WITH SPATIAL AMPLITUDE PULSE EXTENDING BETWEEN $\lambda=-10^{\circ}$ AND $\lambda=-7^{\circ}$. Shown in (a) is the position of spatial pulse on the field line. The range of affected initial parallel velocities is shown in (b).
ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 5.18 MEAN SCATYERING FOR INTERACTIONS WITH A SPATIAL AMPLITUDE PULSE EXTENDING BETWEEN
$\quad \lambda=-10$ AND $\lambda=-7$. Electrons with initial velocities within the $\Delta v_{\text {ut }}$ range are
trapped, while electrons with other initial parallel velocities remain untrapped.

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 5.19 INTERACTION WITH SPATIAL AMPLITUDE PULSE EXTENDING BETWEEN $\lambda=7^{\circ}$ AND $\lambda=10^{\circ}$. The format is the same as that of Fig. 5.18.

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 5.20 MEAN SCATTERING FOR INTERACTIONS WITH A SPATIAL AMPLITUDE PULSE EXTENDING BETWEEN $\lambda=7^{\circ}$ AND $\lambda=10^{\circ}$. Only electrons with $v_{n \prime}$ in the $\Delta v_{u^{\prime}}$ range are trapped.
again. The shaded area in Fsg. 5.17a indicates the trapping velocity bandwidth Δv_{t} which is also indicated in Fig. 18. When comparing areas of positive and negative scattering in Fig. 5.18 they iurn out to be approximately the same which means that the energy exchange is small.

This example is a good illustration of the different features of the longitudinal resonance interaction. We see that the electron behavior is very dissimilar in cases with and without trapping. Untrapped electrons change their velocity depending on the relative ratio of phase and parallel velocities, while trapped electrons become space bunched and their parallel velocity follows the wave phase velocity.

Figure 5.19 illustrates a similar type of interaction as the one discussed above, only the spatial amplitude pulse is on the other side of the equator. The corresponding scattering results are shown in Figure 5.20. Those results may be explained using the same analysis as the one used in the previous example. The trapping occurs when the first resonance point is close to the pulse front edge at $\lambda=7^{\circ}$, although the trapfed electron scattering is now negative as the phase. velocity increases. The untrapped particle scattering is positive because the phase velocity is smaller than the parallel velocity before the resonance point is reached.

VI. FULL DISTRIBUTION SIMULATIONS

A. INTRODUCTION

In Shapter V we have presented results of single sheet simulations. The purpose of that analysis was to clarify various aspects of the longitudinal resonance process. In this chapter we carry those calculations one step further by increasing the number of test electrons in order to simulate a full distribution. Such calculations are interesting for two reasons:

1) It is possible to calculate a precipitated flux, and
2) It is feasible to estimate wave amplitude changes due to the energy exchange.

In the following examples of full distribution calculations electrons are assumed to interact with a one-sided wave function. As it was already shown in Chapter V, this type of wave function may produce a significant amount of scattering, whereas interactions with narrowband signals (not amplified through gyroresonance) may result in a very small final scattering. Therefore, based on those resul.ts, it appears that the constant amplitude $C W$ signals represent a very weak source of precipitation, although those $C W$ waves still may have some amplitude variations around the equator as a consequence of the interaction with electrons.

The energetic electron population is readily described in terms
of an equatorial distribution function $f_{\text {eq }}\left(v_{\text {ieq }}, \alpha_{\text {eq }}\right)$. From this point on we drop the subscript 'eq', and all quantities represent equritorial values unless specified otherwise. The distribution function as given in $v_{11}-\alpha$ space because it is a convenient representation which directly shows the pitch angle scattering, $\Delta \alpha$, and it is easy to determine a normalized velocity $v_{11} / v_{p \prime \prime}$ which is one of the prime factors affec:ing the interaction process. The velocity space volume element is then g1"en as $v_{11}^{2} \frac{\sin \alpha}{\cos ^{3} \alpha} \operatorname{dadv}_{1 \prime} d \phi[$ Inan, 1977]. Now we recall results of Figures 5.6 and 5.7 showing the mean scattering of a single sheet as a funcion of the sheet initial parallel velocity. From those figures it is evident that the trapping velocity range considered is limited to a narrow strip around $v_{11}=v_{p \prime \prime}$, while the pitch angle range extends from $\alpha_{1 c}$ to $\alpha_{\text {max }}$. The value of $\alpha_{\text {max }}$ may be as large as 90°, and specifically in our calculations it may be limited to a slightly lower value due to time averaging in the equations of motion. The angle $\alpha_{1 c}=5.5^{\circ}$ is the nominal loss cone angle for the dipole field lira $L=4$, i.e. all electrons with pitch angles lower than 5.5° have mirror points at ionospheric heights ($\mathrm{h}<200 \mathrm{~km}$) and are assumed to be lost through precipitation. As already shown in Figs. 5.6 and 5.7, the trapping velocity bandwidth increases with increasing pitch angle due to the effects of the wave magnetic field forces. This trapping velocity bandwidth $\Delta v_{\text {It }}$ is about 0.4% of $v_{p n e q}$ for $\alpha=10^{\circ}$, and about 1% of $v_{p \text { "eq }}$ for $\alpha=70^{\circ}$. Again, it should be noted that this velocity bandwidth refers to the trapped electrons only. The untrapped electrons have a quite different behavior; if the initial parallel velocity is smaller than the lower trapping velocity limit the
scattering is negligible because the wave phase velocity and the parallel velocity of the electron are never matched along the field line. On the other hand, if the initial parallel velocity of an untrapped electron is larger than the upper trapping velocity limit there are always two resonances; at the first resonance scattering is negligible because the wave amplitude is very small, whereas at the second resonance point, where the electron parallel velocity exceeds the wave phase velocity, the untrapped electrons are decelerated. All of the above mentioned classes of electrons are illustrated in Figure 6.1. The scattering of untrapped electrons is much smaller than it is for the trapped electrons, but the interaction velocity range for untrapped electrons is larger than the trapping velocity bandwidth. The effects of trapped and untrapped electrons on the wave amplitude are exactly opposite; the trapped electrons are accelerated and the wave luses energy, whereas the untrapped electrons are decelerated and the wave gains energy. This dissimilar behavior of trapped and untrapped electrons indicates that, in order to calculate a net transfer, it is necessary to consider a wide range of initial parallel velocities of electrons which then requires a very large number of test electrons. While the wave amplitude variation calculations require a Large number of test electrons the precipitation calculations may be carried out by considering a significantly smaller number of electrcns, because only a certain class of electrons can be scattered into the loss cone, 1.e. only trapped electrons with sufficiently small initial pitch angles are precipitated in the $10 n o s p h e r e$.

From Fig. 6.1 it is obvious that there is always an $\alpha_{\max }<\pi / 2$

FIGURE 6.1 GENERAL DISTRIBUTION FUNCTION. DIfferently shaded areas indicate the various behavior of electrons as they interact with the variable amplitude wave.
such that electrons with $\alpha>\alpha_{\text {max }}$ cannot be scattered into the loss cone. As noted above those scattered electrons must have been trapped, i.e only trapped electrons may have their pitch angles decreased by the amount required for precipitation. Based on the above limits for $v_{\prime \prime}$ and α it is feasible to define a region in $v_{11}-\alpha$ space (cross-shaded in Fig. 6.1) containing electrons that can be scattered into the loss cone. This region in the $v_{11}-\alpha$ space is further divided into a number of mesh points identified by their v_{11} and α, and this mesh then represents the Initial distribution. The number of electrons at each mesh point is equal to twelve, refler ing the fact that electrons are uniformly distributed in phase. Figure 6.2a illustrates the unperturbed distribution function; note that we use the number density of electrons N_{E} rather than $f\left(v_{11}, \alpha\right)$. The number density and $f\left(v_{11}, \alpha\right)$ are related through [Inan, 1977]:

$$
\begin{equation*}
N_{E}=2 \pi f\left(v_{i n} \alpha\right) v_{11}^{2} \frac{\sin \alpha}{\cos ^{3} \alpha} \Delta v_{11} \Delta \alpha \tag{6.1}
\end{equation*}
$$

Using Eq. 6.1 it is also possible to find the actual number of electrons represented by a single test electron.

During the interactions the initial distribution of electrons (Fig. 6.2a) is perturbed by the wave, and the final distribution is shown in Figure 6.2b. Note that the velocity mesh size is different in Figs. 6.2a and 6.2b, since the energy of the electrons tends to be significanc.y increased through the interaction process. Beside an overall increase in electron energies, three electrons are scattered into the loss cone. In the next section precipitation fluxes are

ORIGITNAL PAGE IS OF POOR QUALITY

FIGURE 6.2 SIMULATION OF THE DISTRIBUTION FUNCTION. (A) The unperturbed distributior. (B) Perturbed distribution. The numbers in each individual cell indicate the number density of electrons.
computed for three particular cases.

B. PRECIPITATED ELECTRON FLUX

Here we compute the precipitated electron fluxes involving a one-sided wave function, and for three different maximum wave intensities ($E_{\|}=50,150$ and $250 \mu \mathrm{~V} / \mathrm{m}$). The maximum initial pitch angle considered in these calculations is 10°, since there are no electrons with $\alpha>10^{\circ}$ scattered into the loss cone even when the electrons interact with a very strong wave, i.e. $E_{\|}=250 \mu \mathrm{~V} / \mathrm{m}$. The initial unperturbed number density function is the same in all three examples, and was already shown in Fig. 6.2a. Furthermore, the distribution function is taken as

$$
\begin{equation*}
f(v, \alpha)=\frac{A}{v^{4}} g(\alpha) \tag{6.2}
\end{equation*}
$$

where A is a constant and $g(\alpha)$ is some function of pitch angle. In our calculations $g(\alpha)$ is assumed to be an isotivpic function given by

$$
\begin{align*}
g(\alpha)=g_{1}(\alpha) & =1 \quad \alpha>\alpha_{1 c} \tag{6.3}\\
& =0 \quad \alpha<\alpha_{1 c}
\end{align*}
$$

The following analysis is similar to that presented by Inan
[1977], although in his work electron scattering was due to
gyroresonance interactions. First, before computing the precipitation, It is feasible to compute the wave induced pitch angle perturbations given by $f(\alpha)$ which is obtained by integrating $f\left(v_{11}, \alpha\right)$ over the velocity range of interest. In our examples, involving a 5 kHz wave, it is found that the maximum parallel velocity after the interaction is $v_{1 \text { max }}=1.8 v_{p " \text { " }}$ whereas the minimum parallel velocity is $v_{\text {"min }}=0.98 v_{p \|}$. The equatorial phase velocity $v_{p: \prime}$ for a 5 kHz wave is $11.2310 \mathrm{~m} / \mathrm{sec}$. Thus the pitch angle distribution is given by
remembering that electrons are uniformly distributed in initial phase, which results in the factor 2π in Eq. 6.4.

Figure 6.3 shows the normalized pitch angle distribution $f(\alpha)$ as a furction of α for different wave intensities. The dashed curves show the initial unperturbed distributions, whereas the solid curves indicate the final distributions. These results show that the longitudinal resonance interaction requires rather strong waves in order to scatter electrons into the loss cone. For a wave with $E_{11}=50 \mu \mathrm{~V} / \mathrm{m}\left(B_{\perp}=14 \mathrm{pT}\right)$ the perturbations are very small, and only a few electrons are scattered below $\alpha_{1 c}$. When the wave amplitude is increased the loss cone starts to fill with electrons, and also electrons with higher pitch angles are scattered down to lower pitch angles. This process is best illustrated in the case of a $250 \mu \mathrm{~V} / \mathrm{m}$ wave, where the loss cone is filled with

ORIGINAL PAGE IS OF. POOR QUALITY

FIGURE 6.3 NORMALIZED ELECTRON DISTRIBUTION $f(\alpha)$. The dashed lines represent the unperturbed distribution. The solid curves represent the perturbed distribution.
electrons having a wider range of initial pitch angles than the electrons reaching the loss cone in the two other cases.

The total number density of electrons precipitated in the velocity range $0.98 \mathrm{v}_{\mathrm{p} \mathrm{\prime} \mathrm{\prime}}$ to $1.8 \mathrm{v}_{\mathrm{p} \|}$ is given by

$$
N=2 \pi \int_{0}^{\alpha_{1 c}} \int_{0.98 v_{p \|}}^{1.8 v_{p \| \prime}} f\left(v_{\|, \alpha)} v_{\|}^{2} \frac{\sin \alpha}{\cos ^{3} \alpha} d v_{\|} d \alpha L^{3}\left(1+3 \sin n^{2} \lambda\right)^{1 / 2}\right.
$$

where the factor $L^{3}\left(1+3 s i n^{2} \lambda\right)^{1 / 2}$ accounts for the convergence of the field line going from the equator to ionospheric heights. The precipitated energy deposition rate is computed in similar fashion by including the energy weighting factor $\frac{1}{2} m \frac{v_{\| \prime}^{2}}{\cos ^{2} \alpha}$ in (6.5) which then yields

$$
Q=2 \pi \int_{0}^{\alpha_{k}} \int_{0.98 v_{p \prime \prime}}^{1.8 v_{p \prime \prime}} f\left(v_{11}, \alpha\right) v_{11}^{2} \frac{v_{11}^{2}}{\cos ^{3} \alpha} 1 / 2 m \frac{v_{11}^{2}}{\cos ^{2} \alpha}-d v_{11} d \alpha L^{3}\left(1+3 \sin ^{2} \lambda\right)^{1 / 2}
$$

The integrals in Eqs. 6.5 and 6.6 are easily evaluated by a numerical integration. For the three examples considered the normalized energy deposition rate, defined as $Q_{N}=Q / A$ where A is defined in Eq. 6.2, are:

$$
\begin{array}{ll}
E_{11}=50 \mu V / m & Q_{N}=0.9652 \cdot 10^{-14} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{sec} \\
E_{11}=150 \mu \mathrm{~V} / \mathrm{m} & Q_{\mathrm{N}}=0.8129 \cdot 10^{-12} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{sec} \\
E_{11}=250 \mu \mathrm{~V} / \mathrm{m} & Q_{\mathrm{N}}=0.3565 \cdot 10^{-11} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{sec}
\end{array}
$$

ORIGINAL PAGE IS

OF POOR QUALITY
To compute the total energy deposition it is necessary to evaluate the constant A. This can be done by computing the total number density N_{E} in el/cc in the specific velocity range $0.98-1.8 v_{p \prime \prime}$. In this case

$$
N_{E}=2 \pi \int_{0}^{\pi} \frac{A}{v^{4}} v^{2} \text { sin } \alpha d v d \alpha
$$

The above integral yields

$$
\begin{equation*}
A=2 \times 10^{8} N_{E} \tag{6.8}
\end{equation*}
$$

Finally, to compute A it is necessary to estimate N_{E} from the reported measurements. From Schield and Frank [1970] we find that $N=1$ el/cc in the 1-2 KeV range and that the number density varies as v^{-4} with velocity (E^{-2} with energy). In our case the electron energies are 300-1000 eV which results in $N_{E}=10 \mathrm{el} / \mathrm{cc}$, since the number density increases with decreasing electron energy. Substituting $N_{E}=10 \mathrm{el} / \mathrm{cc}$ in Eq. 6.8 we find that $A=2 \times 10^{9}$.

The next step is to compute the absolute energy deposition rates by multiplying the normalized rates Q_{N} by the constant A. The results are shown below:

$$
E_{\|}=50 \mu V / \mathrm{m} \quad Q=1.94 \times 10^{-5} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{sec}
$$

$$
\begin{array}{ll}
E_{11}=150 \mu \mathrm{~V} / \mathrm{m} & Q=1.66 \times 10^{-3} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{sec} \\
E_{11}=250 \mu \mathrm{~V} / \mathrm{m} & Q=7.40 \times 10^{-3} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{sec}
\end{array}
$$

The above values indicate that the fluxes precipitated by a 5 kHz wave, which is amplified at the equator through the gyroresonance interaction, are rather small, especially when compared to those computed for gyroresonance interactions. Results for the gyroresonance process calculated by Inan [1977] indicate flux levels of 0.01-0.2 $\mathrm{erg} / \mathrm{cm}^{2} / \mathrm{sec}$ for a 10 pT wave. Note that 10 pT corresponds to $\mathrm{E}_{11}=30$ $\mu \mathrm{V} / \mathrm{m}$ for $\theta=30^{\circ}$ and $\mathrm{f}=5 \mathrm{kHz}$. Thus, the scattering efficiency is considerably higher for the gyroresonance than it is for the longitudinal resonance.

C. ENERGY EXCHANGE AND BALANCE

From the analytical and numerical studies it is evident that the scattering of electrons is always associated with energy transfer, i.e. if electrons gain energy then the wave is attenuated, or if electrons lose energy then the wave is amplified. Also, a large scattering is always associated with a large energy exchange. Such behavior constitutes another major difference between the longitudinal and the gyroresonance processes; namely, electrons can be scattered significantly through the gyroresonance interactions with a very small amount of energy transfer. This is explained by the fact that in gyroresonance it is the momentum transfer that causes pitch angle
changes, whereas the energy remains almost unchanged [Inan, 1977].
The total energy balance calculations for the longitudinal resonance process are extremely complicated as they involve a large number of electrons. As indicated in Fig. 6.1 the electrons with parallel velocities close to the wave phase velocity become trapped which then results in scattering from -0.2° up to -6° for pitch angles from 10° to 70°, respectively. The scattering of untrapped electrons is smaller and positive, about $0.05-0.1^{\circ}$ on the average. However, only a fraction of the electron population becomes trapped, while the number of untrapped electrons is much larger. From the sample calculations it was estimated that the upper velocity limit for untrapped electrons can be as high as $1.30 \mathrm{~V}_{\mathrm{p}}$, i.e. even if the initial parallel velocity of the electron is $v_{1 \prime}=1.30 v_{p \prime \prime}$ the electron is still scattered more than $\pm 0.005^{\circ}$. The scattering of $\pm 0.005^{\circ}$ represents a practical threshold of resolution for the numerical integration method used in our simulations. This resolution limit was found by setting $E_{11}=0 \mu \mathrm{~V} / \mathrm{m}$, i.e. computing only the adiabatic motion of the electrons and comparing the initial and the final pitch angles. Theoretically, the difference between these two pitch angles should be zero, whereas the numerical results have shown ± 0.005 fluctuations, which are than used as the limit of accuracy (resolution). These fluctuations are primarily due to the integration scheme, which uses linear interpolation. Returning to the energy exchange problem, it is evident that both trapped and untrapped electrons play important roles, and it is rather difficult to find an exact solution to this problem as the number of electrons involved is very large.

However, it is possible to estimate the energy transfer as follows; let us consider the example of Fig. 5.7a (solid curve) showing scattering as a function of the initial parallel velocity for a fixed initial pitch angla $\alpha=10^{\circ}$. This curve can be replutted substituting energy changes for pitch angle changes and also expanding the velocity range. Note that these results must be weighted by an appropriate function to account for different number densities at different velocities. This weighting function is assumed to have a v^{-2} characteristic (Eq. 6.1). Figure 6.4 shows both unweighted and weighted energy transfer, $1 . e$. the average energy gain (loss) per electron with a given initial parallel velocity, as well as the weighting function (dashed curve). Now it is possible to use a numerical integration to estimate the total energy balance for this particular case.

The total energy exch.inge is given as

$$
E_{1}\left(0.99 v_{p \|}\right)
$$

where ΔE represents the total energy exchanged through the longitudinal interaction with electrons whose initial parallel velocities are in 0.99-1.03 $v_{p \prime \prime}$ range, and all those electrons have the same pitch angle $\alpha=10^{\circ}$. The quantity $d E$ gives the weighted amount of energy exchanged per electron at a particular parallel velocity, and it is shown in Fig. 6.4. The final result of the above integration is $\Delta E=0.03 \mathrm{eV}$. Though this number is obtained using only twelve electrons it is evident that

ORIGINAL PRG: is

the total energy exchange at the particular pitch angle is very small even when the actual number of electrons is much larger.

To compute the overall energy balance similar calculations should be done for other pitch angles. A rough estimate using Figs. 5.6 and 5.7 indicates that the total energy transfer is very small, since the positive and negative scattering cancels out, i.e. the total area underneath $\left\langle\Delta \alpha_{e q}\right\rangle$ curve is approximately zero.

Sumarizing, it appears that both the precipitation and wave amplitude amplification (attenuation) for our sample case are small. Thus, it may be very difficult to observe the presence of this type of longitudinal interaction using ground observations. Another possibility for detection would be to use satellite borne particle detectors and to measure a relatively sharp depletion or electron density around $v_{11}=v_{\text {p" }}$. However, the problem is that particle detectors measure energies and pitch angles rather then parallel velocities and pitch angles. Note that the problem arises from the fact that the narrow range of parallel velocities which are affected (and wide range of pitch angles) maps into a wide range of energies (and pitch angles).

For example, if the parallel velocity equals the phase velocity, $v_{11}=v_{p \prime \prime}$, and pitch angles vary from 5° to 70°, the corresponding electron energies vary from E_{0} to $E_{0}\left(1+\tan ^{2} 70^{\circ}\right) /\left(1+\tan ^{2} 5^{\circ}\right)=8.48 E_{0}$, where E_{0} is the energy of the electrons with 5° pitch angle. Beside the above mentioned spreading effect, which tends to dilute the effects of the longitudinal resonance when measured on an energy basis, the particle detector resolution itself may pose a problem. The typical

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 6.5 PARTICLE DETECTOR RESOLUTION AND DETECTION OF LONGITUDINAL RESONANCE EFFECTS. The effects of the resonance interactions are best seen as a depletion of electrons around $v_{n 1}=v_{p_{11}}$.
resolution of particle detectors is about $2.5^{\circ}-5^{\circ}$ in pitch angle, and about 15% in E_{0}, where E_{0} is the energy of interest. For example, if we want to measure the density of electrons with energy $E_{m}=2 E_{0}$, and pitch angle $\alpha=45^{\circ}$, the corresponding resolution cell would be as shown in Figure 6.5. On the other hand, the longitudinal resonance will tend to remove electrons from a narrow velocity band around $v_{p \prime \prime}$, leaving a depletion region in the distribution (Fig. 6.5). The width of the depletion region is very small, so thet it occupies only about 30% of the resolution cell, s indicated in Fig. 6.5. Therefore, even if we remove all of the electrons from this depletion region. the particle detector would see only a 30% decrease in the number of electrons within the resolution cell. We recall from Chapter V that Iongitudinal resonance interactions, involving moderate amplitude waves, result in trapping of only about 30% of the electrons that satisfy the resonance condition (we considered only the trapped electrons, because only those electrons undergo sufficient change in V_{n} to be moved from one resolution cell to another). Thus the maximum total depletion factor for the resolution cell is estimated to be about 10%. On the other hand, typical particle detector measurements (e.g. Kimura at al., 1982) indicate large temporal variations of the electron flux, approaching an order of magnitude in intervals as short as 50 sec . Fo: that reason the particle detector sensitivity is reduced, because it becomes very difficult to distinguish between variations due to spatial changes in particle distribution and wave induced variations. Thus, present particle detectors are probably not capable of detecting perturbations of the electron distribution due to longicudinal resonance interactions.

Although it was found that the scattering efficiency of the longitudinal resonance process is small, it is possible that the bunching effects of the process may have important magnetospheric applicatior . In this chapter we consider applications of the longitudinal resonance to the generation of whistler precursors and to the generation of broadband VLF hiss. We also discuss the size of the internal electric field created ir, the bunching process.
A. GENERATION OF WHISTLER PRECURSORS

Whistler precursors are discrete rising tone emissions that precede two-hop whistlers, starting shortly ($0.1-0.3 \mathrm{sec}$) after the one-hop delay. The precursor may consist of one or more discrete emissions. For the particular measurements of August 2, 1973, the number of emissions varied from one to seven. Figure 7.1 illustrates three typical cases of precuicsors showing both one-hop whistlers (recorded at Siple, Antarctica), and precursors with corresponding two-hop whistlers (recorded at Roberval, Canada). There is no precursor in Fig. 7.lb, illustrating the fact that not all whistlers propagating on the same path trigger a precursor. Figure 7.ld depicts a single emission precursor, while Fig. 7.lf shows a multi-emission precursor.

ORIGNAL PACE IS OF POOR QUALITY
(a)

(c)
SI
(e)
(f)

FIGURE 7.1 SPECTROGRAMS OF WHISTLER PRECURSOR EVENTS RECORDED AT SIPLE/ROBERVAL CONJUGATE STATIONS. The causative spheric is marked with an arrow, and the whistler component which triggers the precursor is marked by a W. (b) shows no precursor, (d) shows a single emission precursor, and (f) shows a multi-emission precursor event.

ORIGINAL PAGE IS OF POOR QUALITY.

(b)

FIGURE 7.2 EXPANDED SPECTROGRAM OF THE PRECURSOR AT 1400 UT FROM FIGURE 7.1. (b) shows the corresponding amplitude variation in a 300 Hz bandwicth, and (c) indicates the rate of frequency change of the frequency-tracking filter used.

These particular data were analyzed by Park and Helliwell [1977], and it was found that the precursors were triggered only by the whistlers propagating in one particular duct, and that the precursors themselves propagated in the same duct. The duct parameters were $L=3.6$ and equatorial electron density $n_{e q}=440 \mathrm{el} / \mathrm{cc}$. The center of the plasmapause was located at about $L=4.2$ where the equatorial electron density dropped by factor of ten. Figure 7.2 shows an expanded frequency-time spectrogram of the precursor at 1400:03 UT, along with amplitude and frequency changes measured using a frequency-tracking filter. The growth rate deduced from that figure is about $105 \mathrm{~dB} / \mathrm{sec}$, and the rate of frequency change is about $6.5 \mathrm{kHz} / \mathrm{sec}$.

Park and Helliwell [1977] have reviewed different proposed generating mechanisms for precursors, including the isbrid mechanism suggested by Helliwell [1965] and Dowden [1972]. This is based on the presence of hybrid whistlers, which first propagate in the earthionosphere waveguide to the conjugate hemisphere and than return through the magnetosphere and trigger precursor emissions. Other mechanisms include one propised by Reeve and Rycroft [1976] in which the nonducted whistler is reflected in the conjugate hemisphere at the lower hybrid resonance (LHR) frequency, and is then deflected by the plasmapause such that it enters the duct near the equator, triggers the precursor through the gyroresonance, and then leaves the duct. A third mechanism involving a nonlinear multiple wave interaction known as parametric decay has been suggested by Reeve and Boswell [1976].

Considering various precursor mechanisms for the Aug. 2, 1973 case, the hybrid-thistler hypothesis can be immediately excluded hecause
there was no evidence of hybrid whistlers. The mechanism suggested ty Reeve and Rycroft [1976] requires special propagation conditions which are difficult to apply to multi-component precursors with a wide range of starting frequencies ($\sim 1 \mathrm{kHz}$ for the example shown in Figure 7.1f). Furthermore, the L-shell values of the duct and the plasmapause differed by more than the 0.15 required by their model. Finally, the parametric decay mechanism cannot explain the multicomponent precursors; hence Park and Helliwell [1977] have suggested a new mechanism.

The new mechanism is illustrated in Figure 7.3 and its time sequence is described below:
a) A lightning impulse in the northern hemisphere produces a whistler propagating toward the equator.
b) The whistler wave train signal and the energetic electrons streaming toward the equator interact with one another through the longitudinal resonance process.
c) Due to the longitudinal interaction, electrons become space bunched, which then temporarily increases the electron flux within a certain range of parallel velocities.
d) This enhanced electron flux reaches the equator while the whistler signal that caused the bunching continues to travel toward the southern hemisphere.
f) After crossing the equator the enhanced electron flux interacts with northward traveling power line harmonic (PLH) waves through the gyroresonance process. The enhancement of the electron flux is sufficient to lower the threshold of this interaction below the level required for triggering of an emission by one or more lines of PLH

FIGURE 7.3 SCHEMATIC ILLUSTRATION OF THE WHISTLER PRECURSOR GENERATION MECHANISM. See the text for details.
waves. These emissions travel toward the northern hemisphere.
g) While the triggered emission (precursor) travels toward the northern hemisphere, the one-hop whistler reaches the conjugate point in the southern hemisphere, where it is reflected. It then travels back to the northern hemisphere.
h) The precursor reaches the northern hemisphere followed by a two-hop whistler, resulting in a frequency-time spectrograms similar to those depicted in Fig. 7.1.

The detailed timing of this process was worked out by Park and Helliwell [1977] and it was shown that this mechanism can explain different properties of the Aug.2, 1973 precursors such as variable starting frequency, multicomponent emissions and variable starting time. However, there are some special requirements that have to be met in order for this mechanism to work. First, the enhancement of the electron flux achieved through longitudinal resonance must be large enough and should last about 200 ms , so as to provide both the threshold for triggering through gyroresonance as well as the temporal growth time required for emission generation. Second, the PLII waves (which obviously must be present for this mechanism to work) must have amplitudes such that they approach the triggering threshold level.

PLH activity appeared from time to time in the August 2, 1973 case; during some intervals it dominated the VLF spectrum. Park and Helliwell [1977] found that the PLH propagated in the same duct with the precursor; this suggests that PLH waves were present at the time of the precursor observations and, when not detected, were probably close to the threshold for triggering emissions through cyclotron resonance.

As already stated the gyroresonance triggering mechanism will work only if the electron density perturbations achieved through the longitudinal resonance result in an electron flux increase which lasts at least $\sim 200 \mathrm{~ms}$. The 200 msec requirement is associated with a typical temporal growth time [Stiles and Helliwell, 1977], i.e. a typical delay from onset of temporal growth to emission triggering. This flux increase can be achieved, in principle, through electron bunching. We have shown in Chapter V that the longitudinal resonance interaction results in significant space bunching, which in our particular case of a monochromatic signal was about 180%, i.e. the electron density was enhanced roughly by factor of two at $v_{11}=v_{p_{11}}$ with the density enhancement decreasing for other parallel velocities.

However, in order to explain multi-component precursors it is necessary to increase the electron flux over a relatively wide range of parallel velocities. At each velocity the flux increase should last for about 200 msec . To illustrate this process we consider a multicomponent precursor consisting of two emissions with starting frequencies $f_{1}=2 \mathrm{kHz}$ and $\mathrm{f}_{2}=3 \mathrm{kHz}$, and assume that those emissions are triggered at the equator, although the triggering location must be slightly off the equator to account for the rising frequency-time characteristics. From the gyroresonance condition at the equator $f\left(1+v_{\text {"eq }} / v_{p_{11}}\right)=f_{H}$ the parallel velocities at which the $f l u x$ must be Increased are $v_{\text {"eq1 }}=76.610^{6} \mathrm{~m} / \mathrm{s}$ and $v_{\text {"eq2 }}=57.110^{6} \mathrm{~m} / \mathrm{s}$, where we used $f_{\text {Heq }}=18.7 \mathrm{kHz}$ and $f_{\text {peq }}=188.8 \mathrm{kHz}$. Thus the whistler interacting with the energetic electrons must be able to produce an increased flux at those two velocities for 200 msec . We also recall from Chapter III
that the parallel velocities $v_{\| 1}$ and $v_{\| 2}$ vary along the field line as indicated in Fig. 3.11, and that the electrons with higher pitch angles mirror closer to the equator.

Next we recall that the longitudinal resonance condition is given as $v_{11}=v_{p_{11}}=c f^{1 / 2}\left(f_{H}-f\right)^{1 / 2} / f_{p}$, which yields the resonance frequency $f=1 / 2\left(f_{H} \pm\left[f_{H}^{2}-4\left(v_{\|} f_{p} / c\right)^{2 / 2}\right)\right.$ (the pius sign gives $f>f_{H} / 2$, where the waves become unducted, so we can disregard that solution). The resonance frequency changes as we change the parallel velocity. For example, if we consider electrons with V "eq1 and $V_{1 " e q 2}$ and assume $\alpha=10^{\circ}$, their parallel velocities at 50° latitude are $v_{11}=0.30 v_{\text {"eql }}=$ $22.910^{6} \mathrm{~m} / \mathrm{s}$ and $\mathrm{V}_{2}=0.30 \mathrm{~V}_{2}=\mathrm{eq}_{2}=17.110^{6} \mathrm{~m} / \mathrm{s}$, and the corresponding resonant frequencies are $f_{1}=2.65 \mathrm{kHz}$ and $f_{2}=2 \mathrm{kHz}$. Thus a whistler train of appropriate frequency range can interact with electrons with different parallel velocities, such that when those velocities are mapped back to the equator they satisfy the gyroresonance condition at different frequencies. If the perturbations of the electron flux at those different velocities are large enough and last long enough (-200 msec), they could result in emission triggering at those frequencies. This would then provide a basis for explaining the generation of multi-emission precursors.

We want first to illustrate that the flux perturbation at a given parallel velocity (actually in a narrow range of about 1% around that velocity) can last longer than 200 msec . In order to do that we recall the results for the interaction with a spatial pulse from Chapter V. From Figs. 5.17, 5.18, 5.19, and 5.20 we see that a 1000 -km-long spatial pulse can trap electrons in a narrow band of velocities ($\mathfrak{2} \mathbf{2}$),
and that those electrons beside being trapped, i.e. space bunched, undergo pitch angle scattering on the order of a few tenths of a degree. Although this spatial pulse is stationary and monochromatic, the results from that analysis can be related to the whistler train if we consider the whistler train to be composed of segments of approximately constant frequency. We consider one of those segments with frequency $f=2 \mathrm{kHz}$; the group velocity of that segment at 50° latitude ($L=3.6$) is about $3010^{6} \mathrm{~m} / \mathrm{s}$, and if it interacts with electrons for about 2000 km (this is comparable to the length of the spatial pulse considered in Chapter V) the total interaction time is about 70 msec . On the other hand, as long as an electron is trapped it does not matter if the trapping signal is a stationary amplitude pulse (not moving along the field line) or a moving segment of a whistler. If the length of the interaction region in the two cases is comparable, the trapping and scattering effects should also be comparable.

This segment of the whistler is therefore capable of increasing the flux in a narrow band of parallel velocities, but this increased flux should last at least 200 msec at the equator in order to provide the basis for emission triggering. The total duration of the flux perturbation depends on the latitude at which the resonance takes place, and on the pitch angle of the electrons involved. For example, if we want the triggered emission to start at 3 kHz it is necessary to increase the electron flux in a narrow band of velocities around
 different pitch angles at the equator, and will thus mirror at different latitudes (see Fig. 3.10). For $\alpha=10^{\circ}$ the mirror point is at 53°
latitude, while for $\alpha=50^{\circ}$ the mirror point is at 20° latitude. Thus our whistler segment at 2 kHz , as it travels toward the equator (from higher latitudes toward lower latitudes), first encounters electrons with $\alpha=10^{\circ}$ at about 50° latitude (the time of this encounter is the reference time $t=0$). As noted earlier, if the interaction lasts for about 70 msec , it should be sufficiently long time to bunch the electrons. During those 70 msec both wave and electrons move from about 50° to about 48° latitude. After the interaction is over it takes about 0.43 sec for the bunched electrons to reach the equator, or essentially the travel time from 48° latitude to the equator. When the electrons arrive at the equator they have $v_{11}=V_{\text {"eq2 }}$ (we have neglected the parallel velocity changes due to the interaction, as it is assumed that the scattering is small). Furthermore, as our whistler segment gets closer to the equator it interacts with electrons with progressively higher pitch angles. The arrival time at the equator for those electrons with higher pitch angles can be calculated using the above described method. For $\alpha=50^{\circ}$ the interaction occurs at 20° latitude, and those electrons arrive at the equator at $t=0.69 \mathrm{sec}(0.5 \mathrm{sec}$ for whistler travel time from 50° to 20° latitude, -0.1 sec for the interaction, and 0.18 for particle transit from 20° to the equator). Thus the perturbation at the equator would last about $t=0.69-0.43=$ 0.26 sec , which is sufficient for the development of emission triggering. Computations for the whistler segment with $f=2.65 \mathrm{kHz}$ indicate that the corresponding flux perturbation lasts about 210 msec . Therefore it is found that the electron flux perturbation may last long enough and may cover a sufficiently wide range of parallel frequencies.

Note that similar computations were done by Park and Helliwell [1977], but without consideration of the interaction time.

As noted earlier in Chapter V, this perturbation (space bunching) is associated with an amplitude threshold of the waves driving the longitudinal resonance. This suggests that one could measure the amplitudes (on the ground) of whistlers with and without precursors, and therefore test for the presence of the threshold. Such amplitude measurements were made on one-hop whistle:s recorded at Siple, Antarctica, and propagating at $L=3.6$ on August 2, 1973. The data were taken at two frequencies, 4000 Hz and 4600 Hz , using a bandpass fil:er with $\Delta f=300 \mathrm{~Hz}$. This provided the temporal resolution needed to distinguish a particular whistler component connected with precursor generation from other multipath components. The results of those measurements are shown in Figure 7.4 as amplitude vs. time diagrams. The whistlers without precursors are indicated by crosses, the whistlers with single emission precursors are indicated by circles, and the whistlers with multicomponent precursors are indicated by squares, where the numbers above the squares represent the number of individual emissions forming a single precursor event.

Figure 7.4 shows that the amplitudes of the one-hop whistlers decreased, on average, from -15 dB (0 dB level corresponds to $100 \mu \mathrm{~V} / \mathrm{m}$) to about - 22 dB for $f=4000 \mathrm{~Hz}$. For $f=4000 \mathrm{~Hz}$ the average amplitude decreased from -13 dB to about -17 dB in the same period of time between 1335 UT and 1415 UT. This overall decrease of the whistler amplitudes is most likely a result of increased absorption in the fonosphere because of transition from nighttime to daytime conditions (sunrise time

ORIGINAL PAGE : OF POOR QUALITY

FIGURE 7.4 AMPLITUDE OF WHISTLER COMPONENTS ASSOCIATED WITH THE PRECURSOR ACTIVITY OF AUGUST 2, 1973. For symbol explanation see the text.
was around 1400 UT). Helliwell [1965] has shown that there is a significant increase in the ionospheric absorption at VLF for the night-day transition, ead that the amount of the absorption increases rapidly with increasing frequency. This prediction is consistent with the above observations; the amplitude level at 4000 Hz drops about 4 dB , whereas the amplitude level at 4600 Hz drops about 7 dB . If we further assume that the maximum ionospheric absorption occurs in the D region at about 100 km altitude [Helliwell, 1965] it is possible to estimate the duct exit point using the path L value as one coordinate and sunrise time at 100 km altitude as the second coordinate. From Fig. 7.4 we see that the amplitudes of the whistlers start to decrease around 1355 UT which is then assumed to indicate the beginning of sunrise effects. On the other hand calculations show that for sunrise times of 1355 UT and 1405 UT at 100 km alti:ude, the terminator reaches the latitudes of $71^{\circ} \mathrm{S}$ and $72^{\circ} \mathrm{S}$, respectively. This period of time (1355-1405 UT) is the time when the whistler amplitudes are raptdly decreasing (Fig. 7.4), suggesting that the latitude of the whistler duct exit point was between 71° S and $72^{\circ} S$. Because the whistier duct was on $L=3.6$, we can find where this line intercepts the above latitudes; the result is shown in Figure 7.5. The estimated location of the duct exit point lies in the north-west direction from Siple Station, at a distance of about 490 km for $71^{\circ} \mathrm{S}$ latitude, and about 830 km for $72^{\circ} \mathrm{S}$ latitude.

A more important feature of Fig. 7.4 is the presence of a
threshold level that a whistier amplitude must exceed in order to trigger a precursor. This amplitude threshold is most clearly seen between 1335 and 1350 UT. As found earlier in Chapter V, such behavior

ORIGINAL PAGE IG OF POOR QUALITY

figure 7.5
is one of the characteristics of the longitudinal resonance interaction, Which then supports the precursor generation mechanism suggested by Park and Helliwell [1977]. We note that the apparent gap in the precursor activity between 1350 and 1400 UT is artificial. At least five precursor events were observed at Roberval, but it was not possible to measure the corresponding amplitudes of the one-hop whistlers due to the operation of a VLF transmitter at Siple (receiver preamplifier muted).

In the next period of time, between 1400 and 1415 UT, the precursor activity still exhibited a threshold, although not as clearly as before. The presence of many multicomponent precursors indicates favorable triggering conditions for the gyroresonance interaction between electrons and PLH waves. This is supported by the level of spontaneous magnetospheric emissions, which increased sharply around 1400 UT, and strong PLR (power line radiation) which was observed for a period of a few minutes.

The data show that the precursor generation was associated with an amplitude threshold in the driving whistler, but the model suggested by Park and Helliwell [1977] also requires that the space bunching produced by the one-hop whistler be sufficient for triggering emissions. As it was found earlier, the space bunching process can roughly double the electron density (flux). According to Helliwell and Inan [1982] who proposed a feedback model to explain VLF growth and discrete emission triggering in the magnetosphere (through gyroresonance), a doubling of the electron flux is usually sufficient to result in the triggering of emissions. In their model the loop gain G is directly proportional to the electron flux. For $G<1$ the system acts like an amplifier, while for

G>1 the system becomes unstable and can generate emissions. Therefore, a doubling of the flux could easily boost the loop gain G to a value larger than unity and thus result in triggering.

Thus the precursor generating mechanism suggested by Park and Helliwell [1977] appears to be supported by the results found for the longitudinal resonance, including both the amplitude threshold and the level of the density bunching.

In the next section we discuss some other aspects of the longitudinal resonance interaction that may be important in other magnetospheric processes.

B. VLF HISS

One of many magnetospheric processes for which the generating mechanism is not certain is VLF hiss, most often observed on the ground as relatively broad band (several kilohertz) noise. VLF hiss often shows no discrete structure, having the appearance on a spectrogram of band-limited white noise. This type of spectrum is characteristic of auroral and plasmaspheric hiss, whereas mid-latitude hiss usually shows some kind of discrete structure. Therefore, the hiss generating mechanism must be such that it can explain the generation of relatively wideband signals, and also account for the observed amplitudes of such signals.

An electron propagating in a dielectric medium does not radiate as long as its velocity remains less than the phase velocity in that
medium; if the electron velocity is larger than the phase velo:ity we have a case of Cerenkov radiation. The two situation are depicted in Figure 7.6, and we note that the electron radiates at only one angle when $v_{\text {II }}>c / \sqrt{\varepsilon_{r}}$. However, in the case of a dispersive medium different frequencies are radiated in different directions, as shown in Figure 7.7. In the magnetosphere the radiated frequencies are within the VLF range. Thus if the amplitude of the Cerenkov radiation is large enough it could account for the hiss generation. It should be noted that the condition for Cerenkov radiation is exactly the same as the condition for longitudinal resonance, $1 . e$. the electron velocity must match the phase velocity (in the direction of electron travel) in a particular medium.

In the magnetospheric case it can be shown that there are in general two Cerenkov frequencies radiated at each angle, and that the radiation condition is not met when the parallel velocity exceeds the critical velocity $v_{1 c}$ [Brice, 1964]. The critical velocity corresponds to propagation in the Gendrin mode, which was defined in Section III.B. As noted earlier, the broadband nature of Cerenkov radiation makes it interesting as a possible source of VLF hiss, and it was considered by many authors [Ellis, 1959,1960; Dowden, 1960; McKenzie, 1963; Liemohn, 1965; Mansfield, 1967; Seshadri, 1967; Jorgenson, 1968; Lim and Laaspere, 1972; Taylor and Shawhan, 1974]. However, all of the power density calculations fell short of explaining the observed power density of VLF hiss, indicating that incoherent Cerenkov radiation is not sufficiently strong to account for VLF hiss. For this reason other mechanisms were suggested which are still based on the Cerenkov radiation, but in which

$$
\begin{aligned}
& \text { a) VACUUM OR NONDISPERSIVE } \\
& \text { MEDIUM WHERE } v_{\| 1}<\frac{c}{\sqrt{\varepsilon_{r}}}
\end{aligned}
$$

FIGURE 7.6 CERENKOV RADIATION CONDITIONS IN A NONDISPERSIVE MEDIUM.
(a) $v_{n \prime}<c / \sqrt{\varepsilon_{r}}$ and (b) $v_{n \prime}>c / \sqrt{\varepsilon_{r}}$

ORIGINAL PAGE IS
OF POOR QUALITY

CERENKOV RADIATION IN A DISPERSIVE MEDIUM. In this case different
FIGURE 7.7
radiation is either coherent [Taylor and Shawhan, 1974], or amplified through interaction with an electron beam [Swift and Kan, 1975; Maggs, 1976]. In the case of the coherent radiation it is assumed that the radiation from n electrons is in phase, resulting in $P=n^{2} P$, where P is the power radiated by each electron. On the other hand, if all n electrons radiate incoherently (random phase) the total radiated power is given by $P=n P$.

Due to the n^{2} dependence, a relatively small number of electrons radiating coherently could produce power levels which are in agreement with the measuraments. Thus the problem is to identify a process that could resuit in electron bunching such that the bunch dimensions are much less than a wavelength (smaller dimensions mean greater coherence). As already shown, the longitudinal resonance interactions may produce such bunches of electrons, and it may be speculated that the radiation coherence needed to explain VLF hiss is created in the following way: (1) first a strong signal bunches a signdificant number of electrons (sironger waves would produce better coherence), and (i1) the bunched electrons become detached from the bunching wave. The detachment may be due to difference in phase and group velocity, as is the case for the whistler mode where the phase and the group velocity are always different (except for $f=f_{H} / 2$). For example, consider a pulse with $f<f_{H} / 2$ so that $v_{g}>v_{p_{11}}$. Electrons trapped by this pulse will have $v_{11}=v_{p_{11}}$, but because the wave energy propagates with $v_{g}>v_{\text {II }}$, those electrons slide baskwards through the pulse, and eventually emerge from the tail end of the wave packet. Such a blob of electrons could radiate coherent Cerenkov radiation.

However, it remains to be seen how long this blob of electrons remains bunched, because it may contain electrons with different pitch angles and different parallel velocities. For the moment let us assume that all electrons have the same parallel velocity, but different pitch angles which means that they have different variations of parallel velocity as required by their adiabatic motion. Thus, for a given spread in pitch angle it may be determined how long it takes the separation between the low and high pitch angle electrons to become larger than the wavelength, which than destroys the radiation coherence. The sample calculations have shown that the coherence time for a given initial spread in pitch angles depends strongly on the latitude where the electrons become detached from the bunching wave, 1.e. on the latitude at which their motion begins to be entirely governed by the static magnetic field. For example, assuming the initial range of pitch angles to be from $\alpha=10^{\circ}$ to $\alpha=20^{\circ}$, and detachment at 20° latitude (electrons are moving toward the equator), it takes only about 1 msec before the separation between 10° and 20° electrons becomes larger than one wavelength. On the other hand, if the detachment occurs at 1° latitude (for the same initial range of pitch angles) it takes about 0.2 sec for the same process to occur. Note that after 0.2 sec the electrons reach 4° latitude, but on the other side of the equator.

A blob of electrons created through the longitudinal resonance interaction and with a spread in pitch angle only could radiate coherently for a substantial period of time (few tenths of second). However, the electrons within a blob have slightly different parallel velocities, e.g. a typical spread in parallel velocity is about 400
km/sec (Figs. 5.10 and 5.15). Thus it will take only about $t=2 / 400=$ 5 msec for those electrons to become separated more than a wavelength at the equator, assuming the wavelength to be 2 km at the equator. From this result it is evident that spreading due to the finite range of parallel velocities occurs much faster than the spreading due to a finite range of pitch angles, and that the life time of the blob is about one hundredth of a second. We also note that the blob of electrons could further be dispersed due to interaction with other waves.

Thus it is possible that the short life time during which the blob can radiate coherently, together with the fact that there may nut be many electrons within a single blob, makes the radiated power level insufficient to account for the observations. However, there could be more than one blob formed through the above described process, which could further enhance the radiation (as long as the radiation from different blobs does not interfere). Even stronger radiation effects could probably be achieved if the velocity of the electron blob equals the critical velocity, because in that case all radiated frequencies satisfy the Gendrin condition given in Chapter II. The enhancement of radiation is expected because for the Gendrin mode the ray direction is field aligned for all radiated frequencies, and the group velocity is independent of the wave frequency so that wave packets radiated at different frequencies travel together [Helliwell, private communication]. Another explanation for VLF hiss generation is based on amplification of incoherent Cerenkov radiation through the wave-beam interaction where the beam provides for the 'bump-on-tail' distribution.

As mentioned earlier, a distribution function which has a positive slope, as is the case for the bump-on-tall distribution, may result in Landau growth.

C. COMMENTS ON THE INTERNAL FIELDS OF THE BUNCH

At this point we should note that space bunching always gives rise to an internal electric field through the Poisson equation. This electric field will then act to debunch the electrons, as it opposes the wave bunching field. Although this effect can be neglected in test particle simulations where the number of slectrons is small, it may become important depending on the actual flux of particles. We have shown that significant bunching occurs for a parallel electric field around $50 \mu \mathrm{~V} / \mathrm{m}$ and higher , so that we choose $5 \mu \mathrm{~V} / \mathrm{m}$ as the limit for the internal field, $1 . e$. we assume that internal fields up to $5 \mu \mathrm{~V} / \mathrm{m}$ do not significantly affect the bunching process. Using the $5 \mu \mathrm{~V} / \mathrm{m}$ field we can find an electron density N that is needed to produce that field. In Chapter IV we showed how the twelve test electrons are uniformly distributed in phase before the interaction, and in Chapter V (Fig. 5.15) we showed that the same electrons are compressed in phase space, i.e. space bunched. The typical compression is about 90° in phase, or 500 m assuming $\lambda=2 \mathrm{~km}$.

At the same time each single test electron actually represents a large number of electrons in the real distribution, i.e. each test electron represents a sheet of electrons. Thus the question is, if we
have twelve initially equidistant sheets of electrons, and we displace those sineets so that the total displacement is 500 m , what is the maximum electron density for which the internal field (due to the compression of the sheets) does not exceed $5 \mu \mathrm{~V} / \mathrm{m}$? It turns out that this computation is rather simple, and the electron density is given as [Buneman, 1980]

$$
\begin{equation*}
N=-\frac{\varepsilon_{0} E}{e \Delta s} \tag{7.1}
\end{equation*}
$$

where E is our maximum allowable internal field (negative), and Δs the total displacement of the sheets. Using $E=5 \mu \mathrm{~V} / \mathrm{m}, \Delta \mathrm{s}=500 \mathrm{~m}$, and $\varepsilon_{0}=8.85410^{-12}$ we find $N=0.55 \mathrm{el} / \mathrm{m}^{3}$ which is the maximum allowable density, i.e. densities larger than this produce internal fields stronger than $5 \mu \mathrm{~V} / \mathrm{m}$, which can reduce the bunching effects. When the density of the electrons is known we can relate it to the electron flux as discussed below.

It was shown that trapping occurs in a narrow range of parallel velocities centered around the wave phase velocity, so we use 1% as a typical value. The next step is to compute the actual number of electrons in that velocity range, and then to compare with the previously computed $N=0.55 \mathrm{el} / \mathrm{m}^{3}$. The electrons are assumed to have an initial energy of 300 eV and $\alpha=10^{\circ}$, so that the corresponding parallel velocity is $v_{n}=9.65410^{6} \mathrm{~m} / \mathrm{s}$. In that case the total number of electrons, within 1% velocity range around $v_{\| \prime}$ is given as (assuming an isotropic distribution in pitch angle)

$$
\begin{equation*}
N=2 \pi \int_{0}^{\pi} \int_{v_{1}}^{v_{2}} \frac{A}{v^{n}} v^{2} \sin \alpha d v d \alpha \tag{7.2}
\end{equation*}
$$

where A is a constant that can be deduced from the flux. It can be shown [Inan, 1977] that for $E=1 \mathrm{keV}$ and $\alpha=90^{\circ}, A=2 \phi$, where ϕ is the differential energy spectrum for 1 keV electrons with $\alpha=90^{\circ}$. Note that this relationship between ϕ and A holds only for $a v^{-4}$ distribution, and it is necessary to use a different relation for other eistributions. Thus, substituting for A in $E q .7 .2$, and integrating we have ($n \neq 3$)

$$
\begin{equation*}
N=\left.4 \pi A\left(-\frac{v^{-n+2+1}}{n-2-1}\right)\right|_{v_{1}} ^{v_{2}} \tag{7.3}
\end{equation*}
$$

whereas for $n=3$ we have

$$
\begin{equation*}
N=\left.4 \pi A \ln v\right|_{v_{1}} ^{v_{2}} \tag{7.3a}
\end{equation*}
$$

and Table 7.1 shows the results for various values of the differential flux $\phi\left(1 \mathrm{keV}, \alpha=90^{\circ}\right)$ and various values of n (the constant A is given as $\frac{m^{2}}{2}\left[\frac{2}{m}\right]^{n / 2} \phi$ where m is the electron mass).

Thus, from Table 7.1 we can find the values of n and ϕ for which the electron density is lower than $0.55 \mathrm{el} / \mathrm{m}^{3}$, i.e. we see when it is possible to have bunciing without creating a strong internal electric field which may significantly decrease the bunching effects. Also note that only the trapped electrons contribute to the internal field.

ORIGINAL PAGE IG OF POOR QUALITY

Flux
n
A
$\mathrm{N}\left(\mathrm{el} / \mathrm{m}^{3}\right)$
(el $\mathrm{cm}^{-2} \mathrm{sr}^{-2} \mathrm{~s}^{-1} \mathrm{kev}$)

10^{8}	3	1.310^{-7}	1.310^{-3}
10^{8}	4	210^{8}	21658
10^{8}	5	2.910^{23}	3.110^{5}
10^{8}	6	4.410^{38}	6.810^{10}
10^{4}	3	1.310^{-11}	1.310^{-7}
10^{4}	4	210^{4}	2.17
10^{4}	5	2.910^{29}	31
10^{4}	6	4.410^{34}	6.710^{6}
10^{2}	3	1.310^{-13}	1.310^{-9}
10^{2}	4	210^{2}	0.02
10^{2}	5	2.910^{17}	0.31
10^{2}	6	4.410^{32}	6.710^{4}

TABLE 7.1 Total number of electrons within 1% velocity bandwidth for 300 eV electrons as a function of flux and various distribution functions.

Because most of the flux measurements are made at higher energies the exact fluxes and distributions at lower energies are uncertain, but as those data become available Table 7.1 can be used as a guide to determine if the bunching of the electrons is affected by the internal fields. Present measurements indicate that the flux can be on the order of 10^{3} to 10^{9}, and the exponent n can vary between 3 and 5 [Kimura, 1982; Shield and Frank, 1970].

We have presented two examples in which longitudinal resonance
interactions may play an important role, along with an analysis of the
limiting electron flux for the bunching. We conclude our discussion with a suma::y and suggestions for future work.
VIII. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

A. SUMMARY

We have analyzed the nonlfnear longitudinal resonance Interactions between energetic electrons and coherent VLF waves in the magnetosphere. The longitudinal resonance, which may result either in wave growth or wave damping, and also causes space bunching of energetic electrons, was numerically simulated using time averaged nonifnear equations of motion. The simulations were done for single electrons, sheets of electrons, and a full iistribution of electrons. Those studies, done for different typer of wave functions, have shown how the the wave forces modify the electron trajectories, and that the trajectory perturbations result in nonlinear pitch angle scattering. The nonlinear pitch angle scattering variations have been studied for a wide range of the initial pitch angles, wave amplitudes, cold plasma densities and wave normal angles. It was found that there are two basic groups of electrons, trapped and untrapped, where the trapped electrons, in contrast to the untrapped electrons, are crapped in the potential well formed by the wave. The trapped electrons cause the space bunching which increases the electron flux at certain parallel velocities. The nonlinear scattering for the longitudinal resonance is found to be much smaller compared to that for the gyroresonance interactions, indicating a higher efficiency for the gyroresonance process. This is
so because the scattering for gyzoresonance is achieven . . agh the conversion of perpendicular momentum of the electron into parallel momentum with very small energy exchange between the wave and electrons, while the scattering for the longitudinal resonance is solely based on the energy exchange. Due to the smaller scattering efficiency a full distribution simulation produced only small precipitated fluxes, i.e. for moderate strength VLF waves the precipitation due to the longitudinal interactions is below the detectable level of about 0.01 ergs $/ \mathrm{cm}^{2} / \mathrm{sec}$.

In a study of magnetopsheric applications we found support for a mechanism proposed by Park and Helliwell [1977] to explain whistler precursors. We conclude that the longitudinal resonance is a likely candidate to drive a process in which a whistler wave perturbs the particles along a field line through longitudinal resonant bunching. This bunching has the effect of creating an enhancement, near the equator, of particle flux in a particular parallel velocity range. The enhancement is of sufficisit amplitude and duration to permit a gyroresonance interaction with wave activity such as power line harmonics. We find that the longitudinal resonance is not at first look a likely process for creating coherence in Ceronkov process of hiss generation, but that features of the longitudinal resonance may merit Eurther study in this direction. Also presented was an analysis of the limiting electron flux for the bunching, i.e. we estimated the electron density at which the internal fields of the bunch may become large enough to affect the bunching process.

B. SUGGESTIONS FOR FUTURE WORK

In our presentation we have shown the results of computer simulation of the nonlinear longitudinal resonance interactions with constant frequency whistler mode waves in the magnetosphere. This work could be further extended as described below:

1) We have indicated in Chapter V that both the wave amplitude (E_{11}) and the wave normal angle are treated as though they are constant quantities. It was said that this approximation will be valid as long as the interaction region is small, but there may be cases where it is necessaxy to include effects due to the variation of those quantities. The wave amplitude can be computed as a function of position using a standard $W K B$ approach, while the wave nornal angle variations can be calculated using a ray tracing analysis. Those additional computations could either be done separately and entered as data, or they could be added to the existing code.
ii) Another extension of the present work could deal with CW pulse signals propagating along the field line. In this case it should be realized that the wave group and parallel velocities have in general different values (except for the Gendrin mode) which poses additional problems. It can be easily visualized that an electron trapped in the wave potential well, i.e. an electron whose parallel. velocity is very close to the wave phase velocity, has to slide either backward or forward through the wave packet when the group velocity is either smaller or larger than the phase velocity, respectively; for $£<f_{H} / 2$
the whistler mode group velocity always exceeds the phase velocity. In the case of a $C W$ pulse signal it would also be possible for electrons to enter the wave packet from both ends, depending on the ratio of their parallel velocities and the group velocity of the pulse.

From the above discussion it is obvious that this problem would require significant changes in the present program, but could also reveal some additional features of the longitudinal resonance.

1i1) Another extension of the work presented here would be to investigate the longitudinal interaction for the case of variable frequency pulse signals. In this case the calculations would have to take into the account the fact that different frequencies of the signal interact with different electrons, and also at different locations along the field ine. It should be feasible to investigate the behavior of whistlers interacting with energetic electrons by approximating the whistlers with an appropriate number of segments of linearly changing frequency, as was done in the discussion of the precursor.
iv) It was noted earlier that the wave amplitude may be significantly changed due to the interaction, especially in a full distribution simulation.. Although in our particular case in Chapter VI it was found that the total energy exchange is small, it will change for other distribution functions. For example, if we assumed a v^{-6} instead of $a v^{-4}$ dependence, there would be many fewer electrons at higher parallel velocities, as the weighting function would change from v^{-2} to v^{-4} (see Fig. 6.4). In this case there would be more energy transferred from the wave to the trapped electrons compared to the energy transferred from the untrapped electrons to the wave, and the final
result would be wave attenuation. Thus in cases like this it may become necessary to include an energy feedback term that accounts for the amplitude changes. However, for a single particle simulation this feedback effect is very small and can be omitted.

APPENDIX A: USEFUL IDENTITIES

Below is the list of identities used in the derivarion of time averaged equations of motion, as well as the derivation of an approximation for the $\left\langle q v_{y} B_{x}\right\rangle$ term for small ϑ.

```
cos(\gamma-nsin\phi)=cos \gammacos(nsin}\phi)+\operatorname{sin}\gamma\operatorname{sin}(nsin\phi
sin}(\gamma-\eta\operatorname{sin}\phi)=\operatorname{sin}\gamma\operatorname{cos}(\eta\operatorname{sin}\phi)-\operatorname{cos}\gamma\operatorname{sin}(\eta\operatorname{sin}\phi
cos(nsin}\phi)=\mp@subsup{J}{0}{}(n)+2\mp@subsup{J}{2}{}(n)\operatorname{cos}(2\phi)+2\mp@subsup{J}{4}{}(n)\operatorname{cos}(4\phi)+
sin(nsin\phi)=2 Jl(\eta) sin}(\phi)+2\mp@subsup{J}{3}{}(\eta)\operatorname{sin}(3\phi)+2\mp@subsup{J}{5}{}(\eta)\operatorname{sin}(5\phi)+
2\pi
\int
2\pi
    sin}\phi\operatorname{cos}(\gamma-n\operatorname{sin}\phi)d\phi=\mp@subsup{J}{1}{}(\eta)\operatorname{sin}
2\pi
    cos \phi cos ( }\gamma-n\operatorname{sin}\phi;\textrm{d}\phi=
\int
\int
|
```


$$
\left\langle q v_{y} \mathbb{B}_{x}\right\rangle=-q E_{11} J_{l}(\eta) \sin \gamma \rho_{z} \frac{v_{\perp} k \cos \theta}{\omega}
$$

For $\operatorname{small} \theta \sin \theta \approx \theta, \cos \theta \simeq 1$, and $\tan \theta \simeq \theta$ so that $\eta=\frac{\omega}{\omega_{H}} \tan \theta \tan \alpha$,
as already found in Section II.C. Furthermore, we note that

$$
\frac{v_{\perp} k \cos \theta}{w}=\frac{v_{\perp} \frac{n \omega}{c}}{\omega} \cos \theta=\frac{v_{\perp}}{v_{p \prime \prime}^{\prime \prime}},
$$

and that near the resonance $v_{p 11} \simeq v_{11}$ so that

$$
\frac{v_{\perp} k \cos \theta}{\omega}=\frac{v_{\perp}}{v_{p_{1 \prime}}}=\tan \alpha
$$

Therefore, $\left\langle q v_{y} \mathscr{B}_{y}\right\rangle=-q E_{11} \sin \gamma \tan \alpha \rho_{z} J_{1}(\eta)$, and for small θ

$$
J_{1}(\eta)=\frac{\eta}{2}=\frac{\omega \theta \tan \alpha}{2 \omega_{H}}
$$

Also, for small θ, ρ_{z} is given as

$$
\rho_{z}=\frac{1}{\omega / \omega_{H}} \frac{1-\omega / \omega_{H}}{1+\omega / \omega_{H}} \frac{1}{\theta}
$$

Substituting for $J_{1}(\eta)$ and ρ_{2} in the expression for $\left\langle q_{y_{i}} \mathbb{B}_{x}\right\rangle$, the final result is

$$
\left\langle q v_{y} B_{x}\right\rangle \simeq-q E_{11} \sin \gamma \tan ^{2} \alpha \frac{1-\omega / \omega_{H}}{2\left(1+\omega / \omega_{H}\right)}
$$

APPENDIX B：PROGRAM LISTING

```
C
ANGLES ARE IN RADIANS EXCEPT IN INPUT AND OUTPUT
```



```
OIMENSION FDAT（20），ENDAT（10），ALPDAT（10），KTE゙MP（40）
OIMENSION BEEEL（2），ETA（3．gøø），BMULT（3DØI）
OIMENSION RKDZ（300．s），RKDZL（3gøD），CTHG（3080）
OIMENSION AMPLOW（386玉），AMPLHI（33DE）
```



```
©，40才），EQAL，FPDIST（IED），PI，EM，EL，RPHI，VPE，E，EV，KMAX，VMIN，VPMAX，
ALMIN，ALMAX，ALDC（12），R，RO．VPAEO，EPA，EVDC（12），IG，EPAG（3．900）
COMMON／8LOCKI／KFDIST（18．0．4øø），IFDIST（180，20）
COMMON／BLOCK2／SFDIST（180），IIAS，IIAF，NVG，ALFALO，ALFAHI
，ALFA（35），JLO．JH！
COMHON／BLOCK3／TC（400，12），CARGU（400，12），VPHA（190．12）
－VPARA（400，：2），ENER（850，12），PBCARGU（505，12），P3VPH（505，12），
PBVPA（505，12），TMIN，TMAX，TR（12），TTRACE（12），INDEX（12），
```



```
Z＝ARC LENGTH，PHI＝INVARIANT LATITUDE，
BZ＝（1／B）＊DB／DZ，WN＝WAVE NUMBER K，VP＝PHASE VELOCITY
iread in all necessary data
CHOOSE GENDRIN MODE OR NOT（IG＝I OR IG＝0）
READ（5，350）IG
FORMAT（12）
READ（5．350）ICONT99
READ（5，350）ICONTA8
COLLISIONLESS MODEL OR DIFUSSION MODEL（ICLM＝1 OR ICLM＝0）
get model parameters te，Xio，Xih，Xihe，eneo
READ（5，351）ICLM，POWER，TEMP，XIO，XIH，XIHE，ENEQ
FORMAT（12．6F10．5）
THE WAVE AMPLITUDE IS OIFFERENT IN THE CASE OF GENDRIN MODE
THAN IT IS IN NON－GENDRIN CASE．GENDRIN ：IODE WAVE INTENSITY IS BW VHILE NON－GENDRIN MODE ：VAVE INTENSITY IS LABELED EPA．
the proper setting of wave ihtensities is done in following way： 1）GENDRIN MODE
WAVE INTENSITY IS BW＝CONST＊2＊＊IBW WHERE IBWLOくIBWCIBNHI．
IBWLO AND IBVHI ARE READ FROM INPUT CARD DECK．AT THE SAME TIME EPA IS NOT USED WHICH IS ACCOMPLISHED SETTING IELO＝IEHI＝l
2）NON－GENDRIN MODE
WAVE INTENSITY IS EPA＝CONST＊2＊＊IE WHERE IELOくIEくIEHI．
at the same time gendrin mode is suppresed using ibwlooibwhial
READ（5，352）IBWLO，IBWHI，IELO，IEHI
FORMAT（4I2）
frequency iteration
ENTER THE NUMBER OF DIFFERENT WAVE FREQUENCIES AND THEY WILL BE READ
FRDM INPUT CARD DECK
READ（5，350）INFREQ
DO 1013 ICNT＝1，INFREQ
READ（5．353）FDAT（ICNT）
CONTINUE
FORMAT（F10．5）
\(C\)
\(C\)
\(C\)
read l value and angle between ks \(3 \boldsymbol{\theta}\)（theta）
READ（5．354）EL，THETA
FORMAT（2F1E．5）
```

68 69	${ }_{C}^{C}$	DEFIME DIRECTION OF PROPAGATION
75	C	IWD=! - - P PSITIVE DIRECTION
71	C	IWO=-1 $-\cdots$ (JEGATIVE DIRECTION
72	C	
73		READ(5.350) IWD
74	C	
75	C	PARAMETERS ALONE FIELD LINE PRINTED IF ICONTI=I
76	C	
77		READ(5,35. ${ }^{\text {P }}$ (CONT】
78	C	
79	C	FULL DISTRIBUTION USED IF IFULL=I. ADIABATIC APPROXIMATION USED
89	C	BEYOND RESUNANCE POINT IF IADIA=I. DIFFUSION COEFFICIENTS
81	C	COMPUTED IF IDIFF=1
82	C	
83	C	PROGRAM CAN TRACE EITHER A SINGLE PARTICLE OR GIVEN DISTRIBUTION
84	C	GIVEN BY THE DISTRIBUTION FUNCTION FDIST(VPARALEL, ALFAEQ).
85	C	
86	C	1) SINGLE PARTICLES TRACING
87	C	TO DO SINGLE PARTICLE TRACING IT IS NECCESSARY TO SPECIFY ITS
88	C	PARALLEL VELOCITY AND EQUATORIAL PITCH ANGLE.
89	C	THIS IS DONE DEFINING TWO PARAMETERS: IV (LOOP 2ஏ6)
90	C	AND IA (LOOP 2:54).
91	C	GIVEN RANGE IVIIVS,IVFI PARTICLE VELOCITY IS GIVEN AS
92	C	VPAI-VMIN* $(1+(1 V-1) / 101$ (1.05 AND PITCH ANGLE IS READ FROM
93	C	INPUT CARD DECK USING IA AS POINTER WITH RANGE [IAS.IAF].
94	C	
95	C	$2)$ FULL DISTRIBUTION TRACING
96	C	IN THE CASE OF FULL OISTRIBUTION ALL DATA CONCERNIG SINGLE PARTICLE
97	C	WILL BE NEGLECTED. THE INITIAL DISTRIBUTION IS GIVEN BY THE NUMBER
99	${ }^{\text {c }}$	OF BINS IN VELOCITV AND PITCH ANGLE RANGE.
99	C	HUMBER OF VELOCITY BINS IS READ AS INPUT DATA (NVG) SAME AS PITCH AN
100	C	RANGE [IIAS,I[AF].
101	C	
102		READ(5,355) IADIA,IFULL,IDIFF
103	355	FORMAT (312)
164	C	
105		IF(IFULL.EO.1) GO TO 1015
106		REAO(5,352)IVS.IVF, IAS, IAF
107		DO 1014 ICNTI=IAS,IAF
108		READ(5,353) ALPDAT(ICNT1)
105	1014	CONTINUE
110		GO TO 1016
111	1615	READ(5,341) NVG,IIAS,IIAF,VRANGE,VINITL
112	341	FORMAT(312.2F10.5)
113	1016	COHT INUE
114		IF(IFULL.EO.1) IVSEI
115		IF IFULL.EQ.1) IVF=1
116		IF(IFULL.EQ.1) IASEI
117		IF(IFULL.EQ.1) IAF=1
118	C	
119	C	PRINT PHASE ANGLE YES=1, NO=g
128		READ (5.363) ICONT2, MLO,MHI, MSTEP, TMIN, TMAX
121	363	FORMAT(412,2F10.5)
122	C	
123	C	READ THE STARTING LATITUDE WHERE TRACING SHOULD BEGIN
124	C	
125		READ(5,353) SRPHID
126	${ }^{C}$	
127	C	READ WAVE AMPLITUDE INFORMATION
128		READ (5,350) IGROW
129		READ (5,358) XPHIOD.XLEN, XAMPL
130	358	FORMAT (3 F 1 E .6)
131		READ (5.350) ICONT5
132		READ (5.35D) ICONT25
133		READ (5.353) XMAX
134		READ(5.353) VDELTA

ORIGINAL FACE IS OF POOR QUALITY

135 136	${ }_{C}^{C}$	
137	c	ITERATE FOR BW IN GENORIN MODE. IF Gin is not used set lewel.l
138		
139	70.7	FORMAT(213.5F1. ${ }^{\text {(5) }}$)
140		WRITE(6,7908) IBWLO,IGUHI,IELO,IEHI,IHFREQ,FDAT(1)
141	7069	FORHAT(513.510 .5)
142		WRITE(6,7009) EL, THETA,IWD,ICONTI,IADIA,IFULL,IDIFF
143	7.599	FORMAT(2F10.5.5I3)
144		WRITE (6,7018) IVS, IVF,IAS,IAF, ICONT2,SRPHID, ALPDAT(1)
145	70:5	FORMAT (513,2F10.5)
145		
147		BW=3.75E-12*2**IBW
148		DO 288 IEF=1.INFREQ
149		F-FDAT(IEF)
150	C	
151		
152	c	define all needed constants
153	c	
154		$\mathrm{E}=1.6 .921 \mathrm{E}-19$
155		$\mathrm{C}=2.9978 \mathrm{E}$
156		PI=3.1416
157		RO=6.37E6
158		PHIOAATAN(SORT(EL-1.)
159		A=3.1415927/18.
160		EM=9.1066E-31
161		DZ=1.E4
162		R1=7.37E6
163		CTHaCOS(THETA*A)
154		STh-SIN(THETA*A)
165		OM=2.*PI*F
166		BOLTZ=1.3895E-16
167		EMI=9.1066E-28*1837.
168		G1-980.67*RO*RO/RI/R1
169		OMS=(P1/12./3600.)**2
178		
171	C	
172	c	TEST PROGRAM FOR FULL DISTRIBUTION
173		IF (ICONT88.EQ. ${ }^{\text {(}}$) GOTO 713
174		WRITE(6,3958)
175	3958	FORMAT(////'TEST BESSEL FUNCTION COMPUTATIONS'//)
176		$A R G=0.0$.
177		CALL EESJR(ARG, $1, B E S E L$, IER)
178		WRITE (6,3956) ARG, BESEL(1), BESEL(2)
179	3956	FORMAT(3F12.4)
180		ARG=1.
181		CALL BESJR(ARG, $1, B E S E L$ (IER)
182		WRITE(6,3956) ARG, BESEL(1), BESEL(2)
183	713	CONTINUE
184	C	
185		
186	c	DENSITY MODEL DATA ARE READ FROM INPUT CARD DECK
187	c	COMPUTE PF(PLASMA FREQUENCY), FH (GYROFREQ.) AND RIND(REFRACTIVE
168	C	IROEX) ALONG GIVEN FIELD LINE USING OL APPROXIMATION.
189	${ }^{C}$	
190	C	VE: $-\therefore$ 'Y IN MAG. FIELD DIRECTION).
191	c	-in) AND PHI(N) GIVE POSITION ALONG THE LINE.
192	C	WN AND VP ARE DIFFERENT FOR GENDRIN AND NON-GENDRIN MODES.
193	C	
194	C	
195		HH=80LTZ*TEMP/EMI/G1*I.E-2
196	c	SCALE HEIGHTS ARE CONVERTED TO METERS
197		
198		HO=HH/16.
199		GPHEO*R1-R1*R1/RO/EL-OMS/2./G1/RO/EL*(RO*EL)**3-R1**3)
208		ENFAC=XIH*EXP(-GPHEQ/HH) +XIHE*EXP(-GPHEQ/HHE)+XIO*EXP(-GPHEO/HO)
291		ENFAC = ENEO/SORT(ENFAC)
202		$\mathrm{N}=1$

203 204 2.5 205 207 208 209
210 $21!$
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
23.

231
232
233
234
235
236
237
238
239
245
241
242
243
244
245
246
247
248
249
25.

251
252
253
254
255
258
257
258
259
26.0

261
262
263
254
265
265
267

```
Z(N)=g.
PHI(N)=日
R=ROWEL
CDELEI.
BZ(N)=の
FPaSQRT(80.6"ENEQ*1.EG)
FH\&8./36E5/EL**3
RIND-FP/SORT(F*(FH*CTH-F))
VP(N) IS FHASE VELOCITY IN MAG FIELD DIRECTION
if gendrin mode used than next liides executed, otherwise
GO TO 11
IF ( IG.NE. I ) GO TO 11
VP(N)=C/2.*FH/FP
CTHG(N)=2.*F/FH
WN(N)=2.*PI*F/VP(N)/CTHG(N)
EPAG(N)*C*BW*F/FP*SORTIL.-4.*F*F/FH/FH)
GO TO 12
INDOTCTH
WN(N)=RIND/C*2.*PI*F
RKCZ(N)=g.
NEKT LOOP (LABEL 1ø) COMPUTES ALL MEDIUM PARAMETERS ALONG GIVEN
FIELD LINE
\(10 \mathrm{~N}=\mathrm{N}+1\)
\(Z(N)=Z(N-1)+D Z\)
PHI(N)=PHI(N-1)+DZ*CDEL/R
CPHI=COS(PHI(N))
SPHI=SIN(PHI(N))
R=RC*EL*CPHI**2
SRF=SQRT(1.+3nSPHI**2)
CDEL \(=\) CPHI/SRF
SOEL=2.*SPHI/SRF
BZ(N)=3./R*(SPHI*CPHI*CDEL/SRF/SRF+SDEL)
BZ IS DELTA B OVER DELTA Z DIVIDED BY B
Z(N)=RO/2./SQRT(3.)/COS(PHIO)**2*(ALOG(SORT(3.)*SPHI+SRF)
1 +SQRT(3.)*SPHI*SRF)
GPH-RI-RI*R1/R-ONS/2./G1/RO/EL*(R**3-R1**3)
EN=XIH=EXP(-GPH/HH)+XIHE*EXP(-EPH/HIE) +XIO*EXP(-GPH/HO)
EN=SQRT(EN)*ENFAC
IF(ICLM.EQ.1) EN=EIIEQ*(RO*EL/R)**POWER
\(F P=S Q R T\left(8 \varnothing .6^{* E N *}\right.\) 1.E6)
FH=8.736E5*(RO/R)**3*SRF
RINO=FP/SORT(F*(FH*CTH-F))
FACT1=1-(FP/F)**2
FACT2*1-FP**2/(F**2-FH**2)
FACT3-(FH/F)*FP**2/(F**2-FH**2)
1F(IG.NE.1) GO TO 14
VP(N)=C/2.*FH/FP
CTHG(N)=2.*F/FH
VN(N)=2.*PI*F/VP(N)/CTHG(N)
RIND2=(FP/F)**2
STHG2=1-CTHG(N)**2
STHG=SQRT(STHG2)
EPAG(N)=C*BV*F/FP*SQRT(1.-4.*F*F/FH/FH)
RKOZ(N)=(WN(N)+WN(N-1))/2.*DZ"CTHG(N)+RKDZ(N-1)
GO TO 15
14 WH(N)=RIND/C*2.*PI*F
VP(N)=E/RIND/CTH
RKDZ(N)=(SN(N)+WN(N-1))/2.*OZ*CTH+RKDZ(N-1)
CTIGG(H)=CTH
RINO2=RIND**2
STHG2=STH**2
STHG=STH
```


ORIGINAL PAGE IS OF POOR QUALITY

```
263
269
27.9
272
273
273
275
275
277
278
279
28.
281
282
283
234
285
286
287
298
289
29%
291
292
293
294
295
296
297
258
299
300
301
3012
383
304
305
306
3.87
308
309
310
311
312
312
313
315
315
317
318
318
320
320
322
```

AMPLITUDE DATA STORED

```
```

 15 IF (VP(il).GT.VP(N-1)) VPMAX=VP(,
    ```
    15 IF (VP(il).GT.VP(N-1)) VPMAX=VP(,
        BNULT(N)=FACT3/(RIMD2-FACTZ)*(RI, J2*STHG2-FACT1)/RIND2
        BNULT(N)=FACT3/(RIMD2-FACTZ)*(RI, J2*STHG2-FACT1)/RIND2
            1 STHG/CTHG(N)
            1 STHG/CTHG(N)
        ETA(id)=WN(N)=STHG/FH
        ETA(id)=WN(N)=STHG/FH
        MMAK=N
        MMAK=N
        IF (R.GT.RO) GO TO Ig
        IF (R.GT.RO) GO TO Ig
C Al.L PARAMETERS COMPUTED
C Al.L PARAMETERS COMPUTED
        N=|
        N=|
        RFH!-SRPHIO*A
        RFH!-SRPHIO*A
        4 6 ~ N = N + 1
        4 6 ~ N = N + 1
        {F(ABS(RPHI).GT.PHI(N)) GOTO 46
        {F(ABS(RPHI).GT.PHI(N)) GOTO 46
        INDMAX=N
        INDMAX=N
        RKDZL(N)=&.
        RKDZL(N)=&.
    4 7 N = N = 1
    4 7 N = N = 1
        RKU2L(N)=(WN(N+1)+WN(N))/2,*OZ*CTH+RKDZL(N+1)
        RKU2L(N)=(WN(N+1)+WN(N))/2,*OZ*CTH+RKDZL(N+1)
        IF(N.GT.1) GOTO 47
        IF(N.GT.1) GOTO 47
        0O 48 N-1.NMAX
        0O 48 N-1.NMAX
        48 RKDZ(N)=RKDZ(N)+RKDZL(1)
        48 RKDZ(N)=RKDZ(N)+RKDZL(1)
    C----------------------------------------------------------------------
    C----------------------------------------------------------------------
    C TO PRINT PARAMETERS ALONG FIEID LINE ICONTI=I
    C TO PRINT PARAMETERS ALONG FIEID LINE ICONTI=I
        IF(ICONTI.NE.1) GO TO 6,gem
        IF(ICONTI.NE.1) GO TO 6,gem
        I=0
        I=0
    6202 N-1*10+1
    6202 N-1*10+1
        IF(N.GT.NMAX) GO TO 6.g.0
        IF(N.GT.NMAX) GO TO 6.g.0
        PHIDOPHI(N)/A
        PHIDOPHI(N)/A
        WRITE(6.6.0G1) PHID,Z(N),EPAG(N),VP(N),CTHG(N),WN(N)
        WRITE(6.6.0G1) PHID,Z(N),EPAG(N),VP(N),CTHG(N),WN(N)
    6.91 FORMAT(F1.0.2.5E12.4)
    6.91 FORMAT(F1.0.2.5E12.4)
        I=1+1
        I=1+1
        GO TO 6002
        GO TO 6002
    C-------------------------------------------------------------------
    C-------------------------------------------------------------------
    c
    c
    6cgD CONTINUE
    6cgD CONTINUE
c
c
c this code will be executed if variable aimplitude wave
c this code will be executed if variable aimplitude wave
    IS USED PROGRAM
    IS USED PROGRAM
    IF(IGROW.NE.I) GO TO 8.561
    IF(IGROW.NE.I) GO TO 8.561
    XPHIO=XPHIOD*A
    XPHIO=XPHIOD*A
        XSTART=RO/2.1SORT(3.)/CUS(PHIO)**2*(ALOG(SORT(3.)*SIN
        XSTART=RO/2.1SORT(3.)/CUS(PHIO)**2*(ALOG(SORT(3.)*SIN
        1 (XPHIO)+SORT(1.+3.*SIN(XPHIO)**2))+SORT(3.)*SIN(XPHIO)*
        1 (XPHIO)+SORT(1.+3.*SIN(XPHIO)**2))+SORT(3.)*SIN(XPHIO)*
        2 SORT(1.+3.*SIN(XFHIO)**2))
        2 SORT(1.+3.*SIN(XFHIO)**2))
        XEND=XSTART+XLEN*10\varnothing\ell.
        XEND=XSTART+XLEN*10\varnothing\ell.
        DO 8032 [-1,3000
        DO 8032 [-1,3000
        AMPLOW(I)=\emptyset.
        AMPLOW(I)=\emptyset.
    8032 CONTINUE
    8032 CONTINUE
        00 8033 [=1,30000
        00 8033 [=1,30000
        AMPLHI(I)=0.
        AMPLHI(I)=0.
        IF((PHI(I).GT.ø.12217).AND.(PHI(I).LT.g.17453)) AMPLHI(I)=45.E-6
        IF((PHI(I).GT.ø.12217).AND.(PHI(I).LT.g.17453)) AMPLHI(I)=45.E-6
    8.J33 CONTINUE
    8.J33 CONTINUE
    8.861 CONTINUE
    8.861 CONTINUE
c
```

c

```
```

nonnonono
INITIALIZE finAL DISTRIBUTION FUCTION TO g dF fulL DISTRIEUTION
IS USED IN PROGRAM
THE InITIAL DISTRIBUTION IS SET UP ACCOMIDINGLY TO NVG for VELC
BIN ANO IIAS ANO llAF FOR PITCH LNGIE 3IIH.
THE FINAL DISTRIBUTION BINS ARE CD:IPUTED FOR VEIOCITY TOGIVEI
THE BEST RESOLUTION AND FIKED FOR PITCH ANGLE (D.5 DEGREE IN
E-90 RANGE)
IF (IFULL.EQ.g) GO TO 43
J FOR ALPHA GOES FROM 1-188
NVG IS NUMBER OF GRIDS IN VPARALLEL IN INITIAL DIST FUNET
DVPA=VP(1)*VRANGE/(NVG+1)
K=1
FVPA(1)=0.25*VP(1)
4 0
FVPA(K)=FVPA(K-1)+DVPA*1\varnothing
IF(FVPA(K).LT.(VP(1)*3.24)) GOTO 40
KMA:`K
OO 42 K=1,KMAX
CO 41 J=1.100
IF(K.LT.2l) IFDIST(J,K)=\varnothing
KFDIST(J,K)=0
FDIST(J,K)=0.
4 2 ~ C O N T I N U E ~
43 CONTINUE
c
C
pARTICLE TRACING STARTS
ITERATE FOR WAVE INTENSITY
FOR GENDRIN MODE WAVE INTENSITY IS SPECIFIED BY
MAGMETIC COMPONENT NEAR BEGINNING CF PROGRAM.
NEXT DO LOOP SHOULD HAVE ONLY ONE LOOP (IBWLO=IBWHI=1)
DO 207 IE=IELO,IEHI
EPA=45.E-6
IF (ICONT25.EQ.D) GOTO 408.D
EPA=1.E-6*XMAX
IF(EPA.EQ.D) IMAX=1
IF (EPA.NE.0) IMAX=12
C FOR GENDRIN MODE EPA IS REPLACED BY EPAG(1) FOR OUTPUT PRINTING
IF (IG.EQ.1) EPA=EPAG(1)
VFMIN=1.E16
C INITIALIZATION OF PLOTTING DATA ARRAYS
IF:ICONT2.EQ.0) GOTO 1721
DO 1716 101,12
TR(I)=100.
DO 1717 1=1,850
DO 1761 J=1,12
ENER(I,J)=-1.
1751 CONTIMUE
1717 CONTINUE
DO 1713 1=1,12
DO 1719 J=1,585
Ir(J.GT.4gg) GOTO 172\varnothing
TC(J,I)=1.E36
CARGU(J,I)=1.EJ6
VPHA(J,i)=1.E36
VPARA(J,1)=1.E36
PBCARGU(J,I)=:.E36
PBVPH(J,I)=1.E3G
PBVPA(J,I)=1.E36
171B CONTINUE
1718 CONTIMUE

```
```

 00 1762 I=1.85a'
    ```
    00 1762 I=1.85a'
    IF(I.GT.5S5) GOTO 1753
    IF(I.GT.5S5) GOTO 1753
    TPB(I)=1.E36
    TPB(I)=1.E36
    CISTAM1(I)=1.E35
    CISTAM1(I)=1.E35
    1763
    1763
    TEN(I)=1.E36
    TEN(I)=1.E36
    DISTAN(I)=!.E36
    DISTAN(I)=!.E36
    1762 CONTINUE
    1762 CONTINUE
    1721 CONTINUE
    1721 CONTINUE
        VFMAX=0.
        VFMAX=0.
        JCOUNT=.0
        JCOUNT=.0
        EOTOT:ø.
        EOTOT:ø.
        EFTOT=0.
        EFTOT=0.
        ALFALO=1.EID
        ALFALO=1.EID
        4LFA!!1=0.
        4LFA!!1=0.
        IF(IFULL.EQ.\varnothing) VINITL=I.
        IF(IFULL.EQ.\varnothing) VINITL=I.
        VMIM=VINITL*VP(I)
        VMIM=VINITL*VP(I)
        ITERATE FOR PARTICLF VELOCITY
        ITERATE FOR PARTICLF VELOCITY
        IVS AND iVF ARE VELOCITY RANGE DATA FOR SINGLE PARTICLE TRACIIG
        IVS AND iVF ARE VELOCITY RANGE DATA FOR SINGLE PARTICLE TRACIIG
        IF (IFULL.EO.I) IVF=IVS
        IF (IFULL.EO.I) IVF=IVS
        00 205 IV=IVS.IVF
        00 205 IV=IVS.IVF
        VPAI=VMIN*{1.1.22+IV*g.001}
        VPAI=VMIN*{1.1.22+IV*g.001}
        IF (ICONT25.EQ.6j) GOTO 4\81
        IF (ICONT25.EQ.6j) GOTO 4\81
        VPAI=VP(1)*VDE!TA
        VPAI=VP(1)*VDE!TA
        4081 IIVS=1
        4081 IIVS=1
        IF(IFULL.EQ.\sigma) NVG=\varnothing
        IF(IFULL.EQ.\sigma) NVG=\varnothing
        IIVF=NVG+1
        IIVF=NVG+1
        IF (IFULL.FQ.g) IIVF=IIVS
        IF (IFULL.FQ.g) IIVF=IIVS
        DO 205 :IV=IIVS,IIVF
        DO 205 :IV=IIVS,IIVF
        VPAII=VPIN+DVPA*(IIV-!)
        VPAII=VPIN+DVPA*(IIV-!)
        IF((IIV.EQ.!IVS).AND.(IFULL.EQ.1)) VSTART=VPAII
        IF((IIV.EQ.!IVS).AND.(IFULL.EQ.1)) VSTART=VPAII
        IF((IIV.EQ.IIVF).AND.(IFULL.EQ.1)) VEND=VPAII
        IF((IIV.EQ.IIVF).AND.(IFULL.EQ.1)) VEND=VPAII
        IF (IFULL.EQ.:) SVPA=VPAII
        IF (IFULL.EQ.:) SVPA=VPAII
        IF (IFULL.EQ.0) SVPA=VPAI
        IF (IFULL.EQ.0) SVPA=VPAI
        ITERATE FOR EQUATORIAL PITCH ANGLF
        ITERATE FOR EQUATORIAL PITCH ANGLF
        IAf and IAS are pitch angle range data for single particle tracing
        IAf and IAS are pitch angle range data for single particle tracing
        IF (IFULL.EO.1) IAF=IAS
        IF (IFULL.EO.1) IAF=IAS
        DO 204 IA=!AS,IAF
        DO 204 IA=!AS,IAF
        ALEOI=ALPDAT(IA)
        ALEOI=ALPDAT(IA)
C IIAS AND IIAF ARE PITCH ANGLE RANGE for full distribution
C IIAS AND IIAF ARE PITCH ANGLE RANGE for full distribution
    IF(IFILL.EQ.g) IIAF=1
    IF(IFILL.EQ.g) IIAF=1
        IF(IFILL.EQ.D) IIAS=1
        IF(IFILL.EQ.D) IIAS=1
        IF (IFULL.EQ.g) IIAF=IIAS
        IF (IFULL.EQ.g) IIAF=IIAS
        ALMIN=5.25+0.5*IIAS
        ALMIN=5.25+0.5*IIAS
        ALMAX=5.25+0.5*/IAF
        ALMAX=5.25+0.5*/IAF
        DO 203 llA=IIAS,IIAF
        DO 203 llA=IIAS,IIAF
        ALEOII=5.25+名5#IIA
        ALEOII=5.25+名5#IIA
        IF (IFULL.EO.1) ALEO=ALEOII
        IF (IFULL.EO.1) ALEO=ALEOII
        IF (IFULL.EQ.0) ALEQ=ALEQI
        IF (IFULL.EQ.0) ALEQ=ALEQI
        IF (IFULL.EQ.D) WRITE (6,998) ALEQ
        IF (IFULL.EQ.D) WRITE (6,998) ALEQ
    C ALEQ IS IN DEGREES
    C ALEQ IS IN DEGREES
    998 FORMAT(IHI,' FO PITCH ANGLE=',F7.3/)
    998 FORMAT(IHI,' FO PITCH ANGLE=',F7.3/)
        ITERATE FOR BETA
        ITERATE FOR BETA
        DO 2.g2 I=1,IMAX
        DO 2.g2 I=1,IMAX
        BETAD=3EJ.*I-3E.
        BETAD=3EJ.*I-3E.
        BETA=GETAD*A
        BETA=GETAD*A
    C STARTING LATITUDE IS INPUT DATA
    C STARTING LATITUDE IS INPUT DATA
    RPHI=S!PHIO*A
    RPHI=S!PHIO*A
    SPHI=SIN(AES(RPHI))
    SPHI=SIN(AES(RPHI))
    CPHI=COS(ABS(RPHI))
    CPHI=COS(ABS(RPHI))
        SRF=SQRT(1.+3.*SPHI**2)
        SRF=SQRT(1.+3.*SPHI**2)
        S=RO/2./SORT(3.:/COS(PHIO)**2*(ALOG(SQRT(3.)
        S=RO/2./SORT(3.:/COS(PHIO)**2*(ALOG(SQRT(3.)
        1 *SPHI+SRF)+SQRT(3.)*SPHI*SRF)
        1 *SPHI+SRF)+SQRT(3.)*SPHI*SRF)
            IF (RPHI.LT.g: S=0.-S
            IF (RPHI.LT.g: S=0.-S
            TANS=TAH(ALEU*A)**2
            TANS=TAH(ALEU*A)**2
            FHRAT=SURT(1.+3.*SPHI**2)/CPHI**6
            FHRAT=SURT(1.+3.*SPHI**2)/CPHI**6
            VPA*SVPA*SORT(1.+TANS-FHRAT*TANS)
            VPA*SVPA*SORT(1.+TANS-FHRAT*TANS)
            SVPE=SVPA*TA:H(ALEO*A)
            SVPE=SVPA*TA:H(ALEO*A)
            VPE=SVPE*SGRT(FHRAT)
```

 VPE=SVPE*SGRT(FHRAT)
    ```
\begin{tabular}{|c|c|c|}
\hline 456
457 & & \[
\begin{aligned}
& E O=E M / 2 \text { * }(V \Gamma ؟ \# V P E+V P A * V P A) \\
& E V O=E O / E
\end{aligned}
\] \\
\hline 458 & & IF(IFULL.EO.1) GOTO 155 \\
\hline 459 & & [F(I.NE.1) SOTO 135 \\
\hline 460 & & IF(ICONT25.EO.1) RATIO=VDELTA \\
\hline 461 & & [F(ICONT25.EQ.®) RATIO=VPAI/VMIN \\
\hline 462 & 135 & CONTINUE \\
\hline 163 & & IF((1.EO.1).AND.(IFULL.EQ.E)) WRITE(6.7051) SRPHID \\
\hline 464 & 7851 & FOPMAT(' TRACING STARTS AT ',FO.2,' DEGREES LATITUDE') \\
\hline 463 & & IF(IGROW.EQ.1) EPA=KAMPL \\
\hline 466 & &  \\
\hline 467 & 1 & , VPA, VP(1), RATIO \\
\hline 468 & 999 &  \\
\hline 409 & 1 & 'KHZ', 3X, 'EO PAR VEL=', \(P\) PEIJ.3,' M/SEC', 3X, 'INIT ENERGV=', E12.6. \\
\hline 470 & 2 &  \\
\hline 471 & 3 & 'EQ PHASE VEL = , E11.4, M/S', ЗX, RATIO(VPAR/VPHASE) \({ }^{\prime}\) ', F7.5) \\
\hline 472 & & IRDONE \(=\varnothing\) \\
\hline 473 & & - RDON=R \\
\hline 474 & & T T1 \(=0\) \\
\hline 475 & & 1T2=0 \\
\hline 476 & & IC=0 \\
\hline 477 & & 1NL=0 \\
\hline 478 & & 1C2-0 \\
\hline 479 & & IMDONE =0 \\
\hline 489 & & IMIRR=0 \\
\hline 481 & & \(T=\emptyset\). \\
\hline 482 & & DT=0.000 1 \\
\hline 483 & & \(\boldsymbol{T}=\varnothing\) \\
\hline 484 & & \(\mathrm{N}=1\) \\
\hline 485 & 100 & \(N=N+1\) \\
\hline 435 & & IF (AES(S).GT.Z(N)) GO TO \(10 \%\) \\
\hline 487 & & NU=N \\
\hline 428 & & \(\mathrm{PIL}=\mathrm{N}-1\) \\
\hline 489 & & IF(I.EQ.1) WRITE(6,49) INDMAX,NL,HU \\
\hline 498 & 49 & FORMAT (/315//) \\
\hline 491 & &  \\
\hline 492 & & IF (VPA.GE.(VPHASE*IWD)) ITEST=1 \\
\hline 493 & & If (VPA.LT.(VPHASE*IVO)) ITEST \(=-1\) \\
\hline 494 & \(1!8\) &  \\
\hline 495 & & IF(S.LT.D.) RKOZ1=RKDZL(NL) \\
\hline 436 & & IF(S.GE.ס.) RKDZI=RKDZ(NL) \\
\hline 497 & & IF(S.LT.ø.) RKDZ2=RKDZL(NU) \\
\hline 498 & &  \\
\hline 499 & &  \\
\hline 508 & 1 & ) \\
\hline 501 & & 1F (S.LT.め.) 8ZF=-1 E E FF \\
\hline 5\%2 & & \(C A R G=O M * T-R K F+B E T A\) \\
\hline 5.93 & & IF ( 1 GRDW.EQ.1).AND.(S.LE.D.) EPA=AMPLOW(NU) \\
\hline 504 & & IF( (IGROW.EQ.1).AND.(S.GE.0.)) EPA=AMPLHI(NU) \\
\hline 505 & & IF(ICONT99.EQ.D) GOTO 3703 \\
\hline 506 & & COSINE=CTH \\
\hline 507 & & IF(IG.EQ.1) COSINE=(CTHG(NU)+CTHG(NL))/2. \\
\hline 508 & & TERM1 = VPE* (WN(NU) + WN(NL) )/2.*COSINE/F/2./P! \\
\hline 509 & & ARG=(ETA (NU) + ETA (NL))/2.*VPE \\
\hline 510 & & CALL EESJR(ARG,1, 8ESEL, IER) \\
\hline 511 & &  \\
\hline 512 & 1 & /BESEL(1)) \\
\hline 513 & & GOTO 3709 \\
\hline 514 & 3748 & TERN13=1. \\
\hline \(\ddot{315}\) & 3769 & CONTINUE \\
\hline 516 & & IFI IG .NE. 1 ) GO TO 50.0. \\
\hline 517 & & \(E P A F=E P A G(N L)+(E P A G(M!U)-E P A G(N L)) *!\wedge B S(S)-Z(N L)) /(Z(N U)-Z(N L))\) \\
\hline 518 & & VPAT=VPA-VPE**2/2.*EZF*DT-E/EM*EPAF*TERH3*COS(CARG;*DT \\
\hline 519 & & GO TO 5®®1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 529 & 5000 & VFATEVPA－VPE＊＊2／2．WEZF＊DT－E／E：1＊EPA＊TENM3＊COS（CARG）＊DT \\
\hline 52＇ & 53¢1 & ST＝S＋（VPAT＋VPA）／2．＂DT \\
\hline 522 & & NUO＝NU \\
\hline 523 & & IF（ASS（ST）．LE．ABS（S））GO TO 1D1 \\
\hline 524 & & \(N U=N U-1\) \\
\hline 525 & 122 & \(\mathrm{NU}=\mathrm{NU}+1\) \\
\hline 526 & & if（ABS（ST）．GT．Z（NU））GO TO 102 \\
\hline 527 & & \(\mathrm{ML}=\mathrm{NU}-1\) \\
\hline 528 & & GO TO 104 \\
\hline 529 & 101 & \(N L=N L+1\) \\
\hline 530 & 103 & \(N L=N L-1\) \\
\hline 531 & & IF（AES（ST）．LT．Z（NL））GO TO 103 \\
\hline 532 & & \(\mathrm{NU}=\mathrm{NL}+1\) \\
\hline 533 & 104 & CONTIUUE \\
\hline 534 & & BZS＝（ \＆Z NU）－BZ（NL） \\
\hline 535 & & IF（S．LT．め．）RKDZl＝RKDZL（NL） \\
\hline 536 & & IF（S．GE．D．）PKDZI＝？K．Dこ（NL） \\
\hline 537 & & IF（S．LT．⿹．）RKDZZ＝RKDZL（NU） \\
\hline 538 & & IF（S．GE．g．）RKDZZ＝？KDZ（NU） \\
\hline 539 & &  \\
\hline 540 & 1 & ） \\
\hline 541 & & IF（ST．LT．0．）BZS＝－1＊BZS \\
\hline 542 & &  \\
\hline 543 & & IF（1CONT99．EQ．D）GOTO 3715 \\
\hline 544 & & COSINE＝CTH \\
\hline 545 & & IF（IG．EQ．1）COSINE＝（CTHG（NU）＋CTHG（N．））／2． \\
\hline 546 & & TERH1＝VPE＊（WN（HU）＋WN（NL））／2．＊COSINE／F／2．／PI \\
\hline 547 & &  \\
\hline 548 & & CALL BESJR（ARG，1，BESEL，IET） \\
\hline 549 & & TERM3 \(=\) EESEL（1）＊（1－TERMI＊（BMULT（NL）＋BMULT（NU））／2．＊BESEL（2） \\
\hline 553 & 1 & ／BESEL（1）） \\
\hline 551 & & GOTO 3716 \\
\hline 552 & 3715 & TERH3＝1． \\
\hline 553 & 3716 & CONTINUE \\
\hline 554 & & IF（IG．NE．1）GO TO 5．385 \\
\hline 555 & &  \\
\hline 556 & &  \\
\hline 557 & 1 & 12．＊TERM3＝COS（CASG）＊DT \\
\hline 558 & & GO TO 2400 \\
\hline 553 & 5505 &  \\
\hline E60 & 2405 & IF（！G．EQ．1）EPATEM＝（EPAF＋EPAS）／2． \\
\hline 561 & & IF（IG．NE．1）EPATEM＝EPA \\
\hline 562 & & IF（ICONT99．EQ．0）GOTO 3726 \\
\hline 563 & & TERM2＝VPAT＊（WN（NL）＋WN（NU）／／2．＊COSINE／F／2．／PI \\
\hline 564 & &  \\
\hline 565 & & VPE＝VPE＋VPAT＊VPE／4．＊（8ZS＋BZF）＊DT＋E／EM＊TERM4＊COS（CARG）＊DT \\
\hline 566 & 1 & ＊EPATEM \\
\hline 557 & & GOTO 3727 \\
\hline 508 & 3726 & VPE＝VPE＋VFErVPAT／A．＊（BZS＋BZF）＊DT \\
\hline 569 & 3727 & CONTINUE \\
\hline 57 d & & SC＝S＋（VPA＋VPAT）／2．＊DT \\
\hline 571 & C & CHECK FOR EQUATOR CROSSING \\
\hline 572 & & IF（（SC＊S）．GT．D）GO TO 2401 \\
\hline 573 & & CALL EQCONV \\
\hline 574 & & IF（IFULL．EQ．g）WRITE（6，24D2）T，EV，ECALD．\({ }^{\text {（ RDONE }}\) \\
\hline 575 & 2402 &  \\
\hline 576 & 1 & 3X，＇EQ PITCH AIVGLE＝＇，F6．＇3，3X，＇NO OF RESONANCES＝＇，13） \\
\hline 577 & & IRDONE \(=0\) \\
\hline 578 & 24.21 & CONTINUE \\
\hline 579 & C & FIID MIRROR POINT \\
\hline 538 & & IF（IMDONE．EQ．1）GO TO 25.90 \\
\hline 531 & & IF（（VPA＊VPAT）．LT．D）IMIRR＝1 \\
\hline 582 & & If（IMIRR．NE．1）GO TO 25がJ \\
\hline 583 & & CALL EQCONV \\
\hline 584 & & IF（IFULL．EQ．0）WRITE（6，253）H，RPHID，S，T，EV，EQALO \\
\hline 505 & 253 &  \\
\hline 586 & 1 &  \\
\hline 587 & 2 & ＇EQ PITCH ANGLE＝＇，\％6．3） \\
\hline 535 & & IMOUNE＝1 \\
\hline 589 & & GO TO 312 \\
\hline
\end{tabular}

\section*{ORIGINAL PAOE It \\ OF POOR QUALITY}
```

590
591
5\#2
592
594
595
596
597
598
599
Eジロ
6%1
602
6.93
684
605
606
6N7
608
609
Elf
611
612
613
6.4
615
616
617
618
619
620
6 2 1
622
623
624
625
6 2 6
627
628
629
630
631
632
633
634
635
636
637
638
639
540
64
642
643
644
E45
646
647
648
649
65N
651
652
653

```
```

2500 VPA=VPAT

```
2500 VPA=VPAT
    ENGY=EM/2./E*(VPE*VPE+VPA*VPA)
    ENGY=EM/2./E*(VPE*VPE+VPA*VPA)
    ERROR=ENGY-EO/E
    ERROR=ENGY-EO/E
    AL=ATAN(VPE/VPA)
    AL=ATAN(VPE/VPA)
    IF(ABS(SC).LE.ABS(ST)) GO TO 105
    IF(ABS(SC).LE.ABS(ST)) GO TO 105
    NU=iNU-1
    NU=iNU-1
    106 NU=NU+1
    106 NU=NU+1
            IF (ABS(SC).GT.Z(NU)) GO TO 1.g6
            IF (ABS(SC).GT.Z(NU)) GO TO 1.g6
            NL=NU-1
            NL=NU-1
            GO TO 108
            GO TO 108
    1g5 NL"NL+1
    1g5 NL"NL+1
    1.57 NL=NL-1
    1.57 NL=NL-1
            IF (ABS(SC).LT.Z(NL)) GO TO 1.07
            IF (ABS(SC).LT.Z(NL)) GO TO 1.07
            NU=NL+1
            NU=NL+1
    108 CONTINUE
    108 CONTINUE
            NUO=NU
            NUO=NU
            S=SC
            S=SC
            RPHI=(PH!(NU)-PHI(NL))*(ABS(S)-Z(NL))/(Z(NU)-Z(NL))+PHI(NL)
            RPHI=(PH!(NU)-PHI(NL))*(ABS(S)-Z(NL))/(Z(NU)-Z(NL))+PHI(NL)
            IF (S.LT.D.) RPHI=\ू.-RPHI
            IF (S.LT.D.) RPHI=\ू.-RPHI
            RPHID=RPHI/A
            RPHID=RPHI/A
            R=RO"EL*COS(RPHI)**2
            R=RO"EL*COS(RPHI)**2
            H=(R-RO)/1g
            H=(R-RO)/1g
            VPHASE=IWO*(VP(NL)+(VP(NU)-VP(NL))*(ABS(S)-Z(IIL))/(Z(NU)-Z(NL,))
            VPHASE=IWO*(VP(NL)+(VP(NU)-VP(NL))*(ABS(S)-Z(IIL))/(Z(NU)-Z(NL,))
C FIND RESONANCE POINT
C FIND RESONANCE POINT
            IF ((VHA*IWD).LT.g) GO TO 250
            IF ((VHA*IWD).LT.g) GO TO 250
            IF (((VPA-VPHASE)*ITEST).LE.ø) GO TO 251
            IF (((VPA-VPHASE)*ITEST).LE.ø) GO TO 251
            GO TO 250
            GO TO 250
    251 CONTINUE
    251 CONTINUE
            IF((IFULL.EQ.D).AND.(IRDON.EQ.D)) TR(I)=T
            IF((IFULL.EQ.D).AND.(IRDON.EQ.D)) TR(I)=T
            IRDON=IRDON+1
            IRDON=IRDON+1
            IF(IFULL.EQ.I) GOTO 137
            IF(IFULL.EQ.I) GOTO 137
            CARGD=CARG/A
            CARGD=CARG/A
            IF(AES(CARGD).LT.350.) GOTO 138
            IF(AES(CARGD).LT.350.) GOTO 138
            IF(CARGD.GT.D.) CARGD=CARGD-36D.
            IF(CARGD.GT.D.) CARGD=CARGD-36D.
            IF(CARGD.LT.D.) CARGD=CARGD+360.
            IF(CARGD.LT.D.) CARGD=CARGD+360.
            GOTO 139
            GOTO 139
    138 IF(CARGD.LT.D.) CARGD=CARGD+36\varnothing.
    138 IF(CARGD.LT.D.) CARGD=CARGD+36\varnothing.
    137 CONTINUE
    137 CONTINUE
            IF((IFULL.EQ.D).AND.(IRDONE.EQ.D)) WRITE(6,252) VPHASE,R,RPHID,S,T
            IF((IFULL.EQ.D).AND.(IRDONE.EQ.D)) WRITE(6,252) VPHASE,R,RPHID,S,T
            CARGC
            CARGC
            FORMAT (' RESONANCE VEL=',E12.5.5X,'AT R=',E12.5,5X,'PHI=',F7.3,
            FORMAT (' RESONANCE VEL=',E12.5.5X,'AT R=',E12.5,5X,'PHI=',F7.3,
            EX,'S=',E12.5,5X,'T=',F7.4,3X,'BETA=',F7.2)
            EX,'S=',E12.5,5X,'T=',F7.4,3X,'BETA=',F7.2)
            IRDONE=IRDONE+1
            IRDONE=IRDONE+1
            ITEST=|-ITEST
            ITEST=|-ITEST
            CONTINUE
            CONTINUE
            T=T+JT
            T=T+JT
            THE NEXT CARD ,GO TO 3gף, BYPASSES WRITING OF PHASE ANGLI:
            THE NEXT CARD ,GO TO 3gף, BYPASSES WRITING OF PHASE ANGLI:
                            SAMPLING OF PLOT DATA
                            SAMPLING OF PLOT DATA
                            IF((ICONTZ.EQ.g).OR.(IFULL.EQ.1)) GOTO 1732
                            IF((ICONTZ.EQ.g).OR.(IFULL.EQ.1)) GOTO 1732
                            RESONANCE POINT SAMPLING
                            RESONANCE POINT SAMPLING
                            IF(T.GT.5.0) GOTO 1732
                            IF(T.GT.5.0) GOTO 1732
            IT=IT+1
            IT=IT+1
            IF(IT.LT.2g) GOTO 1726
            IF(IT.LT.2g) GOTO 1726
            IF(ABS((VPA-VPHASE)/VPA!.GT.\varnothing.1\varnothing) GOTO }172
            IF(ABS((VPA-VPHASE)/VPA!.GT.\varnothing.1\varnothing) GOTO }172
            IF((T-TR(I)).GT.\varnothing.2g' GOTO 1729
            IF((T-TR(I)).GT.\varnothing.2g' GOTO 1729
            CARGD=CARG/A
            CARGD=CARG/A
    1727 IF(ABS(CARGO).LT.36g.) GOTO 1728
    1727 IF(ABS(CARGO).LT.36g.) GOTO 1728
            IF(CARGD.GT.D.) CARGD=CARGD-360.
            IF(CARGD.GT.D.) CARGD=CARGD-360.
            IF(CARGD.LT.D.) CARGD=F.ARGD+36\varnothing
            IF(CARGD.LT.D.) CARGD=F.ARGD+36\varnothing
            GOTO 1727
```

 GOTO 1727
    ```

\title{
ORIGNAE PAOE IT OF POOR QUALITY
}
\begin{tabular}{|c|c|c|}
\hline 654 & 1728 & \(\underline{C=1 C+1}\) \\
\hline 655 & & IF（（IC．LT．1）．OR．（IC．GT．40．\()\) VRITE（6．1741）1，T，IC \\
\hline 656 & 1741 & FORMAT（＇FIRST RESOHANCE ERROR（BAD IHDEX）＇，15，F1．5．5．15） \\
\hline 657 & & IF（（1C LT．1）．OR．（IC．GT．4NT））GOTO 1726 \\
\hline 658 & & TC： \(16 .: 1=T\) \\
\hline 659 & & ChRCiU（ 16.1\()=\) Carco \\
\hline 660 & & VPI：A（ \(C\) ，l）＝VPHASE／1020． \\
\hline 661 & & VF／9A．IC， 1 ）＝VPA／10øめ． \\
\hline 662 & 1729 & IT＝刀 \\
\hline 663 & & \\
\hline 664 & C & ENERGY SAMPLING（EVERY 6 MSEC） \\
\hline 665 & & \\
\hline 666 & 1726 & ITI－ITI＋！ \\
\hline 667 & & IF（IT1．LT．60）GOTO 173J \\
\hline 668 & & ［ND＝INT（T＊ \(0.70 / 6\) ） 1 \\
\hline 669 & & （F）（IND．LT．1）．OR．（IND．GT．850））WRITE（6．1742）！，T，IND \\
\hline 678 & 1742 & FORMAT（／＇TOTAL ENERGY ERROR（BAD INDEX）＇，15，Fi\％．5，15） \\
\hline 671 & & IF（（IND．LT．1）．OR．（IND．GT．a5\％））GOTO 173． \\
\hline 672 & & ENER（IND，I）＝ENGY \\
\hline 673 & & IF（I．EQ．1）DISTAN（IND）＝PHI（NL）／A \\
\hline 674 & & IF（（I．EO．1）．AND．（S．LT．ש．）DISTAN（IND）＝－1．＊PHI（NL）／A \\
\hline 675 & & IT1＝g \\
\hline 676 & 1730 & continue \\
\hline 677 & & \\
\hline 678 & c & PHASE BUNCING OETECTION（TMINくT＜TMAX） \\
\hline 679 & C & \\
\hline 680 & & IF（（T．LT．TMIN）．OR．（T．GT．TMAX））GOTO 1732 \\
\hline 681 & & 1T2＝1T2＋1 \\
\hline 682 & & ［F（IT2．LT．20）GOTO 1732 \\
\hline 683 & & IC2＝1C2＋1 \\
\hline 684 & & IF（iIC2．LT．J）．OR．（IC2．GT．585）WRITE（6．1743）1，T，IC2 \\
\hline 685 & 1743 & FORMAT（＇PHASE DATA ERROR（BAD INDEX）＇， \(15.510 .5,15\) ） \\
\hline 636 & & IF（（IC2．LT．1）．OR．（IC2．GT．585）GOTO 1732 \\
\hline 687 & & CARGD＝CARG／A \\
\hline 688 & 1778 & IF（ABS（CARGD）．LE．360．）GOTO 1779 \\
\hline 689 & & IF（CARGD．LT．ø．）CARGD＝CARGD＋36． \\
\hline 690 & & IF（CARGD．GT．36\％．）CARGD＝CARGD－36\％． \\
\hline 691 & & GOTO 1778 \\
\hline 692 & 1779 & CONTINUE \\
\hline 693 & & PBCARGU（IC2，I）＝CARGD \\
\hline 694 & & PSVPH（ICZ，I）\(=\) VPHASE／1．tgg． \\
\hline 695 & & PBVPA（IC2，\()=V P A / 1\) ¢g． \\
\hline 696 & & IF（I．EQ．1）TPB（IC2）＝T \\
\hline 697 & & IF（I．EQ．1）DISTANI（IC2）－PHI（NL）／A \\
\hline 698 & & 1F（1I．EQ．1）．AND．（S．LT．D．）：DISTAN1（IC2）＝－1．＊PHI（NL）／A \\
\hline 699 & & 1T20® \\
\hline 709 & & IF（IRDONE．GT．10） \(\operatorname{INDEX(I)=1}\) \\
\hline 781 & & IF（IRCONE．LE．10）INDEX（I）＝ø \\
\hline 702 & 1732 & CONTINUE \\
\hline 783 & & IF（T．GT．10）GO TO 2.09 \\
\hline 704 & \(c\) & TEST FOR DETRAPPING．IF PARTICLE VEL DIFFERS FROM WAVE VEL BY \\
\hline 705 & c & MORE THAN SPECIFIED AMOUNT，NO INTERACTION IS ASSUMED ANO ALL \\
\hline 706 & c & PARTICLE PARAMETERS CALC FROM ADIABATIC THEORY \\
\hline 787 & & If（IADIA．EQ．D）GO TO 310 \\
\hline 708 & & IF（ \({ }^{\text {L }}\)（VPA＊IWD）．GT．D．AND．IRDONE．GT．D．AND．（．ABS（VPHASE－VPA）／VPHASE）． \\
\hline 709 & 1 & GE．D．2）GO TO 311 \\
\hline 710 & 318 & IF（R．LT．（RO＋1．ES））GO TO 201 \\
\hline 71： & & 60 TO 110 \\
\hline 712 & 201 & CONTINUE \\
\hline 713 & & CALL EQCONY \\
\hline 714 & & IF（IFULL．EQ．0）WRITE（6，406，H，RPHID：S，T，EV，EQALD \\
\hline 715 & 408． &  \\
\hline 716 & 1 & ＇Su＇．E12．5，3X，＇T＝＇，F7．4，3X，＇ENERGY＝＇，E8．3，＇EV＇， 3 X ， \\
\hline 717 & 2 & ＇EQPITCH ANGLE＝，F6．3） \\
\hline 718 & & GO TO 312 \\
\hline 719 & 311 & CALI EOCONV \\
\hline
\end{tabular}
```

72.

721
722
728
730
731
732
73
734
735
736
737
798
739
74%
741
742
743
744
745
746
747
748
743
7%
75!
%%
34
%:
756
7 5 7
758
759
\because60
76!
762
7%3
754
7E5
766
767
768
769
77%
771
772
7 7 3
774
775
776
77
778
778
780
781
782
7%3
784
785

```
```

 313
    ```
    313
    L
    L
    312 IF (IFULL.EQ.l) CALL DFUNS
    312 IF (IFULL.EQ.l) CALL DFUNS
C
C
    314
    314
```

 IF (IFULL.EQ.D) WRITE (6,313) H,PPHID,S,T,EV,EQALD
    ```
    IF (IFULL.EQ.D) WRITE (6,313) H,PPHID,S,T,EV,EQALD
    FORMAT (' DETRAP POINT',3X,'H=',E12.5,' XM',3X,'PHI=',F7.3,3X,
    FORMAT (' DETRAP POINT',3X,'H=',E12.5,' XM',3X,'PHI=',F7.3,3X,
    'S=',E12.5,3X,'T=',F7.4,3X,'ENERGY='.EB.3,'EV',3X,
    'S=',E12.5,3X,'T=',F7.4,3X,'ENERGY='.EB.3,'EV',3X,
    'EO PITC!H ANGLE=',FG.3;
    'EO PITC!H ANGLE=',FG.3;
    IF PARTICLE CRDSSES EQUATOR, IRDONE PRINTED HERE IS COUIITED
    IF PARTICLE CRDSSES EQUATOR, IRDONE PRINTED HERE IS COUIITED
    FROM EQUATOR GROSSING.
    FROM EQUATOR GROSSING.
    IF(IFULL.EO.g) WRITE(6.314) BETAD,IRDONE
    IF(IFULL.EO.g) WRITE(6.314) BETAD,IRDONE
    FORMAT(' BETA=',F7.2,5X,'NO OF RESO:!ANCES=',I3/)
    FORMAT(' BETA=',F7.2,5X,'NO OF RESO:!ANCES=',I3/)
    ALOC(I)=EQAL
    ALOC(I)=EQAL
    EVOC(I)=EV
    EVOC(I)=EV
    EOTOT=EOTOT+EVC
    EOTOT=EOTOT+EVC
    EFTOT=EFTOT+EV
    EFTOT=EFTOT+EV
    IF(VPAEQ.lE.VFMIN) VFMIN=VPAEQ
    IF(VPAEQ.lE.VFMIN) VFMIN=VPAEQ
    IF(VPAEO.GE.VFMAX) VFMA.K=VPAEO
    IF(VPAEO.GE.VFMAX) VFMA.K=VPAEO
    IF(EQALD.GT.ALFAHI) ALFAHI=EQALD
    IF(EQALD.GT.ALFAHI) ALFAHI=EQALD
    IF(EQALD.LT.ALFALO) ALFALO=EQALD
    IF(EQALD.LT.ALFALO) ALFALO=EQALD
    JCOUNT=JCOUNT+1
    JCOUNT=JCOUNT+1
    ttrace(i)=T
    ttrace(i)=T
    COHTINUE
    COHTINUE
    IF (IFULL.EO.D.AND.IDIFF.EO.1) CALL DIFCO
    IF (IFULL.EO.D.AND.IDIFF.EO.1) CALL DIFCO
    IF((ICONT2.EQ.1).AND.(IFULL.EQ.DI) CALL PLOTTING
    IF((ICONT2.EQ.1).AND.(IFULL.EQ.DI) CALL PLOTTING
    CONTINUE
    CONTINUE
    CONTINUE
    CONTINUE
    CONTINUE
    CONTINUE
    CONTINUE
    CONTINUE
    IF (IFULL.EQ.1) CALL SUMARY
    IF (IFULL.EQ.1) CALL SUMARY
    IF(IFULL.EQ.!) WRITE(6,320%) VSTART,VEND,VFMIN,VFMAX
    IF(IFULL.EQ.!) WRITE(6,320%) VSTART,VEND,VFMIN,VFMAX
    FORMATI////' DISTRIEUTION FUNCTIJN PARAMETERS'///
```

 FORMATI////' DISTRIEUTION FUNCTIJN PARAMETERS'///
    ```


```

 [FVPAMAK=',E10.4/1)
    ```
    [ FVPAMAK=',E10.4/1)
    IF(IFULL.EQ.1) DVPAI=DVPAW10
    IF(IFULL.EQ.1) DVPAI=DVPAW10
    IF(IFULL.NE.I) GOTO 3504
    IF(IFULL.NE.I) GOTO 3504
    VRITE(6,32.J0) DVPA,DVPAI
    VRITE(6,32.J0) DVPA,DVPAI
    FCRMAT(/' INITIAL VEL. BIN=',EIg.4,' FINAL VEL. BIN='
    FCRMAT(/' INITIAL VEL. BIN=',EIg.4,' FINAL VEL. BIN='
    ,E!0.4)
    ,E!0.4)
    Kl=INT((VFMIN-FYPA(1))/DVPAI)+!
    Kl=INT((VFMIN-FYPA(1))/DVPAI)+!
    K2=1NT((VFMAX-FVPA(1))/OVPA1)+1
    K2=1NT((VFMAX-FVPA(1))/OVPA1)+1
    jl=INT(ALMAX*2)+2
    jl=INT(ALMAX*2)+2
    WRITE(6,35!0) JCOUNT
    WRITE(6,35!0) JCOUNT
    IF(JHI.LT.35) GOTO }61
    IF(JHI.LT.35) GOTO }61
    WRITE(6,3505)
    WRITE(6,3505)
    FORMAT(/' FINAL DISTRIBUTION (# OF PARTICLES PER CEI.L)')
    FORMAT(/' FINAL DISTRIBUTION (# OF PARTICLES PER CEI.L)')
    FORMAT(////' TOIAL NUMRER OF TRACED PARTICLES WAS=1,I6//)
    FORMAT(////' TOIAL NUMRER OF TRACED PARTICLES WAS=1,I6//)
    DO 3501 K=K1,K2
    DO 3501 K=K1,K2
    DO 35.g2 J=1,j1
    DO 35.g2 J=1,j1
    PITCH=J*g.5-m.25
    PITCH=J*g.5-m.25
    WRITE(6,3503) PITCH,K,KFDIST(J,K)
    WRITE(6,3503) PITCH,K,KFDIST(J,K)
    CONTINUE
    CONTINUE
    CONTINUE
    CONTINUE
    FORMAT(F10.4,14,' # OF PARTICLES:'.14)
    FORMAT(F10.4,14,' # OF PARTICLES:'.14)
    continue
    continue
    WRITE(6,3610)
    WRITE(6,3610)
    FORMATI//, INITIAL DISTRIBUTION AFTER SCATTERING'/)
    FORMATI//, INITIAL DISTRIBUTION AFTER SCATTERING'/)
    00 3603 K=1,2g
    00 3603 K=1,2g
    DO 36%: J=1,v1
    DO 36%: J=1,v1
    IF(K.GT.(NVG+1)) GOTO 3605
    IF(K.GT.(NVG+1)) GOTO 3605
    PITCH1=J*0.5-ø.25
    PITCH1=J*0.5-ø.25
    URITE(6.36.05) PITCHI,K,IFDISI(),K,
    URITE(6.36.05) PITCHI,K,IFDISI(),K,
    CONTINUE
    CONTINUE
    continue
    continue
    FORMAT(FID.4,I4,' NUMSER OF PAR`..ELES=',14)
    FORMAT(FID.4,I4,' NUMSER OF PAR`..ELES=',14)
    CONTI:!UE
    CONTI:!UE
    DIFEN=EFTOT-EOTOT
    DIFEN=EFTOT-EOTOT
    VRITE(6,3640) DIFEN
    VRITE(6,3640) DIFEN
    FORMAT(;) iOTAL ENERGY EMEHANGE (EV)=',EIO.4)
```

 FORMAT(;) iOTAL ENERGY EMEHANGE (EV)=',EIO.4)
    ```
```

786
787
786
789
790
7!1
72
7 9 3
7 9 4
795
796
797
7 9 8
799
800
8.!
8.32
803
8.4
Sa5
806
807
808
809
810
811
812
813
814
814
816
817
818
819
820
221
822
823
824
825
826
827
828
829
83g
831
832
833
834
8 3 5
C
FULL DISTRISUTION TABLE
IF((JHI-NLO).GT.32) GOTO 6.0!
DO 602 J=1.32.2
6.%2 ALFA(J)=J*\&.5-0.25
WRITE(6.6.03) (ALFA(J).J=1.32.2)
6\&i3 FORMAT(IHI.'EGUATORIAL OISTRIBUTION FUNETION (% OF PARTICLES).
1 /' VPARALEL (KM/SEC)'.5DX.' PITCH ANGLE (DEG)'
2 18X,16F6.2/9%,32(' I:I)
IF(KI.GT.1) KI=KI-1
IF(K2.LT.400) K2=K2+1
DO 6EJ4 K=K1,K2
VEL-FVPA(K)/1000.
DO 606 J=1,33
6066 KTEMP(J)=KFOIST(J,K)
WRITE(6,605) VEL,(KTEMP(J),J=1,33)
605 FORMAT(IX,F8.0,'--,33(12,1 1;)
6.g4 CONTINUE
6%1 CONTINUE
35:4 CONTINUE
267 CONTINUE
IF(IGROW.NE.I) GOTO 9883
WRITE(6,82g1)
8201 FORHAT(/'WAVE AMPIITUDE DATA')
WRITE(6,8.981) XSTART, XEND,XLEN, XAMPL
8081 FORMAT(/' START=',EI2.4,' END=',E12.4,' LENGTH=',F10.3,' AMPL='
,E12.4)
PHII=PHI(NTOP)/A
PHI2=PHI(NEOT)/A
WRITE(6,9.02.g) PHII,PHI2
9\&2% FORMAT<// ABSOLUTE VALUES OF STARTING NO ENDING LATITUDE AF.E:
1 ',F10.5,3\times,F1g.5)
IF(ICONT5.EQ.1) GO TO 9.902
GO TO 90.53
9.g%2 CONTINUE
VRITE(6,9004)
90.4 FORMAT(;' WAVE AMPLITUDE DATA')
CO 9%05 11=1,30.4%,10
WRITE(6,9%g6) II,Z(II),AMPLOW(II),AMPLHI(II)
9Eø6 FORMAT(I5,3X,3(EIZ.4,3X))
90\&5 CONTINUE
90.j3 CONTINUE
208 CONTINUE
GO TO 210
209 WRITE (6.300!)
30EI FORMAT (%//' INTEGRATION TI.GE EXCEEDS 10 SEC LIMIT')
210 CONTINUE
stop
END

```

\section*{ORIGINAL PAGE IS OF．POOR QUALITY}

836 837 838
039 840 841 842 843 844 845 846 847 848 849 65.3 851 852 853 854 855 856 857 859 859 860 861 862 863 864 \(E 65\) 266 867 \(\varepsilon 68\) 359 870 871 872 873 874 875 876 877 878 879 \(88 \omega\) 881 882 883 884 885 336 887 888 889 890 891 \(\varepsilon 92\) 893 894 895 896 897 898 899 990 911 992 903
```

C

```
```

 SUBROUTINE PLOTTING
    ```
            SUBROUTINE PLOTTING
            COMNON/BLOCK3/ TC(405,12),CARGU(40%,12),VPHA(400,12),
            COMNON/BLOCK3/ TC(405,12),CARGU(40%,12),VPHA(400,12),
            VPARA(40D,12),EISER(850,12),P3CARGU(5.95,12),PEVP4(505,12)
            VPARA(40D,12),EISER(850,12),P3CARGU(5.95,12),PEVP4(505,12)
            ,PBYPA!5\5.12).TMIN,TMARK,TR(12),TTRACE(12),INDEX(12)
            ,PBYPA!5\5.12).TMIN,TMARK,TR(12),TTRACE(12),INDEX(12)
            ,MLOO.NHI,MSTEP,TEN(8E0),TPB(5J5),DISTAIN(850),D\STANI(505)
```

 ,MLOO.NHI,MSTEP,TEN(8E0),TPB(5J5),DISTAIN(850),D\STANI(505)
    ```


```

 1 TLO(12).THI(12)
    ```
            1 TLO(12).THI(12)
            TMAXI=0.
            TMAXI=0.
            00 1 J=1,12
            00 1 J=1,12
            IF(TTRACE(J).GT.TMAXI) TMAXI=TTRACE(J)
            IF(TTRACE(J).GT.TMAXI) TMAXI=TTRACE(J)
            & CONTINUE
            & CONTINUE
            DO 2 J=1,12
            DO 2 J=1,12
            00 3 1^1.400
            00 3 1^1.400
            IF((INT(TC(I,J)*1gøøø)-INT(TR(J)*1øZg\varnothing)).EO.g) INDEX(J)=1
            IF((INT(TC(I,J)*1gøøø)-INT(TR(J)*1øZg\varnothing)).EO.g) INDEX(J)=1
            3 CONTIPUE
            3 CONTIPUE
            2 CONTINUE
            2 CONTINUE
            WRITE(6,6) T:MAXI
            WRITE(6,6) T:MAXI
            6 FORMAT(///' PLOTTING ROUTINE STARTED'//' MAXIMUM TRACING TIME='
            6 FORMAT(///' PLOTTING ROUTINE STARTED'//' MAXIMUM TRACING TIME='
            ,F1.5.5)
            ,F1.5.5)
            DO 10 J=1,12
            DO 10 J=1,12
10 WRITE(G,1i)J,TR(J),TTRACE(J)
10 WRITE(G,1i)J,TR(J),TTRACE(J)
|1 FOHMAT(' PARTICLE#'.IZ,' FIRST RES.='.FI0.5,' END=',Fi0.5)
|1 FOHMAT(' PARTICLE#'.IZ,' FIRST RES.='.FI0.5,' END=',Fi0.5)
C
C
                            FILL UP ENERGY ARRAY
                            FILL UP ENERGY ARRAY
                            00 20 J=1,12
                            00 20 J=1,12
            20 2. I=1,85. 
            20 2. I=1,85. 
            IF(ENER(I,J).LT.D.) ENER(I,J)=ENER((I-I),J)
            IF(ENER(I,J).LT.D.) ENER(I,J)=ENER((I-I),J)
            21 CONTINUE
            21 CONTINUE
            2\varnothing CONTINUE
            2\varnothing CONTINUE
C
C
C
C
            0022 I=1,850
            0022 I=1,850
            TEMP=\varnothing
            TEMP=\varnothing
            DO 23 J=1,12
            DO 23 J=1,12
            23 TEMP=TEMP + ENER(I,J)
            23 TEMP=TEMP + ENER(I,J)
            ENER(I,1)=TEMP/1øøø.
            ENER(I,1)=TEMP/1øøø.
            22 ENER(I,2)=ENER(1,1)/ENER(1,1)
            22 ENER(I,2)=ENER(1,1)/ENER(1,1)
            WRITE(6,24) ENER(1,1),ENER(859,1)
            WRITE(6,24) ENER(1,1),ENER(859,1)
                            24 FORMAT/: TGTAL ENERGY DATA'//' INITAL ENERGY (EV)',EI2.4/
                            24 FORMAT/: TGTAL ENERGY DATA'//' INITAL ENERGY (EV)',EI2.4/
            1 (FINAL ENERGY (EV)=',E12.4)
            1 (FINAL ENERGY (EV)=',E12.4)
O
O
C
C
                    SET UP TIME ARRAY
                    SET UP TIME ARRAY
                    II=1NT(TMAXI*1.0日g/6)+10
                    II=1NT(TMAXI*1.0日g/6)+10
                    DO 60 I=1.850
                    DO 60 I=1.850
                    IF(I.LE.II) GOTO 6l
                    IF(I.LE.II) GOTO 6l
                    TEN(I)=1.E36
                    TEN(I)=1.E36
                    ENER(I,1)=1.E36
                    ENER(I,1)=1.E36
                    ENER(1,2)=1.E36
                    ENER(1,2)=1.E36
                    GOTO 6%
                    GOTO 6%
    61 TEN(1)=1*ฮ.ø日6
    61 TEN(1)=1*ฮ.ø日6
    60 CONTINUE
    60 CONTINUE
            PLOT ENERGY VS. TIME (DISTANCE)
            PLOT ENERGY VS. TIME (DISTANCE)
            DEFIME CURVE WINDOW
            DEFIME CURVE WINDOW
            KK=1
            KK=1
            50 FORMAT(' THIS IS STEP',I3)
            50 FORMAT(' THIS IS STEP',I3)
            CALL AGSETF('GRID/LEFT.',g.10)
            CALL AGSETF('GRID/LEFT.',g.10)
            CALL AGSETF('GRID/RIGHT.',\varnothing.9D)
            CALL AGSETF('GRID/RIGHT.',\varnothing.9D)
            CALL AGSETF('GRID/BOTTOM.'.g.1.)
            CALL AGSETF('GRID/BOTTOM.'.g.1.)
            CALL AGSETF('GRID/TOP.',0.85)
```

 CALL AGSETF('GRID/TOP.',0.85)
    ```


\section*{ORIGINAL PAGE IS OF POOR QUALITY}


970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
088
989
59.

991
992
993
994
995
996
997
998
999
1000
1051
1202
19503
1604
1605
1006
1007
1068
1009
1010
1511
1512
1013
1614
1015
1.816

1917
1818
1.019

1020
1021
1022
\(1 \approx 23\)
1.124

1925
1026
1.027

1028
1029
1038
1.131

1 ［32
1833

53 WRITE（6，69）J．TLO（J），THI（J）


KinINI＝INT（XMINI／ID．）＊1ס．
IF（ABS（XMIMI）．GT．20．D．D）XMINI＝－200．D
WRITE（G．130）KMINI，XVIAXI

，F10．4／／）
C
C
C
SET XMIN AND XMAX
CALL AGSETI（＇X／NI．＇，－1）
CALL AGSETF（＇V／MIN．＇，D．．）
CALL AGSETF（＇V／MAX．＇．365． 8 ）
CALL AGSETI（＇LEFT／MAJOR／TYPE．＇．1）
CALL AGSETF（＇LEFT／MAJOR／BASE．＇．5．0．5）
CALL AGEETI（＇LEFT／MINOR／SPACING．＇．5）
CALL AGSETF（＇X／MI．＇．XMINI）
CALL AGSETF（＇X／MA．＇．XMAXI）
\(C\)
\(C\)
C
C
C
DO PHASE PLOTS
CALL AGSETF（＇LABEL／NAME．＇．＇L＇）
CALL AGSETI（＇LINE／NUMBER．＇，10日）
CALL AGSETP（＇LIME／TEXT．＇．＇PHASE（DEGREES）S＇．1）
CALL AGSETF（＇LABEL／NAME．＇．IHB）
CALL AGSETI（＇LINE／NUMEER．＇\(-10 \varnothing\) ）
CALL AGSETP（ITHLINE／TEXT．，I2HTIME（MSEC）S，1）

SET BOTTOM AXIS PARAMETERS
CALL AGSETI（＇BOTTCM／MAJOR／TYPE．＇ 11\(\rangle\)
CALL AGSETF（＇BOTTOM／MAJOR／3ASE．＇．5פ．פ）
CALL AGSETI（＇BOTTOM／MINOR／SPACING．＇．4）
C
C
C
C
00103 J＝1．12
DO 102 I \(=1,850\)
\(X X 1(1)=1 . E 36\)
ENER（I，1）＝i．E36
ICNT＝1
ENER（ICNT，1）＝CARGU（ICNT，J）
KXI（ICNT）＝TC（ICNT，J）
ICNT＝2
DO \(104 \mathrm{I}=2.409\)
DIFF＝ABS（CARGU（ \((I-1), J)-C A R G U(I, J)\rangle\)
IF（DIFF．LT．182．0）GOTO 1．6E
ENER（ICNT，1）＝36\％．0＋CARGU（I，J）
IF（CARGU（I，J）．GT．CARGU（（I－1），J））ENER（ICNT，1）＝CARGU
1 （I．J）－362．g
XY1（ICNT）＝TC（I．心）
ICNT＝ICNT＋1
ENER（ICNT，1）＝1．E36
XXI（ICNT）＝TC（I，J）
ICNT＝ICNT＋I
ENER（ICNT，1）：CARGU（（I－1），J）－36ヵ．\(\quad\)（
IF（CARGU（I，J）．GT．CARGU（（I－1），J））ENER（ICNT，1）＝CARGU（（I－1），J）
\(1+36.9 . x^{\prime}\)
XKI（ICNT）＝TC（（I－1），J）
ICNT＝ICNT＋1

\section*{ORIGINAL PAE: :} OF POOR QUALITY
\begin{tabular}{|c|c|c|}
\hline 1034 & 105 & EMER(ICNT, 1) =CARGU(I.J) \\
\hline 1635 & & KXI(ICHT) \(=\) TC(I, J) \\
\hline 1236 & 174 & iCNT=ICiNT+1 \\
\hline \(1: 337\) & & CALL EZMYY(XY1, ENER, 359,1,850.15HPHASE VE. TIMES) \\
\hline 1.038 & 103 & CONTINUE \\
\hline 1.539 & & CALL AGSETF('Y/MINIM(MM.',1.E36) \\
\hline 1040 & & CALL AGSETF('Y/MAMIMUM.',1.E36) \\
\hline 1541 & c & \\
\hline 1042 & c & \\
\hline 1043 & c & \\
\hline 1644 & & CALL AGSETF('LEFT/MAJOR/TYPE.'.d.E36) \\
\hline 1045 & & CALL AGSETF('LEFT/MA.JOR/BASE.',1.E36) \\
\hline 1046 & & CALL AGSETF('LEFT/MINOR'SPACING.'.1.E36) \\
\hline 11847 & c & \\
\hline 1048 & c & \\
\hline 1049 & C & Plot vp and vpa vs. time \\
\hline 1050 & C & \\
\hline 1.051 & & CALL AGSETF('LABEL/NAME.'.'L') \\
\hline 1652 & & CALL AGSETI('LINE/NUMBER.',120) \\
\hline 1053 & & CALL AGSETP('I, INE/TEXT.','VELOCITY (KM/SEC)S', \({ }^{\text {( }}\) \\
\hline 1054 & \(c\) & \\
\hline 1555 & & 0072 J=1.12 \\
\hline 1056 & & D0 73 1-1.400 \\
\hline 1057 & & Xx2(I)-TC(I, J) \\
\hline 1058 & & XX3(1, 1)=VPHA(1, J) \\
\hline 1059 & & XX3(1,2)=VPARA(I, J) \\
\hline 1050 & 73 & CONTINUE \\
\hline 1061 & &  \\
\hline 1.062 & 72 & CONTINUE \\
\hline 1063 & C & \\
\hline \(1 \sim 64\) & c & PLOT PHASE BUNCHING \\
\hline 1.965 & C & SET X,Y AND LABELS \\
\hline 1665 & C & \\
\hline 1067 & & CALL AGSETF('Y/MI.',40.0) \\
\hline 1063 & & CALL AGSETF('Y/MA.',320.0) \\
\hline 1069 & & CALL AGSETI('BOTTOM/MAJOR/TYPE.',1) \\
\hline 1076 & & CALL AGSETF('BOTTOM/MAJOR/BASE.'.g.05) \\
\hline 1071 & & CALL AGSETI('BOFTOM/AINOR/SPACING.',4) \\
\hline -9\%2 & C & \\
\hline 173 & C & \\
\hline 1074 & & CALL ACSETF('LABEL/NAME.','L') \\
\hline 1075 & & CALL AGSETI('LINE/NUMBER.',1g才) \\
\hline 1075 & & CALL AGSETP('LIME/TEXT.'.'Phase (degressis', \({ }^{\text {( }}\) \\
\hline 1977 & C & \\
\hline 1678 & & CALL AGSETF ('LABEL/NAME.', 1 HB ) \\
\hline 1679 & & CALL AGSETI('LINE/NUMBER.',-100) \\
\hline 108.8 & & CALL AGSETP(10HLINE/TEXT.,1IHTIME (SEC)S.1: \\
\hline 1081 & C & \\
\hline 1082 & & OO 450 J=1,12 \\
\hline 1083 & & \(00401 \quad 1=1.850\) \\
\hline 1084 & & IF(I.GT.5ø5) GOTO 402 \\
\hline 1505 & & IF(INDEX(J).EQ.g) ENER(I, J) 1 ! E36 \\
\hline 1886 & & IF(INDEX(J).EO.1) ENER(I,J)=PBCARGU(I,J) \\
\hline 1287 & & GOTO 403 \\
\hline 1088 & 402 & ENER(I,J)=1.E36 \\
\hline 1.089 & 463 & CONTINUE \\
\hline 1090 & 461 & continue \\
\hline 1691 & 45E & CONTINUE \\
\hline 1.592 & & DO 410 I= 1, 85\% \\
\hline 1093 & & IF(I.LE.505) XX1(1)=TPB(!) \\
\hline 1.094 & & IF(I.GT.505) Xx1(I)=1.E36 \\
\hline :255 & 410 & CONTINUE \\
\hline 1096 & & TMiNI = TMIN \\
\hline 1.097 & & TMAXII=TMIN+ø.! \\
\hline
\end{tabular}

\section*{ORIGINAL PACI IS OF POOR QUALITY}

1298 1899 \(1!0 \mathbb{S}\) 1191 1102 1102 1104 1165
1106
1107
1108
1:09 1110
1111
1112
1113
1114
1115
1116
1117
1118
1i19
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
\(115 \%\)
1158
1159
1169
1161
```

 00209g I=1,20
 IF(TMAXII.GT.TMAXI) GOTO 201
 CALL AGSETF('X/HIIN.',TMINI)
 CALL AGSETF('X/PAAX.'. TMA:(II)
 CALL EZMMYY(XK1,ENER,850,12.050.15HPHASE VS. TIMES)
 TM!NI=TMINI+g.!
 TMAXII=TMA:C1!+0.1
 CONTINUE
 RESET X
 CALL AGSETF('X/MAX.'.TMAX)
 CALL AGSETF('X/MIN.',TMIN)
 CALL AGSETF('BOTTOM/MAJOR/TYPE.',1.E36)
 CALL AGSETF('BOTTOM/MAJOR/BASE.'.l.E36)
 CALL AGSETF('BOTTOM/MINOR/SPACING.',1.36)
 PLOT VPA&VPHASE VS. TIME
 CALL AGSETF('Y/MI.'.1.E36)
 CALL AGSETF('Y/MA.'.1.E36)
 CALL AGSETF('LABEL/NAME.':''')
 CALL AGSETI('LINE/NUMBER.',IDO)
 CALL AGSETP('LINE/TEXT.','VELOCITY (KM/SEC)S',I)
 CALL AGSE゙TF('LABEL/NAME.',IHB)
 CALL AGSETI('LIME/NUMBER.',-100)
 CALL AGSETP(1\varnothingHLINE/TEXT.,IIHTIME (SEC)S.1)
 OD 11\varnothing I=1,85%
 IF(I.LE.505) XXI(I)=TPB(I)
 IF(I.GT.5@5) XK1(I)=1.E36
 110 CONTINUE
 00 11: J=1,2
 DO 112 1=1.85%
 ENER(I.J)=1.E36
 CONTINUE
 DO 113 J=1.12
 00 114 I=1.505
 ENER(I, l)=PBVPA(I,J)
 114 ENER(I,2)=PEVPH(1,J)
 CALL EZMMXY(XX1,ENER,050,2,850,18HVELOCITY VS. TIMES)
 CONTINUE
 Plot velocity vs. latitude
 DO 400 [-1,850
 IF(1.LE.505) XX1(1)=0ISTAN1(I)
 IF!1.GT.505) X\1(1)=1.E36
 40D CONTINUE
 CALL AGSETF('X/MAX.',1.E36)
 CALL AGSETF!'X/MIN.',1.E36)
 CAILL AGSETI('X/HI.',g)
 CALL AGSETF('LABEL/HARAE,',IHB)
 CALL AGSETI('LINE/NUMBER.',-1g0)
 CALL AGSETP(1DHLINE/TEKT.,IgHLATITUDE (DEGREESIE,1)
 DO 200 J=1,12
 DO 301 I=1,505
 ENER(1,\)=PB\PA(I,J)
 301 ENER(I,2)=PSVPH(I,J)
 CALL EZMYY(XXI,ENER,85%,2,850,22HVELOCITY VS. LATITUDES)
 continue
 call asSETI('X/NI.',-1)
    ```
\begin{tabular}{|c|c|c|}
\hline 1162 & \multirow[t]{3}{*}{c
\(c\)
\(c\)} & \\
\hline 1163 & & PLOT EACH Phase change separately \\
\hline 1164 & & \\
\hline 1165 & & CALl agSetfl＇label／mame．＇．＇L \\
\hline 1166 & & CALL AGSETI（＇LINE／MUNBER．＇．1．g．） \\
\hline 1167 & & CALL AGSETP（＇LIME／TEXT．＇．＇Phase（DEGREES）S＇，1） \\
\hline 1158 & & Call agsete＇LABEL／NAME．＇．jHE） \\
\hline 1159 & & CALL AGSETI（＇LIME／nUMBER．＇，－Igo） \\
\hline 1175 & & CALL AGSETP（IDHLINE／TEXT．，IIHTIME（SEC）S，1） \\
\hline 1171 & & CALL AGSETF（＇X／MI．＇，TMIN） \\
\hline 1172 & & CALL AGSETF（＇X／MA．＇，TMAX） \\
\hline 1173 & & CALL AGSETF（＇Y／MIN．＇．0．0） \\
\hline 1174 & & CALL AGSETF（＇Y／MAX．＇，360．0］ \\
\hline 1175 & & CALL AGSETI（＇LEFT／MAJOR／TVIE．＇．1） \\
\hline 1176 & & CALL AGSETF（＇LEFT／MAJOR／BASE．＇．60．\({ }^{\text {（ }}\) ） \\
\hline 1177 & & CALL AGSETI（＇LEFT／MIHOR／SPACING．＇，5） \\
\hline 1178 & & \(00122 \mathrm{~J}=1.12\) \\
\hline 1179 & & 00121 II＝1，850 \\
\hline 1180 & & XXI（II）＝1．E36 \\
\hline 1181 & 121 & ENER（II．1） \(1 . \mathrm{E} 36\) \\
\hline 1192 & & ICNT 1 \\
\hline 1183 & & EMER（ICNT，I：－PSCARGU（ICNT，J） \\
\hline 1184 & & どX！（ICNT）＝TPB（ICNT） \\
\hline 1185 & & ICNT－2 \\
\hline 1186 & & 00123 I＝2，505 \\
\hline 1187 & & DIFFAABS（PCCARGU（ \(1-1), J)-P 3 C A R G U(!, J)) ~\) \\
\hline 1188 & & IF（DIFF．LT．180．D）GOTO 124 \\
\hline 1189 & & EMER（ICNT，1）＝36．J．＋PBCARGU（I．J） \\
\hline 1100 & & （F（PBCARGU（I，J）．GT．PBCARGU（（I－I），J））ENER（ICNT，l）＝ \\
\hline 1191 & 1 & PBCARGU（1．J）－36．2．0 \\
\hline 1192 & & KXI（ICNT）\(=\) TPB（I） \\
\hline 1193 & & ICNT＝ICNT +1 \\
\hline 1194 & & ENER（ICNT，1）＝1．E36 \\
\hline 1195 & & XXI（ICNT）\(=\) TPB（I） \\
\hline 1196 & & ICNT \(=1\) ICNT +1 \\
\hline 1197 & & ENER（ICNT，1）＝PBCARGU（1－1），J）－36』． 0 \\
\hline 1198 & & IF（PBCARGU（I，J）．GT．PBCARGU（（I－1），j））ENER（ICNT，1）＝ \\
\hline 1199 & 1 & PECARGU（ \(1-1), \mathrm{J})+\) 36ø．ø \\
\hline 12\％ø & & XXI（ICNT）＝TPB（1－1） \\
\hline 1291 & & ICNT＝ICNT＋1 \\
\hline \(12 \mathfrak{1 5}\) & － 124 & ENER（ICNT，1）－pBCARGU（I．J） \\
\hline 1203 & & XXI（ICNT）＝TPB（I） \\
\hline 12.94 & 123 & ICNT＝ICNT＋1 \\
\hline 1205 & & CALL AGSETF（＇Y／MI．＇， 0.0\()\) \\
\hline 12.56 & &  \\
\hline 1207 & & CALL EZMXY（XX1，ENER，858，1，85』，15HPHASE VS．TIMES） \\
\hline 1208 & 122 & CONTINUE \\
\hline 1209 & & WRITE（6，101） \\
\hline 1210 & 101 & FORMAT（／／／＇ALL DONE 1／＇） \\
\hline 1211 & & RETURN \\
\hline 1212 & & ENO \\
\hline 1213 & c & \\
\hline 1214 & C & \\
\hline 1215 & & SUarcutine eoconv \\
\hline 1216
1217 & c & COIM \\
\hline 1218 & 1 & Ø，40®），EQAL，FPDIST（13 ），PI，EM，EL，RPHI，VPE，E，EV，KMAX，VMIN，VPMAX， \\
\hline 1219 & 2 & ALAIN．ALMAX，ALDC（12），R，RO，VPAEO，EPA，EVDC（12），IG，EPAG（3SIO） \\
\hline 122\％ & & SF＝SDRT（1．＊3．＊SIN（RPHI）＊＊2） \\
\hline 1221 & & WPADEM／2．＂VPA＂VPA \\
\hline 1222 & & WPE＝EWiz．＊VPE＊VPE \\
\hline 1223 & & \(E V=(W P A+W P E) / E\) \\
\hline 1224 & & UPEE（1）．／PE／SF／（RD＊EL／R）＊＊3 \\
\hline 1225 & &  \\
\hline 1226 & & VPAEC＝SQRT（2．＊VPAEQ／EM） \\
\hline 1227 & & EOAL＝ATAN（SQRT（WPEEQ／WPAEQ）） \\
\hline 1228 & & \(E C T L D=E\) AL／A \\
\hline 1229 & & return \\
\hline 123．7 & & ENO \\
\hline
\end{tabular}

\section*{ORIGINAL PAGE IG OF POOR QUALITY．}
\begin{tabular}{|c|c|c|}
\hline 1231 & C & \\
\hline 1232 & & SUCROUTINE DFUNC \\
\hline 1233 & C & \\
\hline 1234 & & COLIHON OVPA，EQALD，ALGRD，VPA，FVPA（4IJ）．SDIST，ALEQ，A，SVPN，FDIST（IE \\
\hline 1235 & 1 &  \\
\hline 1236 & 2 & ALMIN，ALMAİ，ALDC（12），R，RO，VP，AEQ，EPA，EVOC（12），IG，EPAG（3JDD） \\
\hline 1237 & & COiinCH／ELOCK1／KFDIST（18．9．49g）．IFDIST（13才，20） \\
\hline 1230 & C & IDEN：TIFY SLOT FOR FVPA ANO EQALD \\
\hline 1239 & & J＝INT（EQALD／®．5）＋！ \\
\hline \(124 \%\) & & ALGRD＝J＊3．5－0．25 \\
\hline 1241 & & \(K=1 N T(\) VPAEQ－FVPA（1））／DVPA／1ヵ）+1 \\
\hline 1242 & & KFDIST（J，K）＝KFDIST（J，K）＋ \\
\hline 1243 & & K1：［NT（ \({ }^{\text {（VPAEQ－VMIN）／DVPA）}}+1\) \\
\hline 1244 & &  \\
\hline 1245 & & IFDIST（J，K1）＝IFDIST（J，K1）＋I \\
\hline 1246 & 4 & CONTINUE \\
\hline 1247 & & IF（ALEQ．GE．5．5）SDIST＝（COS（ALEQ＊A）／SVPA）＊＊4 \\
\hline 1248 & & IF（ALEQ．LT．5．5）SOISTmg． \\
\hline 1249 & & FOIST（J，K）＊FDIST（J，K）＋SDIST／12．＊（FVPA（K）／SVPA）＊＊2＊SIM（ALGRD＊A） \\
\hline 1250 & 1 & ／Sİ（ALEO＊A）＊（ \(\operatorname{COS}(A L E Q * A) / \operatorname{COS}(A L G R D * A) ~) * * 3\) \\
\hline 1251 & & RETURN \\
\hline 1252 & & ENO \\
\hline 1253 & C & \\
\hline 1254 & & SUBROUTINE SUMARV \\
\hline 1255 & C & \\
\hline 1256 & & COMMON DVPA，EQALD，AL，GRD，VPA，FVPA（40．J），SDIST，ALEQ，A，SVPA，FDIST（18 \\
\hline 1257 & 1 & D，,\(\%\)（I），EQAL，FPDIST（180），PI，EM，EL，RPHI，VPE，E，EV，KMAX，VMIN，VPMAX， \\
\hline 1258 & 2 & ALMIN，ALMAX，ALDC（12），R，RO，VPAEQ，EPA，EVDC（12），IG，EPAG（30వ才） \\
\hline 1259 & & COMMON／BLOCK2／SFJIST（18．V），IIAS，IIAF，HVG，ALFALO，ALFAHI \\
\hline 1250 & 1 & ，ALFA（35），JLO，JHI \\
\hline 1261 & & EMIN＝EM／2．＊VMIN＊VMIN \\
\hline 1262 & & EMAX \(=\) EHi／2．＊VPHAX＊VPMAX \\
\hline 1253 & & EFIAIN＝EM／2．＊FVPA（1）＊FVPA（1） \\
\hline 1264 & &  \\
\hline 1265 & & EVIIIN＝EMIN／E \\
\hline 1266 & & EVIMAX \(=\) EMAX／E \\
\hline 1267 & & EVFMIH＝EFHIN／E \\
\hline 1268 & & EVFMAK＝EFMAX／C \\
\hline 1269 & & IFi IG ．NE． 1 ）WRITE（6，5．J）EPA \\
\hline 1270 & & IF（IG．EQ．1）WRITE（6，51）EPAG（1） \\
\hline 1271 & 51 &  \\
\hline 1272 & 50 & FORMAT（1Hi，＇PARALLEL WAVE ELECTRIC FIELD＝＇，EID．4，VOLT M－1／／） \\
\hline 1273 & & WRITE（6，6） \\
\hline 1274 & 5 & FORMAT（ INTEGRATION RANGE＇／／） \\
\hline 1275 & & WRITE（6，5）VHIH，EMIN，EVMIN \\
\hline 1276 & 5 & FOPMAT（＇MIN INITIAL VEL＝＇，E15．4．＇M SEC－1＇，3X，EID．4，＇JOULES＇， \\
\hline 1277 & 1 & 3X，Eio．4，＇EV＇／） \\
\hline 1278 & & WRITE（6，4）VPMAX ，EMAX，EVMAX \\
\hline 1279 & 4 & FORMAT（＇MAX INITIAL VEL＝＇，EIg．4．＇M SEC－1＇，3X，EID．4．＇JOULES＇， \\
\hline 1285 & 1 & 3X，EID．4，＇EV＇／） \\
\hline 1231 & & WRITE（0，3）FVPA（1），EFMIN，EVFMIN \\
\hline 1282 & 3 &  \\
\hline 1233 & 1 & 3X，E1才．4．＇EV＇／） \\
\hline 1284 & & VRITE（ 6,2\()\) FVPA（KIIAX），EFMAX，EVFMAX \\
\hline 1285 & 2 & FORMAT（＇MAX FINAL VEL＝＇，E19．4，＇M SEC－1＇，3X，E10．4，＇JOULES＇， \\
\hline 1236 & 1 & 3X，E13．4．＇EV＇／） \\
\hline 1237 & & URITE（6，1）ALHIN，ALMAX \\
\hline 1288 & 1 & FURHAT（＇INITIAL PITCH ANGLE RANGE＝＇，2F6．2，3x，＇DEGREES＇／） \\
\hline 1289 & & DO 6J J＝1，180 \\
\hline 129.9 & & SFDIST（J）\(=0\). \\
\hline 1291 & ES & FPDIST（J）＝¢． \\
\hline \(1 \% 52\) & & DO \(11 \mathrm{jm}, 180\) \\
\hline 1293 & & CO 10 K＝1，KHAX \\
\hline 1294 & 15 & FPDIST（J）\(=2 . *\) PINFDIST（J，K）＊FVPA（K）＊＊2＊DVPA＊1才＋FPDIST（J） \\
\hline 1695 & 11 & COHTI！IUE \\
\hline 1\％96 & &  \\
\hline
\end{tabular}
```

 00 !g.v J=IIAS.IIAF
 P!TC,けこ=J*0.5+5.25
 CO IO! K=i.Ki
 IF(PITCH3.GT.5.5) DIST=(COS(PITCH3*A)/(NMIN+DVPA*(K-1)))**4
 IF(PITCH3.LE.5.5) DIST=J.
 SFO!S:(J+!l)=2.*P!*DIST*(VMIN+DVPA*(K-1))**2*OVPA+SFDIST:J+11)
 CONT INUE
 I&E COITTIS!UE
 FI:IAL PITEH ANGLE DISTRIBUTION FUNCTION
 WRITE (6.20)
 20 FONHAT(////' FIMAL PITCH ANGLE DISTRIBUTION'//' PITCH ANGLE',5K,
 & 'NORM DIST FINNCT',BX.'INIT NORM DIST FUNCT'//)
 JLO=IM:T(AI.FALO*2)
 JHI=INT(ALFAHI*2)+1
 \F((!IAS+!|).LT.JLO) JLO=!IAS+1!
 IF(JHI.LT.(IIA.F+I!)) JHI=!IAF+I!
 DO 2! J=JLO,JHI
 ALGR̃D=J*g.5-Ø.25
 2
 C
WRITE(6.22) ALGFD.FPDIST(J),SFDIST(J)
22 FORHAT(F7.2.8%,E12.4.8X,E12.4)
PRECIPITATED PARTICLE AND ENERGY FLUX
JLOSS=INT(5.25/D.5)+1
PFLU质=0.
EFLUX=g
OO 31 J=1.JLOSS
DO 30 K=1.KMAX
EOAL=(J*@.5-0.25)*A
ACCUM*FDIST(J,K)*FVPA(K)**2*SIN(EQAL)/COS(EQAL)**3*OVPA
1 1g%J.5*A
PFLUX=PFLUX+ACCUM
EFLUO゙=EFLUX+ACCUM*g.5*EM*(FVPA(K)/COS(EOAL)):**2
31 CONTINUE
CONVERT FLUXES TO ICNOSPHFRIC VALUES AT ID.O KM
PHII=ATAU(SORT(5370.*EL/647\pi.-1.))
FAC=SORT(1.+3.*SIN(PHII)**2)*EL**3
PFLUX=P?LUX*FAC
EF!UX=EFLUX*FAC
EVFLUK=EFIUX/E
WRITE (6,40) PFLUX,EFLJX,EVFLUX
40 FOPMAT (//' PRECIPITATION FLUX=',EIJ.4,'M-2 SEC-1'//' ENERGY FLUK
1 ='.EIJ.4,' JOULE M-2 SEC-1 OR ',EIG.4,' EV SEC-1')
FLIIXES ARE NORMALIZED TO F=V**-4
RETURN
END

```
\[
<-3
\]
\begin{tabular}{|c|c|c|}
\hline 1341 & C & \\
\hline 1342 & & SUBROUTIIAE DIFCO \\
\hline 1343 & C & \\
\hline 1344 & & COIMICS DVPA, EDALD, ALGRD.VPA,FVPA(4GG), SDIST,ALEQ,A,SソPA,FDIST(16 \\
\hline 1345 & 1 &  \\
\hline 1546 & 2 &  \\
\hline 1347 & C & ALDC IS IN RADIANS,ALEO IN DEG \\
\hline 1348 & & \(S \pm 0\) \\
\hline 1349 & & ¢ \(2=9\) \\
\hline \(125 \%\) & & CS=2 \\
\hline 1351 & & CS2=9 \\
\hline 1352 & & SS = 】 \\
\hline 1353 & & SCS \(=0\) \\
\hline 1354 & & \(S E=\varnothing\). \\
\hline 1355 & & DO 10I \(=1.12\) \\
\hline 1356 & & S=S+(ALDC(I)-ALEO*A)/12. \\
\hline 1357 & & S2=S2+(ALDC(I)-ALEQ*A)**2/12. \\
\hline 1353 & & \(C 5=C S+(\operatorname{COS}(A L D C(I))-\operatorname{COS}(A L E Q * A)) / 12\). \\
\hline 1359 & 18 & CS2=CS2+(COS(ALDC(I))-COS(ALEQ*A) )**2/12. \\
\hline 1.26 & & \(S D=S / A\) \\
\hline 1361 & & S2=SQRT(S2)/A \\
\hline 1262 & & WIRITE(6,20) S,SD,S2,CS,CS2 \\
\hline 1363 & 20 & FORMATI//' DEL ALE',EID.4,' RAD OR ',F3.3,' DEG',3X, 'DEL AL P. \\
\hline 1364 & 1 &  \\
\hline \(136{ }^{\circ}\) & 2 & E 10.4 ) \\
\hline 1366 & & LO 11 I = 1,12 \\
\hline 1357 & & SSaSS+(ALDC(I)-S-ALEQ*A)**2/12. \\
\hline 1368 & 11 &  \\
\hline 1309 & & SS = SQRT (SS)/A. \\
\hline 1378 & & WRITE (6,21) SS,SCS \\
\hline 1371 & 21 &  \\
\hline 1372 & 1 & 'DEL AL RMS*', EIX.4,5X,'DEL AL COS SQ=',E12.4) \\
\hline 1373 & & DO 3R I \(=1,12\) \\
\hline 1374 & 30 & \(S E=S E+E V D C(1) / 12\). \\
\hline 1375 & & VRITE(6.31) SE \\
\hline 1378 & 31 & FORMAT' \({ }^{\text {PVE }}\) FIMiAL ENERGY=', El2.G,' EV') \\
\hline 13.7 & & RFTURN \\
\hline 1378 & & END \\
\hline
\end{tabular}

\section*{REFERENCES}

Angerami, J. J., and J. O. Thomas, Studies of planetary atmospheres, 1, the distribution of electrons and ions in the earth's exosphere J. Geophys. Res., 69, 4537, 1964.

Bell, T. F., Wave particle gyroresonance interactions in the earth's outer ionosphere, Tech. Rept. No. 3412-5, Radioscience Lab., Stanford Electronics Labs., Stanford Univ., Stanford, Ca., 1964. Brice, N. M., Traveling-wave amplification of whistlers, Tech. Rept. No. 7, Radioscience Lab., Stanford Electronics Labs., Stanford Univ., Stanford, Ca., 1961.

Brice, N. M., Discrete VLF emissions from the upper atmosphere, Tech. Rept. No. 3412-6, Radioscience Lab., Stanford Electronics Labs., Stanford, Ca., 1964.

Brinca, A. L., On the stability of obliquely propagating whistlers, J. Geophys. Res., 77, 3495, 1972.

Budden, J. G., Radio Waves in the Ionosphere, Cambridge University Press, Cambridge, England, 1961.

Buneman, O., Class notes for Iniroduction to Plasma Physics, Stanford University, 1980.

Burtis, W. J., Magnetospheric Chorus, Tech. Rept. No. 3469-3, Radioscience Lab., Stanford Electronics Labs., Stanford, Ca., 1974.

Burtis, W. J., Magnetospheric chorus: Amplitude and growth rate, J. Geophys. Res., \(\underline{80(22), 3265,1975,}\)

Dowden, R. L., Geomagnetic noise at \(230 \mathrm{kc} / \mathrm{s}\), Nature, \(187,677,1960\).

Dowden, R. L., Theory of generation of exospheric very low frequency noise (hiss), J. Geophys. Res., 67, 2223, 1962.

Dowden, R. L., Trigger delay in whistler precursors, J. Geophys. Res., 77, 695, 1972.

Ellis, G. R. A., Low-frequency electromagnetic radiation associated with magnetic disturbances, Planet. Space Sci., 1, 253, 1959.

Ellis, G. R. A., Directional observations of 5-kilohertz radiation from the earth's outer atmosphere, J. Geophys. Res., 65, 839, 1960.

Gallet, R. M., and R. A. Helliwell, Origin of very low frequency emissions, J. Res. Nat. Bur. Stand., 63D, 21, 1959.

Gurnett, D. A., A satellite study of VLF hiss, J. Geophys. Res., 71, 5599, 1966.

Gurnett, D. A., and L. A. Frank, VLF hiss and related plasma observations in the polar magnetosphere, J. Geophys. Res., 77, 172, 1972.

Helliwell, R. A., Whistiers and Related Ioruspheric Phenomena, Stanford University Press, Stanford, Calif., 1965.

Helliwell, R. A., A theory of discrete VLF emissions from the magnetosphere, J. Geophys. Res., 72, 4773, 1967.

Helliwell, R. A., and U. S. Inan, VLF wave growth and discrete emission triggering in the magnetosphere: A feedback model, J. Geophys. Res., to be published in 1982.

Helliwell, R. A., J. P. Katsufrakis, T. F. Bell and R. Raghuram, VLF line radiation in the earth's magnetosphere and its association with power system radiation, J. Geophys. Res., 80, 4249, 1975.

Inan, U. S., Non-1inear gyroresonant interactions of energetic particles
and coherent VLF waves in the magnetosphere, Tech. Rept. No. 3414-3, Radioscience Lab., Stanford Electronics Labs., Stanford, Ca., 1977.

Inan, U. S., and T. F. Bell, The plasmapause as a VLF wave guide, J.
Geophys. Res., 82, 2819, 1977.
Inan, U. S., and S. Tkalcevic, Nonlinear equations of motion for Landau resonance interactions with a whistler mode wave, J. Geophys.

Res., 87, 2363, 1982.
Jorgensen, T. S., Interpretation of auroral hiss measured on Ogo 2 and at Byrd station in terms of incoherent Cerenkov radiation, J. Geophys. Res., 73, 1055, 1968.

Kennel, C. F., and H. E. Petschek, Limit on stably Erapped particle fluxes, J. Geophys. Res., 71, 1, 1966.

Kennel, C. F., and R. M. Thorne, Unstable growth of unducted whistlers propagating at an angle to the geomagnetic field, J. Geophys. Res., 72, 87!,1967.

Kimura, I., Effects of ions on whistler mode ray tracing, Radio Sci.,
1, 269, 1966.
Kimura, I., H. Matsumoto, T. Mukai, K. Hashimoto, T. F. Bell, U. S.
Inan, R. A. Helliwell, and J. P. Katsufrakis, Exos-B/Siple
station VLF wave-particle interaction experiments: 1. General description and wave-particle correlation, J. Geophys. Res., to be published.

Kumagai, H., K. Hashimoto, and I. Kimura, Computer simulation of a Cerenkov interaction between obliquely propagating whistler mode waves and an electron beam, Phys. Fluids, 23, 184, 1980.

Liemohn, H. B., Radiation from electrons in magnetoplasma, Radio Sci., 69D, 741, 1965.

Lim, T. L., and T. Laspere, An evaluation of Cerenkov radiation from auroral electrons with energies down to 100 eV , J. Geophys. Res., 77, 4145, 1972.

Maggs, J. E., Coherent generation of VLF hiss, J. Geophys. Res., 81, 1707, 1976.

Mansfield, V. N., radiation from a charged particle spiraling in a cold magnetoplasma, Astrophys. J., 147, 672, 1967.

McKenzie, J. F., Cerenkov radiation in a magneto-ionic medium (with applications to the generation of low-frequency electromagnetic radiation in the exosphere by the passage of charged corpuscular streams), Phil. Trans. Roy. Soc. London, Ser. A, 255, 585, 1963.

Nunn, D., Wave particle interaction in electroptatic waves in an inhomogeneous medium, Planet. Space Sci., 6, 291, 1971.

Nunn, D., The sideband instability of electrostatic waves in an homogeneous medium, Planet. Space Sci., 21, 67, 1973.

Northrop, T. G., The Adiabatic Motion of Charged Particles, New York, Interscience Publishers, 1963.

Palmadesso, P. J., Resonance, particle trapping, and Landau damping in finite amplitude obliquely propagating waves, Phys. Fluids, 15, 2006, 1973.

Park, C. G., Methods of determining electron concentrations in the magnetosphere from nose whistlers, Tech. Rept. No. 3454-1, Radioscience Laboratory, Stanford Electronics Labs., Stanford University, Stanford, Calif., 1972.

Park, C. G., and R. A. Heiliwell, Whistler precursurs: A possible catalytic role of power line radiation, J. Geophys. Res., 82, 3634, 1977.

Ratcliffe, J. A., The Magneto-Ionic Theory and Its Applications to the Ionosphere, Cambridge University Press, Cambridge, England, 1959.

Reeve, C. D., and R. W. Boswell, Parametric decay of whistlers -- A possible source of precursors, Geophys. Res. Lett., 3, 405, 1976.

Reeve, C. D., and M. J. Rycroft, A mechanism for precursors to whistlers, J. Geophys. Res., 81, 5900, 1976.

Schield, M. A., and L. A. Frank, Electron observations between the inner edge of the plasma sheet and the plasmasphere. J. Geophys. Res., 75, 540i, 1970.

Seshadri, S. R., Cerenkov radiation in a magnetoionic medium, Electronics Lett. 3, No. 6, 271, 1967.

Seshadri, S. R., Fundamentals of Plasma Physics, American Elsevier Publishing Co., New York, 1973.

Smith, R. L., Propagation characteristics of whistlers in fieldaligned columns of enhanced ionization, J. Geophys. Res., 65, 815, 1960.

Stiles, G. S., and R. A. Helliwell, Stimulated growth of coherent VLF waves in the magnetosphere, J. Geophys. Res., 82, 523, 1977.

Stix, T. H., Theory of Waves in Plasma, McGraw-Hill, New York, 1962.
Swift, D. W., and J. R. Kan, A theory of auroral hiss and implications on the origin of auroral electrons, J. Geophys. Res., 80, 985, 1975.

Taylor, W. W. L., and S. D. Shawhan, A test of incoherent Cerenkov radiation for VLF hiss and other magnetospheric emisions, J. Geophys. Res., 79, 105, 1974.```

