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ABSTRACT

Continuous-time models of oscillator phase noise x(t) usually have
stationary nth differences, for some n. The covariance structure of such a
model can be characterized in the time domain by the structure function:

Dn(t;Tl,Tz) = E Agix(s+t) A22X(S) (0

Although formulas for the special case D9(0;t,t) (the Allan variance times
212) exist for power-law spectral models, certain estimation problems require
a more complete knowledge of (0).

We exhibit a much simpler function of one time variable, D(t), from
which (0) can easily be obtained from the spectral density by uncomplicated
integrations. Believing that D(t) is the simplest function of time that
holds the same information as (0), we call D(t) the fundamental structure
function.

. We compute D(t) for several power-law spectral models. Two examples are
D(t) = | |3 for random walk FM, D(t) = Kt2 lnlt‘ for flicker FM. Then, to
demonstrate its use, we exhibit a BASIC program that computes means and vari-
ances of two Allan variance estimators, one of which incorporates a method of
frequency drift estimation and removal. Except for a one~line function defi-
nition of D(t), the program is independent of the phase noise spectrum. The
outputs were used for assigning confidence intervals to the results of recent
hydrogen maser performance tests at JPL.

THE STRUCTURE FUNCTION

The purpose of this paper is to demonstrate an easy way of computing a
class of time-domain oscillator stability measures known collectively as the
structure function. Let the phase of an oscillator with nominal frequency vg
be modeled by

2nv0(t + x(t))

where x(t) is a random process representing the '"phase time" of the
P

*The research described in this paper was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the
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oscillator. The most restricted version of the structure function, discussed
by Lindsey and Chie [1], is

D (%) = E[AT x(s)1° , @

where A; is the backwards difference operator defined by A f(t)=f(t) - £(t~1),
and E denotes the mathematical expectation. It is to be understood that .the
nth difference process A? x(t) is wide-sense stationary, so that (1) does not
depend on s. For n = 2 we obtain the Allan variance as '

-éki D, (1) .
2T

02(1) =
y
A more general version of the structure function is

n

D (t5 Ty,Ty) = E A7 x(stt) A7 x(s) , (2)

1 2

which was used by Yaglom [2] as a basis for a theory of processes with
stationary nth differences. For the application to be given at the end of
this paper, we shall need the yet more general version

D(t; a,b) = E A x(stt) A x(s) , (3)

where
a= (al,...,an), Aa = A, ...Aa .
— 1 n
and likewise for b, A,.

By using the transfer function 1 - e—in of the operator A¢, one can
express all of these quantities as integrals involving the two-sided spectral
density Sy(w) of the process x(t), which is assumed to have stationary nth
differences for some n. For example, if the long-term frequency drift rate is
zero, then

© A
-i d
D, (1) =:£ |1 - e s (w) 52

. )
4.1 . d
= 16 ;I; sin (-z—w'r) Sx(w) 2—: s
D(t; a,b,c,d) = E AaAb x(s+t) ACAd x(s)

- (5)
= [ a-etmya - by - eluey o - lud) ot g () 0

P -]

(This is (3) withn = 2.)
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Because of the importance of the Allan variance as a stability measure,
the integral (4) has been evaluated in closed form for power-law spectral
models

5,0 = K [0]*?, a= -2, -1, 0,1, 2,

with a high-frequency cutoff when o 2 1 ("PM" noises) [3]. The expressions
(5) and (3) are more complex, yet we shall show how to compute any of these in
two easy steps: 1) By means of simple integrations involving only the spec~
tral density, evaluate a single function D(t) of one time variable; 2) apply
a certain difference operator of order 2n to D(t). This function D(t),
depending only on the spectral density, will be called the fundamental struc-
ture function because, merely by taking linear combinations of values of D(t),
one can generate the entire covariance structure of the differences of x(t).

STATIONARY PHASE

If x(t) is stationary, then D(t) turns out to be just the autocovariance
function:

D(t) = Cov(x(s+t),x(s)) = f ™ s (u) 32 . (6)

-0

Indeed, by expanding the differences in the middle éxpfession of (5), one
can show directly that

D(t; a,b,c,d) = Aa Ab A-c A—d D(t) . D)

It is just this form of expression that will be extended to the nonstationary
situation, where Sx(w) is not integrable near zero frequency.

THE FUNDAMENTAL STRUCTURE FUNCTION IN GENERAL

Let us be given a process x(t) with stationary nth differences. It is
known [2] that x has a spectral density Sx(w) with the properties

{ Sx(w) dw < »

1 k
[ s @an<a, 8)
0

for some integerk, 05k X 2n. (We ignore the more general case of a spectral
distribution function.) Here is one way to compute the fundamental structure
function D(t): Define the function

B(z) = f o102 (iw)ka(w) %% (9)
0
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on the upper half-plane Im z > 0. Let C(z) be any kth integral of B(z), i.e.,
any function such that C(k)(z) = B(z) on Im z > 0. It will always be found
that C(z) can be extended to the real line by continuity. Then let

D(t) = 2 Re C(t), t real (10)
"If k > 0, then D(t) is not unique; any polynomial of degree < k may be added
to it. If x is stationary then k = 0, and D(t) reduces to the covariance
function (6).

RANDOM WALK FM

To see how easy it is to carry out the above procedure for power-law
noise types, consider the spectral density Sx(w) = w4, and take k = 4. Then

B(z) =.f W2 %% = --E%TE (Imz > 0) ,
0
a fourth integral of which is
oy = - L 2 lnz (tm 2 3 0)
27l 6 :

(One can throw out a polynomial of degree less than 4.) Taking n z =
1nlz[ + 1 Arg z for Im z 2 0 gives

D(t) = 2 Re C(t) = 0 (t > 0)

-t3/6 (t <0).

Adding t3/12 to this gives the alternate form
D(t) = |e|>/12 .
OTHER POWER~LAW NOISE TYPES

We now give D(t) for the power-law spectrum

- %
% 202m

.

s () = K lu|*?, &

The forms for the constant Ky and the power of w link the results to an
accepted notation for the noise spectrum, namely
. o
Sy(f) = haf
[3]1, where y = dx/dt, f = o/(2%), and Sy(f) is the one-sided spectral density

of y. Fractional values of o are allowed. We can take k to be the integer
part of 2 - a (refer to (8)).
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Case 1. ¢ < 1, not an odd integer.

. _ltll-a
D(t) = K 2T(2-a) cos(ma/2) ° (11)
This case includes white FM (o = 0) and random walk FM (o = -2).
Case 2, o= -1, -3, -5,...
K l-a
D(e) = -2 (1) -0/2 —tTl_—};‘)‘—,Lt—l : (12)
This case, which includes flicker FM (a = -1), is actually the easiest of all.
Cagse 3. a = 1 (Flicker PM).
Here we use the spectrum
S_(w) = K, |u|™ exp (~|w/w_]) .
X 1 - h
The exponential high-frequency cutoff yields the elementary result
D(t) = - % In(e” + 1/ (13)

whereas the usual rectangular cutoff yields a cosine integral.
Case 4. a>1.

This phase noise process (provided with a high-frequency cutoff) is
stationary; thus D(t) is just the autocovariance function of x.

DERIVING THE STRUCTURE FUNCTION FROM D(t)

Having the fundamental structure function D(t) in hand, we now show how
to use it. Let x(t) be a noise with spectral density Sy(w), k the smallest
integer satisfying (8), and ny the smallest integer such that 2ny 2 k. The
differences of x of order ng and higher are stationary, and to simplify
matters let us assume that they are ergodic and have mean zero. For ng = 2,
this means that an oscillator with phase time x(t) has no long-term average
frequency drift. Our main result is the following formula for the general
structure function (3) of order n 2 ng:

D(t; a,b) = AEA_RD(t). (14)

_ The proof, which has appeared elsewhere [4], starts from the spectral
integral
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D(t; a,b) =f ts () S, as)

in which the differences operate on elWt as a function of t. (Refer to (5)
for the case n = 2.) One cannot simply pull the difference operators outside
the integral, for the Fourier transform integral of Sy(w) diverges (unless

k = 0) if the singularity at w = 0 is not neutralized. One way to do this is
through the function B(z) given in (9). Another embodiment of D(t) is given
directly by the formula

® n-1 25
- _ 1 (iwt)
D(t) :lj[cos wt IT:TEEH = Z1)7 == 51 S (w) (16)

wherg n z_no .
MOMENTS OF STABILITY ESTIMATORS

The remainder of this paper presents a nontrivial application of the
preceding theory. Let the phase time x(t) have a long-term frequency drift
component :

1.2
x(t) = xo(t) + 3et”

where c is the constant rate of frequency drift, and xp(t) is a Gaussian
process whose 2nd differences are stationary, ergodic, and have mean zero.
Observing x(t) for 0 S t £ T, we wish to estimate ¢ and the quantities

cz(r) = ;%7 E [Ai x (£)1% (Gross Allan variance) ,

-4£§ E [Ai xo(t)]2 (Net Allan variance) ,

2

o° (1) =
y0( ) -
which are the theoretical Allan variances before and after removal of drift.

To define and manipulate the estimators, it is necessary to set up some
notation as follows: Write

C(a,b,t) = % a8, x() .

(This has nothing to do with (10).) Then EC = ¢ for any a,b,t. A particular
one of these is used for estimating c, namely

c = C(TC,T—TC,T) an
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where t¢ = .T/6.29, a value chosen to minimize the variance of & in the
presence of flicker FM noise [5]. The interpretation of (17) is that the
estimated drift rate equals the average frequency near the end of the record,

minus the average frequency near the beginning, divided by the intervening
time T - T..

Let us introduce the additional quantities

ey = c(t,7,31), ¢, = C(1,T-1,T) , (18)

where j is an integer. To estimate (2/72) a%(t), we use the unbiased
statistic

m
=1 2 19
V_m—lzcj’ (19)
i=2

where it is now assumed that T/T is an integer m. This is just the usual
Allan variance estimator involving the sum of squares of adjacent second
differences. (The unusual gcale factor 2/12 is convenient for these calcu-
lations.) To estimate (2/12) G%O(T), we use

m
1 AN2
VO P~ E (Cj - . (20)
=2
Since
m
m-1 EE: i T’
j=2
we have
A A2
V0 = V = 2ccT +c . (21)

Our goalbis to compute the mean and variance of Vg, a biased estimator.
First, we see that Vj, does not depend on the true drift rate c, and so for
this purpose we can take ¢ = 0. Then

B = (2/7%) oio(T) , (22)
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Var V = —L—i Z Z Cov(cjz;,clzc) » (23)

EV, = EV - 2, + E&® , (24)

Var V, = Var V + 4 Var(@cT) + Var 2% - 4 Cov(V,GcT) + 2 Cov(V,Gz)
Al A2 (25)
-4 Cov(ccT,ﬁ )
Because x(t) is Gaussian, the fourth moments in (25) are determined from
the second moments of ¢, cj, Coo and the general formula
Cov(uv,xy) = Eux Evy + Euy Evx , (26)
where u, v, X, y are zero-mean random variables with a joint Gaussian
distribution. 1In turn, the required second moments are just special cases
of the structure function formula (14), which here takes the form
, 1 v
E C(a,b,s + t) C(c,d,s) = Thed AaAbA_cA_dD(t) , 27

where D(t) is the fundamental structure function of the phase-time noise
x(t). This expression, when written out, is a sum of 16 terms involving D.
(See line 1040 of the BASIC program in Fig. 1.)

A BASIC PROGRAM

The tedious but elementary task of computing (23) -  (25) by means of
(26) and (27) is carried out by the BASIC program shown in Fig. 1. The main
point to observe about this program is that the whole algorithm is independent
of the phase noise spectrum, which enters only through the one-line function
definition of D(t) in line 1030 (and the print statement 130). The only
requirement on S,(w) is that the integer k in (8) be at most 4. This guaran-
tees that x(t) has stationary second differences. Because of the way the out~
puts are scaled, a multiplicative constant in D(t) can be neglected; thus we
can let D(t) = |t|3 for random walk FM. For flicker FM, line 1030 becomes

DEF DD(T) = T#*T*LOG(ABS(T) + (T=0)) .
Line 1040 evaluates (27), and the subsequent definitions evaluate the'required

special cases. Note that the length of the test run is used as a unit of

time. It must be admitted that computational efficiency has been sacrified to
gain ease of coding.

Figure 2 shows the output of the program for random walk FM. The columm
MEAN(NET) gives the expected value of (12/2)Vy relative to the true net Allan
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variancec'f2 (t). The variances of V and Vg, the estimators of gross and net
Allan variances, are presented in terms of '"degrees of freedom’ (DF), defined
for a positive random variable X by

oF = 2ER*

VarX °

as if X had a x? distribution. The DF(GROSS) result is valid only if the true
drift has been subtracted from the phase data. When T/t = 1, the gross and
net DF are both 1, since both V and Vj are squares of mean-zero Gaussians.

CONFIDENCE INTERVALS FOR ALLAN VARIANCES

Following Howe et al. [6], we use the results shown in Fig. 2 to assign
confidence intervals based on the x2 distribution, usudlly with a fractional
DF. The author has ngt estimated the error caused by pretending that V and Vj,
are proportional to xz variables. Random walk FM was used as a nolse model for
T > 104 s. Fig. 3 shows the estimates of gross. Allan variance (before drift
removal) and net Allan variance (after drift removal) for a 72-day test run of
a pair of hydrogen masers at JPL,

Different drift estimators are used in Figs. 3a and 3b. 1In Fig. 3a, we
use a value of drift measured by retuning the masers over a period muzh longer
than the 72-day test run. Regarding this value as close to the "true" value
¢, and using it in (21) in place of ¢, we can use the gross DF numbers from
Fig. 2 to assign confidence intervals to net Allan variance. In Fig. 3b, the
estimated value ¢ was used, so that one must use the net mean and DF numbers
to compute the confidence intervals. The negative bias of Vg pushes the comni-
fidence intervals up; in fact, for T/t = 2 (one sample of second phase differ-
ence), the bias is so great that the 907 confidence interval does not contain
the estimate itself. This is pushing things too far, perhaps.

The basic problem is that one cannot remove estimated drift (via (21),
for example) without also taking a bite out of the long-term random fluctua-
tions. The outputs of the above computer program for w® 2 phase noise
(-2.5 £ o £ 0) support the conjecture that the bias of the net Allan variance
estimator Vg is always negative.
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100
ii0

120
130
140

150
i60
i70
180
190
aoo

ig0o
1030

1040

1050
i060
1070
1073

1080

1090
1400
1440
1120
1430
1140

1450

1160

1470
ii80
1490
1200
1210

| MOMENTS OF ALLAN VARIANCE ESTIMATORS
GOSUR 1000

MC=6 . 29 |
PRINT \’NOISE TYPE = RANDOM WALK FM’
PRINT ‘MEAN & D.F. FOR GROSS & NET A.V.‘\\
*T/TAU’, "MEANC(NET) /, D .F . (GROSS) / , *D.F . (NET)’
FOR M=2 TO 9,40 TO i8 BY 2,20 T0 S50 BY S
GOSUB 1080
DF =2/VARV , DF 0=2XEVOXEV0 /VARVO
PRINT M,EV0,DF,DFO0
NEXT M
STOP

IDEFINITIONS

DEF DD(T)=ARS(TXTXT) IFUNDAMENTAL STRUCTURE FUNCTION
IFOR RANDOM WALK FM

DEF MM(A,B,C,D,T)=(DD(T)-DD(T~A)~DD(T~RB)~DD(T+C)-DD{(T+D)

+DD(T-A~B)+DD(T~A+C) +DD(T-A+D ) +DD(T~B+C) +DD(T~B+D) +DD (T+C+D)

~DDAT~-A-B+C)~DD(T~A~E+D)~DD(T-A+C+D)~DD(T~R+C+D)

+DD(T-A~B+(C+D) ) / (AXBXCXD )

DEF FF(A,R)=MM(A,1-A,E,i-R,0)

DEF GG(A,B,J)=MM(A,i-A,R,B,1-JXR)

DEF HH(A, J)=MM(A,A,A,A,TXA)

RETURN

1COMPUTATION SUBROUTINE
VINPUTS: M=T/TAlU, MC=T/TAUC (=6.29)
TOUTPUTS: EVO/A.V., VAR(V)I/A .V . XX2, VAR(VB)/A. V. XX2
EVO VARV VARVO
U=4/M,UC=4/MC 11U STANDS FOR TAU
FUU=FF (U, ) ,FCU=FF(UC ,U) ,FCC=FF (UC,UC)

HUO=HH(U, 0) ,HU02=HUOXHUO 1HUO IS SCALED ALLAN VARIANCE
!

EVO=HU0-2%FCU+FCC

Mi=M=~1, X=0\ H=HH(U,J) ,X=X+(Mi-J)%H¥H FOR J=4 TO M-2\
X=2XX+MikHUO 2, VARV=XK2/ (ML XM1)

VARCU=FCCKFUU+FCUXFCU, VARCC=2XFCCXFCC

X=0\ X=X+GGUC,U,)RGG(U,U,TJ) FOR J=2 TO M\ COVVCU=2xX/Mi
X=0\ G=GGUC,U,JT) ,X=X+GXG FOR J=2 TO M\ COVVCC=2%X/Mi
CVCUCC=2%XFCCXFCU

|

OARUO=UARV+4*VARCU+VQRCC~4*COUUCU*E*COVVCC-4*CVCUCC
RETURN WHERE EVO0=EV0/HUO,VARV=VARV/HUO2, VARVE=VARVI/HU02

Figure 1. A BASIC program for computing mean and variance
of an estimator of net Allan variance.
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NOISE TYPE =
MEAN & D.F.

T/TAU

Figure 2.

MEAN(NET)
14213718
4134003
56608639
65837896
72007427
76417726
. 7970189
82222714
. 84209354
87125838
. 89153524
90639572
. 94772997
92664775
. 9423454
95254384
. 9596919
96497606

26903944

97225997

RANDOM WALK FM
FOR GROSS & NET A.V.

D.F.(CROSS)

NN VT HLINg-

. 882353

. 7692308
.65714314
. 5454549
. 4339623
. 3225806
.2142679
.100000%
.877%547

. 655173
432836
.210%27
.988236
. 432559
.876923
.321343
.765708
.210428
654528

-

D.F

LUl S TS e P

el
(A V]

Ol Y TO R
Nagdo

a8

>
Y

Output of the program of Fig. 1 for
random walk FM noise.

292

LENET)

.000004 4
.20412%7
.9797428
.8243698
.6927653
5779954
4662905
. 3534235
.2390%02
.0083684

777728
.5462%514
314574
. 084209
511747
. 943548
378236
.84498%
253179
.6925614



m‘]?

0P Ruv 12838 / -
START = 1300, 10-22-81 / GROSS =—rme
END = 1785, 1-2-82 / NET -
CHAN 3 = DSN2-NR4 / DRIFT ———
10°16 | i A 1 ]
10712 T T T T T
- .
-BL e
10 1
-14
05 4“4 B
/" 5
~ NO. OF SAMPLES
/
10'15... , /' .
e GROSS
R NET  -———---
7/ DRIFT —-—
10‘16 1 1 Z 1 . i
1! 102 1k 10? 10° 106 10’
TAU (S}
Figure 3. Allan variance of a pair of hydrogen masers

(DSN2 and NR4) before and after removal of
drift, with 907 confidence intervals for
net Allan variance.

293



QUESTIONS AND ANSWERS

None for Paper #12
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