

A Final Report
 on Grant No. NAG3-141

FOUR-DIMENSIONAL MODULATION AND CODING:
an alternate To Frequency-REUSE
Submitted to:
National Aeronautics and Space Administration
Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135
Attention: Dr. E. F. Miller
Submitted by:
S. G. Wilson

Associate Professor
H. A. Sleeper

Graduate Research Assistant

Communication Systems Laboratory
 Department of Electrical Engineering
 RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES
 SCHOOL OF ENGINEERING AND APPLIED SCIENCE
 UNiVERSITY OF VIRGINIA
 CHARLOTTESVILLE, VIRGINIA

```
(NASA-CR-174453) FOUL-DIMENSICNAL
18ミ-3630C
MOLULAIICN ANL CODING: AF ALTEGMATE IO
FEEQUENCX-fEUSE Final Eeport {Virqinia
Oniv.) 60 F HC AO&/MF AOl CSCL 20N Unclas
G3/32 15158
```

\qquad

PREFACE

This report constitutes the final report to NASA Lewis Research Center under NAG 3-141, though it is not a summary of technical work performed. Other reports filed under this contract are:

1. "Channel Effects on Continuous-Phase Modulation, A Simulation Study," R. G. Harkness and S. G. Wilson, UVA/528200/EE82/101, June 1982.
2. "Convolutional Coding Combined with Continuous Phase Modulation," S. V. Pizzo and S. G. Wilson, UVA/528200/EE82/102, November 1982.
3. "An Improved Algorithm for Evaluating Trellis Phase Codes," M. G. Mulligan and S. G. Wilson, UVA/528200/EE82/103, November 1982.
4. "Rate $3 / 4$ Convolutional Coding of 16 -PSK: Code Design and Performance Study," S. G. Wilson, K. A. Sleeper, P. J. Schottler, and M. T Lyons, UVA/528200/EE82;105.
5. "Rate $2 / 3$ Convolut onal Coding of CPFSK," M. G. Muliigan and S. G. Wilson, UVi./528200/EE83/107.

ORIGINAL FAGE IS OF POOR QUALITY

TABLE OF CONTENTS
Page
ABSTRACT iv

1. INTRODUCTION 1
2. FOUR-DIMENSIONAL LATTICES 7
3. ASYMPTOTIC PROPERTIES OF LATTICES 11
4. MODULATION SETS IN 4-D 14
4.1 4-D Sets from 2-D Products 15
4.2 Good. 4-D Constructions 16
5. R_{0}, tHE Randoh CODING EXPONENT AND CUT OFF RATE 20
6. CONVOLUTIONAL CODES FOR 4-D MODULATION 22
7. CONCLUSION 27
8. ACKNOWLEDGENENTS 27
BIBLIOGRAPHY 28
APPENDIX.A
APPENDIX B

Abstract

We discuss four-dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase-orthogonal carriers ($\cos \omega_{c} t$ and $\sin \omega_{c} t$) simultaneously on space-orthogonal electromagnetic waves. "Frequency reuse" techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four-dimensional, rather a product of 2-D modulations, e.g. QPSK.

It is well known that, higher-dimensionality signalling affords possible improvements in the power-bandwidth sense, [1-3]. We build upon this work to describe 4-D modulations based upon subsets of lat-tice-packings in $4-D$, which afford simplification of encoding and decoding. Sets of up to 1024 signals are constructed in $4-D$, providing a (Nyquist) spectral efficiency of up to $10 \mathrm{bps} / \mathrm{Hz}$. Energy gains over the reuse technique are in the $1-3 \mathrm{~dB}$ range at equal bandwidth. Finally, trellis codes onto 4-D modulation sets are investigated as a means of further improving the power/bandwidth tradeoff. We focus upon codes with up to 4 states for $R=2,3$, and 4 bits/symbol interval.

1. INTRODUCTION

Abstract

"Frequency-reuse" is a technique which utilizes two spatiallyorthogonal electric field polarizations for communicating on the same carrier frequency to double the apparent spectral capacity of a satellite communcations system. Provided the two fields can be kept orthogonal (admittedly a problem on some channels due to depolarization) then the spectrum efficiency is twice that of a non-reuse strategy, and th energy efficiency is exactly that of a single channel at the same E_{b} / N_{o} level. A typical application would perform quadrature phase shift keying (QPSK) on each polarization providing a theoretical spectral efficiency of $4 \mathrm{bps} / \mathrm{Hz}$, with probability of bit error given by

as for antipodal signalling.

$$
\begin{equation*}
P_{b}=Q\left(\left(\frac{2 E_{b}}{N_{0}}\right)^{1 / 2}\right) \tag{1}
\end{equation*}
$$

Viewed more troadly, this signalling method may be treated as a special case of four-dimensional modulation, with two phase-orthogonal dimensions residing in each of two space-orthogonal directions.

The transmitted signal may be represented as
$S_{i}(t)=\vec{u}_{v}\left(a_{i} \cos \omega_{c} t+b_{i} \sin \omega_{c} t\right)+\vec{u}_{H}\left(c_{i} \cos \omega_{c} t+d_{i} \sin \omega_{c} t\right)$ where u_{v} and u_{H} denote unit vectors in the so-called "vertical" and "horizontal" orientations. Letting the orthonormal basis set be

$$
\phi_{0}(t)=\vec{u}_{v} \sqrt{\frac{2}{T}} \cos \omega_{c} t
$$

$$
\begin{aligned}
& \phi_{1}(t)=\vec{u}_{v} \sqrt{\frac{2}{T}} \sin \omega_{c} t \\
& \phi_{2}(t)=\vec{u}_{H} \sqrt{\frac{2}{T}} \cos \omega_{c} t
\end{aligned}
$$

$$
\phi_{3}(t)=\dot{u}_{H} \sqrt{\frac{2}{T}} \sin \omega_{c} t
$$ we obtain a signal space representation of the ${ }_{i}{ }^{\text {th }}$ signal as the vector $\sqrt{T / 2}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$. In this context, QPSK with frequency reuse provides a 16 -ary constellation in $4-\mathrm{D}$ with signals of the normalized form ($\pm 1, \pm 1, \pm 1, \pm 1$), i.e. the vertices of a 4-cube centered at the origin. Because of the usual association of each of the four bits with ± 1 modulation on a fixed dimension, minimum bit error probability detection can be achieved simply by sign detection in each coordinate position.

Figure ${ }^{1}$ illustrates the block diagram of the modulator with the 2-D/reuse and 4-D perspectives. The hardware differences are surprisingly minor, indeed a system using polarization reuse already employs the required $R F$ components to perform the more general 4-D modulation. Demodulation is likewise similar. The 4-D receiver employs quadrature carrier demodulation on each polarization, followed by matched filtering and decision making. Here lies the principal difference; the $2-D$ receiver utilizes two separate $2-D$ decision rules, while the generai case uses a $4-\mathrm{D}$ rule. For general constellations,
this decision rule can be rather unwieldy, but in the case of 4-D lattice-based constellations, simple procedures are available.

The 4-D signal design problem is to locate M points in R^{4} so that for a given minimum Euclidean distance between signals, the average (or peak) energy is minimized. More formally, letting \bar{s}_{i} denote signal locations and $\|\bullet\|$ the usual norm, the problem is

$$
\begin{array}{r}
\text { minimize } \frac{1}{M} \sum_{i=1}^{M}| | \bar{s}_{i} \|^{2} \\
\because: i a,
\end{array}
$$

$$
\left\|s_{i}-\dot{s}_{j}\right\| \geq d_{\min }^{\prime \prime}, i \neq j
$$

This is the classical sphere packing problem for which ample previous work has been done. We illustrate by discussing known results in 2D and 3D which are more easily perceived. In two-dimensions the best arrangement for large M places signal points on vertices of equilateral triangles which tesselate the plane. This is sometimes referred to as a hexagonal lattice, as the decoding regions are ragular hexagons centered at each signal 'poínt. For finite" M 'in' 2 - D; references [4] and [5] provide optimal constellations and certain symmetric constellations. Às an example, the optimum $M=16$ constellation in $2-D$ has the arrangement shown in Figure 2a, while Figure $2 b$ illustrates the standard 16-QASK design, which may be visualized as a Cartesian product of 1-D 4-levè AM.

The optimum design is about 0.5 dB more $\in f f i c i e n t$ in use of energy (average), slightly more under a peak energy constraint, with both having the same spectral efficiency. This example points to the (slight) superiority of joint 2-D design rather than a standard iterated
1-D modulation. Of course, the optimal constellation is more
complicated to implement, especially in the receiver detection
circuitry.

Other interesting results are known in three dimensions [6]. For large M, the best packing is to place signals at centers of rhombic dodecahedra, regular polyhedra:which have 12 faces and butt against 12 other signals. The centers or signal points lie on a face-centered cubic lattice. In the special case of $M=8$, we have a natural design using the 8 vertices of a 3-D cube. This design is again a product of 1-D antipodal modulation. Intuition suggests this might be the optimal arrangement of 8 points on 8 3-D sphere, but a construction using tetrahedra, one inverted and "pushed through" the other (known as the antiprism) [6] provides a better distribution of points, ty about 0.5 dB under peak and average energy constraints.

These examples indicate rather miniscule gains over a. simple "product of : $1-\mathrm{D}$ " approach, but in, general the gains are better, particularly for larger M. We have selected examplas where the simple approach leads naturally to efficient constructions. In addition, the jointly-coded approach offers more flexibility. If we want $M=16$ points in 3-D the sinple product designs such as $\dot{4}$-level AM x-ary QPSK give a 3-1 coustellation substantially poorer than the best placement of 16 signels on a sphere.

What we seek are 4-D signal constructions for $M=8$ through 1024 points which have superior energy efficiency to that obtained in a 2-D modulation-with-frequency-reve approach. We shall concentrate on designs based upon $4-D$ lattices [7] as "fest" decoding algorithms for
the Gaussian channel exist. The articles of Conway and Sloane [7-9] provide much of the groundwork in characterizing lattices in four dimensions and their packing properties.

Of primary interest is the lattice designated D_{4}, consisting of the points $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ whose integer coordinates have an even sum. For infinite lattices, D_{4} has the property that the packing density is largest, ise: 4-D. spheres (decoding regions of a certrin size) are packed most densely in 4-space, which provides an optimal signal design for the Gatissian channel, at least for large M."Edge effects, that is truncation of the lattice to obtain a number of points equalling a power of two, comproaise this optimality somewhat, but D_{4} provides a basis for investigation.

Previous related work may be found on $4-1$ modulation in the work of Welti and Lee [2] and of Zetterberg and Brandstom, [3,8]. Welti and Lee analyze several classes of codes for M ranging beyond a thousand and tabulate the energy versus bandwidth performance of the best codes. The Welti/Lee codes are essentially subsets of D_{4}; or translations of D_{4}, although the terminology is not used. Zetterberg and Brandstom concentrate on quaternion groups as constructions for 4-D codes and arrive at comparable performance for a smaller number of codes. These codes also kave the property that signal vectors lie on a $4-\mathrm{D}$ sphere (equal-energy), whereas the Welti/Lee codes are allowed to consume all of 4-space within a sphere. This equal-energy constraint is a significant penalty as M becomes large in the same way M-ary PSK becomes less efficient than M-ary amplitude/phase modulation in 2-D.

```
We next give a brief discussion of 4-D lattices and the cases of interest, prior to describing specific signal constellations for modulation and trellis codes built upon them.
```


2. FOUR-DIMENSIONAL LATTICES

An n-dimensional lattice is a regular set of points in m-dimensional space defined by

$$
\begin{equation*}
\bar{s}=u_{1} \bar{a}_{1}+\ldots u_{n} \bar{a}_{n} \tag{5}
\end{equation*}
$$

where \bar{s} is a m-dimensional column vector, u_{i} are integers and \bar{a}_{i} are n linearly independent column vectors in R^{m}. Note $m \geq n$. The vectors \bar{a}_{i} are a basis for the lattice in an integer-coefficient expansion.

Given such a latice L, the dual lattice L^{*} consists of all points \bar{y} spanned by $\bar{a}_{1}, \bar{a}_{2}, \ldots \bar{a}_{n}$ such that $\bar{s}^{\circ} \bar{y}^{\prime}$ is integer-valued. Two lattices A and B are equivalent if their points may be mapped 1-1 by a coordinate rotation and scaling.

Cases of Interest

a) Z_{4} is the set of all four-tuples with integer coordinates, and is dubbed the "integer lattice." We may define the bases as follows:

$$
\begin{aligned}
& a_{1}{ }^{T}=\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right) \\
& a_{2}^{T}=\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right) \\
& a_{3}^{T}=\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right) \\
& a_{4}^{T}=\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

The minimum distance betweon points in this latice is $d_{\text {min }}=1$ as is seen by enumeration, and the "kissing number" is 8 (the kissing number τ is that number adjacent lattice points located at distance $d_{\text {min }}$).
b) D_{4} is the set of all integer-valued 4-vectors with an even sum. As such it may be viewed as a punctured version of Z_{4} where vectors with odd-sum are removed, and it is obvious that $d_{\text {min }}=\sqrt{2}$ by virtue of this puncturing. (We shall be careful to normalize for energy and distance later.)
A basis for D_{4} ' is defined as (note $[2]$ utilizes a difterent
basis)

$$
\begin{aligned}
& a_{1}^{\mathrm{T}}=(2,0,0,0) \\
& a_{2}^{\mathrm{T}}=(0,2 ; 0 ; 0) \\
& a_{3}^{\mathrm{T}}=(1,1,1,1) \\
& a_{4}^{\mathrm{T}}=(1,1,1,-1)
\end{aligned}
$$

For D_{4} the kissing number τ is 24 and D_{4} represents the densest lattice packing for four-dimensions in the sense that among all lattice packings the largest number of unit radiu, spheres can be placed per unit volume.
$D_{4}{ }^{*}$, the dual lattice of D_{4}, is best defined as $Z_{4} U\left(Z_{4}+\right.$ $(1 / 2,1 / 2,1 / 2,1 / 2)\}$, that is form the union of z_{4} and a translate of Z_{4}. As defined, $d_{\min }=1$, but it is known that D_{4}^{*} is equivalent to D_{4} as defined above.
c) A_{4} is formed by the set of all 5 -dimensional integer vectors whose sum is zero, e.g. (3, -1, $0,-1,-1),(2,0,-2,0,0)$, etc.

Geonetrically the lattice may be viewed as a hyperplane through Z_{5} wit'r the plane cutting the origin so $\bar{\Sigma} x_{i}=0$. Since sll the inter1
sected points lie in a $4-\mathrm{D}$ space we may assign the points to have $4-\mathrm{D}$ crordinates to construct a signal constellation. For A_{4} the kissing number τ is 20 and $d_{\text {min }}=\sqrt{2}$.

ORGNEZ FRE': 'u OF POOR QUALITY

Decoding of Lattice Codes

Lattice constellations are of special interest due to their fast decoding procedures. Given a received vector $\overline{\mathrm{r}}=\left(r_{1}, \ldots r_{4}\right)$ the task is to Locate the closest point in the lattice for maximum likelihood decoding on the Gaussian channel. For the above lattices we describe simple procedures decoding [7]:
Z_{4} : R. und-off each r_{i} to the nearest integer and adopt this integer vector as the codeword. This amounts to simple quantization of each signal coordinate independently.
D_{4} : Round-off \bar{r} as above to produce an integer vector; if its sum is even, adopt it; if not, round the "worst" r_{i} the other way; the integer vector will then have an even sum.
$D_{4}{ }^{*}$: Repeat the algorithm for n_{4} with offsets of $\bar{r}_{0}=(0,0,0,0)$, $\vec{r}_{0}=(1 / 2,1 / 2,1 / 2,1 / 2), \bar{r}_{0}=(0,0,0,1)$ or $\bar{r}_{0}=(1 / 2,1 / 2,1 / 2,-1 / 2)$, then pick the vest among these four winners
A_{4} : The reader js referred to [7], pages 230-231, for a simple discussion of the procedure; in general this is a more complicated procedure than the preceding. Decoding can be done with $5-\mathrm{D}$ or $4-\mathrm{D}$ coordinates.

The above methods presume a: infinite lattice with no attention to the fact that signal constelations are finite sets. Assuming the constellation is a full lattice out through some hypershell, then we decode as above anc check the shell radius; if it does not exceed that for the constellation in use, the decoded point is accepted. If the
decoded point is outside the constellation, we must re-decode to the nearest constellation point using some special rule.

We will also be interested in decoding constellations which are translated versions of a root lattice, say by \bar{s}_{0}. It is obvious that merely subtracting this vector from \bar{x}, then performing normal lattice decoding is optimal.

ORIGINAL PEEE : OF POOR QUALITY

3. LATTICE SIGNAL DESIGNS IN 4-D: ASYMPTOTIC COMPARISONS

For 4-D lattices, it is known that D_{4} (or its dual $D_{4}{ }^{*}$) provide the densest packing of unit spheres per unit of $4-\mathrm{D}$ volume. This suggests that D_{4} will produce optimal signal constellations for the additive Gaussian channel since decoding regions for this problem are spheres. When the number of signals M selected from concentric shells becomes large, the ratio of average energy expended to squared minimum distance is $2 \sqrt{M} / 3 \pi$ [2], and since the kissing number is 24 and there are $\log _{2} M$ bits per signal, the error probability is given by

$$
P[\varepsilon] \sim 24 Q\left(\frac{d_{\text {min }}}{\sqrt{2 N_{0}}}\right)=24 Q\left(\left(\frac{2 E_{b}}{N_{0}}\left(\frac{\log _{2} M}{M^{1 / 2}}\right)\left(\frac{1}{.81}\right)\right)^{1 / 2}\right)=24 Q\left(\left(\frac{2 \vec{E}(.81)}{N_{0} M^{1 / 2}}\right)^{1 / 2}\right)(6)
$$

where E_{b} is the energy per bit and E is the energy per symbol.
For $M=64$, the performance given by this asymptotic expression is

$$
\begin{equation*}
P[\varepsilon] \sim 24 Q\left(\left(\frac{2 E_{b}}{N_{0}}(.93)\right)^{1 / 2}\right) \tag{7}
\end{equation*}
$$

which is asymptotically only 0.3 dB less efficient than QPSK transmission, but with 6 bits/4 dimensions rather than 4 bits/4 dimensions, i.e. 50% better spectral efficiency. At $M=1024$, the expression gives

$$
\begin{equation*}
P[\varepsilon] \sim 24 Q\left(\left(\frac{2 E_{b}}{N_{0}}(0.39)\right)^{1 / 2}\right) \tag{8}
\end{equation*}
$$

or 4.1 dB worse than QPSK, but with 2.5 times the spectral efficiency.
The packing density for the integer lattice, Z_{4}, is only half that of $D_{4}[8]$, while that of A_{4} is rather close to that of D_{4}, namely 89%. To interpret this we say that within a arge volume of

ORIGN: $\because \because$
 OF POOR QUALITY

R^{4}, if 100 unit radius spheres can be packed for Z_{4}, then 200 can be using the D_{4} arrangement, and 179 can with A_{4}.

Stated in another way, suppose we wish M signals in Z_{4}, D_{4}, or A_{4}. The peak energy requirement to include this many signals is $E_{P} \sim .32 M^{\frac{1}{2}}$ for $D_{4}, 0.45 M^{\frac{1}{2}}$ for Z_{4} and $.34 M^{\frac{1}{2}}$ for A_{4}. This projects a 1.5 dB advantage in peak energy for D_{4} oic Z_{4} at equal M .

It is also known that in R^{4} the peak-to-average energy ratio is $3 / 2$ in the limit of a large number of points uniformly distributed within a hypersphere. This holds independently of the lattice so the relative efficiencies abjve hold for both peak and average energy comparisons.

Another more constructive comparison is provided by enumerating the lattice points and calculating \bar{E}, the average symbol energy, divided by $d_{\text {min }}^{2}$. This ratio is essentially the signal-to-noise ratio and can be related easily to $P[\varepsilon]$. This ratio is shown for Z_{4}, A_{4} and D_{4} in Figure 3. Points plotted correspond to those with fully-populated shells, but these are typically not powers of 2 . For a given M, we wish to achieve a certain $d_{\text {min }}$ for the smallest possible \bar{E}, so D_{4} is superior. For a given M, it appears that Z_{4} requires about 1.5 dB additional energy, while A_{4} requires about $0.2-0.3 \mathrm{~dB}$ higher energy, relative to D_{4}. Or at a given \bar{E} / d^{2} ratio, D_{4} can convey twice as many symbols as can Z_{4}. These are obviously consistent with packing theory described above.

Based on these asymptotic results, it is clear that D_{4} is the proper construction for "large M," while A_{4} is a close second. The slightly more cooplicated decoding for A_{4} also penalizes it. It is

```
possible however that edge effects may become significart for smaller M
whereby the shell structure of the various lattices is a natural for
certain small M. Also, we are interested in convenient values of M,
perhaps not easily obtained with all lattices.
```


4. MODULATION SETS IN 4-D

Abstract

We now describe explicit designs for $M=2^{n}$ in $4-D$ and evaluate these on both averag : and peak energy basis versus bandwidth. For all cases we define bandwidth in the Nyquist-sense, which says that (theoretically) a $4-D$ modulation as described can transmit $\log _{2} M$ bits per symbol with a carrier signal bandlimited to a total bandwidth of $1 / \mathrm{T}_{\mathrm{s}}$ where T_{s} is the $4-\mathrm{D}$ symbol rate (note all basis functions are orthogonal and have the same spectral density). Since the symbol rate $R_{s}=1 / T_{s}$ is $R / \log _{2} M$, we have that $B=R / \log _{2} M$. The spectral efficiency is $R / B=\log _{2} M \mathrm{bps} / \mathrm{Hz}$. As an example, with $M=64$ points in $4-\mathrm{D}, \mathrm{R} / \mathrm{B}=6 \mathrm{bps} / \mathrm{Hz}$. This represents a lower bound on bandwidth actually, as attainment of the Nyquist limit, wichout any partialresponse coding, necessitates unrealizable pulse shapes or transmission filters. We also note that the spectral efficiency depends only on M and "ر: upon the constellation, whereas the energy efficiency does depend on signal placement.

Given a constellation of M points in $4-D$, we let $d_{\min }$ be the minimum Euclidean distance between any pair of points. Let $\overrightarrow{\mathrm{E}}$ be the averaga snergy expended in transmitting one symbol. In general we can wri :

$$
\begin{equation*}
\overline{\mathrm{E}}=k \mathrm{~d}_{\min }^{2} \tag{9}
\end{equation*}
$$

where k is a parameter of the design.
For a maximum likelihood deceiver, the asymptotic performance will be

OF POOR QUALITY

$$
\begin{align*}
P[\varepsilon] & \sim N Q\left(\left(\frac{d_{\min }^{2}}{2 N_{0}}\right)^{1 / 2}\right) \\
& =N Q\left(\frac{E}{2 k N_{0}}\right)^{1 / 2}=N 2\left(\left(\frac{\bar{E}_{b} \log _{2} M}{2 k N_{0}}\right)^{1 / 2}\right) \tag{10}
\end{align*}
$$

where \bar{E}_{b} is the average energy per bit and $N_{0} / 2$ is the two-sided noise. spectral density, with $Q(y)$ being the one-sided Gaussian tail integral: N in (10) is a small constant reflecting the number of minimum distance pairs, but in comparing energy: efficiency, only the argument of the Q-function is of interest.

As an example, we find that for for the $M=64$ design given below, $\bar{E}=1.688 d^{2}$, giving

$$
\begin{equation*}
\mathrm{P}[\varepsilon] \sim \mathrm{NQ}\left(\left(\frac{3 \bar{E}_{\mathrm{b}}}{1.688 \mathrm{~N}_{\mathrm{o}}}\right)^{1 / 2}\right) \tag{11}
\end{equation*}
$$

We may also represent $\mathrm{P}[\varepsilon]$ in terms of peak energy if such constraints are more important; the development is as above except we must write $E_{p}=k_{2} d^{2}$ where $k_{2}>k$ above.

Next we desiribe the performance of the iterated 2-D apprcach as a " $4-\mathrm{D}$ " construction for comparison purposes.

4.1 Modulacion in 4-D Using Product of 2-D Modulation

The traditional frequency-reuse viewpoint is to perform 2-D modulation on each polarization, each independent of the other. This affords a certain simplicity and flexibility but as we show is inferior to the general 4-D modulation. We cons:der the types of 2-D modulation shown in Figure 4, all rectangular grid designs. These constellations are all subsets of z_{2} and are admittedly not optimum in $2-D$, but have
simple decoding regions and are commonly seen in applications literature. With each constellation we list the asymptotic error probability versus E_{b} / N_{0} (average), as well as the peak-to-average energy ratio.

When used in product fashion to achieve $4-\mathrm{D}$ modulation, we shall plot such cases so that $E_{4 D}=2 E_{2-D}$ and the number of signals is M^{2}. For example, $16-$ QASK in 2-D fórms a 256 -ary modulation in 4-D.

Figure 5 plots the energy versus spectrum performance of these 2-D product designs for $M=16,64,256$ and 1024. We tabulate the energy efficiency relative to that of antipodal sigialling (an $M=16$ design formed by ± 1 modulation on each basis function, or QPSK on each polarization).

4.2 4-D Constellations with $M=2^{n}$

In practical digital transmission we are interested in sets whose size is a power of 2 , so that exactly $\log _{2} M$ bits are conveyed per symbol. Unfortunately the lattice shell populations do not in all cases match this requirement. Of course we can simply delete points from a bigger constellation until we reach a power-of-two, but this generally leaves a lack of symmetry and complicates decoding.

To search for desirable sets, we first used a computer to enumerate shells and cumulative counts through various shells for the lattices D_{4}, A_{4} and Z_{4}. These results are tabulated in the Appendix. For each lattice, different offset vectors were added to move the origin within the lattice. This has the effect of changing shell counts and perhaps allows us to hit upon a good design.

To illustrate the use of these tables, we consider Table Al. The lattice, when no offset vector is applied, has 1 point at the origin, 8
points in the first shell of norm 1,24 in the next shell, etc. In cumulative terms, there are 33 points through the first 3 shells. By simply deleting the origin we are left with 32 points in 4-D whose average energy is $(33 / 32)(1.697)=1.75$. The figures of merit for modulation designs in $\bar{E} / \mathrm{d}_{\min }^{2}$ which in this case is 1.75 since $\mathrm{d}_{\text {min }}=1$. (We shall achieve a design from D_{4} however with à smaller ratio). Also, we may observe a $M=64$ point design by removing the origin and a 128 point design by removing the first two shells. Their respective \bar{E} / d^{2} figures are 2.37 and 3.75. With offset vector of $(0.5,0.5,0,0)$ we find an $M=16$ design with $\bar{E} / \mathrm{d}^{2}=1.5$, but again this will be inferior to the D_{4} design. An improved $M=128$ construction with full shells gives $\bar{E} / d^{2}=3.375$. With an offset of $(0.5,0.5,0.5,0)$ we attain $a M=8$ design with $\bar{E} / d^{2}=0.75$. To summarize, the best Z_{4} designs found are listed in Table I.

It is of interest to compare the Z_{4} designs with those of Z_{2} products of $M=16,64,256$, 'and 1024 . The respective values of \bar{E} / \dot{d}^{2} are 1.0 , $03.0,5.0$, and 10.0 and comparison with the results of Table I shows little improvement, in fact $M=1024$ is slightly worse in Z_{4}. If compared on a peak-energy comparison, the comparison swings in favor of Z_{4} since by design we are keeping all signal points inside $4-\mathrm{D}$ spheres. Nonetheless, the perfcrmance improvements with the Z_{4} lattice are not substantial.
D_{4} is the lattice of special interest based on mere considerstion of packing density. With zero offset however, the shell populations do not readily match 2^{n}. Thus we repeated the enumeration procedure for
D_{4} under different offsets with results tabulated in Appendix B. With zero offset, the "Mass $I^{\prime \prime}$ codes of Welti and Lee emerge for $M=25$, 49, and 145 points, though the D_{4} lattice terminology was not used in their earlier work.

In certain notable cases, fully-populated shells give convenient totals. Specifica:ly with ($1,0,0,0$) offset applied to D_{4}, we then have the set of integer-vectors with odd sums, and the five shells with smailest radii contain exactly 256 points. Likewise, with an offset of ($0.5,0.5,0,0$) applied to D_{4}, we find 64 points in its first five shells (the radii are now different). Both of these designs have earlier been listed by Welti and Lee.

In other cases, we have studied the shell populations to find attractive combinations. These are listed in Table II. In general, the \vec{E} / d^{2} and E_{p} / d^{2} ratios are significantly smaller than those found for Z_{4}, as expected from the earlier discussion. For $M=64$, the saving in average energy is $10 \log (2.37 / 1.69)=1.5 \mathrm{~dB}$, and the saving in peak energy is 1.25 dB . Compared to the use of 8×8 reuse (still $M=64$), the respective savings are 2.5 dB and 2.5 d 3 .

16-ary designs which outerform the 4-D hypercube are difficult to find. Two which do so by 0.6 dB on an average energy basis, but not on a peak energy basis, are a design having a 2-8-6 shell structure and one with a 4-8-4 structure. The former is obtained with an offset of (0 , $0.5,0.5,0.5$) while the second is with (). The outer shell is partly-populated for both.

Somparison of these $4-\mathrm{D}$ constructions with the product of 2 D case is provided in Figure 5. We plot average energy efficiency relative to antipodal, versus Nyquist bandwidth, as described earlier in this section. Several observations may be made. First, there is a 32-point D_{4} design having the same energy efficiency as QPSK/reuse, yet 25\% greater spectral efficiency. The same comparison can be made between a 16×16 reuse strategy and 1024 points from D_{4} : the energy efficiency is virtually the same, but spectral efficiency is 25% gieater. Viewed at a fixed spectral efficiency, we see gains in average energy of 1.5 - 2.5 dB for $M=64$ up to 1024 while gains are less for smaller M. The energy gains are slightly better if peak energy is compared: at $M=256$ the gain is another 1.3 dB in favor of the D_{4} constellation.

Finally, we remark that the D_{4} approach can provide a greater amount of communications flexibility than does the $2-D$ with reuse approach. As an example, $M=32$ points in $4-D$ is conveniently attained from D_{4}, but a $2-D /$ reuse strategy to achieve the same throughput would necessitate a 4×8 design. Unless the power allocated to each polarization is made unequal, the performance is limited to that of the 8 -ary polarization, about 3 dB worse than that of the 4 -ary channel. For such cases the preferences for $4-\mathrm{D}$ modulation is even more clear, saving roughly 3 dB in average energy.

ORIGNAL Frisis OF POOR QUALITY

5. R_{0}, tHE RANDOM CODING EXPONENT AND CUT OFF RATE

The parameter R_{0} for modulation scheme is a measure of that modulation's utility as a code alphabet. Massey [11] and others have argued that when coding is contemplated, modulations ought to be designed by maximizing R_{0} instead of a more familiar optimization of hî error probability. For the ensemble of rate R convolutional codes it may be shown thät the average symbol error probability' is bounded by

$$
\begin{equation*}
\overline{P[\varepsilon]}<C_{R} 2^{-K R_{0} / R} \text { for } R<R_{0} \tag{12}
\end{equation*}
$$

where K is the constraint length and C_{R} is a constant independent of K. Thus maximizing R_{0} minimizes $P[\varepsilon]$ for a given rate. Also, R_{0} has the significance that sequential decoders have finite man computation per decoded bit if $R<R_{0}$.

For the additive Gaussian channel [12]

$$
\begin{equation*}
R_{0}=-\log _{2}\left[\frac{1}{M^{2}} \cdot \sum_{i} \sum_{j} e^{-d_{i j}} \mathbf{2}_{s} / 4 N_{0}\right] \frac{\text { bits }}{\text { symbol }} \tag{13}
\end{equation*}
$$

where $d_{i j}$ is the distance between signals i and j under a normalization where average enoroy $E_{s}^{\prime}=1$. Friom (13), R_{0} tends to $\log _{2} M$ bits/symbol as E_{s} / N_{c} increases.

We have numerically evaluated R_{0} for the 16-ary- 64-ary, and ת56-ary constellations from D_{4} described in the previous section, and results are shown in Figure 6 versus average energy per 4-D symbol. Note all curves reach a high SNR asymptote of $\log _{2} M$ bit/symbol, while at low E / N_{0}, the curves coalesce, indicative of the expected result
that large alphabets are no better than small ones for poor SNR. We also observe a key result for coding: to achieve a certain R_{0} of n bita per symbol, it is roughly sufficient to use a code alphabet having $2\left(2^{n}\right)$ symbols, i.e. doubling the set needed to communicate n bits in uncoded manner.

Figure 7 also plots R_{0} for two product of $2-D$ modulations, having $8 \times 8=64$ and $16 \times 16=256$ points. We earlier saw the power efficiency of these designs from an uncoded point of view. It is interesting that the differences in R_{0} are rather minor; in the region of the knee of the curve, where coded communication systems normally seek to operate, the 2-D product designs are about $0.5-1 \mathrm{~dB}$ less efficient. They have the same high SNR and low SNR asymptote however. This would seem to suggest that random coding arguments don't provide a strong preference for use of $4-\mathrm{D}$ modulation over simpler 2-D products. If peak energy comparison are made, the $4-\mathrm{D}$ approach becomes about 1 dB better still. We remark hnwever that R_{0} considerations are not entirely reflective of the ability to produce good codes, especially for simple codes.

6. TRELLIS CODES FOR 4-D MODULATION

The 4-D modulation sets previously described may be used as a signal alphabet for trellis codes as means of further enhancing the energy efficiency. Such codes can be optimally decoded with the Viterbi algorithm, although the trellis size must kept manageably small.

The thame of this work follows. that of Ungerioeeck [13!, which proposed convolutional coding onto a signal set twice as 1 , s needed for uncoded transmission, yet having the same dimensionali. in this way, we may increase the minimum distance tetween coded sequences, while not expanding bandwidth. An example is mapping three information bits per interval onto a 16 -ary modulation in $2-\mathrm{D}$, e.g. 16-QASK.

In the case of $2-D$ codes, the modulation symbols were assigned to trellis branches using a heuristic set partitioning concept, [13], which intuitively leads to good codes without rescrt to brute-force test of all possible codes of a given complexity. We apply this same methodology here with $4-\mathrm{D}$ modulation, altholgh the set partitioning is less obvious.

The R_{0} discussion of the previous section suggests that doubling the modulation set is roughly rufficient to optimize the error exponent for the random ensemble of codes, and we use this as a guide'ine. For exampla, if we seek to efficiently encode $R=4$ bits/interval, we should consider the 32-ary 4-D constellation as a signal set. The bandwidth would be the same as uncoded $16-a r y$ in $4-\mathrm{D}$, but with energy gain dependent on trellis complexity. It may be that use of a 48-ary or 64-ary base, provides betier performance due to special features of set

ORIGINAL PAGE IS OF. POOR QUALITY

partitioning. The use of the larger alphabet does not substantially complicate the modulator/demodulator beyond a $32-a r y$ se; receiver complexity is largely determined by the trellis siza.

We have made preliminary investigations of code design for small (less than 4 -state) trellis codes having $R=2,3$, and $4 b$ s/interval, and begin with the simplest case to illustrate.

Suppose we seek a 2-state code with $R=2$ bit/interval. Th.e trellis diagram is shown in Figure 7a, with 4 branches per state. We consider qssigning symbols from an 8 -ary set to the eight branches as labelled. Now consider pairs of sequences which split at time $\mathbf{n}=0$ and remerge at some later time. The one-step merges have $d_{1}^{2}=4$ becanse of antipodality. The two step-merges, of which there are several types, also have $d_{2}^{2}=4$ sinc. twc units of d^{2} accrue on each interval. The average energy expended per interval, $\overline{\mathrm{E}}$, is 1 . Thus $d_{\min }^{2}=4 \vec{E}$ and asymptotically

$$
\begin{align*}
P[E] & \sim N Q\left(\left(\frac{d_{\min }^{2}}{2 N_{0}}\right)^{1 / 2}\right)=N Q\left(\left(\frac{2 \bar{E}}{N_{0}}\right)^{i / 2}\right) . \tag{14}\\
& =N Q\left(\left(\frac{4 \bar{E}_{b}}{N_{0}}\right)^{1 / 2}\right)
\end{align*}
$$

Now to evaluate this design, we can compare with an uncoded means of transmitting 2 bits/interval in $4-D$. Though not the best way, we could use binary PSK on each polarization, or QPSK on a single polarization. Each has

$$
\begin{equation*}
F, \varepsilon] \sim N Q\left(\left(2 \bar{E}_{b} / N_{o}\right)^{1 / 2}\right) \tag{15}
\end{equation*}
$$

showing a 3 dB gain for the coded case, with no change in bandwidth.

ORIGINAL PAGE IS
 OF POOR QUALITY

Another comparison is against uncoded 8-ary, recognizing the proposition that the modulation set used for coding could transmit 3 bits per interval rather than 2. From section 4

$$
\begin{equation*}
P[\varepsilon] \sim N Q\left(\left(\frac{3 E_{b}}{N_{0}}\right)^{1 / 2}\right) \tag{16}
\end{equation*}
$$

with a spectral efficiency of 3 bps $/ \mathrm{Hz}$. Relative to this case, the coder design gains $10 \log (4 / 3)=1.2 d B$ in return for a 50% increase in bandwidth. Viewed in this light, the 2-state coding design is not very attractive relative to uncoded 8-ary signalling.

Now consider use of a 4-state trellis as shown in Figure 7b. With the same rate, $R=2$, we have the option of splitting the four branches per state into 4 -sets-of-1 or 2 -sets-of-2. The latter doesn't buy any gain over 2-state because the one-step merges still are possible and have $d_{1}^{2}=4$. Thus only the $4-b y-1$ strategy has potential for improvement. It turns out however that no assignment of the 8 signals to these 16 branches can improve' the 2 -step, distance beyond 4 :

Next, suppose we allow use of a 16 -ary modulation, via the iypercube vertices. We may conveniently carve this set into 4 sets of 4 as listed in Figure 7b. The intraset squared distance is at least 8, while the interset distance is at least 4. By assigning sets as shown to the trellis, the 2 -step squared distance is now $d^{2}=: 2$; but recalling $\bar{E}=4, d_{\text {min }}^{2}=3 \bar{E}=6 \bar{E}_{b}$ and

$$
\begin{equation*}
P[\varepsilon] \sim N Q\left(\left(\frac{3 \bar{E}_{b}}{N_{o}}\right)^{1 / 2}\right) \tag{17}
\end{equation*}
$$

ORIGINAL PAGE IS
 OF FOOR QUALITY

Thus performance is actually worse (asymptotically) than the earlier code, pointing out the subtle interactions of trellis structure, coding rate, and modulation set.

Hand calculations show that 8 -state codes do gain over the 2-state case, but further optimization is required for these larger codes.

Next consider the $R=3$ case, with 2 states to begin. The trellis is illustrated in Figure 8a. As a first cut, use the 16-ary set formed by the hypercube and divide into 4 sets of 4 as in Figure 7b. The one step merge distance is 8 , while the two-step distance is at least 12. Thus $d_{\text {min }}^{2}=2 \bar{E}=6 \bar{E}_{b}$ since we have 3 bits/interval. Asymptotically

$$
\begin{equation*}
P[\varepsilon] \sim N Q\left(\left(3 E_{b} / N_{o}\right)^{1 / 2}\right) \tag{18}
\end{equation*}
$$

1.8 dB better than the QPSK with reuse strategy. Unfortunately, this energy efficiency is the same as for uncoded 8-ary with exactly the same bandwidth. Thus the $2-s t a t e$ code presented is of no practical use.

As a next case, assume a 4-state trellis with $R=3$ and use the hypercube set as before, except split the 16 signals into 8 sets of antipodal pairs, e.g. 1111 and-1-1-1-1. The one-step squared-distance is now 16, while the two-step merges are at least distance 12. Thus $d_{\text {min }}^{2}=3 \bar{E}=9 \bar{E}_{b}$ and

$$
P[\varepsilon]=N Q\left(\left(4.5 E_{b} / N_{0}\right)^{1 / 2}\right)
$$

Compared to QPSK with reuse, or uncoded 16-ary, we have a gain of $10 \log$ $(4.5 / 2)=3.6 \mathrm{~dB}$ with a bandwidth which is 33% greater. We may also compare at the same bandwidth with uncoded 8-ary: the coded 16-ary case has a gain of $10 \log (4.5 / 3)=1.8 \mathrm{~dB}$. This code is relatively easily decoded, since pairs of paths entering each state are antipodal; once
selection between these is made, the receiver must arbitrate between the remaining four paths. We also note that since the modulation is QPSR/ reuse, the modem equipment is rather simple.

The 8-state extension (not shown) of this case has a $d_{\text {min }}^{2}=4 \bar{E}$, yielding a 4.8 dB gain over uncoded 16-ary, again with a 33% bandwidth expansion.

We finally address $R=4$ bits/symbol coding. We begin with a 2-state case, and 32-ary modulation. We may split the 32 -ary set into 4 sets of 8 as shown in Figure 9a. The intraset d^{2} is 6 and the interset d^{2} is 2 , so that $d_{\text {min }}^{2}=4$. Since $\bar{E}=3, d^{n}=(4 / 3) \bar{E}=(16 / 3) \bar{E}_{b}$, and

$$
\begin{equation*}
P[\varepsilon] \sim N Q\left(\left(\frac{2.67 E_{b}}{N_{0}}\right)^{1 / 2}\right) \tag{19}
\end{equation*}
$$

This represents a 1.3 dB gain over 16 -ary with the same bandwidth.
If the sets are further partitioned into 8 sets of 4 and the trellis splits the 16 branches as 4 sets of 4 , then $a d_{\min }^{2}=6$ can be attained with 4 states (Figure 9b). For this case

$$
\begin{equation*}
P[\varepsilon] \sim N Q\left(\left(\frac{4 E_{b}}{N_{0}}\right)^{1 / 2}\right) \tag{20}
\end{equation*}
$$

giving a 3 dB gain over uncoded 16-ary having the same bandwidth.
To summarize the code study thus far, it appears that coding is most beneficial in D_{4} for higher throughput cases, e.g. $R \geq 3$ bits/ interval, relative to uncoded counterparts. Further investigations are presently being made to extend these results to (1) higher rates, e. 8 $R=5$ and 6 bits/interval, and (2) larger trellises.

7. CONCLUSION

Abstract

Four-dimensional modulation provides a means of improving the power and/or bandwidth utilization of satellite channel, relative to a polarization reuse strategy. 4-D lattices are known to have superior packing density as a basis for signal design, and we have provided explicit constructions for $8,16,32, \therefore . .1024$ signals in 4-D. The most efficient are subsets of the lattice D_{4}, or translates thereof. Typically, about 1.5 to 3 dB gain may be had at equal bandwidth over a polarization reuse strategy, or for fixed power, about 25\% less bandwidth may be consumed.

Trellis codes have been studied as a means of further extending the power/bandwidth tradeoff. Thus far codes for $R=3$ and 4 bits/interval with four state or less have been shown to provide attractive gains relative to cases using polarization reuse.

We remark that the designs presented here in general require that: amplifiers be utilized which are linear up to the maximum power required by the constellation. This seems unavoidable fur attaining high spectral efficiency, although continuous-phase-modulation is an attractive alternative.

8. ACKNOWLEDGEMENTS

The authors wish to thank Daniel McGrady and Nina Srinath for assistance in preparation of this work.

1. D. Slepian, "Group Codes for the Gaussian Channel," BSTW, 1960, pp. 575602.
2. G. R. Welti and J. S. Lee,"Digital Transnission with Coherent FourDimensional Mdulation," IEEE Trans. on Information Theory, July 1079.
3. L. Zetterberg and H. Brandstra.4 "Codes for Combined Phase and Amplitude Modulated Signals in Four-Dimensional Space," IEES Trans. on C~- .nication, September 1977.
4. C. M. Thomas et al, "Digital Amplitude - Phase Keying with M-ary Alphabets," IEEE Trans, on Comunications, February 1974.
5. G. J. Foschini, R. D. Gitlin and S. B. Weinstein, "Optimization of TwoDimensional Signal Constellation in Presence of Gaussian Noise," IEEE Trans. of Comunications, January 1974.
6. H. S. M. Coxeter, "The Problem of Packing on the Sphere," Transactions, New York Acadeny of Science, Vol. 24; No. 3, January 1962.
7. J. H. Conway and N. J. A. Sloane, "Fast Quantizing and Decoding Algorithms for Lattice Quantizers and Codes," IEEE Trans. on Information Theory, March 1982.
8. J. H. Conway and N. J. A. Sloane, "Voronoi Regions of Lattices," IEEE Trans. on Information Theory, March 1982.
9. N.J.A. Sloane, "Tables of Sphere Packing and Spherical Cudes," IEEE Trans. on Information Theory, May 1981.
10. H. Brandstrom, "Combined Amplitude and Phase Modulation based on Complex Polytopes," Tech. Report 123, Electrical E.agineering, Royal Institute of Technology, Stockholm, December 1977.
11. J. L. Massey, "Coding and Modulation in Digital Commenications," Proceedings Int'l Zurich Seminar on Dig. Communications, March 1974.
12. J. M. Wozencraft and I. M. Jacobs, Principles of Commnication Engineering, Wiley, 1967.
13. G. Ungerbseck, "Charnel Coding With Multilevel/Phase Signals," IEEE Trans. on Information Theory, January, 1982.

Table I

Parameters of Best Z_{4} Designs

M	$\underline{E} / \mathrm{d}^{2}$	E_{p} / d^{2}	offset ${ }^{\text {1) }}$	Comments
8	0.75	0.75	$(0.5,0.5,0.5,0)$	full
16	1.0	1.00	$(0.5,0.5,0.5,0.5)$	single-shell
32	1.75	2.00	$(0,0,0,0)$	remove origin
64	2.37	3.00	$(0,0,0,0)$	remove origin
128	3.375	4,50	$(0.5,0.5,0,0)$	full
256	5.00	6.75	(0.5, $0.5,0.5,0)$	remove first shell
512	6.75	9.00	$(0.5,0.5,0.5,0.5)$	full
1024	10.83	14.75	$(0.5,0.5,0.5,0)$	remove first and fourth shells
$\begin{aligned} & \text { offs } \\ & x_{i} \end{aligned}$	ers to ger	lation	Z_{4} points, where	$\stackrel{\Delta}{=}\left\{x_{i}, i=1,4\right\}$

Table II. Paraneters of Best D_{4} Designs

2-D MODULATION WITH REUSE

4-D MODULATION

Figure 1 -- Depiction of Modulators for 2-D/Polarization Reuse and 4-D Modulation

Figure 2. 16-ary Constellations in Two-Dimensions

Figure 3. Packing Efficiency of 4-D Lattices Z_{4}, A_{4} and D_{4}. Points correspond to full-shell constellations.

Figure 4. RECTANGULAR 2-D CONSTELLATIONS

> ORIGINAL OF POOR QUALITY

Figure 5. Engery-versus-Bandwidth Efficiency of 4-D and Product-of-2-D Designs. Bandwidth is Nyquist Bandwidth.

$$
\begin{aligned}
& s_{0}=100000=-s_{4} \\
& s_{1}=01000=-s_{5} \\
& s_{2}=00010 \\
& s_{3}=00001=-s_{6}
\end{aligned}
$$

ORIGINAL FEM: IS' OF POOR QUAUITY

1isure 7a. 2-State Trellis for $\mathrm{K}=\mathrm{z}, 8$-aty Modulacion

Figure 70. 4-State Trellis for $R=2$, 16-ary Modulation

State

$$
S_{0}=\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
& -1 & -1 & 1 \\
& -1 & -1 & -1 \\
& -1
\end{array}
$$

$\left.S_{2}=\begin{array}{rrrr}1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ -1 & -1 & 1 & -1 \\ & -1 & -1 & -1\end{array}\right)$
$S_{3}=\begin{array}{rrrr}-1 & 1 & -1 & -1 \\ -1 & 1 & 1 & 1 \\ 1 & -1 & -1 & -1 \\ 1 & -1 & 1 & 1\end{array}$

Figure 8a. 2-State Trellis for $R=3$ with 16-ary Modulation

$C_{0}=\underbrace{\begin{array}{rrrrrrr}1 & 1 & 1 & 1\end{array} \quad C_{1}=\begin{array}{rrrr}-1 & -1 & 1 & 1 \\ -1 & -1 & -1 & -1\end{array} \quad C_{3} \ldots C_{7} \text { are splits of } S_{1} \ldots S_{3} \text { above }}_{\text {Splic of } S_{0} \text { above }}$

Figure 8b. 4-State Trellis for $R=3$ with 16-ary Modularion

Figure 9a. 2-state Trellis for $R=4$ with 32-ary Modulation

Figure 9b. 4-State Trellis for $R=4$ with 32-ary Modelarion
 OF POOR QUALITY

APPÉNDIX A
TABULATION OF Z_{4} LATTICE WITH DIFFERENT OFFSETS

ANALYSIS OF ENTER DATA 0.0,0.0	24 lattice		$d_{\text {lance }}^{2}=1$
all jata is	IN COMBIMATIONS	SHELL MORM	
1	1	0.00	
2	8	$1.00-$	
3	24	2.00	
4	32	$3.00-$	
5	24	4.00	
6	48	5.00	
7	96	6.00	
8	64	7.00 -	
9	24	8.00	
10	104	9.00	
11	144	10.00	
12	96	11.00	
13	96	12.00	
14	112	13.00	
15	192	14.00	
16	192	15.00	
17	24	16.00	
18	144	17.00	
19	312	18.00	
20	160	19.00	
21	144	20.00	
22	256	$21.00-$	
23	288	22.00	
24	192	23.00	
25	96	24.00	
26	240	25.00	
27	288	26.00	
28	224	27.00	
29	128	29.20	
30	192	29.00	
31	384	30.00	
32	64	31.00	
33	24	32.00	
34	288	33.00	
35	192	34.00	
36	192	35.00	
37	112	36.00	
38	192	37.00	
39	192	38.00	
40	96	40.00	
41	96	41.00	
42	192	42.00	
43	64	43.00	
44	192	45.00	
45	32	48.00	
46	64	49.00	
47	96	50.00	
418	64	52.00	
49	44	57.00	
50	16	64.00	

Ofigitios
OF PORR QUALITY

OF PGOR QUALITY

-RIM ZALAT ANALYSIS OF ENTER DATA $0.5,0.0,0$ ALL DATA IS	24 lattice IN COMBIMATIONS	SYELL NORM
1	0	0.00
2	2	0.25
3	12	1.25
4	26	2.25
5	28	3.25
6	36	4.25
7	64	5.25
8	62	6.25
9	60	7.25
10	96	8.25
11	76	9.25
12	84	10.25
13	156	11.25
14	$\therefore 114$	12.25
15	108	13.25
16	160	14.25
17	124	-15.25
18	168	16.25
19	192	17.25
20	148	18.25
21	192	19.25
22	241	20.25
23	210	21.25
24	168	22.25
25	248	23.25
26	190	24.25
27	168	25.25
28	312	26.25
29	160	27.25
30	168	. 28.25
31	238	. 29.25
32	144	. 30.25
33	216	. 31.25
34	176	32.25
35	: 184	, 33.25
36	168.	34.25
37	144	- 35.25
38	150	- 36.25
39	96	37.25
40	204	38.25
41	88	39.25
42	72	40.25
43	192	41.25
44	72	+2.25
45	48	43.25
46	48	44.25
47	72	45.25
48	96	46.25
49	56	47.25
50	64	48.25
51	48	49.25
52	16	50.25
53	12	52.25
54	72	53.25
55	40	54.25
56	- 24	56.25
57	16	60.25
58	24	61.25
59	8	68.25

	Fgum	EAVE	EPEAK	
1	0.000	0.000	0.000	
2	4.000	0.500	0.500	
3	20.000	1.300	1.500	OF POOR QUALITY
4	44.000	1.955	2.500	
5	76.000	2.605	3.500	
6	128.000	3.375	*. 500	
7	176.000	3.955	5.500	
8	232.000	4.569	6.500	
9	328.000	5.427	7.500	
10	400.000	5.980	8.500	
11	480.000	6.567	9.500	
12	608.000	7.395	10.500	
13	704.000	7.955	11.500	
14	828.000	8.635	12.500	
15	988.000	9.423	13.500	
16	1108.000	9.973	14.500	
17	1236.000	10.545	15.500	
18	1428.000	11.346	16.500	
19	1620.000	12.075	17.500	
20	1772.000	12.626	18.500	
21	1996.000	13.398	19.500	
22	2160.000	13.937	20.500	
23	2320.000	14.459	21.500	
24	2612.000	15.358	22.500	
25	2788.000	15.872	23.500	
26	2984.000	16.439	-24.500	
27	3224.000	17.113	25.500	
28	3388.000	17.567	26.500	
29	3596.000	18.142	27.500	
30	3820.000	18.749	28.500	
31	3996.000	19.223	29.500	
32	4140.000	19.615	30.500	
33	4380.000	20.266	31.500	
34	4576.000	20.790	32.500	
35	4704.000	21.136	33.500	
36	4896.000	21.660	34.500	
37	5008.003	21.970	35.500	
38	5120.000	22.288	36.500	
39	5312.000	22.837	37.500	
40	5440.000	23.206	38.500	
41	5568.000	23.580	39.500	
42	5681.000	23.917	40.500	
43	5733.000	24.076	41.500	
44	5833.000	24.392	42.500	
45	5929.000	24.702	43.500	
46	6029.000,	25.030	44.500	
47	6101.000	25.272	45.500	
49	6165.000	25.492	46.500	
49	6197.000	25.606	47.500	
50	6217.000	25.679	48.500	
51	6285.000	25.937	. 99.500	
52	6341.000	26.154	50.500	
53	6373.000	26.281	51.500	
54	6421.000	26.477	52.500	
55	6429.000	26.511	53.500	
56	6445.000	26.580	54.500	
57	6465.000	26.673	56.500	
58	6505.000	26.862	57.500	
59	6525.000	26.959	58.500	
60	6533.000	27.001	60.500	
61	6549.000	27.092	64.50.	
62	6557.006	27.139	65.500	
63	6561.000	27.167	72.500	

-RUN zalat
AHALYSIS DF $Z 4$ LATYICE
EMTER DATA
$0.5 ; 0.5,0.5,0$
ALL DATA IS IN

	COMBINATIONS	SHELL MORM
1	0	0.00
2	8	0.75
3	16	1.75
4	24	2.75
5	48	3.75
6	40	4.75
7	48	5.75
8	80	6.75
9	64	7.75-
10.	96	8.75
11	112	9.75
12	88	10.75
13	96	11.75
14	144	12.75
15	144	13.75
16	120	14.75
17	208	15.75
18	136	16,75
19	144	17.75
20	248	18.75
21	160	19.75
22	156	20,75
23	216	21.73
24	200	22.75
25	192	23.75
26	276	24.75
27	168	25.75
28	144	26.75
29	208	27.75
30	240	28.75
31	168	29.75
32	264	30. 75
33	96	31.75
34	132	32.75
35	192	33.75
36	184	34.75
37	144	35.75
38	200	36.75
39	64	37.75
40	120	38.75
41	96	39.75
42	142	40.75
43	84	42.75
44	150	42.75
45	60	43.75
46	72	44.75
47	40	45.75
48	66	46.75
49	60	47.75
50	96	48.75
51	12	49.75
52	60	50.75
53	12	51.75
54	22	52.75
55	36	53.75
56	48	54.75
57	12	55,75
58	24	56.75
59	12	58.75

ANALYSIS OF 24 LATTICE
ENTER DATA
$0.5,0.5,0.5,0.5$
all data is In
combimations

0
6
6HELL NORM
8

$$
\begin{aligned}
& 0.00 \\
& 1.00 ~ \\
& 3.00
\end{aligned}
$$

$$
\begin{aligned}
& 5.00 \\
& 7.01
\end{aligned}
$$

$$
\begin{aligned}
& 5.00 \\
& 7.00
\end{aligned}
$$

$$
\rightleftarrows
$$

2
9.00
11.00 13.00 15.00 17.00 19.00
21.00 21.00 23.00
25.00 25.00
27.00

$$
-
$$

$$
29.00
$$

$$
\begin{aligned}
& 31.00 \\
& 38.000
\end{aligned}
$$

$$
\begin{aligned}
& 33.00 \\
& 35.00
\end{aligned}
$$

$$
\begin{aligned}
& 35.00 \\
& 37.00
\end{aligned}
$$

$$
\begin{aligned}
& 37.00 \\
& 39.00
\end{aligned}
$$

$$
\begin{aligned}
& 39.00 \\
& 41.00
\end{aligned}
$$

$$
\begin{aligned}
& 41.00 \\
& 43.00
\end{aligned}
$$

$$
45.00
$$

$$
\begin{aligned}
& 45.00 \\
& 47.00
\end{aligned}
$$

$$
\begin{array}{r}
49.00 \\
51.00
\end{array}
$$

$$
\begin{aligned}
& 51.00 \\
& 53.00
\end{aligned}
$$

$$
\begin{aligned}
& 53.00 \\
& 55.00 \\
& 57.00
\end{aligned}
$$

$$
57.00
$$

$$
59.00
$$

$$
\begin{aligned}
& 61.00 \\
& 63.00
\end{aligned}
$$

$$
63.00
$$

$$
65.00
$$

$$
\begin{aligned}
& 67.00 \\
& 73.00
\end{aligned}
$$

$$
73.00
$$

$$
81.00
$$

eave

EPEAK

FSUM	EAVE	EPEAK
0.000	0.000	0.000
16.000	1.000	1.000
80.000	2.600	3.000
176.000	3.909	5.000
304.000	5.211	7.000
512.000	6.750	9.000
704.000	7.909	11.000
928.000	9.138	-13.000
1312.000	10.854	15.000
1600.000	11.960	17.000
1920.000	13.133	19.000
2400.000	14.707	21.000
2688.000	15.595	23.000
3088.000	16.813	25.000
3600.000	18.262	27.000
3888.000	19.058	29.000
1240.000	20.049	31.000

18	4624.000	21.123	33.000
19	4912.000	$21.938 \cdot$	35.000
20	5168.000	22.684	37.000
21	5456.000	23.545	39.000
22	5672.000	24.210	41.000
23	5784.000	24.574	43.000
24	6000.000	25.309	45.000
25	6144.000	25.818	47.000
26	6208.000	26.057	49.000
27	6304.000	26.437	51.000
28	6376.000	26.737	53.000
29	6424.000	26.948	55.000
30	6456.000	27.097	57.000
31	6504.000	27.332	59.000
32	6512.000	-27.373	61.000
33	6520.000	27.417	63.000
34	6544.000	27.555	65.000
35	6552.000	27.603	67.000
36	6560.000	27.659	73.090
37	6561.000	27.667	81.000

APPENDIX B

TABULATION OF D_{4} LATTICE WITH DIFFERENT OFFSETS

YSIS OF THE DA LATTICEER DATA0,0BATA IS INCOABINATIONS SHELL NORM			
1	1		0.00
2	24		2.00 －
3	24		4.00
：	96		6.00
5	24		8.00
6	144		10.00
7	96		12，00
8	192		14.00
9	24		16.00
10	312		18.00
11	144		20.00
12	298		22.00
13	96		24.00
14	288		26.00
15	128		28.00
16	384		30．00
17	24		32.00
18	192		34.00
19	112		36.00
20	192		38.00
21	96		40.00
22	192		42.00
23	32		48.00
24	96		50.30
25	64		52.00
26	16		64.00
	FSLM	eave	EPEAK
1	1.000	0.000	00.000
2	25.000	1.920	02.000
3	49．000	2.939	$9 \quad 1.000$
4	145.000	4.966	6 6，000
5	169.000	5.396	68.000
6	313.000	7.514	410.000
7	＋09．000	8.567	712.000
8	601.000	10.303	314.000
9	625.000	10.522	216.000
10	937.000	13.012	218.000
11	1081．000	13.943	320.000
12	1369．000	15.538	32.000
13	1465．000	16.186	624.000
14	1753．000	17.798	326.000
15	1881.000	28.492	2 28．000
16	2265．000	20.443	$3 \quad 30.000$
17	2789．000	20.564	32．000
18	2481．000	21.604	34．000
19	2593．000	22.226	636.000
20	2785．000	23.313	3 38．000
21	2881．000	23.869	40．000
－	ごご3． 5 ご	25．202	－22．006
23	3105．000	25.239	48．000
24	3201，000	25.982	250.000
25	3265.000	26．492	252.000
26	3281．000	26.675	564.000
STOP－－			

2	0.000	-	-
2	1.000	0.250	0.250
3	.000	1.107	1.250
4	20.000	1.850	2.250
5	34.000	2.426	3.250
6	52.000	3.058	4.250
7	94.000	3.893	5.250
8	115.000	4.528	6.250
	145.000	5.091	7.250
10	193.000	5.877	8.250
11	231.000	6.432	. 250
12	273.000	7.019	10.250
13	351.000	7.959	11.250
14	408.000	8.559	12.250
15	462.000	9.107	13.250
16	542.000	9.866	14.250
17	604.000	10.419	15.250
18	688.000	11.131	16.250
19	784.000	11.830	17.250
20	858.000	12.429.	18.250
21	954.000	13.116°	19.250
22	1075.000	13.919	20.250
23	1177.000	14.554	21.250
24	1267.000.	15.101.	22.250
25	1387.000	15.896	23.250
26	1485.000	16.363.	24.250
27	. 1557.000	16.774	25.250
28	1725.000	17.697	25.250
29	1805.000	18.120	27.250
30	1895.000	18.601	28.250
31	1999.000	19.153	23.250
32	2083.000	19.603	30.250
33	2179.000	20.116	31.250
34	2271.000	20.608	32.250
35	2351.000	21.038	33.250
36	2459.000	21.618	. 36.250
37	2531.000	22.006	-35.250
39	2609.000	22.432	-36.250
39	2633.000	22.567	37.250
40	2753.000	23.250	-38.250
41	2785.000	23.434	39.250
42	2833.000	23.719	40.250
43	2905.000	24.154	41.250
44	2953.000	24.448	42.250
45	2977.000	24.599	${ }^{43.250}$
46	3313.000	24.834	. 44.250
47	3037.000	24.995	45.250
48	3109.000	25.488	46.250
19	3133.000	25.654	47.250
50	3165.000	25.883	48.250
51	3173.000	25.944	50
52	3185.000	26.043	52.250
53	3209.000	26.247	53.250
54	3241.000	26.523	54.250
55	3265.000	26.742	56.250
56	3273.000	26.824	
57	3281.000	26.925	68.

ORIGINAL PAGE SS OF POOR QUALITY
.RUN DAEVE
Amacysis of the da lattice Enter lata
kiO.,OHOD
all data IS In
mod is ok

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& ORIGINAL PAGE IS OF POOR Q:IALITY \\
\hline 1 \& 0.000 \& E.000 \& 0.000 \& \\
\hline 2 \& 2.000 \& 0.500 \& 0.500 \& \\
\hline 3 \& 10.000 \& 1.300 \& 1.500 \& \\
\hline 4 \& 22.000
38.000 \& \begin{tabular}{l}
1.955 \\
2.605 \\
\hline
\end{tabular} \& 2.500
3.500 \& \\
\hline \(\rightarrow\) - \& 34.000 \& 2.605
3.375 \& 3.500
4.500 \& \\
\hline 7 \& 89.000 \& 3.955 \& 5.500 \& \\
\hline 8 \& 116.000 \& 4.569 \& 6.500 \& \\
\hline 9 \& 164.000 \& 5.427 \& 7.500 \& \\
\hline 12 \& 200.000
240.000 \& 3.980
6.967 \& 8.500
9.500 \& \\
\hline 12 \& 304.000 \& 7.395 \& 10.500 \& \\
\hline 123 \& 352.000
414.000 \& 7.955
8.635 \& 11.500
12.500 \& \\
\hline 15 \& 494.000 \& 9.423 \& 13.500 \& \\
\hline 16 \& 554.000 \& 9.973 \& 14.500 \& \\
\hline 17 \& 618.000 \& 10.545 \& 15.500 \& \\
\hline 18 \& 714.000 \& 11.346 \& 16.500

17500 \&

\hline 19 \& 810.000
896.000 \& 12.075
12.626 \& 17.500
18.500 \&

\hline 21 \& 998.000 \& 13.398 \& 19.500 \&

\hline 22 \& 1080.000 \& 13.937 \& 20.500 \&

\hline 23 \& 1160.000 \& 14.459 \& 21.500 \&

\hline 24 \& 1306.000 \& 15.358 \& 22.500 \&

\hline 23 \& 1394.000 \& 15.872 \& 23.500 \&

\hline 2 \& 1492.000 \& 16.438 \& 24.500
$\mathbf{2 5 . 5 0 0}$ \&

\hline 28 \& 1694.000 \& 17.113
17.567 \& 23.500 \&

\hline 29 \& 1798.000 \& 18.142 \& 27.509 \&

\hline 30 \& 1910.000 \& 18.749 \& 28.50 \&

\hline 31 \& 1998.000 \& 19.:23 \& 29.500 \&

\hline 32 \& 2070.000 \& 19.615 \& 30.500 \&

\hline 33 \& 2190.000 \& 20.266 \& 31.500 \&

\hline 34 \& 2288.000 \& 20.790 \& 32.500 \&

\hline 35 \& 2352.000 \& 21.236

21.36 \& | 33.500 |
| :--- | \&

\hline 36 \& 2448.000 \& 21.660 \& 34.500 \&

\hline 37 \& 2504.000 \& 21.970 \& 35.500 \&

\hline 38 \& 2560.000 \& 22.288 \& 36.500 \&

\hline 39 \& 2656.000 \& 22.837 \& 37.500 \&

\hline 40 \& 2720.000 \& 23.206 \& 38.500
39.500 \&

\hline 41 \& 2784.000

2841.000 \& | 23.580 |
| :--- |
| 23.920 | \& 39.500

40.500 \&

\hline 43 \& 2865.000 \& 24.067 \& 41.500 \&

\hline 44 \& 2917.000 \& 24.396 \& 42.500 \&

\hline 45 \& 2965.000 \& 24.705 \& 43.500 \&

\hline 46 \& 3017.000 \& 25.0.46 \& -44.500 \&

\hline 47 \& 3049.600 \& 25.261 \& 45.500 \&

\hline 48 \& 3081.000 \& 25.481 \& 46.500 \&

\hline 49 \& 3097.000 \& 25.595 \& 47.500 \&

\hline 50 \& 3109.000 \& 25.684 \& 48.500 \&

\hline 51 \& 3141.000 \& 25.926 \& 49.500 \&

\hline 52 \& 3173.000 \& 26.174 \& 50.500 \&

\hline 53 \& 3129.000 \& 26.301 \& 51.500 \&

\hline 54 \& 3213.000 \& 26.497 \& 52.500 \&

\hline 55 \& 3221.000
3233.000 \& 26.566
26.678 \& 54.500
56.500 \&

\hline 57 \& 3233.000
3249.000 \& 26.678
26.829 \& 57.500 \&

\hline 58 \& 3261.000 \& 26.946 \& 58.500 \&

\hline 59 \& 3269.000 \& 27.028 \& 60.500 \&

\hline ${ }_{61}^{60}$ \& 3277.000
$328: 000$ \& 27:119 \& 72.500 \&

\hline
\end{tabular}

