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A ROTATIONALLY BIASED UPWIND DIFFERENCE SCHEME 

FOR THE EULER EQUATIONS 

Stephen F. Davis 

Institute for Computer Applic:ations in Science and Engineering 

ABSTRACT 

The upwi.nd difference schemes of Godunov, Osher, Roe and van Leer are 

able to resolve one-dimensional steady shocks for the Euler equations within 

one OlL two mesh intervals. Unfortunately, this resolution is lost in two 

dimensions when the shock crosses the computing grid at an oblique angle. To 

correct this problem, we develop a numerical scheme which automatically 

locates the angle at which a shock might be expec:ted to cross the computing 

grid .:md then constructs separate finite difference formulas for the flux 

components normal and tangential to this direction. 

We presEmt numerical results which illustrate the ability of this new 

method to resolve steady oblique shoeks. 

Research supported by the National Aeronautics and Space Administration 
under NASA Contract No. NASl-17070 while the author was in residence at lCASE, 
NASA Langley Research Center, Hampton, VA 23665. 
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1. Introduct:ion 

Beginning with the work of Godunov [2], considerable effort has been 

expended seeking numerical methods which can solve the equations of gas 

dynam:l.cs accurately and sharply resolve discontinuities. 

In the ease of one-dimensional flows containing steady discontinuities , 

this effort has paid off. Work by van Leer [14,15,16], Roe [12], Osher 

[1,11], Harte,n [5] and others indica.tes that the mechanism of "shock capture" 

is well understood and that it is now possible to design second order accura.te 

schemE!s which resolve steady discontinuities within one or two mesh intervals 

without wiggles. A recent paper by Harten and Hyman [3] :l.ndicates that these 

results can be extended to one dimensional flows with moving discontinuities. 

In the case of two dimensional flows, some progress has been made but 

there is room for improvement. It is well known that the one-dimensional 

results cited above can be reproduced in two-dimensional calculations if the 

computing grid is chosen so that only one set of grid lines crosses a 

discontinuity in the flow. This would appear to be the optimum way to account 

for the two--dimensional aspects of the flow but in practice it is very 

difficult to choose an appropriate grid either a priori or adaptively during a 

calculation. We shall not examine this approach here. 

An alternative approach is to use dimensional splitting with a hi.gh 

resolution one-dimensional scheme in each split step. 

two-d:i.mensional orientation of discontinuities 

This method ignores the 

but appears to 

surpr:l.singly well (cf. Yee et a1. [18], Woodward and Collela [17]). 

work 

Since 

this method is also simple to program, it is quite attractive for practical 

application. 

Despite these attractions, we attempt to do better. In part:l.cular, in 

this paper, we derive a two-dimensional scheme which can sharply resolve weak 
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shocks which are skew to the fixed computing grid. Splitting methods have 

difficulty dealing with this situation. An outline of the paper follows. 

In Section 2, we briefly discuss the ideas behind the Godunov [2] method 

and show heuristically why it resolves steady shocks so well. This is 

followed by an introduction to Godunov-type methods with particular emphasis 

on the flux vector splitting method of van Leer [16] which we later use. 

In Section 3, we derive the numerical scheme. First we review the 

rotated difference scheme which Jameson [6] applied to the transonic full 

potential equation. Then we explain how rotated differences, properly 

applied, can improve shock resolution for the Euler equations. Finally, we 

construct normal and tangential fluxes for the Euler equations and show that 

the resulting method is in conservation form and is consistent with the 

conservation laws. 

In section 4, we consider the choice of angle for the rotated 

differences. We present a choice which seems to be appropriate for shock 

resolution with the Euler equations and then we briefly discuss more general 

discontinuities and more general conservation laws. 

Section 5 contains numerical computations using this scheme and 

comparisons with other schemes. 

Section 6 sumarizes the present work, discusses the results of the 

present work and presents an outline for future work. 

2. Godunov-type Methods and One Dimensional Problems 

In this section we study the Godunov method for one-dimensional systems 

of conservation laws 

o (2.1) 



In particular we wish to determine which features of this scheme are 

responsible for its ability to resolve steady discontinuities. This 

discussion follows closely that of Harten, Lax and van Leer [4], so the reader 

is encouraged to consult their paper for additional details. 

The construction of Godunov's scheme is as follows. At discrete time 

levels tn' n = 0,1, .•• , the numerical approximation v(x,tn ) to the solution 

u(x,tn) of (2.1) is taken to be a piecewise constant function of x, ie. 

v( x, t ) 
n 

v~ for 
J 

To calculate the numerical approximation at the next time level 

tn+1 = tn + 6t we first solve exactly the initial value problem 

u(x,t ) = v(x,t ), 
n n 

(2.2) 

(2.3) 

for and t < t < t + 6t; 
n n 

and denote its solution by 

un(x,t). This means that at each discontinuity of v(x,tn ) we must solve a 

local Riemann problem. The solution to the Riemann problem at say the 

interface between I j and I j+1 is a similarity solution which depends only 

on the states n v. 
J 

and v~+l and the ratio (x-(j+l/2)6x)/(t-tn ). We denote 

u{ (X-(j+l/2)t,.x)/(t:-tn);V~'V;1}' Since signals propagate 

with finite velocity, 

this solution by 

when 

3 
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and 

when 

(2.4) 

where aL and aR are the smallest and largest signal velocity respectively. 

If we keep (Ia IM)/l:Ix < 1/2 max where is the largest signal 

speed, there will be no interaction between neighboring Riemann problems and 

un(x,t) can be written exactly as 

u (x,t) = u{(x-(j+1/2)l:Ix)/(t-t );v~,v~+l} 
n n J J 

for 

jl:lx < x < (j+1)l:Ix, (2.5) 

To obtain a piecewise constant approximation v( x, t n+1) for the next time 

step, Godunov averages un(x,tn+1)' i.e. he sets 

n+1 v. 
J 

= l/l:IxJ u (x,t +l)dx 
I. n n 

(2.6) 

J 

In terms of the solution to the local Riemann problems, we can rewrite this as 

n+1 
v. 

J 

l:Ix/2 JO 
( n n+1) 

= l/l:IxJ u(x/l:It;vnJ._1,Vnj)dX + l/l:1x u x/l:It;v.,v j dx ° -l:Ix/2 J 
(2.7) 

Since is an exact solution to the conservation laws (2.1), we can 

evaluate the integral defining n+1 v. 
J 

in (2.6) by integrating (2.1) over 



or 

where 

tn+1 

J u (x, t +1) dx Inn 
- J u(x,t )dx + J f(u «j+lh )l'Ix,t))dt 

I n t n 
j j n 

o 

n+1 n !'It. '" '" 
v" = v" - ...-[ f:( v"+ 1/ ) -f( v" 1/ )] 

J J LlX J 2 r 2 

(2.8) 

(2.9) 

(2.10) 

This shows that the Godunov method is in conservation form with numerical flux 

given by 

f(v,w) f(u(O;v,w)) (2.11) 

Next we examine how this scheme resolves stationary shocks. For the sake 

of cla.rity we consider only a single conservation law. Qualitatively similar 

results can be derived for systems of conservation laws (see Lax [8]) but the 

details are far more complicated. 

A shock is an exact discontinuous solution to the Riemann problem of the 

form 

u (x,t) 
n 

__ {uL , 

~, 

x < st 

x > st 

where s satifies the Rankine-Hugoniot jump condition 

and the entropy condition 

(2.12) 

(2.13) 

5 
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(2.14) 

where 

(2.15) 

A steady shock is a shock with s=O. 

If the initial conditions represent a steady shock located on the 

boundary of a cell, ie. 

for and j < 0 
(2.16) 

for and j ;;. 0 

then equation (2.6) will be satisfied exactly for all time levels and (2.16) 

is an exact solution to Godunov's method. 

If the initial conditions represent a steady shock located within a cell, 

say 10 , then equation (2.6) will yield 

uL for j < 0 

0 
for j 0 (2.17) Vj = u = 

m 

uR for j > 0 

where urn' is some intermediate value between uL and uR· 

At time the solution to the Riemann problem at the interface 

between I_I and 10 will consist of a shock moving at the speed 

(2.18) 

If the shock is weak 

(2.19) 



Substitute this: into (2.18) and note that f(~) 

(2.20) 

Since um is between uL and uR' ( um-~) and (um -uL) will have 

OppOSitE~ signs and their quotient will be negative. Equation (2.14) with 

s=O, shows that aR is negative. Thus SL is positive, the shock moves to 

the right and by (2.10) 

(2.21) 

Similarly:. we see that the solution to the Riemann problem at the 

interfal~e between 10 and 11 consists of a shock moving at the speed 

If this shock :ls weak 

f( u ) 
m 

f( UlR) - f( um) 

~ - um 

Substituting (2.23) into (2.22) and using f(~) 

(2.22) 

(2.23) 

(2.24) 

Since aL is positive, by equation (2.14) with s=O and (~-um) and 

is negative and the shock moves to the 

left. Thus by (2.10) 

7 
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" 
v 112 = u( o;um'~) = ~ (2.25) 

Substitution of (2.21) and (2.25) into (2.9) yields 

(2.26) 

Thus (2.17) is an exact solution to Godunov's method. 

We note in passing that the choice of numerical fluxes 

and 

which does not depend on um' confines the effect of the averaging which 

created um to a single cell. This would not be true of a conventional 

finite difference method whose numerical fluxes would depend on all of its 

arguments. Subsequent time steps would propagate the effect of 11m through 

the entire domain and thus spread the shock over many cells. 

The construction of solutions of Riemann problems for nonlinear systems 

is a complicated iterative procedure. In addition, equations (2.9) and (2.10) 

show that, although the entire Riemann solution is computed, only its value at 

the cell interface is actually used. For this reason much recent research has 

been devoted to the construction of numerical flux functions which retain the 

shock capturing ability of Godunov's scheme but which are simpler to 

construct. A particularly simple approach to the construction of numerical 

flux functions for the Euler equations is the flux vector splitting of van 

Leer [16J, which we now describe. 
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Van Leer splits the flux few) into a forward flux and a 

backward flux f-(w) which satisfies 

2. df+/dw has all eigenvalues > 0; df-/dw has all eigenvalues < 0 

3. f ± (w) is continuous with f+(w) = few) for Mach numbers 

M ~ 1 and f-(w) = few) for Mach numbers M ( -1. 

4. The components of f+ and f- together must mimic the symmetry of f 

with respect to M (all other state quantitities held constant), that 

+ -
is fk(M) = ± fk(-M) if fk(M) = ± fk(-M). 

5. df±/dw must be continuous. 

6. df±/dw must have one eigenvalue vanish for IMI < 1. 

f(M), must be a polynomial in M, and of the lowest 

possible degree. 

If the O11Le dimensional fluxes for the Euler equations with ideal gas law 

are considered to be functions of density p, sound speed c and Mach 

number M, the resulting splittings are 

1) mass 

pu pcM = pc{ liz (M+l)}2 - pc{ liz (-M+1)}2 (2.27) 

2) momentum 

2 
pu + p 

(2.28) 

3) total energy 

(e+p)u = Pc
3

M( 1/2 M
2
+1/(Y-1») 

(2.29) 
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The reader is referred to van Leer's paper for a detailed derivation of 

these expressions. In addition, van Leer shows that these expressions satisfy 

the seven conditions stated above and that these conditions are sufficient to 

assure that steady shocks are resolved within two cells. The numerical flux 

based on this splitting is 

f(u,v) + -f (u) + f (v) (2.30) 

In the next section we incorporate this numerical flux into a two-

dimensional rotated difference scheme. 

3. Derivation of a Rotated Difference Scheme 

In a supersonic region, the method of Murman and Cole [10] solves the 

transonic potential equation by replacing derivatives in the streamwise 

direction with upwind difference approximations and replacing derivatives in 

the direction normal to the streamlines with central difference 

approximations. This is easy to do when the computing grid is approximately 

aligned with the streamwise and normal directions but is difficult otherwise. 

Jameson [6] overcomes this problem in the following way. He writes the 

transonic potential equation in a coordinate system aligned with and normal to 

the the local streamwise direction. He then expresses the derivatives in the 

streamwise-normal coordinate system in terms of derivatives in the coordinate 

system of his computing grid, making note of which terms come from streamwise 

derivatives and which terms come from normal derivatives. Finally, those 

terms which come from streamwise derivatives are approximated by upwind 

difference formulas and those terms which come from normal derivatives are 

approximated by central difference formulas. This creates a very effective 

method. 
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In the following we derive a method for the Euler equations which is 

based on this rotated difference idea. In particular, we attempt to choose a 

local coordiI1late system which permits us to apply the one dimensional theory 

of Section 2. This means that our local coordinate directions must be normal 

and t.:mgential to potential shock directions. In Section 4 we show how to 

determine these directions. Here we assume that the directions are known and 

derive difference formulas that are based on these directions. We note in 

passing that shocks are approximately normal to the streamlines in transonic 

flows. Thus our choice of local coordinate system is equivalent to Jameson's 

in thls case. 

Consider a local cartesian coordinate system chosen as above. Such a 

coordlnate system has coordinates (x',y'). The coordinate system of the 

computing grid, assumed for simplicity to be cartesian, has coordinates 

(x,y) .. Dep.~ndent variables measured in the local and global coordinate 

systems are primed and unprimed respectively. This geometry is shown in 

Figure 1. 

Since the Euler equations are invariant under rotation, they can be 

writtEm immediately in the local coordinate system as 

o (3.1) 

where 

U' [ , , ]T p,pu ,pv ,e 

F' [ , ,2+ ' , ( + ) ,]T pu ,pu p,pu v , e p u 

G' (3.2) 
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e = (3.3) 

and 

u~ = u cos8 + v sin8 

v~ -u sin8 + v cos8 (3.4) 

In the vicinity of a plane steady shock, each of the terms in (3.1) is 

zero independently. We attempt to construct a numerical scheme which has the 

same property. 

If we express the second term of (3.1) in global coordinates we get 

dF~ dF~ dF~ 
dX~ - cos8a;c + sin8ay 

This can be approximated by a finite difference expression 

(3.5) 

(3.6) 

The conditions that this expression be zero across a steady shock independent 

of 6x and 6y are 

and 

(3.7) 



These relations are satisfied by the Godunov-type methods discussed in Section 

2. For this reason, the F' fluxes should be approximated by Godunov-type 

numerical fluxes. We use the van Leer flux vector splitting but any other 

Godunov-type flux would suffice. 

The third term in equation (3.1) says that G' is constant along lin.es 

which are parallel to a shock. To approximate this condition on a discrete 

grid we must make an assumption about the behavior of G' 

points. For lack of any better information we assume that 

linearly between grid points. 

A representative case is shown in Figure 2. We note that 

-tan8 !::'x/R-

so 

R-/!::'y = !::'x/(-!::'y tan8) !::'x cos8 
!::'y sin8 

between grid 

G' varies 

(3.8) 

(3.9) 

The condition that G' varies linearly between grid points can be written as 

or 

(G~ ~G~)sin8 + (G~ G~ )coS8 0 
- i+l,j - ~ i+1,j+l _. i+1,j t;y = (3.10) 

The condition that G' be constant along a line parallel to a shock can be 

Gi . , J 
(3.11 ) 

If we express the third term of equation (3.1) in global coordinates, we 

get 

13 
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dC" _ dC" dC" 
d y" - -s inS ax- + cosS 3y (3.12) 

We allow the numerical fluxes to depend on additional values of U' and 

approximate this expression by 

sinS[C"(U" U" U" U" ) 
- --~-- i+1" i+1 '±1' i " i '±1 x ,J ,J ,J,J 

cosS [C" (U" U" .. .. ) 
+ --~- i j' i±l "Ui '+1 ,Ui ±l '+1 Y , ,J ,J ,J 

(3.13) 

We then identify the numerical fluxes with the corresponding flux values in 

expression (3.10) and (3.11). If our linear interpolation assumption is 

correct, the resulting expression (3,13) is equal to zero. 

We can derive many expressions that are similar to (3.10) and (3.11) and 

linear combinations of these can be used to construct numerical flux functions 

for (3.13). Thus the formulas presented below are not unique and much work is 

needed to determine which formulas are best. 

To make our C' numerical flux look similar to our F' numerical flux, 

we split it up as follows: 

(3.14) 
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Q is a parameter chosen to assure that the overall method remain stable. 

Current research is devoted to finding an optimal chioce for this parameter 

and much rema:tns to be done. Futher discussion on the choice of Q appears 

in Section 5. Table 1 specifies how C"'+ and C'" depend on the angle 8. 

Until no", we have discussed the derivation of numerical fluxes of local 

variables in local coordinate directions. To compute a global solution we 

need numerical fluxes of global variables in global coordinate directions. To 

obtain these we first express the flux of global variables in global 

coordinates in terms of the flux of local variables in local coordinates as 

shown 'below. 

Case 1. Flux of a scalar variable 

Fl(U) pu pu"'cos8 - pv"'sin8 = F"'(U"')cos8 - C"'(U"')sin8 

G.ase 2. Flux of a vector component 

2 
= pu + p = p(u"'cos8-v"'sin8)(u"'cos8-v"'sin8) + p 

(3.16) 

The numerical flux is computed by replacing the local flux by its 

corresponding local numerical flux. The two cases shown demonstrate that the 

flux of a sc:alar variable, such as p or e, transforms like a vector or 
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first order cartesian tensor and the flux of a vector component, such as a 

momentum comonent, transforms like a second order cartesian tensor. These 

transformation laws are well known (cf. Segal [13]) and are easily programmed. 

To summarize, if we are given an angle 8, we compute a numerical flux 

as follows: 

(1) Compute velocity components in the local coordinate system. 

(2) Compute normal and tangential numerical flux components in the local 

coordinate system as described above. 

(3) Use the cartesian tensor transformation laws to compute numerical 

flux components of the global variables in the global coordinate 

system. 

We conclude this section with a brief discussion on what it means for a 

scheme to be conservative and consistent and thus show that the scheme 

described here posseses these characteristics. 

A numerical scheme is called conservative if its numerical flux satisfies 

a discrete version of the divergence theorem. For a rectangular domain, this 

means that we must satisfy an identity of the form 

N 

I 
i=l 

NFl .-F 1 . I [ i + /2 , J i - /2, J + 
f1x 

j=l 

(3.17) 

To satisfy this relation, we associate with each cell boundary point of 

the form a single numerical flux value F i+1/2 . ,J 
and with each 

cell boundary point of the form (xi 'Yj+1/2) a single numerical flux value 

Gi ,j+1/2. This assures that the expression on the left of (3.17) telescopes 

to give the expression on the right. 



Since eaeh numerical flux value depends on an angle e, we associate a 

value of e 'With each cell boundary point. The derivation of the tangential 

local flux G .... assumed that e was constant through a cell. This would 

indicate that we might prefer to associate the angle e with cell centers 

rather than cE~ll boundaries. Unfortunately we could not find a way to do this 

and maintain conservation. 

Lax and Wendroff [7] have shown that a numerical scheme for hyperbolic 

conservation laws is consistent with the differential equations if the 

numerical flux reduces to the differential equation flux when all arguments of 

the numerical flux are set equal. That is 

F(u,u,···,u) = F(u) (3.18) 

The scheme described here is derived so that (3.18) is satisfied by the 

numerical flux of local variables in local coordinates. Thus (3.18) is 

satisfied by the global numerical flux because both the global differential 

equation flux and the global numerical flux are computed from their respective 

local flux values by the same formulas. 

4. Cllloice of Direction 

In SectJlon 3 we describe a method designed to resolve shocks by using 

different numerical flux functions in directions normal and tangential to 

shocks. In this section we show how to find these directions. 

It is important to note that the algorithm we describe does not determine 

whethE!r or not a shock exists. Thus it is not a shock-fitting algorithm. 

Instead the cilgorithm always assumes that a steady shock exists and computes 

17 



18 

its normal direction. Our numerical tests indicate that this approach locates 

the proper direction when it is needed and causes no problems otherwise. 

To determine the direction of a steady oblique shock, we note ,as do 

Gasdynamics texts (cf. Liepmann and Roshko [9J), that a steady oblique shock 

can be studied as a normal shock with a superimposed uniform tangential 

velocity. Thus, if we are given two velocity vectors, we can locate a 

possible shock direction by finding a rotated coordinate frame in which both 

vectors have a common component. 

A simple way to accomplish this was suggested by John Strikwerda. He 

pointed out that since the velocity in the tangential direction does not 

change across the shock, the shock must be normal to the velocity jump. That 

is, given two velocity vectors 

v(i-l,j) = [u(i-l,j),v(i-l,j)J 

and 

;(i,j) = [u(i,j),v(i,j)J 

the shock, if it exists, is normal to the direction of the vector 

a v(i,j) = [u(i,j)-u(i-l,j),v(i,j)-v(i-l,j)J 
x 

[a u,a v] x x 

Thus the angle 8 used to compute rotated numerical fluxes is 

8 arctan(a via u) x x 

(4.1) 

(4.2) 

In practice, the velocity components are computed using a first order 

finite difference formula. In the smooth parts of the flow the error in the 



velocity differences can be of the same order as the velocity differences 

themselves. This can cause the angle e to vary wildly in a part of the flow 

field where little is happening. Numerical experiments indicate that this 

degrades the performance of the method. 

'To prev(mt this, we replace the velocity differences in equation (4.2) by 

weighted averages of the velocity differences at a number of points. At 

present we use the averaging 

where 

and 

where 

o u(i,j) = [~ u(i-l,j) + 4 ~ u(i,j) + ~ u(i+1,j)]/6 
x x x x 

~ u(i,j) = {[u(i,j-1)-u(i-l,j-l)] + 4 [u(i,j)-u(i-l,j)] 
x 

+ [u(i,j+l)-u(i-l,j-l)]}/6 

o u(i,j) = [~ u(i,j-l) + 4 (~ u(i,j)+~ u(i,j+I)]/6 y y y y 

~ u(i,j) = {[u(i-l,j)-u(i-l,j-l)] + 4 [u(i,j)-u(i,j-l)] 
y 

+[u(i+1,j)-u(i+l,j-l)]}/6 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

Numerical tests indicate that this procedure locates the proper shock angles 

and provides smooth angle variations. 

'rhe disadvantage of this approach is that it locates steady shocks for 

the Euler equations but does not locate steady contact discontinuities for the 

Euler equations or steady discontinuities for other systems of conservation 

laws. This limitation is also true of the van Leer formulas that we used to 

compute numerical flux components in the normal direction. In the future we 

19 
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plan to construct a method which can locate these more general discontinuities 

and to use the method of Roe [12] to resolve them. 

One way that we might do this is to note that for the scalar equation 

u t + f(u) + g(u) 
x Y 

o (4.7) 

the normal flux is continuous across a steady discontinuity but the tangential 

flux is not. Therefore the discontinuity, if it exists, is located in the 

direction of the vector 

o f = [f(i,j)-f(i-1,j),g(i,j)-g(i-1,j)] = [0 f,o g]. x x x 
(4.8) 

For systems we might take linear combinations of vectors like (4.8). One 

possibility for a system of m equations would be to seek potential 

discontinuities in the direction of the vector 

of (4.9) 

Thus far no numerical experiments have been performed using equation (4.9). 

Baines(1) has proposed another promising approach to the problem of 

locating general discontinuities. He chooses the angle which satisfies a 

discrete approximation to the equation 

(1)M. T. Baines, 1982, University of Reading, Reading, England, personal 
communication. 
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<3G'" <3G'" <3G'" 
<3y'" = -sin8<3x-+ cos8ay- = 0 (4.10) 

At this time, some details of this procedure need to be worked out and no 

numerical results are available. 

50 Numlerical Results 

In this section we present some numerical computations which demonstrate 

the abUity of the present first order method to resolve steady, oblique 

shocks. TheSE! results are compared with the results of computations using 

state-of-the-art first and second order upwind methods. 

Consider the problem of supersoni.c flow over a wedge which is illustrated 

in Figure 3. The solution to this problem is a single oblique shock wave. We 

consider only eases where the flow is supersonic everywhere. 

To solve this problem we construct a uniform computing grid aligned with 

the wedge as shown in Figure 4. We specify all variables at the left and top 

boundaries and we extrapolate all variables at the right boundary. These 

boundary conditions are correct at the left and right boundaries but the top 

boundary is overspecified since the normal velocity at this boundary is 

subsonic. Fortunately, for the cases considered here, no signals reach this 

boundary from inside the computational domain and this overspecification 

causes no difficulties. 

At the lower boundary we specify that the velocity normal to the wall be 

zero and use some numerical procedure to specify the remaining variables at 

the wall. We have experimented with a number of numerical boundary condition 

procedures and have found that the following gives the best results, at least 

for the methods and problems considered here. 
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To compute the pressure and density at the wall, we follow Chakravarty 

and Osher [11 and assume that locally, only simple plane waves leave the 

boundary. In this case the relations 

c -
(y-1) 

2 v = const. 

p/py const. 

(5.1) 

which are satisfied along the characteristics that reach the wall from the 

interior, and the wall boundary condition, v=0, determine the pressure and 

density at the wall. 

Various schemes have been used to determine the tangential velocity at 

the wall. Here we use the condition that, in the steady state the total 

enthalpy along the wall should be constant. This gives a relation 

e + p 
p 

const. 

along the wall, which permits us to determine u once p and p are known. 

(5.2) 

Our initial conditions consist of the shock jump of the exact solution 

oriented at an angle of 45° to the computing grid. 

Figure Sa is a three-dimensional plot of the density over a 10° wedge 

at Mach 2 computed using the first order method of Osher and Solomon [111. 

Figure sb is a density profile along the line indicated by an arrow in Figure 

Sa. The shock angle is approximately 30°. The shock was very 

difficult for any method to resolve as can be seen by the fact that the shock 



is spread over many grid points. This is not an acceptable solution. 

To be fair we note that the results shown for the Osher-Solomon method 

are typical of results for first order upwind schemes. All first order upwind 

schemes have difficulty with weak, oblique shocks and the Osher-Solomon method 

has no more difficulty than any other. 

Figures 6a and 6b show the results of computations of the flow over a 

100 wedge a.t Mach 2 using 

described in [14] and [15]. 

the second order upwind method of van Leer 

The numerical flux for this method is based on 

the flux vector splitting formulas, described in Section 2, applied to a 

second order approximation to the dependent variables. A slope limiting 

function is used to prevent the oscillations which usually occur when shocks 

are computed using second order methods. These results show that the scheme 

is monotonic and that it spreads the shock over approximately five grid points 

in this case. 

Figures 7a and 7b illustrate an ideal situation. These resul ts were 

computed using the rotated finite difference scheme of Section 3 with the 

exact shock angle specified and the parameter Q set to zero. In this ca.se 

the shock is confined to between two and three gdd points. In [16] van Leer 

shows that flux vector splitting requires two grid points to resolve steady 

one-dimensional shocks. This leads us to believe that the results shown are 

the best that can be expected for a two dimensional method based on these 

numerical flux formulas. These results also indicate that the assumptions 

used to derive this method are reasonable. 

Unfortunately, when we select the shock angle by the algorithm of Secti.on 

4, the method is unstable when Q'=O. We suspect that this is due to the 

spacial variations of the computed shock angle since these were not taken into 

account when the method was derived. We are presently trying to account for 

this. 
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At this time we can draw no specific conclusions as to the proper choice 

for the parameter Q. Extensive numerical experimentation indicates that the 

choice 

Vi,j + vi+1,j ~t 
2 ~x 

(5.3) 

is stable. Figures 8a and 8b demonstrate the performance of this choice 

combined with the automatic angle method of Section 4. The shock is confined 

to approximately three grid points. 

The second problem that we study is the regular reflection of a shock 

from a plane wall. The physical situation is shown in Figure 9. 

The computations shown below were made on a 61 x 21 uniform grid. 

Exact values of all variables were specified on the left and top boundaries. 

All variables were extrapolated at the right boundary and the wall boundary 

conditions described above were imposed on the lower boundary. 

The initial conditions imposed consisted of two shocks which had the same 

jumps as the exact solution but were located in the wrong place. 

Figure lOa is a carpet plot of the densi ty for this flow as computed 

using the first order method of Osher and Solomon. Figure lOb is a section of 

this plot taken at y = .25. These pictures show that this method smears the 

shocks so badly that, at y = .25, they cannot be distinguished. 

Figures 11a and lIb are the corresponding density plots for this flow as 

computed using the second order upwind method of van Leer. These results are 

much bet ter than the previous ones. Here we can distinguish two distinct 

shocks. The first one is spread over between four and five mesh points and 

the second one is spread over between six and seven mesh points. 

Finally, in Figures 12a and 12b, we show density plots for this flow 

computed using the first order rotated method. This method spreads the first 



shock over between two and three mesh points and the second shock over between 

five and six mesh points. There is a slight undershoot in front of the first 

shock. 

At first sight, these results might appear to be less than dramatic but 

we should note that we have been comparing a first order method with one of 

the more sophisticated of second order methods. Under these circumstances, we 

are encourage~d by the fact that the first order method consistently resolved 

steady oblique shocks within fewer mesh intervals than the second order 

method. This confirms that our oblique shock model works. With additional 

effort: we can make it work better. 

6. Summary ~md Discussion 

In this paper we describe a method which determines the orientation of 

possible shoc:k solutions to the Euler equations. In addition we show how this 

information can be used to construct a first order upwind method whlch 

computes solutions with greatly improved steady shock resolution. Indeed, we 

have shown that our first order method resolves steady shocks within fewer 

mesh jlntervals than a sophisticated second order upwind method. 

This work has shown that the shock resolving ability of numerical methods 

for hyperboHc equations can be improved if the methods take the orientatlon 

of possible shocks into account. Although the results thus far have been 

encouraging, we wish to improve the present method. Before this can be done 

some questions need to be answered. In particular, we wish to understand how 

the vliriation in angle affects the performance of the method and how we should 

select the parameter Q in the tangential flux. At present this parameter is 

selected in an ad hoc manner. It: is also important that we construct a 
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careful stability analysis for this method and that we study appropriate 

choices for boundary conditions. It might also be helpful to study other 

choices of upwind formulas for the normal flux. 

On a more practical level, we realize that first order methods are 

usually not accurate enough in regions of smoothly varying flow to be useful 

in applications. Therefore we are presently developing a second order 

accurate version of our method. This work will be described in a future 

paper. 
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Table I 

Angle Range G"'+(u: .,U;. .±1) 1,J ,J G"'-(Ui+1,j,Ui+1,j±1) 

l:!.y G'" (U.... .) G'" (U:+1 .) -00 < TanS < - --
l:!.x 1,J 1 ,J 

- l:!.y < TanS < 0 G'" (Ui, j-1) G"'(Ui+1 ·+1) l:!.x ,J 

o < TanS < ~~ G"'(Ui ·+1) ,J G'" ( Ui + 1 , j-1 ) 

l:!.y < TanS < 00 G'" (U: .) G'" (U:+1 .) 
l:!.x 1,J 1 ,J 

... +(... ... ) G Ui.,U.±l. ,J 1 ,J 

G'" (Ui-1, j) 

G'" (U: .) 1,J 

G'" (U'" .) i,J 

G"'(Ui+1 .) ,J 

G"'-(U: ·+l,U:±l ·+1) 1,J 1,J 

G"'(Ui+1,j+1) 

G"'(U: .+1) 1,] 

G"'(Ui ·+1) , J 

G"'(Ui_1,j+1) 

w 
o 



Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure Sa. 

Figure Sb. 

Figure 6a. 

Figure 6b. 

Figure 7a. 

Figure Captions 

Geometry of local and global coordinate systems. 

Construction of tangential flux. 

Oblique shock problem in physical domain. 

Oblique shock problem in computational domain. 

Three dimensional plot of density for oblique shock problem, 

computed using the method of Osher and Solomon. 

Density profile six grid points from the wall for the obUque 

shock problem, computed using the method of Osher and Solomon. 

Three dimensional plot of density for oblique shock problem, 

computed using the second order method of van Leer. 

Density profile six grid points from the wall for the oblique 

shock problem, computed using the second order method of van 

Leer. 

Three dimensional plot of density for oblique shock problem, 

computed using rotat:lonally biased differences with exact shock 

angle. 
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Figure 7b. 

Figure 8a. 

Figure 8b. 

Figure 9. 

Figure lOa. 

Density profile six grid points from the wall, computed using 

rotationally biased differences with exact shock angle. 

Three dimensional plot of density for oblique shock problem 

computed using rotationally biased differences with automatic 

angle algorithm. 

Densi ty profile six grid points from the wall computed using 

rotationally biased differences with automatic angle algorithm 

Shock reflection problem. 

Three dimensional plot of density for shock reflection problem 

computed using the method of Osher and Solomon. 

Figure lOb. Density profile at y = .25 for shock reflection problem 

Figure lla. 

computed using the method of Osher and Solomon. 

Three dimensional plot of density for shock reflection problem 

computed using the second order method of van Leer. 

Figure 11b. Density profile at y = .25 for shock reflection problem 

Figure 12a. 

computed using the second order method of van Leer. 

Three dimensional plot of density for shock reflection problem 

computed using rotationally biased differences with automatic 

angle algorithm. 



Figure l2b. Density profile at y = .25 for shock reflection problem 

computed using rotatlonally biased differences with automatic 

angle algor! thm. 
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