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ABSTRACT 

The error s ignal  which i s  used t o  control the fre- 
quency o f  the quar tz  crystal oscillator of a pas- 
si ve rubi di um cell frequency standard i s  consider- 
ed. The value of the slope of this signal,  f o r  an 
interrogation frequency close to the atomic tran- 
si tion frequency is calculated and measured for var- 
ious phase (or frequency) modulation waveforms, and 
for several values of the modulation frequency. 
A theoretical analysis is made using a model 
which applies t o  a system in which the optical 
pumping ra te ,  the relgxation rates and the r.f. 
field are homogeneous . Results are given f o r  
si ne-wave phase modul a t ion ,  square-wave fre- 
quency modul ati on and square-wave phase modul a- 
tion. The influence of the modulation frequency 
on the slope o f  the error signal i s  specified. 
I t  i s  shown t h a t  the modulation frequency can 
be chosen as large as twice the non-saturated 
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full-width a t  half-maximum without a dras t ic  loss 
of the sens i t iv i ty  t o  an of fse t  of the interro-  
gation frequency from l ine center,  provided tha t  
the power saturation factor and the amplitude of 
modulation are properly adjusted. The in t e re s t  of 
square-wave phase modulation i s  pointed out for  
large modulation frequencies. 
Experimental data has been obtained on a labo- 
ratory set-up i n  which a rubidium cell  f i l l s  a 
TE microwave cavity. 
Exbdbimental resul ts  achieved w i t h  t h i s  config- 
uration are i n  excellent agreement w i t h  the 
predictions of the given model. 

1. INTRODUCTION 

In passive frequency standards, such as the rubidium cel l  frequency standard, 
frequency control requires that  the microwave interrogation signal i s  phase 
(or  frequency) modulated. An e r ro r  signal i s  obtained, w h i c h  i s  proportional 
to  the of fse t  of the interrogation frequency from the l i n e  center, i f  this 
of fse t  i s  small enough. The e r ro r  signal drives the frequency control loop. 
The slope of this e r ro r  signal has to be optimized i n  order to  achieve the 
best frequency s t a b i l i t y  of the controlled quartz crystal  osc i l la tor .  In 
practice,  the modulation frequency should be large enough, i )  t o  allow ampli- 
f icat ion of the modulated atomic cell  response i n  a frequency range where 
sho t  noise dominates f l icker  noise and i i )  
tack time of the frequency control loop, i n  order t o  ensure a better attenua- 
tion of the e f f e c t  of perturbations, such as acceleration, which m i g h t  a f fec t  
the frequency of the quartz crystal  osc i l la tor .  

to  enable a reduction of the a t -  

Although investigation of frequency modulation effects has been performed by 
several authors i n  the framework of magnetic resonance experiments, very few 
analysis of frequency modulation has been given, which are direct ly  applica- 
ble t o  the f i e l d  of atomic frequency standards El-41. Furthermore, previous 
resu l t s  are of limited practical in te res t  because r.f.  power saturation ef- 
6ects were not taken into consideration. 

In th i s  paper we give : 

suming, a t  f i rs t ,  that  the modulation is slow. Optimum values of the satura- 
t i o n  factor and of the modulation depth are specified for  sine-wave phase 
modul a t i  on and square-wave frequency modul a t i  on. The achieved resul t s  are 
used as a basis for  further comparison w i t h  resul ts  derived when the dynami- 
cal behaviour of the atomic medium has t o  be taken into consideration i . e .  
when the modulation frequency i s  not small compared to the atomic line-width. 

for arbitrary values of the modulation d e p t h  and of the modulation frequency, 
b u t  for  weak saturation. We show that  the resul ts  derived by Andres e t  a1 C11 
and which were the only available fo r  a long time are not exact. 

i )  analytical expressions for the slope of the e r ror  signal as- 

i i )  analytical expressions for  the slope of the error s igna l ,  
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i i i )  computed values of the slope of the error signal I for a 
large range of values of the saturation factor, the mo 
modulation frequency. Sine-wave phase modulation, square-wave 
l a t ion  and square-wave phase modulation are considered, The i n f l  
value of the modulation frequency on the slope of the error s ign  
fied. The values of the saturation factor and of the modulation depth which 
maximizes the slope of the error signal are given. 

i v )  experimental values of  the slope of the error signal for  a 
rubidium cell f i l l ing a TE microwave cavity. Results are obtained for  t 
three considered modul atioh'4aveforms. They confirm that the reduction of 
error s igna l  is small a t  modulation frequencies up t o  twice the non-saturated 
atomi c 1 i ne width .  

2, THE MODEL USED FOR THE THEORETICAL ANALYSIS 

In  order t o  p o i n t  out  the results of major interest, we will consider a mod- 
el i n  which the following simplifying assumptions are made. 

i )  the properties of the rubidium cell are homogeneous. This 
means t h a t  any effect related t o  the progressive absorpt ion of light inside 
the atomic cell i s  neglected and t h a t  the light intensity i s  a constant 
across the l i g h t  beam cross-section. In particular, the longitudinal and 
transverse relaxation times T and T 
s tan t  over the cell VO1ume.Mokional gveraging i n  a coated cell w i t h o u t  buf- 
fer gas would yield homogeneous values o f  T and T . 
mme.This condition is approximatively verified close t o  the center of a 
microwave cavity i n  which the TEOll mode is excited. On the contrary, the 
amplitude of the microwave field varies largely over the volume of a 
rubi  di  um cell f i  11 ing the enti re volume of a TE cavi ty ,  an arrangement 
which i s  used widely i n  practice, i n  order t o  rhdhce the size of the fre- 
quency standard. However, we show i n  Section 7, t h a t  the experimental re- 
sul ts are i n  very satisfactory agreement w i t h  the theoretical predictions 
and t h a t ,  consequently, the model chosen i s  adequate. 

whi ch opt i  cal pumping has created the necessary popul ati on di  fference - 
The given results are valid for passive frequency standards i n  which the 
atomic resonance i s  probed v i a  a measure of the population difference be- 
tween the two involved atomic 1evels.This measure consists either i n  the 
monitoring of the absorption of the pumping l i g h t ,  as i n  the passive rubi- 
dium cell frequency standard, o r  of the fluorescence of the optically pump- 
ed medium, as i n  the mass 199 mercury ion device. 

Throughout  this paper, we will assume t h a t  the fol lowing condition i s  ful- 
f i l  led : 

respectively, will be assumed con- 

i i )  the m%crowave field i s  uni4orm ov& the rubidium cell vol- 

i i i )  rubid ium atoms behave as  a two-level quantum system i n  

w - w  < < w  (1) i 0 
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where wi i s  the i n t e r r  gation angular frequency', wo i s  the atomic t r a n s i t i o n  
angular frequency and 
resonance l i n e  (expressed i n  angular f 

i s  the fu l l -w id th  a t  h a l f -  maximum o f  the atomic 

The modulation depth w i  11 be characterized by a dimensionless parameter, u2$ 
defined as : 

where w i s  the amplitude o f  the per iodic angular frequency deviat ion. 
Similar!?y, we w i l l  introduce the normalized modulation frequency v2 defined 
as : 

where w M  i s  the modulation angular frequency. 
We w i l l  
the fundamental component o f  the pe r iod i ca l l y  modulated c e l l  response by a 
demodulation funct ion g ' ( t )  such as : 

'2 = T  2 w m 

v ~ = T  2 M  u (3 )  

(2) 

assume t h a t  synchronous detection consists i n  the m u l t i p l i c a t i o n  o f  

+ 1 f o r  0 .i: t < TM/2 

- 1 f o r  TM/2 < t < TM 

3. THE STATIC LINE SHAPE 

It may be shown t h a t  the i n t e n s i t y  I o f  the l i g h t  
c e l l  i s  given by : 

(4) 

transmi t t e d  by the r u b i  d i  um 

where I i s  a background component, I depends on 
and on !he propert ies o f  the l i g h t  f 1 8 ~  emitted by the rubidium lamp. The 
quant i ty  S i s  the saturat ion factor  defTned as : 

n 

(5) 

the atomic densi ty i n  the c e l l  

S = TITZbL (6) 
where T1 and T2 are the longi tud ina l  and transverse re laxa t ion  times, respec- 
t i v e l y  and b tis a measure o f  the microwave f i e l d  appl ied t o  rubidium atoms. 

Equation (5) describes the resonance l i n e  as a lorentz ian funct ion o f  the d i f -  
ference between the angular frequency w o f  the microwave f i e l d  and the angu- 
l a r  t r a n s i t i o n  frequency a,. The full-width-half-maximum o f  the l i ne ,  W ,  i s  
given by : 
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- - -  453 
of the resonance line is  Ill such as : T2 

c 
and the height 

( 7 )  

(8) 
3 

Ill = - I, iTs 

I O 0  

where the minus s i g n  indicates t h a t  the resonance appears as a d i p  i n  the 
transmission profile o f  the resonance cell.  For very large values of S, we 
have Ill = - 

4. THE NORMALIZED SLOPE OF THE ERROR SIGNAL 

The error signal, which i s  useful for frequency control o f  the quartz crystal 
osci 1 1 a to r  i s  proportional t o  the low-pass component of the synchronous detec- 
tor o u t p u t .  Under the condition given by equation ( l ) ,  i t  i s  proportional t o  
the angular frequency offset of the interrogation frequency from the line cen- 
ter. We then define the following normalized slopes of the error signal f o r  
( W i  - Lug)<< w : 

i )  P =  (9) 
IoT2(q - wo) 

where I (t)  i s  the component of the fundamental of  the cell response which i s  
i n  phas8 w i t h  the modulation waveform. The b a r  means time average. 

qmiw 
ii) q = 

where I ( t )  is the component of the fundamental of the cell response which is 
i n  quadpature w i t h  the modulation waveform. 

T h i s  is the slope of the error signal when the phase of the fundamental of 
the cell response and of the demodulation signal are matched. 

5. SLOW FREQUENCY MODULATION 

In the condition of slow frequency modulation, the period T = 2 ~ / w  of the 
frequency modulation i s  large compared t o  the atomic longitudinal afd trans- 
verse relaxation times. We then have : 

In this quasi s ta t ic  approximation, the atomic medium i s  assumed t o  reach a 
steady state fo r  every value of the angular frequency w of the applied micro- 
wave field. Equation (5 )  is then v a l i d ,  w i t h  w depending on time. 

v2 0 (12) 
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5.1. Square-wave frequency modulation 

The instantaneous angular frequency w ( t )  i s  given by : 

where g ( t )  i s  the modulation function which describes the frequency modula- 
t ion  waveform. For square-wave frequency modulation, i t  i s  given by : 

w ( t )  = wi + wmg(t )  ( 13) 

I t  can easily be seen t h a t  under condition ( l ) ,  the fundamental component of 
the modulated l i g h t  intensity,  which i s  transmitted by the rubidium ce l l  i s  
i n  phase with the frequency modulation waveform. 

SU T (w -a ) We have : 
8 o sin oMt I p ( t )  = 7 Io 9 2  

( 1+S+uzL) 

The fundamental component of the demodulation waveform g ' (  t)  being (4 /n)s in  
w M t ,  the normalized slope a of the error signal is given by : 

(16) 
16 u2 a =2 
IT (l+S+u22)2 

I t  can easily be shown t h a t  the maximum value of a = 0.203 occurs for  S = 2 
and u = 1. These values define the optimum operating conditions for  applied 
microiave power and modulation depth. Figure l a  shows the variation of a 
versus the quantity u2 f o r  different  values of S .  

5.2. Si  ne-wave frequency modul a ti on 
The frequency modulation waveform function g ( t )  of equation (13) i s  now : 

The fundamental component of the transmitted l i g h t  intensi ty  can be e i the r  
derived direct ly  thanks to  standard techniques of  calculation of the coef- 
f ic ien ts  of the Fourier ser ies  expansion of the response, o r  using general 
resul ts  obtained by Arndt [5] who has analyzed the quasi-static sine-wave 
frequency modul a t i  on of a 1 orentzi an 1 i ne. 

g ( t )  = sin wM t ( 17) 

The fundamental of the cell  response i s  in phase w i t h  the frequency modula- 
t ion  waveform, and we have :s u2 

4 ( 18) a = -  
IT 2 3/2 ( 1+S) l'*( 1+s+u2 ) 

The maximum value of a = 0.189 is achieved for S = 2,  as i n  the previous case, 
b u t  f o r  u = 1.22. Figure lb shows the variation of a versus the quant i ty  u2 
f o r  diffeFent values of S .  
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S r l  
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Fig. la Fig. Ib 

Fig. 1. Quasi s t a t i c  approximation. Variation of the normalized 
slope a of the e r r o r  signal versus  the normalized modula- 
t ion  depth u = T w f o r  d i f f e ren t  values of t he  sa tura t ion  
f ac to r  S , i n  the quasi-static approximation. 
a) squarewave frequency modulation with narrow band 

f i l t e r i n g  of the response, a t  the modulation fre-  
quency. 

b) sine-wave frequency modulation with narrow band 
f i l t e r i n g  of the response, at t h e  modulation fre-  
quency. 

2 2 m  

6 .  INFLUENCE OF THE MODULATION FREQUENCY ON THE SLOPE OF THE ERROR SIGNAL 

6.1. Bloch equation o f  the modulation problem 
In general, the behaviour of any two level quantum system which follows as- 
sumptions i )  t o  i i i )  o f  Section 2 can be described by Bloch equations [ 6 3 .  
For a AF = 1, AmF = 0 transit ion,  as used i n  an atomic frequency standard, 
those equations are best expressed i n  terms of  the so-called coherence o f  
the atomic medium, a ( t ) ,  and of the population difference between the two 
atomic levels, ag( t ) :  The quantity a ( t )  i s  a complex one, and we set  a ( t )  = 
a l ( t )  + i a 2 ( t ) .  

I t  can be shown that ,  i n  the presence of modulation, the Bloch equations of 
the considered problem are the following : 
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T 2 2  a + a2 - T2(wi-wo)al = T2 b a3 COSY (19) 

Tla3 + al = AT1 - Tlb(a l  s in9 + a2 cosy ) 

where the dot means time derivative. The quantity X is  ,the creation rate of 
the population difference which i n  the present case is obtained by optical 
pumping. The time dependent quantity9 is  the instantaneous phase of the m i -  
crowave interrogation signal * and the instantaneous angular  frequency is : 

The quant i ty  of  interest t o  us i s  the popula t ion  difference a ( t )  merely be- 
cause the transmi t ted l i g h t  i ntensi t y  changes are proportiona? t o  a3( t). We 
will consider the fundamental component of a g ( t )  i n  the presence of specified 
phase modulation waveforms. From now on, the i n  phase and i n  quadrature compo- 
nents of the fundamental of the cell response w i l l  be referred t o  the phabe 
modulation waveform rather t h a n  t o  the Q~eqwncy modulation waveform. 
A look a t  equations (19) shows the following : 

field amplitude b,  and t h u s  of the saturation factor S 

t ions of time which need t o  be represented by Fourier series w i t h  i n  general 
an infinite number of terms. Equations (19) then generate, i n  general an 
i nfi n i  te  set  of coup1 ed equati ons . 

w ( t )  = wi + +  (20) 

i )  they are coupled t o  a degree which depends on the microwave 

i i )  the d r i v i n g  terms i n  their r i g h t  hand sides are periodic func- 

Consequently, i t  is  no t  tractable t o  derive analytical  solutions for the quan- 
ti t y  a 
saturahon assumption w h i c h  will be considered i n  Section 6.2. Equations (19) 
have also been ana ly t ica l ly  solved for arb i t ra ry  saturation, b u t  under the 
assumption of  fas t  modulation, for which the spectrum of the cell response 
can be limited t o  frequencies -u,,,) 0 and + %. The related results wil l  be 
pub1 ished elsewhere. 

For operating conditions prevailing i n  rubidium cell frequency standards , 
equations (19) must be solved by numerical techniques. The results are 
given i n  Section 6.3. 

unless s impl i fy ing  assumptions are made. One of them is the weak 

6.2. Analytical solution for weak saturat ion 
As i t  will  be shown later, operating condi t ions  are optimized for saturation 
factors larger t h a n  unity. However, we wish to  consider weak sa tura t ion  
(i.e. S 1) a t  f i r s t  w i t h  the purpose of p o i n t i n g  o u t  t h a t  one should not 
rely on previously published results [1] established under this assumption. 

In quantum electronics, i t  is usual practice t o  expand the quantities such as 
alY a2 and a3 i n  increasing powers of the field amplitude, and t o  derive SO- 

lut ions for components of a given degree. However, the equations obtained are 
more and more intricated as the degree of the considered component increases. 
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We wi l l  limit the expansion t o  degree two of field amplitude, 1.e. t o  degree 
one of saturation factor. The v a l i d i t y  o f  the results i s  then limited t o  small 
values of S, i.e. S << 1.. 

This perturbation expansion has been considered for sine-wave phase modul a t ion,  
square-wave frequency modulation and square-wave phase modul ation 141. 
We will focus here on sine-wave phase modulation. 

We define the slopes p(') and q ( 2 )  of the error signal when the fundamental 
of the cell response i s  observed i n  phase or  i n  quadrature w i t h  respect t o  the 
phase modulation waveform. The superscript means t h a t  results are valid t o  
order two of field amplitude only. I t  comes : 

J. 

1 q ( 2 )  =-2 1 all - -=a '2  vi 
- 
S l + V l  l+v  

where we have v = T w and where the quantities a t l  and a B 2  are given by the 
following equadons ! ' 

c t I 2  = \Jo(m)Jl(m) + 

JR is Bessel function of order R.  The quantity m is  the phase modulation 
index such as m = urn/"'. R i s  an integer. 

In practice relaxation times T and T have values which are very close to- 
gether, i n  the considered atomfc medi6m. I n  order t o  derive general informa- 
t i o n  on the slope of the error signal, we set  : 

i n  equations 21 and 22. 
We then have : v1 = v2 = v = TuM and u2 = u = Tu . The phase modulation index 
is m = u/v.  

Figures 2a and b show the variations of  p( ' )  and q ( 2 )  , respectively, versus 
the normalized modulation frequency v for  different values o f  the normalized 
modulation depth u. These sets of curves differ significantly from t h a t  given 
by Andres e t  a1 El]. An examination of their derivation shows t h a t  the lon- 
g i t u d i n a l  relaxation was no t  properly accounted for.  In  figures 2a and b y  the 
undulations are related t o  addi t iona l  resonance features which occurs a t  fre- 
quencies wo t RwM, i n  the presence of  periodic phase modulation. 

T 1 = T  2 = T  (23)  

m 
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1 4 2 1  
3 

1 

Fig. 2a Fig. 2b 

Fig. 2. Sine-wave phase modulation and weak sa tu ra t ion  (S << 1) .  
The curves show the  var ia t ion  of the slope of t h e  e r r o r  
s i g n a l  versus the normalized modulation angular frequency 
v = Tu and f o r  d i f f e r e n t  values of the normalized modula- 
t i o n  depth u = Tw . 
a )  t he  fundamentaqe of the cell  response i s  observed i n  

phase with the phase modulation waveform. 
b) the  fundamental of the  ce l l  response i s  observed i n  

quadrature with the phase modulation waveform, 

M 

6.3. Computed resul ts  for  values of the modulation frequency of the modu- 
lation depth and o f  the saturation fac tor  i n  ranges of practical 
i n teres t 

The s e t  of equations (19) has been integrated numerically, assuming TI = T2 = 
T for  si ne-wave phase modul at ion,  square-wave f reqeency modul ation 
square-wave phase modulation. The quantity (0. - w ) has been fixed t o  a 
value which equals 1/10 of the half-width a t  fialf-fiaximum o f  the non- 
saturated resonance l i ne  ( i . e .  T ( w  - w ) = 0.1). I t  has been checked tha t  
this of fse t  is  small enough that2 i t  8llows a precise enough calculation 
of the slope of the e r ror  signal , and of the phase of the fundamental of the 
ce l l  response, fo r  w. = w Physically sound i n i t i a l  conditions have been 
chosen and the numerjcal ifkegration has been performed u n t i l  t ransient  

and 
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ef fec ts  vanish. The components of the fundamental of the population differ- 
change which are i n  phase and i n  quadrature with the modulation wave- 

form are extracted us ing  standard techniques of Fourier coefficients compu- 
ta t ion.  The values of the slopes p and q are then derived. Physically, they 
are obtained when the fundamental of the ce l l  response i s  observed i n  phase 
or i n  quadrature w i t h  respect t o  the phase modulation waveform. 

In the following we will give the values of the slope a , defined by equa- 
tion ( l l ) ,  which i s  obtained when the reference signal applied t o  the syn- 
chronous detector i s  delayed i n  order to  match i t s  phase to tha t  of the f u n -  
damental component of the cell  response. The phase of this fundamental, rela- 
t ive to  the phase modulation waveform is  Cp given by : 

tan = 4 P 
Double precision computation techniques have been used t o  derive numerical 
resul ts .  Furthermore, i t  has been checked tha t  the computed resul ts  agree 
w i t h  analytical ones, i n  the l imits of weak saturation, or f a s t  frequency 
modulation, for  the three considered types of phase modulation. 

6.3.1. Results f o r  sine-wave phase modulation 
Figures 3a to  3e show the computed variation of the slope a of the e r ro r  sig-  
nal and of the phase Cp of the fundamental of the population difference 
change versus the normalized modulation d e p t h  u = TU for  different values 
of the saturation parameter S = T T b2, which is probortional t o  the micro- 
wave power. Figures d i f fe r  by the' value o f  the normalized modulation fre- 
quency v = TuM. 

On figure 3a established for  a relatively slow frequency modulation such as 
v = 0.1, the c i rc les  represent values calculated under the quasi-s ta t ic  ap- 
proximation i .e .  for v = 0, according t o  equation(l8). For v II: 0 ,  the funda-  
mental of the population difference change is  i n  quadrature w i t h  the phase 
modulation of the interrogation microwave field.  One sees tha t  the val idi ty  
of the quasi-static approximation i s  extremely good f o r  v = 0.1. 

Figures 3a to  3e are for  increasing values of the mddulation frequency. The 
origin of the undulations i s  the same as i n  figures 2a and 26. 

Table 1 gives, for  specified values of the normalized modulation frequency v ,  
the values o f  the  saturation fac tor  S and of the normalized modulation depth 
u for  which the slope a of the e r ro r  signal i s  a maximum. I t  shows off  the 
main resu l t  : the slope of the e r ror  signal does not depend strongly on the 
modul ation frequency provided tha t  the saturation factor and the modul.ation 
dep th  are properly increased as the modulation frequency takes 1 arger Values 
For i nstance, for  v = 1.9, i .e .  f o r  a modulation frequency almost equal 
t o  the non-saturated full-width- a t  half-maximum, the slope a may be made 
equal t o  i ts  value f o r  slow frequency modulation. I t  may also be noticed t h a t  
the loss in the value of the slope remains small fo r  v = 4. 
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0.1 

2 6 0 

Fig. 3e 

Fig. 3. Sine-wave phase modulation eamp&ed n a u ,  Variation of 
the slope of the e r r o r  signa2 and of t he  phase $, versus 
the  normalized modulation depth u and f o r  d i f f e ren t  values 
of the  sa tura t ion  f ac to r  S .  
a) v = 0.1. Circiles represent the values calculated under 

b) v = 1.0 
c )  v = 1.9 
d) v = 2.8 
e> v = 3.7 

the quasi s ta t ic  approximation, according t o  equation (18). 
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Table 1. Sine-wave phase modulation comptc;ted v h u .  For a given 
value of the normalized modulation frequency v ,  the slope 
a of the e r ror  signal shows a maximum f o r  the specified 
values of the saturation factor  S and of the normalized 
modulation depth u .  
For v = 0 ,  results are derived from the quasi-static 
approximation. The quoted uncertainties on S and u 
are equal t o  the step of change of these parameters 
i n  the computations made. The phase Q is  expressed i n  
radian. 

6.3.2. Results f o r  square-wave frequency modulation 
Figure 4 shows an example of the computed variation of the slope a of the 
er ror  signal and o f  the phase cp of the fundamental of  the population differ-  
ence change versus the normalized modulation d e p t h  u ,  fo r  different values 
of the saturation parameter S. 

Table 2 gives, for  specified values of the normalized modulation frequency v ,  
the values of the saturation factor  S and of the normalized modulation dep th  
u f o r  w h i c h  the slope a of the e r ro r  signal shows a maximum. 

For v = 0.1, the computed results are closely identical t o  the results obtain- 
ed under the quasi-static approximation, and given by equation (16). The 
same s o r t  of remarks and conclusions w h j c h  have been made fo r  sine-wave phase 
modulation apply fo r  square-wave frequency modulation. 
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Fig. 4 .  Square-wave frequency modu- 
l a t i o n  WmpuXed ~ U e f i .  Variations 
of t h e  slope a of the e r r o r  s igna l  
and of t he  phase 4, f o r  v = 3.7, 
versus the  normalized modulation 
depth u and f o r  d i f f e r e n t  values 
of the sa tura t ion  f a c t o r  S. 

0 I I u 
-0.4 2 4 
-0.8 - 
-1.2, 

c 

-c, 

Table 2. Square-wave frequency modulation compu-ted valueh. For a given value 
of the normalized modulation frequency v, the slope a of  the e r ro r  
signal shows a maximum fo r  the specified values of  the saturation 
factor S and of the normalized modulation depth u .  For v = 0 ,  re- 
sul ts are derived from the quasi-static approximation. The quoted 
uncertainties on S and u are equal t o  the step o f  change of these 
parameters i n  the computations made. The phase cp i s  expressed i n  
radian. 
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6.3.3. Results for square-wave phase modulation 
For square-wave phase modulation, the atomic medium response i s  enti rely f~unda 
ed on transient effects which occur after phase jumps. In that case,the quasi- 
s ta t ic  approximation is  then meaningless, because the first harmonic content 
of  the cell response vanishes for v 2*- 0. Intuitively, one migh t  t h i n k  t h a t  
the cell response i s  significant when the modulation frequency is of the or- 
der of the atomic line-width. T h i s  i s  verified, i n  order of magnitude, by 
quanti t a t i  ve resul ts. 

Figures 5a t o  5d show the computed variations of the slope a of the error 
signal and of the phase 4 of  the fundamental of the population d'ifference 
change versus the amp1 itude of the phase deviation '9 m, for' di fferent values 
of the saturation parameter S ( i t  should be noticed t h a t  the phase steps 
amount t o  29,). Figures differ by the value of the normalized modulation 
frequency v. 

Table 3 summarizes the important results. I t  gives for the specified values of 
the normalized modulation frequency v, the values of the saturat ion factor ' 

and of the amplitude o f  the phase change? for  which the slope a of the 
error signal shows a maximum. The optimum value of tQm is  close t o  d4. T h i s  
slope decreases only very slightly from v = 1.9 t o  3.7, i n  the explored 
range, when the saturation factor S and the phase changevm are adjusted t o  
their increasing optimum values. 

0.169 - 1.15 

Table 3.  Square-wave phase modulation campu.&d va&u. For a given value of 
the normalized modulation frequency v, the slope a of the error 
signal shows a maximum for the specified values of the saturat ion 
factor S and of the amplitude of phase deviation 'Q 
uncertainties on the values of these parameters are equal t o  
their step of change i n  the computations made. The phases M m  
and 4 are expressed i n  radian. 

The quoted 
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Fig, 5, Square-wave phase modulation compLl;ted h e n m e  
Variation of the slope a of the e r r o r  s ignal  and 
of the phase Cp, versus the  amplitude of the phase 
change 9 and for  d i f f e ren t  values of the satura- m t ion f a c t o r  S.  
a)  v ;P 1.0 
b) v = 1.9 
c )  v = 2 . 8  
d) v = 3.7 

7.  EXPERIMENTAL RESULTS 

Etcperimental results have been obtained w i t h  a set-up having a widely usedg7 
configuration. An isotopic f i l t e r ,  with 80 Torrs of argon i s  used. The Rb 
cel l  containing 20 Torrs of nitrogen is  operated a t  60" C. I t  f i l l s  almost 
en t i r e ly  a cylindrical microwave cavity operated i n  the TE mode. In th i s  
experimental arrangement, optical pumping and relaxation aid1 not homoge- 
neous i n  the c e l l .  In addition the microwave magnetic f i e l d  amplitude shows 
large variations over the ce l l  volume. The experimental resul ts  can then be 
used to check the ab i l i t y  of our model t o  predict the influence of the modu- 
la t ion frequency on a practical device. 

An average saturation factor S' i s  defined from the d i p  of the transmitted 
l i gh t  a t  microwave resonance. We have, from equation (8) : 

S I  = - Ia / ( Io  t I a )  (25 )  

The value of the transverse relaxation time T2 is  measured by extrapolating 
the atomic line-width to zero microwave power. I t  i s  found that  the f u l l -  
width a t  half maximum W varies as follows : 

2 w2 = wo (1 t a s 1 )  

where Wo = 2/T2 is  the non-saturated linewidth. Experimentally, one has 
a = 5.2 and 

T2 = 1.77 + - 0.18 ms 
- 

I t  can be shown that  the value of a depends on the microwave f ie ld  configu- 
ration, the l i gh t  intensity,  the length of the c e l l ,  the temperature and 
also on the area of the photo cel l  exposed t o  the transmitted l ight .  

The value of the longitudinal relaxation time i s  measured by observing the 
exponential variation of the transmitted l i g h t  intensi ty  a f t e r  the microwave 
power has been switched off .  We have 

T1 = 1.82 t 0.04 ms 
Thus i t  turns out  tha t  the condition T1 = T2 which has been assumed i n  Sec- 
t ion 6.3. i s  fu l f i l l ed  quite sa t i s fac tor i ly .  
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The slope of the error signal i s  measured as follows. A quartz crystal oscil- 
l a t o r  i s  frequency locked t o  the rubidium ce l l ,  b u t  w i t h  a voltage added t o  
the synchronous detector o u t p u t .  The frequency of the qua r t z  crystal oscil la-. 
tor i s  measured for two opposite values of the voltage, and the normalized 
slope of the error signal i s  obtained. I t  has been checked t h a t  the offset 
of the interrogation frequency from the resonance frequency remained m a l  l e r  
than  1/10 of the full-width a t  half-maximum. The phase of  the fundamental 
component of the light intensity changes shows an extremum for w. = w so 
t h a t  i t s  measurement was precise enough with the stated experimehal 'pro- 
cedure. 

Sine-wave phase modulation, square-wave frequency modulation and square- 
wave phase modulation have been applied t o  the microwave signal. 

Figures 6a t o  6d show the results for sine-wave phase modulation. The value 
of the measured slope i s  smaller t h a n  the value calculated from the model 
and the optimum occurs for smaller values of  the saturation factor ( for  
v = 0.1 the optimum value of S I  i s  1.3). However, for a given value of v ,  
the shape of the computed and o f  the measured variations i s  quite similar. 
Table 4 summarizes the experimental results. I t  shows t h a t  the optimum value 
of a does n o t  depend drastically on the value of  the modulation frequency. 

Table.4. Sine-wave modylation. Exp&rnevLtae v & a .  For a given value 
of the normalized modulation frequency v,  the slope a of the 
error signal shows a maximum for the specified values of the 
saturation factor S I  and of the normalized modulation depth u .  
The quoted uncertainties on S' and u are equal t o  the step of 
change of these parameters in the measurements made. The phase 
Cp i s  expressed i n  radian. 

Figure 7 shows an example of  measured results for square-wave frequency modu- 
lation with v = 3.7 and Table 5 gives the main results, w i t h  the same general 
conclusions as for sine-wave phase modulation. 
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Fig. 6a  Fig. 6b 

Fig. 6c Fig. 6d 

Fig. 6. Sine-wave phase modulation. ExpetLimeMkd tLQnul%. 

Variation of the slope a of the e r ro r  s igna l  and of 
the phase (9, versus the normalized modulation depth u 
and f o r  d i f f e ren t  values of the sa tura t ion  f a c t o r  S ' .  
Circles represent  the experimental points.  
a )  v = 0.11 b-) v = 1.0 
c) v = 2.9 d) v = 3 . 7  
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Fig. 7 .  Square-wave frequency modulation, 
ExpaLmenkae WU&A. Variation 
of the slope a of the error 
signal and of the phase 4, for 
v 5 3.7,  versus the normalized 
modulation depth u and for dif-  
ferent values of the saturation 
factor S' . Circles represent 
the experimental points. 

Table 5. Square-wave frequency modulation. ExpetGimerttae v & a .  For a 
given value of the normalized modulation frequency v ,  the 
slope a of the er ror  signal shows a maximum for  the specified 
values of the saturation factor S' and of the normalized mod- 
ulation depth u .  The quoted uncertainties on s '  and u are 
equal t o  the step of change of these parameters i n  the mea- 
surements made. The phase + i s  expressed i n  radian. 
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Figures 8a t o  8c show the va r ia t i on  of the normalized slope a i n  the case o f  
square-wave phase modulation as a funct ion o f  the amp1 i t ude  o f  the phase dxvia- 
t l o n  vm 
ized modulation frequency v. Again, the shapes agree q u i t e  s a t i s f a c t o r i l y ,  
but  w i t h  smaller values o f  a and S' . Table 6 shows tha t  the optimum values o f  
'Q 

Comparison o f  Tables 4 t o  6 shows tha t  square-wave phase modulation y i e l d s  an 
optimum value o f  the slope a which i s  even l a r g e r  than w i t h  the two o ther  
types o f  modulation f o r  v = 4. 

f o r  d i f f e r e n t  values o f  the sa tura t ion  fac to r  S '  and o f  the normal- 

agree c lose ly  w i th  the computed ones. 

I 
a 

-1 2. 

Fig. 8b 
Fig. 8a 

Fig. 8. Square-wave phase modulation. 
ExpULhenkd Uhl.l&h. Varia- 
t ion  of the slope a of the 
e r ro r  s igna l  and of t h e  phase 
@, versus the normalized modu- 
l a t i o n  depth u and f o r  d i f fe -  
r en t  values of  t he  sa tu ra t ion  
fac tor  S' . Circles represent 
the experimental points.  
a) v = 1.0 
b) v = 2.9 
c) v = 3.7 

Fig. 8c 
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TABLE 6 .  Square-wave phase modulation. ExpmLrnentae uaeueb. For a 
given value of the normalized modulation frequency v ,  the 
slope a of the e r ro r  signal shows a maximum f o r  the speci- 
fied values of the saturation fac tor  S '  and of the ampli- 
tude of phase deviation 9,. The quoted uncertainty on the 
values of these parameters are equal t o  the i r  step of change 
i n  the computations made. The phases 'Q and cp are expres- 
sed i n  radian. 

8. CONCLUSIONS 

Our theoretical analysis has been made w i t h  the assumption tha t  optical pump- 
ing ,  relaxation and the r.f.  field are homogeneous over the rubidium ce l l .  
O u r  experimental data has been obtained w i t h  a rubidium cel l  i n  a TElll cavity 
and those conditions are not sa t i s f ied .  However, these resu l t s  agree 
sa t i s fac tor i ly  w i t h  the theoretical  predictions. Consequently, we may con- 
clude the following : 

i )  for  sine-wave phase modulation and square-wave frequency modu- 
lation, the resul ts  of the quasi-static approximation can be used up t o  v = 1, 
as f a r  as the slope a of the e r ror  s igna l  is concerned. I t  yields a s a t i s -  
factory estimate of the values of the saturation factor and of the normalized 
modulation depth f o r  which this slope is maximum. 

modulation, the slope a of the e r ror  signal decreases only s l igh t ly  i f  the 
modulation frequency is  increased up  t o  a value such as v = 4, provided tha t  
the saturation factor  and the modulation depth are adjusted t o  increasing op- 
t i m u m  values specified i n  Tables 1 and 2. One sees that  when the modulation 
frequency increases, the l ine  m u s t  be power broadened i n  order tha t  the 
linewidth tends t o  follow the value of the modulation frequency. Similari ly,  
the frequency excursion around the interrogation frequency has to be increased. 

i i i )  f o r  square-wave phase modulation, the optimum modulation fre- 
quency i s  such as v II: 2 and the slope a f a l l s  off very s l igh t ly  for  v 
when the values o f  the saturation factor  and of the amplitude of the periodic 
phase change are adjusted to  the values given i n  Tables 3 o r  6. 

i v )  f o r  large modulation frequency such as v = 4, the slope a 
becomes a l i t t l e  larger  for square-wave phase modulation than f o r  the two 
other so r t s  of modulation which have been considered. Square-wave phase mod- 
ula t ion  might then be the best modulation method i n  applications where f a s t  

i i )  for  sine-wave phase modulation and for  square-wave frequency 

2 
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frequency modulation is required. In addition, i t  has other known specific 
advantages-such as ease o f  i m p l ~ e ~ t a t i o n  and excellent i m n u n i  t y  t o  non- 

i s torti on o f  the phase modul ator 
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