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The work described in this final report is a continuation of the

work started under NASA Grant 5288. The discrete approach to modeling

vegetation originally developed under Grant 5288 has been extended and

applied to a number of practical situations.

Electromagnetic backscattering from a layer of vegetation over a

flat lossy ground is studied. The vegetated region, is modeled by dis-

crete lossy dielectric scattezers, for which the dyadic scattering am-

plitudes and orientation statistics are known. A method is developed

to compute the backscattering coefficients from the vegetated layer.

The technique is valid for scatterers having characteristic dimensions

comparable to a wavelength.

The problem is solved by finding the mean field in the vegetated
4

region and then using it in conjunction with the distorted Born approx-

imation (first order multiple scattering) to calculate the backscattering 	 +^

coefficients, The mean field due to a plane wave obliquely incident on
i

the vegetation is obtained by finding an approximate solution to the
i

Foldy-Twexsky mean equation in the limit of small fractional volume.
^i

1 " 'A

This approximate solution is obtained by employing a two variable ex-
r;

pansion procedure. An examination of the mean solution shows that from

the viewpoint of the mean wave, the vegetated slab can be replaced by a
3

deterministic anisotropic medium. The anisotropic medium becomes uni-

axial when the scatterers are assumd to have orientation statistics

that are independent of the azimuthal angle.

The backscattering oefficients are then calculated b e mployingg	 Y T^

single scattering theory, in which the scatterers are assumed to be

iv	 i
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'	 embedded in the equivalent anisotropic bulk medium. The procedure is
f`

valid when the albedo of individual scatterers is small, that is, when

the scatterers are highly absorbing. Formulas for copolari .zed and cross-

polarized backscattering coefficients are given. Numerical calculations

for the backscattering coefficients as a function of incidence angle are

presented.

The material presented in the report has been published, in part,

and has been presented at a number of technical meetings. F,eference to

this published material is contained at the end of the report.

^Y4
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CHAPTER I

INTRODUCTION

w

The objective of this dissertation is the investigation of electro-

magnetic backscattering from a layer of vegetation over a flat lossy homo-

geneous ground. The vegetated region, or canopy, is modeled by discrete

lossy dielectric scatterers that have prescribed orientation statistics.

The motivation for this work has been the need to describe quantita-

tively the effects of the natural environment on electromagnetic wave pro-

pagation and scattering, and to relate radar return to the physical charac-

teristics of the vegetation and the underlying ground. These characteristics

can be used to determine the biomass and leaf area index of the vegetation

and the moisture content of the ground. Information of this type is neces-

saryas input data for crop yield models.

Models have been developed to serve the above applications

for vegetated terrain. These models have been constructed by replacing the

vegetated region with a random medium whose statistical characteristics are

related to the physical quantities of the medium. The random modeling

techniques divide naturally into two types: continuous and discrete. In

the continuous case, the random medium is modeled by assuming that its per-

mittivity e(x) is a random process whose moments, such as the mean and cor-

relation function, are known. In the discrete case, on the other hand, the

medium is viewed as a collection of dielectric particles whose position and

orientation statistics are given. In each,the medium statistics are used in

conjunction with Maxwells equations to calculate average quantities of

physical interest.	 1

7}	 i
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For the continuous case, exact equations for the mean and correlation

of the electric field can be obtained [Frisch, 19681. These equations are

known as the Dyson and Bethe-Salpeter equations respectively. Although almost

Impossible to solve even under the most ideal situations, they provide an

exact formulatiou for the quantities.of interest. Under appropriate physical

circumstances, such as media with small correlation lengths or small fluc-

tuations in the permittivity, perturbation theory can be used to simplify'

both the Dyson and Bethe-Salpeter equations to a tractable form, In the

case of the mean ,field, perturbation methods have been used by Keller [1962

k	 s

and 1964], Tartarskii and Gertsenshtein [1963], Keller and Karal [1966],

Rosenbaum [1971] and others. In active remote sensing applications these

approximate mean field solutions have been used along with first order renor-

malization or distorted Born approximation io obtain the backscattering coef-

ficients, [Rosenbaum and Bowles, 1974; Stogryn, 1974; Hsvrncr, 1976; Fung and

Fung, 1977; Fung and Ulaby, 1978; Fung, 1979; and Zuniga, et al., 1979, and

many others].

Another technique used to obtain the scattered field from a continuous

random medium is the radiative transport approach. Here the transport equa-

tions are obtained in terms of the statistics of e(x) [Tsang and Kong, 19781.

In the case where the medium correlation length is large compared to wavelength,

de Wolf [1971], Ito and Adachi [1977] have developed multiple forward-single

backscatter techniques.

In 1945 Foldy presented the first systematic probabilistic formula-

tion of the multiple scattering of waves by collection of randomly distri-

buted scatterers. In that paper he derived the mean field in a medium of

scalar dipole scatterers. Lax [1951, 19521 generalized his treatment to

resonant size scatterers and Twersky [1962, 1964, 1967, 1970, 19781
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employed the Foldy-Lax method to find the mean field and effective dielectric

constant for arbitrarily shaped dielectric particles. Ishimaru [1978a) has

obtained an approximate equation for the mean field in both the scalar and

vector cases. Ishimaru (1978b) also has found solutions to the correlation

equation by employing the diffusion approximation.

The perturbation procedure applies when the fractional volume occupied

by scatterers is small. The theory shows that the effective medium, as seen

by the mean wave propagating through a collection of non-spherical particles,

is anisotropic. 'Lang [1981'], Lang and Sidhu [1983] used the Foldy-Lax method

in conjunction with the distorted Born approximation to calculate the back

scattering coefficients from a slab of arbitrary shaped lossy dielectric

scatterers.
f	 ;

9

Another work, using discrete scatterers to model vegetation, has been 	 {

done by Du and Peake [1969], and they employed single scattering (Born approx-

imation) without introducing an equivalent medium. Thus, they did not take

into account the decay of the incident wave in the vegetation. This limits

their theory to a much lower frequency and thin layers of vegetation. They
1

also did not take into account the underlying ground.

Recently Tsang, et al, [1981], have used a vector radiative transport 	 7

technique to analyze a slab of discrete scatterers. The results are similar

to those Lang and Sidhu [1982] except that terms representing coherent wave
Al

effects are missing. The method is limited to low albedo particles where

absorptive loss is the dominant mechanism. The two methods require different

input quantities. For the continuous model the average permittivity of the

medium is required in addition to the .spatial correlation function of its
4

fluctuations. In the discrete case, the scattering amplitude of the indi-

vidual scatterers is required as well as the position and orientation statis-

tics of the scatterers. The scattering amplitude can be obtained experimentally
E
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or by electromagnetic modeling of the individual acatterer. The latter

modeling procedure relates the scattering amplitude to the physical di-

mensions and to the dielectric properties of the scatterer.

One of the advantages of the continuous modeling technique is that

computed quantities of interest such as the backscattering coefficient are

obtained directly in terms of the average dielectric constant of the medium

and the correlation function of its permittivity fluctuations. In the case

of the discrete approach, the average permittivity, the correlation function

of its fluctuations and backscattering coefficients are all obtained in terms

of orientation averages over the scattering amplitudes of the individual

scatterers. The scattering amplitude, in turn ., is then related to the

electrical and Physical characteristics of the individual scatterer. Although,

computationally, the discrete approach is more complex than the continuous

method, the discrete approach has certain important advantages. One of these

is that the average permittivity of the scattering medium is now a derived

quantity rather than one which is empirically determined. Another dif-

ference between the two approaches is that the continuous method does

not permit cross polarized backscatter [see Tan, et al. 1980], to first

order in the albedo, while the discrete theory predicts a first order

contribution [Lang, 1981]. For these reasons, the discrete modeling

technique may prove more successful in relating remote sensing signa-

tures to actual physical characteristics of the medium.

The methodology which has been employed in this work models vege-

tation by dielectric discs (leaves)and uses discrete random media methods

`	 to calculate the scattering cross sections of interest. Yang [1981] asplumed

the canopy was thick enough so that ground reflection could be neglected.



The forest was thus modeled by a half space of ,dipole discs (400 MHz to 1 GNz

regime). An equation for the mean field in the half space was derived and, 	 4

from it, an equivalent dielectric constant for the leafy medium was obtained.

Following this, the distorted Born approximation was used to calculate uhe

backscaittering cross sections of the leafy half space. Lang and Sidhu (1983)

account for the effect of a flat ground by considering a layer of dipole discs

over a loss), homogeneous half space. The distorted Born approximation was

again used to find the backstattering coefficient of the layer of leaves.

It was found that the backscattering coefficient could be decomposed into

three terms: a contribution from direct backscatter; a return from a wpve

doubly reflected from Oie ground; and, finally, a direct-reflected component s

from a wAVe singly reflected from the ground. 	 In this thesis, the method is

extended to arbitrarily shaped scatterers having characteristic dimensions

comparable to a wavelength (so-called resonance region). 	 The development

is generalized by using a matrix formulation.

This thesis has five chapters. 	 Although the introduction to each

chapter should provide the reader with an outline of its contents,

we briefly summarize what will be done in each chapter.	 In Chapter II,

Maxwell's equations are recast in an operator form.	 The coherent field
r

equation obtained by employing Foldy's approximation will also be dis-

cussed.	 The correlation of field will be found by employing the distorted

Born approximation. E

In Chapter III, the mean field and Green's function of a plane wave E

obliquely incident upon the vegetation is obtained by finding an2pproximate

solution to the Foldy-Twersky mean equation in the limit of small fractional

volume.	 This approximate solution is obtained by employing a two variable k

expansion procedure.	 An examination of the mean solution shows that the
k

1
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vegetated slab can be replaced by a deterministic, anisotropic medium. The

anisotropic medium becomes uniaxial when the scatterers are assumed to have

orientation statistics that are independent of the azimuthal angle. Also,

the average complex dielectric constant of the medium is determined from the

average field in the medium.

In Chapter .IV, the model is extended to obtain the transverse spectral

density of the field, and the resonant backscattering coefficients of the

vegetated layer. Simple expressions for the copolarized and cross polarized

backscattering coefficients are obtained in terms of the dyadic scattering

amplitude of an individual scatterer.

In Chapter V, a general discussion is presented and numerical results

obtained by modeling a forest canopy as a collection of lossy dielectric disco.
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CHAPTER II

GENERAL FORMULATION 01 'RESONANT BACKSCATTERING

•	 FROM VEGETATION

In this chapter we present the general formulation for scattering

from discrete random medium in the limit of small fractional volume. We

adopt an approach which has been originally developed by Lang [ 1981].

First, we consider the problem of scattering of atime harmonic electro-

magnetic wave from N discrete identical lossy dielectric scatterers which

have random position and orientation. S catterers are considered to be in-

dependent of one another, and as a result, neighboring particles are not

necessarily aligned. Then we will consider single scatterers. In both cases

we will obtain the necessary equations in terms of the transition operator. We

will develop an approximate equation for the coherent field by employing the

Foldy approximation [Foldy,1945]. We will also obtain the macroscopic form

of Maxwell's equations and the macroscopic permittivity operator which de-

scribes the average behavior of the equivalent medium.

x,

	

	 Finally, the distorted Born approximation will be employed to obtain

the correlation of the field in the equivalent anisotropic medium.

Problem Formulation

We consider the problem of scattering of time harmonic electromagnetic

waves from N discrete scatterers located in a volume V as is shown in fig. 1.

The particles are identical and each has a volume V p , and a relative dielec-

tric constant E r . We assumed that the relative dielectric constant of

7

r

!f
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k	 dbackground medium is cd(?J&. The only real restriction on the bac groun

medium is that it be constant inside V.

The location of the ith particle is specified by the vector x,'

extending from an origin 0 to thL- center of that particle. The particle's

center is located by the center of the smallest circumscribed sphere in

which the particle can be placed. Although the particles are identical they

have a rotation with respect to & fixed direction. The rotation for the

ith particle is specified by S2 -(0 0 where Oi and 0i are polar and azimuth

angles, respectively, with 0 < Oi < 7T and 0 < mi < 27r.

Tht, electric field E and the magnetic field H obey

Maxwell's equations

-iwc0 cr (x)E - DxH . -J

oxE - iwU^ - -M

where a time dependence 
a-iwt has been assumed. In (2.1) J and M are, re-

spectively, the vector electric current density and magnetic current density.
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'	 Now let us assume that a particle located at the orgAinOf RCQUActeiized by

the function U (2), where

U(x) -	 p	 (2.2)

10, x V 

Using eq. (2.2), we express er (x) as

N

Er (x) - Ed (x) + A(x)	 U(x 41ni)	 x R3 	 (2.3a)

where

A(x) - Er (x) - Ed(x)
	

(2.3b)

and

U(x') . U(R —0 .2)	 (2.3c)
r

In eq. (2.3c) U(x,t2) is the function U(x) rotated by R, and R(Q) is

a rotational dyadic.

Equations (2.1) can be written in matrix form,

^iwtO Er(x)I -VxI	 E	 J(x)

- -	 (2.4)

VxI	 iwuOI	 H	 M(x)

Here I is the unit dyadic and I • E - E, L • H - H.

Using (2.3a) in (2.4), we have for all x

iWe0ed (x)I	 -©xl	 N -iweOA(x)U(x-X3 ,n,i)? 0	 E	 i

VxI	 -1w U 0 I	
i-1	

0	 0	 H

-	 (2.5)

M(x)

Equation (2.5) can be represented in the operator form [Felsen and

w

t

I
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i=1

where L is the operator descriptive of the field equations. The T is a wave

vector characterizing the field variables and the 6 is a wave vector de-

scribing the excitation.

Since L is sin operator, it is necessary for uniqueness to state that

T lies in a prescribed domain of the operator L, a remark that is equivalent

to the statement of initial and boundary conditions on the elements of T. We

list below the matrix farm taken by the operator L and the wave vectors T, g

and V for the electromagnetic field.

iwe0ed (x)2	 --VxI

L a	 (2.7)

Vxi	 -iwpOk

E (x)

_

	

	 (2.8)

H(x)

J(x)	 ! iweOAU(x-Xi' n )1	 0

g = -	 ,	 Vi = [	 (2.9)

M(x)	 0	 0

The matrix multiplication of equation (2.6) represents a dot product

Between the elements of the 2x2 .matrix operators L, V i and the wave vegtdr T.

The elements of L and V i are dyadics while the wave vector elements are

vectors.

At times it will be convenient to write

'f(x) _ %V
0
 (x) + T8(x)	 (2.10a)

where



r

^' 4J4tiu`x.. N.^ 

	 ^S:	
u	 r J^A:1wA

OF ^ UUR QUAUTY	 it
(x)	

E9 (!
F

" TOW	 and	 4's - (2.10b)

HO (x)	 ^ (x)

and TO (x) is the solution to eq. (2.6) when no scatterers are present, i.e.,
f }

LTO (x)	 8 (2.11)
z.

and T 	 is the scattered field from the particles.
`A

Single Scattering Equation and Transition Operator
f

Before proceeding with the N particle scattering problem, we will

.,+ consider scattering from one particle located at the origin.	 Putting N-1 in
r

eq. (2 . 6) with xl=0 and i2 1=R, we obtains

(L-V)V _ 8 (2.12a)

where

e

(2.12b)
r	

h

ime0AU (x,t2)I	 0

	

V '	 (2.12c)

0	 0

The definition of L and g are given by (2.7) and (2.9) respectively. The

eq. (2.12b) can be written as
K^

4 - 4'0 + * 8	 (2.13a)

where

r`
	 e0	 e

	

00 '	 and	 V s	 (2.13b)

h0	
h

and 00 is the solution to eq. (2.6) when no scatterer is present, i.e.,

WWI
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we have used the * notation instead of the T for the field here to

remind us that there is only one scatterer present.

If we use (2,13) in (2.12), we get

L*s = 
V^	 (2.14)

From (2.14) we see that the term on the right, V*, can be viewed as the source

of the scattered field. We write

geq : V*	 (2.15)

where geq is an equivalent source term. Since we know that V=O when x V Vp,

the sources geq, exist only inside of the particle boundaries.

It is more natural to think of the equivalent sources as being induced

by the incident field * 0. Because Maxwell's equations are linear, hence we

an write

geq = T*O 	(2.16)

The operator T in eq. (2.16) is known as the transition operator in the

scattering literature [Lax, 1951]. Now using eq. (2.15) and eq. (2.16) in eq.

(2.14) and multiplying through by L-1 , we have

*s = L-1  T ^0 	(2.17)

Thus the knowledge of T completely characterizes the scattering properties of

the particle and quantities of physical interest.

The transition operator is a linear bounded operator and, as a result,

can be expressed in integral form

geq (x) ' TV O = J dx't(x,x,)^O(x,)	 (2.18)
	

I

where the limits for the integral extend over all space and

i

^a, • ._ _ .. _-_	 ^- -^. ^, it	 .:
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X11	 112
t (x,x') _	 (2.19)

[121	 122

As shown in Appendix A, for a dielectric scatterer (relative permeability = 1)

121 = =12 . =22 = 0
and	 (2.20)

t11 = iwUO(x,x°)

The =(x,x') in eq. (2.20) is the same as the one Lang [1981] obtained

when he solved the vector wave equation and 7.1 is the normalization constant
iWJj 

0
associated with the source term.

One can show that t is 0 when x or x' are outside the particle

[Frisch, 19681, i.e.,

t(x,x') = 0,	 x t Vp or x' v Vp 	(2.21)

The property follows directly from the fact that the equivalent sources for

the scattered field are located within the particle boundaries.

The transition kernel t can be expressed in terms of its plane wave

representation	 i.e.,

=(x,x') = 1 J dk dk't(k,k')ei(k*x o'x')	 (L22)
— —	 (2n)3 — — _ -- —

or inverting eq. (2.22)

13 
f
dx dx't(x,x')e-i(k x k'•x')	

(2.23)
(2n)

In a similar manner, we can define the Fourier transform of t(x,x")

t(k,k') _	 1 3 f 
dx dx't(x,x')e i k x- k x
	

(2.24)

We have used the notation that h is the Fourier transform of h. More

specifically
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OF t?^Ql^	
3^^

h(k) ^
f 4_

X h(x)e ik x
QUALITY

The dyadic scattering amplitude, f(O,i), is defined in terms of the

asymptotic expression for e in the radiation zone. We have

ikOlxl

=$ (x,i) - 1(0,1) e 	 1xl	 (2.25)
lxl

where	 k0	 w uo is the free space wave number,

x
0 is a unit vector in the x direction, U 	 —

and i is a unit vector in the direction of the wave ;incident upon the
scatterer.

The relationship between f and can be found for large lxl• (Appen-

dix A). The result is

f(O,i) = 21T Q--0 0) - t (k00;k0i) • ( I-3 i)	 (2.26)

From this relationship, we see

0 • f = 0	 ,	 f•i = 0	 (2.27)

Thus f is a four component tensor--all combinations of two incident

and two scattered polarizations. We also note that f does not completely

determine t but rather only partially specifies; it.

Before concluding this section, transition operators for particles

that are not located at the origin will be needed. As we know, the equiva-

lent sources geq ) for a particle located at xi can be related to the in-

cident field. It follows that

f geq ) (x) = T
i 

4 !
0 

= ti(x,x-)^(') (x - )dx"	 (2.2£3)
 -	 -

By shifting the sources and the incident field to the origin, t i can

be related to t. One finds that

l
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t i (^c,x') _ t(x-Xi ,x°-Xi )	 (2.29)

Note that throughout the discussion the dependence of t on rotations

has been suppressed for convenience of notation.

Approximate Mean Field Equation

In this section, we will develop an approximate equation for the co-

herent field by employing the Foldy approximation [Foldy, 1945]. 	 The equation

is in terms of the transition operator and the 'particle density of the

equivalent medium.

After the equation has been derived, it is pointed out that inside V,

y the mean field obeys Maxwell's equations with free space medium permeability
Y

and macroscopic permittivity that 	 is	 inhomof,eneous, anisotropic, and spatial-

ly dispersive.

The total field T(x) can be thought of as a sum of the incident

field T	 plus a sum of the fields scattered from each particle, T(i)

We have

E

N	 (z.)

T = %0
f i=1

^
tThe total field incident on the ith particle is called tha effective

1.

field and is denoted by `Y (i) .	 Thus Ti (i) represents the equivalent sources

generated by the incident field in the ith particle and thus the scattered K

field by the ith particle is;

T (i) . L-1 T	 T(i)	 (2.31)
'+s	 i

Using eq.	 (2.31) in eq. (2.30) we have

N	 -1	 (i)
T(x) = T O (x) +	 L	 Ti T	 (2.32)

^`- i=1

This is the equation that we wanted to obtain. 	 Now, we average this equation

and the result is

1

. i r
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N	 -1	 (i)+	 L-1 	 >
I,

(2.33)
0	

i=1

t

To obtain an approximate equation for the mean, we follow (Foldy, 19451 and

assume

TM = <T> (2.34)

This means that the random quantity T M is to first order, equal to a de-

' terministic quantity. 	 Using eq. (2.34) in eq. (2.33) and noting that

y
<TiT(i > = <T i<T» w <T i><T> (2.35)

We have the approximate equation for the me^m fields

N

<Y> = T	 +	 L-1<T ><T>
U	 i

(2.36)
i=1

We need	 the dependence of average Ti upon xi and Q.	 For this, we

assume that the position vectors ,Xi and rotation vectors ni are random
K4

variables that are specified by a 5N dimensional distribution function.

Assuming the particles 	 have identical distribution functions, we have:

s
P 
	 (x,W)	 = P 	 (x,W)	 i = 1, 2 1 ...,N	 (2.37a)

SI

where (4­ 04).4).	 We assume that the particle ' s location and rotation are

y '
r,

independent, thus

P 
	 (x , W) _ PX (x ) PQ M (2.37b)

SI

with the usual property:

i
f PX (x ) dx = 1	

J 
P^ M OW = 1 (2.38)

V

The particle density is defined by

p (x) = NP ( x) (2.39)-	 x

f
so that

jp(x)dx	 N (2.40)
V

i, f

i

k^.
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Now, we have

<T i> _ <T(xi ,Sti)>	
f d—

s f dw P  $7(s,w )T(s,w)

V 4•T

	

_ J ds PX (s ) T(s )	 (2.41)

V

where	

t

T(s)	
J

	

dw	 (2-42)(2.42)

47r

In (2.42) the bar over T has been used to indicate only an average of angular

variables. By substituting eq. (2.41) in eq. (2.36), noting that the scattered

terms are identical, and by using eq. (2.39) we obtain

<Y'> = Y'0 + fds p (s) L-1 (s) <Y'>	 (2.43)

V

Multiplying from the left by L and using eq. (2.11), we obtain

2 <T> - g	 (2.44)

where

.^ = L - f ds p (s)T (s)	 (2.45)	 M

V

This is the equation for the mean field which - has been obtained essenti-

ally by assuming that the effective field is approximately equal to the r

mean field (equation 2.34). Equation (2.34) is only valid when the frac-

tional volume occupied by the particles is small compared to the total volume }

[Twersky, 1978]. We shall refer to a distribution of scatterers satisfying 	 e

this condition as a sparse distribution.

We now write the equation for the mean in a more explicit form.. Using

eqs. (2.28) and (2.29) in eqs. ( 2.44) and (2.45) we obtain the macroscopic form of

}

F-

A	 y
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Maxwell's equation:

rr 	 rr
	 ^.

L<'Y(x)>	
J

ds
J
dx'p(s)t(x-s,x'-s)< vf(X')>	 g	 (2.46)

where

ty(x,x') = J dwpD (w)t(x,x',w)	 (2.47)

41r

Here the kernel t(x,x',w) is the same as eq. (2.29),however, we have explicitly
^I

shown its dependence on the angular coordinate m.

By writing eq. (2.46) out in vector components, we explicitly obtain

Maxwell's equations.

The macroscopic form of Faraday's law:

Vx<E(x)> =	 iwu0<H(x,)> - <M(x)>	 (2.48)

and the macroscopic form of Ampere's law with displacement current:

Vx<H(x)> _ -iw<D(x)> + <J(x)> , <D> = e e <E> 	 (2.49)

where ee is a macroscopic permittivity operator which describes the average

behavior of the medium.	 We have
.1

ee lx)	 Ied(x) + 2 fds 1 dx'p(s)t(x-s,x'-s) •	(2.50)
—	 —	 —	 —	 --- —

k2 V

s
This expression simplifies to IEd (x) when x F V.	 To see this we note that

t

when x f V, we have x-s % V , since s eV except for a small region near the—	 — —	 p ,

boundary.	 Now using eq. (2.21) we have t=0.	 When x cV,	 eq. ( 2.44) does not

simpli fy in general.	 It describes anisotropic, inhomogeneous, spatially
a

dispersive medium.

Lang (1981) showed that eq. (2.50) reduces to some more familiar ex-

pressions in certain special situations.

r
P
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The Correlation Field 'Equation

In this section we will calculate the correlat,i—n of the field. The

distorted Born approximation will be employed. It is a single scattering

approximation where the scatterers are assumed to be embedded in the equiva -

lent anisotropic bulk medium. The procedure is valid when the albedo of a

single particle is small. The latter condition implies that the energy

absorbed by a particle must be much larger than the energy scattered by it.

We start by considering a volume V of equivalent medium which was

mentioned before. There are N particles embedded in V as shown in fig. 1.

The scattered field due to the ith particle can be calculated by modifying eq.

(2.31). We assume that the incident field on the ith particle is the mean

field <'Y> ^aand that the operator L is replaced by the equivalent medium

operator ^G as given in eq. (2.45).

We have

'Y	 N  M
s iEI se

where
	

(2.51)

Tse) Y-1Ti<Y>

Before proceeding, we point out that our main interest in finding the cor-

relation of the field is to use it to calculate backscattering cross

sections. We define the correlation of the field fluctuations as

Y£ = Ys - <Ts >	 <Yf>	 0	 (2.52)

Now computing the correlation of the fluctuation component of the scattered

field, we obtain

<T (X)Y'f(x)> = <Ts (x)T s (x)> 	 - <4' s (x)><T. (x)>	 (2.53)

where 4,t denotes the conjugate transpose of 4'.

a



20

In eq. (2.53)	 is conformable. to T t for matrix multiplicatioti. The

elements of T and T  are vectors. Therefore, eq. (2.53) represents a 2x2

matrix with elements of dyadics.

Putting eq. (2.51) in eq. (2.53) and noting that a por,;ion of 0 Tt>

cancels the term <T >0t>. We also assume that N»l. Then, we Atain

<`Yf(x)Tf(X)>	 fd!gn (w)<Y
f

())Tf(x)>w 	(2.54)

n4 —
	

—

where

<Yf(x)'Yf(A	 fd'1P(s)Y (x ' s )Y's (X" s )	 (2.55)
V	

e — — e

with

s (x.$)	 -1 T(g ) ,v^>	 (2.56)

e—

Here we have separated the average into rotation and coordinate space

averages, and thus we introduce the conditional expectation, ='Y fYt >w, with

respect to given w.

The field Ys defined in eq. (2.56) represents the field scattered
e

by a single particle located in the equivalent medium at s. V is the volume

of the medium. We see that equation ( 2.55) is just an incoherent addition of

the single scattering contributions from each particle. This is a result of

the assumed independence of particle statistics.

The correlation of the fluctuation field 'P f (x) it calculated instead

of the correlation of Ys (x), so that coherent effects will be eliminated from

the backscatter coefficient expressions.

The backscattering coefficients are then directly related to the trans-

verse Fourier transform of equation (2.55) with respect to A t and .Kt evaluated

at the upper interface (z =0). This work will se done in chapter IV.
i

rremrrir	 _	 _
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To write equation (2.56) more explicitly, we introduce the Green's

function G(x qC) for the operator It satisfies

YG(x,x') - Id(x-x')	 (2.57)

where Y is given by eq. (2.45). The I is a square diagonal matrix of the

unit dyadics,

r1 0

0 r

and

(2.58)

4rj

	

Gll (x>X^)	 E12(x.X^)

G(x,x ` ) _	 (2.59)

	

[221(—X'A-)	 =22(x.x')

where 
X11' ^?2' ^21 and G22 are dyadic Green's functions. (See Felsen and

Marcuvitz, 19731. Now equation (2.56) becomes

Y s (x,$) = 
f
dx'G(x,x')

J
dx "t(x•_s,x,•--s) <Y(x—)>	 (2.60)

Equation (2.60) simplifies in the low frequency or Rayleigh

limit.

Before proceeding to a specific application, we would like to point

out the relationship between the distorted Born approximation as presented

here and the Twersky equation for the correlation. Basically, the vector

analog of the scalar Twersky equation [Twersky, 1964] can be found by applying

the method of smootti.ng when the frr.ctional 'volume is small. If one then

solves this equation under the assumption of small albedo, the result should

be the same as the distorted Born method we have employed.

1
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CHAPTER III

MEAN VIELD AND GREEN'S FUNCTION IN THREE MEDIA

The mean field and Green's function in three layered media are develop-

ed in this chapter. We begin first by obtaining the transverse wave vector,

then we obtain a fluctuation equation. Using the two-variable expansion procedure,

the equation will be solved approximately. The two-variable expansion procedure

is a perturbation technique for approximating solutions to differential equa-

tions, and it is the principal mathematical technique used in this study.

Sonic particular applications of this method has been made by Tsang and Kong

[1976), Tan and Fung [1979), Tsang and Kong (2979), and Zuniga and Kong (1981).

We conclude the mean field study by obtaining the mean field of three

media in a small volume limit (pVp«l). The small volume limit or sparse

distribution is natural for vegetation where leaves and stems make up a re-

latively small percentage of the volume. This in turn leads to the concept

that the mean field acts as though it propagates in an equivalent medium

which is anisotropic. Because of this condition, we expect interface effects

to be relatively unimportant. The most importan t_ effect is the decay of the

mean field as it progresses through and reflects from the .ground.

Finally, we will compute the transverse dyadic Green's function in

three layered media but will only give explicit expressions for it in the

slab region.

The Evaluation of the Eigenvectors

A. Transverse Fourier Transform	 '

To illustrate the application of the method developed in the previous

22

s
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r	 sections, we will calculate the mean Field in a three layered medium. As

shown in fig. 2, this consists of free space at the top, the vegetation layer

and the ground. A pla q.e wave is assumed to be incident at an angle 6 0 and

scattered at an angle 6 s . The unit polarization vectors for incident and

scattered wave are shown in fig. 2. The interface between the ground and the

vegetation is taken to be smooth.

z

v0	 v+

't	 h-	
h

i0	
8s

60
Medium 0
(Co Oj

x
Medium 1

41P	
0	 D	

0 (E Oie"'O)

D c::)	 a
1z--d	 Medium 2

( EO gE9uO)

Fig. 2. Geometrical configura.tfon of the problem

111*1 	 Medium 0 is	 free space having permeability 
u0 

and permittivity co.
b/

The scattering, particles are all assumed to be identical and each has a

volume Vp , relative dielectric constant Er , and free space permeability 
u0 

in

Medium 1. Medium 2 is the ground underlying the vegetation with relative

F'.

^'R
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dielectric constant e g and permeability U0.

The equations satisfied by the mean fields in the three media, which

are mentioned abnve, have been derived in chapter II. There it was shown

that the average electric field, <E(x)>,and the average magnetic field,

<H(x)>, obey Maxwell's equations in an equivalent medium having relative

permeability 1 and-relative permittivity =e (x). The relative permittivity

C (x) is dyadic since the scatterers are arbitrarily shaped.
zie

In this section we consider first the abstract formulation of the

guided-mode wavevector representation of Maxwell's equations. We start by

writing the macroscopic form sf Maxwell's equations which were obtained in

chapter II. Assuming g=0, we have

L< <Y(x)> = f dsf dx'p(s)t(x-s,x'-s)<T(x')>	 (3.1)

V

where

iwe0 ed QN	 -VXI	 1	 ,	 z>-d

L =	 with ed (x) = ed (z)	 (3.2)

VxI	 iwp0i	 e
g	

,	 z<-d

and

<E(x)>

<`r'(x)> _	 0.3)

<H(x)>

t	 0

t = - 1imP0	 (3.4)

0	 0

The left side of eq. (3.1) becomes zero when xiV. To see this we note that

when xiV, we have x-sEVp since scV. Now using eq. (2.21), we have t=0. Thus the

integral over V in eq. (3.1), can be replaced by infinite limit if x is

restricted to lie in the slab region.

..a..., .	 ^. ^,
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L<T(x)>	 lfdsfdx'p(.E)T(A7s.,x'7s)<T(x')>  rect d (z)	 (3.5)

where

0	 , z>0	 (free space)

rectd (z)	 1	 , -d<z<o	 (slab)	 (3.6)

0	 , z<-d	 (ground)

The general field in the vegetation can be described either in terms of a first-

order system of field equations, or it can be reduced to a higher-order equation in

terms of a particular field component. The reduced field formulation (eq. (3.5))

frequently leads to analytical complexities in identification of energy express-

ions, reciprocity properties, eigen modes, etc.. The first-order formulation

avoids many of these difficulties. In this work the first-order formulation will

s	 be used. Also this formulation will be more suitable to apply to the two-variable

expansion procedure.

In order to simplify eq. (3.5), we should like to take the transverse

Fourier transform of it. For this purpose, we assume p has no transverse

variation, i.e.,

P(s ) = P(s)

where

s = st + szo

Also we define

X(xt ,x , 9z-s,z'-s) = Idstt (xt-st,xt-st,z-s,z'-S)

(3. 7 )

(3.8a)

(3.8b)

(3.8c)

G
and letst = s t - xt	 dst = dst

Using eq. (3.8b) in (3.8a) we have

X(xt ,x	 -s)=t,z-s,z	 daft(-st,xt-pct-st,z-s,z'-s)

X(xt-xt;z-s,z'-s)
e..



(3.13)
n	 'l

{

ii

(3.14)
xa

1

(3.15)

F-- --m-
hL
k
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As seen in eq. (3.8c) we suppress the st dependence by using eq. (3.8a).

Substituting

((

(3.8

(

c), and ( 3.7) into (3.5) we have

L<T(x)> = { dsJdx 'P(s)X(,. -x,t;z-s , z'-s)<'Y(x ')> rectd (z)	 (3.9)
(1	 I

In eq. (3.9) we have written the difference in transverse coordinates because

the particle density p does not depend on s t . Because of the exponential

dependence of the incident wave on x and the invariance of the mean equation

in the transverse direction, we assume

ikt•xt
<T(x) >=<Y(xx z)> _ <T(kt ,z) >e 	 (3.10)

where

ht ktx0	,	 kt = kOsinO	 (3.11)

The system of ordinary differential equations is obtained by substituting eq.

(3.10) into eq. (3.9). This is equivalent to taking the transverse Fourier

transform of eq. (3.9). We find:

L<T( - t ,z)> = if dsfdz-p (s) X̂, (kt,z-s,z'-s)<Y(kt,z')> rect d (z)	 (3.12)

where

<E(kt,z)>

<^{kt ,z)> =

<H (kt , z)>

The transverse Fourier transform of the operator L is

L = -iIC + Pd

with the component operators K and r defined by

we0ed ( z)I	 ktxI	 0	 -Z XI
K =	 and	 P =

-ktxl	 wu0x	 z0XI	
0

am
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a
From eqs. (2 . 20), (3.8a) and (3.11) we see that

't11(z-s,z'-s)	 0

r	 T(kt,z-s,z' -s)	 X(z-s'2 '-s) _	 (3.16)

0	 0

B.	 Eigen -Functions for the Particle Free Medium

The complete solution to eq. (3.12) is obtained by a perturbation tech-

nique under the assumption that the fractional volume is small. As a first

step in implementing this procedure the homogeneous solutions to L<;> =O are

found. The homogeneous solutions are of the form;

iK z

	

tae a
	 (3.17)

where Y  and Ka will depend upon whether z>-d or z< -d. Substituting eq.

(3..17) into the homogeneous equation L<Y>=0 yields

LT  = (K-Kar)% = 0

or

KY	 K rT	 (3.18)	 -'
a	 a a

where K and r are defined by eq. (3.15). It. is seen that the Ka and T  are

eigen values and eigen vectors respectively of the operator K.

To establish the orthogonality of the eigen vectors, we introduce the

product

('Ya' T	 _ TT T	 Ea 'E S + Ha -Hs 	(3.19)
t

F

where T is the transpose of T. The ad,joint operator L + is defined by
s
f

(L 9'a ,Yr s) _ ( Y'a ,L+ Y'S)

n

For the product defined in eq. (3.19), we conclude 	 a

(L 'Ya ,`Y S) _ (L T )T TS	 Y LT Y's = Y' L+ 4^s
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L+ = LT

C

i

f 2E

i4
t	 i

Now the adjoint eigen function problem for eq. (3.18) can be defined as

K+Y'a = K+r+'Ya

Since K+ = KT = K and r+ s rT r the adjoint problem is the same as the original

eigen value problem; thus Y'+o='Ya and Ka= ►co. As a result we say the eigen value

problem is self adjoint.

We can now show that two eigen vectors having different eigen functions

are orthogonal. Consider eigen vectors 'Y o and Y'a and their corresponding eigen

values 
X  

and X S 	We have

(KT a ,Y a ) - (KT a ,'Y S ) = 0

(KY a . Y $) - (Y'a ,KY a ) = 0

(xar'Ya'T a ) - ( Y'a , x arT ) = 0

Aa (rTa ,T a) - a s ('Y a JT a )	 0

(aa a s ) ( rTaI,T	 = 0

if 
Xa#xa 

then

(rTa ,T 	 0	 (3.20)

The eigen vectors T  and Y' S are orthogonal to each other as defined by eq. (3.20).

Actual computation of the eigen vectors and values proceeds in a direct

manner from eq. (3.18). The calculation follows the method of Felsen and

Marcuvitz, 1973 and thus will not be repeated here. The results of the calcula-

tion shows that there are four eigen vectors and four eigen values. The eigen

values are given by

K+ (z) _ ±K(z)	 (3.21a)
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where

K	 ,	 z>-d
K(z) (3.21b)

Kg 	,	 z<-d

with

K = k0cos6	 ,	 Kg =	 g-kt	 ,	 kg = k0 
8

(3.22)

and k 	 is given in `eq.(3.11).	 We note that there are only two distinct eigen

values; each has multiplicity two.	 Thus two eigen vectors correspond to each

distinct eigen value. 	 The eigen vectors are:

 h0
Y'	 (z)	 E=±l

li-on(z)±(z)-0
Y'	 (z)	 _±2

(z)n(Z)

(3.23)

:

where the unit polarization vectors are given by

h0 =ho = hg+_ y0 (3.24)
•.	 i

a	 .

X+
	 ,	 z>-d

v^(z) (3.25a)

f
-g±	 ,	 z<-dY-9+-

with

v± AC (+KX	 + k	 /k0v tz0) (3.25b)

•`
v_g
0+ 	 (+KgX0 + ktz0 ) /kg (3.25c)

gj <

and

':0':d(z)
n(z ) 	__._.^ (3.26)

u0
E

An examination of the eigen vectors shows that they obey the following

orthogonality relationship

Gil ('Ya,y ) = 2Na d
a$	

,	 a,s a {±1,±2) (3.27a)

where 6a3 is the Kronecker delta function and Na is a normalization coefficient

given by

N+i •' ±NT (z)	 ,	 NT (z) _ -nKK-(-z-) 	 .
0	

1-1,2 (3,27b)

i
i

E

aMy

1

G	 a

Y	 y

x
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This result embodies the orthogonality relationship given in eq. (3.20),

plus the fact the eigen functions corresponding to the same eigen value were

choosen to be orthogonal.

The eqs. (3.23) represent the eigen vectors for z>-d and for z <-d. For

further use we write these eigen vectors explicitly in each region. We have

	

v0 	h0
	s 	 -	 Y±

2 
a	 for z>-d	 (3.28a)

±1	
0	

0

	

-nh	 nv

r̂0-0
with n =

and	 v0	 h0

	

Tlg=
	

0	
2g	 0 for z<-d	 (3.28b)

	

-n h	
ngv,

with ng = . .r. 9
 .

In obtaining eq. (3.28b), we have used v
9
0
=_vg- . Due to radiation con

dition,v_g+ will not come intD our development.

The Solution of the Mean Wave Equation

A. Reduction to Slowly Varying Coefficients:

We start with substituting eqs. (3.23) in eq. (3.17), then we obtain

< Z > _

	

( )	 (Y-1 a' + Y-2a..)e iKZ + (Y+lb . + Y+2b")e +iKZ	 (3.29)

where the form of the eigen values and vectors will depend on whether z<-d

or z>-d.

The problem is now reformulated in terms of slowly varying parameters

[Kohler and Papanicolaou , 1973]. These parameters are defined by the trans-

formation

A(z) = a'(z)v0 (z) + a " (z)h0
—	 (3.30)

B(z) = b'(z)v0 (z) + b"(z)_h0

Here A(z) and B(z) are the slowly varying wave amplitudes associated incident

and scattered wave, respectively.



k'

We also define	
31	

OF P(ju'
a

Y- (z) Y- Yo o (Z) + T-2h0
(3.31)

Y+(Z) ' 'Y+lv 0 (Z) + ^,+2h0

where T4.1 and T+2 are defined by eq. (3.23), The T's are 2x1 matricies

whose elements are vectors, therefore y and y+ are 2xl matricies where

each element is a dyadic.

Using eq.	 (3.30) and (3.31) in (3.29) we obtain

<Y(z)> = Y Ae-iKZ + y+BeiKZ (3.32)

Defining the vector ¢(z) by

A(z)

(	 4(Z) _ (3.33)

B(z)

and the 2x2 matriv, y(z) of dyadics by

Y(z) = [y-(z)e-iKZ^y+(z)eiKZ^
(3.34)

We cast eq.	 (.3.32) in matrix form as follows:

<(Z)> = Y( Z )$( Z ) (3.35)

where we denote the matrix y ( z) in the two regions by

Y	 z>-d

Y(Z ) =

y 
	 ,	 z<-d

The equation (3.35) represents the transformation from field quantities

to slowly varying amplitudes 	 which we wanted to obtain.

Using eq. (3.23) in eq. 	 ( 3.31) we obtain

'	 I	 ( Z )	 I+ (z)

Y (Z ) _	 y+(z) _ (3.36)

n (z)*	 (Z)	 n(z) ^xI+(z)

where i+(z) are unit vectors in the direction of the up and down going waves.
i

They are defined by



-1	 1 -	 iKz	 1 +	 -iKz T

T	 TC) (3.41)

(kt ± Kz0)/k 0

i+(z)

(kt ± K^ )/kg

Lot, tl ...I.^ 
^

b
q	

rr.^^,t.ug ^t,^
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z>-d

,	 z<-d

(3.37x)

and

+- h%o + v0 (z)v0(z)	 (3.37b)I (z)	 ,^	 +

Here I± (z) have the property I (z)'A(z) - A(z) and I +(z) • B(z) - H(z).

The Y ( z) and I+(z) are unit dyadic tensors associated with up and

down going waves respectively.

Using eq. ( 3.36) in eq. (3 . 34) we obtain the y matrix as

I-(z)e-iKz
	 I+(z)ei,Kz

Y(z) _	 (3.38)

r1(z)((i0 -
	 iKz	 iX?(Z ))e	 IT(Z) ( ( i xI W)e ►cz

One can define dyadic innar product similar to eq. (3.19) [Friedman, 1962], as

(y± , rY± ) _	 (y± ) Tr (Y± )	 (3.39)

Substituting eqs. (3.36) and (3.15) into eq. (3.19) and proceeding with

the matrix multiplication, we obtain the results

(y± ) Tr(y± ) = ± 2NTI + 	(3.40)

with (y-)
T
	 = 0. The normalization coefficient N  is given by eq.

(3.27b) .

Now we define the inverse matrix, y-1 , as:
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or	

I- (z) e' Kz	 n (z) (-1 0 I-(2))e 
iKz

y-1(z)	

=	 nx.	
(3.42)

2NT +	 — iKZ	 0 +	 -iKZ
I (z) e	 n (z) (j;xj (z )) eL M	 I	 I

The inverse matrix has the property that

Y-1 ry	 I	 (3.43)

where

0

(3.44)

Here I. is a identity matrix in the -+ space where 1 0-T

Next we substitute eq. (3.35) into the transverse mean wave eq.

(3.12). We obtain

ZYWO(z) --=
	

rect(Jds1dz'R(s)X(z-s,z'-s)Y(z')O(z')1d(z)	 (3.45)

where

Zy(z)o(z) = [(_iK+
rZ-
d	 d	 0

	

) Y ( z )] $( Z ) = (-iKy+rfz-y ) O+ryT	 (3.46)

Using eq. (3.34) we obtain

d	 d	 -(-iK+rf-)y (-iK+rf-) (y e-iKz y+ e+iKZ
z	 z

[(-iK-iKr)y-e- iKZ 
(-iK+irK)y + e +iKZ	 (3.47)

Using eq. (3.31) in eq. (3.47) and proceeding the matrix multiplication, we

obtain

(-iK+r 
d 

)y(z) = 0	 (3.48)dz

Hence eq. (3.45) becomes

ry 
ddz
O(z)	

dsf 
dzp(s)t(z-s,z'-s)y(z')O(z') rect

d 
(Z)	 (3.49)(f 
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Multiplying both sides of eq. (3.49) by y^l (z) and using (3.43) we

find the fluctuation equation to be

d ( z ) 
=( fJ

ds dz'P(s)Y-1(z)XY(z`)#(z')^ rectd (z)
	

(3.50)

with boundary conditions: i) tangential components continuous, i.e., ly(z)o(z) is

continuous at z - O and z•-d, and ii) radiation condition at X-a. We also have

Y-1(z)RY(z') X# (z, z ', a)	 (3,51)

.^
with

Ia, ll(k,,t0,z-s,z'-s).10 e`ik(az-0z')

tit

B. Application of the Two-variable Procedure:

The eq. (3.50) can be solved along with the appropriate boundary con-

ditions by using exact or approximate methods. The two-variable perturbation

procedure will allow us to determine the approximate solution to eq. (3.50)

directly without having to find the more complicated exact solution first.

The main advantage of the two-variable procedure is the simplicity of

the formalism. The higher approximations are more easily calculated. A

disadvantage of the method, however, is that the proper choice of fast and

slow variables are not always obvious [Cole, 1968].

We assume a slow variable z-fz, and then we assume p(z)=6—p(-z). Thus

p (z7 is a slowly varying function. Next we consider ^(z) to be both a

function of z and T. We have

j	
(n)	 n	 (0)	 —	 (1)^

(z) _ 04, ' 6 ) _	 (z,zya =	 (z,z) + ^m	 (z,z) ...	 (3.52)
n=0

If we proceed one step further by expanding P(a) in power series around s-^z,

then we have
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P(s) 1 
611w(u) (—Z)  

mlz , 
^(z)+...	 (3.53)

M-0

where
_ r
a'-f-	 s - dz

with d<<l, and total derivative with respect to z can be written as a sum of

partial derivatives,

dz ' Dz + d 
x

	
(3.54)

t

VTR'

We substitute egs.(3.54), (3.53) and (3.52) into eq. (3.50). Using

the fact that p(s) is slowly varying over the support of T, it can be taken

in front of the integral as p(z). Thus eq. (3.50) takes the following form

A+64c
(n)(z ^ z)dn_ r dm+l^ m)(Z)^^^dz. (s-z m 1=	 (nl

 6	 G	 m! y xy f Lz' , z')dn rectd(z)
n-0	 IM-0	 n-0

_	 _ _	 (3.55)
We also need to expand ¢(n)(z',z') around z'-z. Doing that we get

'6(n)(z'.Z')	 (t 	 + d a',(zz)(z'-z) + ... (3.56)

Using eq. (3.56) in (3.55) and by equating coefficients of d, we find

d(0)' 3  (0)(z,Z) - 0	 (3.57a)

	

therefore (OIz,$) -o(0)(s)	 (3.57b)

d (1) z (1) (z , Z) +	 ^'0)(z . z ) - P (z) 
i f

ds
f

dz 'y-1 (Z )Xy (z) '#'-Az z) rectd'(g)
 

(3.58a)

From eq. (3.58a),we obtain by using (3.57b)

_	 z

(1)(z.z)-_d d z) z + P(z) Idz'
1
ds dz"y^l(z')T(Y(z..) (0	 (1 —

z	 I1
	 j	 P H rectd (z)+¢ 1z)
0	 (3.58b)

Following the two-variable procedure, which requires that the 0(1) term does

not grow as fast as z, i.e.,



(3.63)

(3.64)

k
t

Y

A

?1
Y^

M.

4

i
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Z	 4(1)(Z,Z) - 0	 (3.59) r

In Appendix A, the condition given by eq. (1,59) is evaluated. The reaalt

leads to the following equation for #(0)(z):

(̂0) (z )	 p(s)MO (0) Cz)rectd (Z)	 (3.60)

where

0
M

	

	 (3.6la)
0 m

_

' y

and employing

3
M	

SiK^r 
IS•S(kA,koi ) • I S	 ,	 g e{+,-}	 (3.61b)

If we use eq. (2.26) along with the fact that	 h0 h0 + v0 v + i0 10 in	 S± ._±

eq. (3.61b), we have

mS	
S2ni f(1

0 ,i0)	 (3.62)
=	 K

1t,

Equation (3.60) can now be written as; 	 fi'

c

i^o(c)= - 2Ki PCz) f¢0(z)

where

A(Z)

(0) (Z)
Btz)

and

(i 0 '1 0 	 0

f =



2R;Y	y

F	 ^'

(

lYll+ipSu. ^,...x^ 
is
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Equation (3.63) .epresen',-a two independent equations, namely

dA0 (:)	 _	 _
----- • - ^Ki p(s) I (:-L - ,ia )*A (Z)	 (3.65)

dB0 (z)	 _

	

2Ki 
p(Z) f (10,10 ) • 80 (z)	 (3.66)

dz

The rjuations (365) and (3.66) are two first order systems of

differential equations for slowly varying coefficie- 's.

C. The ,solution of the slowly varying equations:

Here we will solve the slowly varying differential equations in order

to obtain the mean field Jr. the air, the ground and the vegetated slab as shown

in fig. 3. We assume the transverse mean field is excited by a plane wave

0 -iK0z
<Yi (z) > = y"1- a	 gefh,v}	 > 0	 (3.67)

having polarization _q o and propagation constant K0Wk0coseo.

We can write the mean field in the three regions using eq. (3.32)

and eq. (3.67). It is;

<i (z)> - y^q-a-iKOz+ Y±r&eg_eiK0	 z>.0	 (3.68)

<T(z)> - y.A`Z)e_iK0 
+ y^B(Z) eiK0	 0>z>-d	 (J.69)

-iK Z
4(z)> = yg-Age	 90 	 z<-d	 (3.70)

where r$ is the dyadic reflection coefficient and A  is constant vector. 	 i

The subzert. on quantities such as K 0 and K. which indicate an angle of

incidence 8 0 will be suppressed through the rest of section C for nota-

tion convenience, and Kg is given by
0

k (e - sin28 ) 1 2	 (3.71)Kg	 0 R	 0 
0 

The y and y+ in eqs. (3.68)-(3.70) are given by eq. (3.36) and A( —Z).



U ^
Is ^

ij

38
OF POOR Wilrg"Mr

B(z) are the slowly varying coefficients. Assuming constant P, from eqs.

(3.66)and (3.67), we find

	

2 ,ff — — 0 1 0 —	 271 - y 0 0 -
it'- P f	 )z	 i-^-" P	

z
A(z—)-eB(z)-e K

	 • (3.72)-Ao	 -A0

where AO and 4 are constant vectors. The mean field eqs. (3.68)- (3.70)

can be expressed as.

Yo f 	z>O

4>	 YO	 0>z>-d	 (3.73)

y
99	

z<-d

where

0
q
-	 A(Z)	 A8

Of	

. 0
	

91	 0S
	

B(z)z)

	
0g
	

(3.74)

r
SS--^	 .	 -	 L 

0

Boundary Conditions:

(i) At z=—z-0, the tangential field has to be continuous, hence

r4 f > - r<i S >	 (3.75)

where 4 f >-yo S and <T S>-Yos represent the mean fields for z>O

and 0>z>-d, respectively.

After substituting eq. (3.73) into (3.75), we multiply both

sides by y-1 . Then using eq. (3.43), we obtain

Of - 0SIZ.—	 (3.16)
Z-0

Using eqs. (3.74) in (3.76) we conclude that
0q- . A(0) - A0	 (3.77)

0

ises- . B(0) - 
-P0	

(3.78)
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(ii)	 At z--d, 7-44f, the tangential field has to be continuous, hence

ro0> - ro9> (3.79)

where 49>-y
9
f
9
 represents the mean field for z<-d.

After substituting eq.	 (3.73) in (3.79), we multiply both

sides by y-l .	 Then using (3.43), we obtain

0s 
(-:d-)- (y-lrYg)09 (3.80)

Substituting	 81 4g and (y-1ryg) into eq. (3.80), we obtain

_	 T	 -i(K—K
g 

)d

A(^d) - 2N I(Y ) ryg }Age (3.81)
T

T _	 i (K+K ) d
gB (-d) - 2N I(Y ) rYg J•Age

T
(3.82)

where NT=nK/kO and y8 is given by eq. 3.36 for z<-d.

Now we introduce

Ag - ^•A(-d) (3.83)

} and

B(-d)	 T•A(-d) (3.84)

µ
where T and r are dyadic transmission and reflection coefficients at the

ground, respectively.
w,

Using eqs. (3.83), (3 . 84) in eqs. (3.81) and (3.82) we obtain

I,	 .

(3.85)

I..
i(K-Kg)d

T 	 e

{
_	 -g

( where

Tg = ^gh h0 h0 + Tgv -°g- v-^ (3.86)

e .,



.t•

40	 OF P00P,

In eq. (3,86) Tgh and T 	 are Fresnel transmission coefficients

which are given by

2K
Tgh . 

2K
KLg	 Tgv M 

e 

/9

These calculations have been carried out in Appendix C.

I.
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where

rg . rgh 
h%o + r gv v*v 0

i

(3.89)

In eqs . (3.89) r g h and r g v are Fresnel reflection coefficients which

are given by

r	 • K K 	 r	 - CSK —KKa
gh	 K + Kg	 '	 gv	 e9K + Kg	 (3.90)

We also obtain using egs.•(3.72), (3.77) and (3.78)

	

iK+d	 ir,-d
rs	 a	 rg • e	 (3.91)

where

_* = KI± + 27rp f (i0,0)	 (3.92)
K -

For the final solution, we write the mean field in three regions as

	

0	 0 r,	q 	 T •q:s 

<i(z,q)> s	
e-iKZ +	 eiKZ	

z>0
(iU xT-}^^	

^(i0 xI+)•ris-
(3.93)

and
.	 ±l

	

^-	
-is-z 0
	 i=+z

	

04 (z ,q > _	 • e	 .3_ +	 .e	 •CBs_ , 0>z>-d

n(LO xi)	 n(i°xI+) 	 (3.94)

and	 T	 -
Mg	 iK d	 0 -ix (z+d)

<T(z.q)>	 a	 g_ e g	 z<-d	 (3.95)

n	 M" 9

where ig is i^ (z) for z<-d as given in eq. ( 3.37a).

The first term in eq. (3.93) is the incoming wave and the second term

represents the reflected wave after travelling through the equivalent medium

and having been reflected from underlying ground. The same is true inside.

the equivalent medium except that propagation constant now is -K as defined by

A

7 ,



t^
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- eq. (3 . 92). The original wave after decaying through the equivalent medium

is partially transmitted into the ground where it travels with a propagation

constant Kg . These results, in the case of low frequency (Rayleigh regime),

are identical to those obtained by Lang and Sidhu (1982).

•Transverse Dyadic Green's Function in Three Media

To compute the backscattering coefficients we have to evaluate the

transverse spectral density. To evaluate it we will need the transverse

Green ' s function in the equivalent medium which gives the scattered field at

x in response to a unit dipole located at x'. The Green's function will be

calculated in the equivalent medium and thus, is an averaged quantity. We 	
Y'

have defined the Green's function problem at the end of chapter H. Now, if

we take the transverse Fourier transform of eq. (2.57) and proceed in the

same way we did in the mean wave case, we obtain

LG(kt ,z,z') - I6(z-z')+
I j
 i dsJdz "p(s)X(kt ,z-s,z"-s)G(kt , z",z') rectd(z)

 
(3.96)

+ radiation condition

The definition of^X, I and L are given by eqs. (3.16), (2.58) and (3.14),

respectively.

We write

c(kt ,z,z') - c(z,z') - y (z)c(z,z')	 (3.97)	 r

Substituting eq. (3,97) into eq. (3.96) and using the identical pro-

cedure as we did in the mean wave case, we find

-1	 rrZG(z,z')	 y (z )S(z-z )+
if

dsJdz ,.p(s)y (zA(z-s,z. >-s)y(z. . )G(z. , ,z )

• rectd (z)	 (3.93)

., ^ksr'uTp'R":	 . ,.	 ... :.	 e. ?5
-^Ki^r''.M'^'^ryM':X'ynla+v^^	

'`+'	 _	 _	 -	 '•'	
..
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We would like to put eq. (3.98) into a more familiar form by multi-

plying from the right side by Ty (z'), and using y lry-I+ we obtain

d

d -

	

	 r	 -1	 „ 
(z,z)	 I^d (z-s )+'ds

1
ds p(s)y (z)(s-s,s	 s)y(s )G(z ,z)	 -

	

• rectd (z)	 (3.99)

where

G(z,z') - G(z,z')ry(z')	 (3.100a)

From eq. (3.100a) we have

G(z,z') - G(z•z")Y-1(Z^)	 (3.100b)

:z Using eq. (3.100b) in eq. (M.11) we obtain that the transverse Fourier

transform of Green's function is in the form of similarity transformation,

i.e.

	

G(z,z,) - Y(Z)G(Z,Z,)Y
-1 W)	

(3.100c)

We will solve eq. (3.99) approximately by utilizing the two variable method.

We expand the Green ' s function in a power series and assume that the unit

source is inside the slab, i.e. 0>z'>-d. We have

^	
m

G(z,z') - G(Z,Z;^Z',6) =	 T G(n)(Z,Z,Z,,Z,)6nn-•O	 p

where z - dz and z'-6z' with d«l.

x
Proceeding in the same manner as in the wean wave, we obtain 	 ,	 1

t

6 (0) : ĵG (z,z;z',z') - I^6 (z-z')	 (3.101a)

From eq. (3.101a) we have for zfz'

G(0)(z,z;z-, z ,)	 G(0) (z;z-,z.)	 {

• az	 (Z,z;Z ,Z ) + 8z G
	 (Z.Z ,Z )-p (Z) dsdz Y X► G	 (z;z ,z )rectd (z)

(3.101b)
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Following the two variable procedure which requires that the G(l)

term does not grow as fast as z, i.e.,

l im
 

s 
^(1) (z,s;z',z') 

- 0

then we obtain

dB: G . - 2^i pfG	 (3.102)

where .f is given by eq. (3.64) and

G = G (0) (z ,z',z')
A

	In eq. (3.102),	 represents slowly varying terms for three media, and

in each medium is noted by
AA

	G 
	 ,	 z>0

A
TTT	

G+ 	,	 0>z>z'
	G s	 s	 (3.103a)A

	

^S 	,	 z'>z>--d
AA

	G 
	 ,	 z<-d

with

	

0	 0	 A	 A8 (z)	 AS (z)	 A	 A (z)	 A (z)
G M	 G±	 1	 2	 gl	 g2

	

s	 +	 + _ ' S
Bf (z)	 if (z)	 BS (z)	 BS (z)	 0	 0

	

1	 2	 1	 2

(3.103b)

i

Now the boundary conditions to be used are that rG(z,z',6), has to be

continuous at z-0 and z--d. In addition, Green ' s function must satisfy the

c
i)

	

	 jump condition at the source.
Mel

The boundary condition at z-0 gives us

AS (0)	 0 ,	 1-1,2	 (3.104)
i

{
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and

^+ (0)	 Bf 	,
	

1=1,2	 (3.105)

i

The boundary condition at z =-d, z=-d gives us

_	 T _	 i(K K)d
Asi(-d) ' 2NT IY- rY g i • Agia g-

	
1.1,2	 (3.106)

_	
T _
	 i(K+K )d

$s (-d) = 2N [y+rYg l• Ag e	 g	 i=1,2	 (3.107)
i	 T	 1

Equations (3.106) and (3.107) are the same as the ones we obtained in the mean

wave case. Proceeding in the same way

A = T •A7 (-d)	 1-1,2	 (3.108)
gi	 i i

and

BS (-d)	 I'i• AS (-d)

	

1=1,2	 (3.109)
i	 i

Therefore following Appendix C, we obtain

i(K-K )d

11 = 12 ' T :g e	
g	 (3.110)

rl r2 r = Tg e21Kd	 (3.111)

where Tg and r^ are given in eqs. (3.86) and (3.89) respectively

Integrating eq. (3.101a) from z'-e to z'+e and letting e•►0 yields the
i

jump condition across the delta function. It ie;

Gg G8 (z') 
I^	

(3.112)

From eq. (3.112) we have

AS (z') - A^ (z')	 JA	 1-1,2	 (3.113)1 	 1 	1
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and

B+
(z	 iB

1=1,2 (3.114)

where

JA - 0 (3.115)
2

ZB	 0
= !	

+
MB	 1

(3.116)
2

We obtained from eqs. (3.102) and (3.103)

WP

-0
	 z

zA+	 K	 +
(z)-e e 

(z)=e
K +

IL	 eB 1-1,2 z'<z<O=a i =0

(3.117)

ITP
i!
	

Z
JiP if zK

(z)-eA	 CoMs

K
-	 i-) -eDs

M	 -
020 1-1,2 -d<z<z'

0	 0where	 T (L'	 )M	 I	 +-±
We assume A	 andMoi B +	 are known, then the rest of the terms will be ex-Moi

pressed in terms of 676, and B+ 	After that, using jump condition	 and B +601n0i 101
yI

will be determined.	 We have:

z ,!,:P--
K-

As i
	 %i
(z)-e
M-

K
ne *I 

SPA0i
1-1,2 (3.118)

r i21r •d
A	 M	 e	

K
=9 	 601 60 

M -e

z

ej
=A

:1-1,2 (3.119)1

i

and

27r
I—	 -z'

+	 K	
A

B	 M e	 91
00

+ r - A
=B	 's -0 1-1,2 (3.120),

i	 i

Where J	 J	 and T	 are
=A " =B	

Ti defined by eqs. (3.115), (3.116) and (3.110),
i	 i

respectively.

I
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We also obtain for T s the following expression

,x+d	 i-c d
rs - e	 rg	 e=	 0	 1-102 (3.121)

where ic
:t 

and r8 are given by eqs. (3.92) and (3.89).

Substituting A's and j's into the eqs. (3.103) and using eq. (3.100c)

we can write the Green's functions in three media.	 It will only be

needed in the region 0>z>z'.

Ga (kt , z ►z') ` y (z) Gs(z 1 z ' )y-1W) (3.122)

A

where the slowly varying term 	 is given by.,

0	 0
_

GS <z . z )
32^ z	 i2	 + z

(3.123)

e	 K	 B+	 e	 K =
	 }

_
O1	 02

and B+	 and B+	 are defined by eq. (3.120).
=01	 =02

Substituting y(z), Y-1 (z') and Gs into eq.	 (3.123;, we obtain

=11	 212
G (kkt ,z,z') * (3.124)

G21	 222

where i

w1jo 	i=+(z-z')	 isz	 iK z' (3.125)
Ell = 2K	 a	

.+ 
a	 rs * e

I

k0	 i+(z-z')	 0	 +	 iM + z	 i=
+	 .

z	 _
•(i^xI) (3.126)12	 2K Se	

Qi xI)	 e	 Ls	 et

3N

i(

i

`^ 1

^Y



(3.127)

(3.128)
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0 +
in (Z-Z) 

0 + 
I.K z	 iK Z'

021 2K 1(-i-;Xl >0
	+( 

_';Xl >0

o"co J( 0 + 
i.K 
+ 

19(Z-	
0 +	 0 + 

iK 
+ 

V,	 1.6c
a
22 2K	

0

a	 -i;x > e= 

O>z>z,),-d
with

G's	 fas(kt,z,z")e 
ikt • (Kt-j t ) 

d kt
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CHAPTER IV

ELECTROMAGNETIC ;PACKSCATTERING COEFFICIENTS FROM

A LAYER OF VEGETATION

In this chapter we will illustrate the application of the methods

developed in the previous chapters by calculating the backscattering co-

efficients from a vegetated slab of scatterers that are comparable in size

to a wavelength. The physical, configuration is shown in fig. 2.

First, we will evaluate the transverse Fourier transform of the

scattered field. The knowledge of the transVerse mean field due to an in-

cident plane wave and the transverse Green 's function in the equivalent

medium, will be used in conjunction with the spt _ral density to obtain the

general form of backscattering coefficients.

Then we will obtain explicit expressions of the electromagnetic back-

scattering coefficients in terms of the bistatic scattering cross section of

an individual scatterer. After determining the backscattering cross sections,

their behavior will be studied by associat yng each term in the total back-

scattering cross section with a physically understandable scattering process.

i

The Transverse Fourier Transform of the Scattered Field

In chapter II we found, by employing the distorted Born approximation,

that the correlation of the fluctuating component of the scattered field is:

0f ( E Tf(X)>^	 fdsp(s)Ya (x,$)Ts (x,$)	 (4.1)

where V is the volume of the slab of vegetation and W  (x,$) is the scattered
e

field at x in the effective medium. It is given by
49

J



..	 .....u,^v[__:_--'=_rc.,a,n..z^ 	 ...	 .. .-..	 __.	 _.	 ^,• ....ww..;..sas=.:_.:.^.^rz_^_.^a

50

I (X,$)	
1
dX'G(X ,x')JdX"t(x'^-s,x•^-s)<'^(x3 t)? 	(4.2)

Be

From chapter II, we have

X11	 0
t (x,x-) .	 (4.3)

0	 0

with :11 . i UQ t(—X,

and	 y(x,x')	 1 

.3 

	 dk' s(k,k')ei(kx
• -k'.x')

fd^k 	 _	 (4.4)

We have written in chapter III for the mean wave

ik • x"__t

<T (E—)> _ <T (kt ,z''') a 
	

kt -kosin80x0 	(4.5)

0	 0

where

<T(kt 'Z`)> $ Y(Z..)^S(Z..)	 (4.6)
0

The Green's function used in eq. (4.2) can be written as

G(2,2') - G (Lct-2^,z,z')	 (4.7)

The Green's function can be represented by its transverse Fourier transform:

G(.Et N;z,z')	
2

 jdk__t G (kt ,z,z' ) e	 (4.8)
(2n)	 .

In order to obtain the transverse Fourier transform of eq. (4.2), rye

_	 substitute eqs. (4.5) and (4.8) into eq. (4.2), and also use

t ( -A VA .)	

1f 2 f d4kd4' (t-^,Z''kt',z,•)a	
-t—t-	 —t -t	 (4.9)

( 21 )

In eq. (4.9) t(k'';kt' ,z ") is different from t`(k`,k");. We have used the

same symbol for convenience of notation.
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Nov we have

w s (kt , z,$) . (2n ) 2f dz'dz"G(kt,z ,z')t(kt,z•-i;kt ,z.._s)4 (k.  z"*)>
e	 0	 0

-i (kt-kt ) • Pt

	

• e	 0	 (4.10)

From eq. (3.122), we have

G(kt ,z,z') s y(kt , z ) G(kt , z . z ') y 1 (kt , z '')	 (4.11)

where we have explicitly shown the dependencv. on k t in y, y 1 and G. We now
use egs.(4.6) and (4.51) in eq.(4.10). The Greens function 6(k t ,z,z') and the

mean field ^s(kt
0 
Z"	

0
) are replaced by G(k t ,z,$) and ¢s (kt ,$). This is a good

approximation to first order in 6 due to the behavior of t about z' - s and

z" - s. The result is:
i(kt-kt )•st

^s (kt,z,$) M 41s (kt,z,$)e 	 0	 (4.12a)
e	 e

where

`Y s (kt ,z,$)	 (202y(kt,z)G(kt,z,$)p(kt,kt
0 
,S)os(kt ,B)	 (4.12b)

e	 0

with s s ds and
p(kt ,kt ,$) - 

J
dz'dz "y 1(kt ,z *) t(kt ,z'-s;kt

 ,z "-s)y (kt ,z ") (4.13)

	

0	 0	 0

The Formulation of the General Form of the
Backscattering Coefficients

The backscattering coefficients are directly related to the transverse

Fourier transform of eq. (4.1) with respect to a t and xt evaluated at the

df
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upper interface (z-0). We start by taking the transverse Fourier transform

with respect to .Et and.t of eq. (4.1). We have

	

4 f (kt ,z) f (kt ,z)>	 p fds s (kt,z,$)'Ys (kt ,z.$)	 (4.14)
V	 e	 e

where p is the constant particle density.

Now, by putting eq. (4.12) into eq. (4.14) and by integrating over

at and by setting z-z=0, we have

<Tf (kt ,0)T (kt.0)>-S(kt,q^w)^(kt-kt )	 .	 q e (h,v)	 (4.15)

where	 0
A

S(kt ,qlw) - p dsT (kt ,0,$)Te (kt,0 ,$)	 (4.16)
fd	 e	 e

Here (kt ,giw) is the transverse spectral density of Tf (x) at the interface.

The symbol q represents the polarization of the incident wave and w the orien-

tation of a typical scatterer. The spectral density S is a 2x2 matrix of

dyadics. We write 	 c

sll	 212
s(t, g lw) '	 (4.17)

t

221	 222

where S11 and 222 
are the dyadic spectral densities of electric and magnetic

fields respectively. In our development, we will concern ourselves only with S11.
a

It is shown by Zang [1981] that S11 (Lang has used S for	 S11) is 	 directly

related to the backscattering coefficients a 0 by
Pq

0	
k^Cos26 0
	 0

oPq i 4n3	
Q .S11(-kt0,9 w)'p .	 P,4 a {h,v}	 (4.18)

	

where 6 is the angle of incidence of the plane wave with respect to the slab 	 ,

normal, and p0 a0c h0 ,v0} are unit vectors indicating the polarization of the

ORIGINAL PAGE [S
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To simplify the remaining computation for 5 11 , we note from eq. (4.18)

that S(kt ,qlw) will only be required for k t - A	 -kOsin6oi , The trans-
0

verse transition operator t in eq. (4.13) cau be expressed

t(—kt 
,Z'_S;^ ^Z_S). 2	 r*K"ok9KAA)e^.K'o(Zs)—iK010(z AA—a)dK'dK'AIst

0 	 0	
0	 0

_	 (4.19)

Using eq. (4.19), y 1 and y from chapter III, we compute eq, (4.13);

then we substitute this value of p 	 y, y-1 , G and ^S from chapter III in
G

eq. (4.16). We find that the spectral density is:

rt	 ( ^ 4 ^ 4

S12(-, •q j m)	 2^2 Q	 (Wi)(W )ds	 (4.20)

0	 K	
=1

where

-iK s	 -iK S
Wl	 e	 0 flee	 ;0 9^

iK+s	 iK+S

W2 = Tve *	 f fIe °0 rsg0
0	 0

(4.21)

1908	 -ilos 0 -i s	 i^s	 0_ 
roe
	 f lhte 	_W3

_
W4	 f2^e . r$e	 •

with

f:	 f (-kt ,K^kt ,-K O)
i f II

	 1(-_kt ' -K;k	 ,K ' )
0	 0 ^0

(4.22)
0	 0

fIII	
f(-kt ,-r^;kk, -KO)

fIV = f(-kt 	;kt ,K0) (4.23)
0	 0 0	 0

In obtaining egs.(4.20) through (4.23), we have used the relationsihp between

f and t given in eq. (2.26).	 In addition , ^0 and r	 are (as given in eq.
s

(3'.92)) and r5 (as given in eq. (3.91)) respectively with kt replaced by kt
,.	 iK	 i` d	 ..

Finally Is (k	 )•r	 (-k	 )=e	 0 -Ig o e	 and r =r	 h
0 h0 +

0
T v v

i
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Substituting eq. (4.20) into (4.18) we have the general form of back;--

scattering cross section as

0	

0	

4

pa q	 47rP 1 (w(W*)tl)o d,	 (4.24)jp^•
 

i'3-1 	 -
-d

Now substituting eq. (4.21) into eq. (4.24), we see that there will

ba sixteen exponential integral terms to evaluate. We examine these terms

and find that phase cancellation gives 6 (0) order terms and phase accumula-

tion gives 6 (1) order terms.

Omitting the 6 (l) order terms, which are much smaller than 6 (0) , eq.

(4.24) can be written as

	

a	 p0 . G o + a 0 + a 0	 (4.25)

	

pq	 q
a	 pqr	 pqdr

where

	

_iK S _iK s	 i K S iK s
a 

0	 1rp	 fie 0	 e '0. f * 
iio	 0

pqd n 4 C

[

Rq(e s fo .	 4 SO_ )j2!-(	 Lfe 0 q_)]dsj
	

(4.26)

0	 +	 +	 +* 
a	

+*
•0	 iK	 iS.KO	

0 0 (
	

-1	 _ik s
0	

47rP	
, r	

e s0 flue
	 r.	 - 

I'* . 

e	

e	 rt0
 fiIa

I
-	 if ly • ( 	 0 . 3 ) Ppqr	 _d - =8	 Pd - __ M S	

M q )]ds
0	 O

ET-

(4.27)

and

	

a
K a	 ICO 	 -igo b_iK0a
	

i &0 	 0 0

	

i0	
[IA(e	 jjV e - r	 eq_ )]  0apqdr = OP	 ..q )p -(e	 fIi e - 

	

-,	 11
	V_ __	

M 

	

tlx)	
d	 V'

+	 +*
0	 1	 iK 8	 ­iK 8	 iK S

	

r	
0̂ 0	

0 . r
* 	 00	 iio	 0

+ [P ma^ e	 f
0
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+ 0 -i s	 i sT. 0	 0. ^* roe 
i^

*a f_*
I
• _ii*a 0[P_(e	 ^IV e I rsq ^ - ( rs	 [Mf - .3)]_

0	 0

0 ,;	
1K 8	 -iKps 0 0 i1c a * -iK *e 0

[ p - •( SO e , kit	 9 )^=(e	 f
IV' e . :bg ) j ds

(4.28)

p .q E{h ,v )

Isere opgd , Qpgr and opgdr represent the direct, reflected, and direct-

reflected backscattering contributions as shown in figs. (4a), (4b) and (4c-

4d), respectively.

The Calculation of Backscattering Coefficients

In this section, we simplify the expressions for the backscattering

coefficients by assuming the scatterers have no average depolarization at the

level of the mean, i.e.,

fhv+	 fv+h	 0
	

(4.29)

It was shown by Lang, 1981 that dipole discs having a uniform distribution in

the 0 coordinate (azimuth symmetry) obey eq. (4.29). It is conjectured that

eq. (4.29) holds for all scatterers having azimuthal symmetry. It should:be

noted the eq. (4.29) also implies that the average or bulk medium is uniaxial.

Using eq. (4.29), the scattering amplitude can be written as

f ±	 f ± hOhO + f - v0 v0	 (4.30)hh — —	 vv _ ^.+
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;),

f

(b)	 III	 f( kt0 '-K0'kt 0 'KO)

f(-io ,io

(c) fIII	 f( kt
0 
'-K0'kt 0 'KO)

f(-1+ •1l )

(d) fIV f ( kt 0 •K0 ;k
 0
t •KO)

Fig. 4. Fundamental backscattering contributions of scattering amplitudes 	 Pfd
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f Next a simplified expression for t0 can be
obtained by employing eq. (4.30) in

eq. (3.92).	 It is

4

^0 • Kh hOh^ ♦ Kv v * (4.32)
;Z

where C r

KP	
Kp 

+ 
2K P 

fPP Kp • kps p (4.33)
'

0

Since K+ 
bas no off diagonal terms, the exponential terse appearing in eqs.

(4,26)-(4.28) can be written as

iK-Z	 iKtZ	 iK-z
=0	 •	

v vh h 
0 
h 0 + (4.34)e	 e	 e	 ±Y-

A.	 Calculation of like polarization cross sections:

f
From eq. (4.24) we have

t	 ',
0	

4 *	 0
PP = 4np	 -	 I	 (Wix *	 dsWi

,	 p	 e{h ,v } (4.35) _

F	 '

4

-d	 i.^•l

where

.	 ;
.a

a0	 a0, d + a0	 + 00 drPp	 pp	 PPr	 PP
(4.36)

We proceed by dotting both sides of eqs.	 (4.26),	 (4.27) and (4.28)

x
0

with q , using eq. (4.34) and taking the average over all particle orients-

tions gives

' --	 -41vxpd

aPPd _ 4np Lp0 Ip0 1 2 1 - e p c(h,v) (4:37), S
-

41mK
P
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vppdr appdrl + oppdr2 + vppdr3
	

(4.39)

where

2Im(K+-K )d

a0Pdr = 41rp1L0	
0	 P PI 2 e	 - - 1 ITapi2	 (4.40)

1	 -	 2Im(Kp pK)

2Im(K+-K )d

a0Pdr	 Orp I pqf I^/p0	
P P

( 
2 e	

+ - - 1 I T . 12	 (4.41)
2	 2Im (Kp-Kp) 	 BP

E	 A	 and

2Im(K+-K )d

appdr	 87rp Re 
(P+IIIPO) (P^fIV) 

e	 P +

P - - 1 I 
TSPI2	

(4.42)
3	 2Im(Kp-Kp)

with

i(K+ + K )d

$. T8p = TgP e P	 P	 p c{h,v)	 (4.43)

We note that if Kp KP then eq. (4.40)-(4.42) chang"'as follows:

21M(K+ - Ki)d
e	 P	 P - 1 + d	 (4.44)

2Im(K+ - K-)

	

'4 s	 P	 P

The Fresnel reflection coefficients appearing in eq. (4.43) are given by

I
T	 K -Ka	 T _ eg 0 -Kg	

(4.45)

	

f	 gh KO +Kg	gv EgKo +K	
(4.45)

1
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average over angular variables.
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KO = k0cos90
	

(4.46)

and

Kg - k0 (ea- sin200)1/2
	

(4.47)

The oppd represents the direct backscattering contribution as shown in

fig. (4a). The incoming wave propagates into the vegetation and is scattered

directly back to the observer. When summed over all scatterers, eq. (4.37)

results. The backscattering coefficient 
appr 

given by eq. (4.38) represents

the sum of all waves which are first reflected from the ground, then scatter-

ed, and finally reflected again by the ground towards the observer as shown in

fig. (4b). The reflection coefficient jrsp 1 4 appears in the equation since

the wave in this case has been reflected by the ground twice.

The third term appdr as given by eq. (4.39), results from two differ-

ent but similar mechanisms as shown in fig. (4c) and fig. (4d). In one case,

the wave is scattered and then reflected toward the observer; whereas in the

second case, the wave is first reflected from ground interface and then

scattered .toward the observer. The third term, eq. (4.42), occurs due to a

combination of both cases. These terms interfere coherently. The

Lrgp^2 factor represents single reflection from the ground.	 i

The coefficients ^.f• 
2 and ^f	 2 re	 atter- f^ p- ^Ip- I	Ip+=III+)	 Present the backsc

t

ing cross sections in j2 and J+ directions, respectively. The coefficients

•fIII•E+ I
2 and 1 + • f

iV
• _J 2 represent the bistatic cross sections in

different directions. Note that the bar over the expression represents the
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gyp'

B. Calculation of cross polarization cross sections:

In this case the incoming and reflected waves have different polari-

zations. Thus the equation for opgdr 
cannot be reduced to a simple term as

in the previous two cases. But otherwise, following a similar procedure, we

obtain

a P aPq agpd 
+ agpr + agpdr.	 P f9	 (4.48)

where

-2Im(Kq+Kp)d

a0 	4np pOI 0 2 
1 - e

' ^ _ -q-qpd	 2Im(Kq p+K)

(	 t

21M K++K+)d
0 ( 0	 0( 2 e	 q p_________1	 12 12

ogpr 
4rrp p+fIIq+	

2Im(K++Kp+)	 raq rspq 

The 
apgdr 

has three componentst

0	 0	 0	 0
agpdr a	 + agpdrI	 gpdr2 + agpdr3

where

-21m(K -K+)d
q P

agparl 4np 1P0fIIIQ0i2
	 - 

2Im (K--K+>

	
jr 12

q P

fl

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

21m (K+-K ) d
a

0	
4np , p 

0 
f 

0 2 a	 g P - 1 ( 
T 

I2_
3	 gpdr2	 IV-

q
 +	

2Im(K+-Kp)	 s 't
6 X

!	

3

j{fr

l 	 3

yC-

	 4

tP
I	 .^

t_
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and

M

*
i(Kq Kp

+Kq* Kp*)d
1-e

q	 _	 (4.54)
Irs

p
r,	

i(-Kq+Kp-Kq*♦Kp* )

*

Note that if Kp . Kp or Kq - Kp +K q - Kp ^ 0 then one obtains the correct

form of eqs. (4.52)-(4.54) by taking the limit as those equalities are

approached.

It is interesting to note that only the imaginary part of the effective

permittivity enters the expression for ap q . This is a result of the fact that

apq represents an incoherent sum of the scattered power from individual par-

ticles embedded in the effective medium.

If the particles' sizes are small in comparison to the wavelength,

these results reduce to the results obtained.by Lang and Sidhu [1983].



CHAPTER V

NUMERICAL RESULTS AND DISCUSSION

Our main interest In this chapter is to obtain the numerical results
<j

f
for the theory we have developed in the previous chapters.	 For this purpose,

we use our method to model a forest canopy by a collection of lossy dielectric

discs, which are ,assumed to have radius a, thickness T and relative dielectric
r!

constant Cr .	 Our formulation is applicable for arbitrarily shaped scatterers

in the Rayleigh, resonant and geometric optics regimes; however, because of

I	 ^ rthe availability of Rayleigh and geometric optic scattering amplitude algorithms

we will limit our calculation to those regimes.

Using the parameters encountered in active remote sensing of vegetation

layers, we will present the numerical results for the skin depth and for the
v

a.I

backscatterin	 cross sections in the Rayleigh and8geometric optics regimes.

Before proceeding with this calculation, we will discuss the relative dielectric

constant of the leaves and the scattering	 albedo of scatterers.

The Relative Dielectric Constant of the Leaf	 `.

Our calculation of the relative dielectric constant follows the model of

de Loor [1968], and Fung and Ulaby [1978). 	 We conclude,	 on the basis of mea-

surements conducted by Broadhurst [19701 that this model is not suitable for

frequencies beiVw I Glaz due	 o itz failll G o aia"'outat .LLol Con ductive LviiuiV j

losses within the leaves; however, we will use this model below 1 GHz in order

to recoverresults obtained by Lang and Sidhu [1983].	 The dielectric formula is

r given for the real and the imaginary parts of the relative dielectric permittivity

below.	 'k

t -5.5
C'	 5.5 +

+(fT) 2	y	
(5.1)

l
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Fig. 5.	 Real and Imaginary part of dielectric constant vs frequency

C",	
(C
	

-^ 5.5) -- 
fT	 (5.2)

j

r	 m	
1+(fT)2

^a

with C C o + is".	 The letter T	 is the relaxation time of water which de-

A

r

pends on the	 temperature	 and f is the frequency.	 At 20°C, fT is approximately
it

' equal to 1.85/11, where A is the free space Wrovel'angj Lll la centimeters.	 the c
M

appearing in eqs. (5.1) and (5.2) is the relative macroscopic static permittiv-

ity of a leaf and given by

em = 5 + 51.56 Vm	 (5.3)

where V  is the volume filling factor which lies between 0.1 and 0.6.	 For

illustrative purposes, we plot areal and Imaginary part of c
r 
as a function

_
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{
of the frequency as shown in fig. 5 with m - 0.3.

We observe that c" has a maximum around 15 GHz and e' is constant un-

til 1 GHz, then it decreases monotonically. We also have observed that chang-

ing parameters did not effect the overall shape of the curves.

The Albedo of a Single Leaf

In this sectir,Ijn we will calculate the albedo of a single dielectric

disc. This is necessary due to the fact that our theory is limited to low

albedo particles where absorptive loss is then the dominant mechanism. First,

the dyadic scattering amplitude for a lossy dielectric scatterer is required.

In the Rayleigh regime, [see Lang 1981], the dyadic scattering amplitude f is

related to the polarizability, a, by
M

k2

f - 

p0.f.g0	
40	 oPq	

p,gefh,v}	 (5.4)

Ishimaru [178] then gives expressions for the polarizability of a lossy

dielectric disc.

The dyadic scattering amplitude for a lossy dielectric disc in the

geometric optics regimes has been calculated by LeVine, et al.[1982]. An

approximate expression for the dyadic scattering amplitude is obtained by

considering a plane wave incident on an infinite dielectric slab. The inter-

nal fields in the slab are calculated ex`ctly. Then the equivalent sources

generated by these fields in the region of the slab corresponding to the Oisc

are ueed to calculate the scattered field. The approximation requires that

the leaf be many wavelengthsin diameter and have a thickness, T, small com-

pared to the diameter.

From LeVine, et al.,we have the following expression for the dyadic

scattering amplitude in the geometric optics regime:



65

2
(!4L0f 
	

AT 8 (vt) F

ORIGINAL. PAG" 69
OF POOR OUArLI`i'Y 	

(5.5)

1*

where A-er-1., and the Fourier transform of the cross sectional shape of

the disc is given by

r	 iv •x'
S(_vt ) ^'	 S( de	 t	 dxt

f (5.6a)
x^

with 1	 ,	 x^ a disk face
S(2 E) 

0	 ,	 x	 disk face

where the prime quantities are coordinates in the face of disk and _vt

k0 [ i t - O t ]. Here it and 0' are the projections of-	 -t i and 0 of fig.--	 - 6 onto the

face of the disk.	 In eq:	 (5.5), = is related to an integral of the induced

charge in the infinite dielectric slab. 	 It is given by	 LeVine, et al,	 [1982].

For a circular disk of radius a eq. (5.6a) becomes
7	 t

S (vt) 	 v a J 1 (v ta) (5.6b)
t

where J1 (C) is the Bessel function of first order and vt-Iv_tI.

From Ishimaru [ 1978], we have the following expressions for total,

scattering, and absorption cross sections.

coq) =
	

k	
Im [ f (i0- i1 0 S q)S0 ] gcfh ,v } (5.7)

0
-- -

s

I fCr(q)
	 If (OO,i0sq) 12dSZ (5.8)

47r

and

Q (q)
a

fk 	 E x `	 20 r	 dV'(_) ^__(_ ) (5.9)

i V

where f(OO ,j0 ,q) is the vector scattering amplitude due to an incident plane

wave with polarization q. These vector scattering amplitudes are related to 	 t

the dyadic scattering amplitude by-° ,+

g¢

_u
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f(q .L ) ° E(.q .i0 ;h)h0 + f (q #1 ;v)v^	 (5.1.0)

In addition,in eqs. (5.7)- (5.9), dO is the differential solid angle, dV is the

differential volume element, and E (x') is the electric field inside the par-

ticle. Using the total scattering cross section, a (q) and the scattering

cross section, a (q)- we can define the scattering albedo W (q) by

Q (q)

W^q) . Q(q)
	

(5.11)

t

The total cross section a(q) represents the total power loss from the

incident wave due to the scattering and absorption of the wave by the scatter.

One can show that [ Born and Wolf, 19641,

i

a	 s

T	
y

X

Fig. 6. The geometric conflgurat• ..,, ,q	r leaf
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at	 as	 + as	qe{h,v}	 (5.12)

The geometric configuration of a leaf for an albedo calculation is shown in
sl

fig. 6.

We evaluate eqs. (5 - 8 ) and (5.9 ) for the horizontal and vertical

polarization cases. _ The results at .low frequency (Rayleigh regime) are:
r

aah)	 k0er "V	 (5.13)

sin26
2

asv )- k0er tos90 + °0 	 (5.14)
{erl

4 2k V
Cr
	 _	 6ir	

(2	 (5.15)

and	 2
60k0V2 1A^2

a(v)	 cost	 +
sin

0	 (5.16)
s	 6n	 1C r

where

V = ? na T	 (5.17)

er - 1	 (5.18)

In fig. 7 we plot eqs. 	 (5.13)-(5.16) as a function of the frequency

at zero incident angle with a=7 cm, T=0.3 mm and Vm-0.1,	 Typical dimensions

of a leaf having radii of one to several centimeters and thicknesses of

tenths of a millimeter have been used. E

At zero incident angle, using the above eqs. we conclude that o00°(v)as	
=as

s

and aa )=aav)-aa as seen in fig. 7.	 The curves show that absorption and scattering

I cross sections increase with the frequency.	 For large values of frequency a
s G

is greater than caa.

Fallowing the	 LeVine, et al [1982] work, we evaluate as and as for the aI

horizontal and vertical polarization cases at zero incident angle in the geomet-

tric optic regime.
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The absorption and scattering cross sections are given by

Qaq) . k0e=•g0 (Ieq ' + Ieq , ) K
i

- +* 0	 0* ain
(g, T)

	

+ 2Re [egeq (g a _ 91 C +)	
r J

K 	 l	 (5.19)

and
(2n) 2 C S

a(q) = (0 [W(q) ( e of) + W(q)(et.^t)l	 (5.20)
cos 0

0	 0	

r r

where

W (q) (0 4) - (sinc(e+)e
q+ 00+ + sinc(e")e—0 2	 (5.21)

with S0 S(0)=ira2 , C = -^^-^k j and

sr _ [K t k00z ']T/2	 OZ = n0 •00 	 (5.22)

Quantities not explicitly defined in eqs. (5.19)-(5.22) are defined

in the LeVine, et al, reference. We note that the eQ are forward and back-

ward going wave amplitudes in the dielectric slab for polarization q. The

propagation constant'in the z direction in-aide the slab is K - K r + iKi.

Using the same parameters we used for the Rayleigh regime, i.e. a-7 cm,

T- 0.3 mm, and Vm- 0.1, we plot Q8 and as as a function of the frequency'at

zero incident angle (fig. 8). As we see from this figure, at a low fre-

quency of around 1 GHz both of the curves are linear; however as the frequency

i

4
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• Ze"Cos60

Qs	k0TI012 (5.24)

4
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increases the as curve becomes greater than the as curve.

Now, substituting as and art into the eq. (5.31) a low albedo check is

made for both regimes. We plot the albedo an a function of the frequency in

the Rayleigh regime and geometric optic regime, as shown in figs. (9) and

(10) with the same . parameters ( a-7 cm, T-0.3 mm, ym-0.1 and 90-0°). In

these figures it was observed that albedo increases almost linearly in the

Rayleigh regime and monotonically in the geometric optic regime. The ex-

pression for the geometric-optic albedo obtained by using eqs. (5.19) and

(5.20) in eq. (5.11)can be substantially simplified when the phase variation

of the internal field across the slab thickness is small (K T«1). The

simplified expression for the albedo is

W	
(5.23

_	 I	 )
o 1 + as Qs 

where

From eq. (5.24), we conclude that the albedo is independent of the

leaf radius, but very sensitive to the thickness, incident angle, and water

content of the leaf.

The Skin Depth

A knowledge of the skin depth gives a better understanding of the

mean wave's behavior inside the vegetation layer. The skin depth is defined

by the depth of penetration at which the wave's amplitude decreases to a-1
	

f

of its initial value, we write
1-

Skin Depth - -: l	 ,	 pe{h v }	 (5.25)Im K
P
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K . 110cone0 + k ̂ p e f (i 90p	
0	 Q pp

pe(h,v)
	

(5.26)
Y

f
	

where from eq. (4.33), we have

Y

We have used the fact the f afhv 6
0 and K+ IC--Kp . These results can be obtained

from (Lang, 1981) for Rayleigh discs and frears Irpendix D for geometric-optic discs.

We can see from eq. (5.25) that if the vegetation depth is large com-

pared to the skin depth, then the effect of the ground reflections are neg-

ligible, whereas, when the skin depth is large compared to layer thickness,

the characteristics of the ground become important in interpreting radar

backscatter info nation.

An examination of eq. (5.26) shows that the skin depth for both h

and v polarizations contains a factor of cos9 0 in the numerator. This

forces the skin depth to zero as the angle of incidence approaches grazing.

Due to the increasing angle of incidence, the effective depth of the propa-

gation keeps decreasing monotonically as seen in the following figures. In

fig. (11) and (12), the skin depth is plotted as a function of the incidence

angle for both polarizations in Rayleigh and geometric optic regimes, re-

spectively. In figs. (13) and (14) the skin depth is plotted as a function

of the frequency for two different regimes.

Now, let us examine figs. (11) and (12) in more detail. In the case

of horizontal polarization, the electric field is approximately parallel to

the leaves at all angles of incidence and thus the skin depth has only•cose0

dependence. The same thing is true for vertical polarization, but only when

the angles of incidence are small. Thus, both have the same skin depth at

small angles. As 80 becomes larger, the electric field tends to become per-

pendicular to the leaves and each leaf absorbs less energy. This explains

the increasing skin depth as a function of the incidence angle for vertical

e	
f+	 .^

i

tl
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polarization. Eventually, the skin depth decreases due to the cose0 in

the numerator in the vertical case.

The curves of Rayleigh and geometric optics regimes have identical

shape as seen from figs. (11), (12), (13) and (14). The only real differences

are that the curves for Rayleigh regime decrease more rapidly with increasing

frequency and the skin depth is much higher than values obtained for the geo-

metrical optic regime. These results were expected due to the fact that the

physical size of the scatterers become an important factor in the high fre-

quency regime.

Both figs. (11) and (12) have the same parameter: a-7 cm, T-.5 mm and

p-500/m3 . In figs. (13) and (14), we have choosers a-7 cm. A value of T-.5 mm was

picked for fig. 13 to recover Lang and Sidhu's result, but in fig. 14 we have

used T-.l mm in order to obtain a low albedo. The Rayleigh results have used

scatterers with polar angle 6 distributed uniformly . between 0 and A61-30° (see

Lang, 1981) and the geometric :ptic results have used scatterers with a fined

6.30'.

The Curves of the Backscattering Coefficients

We developed a computer program that provides numerical solutions for

the backscattering cross sections which we have obtained in chapter IV. In

the Rayleigh region the results are identical to those obtained by Lang and

Sidhu[1983]. For purposes of completeness, we present some of their results in 	 {

through figs. (15), (16), (17) and (18). These figures have common para-

meters: a-7.5cm, T-0.5mm, p-500/m', f-40OMHz, e r=30.8+i0.62 and eg=12+i3.

In fig. (.15), ohhd' Qhhdr' and phhr 
are shown as a function of e0 . In

CA	 0	 0
this case, the term phhdr is greater than Qhhd for all angles of incidence.

This means that the energy backscattered from the ground is a significant
ts

part of the total ,ackscattered energy. Since the skin depth is large
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compared to the layer thickness for all angles of incidence, we are re-

ceiving scattering back from the same number of scatterers for each angle of

incidence, resulting in a flat behavior for v0	The reflected terms 0
10

and 
a0hhr

slopes up with an increasing angle of incidence with the increasing
f

reflection constant.

Figure (16) shows the total backscattering coefficients plotted for

a perpendicular distribution of leaves. At small angles of incidence a0
w

and ahh are equal, and as the angle of incidence increases, a0w decreases

because the vertically polarized wave becomes parallel to the leaves and thus

gets absorbed. On the other hand, ahh has 4 flat response because the chang-

ing angle of incidence does not affect the polarization orientation with
A

respect to the leaves.

Figure (17) shows the total backscattering coefficients plotted for

a ;parallel distribution of leaves. In this case as the angle of incidence

is increasing, the horizontal polarization is not affected since the leaves

are parallel to the polarization at all angles. The backscattering cross

section is higher as compared to the perpendicular distribution at small

angles of incidence. Comparing 
00  

in figs. (17) and (16), we see that the

vertically inclined leaves give rise to more depolarization as compared to

the horizontally inclined leaves.

To see the effect of moisture in the underlying ground, we have

selected two different dielectric constants. For dry ground, we have used

E 
g - 

12+0 , whale for very wet ground we have used the dielectric constant

of water obtained from Debye's formulation [ 1929], i.e.,

^g 6g + ieg'
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with

(75)(1'5

C9
_	 (5.27)._._..^.__

$	 1.8512

and

e'5+e"$	 g (U.8_5>	 (5.28)

where X is the wavelength in centimeters. From eqs. (5.27) and (5.28) we

have cg=80+11.5 at f=400 Mz. Figure 18 shows Qhh plotted for these two

different ground conditions. From this figure we see that there is a large

difference in the backscattering coefficients for different ground moistures

r

	

	 because the ground reflected terms are dominant. When the layer thickness

is increased, the ground reflected terms become small. Hence their effect
^y

is masked and only the direct component, clp pd , pe{h,v} is important.

Next, we present the backscattering curves for the geometric optics

regime. All of them have the same parameters: f=5 GHz, a =7 cm, T=0.1 mm,

and er=9.75+il.31. An example of the results is shown in fig. (19) for h

polarization. In this computation the discs all have an inclination angle

of 30° with respect to the slab normal (e-30°), however they are uniformity

distributed in the azimuth coordinate. To aid in the interpretation of the

results, the direct, reflected, and direct-reflected components have also

been plotted. An examination of fig. (19) shows that a0 has two major
hh

peaks: one at an incidence angle of 0° and the other at 30°. The peak

at 30° comes from the direct and reflected components and is due to specular

$ J

	

	 reflection from the front and back faces of correctly oriented leaves. The

larger term at 0° is caused by the direct-reflected components of the

backscattering coefficient and is caused by the transmitted energy through

X31
t I

•	 1 4'r	 r

L	
g5
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the leaves that are reflected from the ground. The width of each peak is

related to the radiation pattern or the beam-width of an individual leaf.

The leaves considered have been chosen to be thin. This was necessary to

keep their albedo small so that the distorted Born results could be applied.

It is anticipated that by introducing a distribution of leaves, which have

an inclination angles that depart somewhat from 30', a considerable smoothing

of the curve will occur. The parameters which we used in fig. (19) are

pw500/m3 , d=1 m, 9=30', and Eg=73.5+i21.1.

We again obtain e  from Debye's formula to see the effect of moisture

in the underlying ground. We use the parameters of fig. (19) in order to

plot fig. (20) with a new ground dielectric constant eg=13+0. This value

corresponds to volumetric water content (cm 3/cm3) of 0.3, which is relatively

dry ground, Wang and Schmugge [1980].

From figs. (19) and (20), we can see that, except for small incident

angles, there is almost no difference in the backscattering coefficients for

different ground moistures., This result differs from the result obtain in

the Rayleigh regime as is shown in fig. (18). The difference is due to the

physical optic scatterers which we are employing. They have a gain in the

direction of the incident wave. It is this gain that was essentially com-

pensating for the reflection loss at the interface. In fig. (20) we also

plot w and avh for illustrative purposes. 	 +

In fig. (21) we use the same parameters as in fig. (20) except p and

d are increasing to values of p=2000/m 3 and d=10 m. We plot Go0.v andhh'

Qw in this figure. A comparison of the two figures shows that they are the

same except that fig. (21), no longer has the peak at 8 = 0°. This is because

increasing p and d made the akin depth substantially smaller. Thus the in-

cident mean wave never reached the ground and there was no dr component in
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the backscatter, The layer essentially looks like a half space.

In fig. (221, we illustrate the effect of 6 on the backscattering

cross section in the geometric optics case, Since 6 =90% this figure

corresponds to the leaves perpendicular to the ground. We also plot conv and

ooh on the same figure. In this case, we have CO ZOO Z0 and o0 ^'O
Ppd Ppr	PP ppdr

We see that app has ,Flat response due to the fact that the leaves act like

a corner reflector.

At zero angle of incidence the value of ao and ch are equal, but as
vv

the angle of incidence increases, q0 decreases because the vertically po-

larized wave gets absorbed. It was observed that figs. (16) end (22) follow

almost the same trend, except Vhe depolarization is smaller in the geometric

optics case.

So far, we have shown some backscattering coefficient curves. These

curves are not smooth as obtained in the Rayleigh regime. This is due to

the radiation pattern of the scatterers. In the Rayleigh regime, the dipole

radiation pattern has a large beamwidth which in turn gives a smooth response.

But in the high frequency domain, the radiation pattern has a smaller beam-

width compared to the Rayleigh regime, and the scatterers behave as a strong

radiator. This in turn gives us the backscattering coefficients as we have

shown throughout figs. (19)-(22). This is the reason why we observe a peak

at 30 4 in the geometric optic regime.
i

We have analyzed numerically discrete scattering model for vegetation.

We have calculated the skin depth and backscattering coefficients explicitly

in terms of the scattering amplitude. The scattering albedo was calculated

to make sure that it is small. It was found that the leaves had a much

higher albedo than was previously anticipated at microwave frequency above

5 GHz.

i

rr'
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It was found that for vegetgtion layers less than one skin depth

thick and for moist ground thast 
pgdr 

was the dominant term. It was also

observed that than layers had baaksnattering coefficients that were almost

flat functions of angle of incid,2nee in the Rayleigh regime. In the

geometric optics regime this was not the case because the scatterers which

we were employing had gain in the direction of the incident wave. It was

this gain that was essentially compensating for the reflection loss at the

interface.
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OPENDIX A

RELATIONSHIP BETWEEN THE TRANSITION OPERATOR

•	 AND THE SCATTERI2^G AMPLITUDE

In this Appendix we will find the relationship between f and E. We

start with equation (2.14). Usilig (2.15) and (2.16), we can write (2.14)

in terms of the transition operator and incident b field for N particles

L'YS i T'YO s G L(L-1
V)NyO
	(A.1)

Nil

From (A.1) we can write

Co

T = L L(L-1V) N 	(A.2)
N-1

From eq. (A.2), we have

TT = VT + VI.-1VT + VL-'lVL-1VT + ...	 (A.3)

Substituting eq. (2.8) for T, (2.12c) for V and (2.19) for T in eq. (A.3)

along with the free space dyadic Green's function for L-1 , we obtain

	

TT

Ttl T12 E	 (x) 0 E1'(x) 0	 211 ^12 
xl^c) 0 E(x:)

	

• 	 i	
s +

	 dx

	

T21 122 H	 0	 0 H	 0	 0	
21 22

G	 0 0 H (20
j	 —	 i

r

-L (^) O 
211 212"12 Y (x') o 

G11 212	
(x 0 E

+ffdx "dx	
© 0 G21 

2
22 0 0 G21 222. 0 0 H

93



r

r

94
	

ORIGINAL PACE ES
OF POOR QUALITY

where X(x)dwe0AU(x)I

Using eq. (2.18), (A.4) can be expressed as

tll (X'x") t12 (X'X") VIE-;	 Y(x") 0

	

dx0	 dx'	 S(x—x') +
t2l(X'X") t22(x€,x') 11(x*)	 0	 0

	

X
(K") 0	 211'X(1"	 X(X

+	 +dx"

0	 0	 0
 )

(A.5)

H (x')

Now, we can conclude by comparing both sides of eq. (A.5) that for dielectric

scatterer

=12 ! 122 - t21 : 0

	
(A.6)

and

tll(x,x') # 0
	

(A.7)

0

0

with

41 
a 

iwu0 
t (x,x

"-^

To find the relationship between the transition operator and the

scattering amplitude, we write out eq. (2.17) explicitly:

Ys (x)- L`1TYO _ f dx'G (X,x') 
f 

dX"t(X',x'") Yo w...)	
(A. 8)

Here the free space dyadic Green's function G(x ,x') is obtained from

Felsen and Marcuvitz, Chapter I, Sec. l.l,it is given by

F
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h	 ^

-iwp0(I + VV)	 DxI ik0^x-x'l

G(x,x')
k0

a (A.9)s
00--VxI	 -iwE0(1+ Z) 4r

k0

To obtain T,(x) in the radiation zone, the far field expression for

Gtx,x) will be required [Twersky, 1967]:_
{xy-ik0 0 • x'	 eik0

G(x,x') ti H e	
4n12j—

(A.1Q)

where
-iwu0(I - 0 0)	 A 0 x(I)

ti
H (A.11)

-ik0 0 x(I)	 -iwt0(I - 00)
(i

Substituting eqs. (A.10) and (A.11) in (A.8) and using for a incident
r,.Y ik i . x...

wave	 T0(x) _ V0 (0) e	 Y (A.12)
a

Y	 +
and

1 0
,. t(k00,k0) _

3
fdx-Lx--t(x-,j--) e (A.13)

we obtain a
ik0 {x( f

4's (x)	 2 ,ff	 H t(k00,k0i)T0(0) 
a

(A.14)

{x	 {

where
e
=s

.,

T s
s (A.15)

h=s

Using egs. (A.15) and (A.7) and substituting H into the eq. (A.14), we obtain. z

for dyadic scattered wave

ik0{x{

__	 ] 
a=g (x) .. 2,,	 - 0 0^{k00 , k^ i (0) (A..16)

{x	

{

The definition of scattering amplitude given by [Ishimaru, 19781

I
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ik0 (x

(E) (0,1) e	 1	 ,xI -s oo 0 fs f (E)	 (A.17)
Ix1

Assuming dyadic incident wave, e i (0) _ (I - 1 .1). finally we obtain the re-

quired result

f (E) 	 21x2 (I - 0 0) • =t (k00,koi)-(I 	 i i)	 (A.18)

Equation (A.18) is the same as Lang [1981] obtained with different method.

From eq. (A.14) we can also obtain

i3O ( x

hs (x) = 27r2n [ (OxI}$ (ko0, kai}.ei (0)) a	 (A. 19)
Ix1

The definition of scattering amplitude for the H field given by

ik0 (xI	 g

hs (x) ti f(H)(0,i) e

	

	
(xl + oo	 (A.20)	 aIx

For a dyadic incident wave e i(0) _ (I - i i) we have

f (H) (O,i)	 27x 2 n (OxI) • (k00,k0i) • (I	 i i)	 (A.21)

where

n = %oF^
_00
	(A.22)

i In order to obtain the relationship between two different scattering

amplitudes, we take the cross product of eq. (A.21) with respect to 0 direction

we find

0 x f(H)-•-27r 2 no x (OxI) - i • (I - ,i i)	 (A.23)

f	 but

0 a,(0 x I) _ -(=I - 0 li)	 (A.24)

then eq. (A.23) becomes

0 x f(H? n2'T 2 (I Q 0}r (I - i i)	 (A.2)°
i

I
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Using eq. (A.1$) in eq, (A.25) we obtain the following relationship for

scattering amplitudes for E and H fields

f (E) (94) _	 Fco 0 f "I (O. i)	 (A.26)

a

f
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where

APPENDIX B

EVALUATION OF ZEROTH ORDER SOLUTION

OF SLOWLY VARYING COEFFICIENTS

In this section, we will evaluate eq. (3.59), which is given by

z^ z 0(1) (z'z) - 0
	

(B.1)

k

(0)
	 z

0 	 " - d
	 z z + p(z)1

f
d:z A

1
	 (z) rectd (z) (B.2)

dz	 0

Performing eq.($.1), we obtain

d ¢ (0) (z) - p(z)Mo(0)(z)re4ed(z)
dz

where
z 

f

0 roo
M

ZL 1 fdz'dsJdz••y-1(z')j-(k z -e z s z

	

-t0 ,	 )Y( 
0 -W -m

Now, using eq. (3.51) we ha-e

lim 1 
M z^ z J 

dz' I dsdz"

where

V (Cl. B)A.	 (a) a	 ..	 B -iK(az'-0Z")(z '
z ' s)	 2NT

 -y -11(kt0
 ,z -s,z -s) I e
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The integrals over do and dz " will now be evaluated. First define

E(a.R) - fdsdz"--'("P)(z'-*z""ps) 	 (B.7)

By using eq. (B.6) in eq. (B.7), we obtain

S(a ^ 4) v 2N̂ a
	 (a, 0) . 10 	(B.8)

T

where
r

2 (o S)r f dsdz" 4ll(kt 'z'-s,z"-s)e-iK (az' -0Z" )	 (B.9)
0

The quantityXll will be related to t11.We note that

-ikt •xt

X11 (kt ,Z '-s,z"-s) f dx^ll(xt,z'-s , z"-s)e	 a	 dxt	 (B.10)
0

and from eq. (3.86) we have

X11(xtyz'-s,z "-s)fds t tll (-s t ,-xt"a t ,z'-s , z-8)	 (B.11)—	 —

We also have from eq. (2.22)

all(xt,xt,Z,Z' ) l 
3 fdKtdKzdKzdKz Ill l

(Kt'KZ'Kt'Kz)
(2n)

[.!St 	k^ • xz + KZZ - KzZ']	 (B.12)
e .

By using eqs. (B.10), (B.I1) and (B.12) in eq. (B.9), evaluating the resulting

integrals, over 4t , dst ,ds-,and dz' ; and using the resulting Dirac delta ft ;ndtions	
{

Y

1'

to eliminate the remaining integrals,we obtain

2(a's)	
(27r) Si (k— t0 

,SK;k ^0K)eiK(0-a)z'
 9.	 — t0

Putting eq. (B.13) in eq, ($. 8), we have

^(a.8) . a (2^r 3 a =	 B iK(S-CL)
2N,i	s	 :11^ 0s6Kiht0• SK)'. 

•e
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The final expression for M can now be obtained. We put eq. (B.14) into eq.

(B.5) and perform the integration over V' and also take the limit as z goes to

infinity. We obtain

where

0

M	 (B. 15)

0	
+

OM	 0.	 0	
(B.16)M	 2NT 

J! jll(It000K;jt0

B - {+,—)

Now employing eqs. (2.20), (2.23), (3.27b) and (3.37a), we have

a . =	 0	 0 . 0

	

I	 t(kC^0.koioll	 I	 (8.17)

	

K M	 M

0 C {+,—)
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APPENDIX C

EVALUATION OF T AND r

To find an expression for T we use eq. (3.83) in eq. (3.81). 'W^U

find
_	 T	 i(K -K)d

A(-d) • "'	 (Yw ryg) •T•A(-d)e g

	

2N	
(C. 1)

T

where (y-Try-) is a dyadic and NT nK/kO . By taking the inverse of this

dyadic an expression for T can be obtained. It is:

T = =2Z:T(Y-TrY )
-i•I- vi(K-K9)d

(C_2)
g

T - 1	 T
where we have used the identities I • A - A and (y- ryg) • (y ryg) - I-. The
expression for r can now be obtained by employing eq. (3.84) and eq. (C.2).

We have

	

T	 T
r - -(y+ ryg)•(y ryg)-1•I e2iKd	 (C.3)

+TT
The quantities y ryg and y ryg 	 need to be evaluated. From eq. (3.31),

we write

Y- - T 1 ^0 f lY-2 hO 	and	 Y4, ?' '^+1 v_++ Y'+2 hO 	z>-d

yg • `Ylg v_ 8 + Y'2g hO 	z<-d

where T+1' Tt2' Tlg and y2g are given by eq. (3.28). Using these expressions,

we find

and

y+T ryg cv_+ v99 + cv^ hd + d --g + d hQhO

T
y ryg M av _vg + av hO + b hOv_g + b hOhO
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where

A 0 (T -j ory,g)	 a -,,rn (T	
'y2g)

(C.6a)

b m (T_ xy2g)	 b2 m (T_ (C.6b)

C W C m (C.6c)

d = (T+2 .rT 2.)	
d m (T +2,rT..)

(C.6d)

Substituting the expriessions for y:,i, T ig o 1-1,2 in eqs.	 (C.6) we have

a m tjg^ _ a :t - rLh ,A xv, a - 0 (C.7a)

b - 0	 0	 0	 0	 0	 0
-n 

9 
h -z xv	 + tLy	 -.S 41

A
b - 0 (C.7b)

9

C - 0	 0	 0	 0.	 0
n-v + -A xh	 nh	 z	 -

- - ---9
c - 0 (C.7c)

9-

d - -n h 0. z 0	 0	 0	 0	 0g_ _ xv g	 nv + -,z :^h a - o (C.7d)

Now using eqs. (3.24) and (3.25) in the expressions for a-d in eqs.	 (C.7),

we have

a - -n(e 
9 

K + K 
9 

)/k 9 (C.8a)

b - -n(K + K )/k 0 (C.8b)
9

C - n(C 
9 
K - K 

9 
)/k 

9
(C.8c)

d - TI(K - K )/k 0 ^C.8d)
9

Proceeding, we use the orthogonality results of eqs. (C.7) which yield

+ Ty -	 0	 0	 0 0ry,	 m	 C V+ v. + d h h (C.9a)

ry
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- T

To complete the calculation, the inverse of y ryg is required. It

requires that

Try(r	 )-. ^y`Try )	 '°	 T- (C.lo)i.gii	 g

or
T

(y ry^)'1•(ava 
vs 

+ bh hQ)	
v'- 

v + hoh0
(ell)

if
_T

(y	 ry
9
)"1 	g v	 + 1 hChC (C.12)

then eq.(C.11) is satisfied.	 Putting eqs. (C.9a) and (C.12) into eqr;.

(C.2) and C.3) we have

i(K --K )d

T	 T	 e	 g (C.13)	 mM	 .g

ro	 :t
where Y

i

Tg a Tgh hChC + T^ v^ (C.14)

and

.	 [ 21Kd
r	 -	 rg a (C.15)

where

rg a r gh hChd + r	 v_^, v (C.16)

The Fresnel transmission and reflection coefficients are given by

2K 8
^ I
^:	 3

_2K
Tgh	 K+K	 '	 TgV	 EgK + Kg fC.17)

and

y K-K	 E K - K

rgh	 rgV	 _	
g	 g

K̂
(c.18)

$	 EgK ♦ Kg

iP

}

r
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APPENDIX D

CALCULATION OF
¢vh(21 "i0)

w

in this Appendix, we will show thatfvhq
 -0. We start by writting
Vh

seattering amplitude that is given by LeVine, et al [1982].

k2

	

((100)	 4̂ 7^G8 (v^) 
(h0h0eh 

v ,^v_ 0 a: eincer_'	 —e

(h0h0er + v0 've^) since+	(D.1)
h —e-a-- v

where i0 and 00 are the directions of incident and scattering waves respectively.

The expressions appearing in eq. (D.1) are defined in chapter V.

We need fvh in forward direction. Using 1 0-00 and dotting eq. (D.1) by hi

from ^,^; right and by 
A from the left, we finds

fvh - i 1(i0 ,i0) • h3 - 0{[aeh + b+ce^]since  + [aeh + b ce^]since+}	 (D.2)

where	 Z

0 - 4Tr 
TQS

L

a ` (vim° •h°) Qj • hi)

	

0	 (D.3)
b = 3VV	,

C = 
y0.hi

`

	

	 and hi, vi are the unit horizontal and vertical vectors of the incident wave.

Next by expanding the unit vectors in cartesian coordinates, we determine

that fvh has the following dependence on 0

104
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e

fvh?':(sin1 co,e^{	 (D.4)

where h(C) is s single valued function of C. Usin= aq. (0.4), and assuming

is unifurmily distributed, we have:

n	 ir	 n

fhv - 2 f f 
hd# - 2^ J f d^ - Z h(ain+) co.^aj - 0	 (D.5)

.. 7r	 —x	 -,r

The last integral is zero because of the even and odd character of

cos and sin T; thus fvh 0. We also find that vh-0 using the same method.

Using a similar procedure one can show that

Ktp - Kp - Kp	(D.6)
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