
N

NASA Contract.or Report 172210

NASA-CR-I72210
19830027409

Developrnent of a Prototype
M ulti-Processing Interactive
Software Invocation System

William Joseph Berman
Advanced Programming Techniques, Inc.
704 Village Road
Charlottesville, VA 22903

Contract NAS1-16985
September 1983

111
NF02517

NI\SI\
National Aeronautics and
Space Administration

langley Research Center
Hampton, Virginia 23665

I

LIBRARY, NASA
VIFlGlNIA

During NASA Contract NASl-16985, the Interactive Software Invocation
System (NASA--ISIS) was first transported to the M68000 microcomputer, and then
rewrii:ten in the programming language Path Pascal. Path pascal is a
significantly enhanced derivative of Pascal, allowing concurrent algorithms to
be eXl)ressed using the simple and elegant concept of Path Expressions.

'l~e problem of transporting NASA-ISIS to the M68000 was solved
modifying the standard M68000 implementation tools to overcome their
limitaLtions. The sequential version of NASA-ISIS was operational on
M68000 within the first several months of this contract.

by
size
·the

~~e major effort on this contract was that of converting the sequential
code e,f the original NASA-ISIS to Path Pascal. This necessitated the complete
reorga.nization of the software j.n order to take advantage of the concurrent
processing capabilities of Path Pascal. The resulting system is much easier
to understand and to modify than the original Pascal-written system;
furthermore, in writing the Path Pascal version, several programming paradigms
were identified that are now considered to be standard path pascal coding
techniques.

The principle problem encountered during this contract was the fact that
the Path Pascal compiler/trans later was being enhanced and debugged by the
Government in parallel with its use on this contract. As new constructs were
identified as necessary and as errors were detected, the Government would make
the ap'propria-te modifications. This interacti.on lasted the duration of i:he
contract, and has resulted in a Path Pascal system that is robust and well­
tested; the :frustrations and delays during the contract period have been
reward1edby 1l:he fact that Path Pascal is now available for use in future
Govermnent projects.

The primary result of this coni:ract has been to verify the viability of
Path pascal al~ a system I s development language. 'l~e NASA-ISIS implementation
using Path Pascal is a prototype of a large, interactive system in path
Pascal. As su(~h, it is an excellent demonstration of the feasibility of using
Path Pill.scal to write even more extensive systems. It is hoped that future
effortl~ will build upon this research and, ultimately, that a full path
pascal/ISIS Operating System (PPIOS) might be developed.

1

Introduction

The development of the National Aeronautics and Space Administration's
Interactive Software Invocation System (NASA-ISIS) was begun in April 1977
under contract NASl-14862 with the University of virginia in Charlottesville,
VA. This effort was continued after september 1979 under contract NASl-15935
with Dr. Joseph Berman. The principle accomplishments of contract NASl-15935
were to complete the development of NASA-ISIS and to demonstrate its
portability across a range of systems using a highly-portable subset of the
programming language Pascal.

starting in February 1982, Advanced Programming Techniques, Inc., with
Dr. Berman as president, was awarded NASA contract NASl-16985 to continue
researching the NASA-ISIS "shell" concept, but moving the emphasis from
portability to obtaining various efficiencies by rewriting the software in the
programming language Path Pascal. Path Pascal was developed by Dr. Roy
Campbell at the University of Illinois under a NASA grant [1]. It allows the
Simple and elegant specification of highly concurrent algorithms.

2

Background

~I'he res.~arch done under this contract involved the merger of two powerful
techn~)logies -- NASA-ISIS and Path Pascal. In the following sections, the
important characteristics of these systems are presented.

NASA-ISIS

~rhe primary motivation for NASA-ISIS has been, and continues to be, to
suppolrt the orderly development of flight software. Early in the development
of Nru3A-ISIS this software was analyzed and characterized by:

long life-cycles, involving many users and facilities as
the development proceeds from specifications through
coding.. testing and maintenance

increasingly complex programs, as flight computers become
larger and faster, and project:s more ambitious

high rE~liability, requiring large amounts of information
includjLng requirements, source code, test data, reports
and documentation

tight E3chedules, implying high programmer productivity

~rhe basic concept for NASA-ISIS is that it is a software system that
provides an integrated, interactive software development environment for all
phasel~ of s()ftware development. ~is is not to say that NASA-ISIS was
desigl:led to perform all of the various specialized tasks of the many possible
software tools; rather, NASA-ISIS provides a systematic interface to the host
computer sy~3tem and the various tools. NASA-ISIS is the toolbox and the
workbench, and is based upon the following major concepts:

NASA-ISIS is a "shell language"

NASA-ISIS is a PASCAL-like language

NASA-ISIS has integral text editing and file management

NASA-ISIS can be used to "invoke" tools

path l~ascal

~rhe standard definition of the programming language PASCAL
constructs for separate compilat:ion, data encapsulation or
procel:lses. Path Pascal is a derivative of PASCAL that extends
providing thf~se necessary constructs.

includes no
concurrent

PASCAL by

separatE~ compilation was recent:ly added to Path Pascal by Dr. Ed Foudriat
of Nru3A LaRC, A large program may be divided into "MODULES", each of which
can b4:l separately compiled and later "linked" to the other MODULEs in order to
creab:l the full program. Each MODULE includes an "interface", specifying
infonnation that is available to other MODULES in the system, and in
"IMPLl~NTAT:CON", specifying information that is private to that MODULE.

3

Data encapsulation is provided in Path Pascal using the OBJECT construct.
An OBJECT is a new Pascal "TYPE constructor" that allows the declaration of
CONSTs, TYPES, and VARiables that are hidden within the OBJECT. To gain
access to these hidden VARiables, the OBJECT must include "ENTRY" subroutines
tha"t may be called from outside the OBJECT: only these ENTRY subroutines may
directly use the OBJECT's variables. Thus, the ENTRY subroutines provide a
well-defined set of operations upon the encapsulated variables such that the
code using these operations can be written knowing only the effects of the
operations, not their implementation.

concurrency is provided in path Pascal by allowing the specification of
PROCESS subroutines. Calling a PROCESS subroutine causes the PROCESS to be
allocated its own run-time stack and both the calling routine and the PROCESS
to proceed to execute in parallel (pseudo-parallel on a Single-processor
machine). Communication and synchronization among the various concurrently
executing PROCESSes is achieved by having OBJECTs act as "monitors" to control
concurrent access to data according to a set of rules expressed as an OBJECT's
"Path Expression". A Path Expression is a special notation for specifying the
strategic placement of counting semaphores within the ENTRY routines of an
OBJECT. A Path Expression can specify concurrent access using the comma
(.. , .,), synchronized access using the semicolon (";"), and "burst.. access using
square brackets ("[n and "]").

4

Research Performed

Research under this contract lasted for 15 months. There were three
distirlct phalses -- implementation of NASA-ISIS on the M68000, study and
experlmentation with Path Pascal, and implementation of NASA-ISIS in Path
Pascal. These phases are reviewed in the following sections.

NASA-ISIS on the M6BOOO

'1'he firs:t three (3) months of this contract were spent transporting NASA­
ISIS t:o the M68000. The main problems were the restrictions imposed by 'the
standalrd software development tools for the M68000. By modifying these tools,
it became possible to implement the large NASA-ISIS system.

1I,dditionally, NASA-ISIS on the M68000 was extended with charac'ter
proces:sing capabilities to allow direct interclction with the terminal from
NASA-ISIS. These capabilities are sufficient to implement sophisticated user­
interactions that are not possible on older computer systems such as the CDC
CYBER machines.

lPath P'lllscal Experimentation

The next seven (7) months of this contract were spent studying and
experimenting with Path Pascal. Since Path Pascal is a new language, it took
a substantial effort to understand how to use its powerful constructs.

In addition, the Contractor spent significant effort working the Dr. Ed
Poudriat of N;~A LaRC in designin~J enhancements to the Path pascal language,
in implementing various aspects of the system, and in testing the resulting
Path Pascal system. Several major contributions were made to this effort by
the contractor, including process/procedure tz'acing in the run-time system,
full interrup'c handling capability, and sample programs that thoroughly tE~St
various aspec'cs of the system.

NASA-ISIS in]llath Pascal

The final five (5) months of this contract were spent implementing NASA­
ISIS ilrl path Pascal. Although a si~Jnificant amount of the NASA-ISIS software
could be dilcectly transported to path Pascal, it had to be entirely
reorganized in order to take advantclge of the OBJECT/PROCESS capabilities of
Path Pascal. This reorganization was complicated by several errors in the
path Pascal 1:ranslater that required many hours to pinpoint and equally as
long fc)r the Government to correct.

By using several MODULEs developed during the Path Pascal Experimentation
phase descril)ed above, the implementation of NASA-ISIS in path Pascal was
relatively straight-forward. The resulting system demonstrates the
concurl~ent processing capabilities of Path Pascal by allowing a Single user to
control two J.lrASA-ISIS sessions simultaneously from a single terminal. The
user SE~es the top half of the CRT as one NASA-ISIS system, and the bottom half
as another, independent, NASA-ISIS system. By typing the sequence "ESC ESC
A", thE! user may communicate to the top system; "ESC ESC B" accesses the
bottom system.

5

Results

The main accomplishment of this research effort has been the
demonstration of the feasibility of using Path Pascal as an implementation
language for complex software. While the software delivered to NASA-LaRC
under this contract is interesting, it is the fact that it was written using
this new, untried language that is most important. Furthermore, by using Path
Pascal to develop such a large system, several important aspects of Path
Pascal have been found.

standard OBJECTstpath Expressions

While the Path Expression concept of Path Pascal can very succinctly
state a complex interaction among many PROCESSes trying to use the data
contained in an OBJECT, it is not easy to design these all-important Path
Expressions. Fortunately, however, it has been found during the course of
this research that most OBJECT/Path Expressions conform to a limited number of
"paradigms".

Buffer OBJECTs

A common use of an OBJECT and its Path Expression is to act as a buffer
between two PROCESSes. Such an OBJECT acts as a "pipe" between the PROCESSes
by allowing one (the "supplier") to place information into the buffer without
having to wait on the other PROCESS, and by allowing the other (the
"consumer") to extract information from the buffer as it is ready to process
it. This standard OBJECT/Path Expression was first described by Roy Campbell
in his original paper on Path Expressions [2]&

PATH
buffersize:(store;fetch),

1: (store),
1: (fetch)

This same Path Expression can also be used to solve some of the simple
versions of the many-to-l buffering problem. If the suppliers are competing
"fairly" to send information to the consumer, and if the consumer can process
the information in any order, this standard OBJECT/path ExpreSSion is
sufficient.

Controlled-Interleaving Buffer OBJECTs

Another standard OBJECT/path Expression is used to handle the many-to-l
situation in which a given supplier needs to send an un-interleaved sequence
of data to the consumer. For example, in a CRT system supporting multiple
windows, it is desirable to "reserve" the buffer (if necessary, waiting until
it is available), to position the cursor to the appropriate position on the
screen, to write a sequence of characters, and to "release" the buffer. Thus,
there is a controlled interleaving of characters being routed to the windows
on the screen. This, and many similar Situations, can be solved by using the
standard OBJECT/Path Expression:

6

PATH
l: (hold; free),

buffersize: (store; fetch),
l: (store),
J.: (fetch)

END;

In thi.s case, each supplier first calls "hold" to gain control of the buffer,
then u.ses one or more "stores" to place the information into the buffer, and,
finally, calls "free" to allow another supplier access to the buffer. Note
that, unfortunately, there is no way to guarantee that this protocol will be
follo'W'ed by each supplier; if the protocol is not followed, unacceptable
behavior will result.

1.-to-Many Processing

While the many-to-J. situation can be solved simply by most languages that
support concurrency, it is important to note that Path pascal has sufficient
power to easily solve the l-to-many problem. In this case, a supplier is
producing information and, based upon some criteria in the data, will select a
particular consumer to receive that data. Path Pascal solves this problem by
allowing both ARRAYs and Linked Lists of OBJECTs, making it possible to use
the supplier'S data in conjunction with a search procedure through such a data
structure.

An example of a l-to-many situation is the processing of a terminal's
input stream as it enters a multi-tasking environment. The user must be able
to direct the characters he types to the appropriate task. This can be solved
by having a standard buffer OBJECT convey the characters to a "routing"
PROCESS that examines the input stream for a particular sequence of characters
(e. g., "ESC lESC") that indicates that the user wishes to communicate to a
different taSk. When this sequence is found, the linked list of OBJECTS
corres.p0nding to the terminal input for the various tasks is searched to find
the appropriate OBJECT (also a standard buffer) and subsequent input is
channeled into this OBJECT.

":Remote ll?rocedure Call" OBJEC'l'

Tihere have been several proposals made for extending systems such as Path
Pascal that depend upon shared variables for describing and controlling
concurrency to operate in a distributed computing environment. One suggestion
that has received considerable interest is that of "remote 'procedure calls".
As described :in [3], a remote procedure call can be viewed as a two-message
exchant;Jel the caller sends a message, then waits for the called routine to
return a message (such as a record from a shared, distributed database).

E'ven though it is not a message--based system, Path Pascal can achieve the
effect of a "remote procedure call" by using a "four phase" OBJECT/Path
Expression:

PATH

END,!

l:(caller_calls; message_handIer_receives},
1: (message_handler_returns; caller_receives)

7

Thus, the caller uses the routine "caller_calls" (limited to VALUE parameters)
to send its data to the message handler and then calls "caller_receives"
(limited to VAR parameters) to wait for a response. Meanwhile, the message
handler is a PROCESS that uses the appropriate protocol to send the data to
another part of the distributed system. The receiving message handler then
uses a similar OBJECT/Path Expression to convey the data to its destination,
and then waits for a reply. When the reply occurs, the message handler uses
the network to return the data to the original message handler that, finally,
uses the OBJECT/path ExpreSSion to transfer the information to the caller.

Physical/Logical Input/output

In addition to studying Path ExpreSSions and identifying various standard
OBJECT/path Expressions, the deSign and implementation of a CRT input/output
mechanism was an important contribution of this research. Once again,
however, the details of the code produced during the contract period is not
nearly as important as the concepts that are embodied in that code.

In designing and implementing the CRT interface, extensive use of buffer
OBJECTs was made in order to isolate the various aspects of the information
processing. This approach allows the substitution of PROCESSes between these
buffers to perform specified processing. These PROCESSes have the functions
of managing the input/output controller, device, sharing and buffering.

Controller Input/Output

All interrupt-driven code in a computer system is directly related to
specific input/output controllers. Each controller is responsible for
interfacing a device to the computer's bus structure and, unfortunately, most
controllers use their own unique protocol for communicating to and from their
device.

In Path Pascal, interrupts are handled using the DOlO statement. For
input, an INTERRUPT PROCESS is a loop that waits for the interrupt to occur,
examines the status/data associated with the interrupt and passes the
appropria.te information into a buffer OBJECT for further processing. For
output, an INTERRUPT PROCESS is a loop that waits for data via a buffer
OBJECT, initiates an output operation, waits for an acknowledging interrupt
and examines the status associated with the interrupt for any errors in
transmission.

It is critical that the loop of an INTERRUPT PROCESS be very effiCient,
especially for processing input interrupts. Data might be lost if the PROCESS
cannot perform the DOIO statement in time. The buffer OBJECT aSSOCiated with
the INTERRUPT PROCESS must be sized to take into account the speed of the
device and the antiCipated load upon the entire system. It should be large
enough to handle a burst of data to or from the device.

Device Input/Output

Each input INTERRUPT PROCESS places its data into a buffer OBJECT that is
read by a "device input PROCESS"; each output INTERRUPT PROCESS receives its
data from a buffer OBJECT that is written by a "device output PROCESS". These
"device PROCEsses" are responsible for transforming between internal standard

8

requi:rements and external idiosyncratic behavior. For CRT devices, the most
common requirements of the device PROCESSes are to interpret special
keystrokes (e.g., cursor control) as standard internal codes, and to transform
standa.rd internal codes into appropriate escape sequences to perform spec:ial
CRT operations (e. g. I clear screen) . If a new CR~r is attached to the system
using an existing input/output controller, only the device PROCESSes need be
changed.

Shared Input/Output

At the controller and device levels, the input/output is simply treated
as a sequence of input/output requests. In a multi-processing environment
such as that created by Path Pascal, there may be many PROCESSes making
input/output :requests. It is the responsibility of the "I/O Sharing PROCESS"
to accept these requests and to sa.tisfy them in an order consistent to some
pre-specified strategy. For instance, a disk-sharing PROCESS might reorder
read/write n~quests for purposes of optimizing head motion, or a printer­
sharing PROCESS mi.ght route all print requests except the process currently
"owning" the printer to a spooling device.

Blllffered Input/output

If a PROCESS'S input/output requests are for data transfer in the sizes
other it:han th()se specified by the underlying input/output system, there is a
need for a "I/O Buffering PROCESS". Thus, if a PROCESS makes a series of
requests to l~ead single characters sequentially from a disk file, the disk­
buffering PROCESS would make a singl.e request to read the appropriate block
from the filEl and then use the characters in that block to respond to the
requesi:s for ~lingle characters.

9

Summary and Conclusions

The most important result of this research effort has been the
verification that Path Pascal can be an excellent tool for building highly­
concurrent software. Even if a high degree of concurrency is not required,
Path Pascal's MODULEs and OBJECTs are powerful tools for creating reliable,
readable software.

The program produced under this contract is interesting; it contains a
few novel features. However, its primary contribution has been as a vehicle
for t.r.y.ing new ideas and learning how to effectively use Path pascal. It is
hoped that this knowledge will be used in future research efforts to go beyond
the prototype/demonstration phase and to build full-featured, production
systems in Path Pascal.

10

References

L campbell, R.H. and Kolstad, R.B" "PATH PASCAL User Manual", SIGPJ:..AN
Notices, '\Tol. 1.5, No.9, September 1.980.

2. Campbell, R.H., "Path expressions: A technique for specifying process
synchronization", Ph.D. disseration, Computing Laboratory, University of
Newcastle upon Tyne, August 1.976.

3. Andrews, G. R. and Schneider, F. B. , "Concepts and Notations for Concurrent
Programming", Computing Surveys, Vol. 1.5, No.1, March 1983.

11

~ Repo~~~ CR 1722~_0 __________ ~r __ 2_. __ G_O_V_er_n_m_e_nt __ A_CC_e» __ iO_n __ N_O_. ____________ l __ 3~.-R~~---iP-ie-n~t-'s-Ca--~-I~---N-O-·----------~1
't. -;'i(l~ lnd Sub(it1~ ti. ,;Jport Date I

DEVELOPMENT OF A PROTOTYPE MULTI-PROCESSING
INTERACTIVE SOFTWARE INVOCATION SYSTEM

6. Performing Organization Code

september 1983

7. Author{s) a. Performing Organization Report No.

William Joseph Berman N8301
10. Work Unit No.

9. Performing Organization Name and Address

Advanced Programming Techniques, Inc.
704 Village Road
Charlottesville, VA 22903

11. Contract or Grant No.

NASl-16985
13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

National Aeronautics and space Administration
Washington, DC 20546

14. Sponsoring Agency Code

15. Supplementary Notes

Langley technical monitor: Ralph Will
Final Report

16. Abstract

During NASA Contract NASl-16985, the Interactive Software Invocation
System (NASA-ISIS) was first transported to the M68000 microcomputer, and then
rewritten in the programming language Path Pascal. Path Pascal is a
significantly enhanced derivative of Pascal, allowing concurrent algorithms to
be expressed using the simple and elegant concept of Path Expressions.

The primary result of this contract has been to verify the viability of
Path Pascal as a system's development language. The NASA-ISIS implementation
using Path pascal is a prototype of a large, interactive system in Path
Pascal. As SUCh, it is an excellent demonstration of the feasibility of using
Path pascal to write even more extensive systems. It is hoped that future
efforts will build upon this research and, ultimately, that a full Path
Pascal/ISIS Operating System (PPIOS) might be developed.

17. Key Words (Suggesced by Author{s)) 18. Distribution Statement

interactive computing, concurrent
algorithms, programming languages

19. Security Classi!. (of this report) 20. Security Classi/' (of this page)

UnclaSSified Unclassified

Unclassified-Unlimited

21. No. of Pages 22. Price

11

N-J05 For sale by the National Technical Information Service, Springfield, Virginia 22161

End of Document

