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FORWARD

The work described in this final report is a continuation of the
work started under NASA Grant 5288, The discrete approach tov modeling
vegetation originally developed under Grant 5288 has been extended and
applied to a number of practical situations.

Electromagnetic backscattering from a layer of vegetation over a
flat lossy ground is studied. The vegetated region is modeled by dis-
crete lossy dielectric scatterers, for which the dyadic scattering am—
plitudes and orientation statistics are known. A method is developed
to compute the backscattering coefficients from the vegetated layer.
The technique is valid for scatterers having characteristic dimensions
comparable to a wavelength.

The problem is solved by finding the mean field in the vegetated

region and then using it in conjunction with the distorted Born approx-

imation (first order multiple scattering) to calculate the backscattering

coefficients. The mean field due to a plane wave obliquely incident on
the vegetation is obtained by finding an approximate solution to the
Foldy~-Twersky mean eguation in the limit of small fracticnal volume.
This approximate solution is obtained by employing a two variable ex-
pansion procedure. An examination of the mean solution shows that from
the viewpoint of the mean wave, the vegetated slab can be rgplaced by a
deterministic anisotropic medium. The anisotropic medium becomes uni-
axial when the scatterers are assumed to have orientation statistics
that are independent of the azimuthal angle.

The backscattering coefficients are then calculated by employing

single scattering theory, in which the scatterers are assuméed to be

iv



embedded in the equivalent anisotropic bulk medium. The procedure is
valid when the albedo of individual scatterers is small, that is, when
the scatterers are highly absorbing. Formulas for copolarized and cross-
polarized backscattering coefficients are given. Numerical calculations
for the backscattering coefficients as a function of incidence angle are
presented.

The material presented in the report has been published, in part,
and has been presented at a number of technical meetings. Feference to

this published material is contained at the end of the report.
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CHAPTER I

INTRODUCTION

-

The objective of this dissertation is the invesatigation of electro-
magnetic backscattering from a layer of vegetation over a flat lossy homo-
geneous ground. The vegetated region, or canopy, is modeled by discrete
lossy dielectric scatterers that have prescribed orientation statistics.

The motivation for this work has been the need to describe quantita-
tively the effects of the natural environment on electromagnetic wave pro-

pagation and scattering, and to relate radar return to the physical charac-

teristics of the vegetation and the underlying ground. These characteristics

can be used to determine the biomass and leaf area index of the vegetation
and the moisture content of the ground. Information of this type is neces-
sary as input data for crop yield models.

Models have been developed to serve the above applications
for vegetated terrain. These models have been constructed by replacing the
vegetated region with a random medium whose statistical characteristics are
related to the physical quantities of the medium. The random modeling
techniques divide naturally into two types: continuous and discrete. lIn
the continuous case, the random medium is modeled by assuming that its per-
mittivity €(x) is a random process whose moments, such as the mean and cor-
relation function, are known. In the discrete case, on the other hand, the
medium 1s viewed as a collection of dielectric particles whose position and
orientation statistics are given. In each, the medium statistics are used in

conjunction with Maxwell's equations to calculste average quantities of

physical interest. 1
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For the continuous case, exact equations for the mean and correlation
of the electric field can be obtained [Frisch, 1968]. These equations are
known as the Dyson and Bethe-Salpeter equations respectively. Although almost
impossible to solve e2ven under the most ideal situations, they provide an
exact formulatisu for the quantities of interest. Under appropriate physical
circumstances, such® as media with sm2ll correlation lengths or small fluc-
tuations in the permittivity, perturbation theory can be used to simplify
both the Dyson and Bethe-Salpeter equations to a tractable form, In the
case of the mean field, perturbation methods have been used by Keller [1962
and 1964], Tartarskii and Gertsenshtein [1963], Keller and Karal [1966],
Rosenbaum [1971] and others. In active remote sensing applications these
approximate mean field solutions have been used along with first order renor-
malization or distorted Born approximation to obtain the backscattering coef-
ficients, [Rosenbaum and Bowles, 1974; Stogryn, 1974; Heveéncr, 1976; Fung and
Fung, 1977; Fung and Ulaby, 1978; Fung, 1979; and Zuniga, et al., 1979, and
many others].

Another technique used to obtain the scattered field from a continuous
random medium is the radiative transport approach. Here the transport equa-
tions are cbtained in terms of the statistics of e(gp [Tsang and Kong, 1978].
In the case where the medium coérelation lengtp is large compared to wavelength,
de Wolf [1971], Ito and Adachi [1977] have developed multiple forward-single
backscatter techniques. |

In 1945 Foldy presented the first systematic probabilistic formula-
tion of the multiple scattering of waves by collection of randomly distri-
buted scatterers. In that paper he derived the mean field in a medium of
scalar dipole scatterers. Lax [1951, 1952] generalized his treatment to

resonant size scatterers and Twersky [1962, 1964, 1967, 1970, 1978]
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3
employed the Foldy-Lax method to find the mean field and effective dielectric

constant for arbitrarily shaped dielectric particles. Ishimaru [1978a] has
obtained an approximate equation for the mean field in both the scalar and
vector cases. Ishimaru [1978b] also has found solutions to the correlation
equation by employing the diffusion approximation.

The perturbation procedure applies when the fractional volume occupied
by scatterers is small. The theory shows that the effective medium, as seen
by the mean wave propagating thrcugh a collection of non-spherical particles,
is anisotropic. Lang [1981], Lang and Sidhu [1983] used the Foldy-Lax method
in conjunction with the distorted Born approximation to calculate the back-
scattering coefficients from a slab of arbitrary shaped lossy dielectric
scatterers,

Another work, using discrete scatterers to model vegetation, has been
done by Du and Peake [1969], and they employed single scattering (Born approx-
imation) without introducing an equivalent medium. Thus, they did not take
into account the decay of the incident wave in the vegetation. This limits
their theory to a much lower frequency and thin layers of vegetation. They
also did not take into account the underlying ground.

Recently Tsang, et al, [1981], have used a vector radiative transport
technique to analyze a slab of discrete scatterers. The results are similar
to those Lang and Sidhu [1982] except that terms represent ing coherent wave
effects are missing. The method 1s limited to low albedo particles where
absorptive loss is the dominant mechanism. The two methods require different
input quantities. For the continuous model the average permittivity of the
medium is required in addition to the spatial correlation function of its
fluctuations. In the discrete case, the scattering amplitude of the indi-
vidual scatterers is required as well as the positicn and orientation statis-

tics of the scatterers. The scattering amplitude can be obtained experimentally
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or by electromagnetic modeling of the individual scatterer. The latter
modeling procedure relates the scattering amplitude to the physical di-
mensions and to the dielectric properties of the scatterer.

One of the advantages of the continuous modeling technique is that
computed quantities of interest such as the backscattering coefficient are
obtained directly In terms of the average dielectric constant of the medium
and the correlation function of its permittivity fluctuations. In the case
of the discrete approach, the average permittivity, the correlation function
of its fluctuations and backscattering coefficients are all obtained in terms
of orientation averages over the scattering amplitudes of the individual
scatterers. The scattering amplitude, in turn, is then related to the
electrical and physical characteristics of the individual scatterer. Although,
computationally, the discrete approach is more complex than the continuous
method, the discrete approach has certain important advantages. One of these
1s that the average permittivity of the scattering medium is now a derived
quantity rather than one which is empirically determined. Another dif~
ference between the two approaches is that the continuous method does
not permit cross polarized backscatter [see Tan, et al. 1980], to first
order in the albedo, while the discrete theory predicts a first order
contribution [Lang, 1981]. For these reasons, the discrete modeling
technique may prove more successful in relating remote sensing signa=-
tures to actual physical characﬁeristics of the medium.

The methodology which has been employed in this work models vege-
tation by dielectric discs (leaves) and uses discrete random media methods
to calculate the scattering cross sections of interest. ©Lang [1981] asnumed

the canopy was thick enough so that ground reflection could be neglected.
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The forest was thus modeled by a half space of dipole discs (400 MHz to 1 GHz

regime). An equation for the mean field in the half space was derived and,
from it, an equivalent dielectric constant for the leafy medium was obtained,
Following this, the distorted Born approximation wvas used to calculate the

backscattering cross sections of the leafy half space, Lang and Sidhu [1983]

account for the effect of a flat ground by coneidering a layer of dipole discs

over a lossy homogeneous half space, The distorted Born approximation was
again used to find the backscattering coefficient of the layer of leaves.
It was found that the backscattering coefficient could be decomposed into
three terms: a contribution from direct backscatter; a return from a wave
doubly reflected from tlhe ground; and, finally, a direct-reflected component
from a wave singly reflected from the ground., In this thesils, the method is
extended to arbitrarily shaped scatterers having characteristic dimensions
comparable to a wavelength (so-called resonance region). The development
is generalized by using a matrix formulation.

This thesis has five chapters. Although the intrcduction to each
chapter should provide the reader with an outline of its contents,
we briefly summarize what will be done in each chapter. In Chapter II,
Maxwell's equations are recast in an operator form. The coherent field
equation obtained by employing Foiﬁy's approx}mation will also be dis-
cussed. The correlation of field will be found by employing the distort?d
Born approximation, ‘

In Chapter III, the mean field and Green's function of a plane wave
obliquely incident upon the vegetation is obtained by finding an zpproximate
solution to the Foldy-Twersky mean equation in the 1limit of small fractional

volume. This approximate solution is obtained by employing a two variable

expansion procedure. An examination of the mean solution shows that the
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vegetated slab can be replaced by a deterministic, anisotropic medium. The
anisotropic medium becomes uniaxial when the scatterers are assumed to have
orientation statistics that are independent of the azimuthal angle. Also,
the average complex dielectric constant of the medium is determined from the
average field in the medium.

In Chapter 1V, the model is extended to obtain the transverse spectral
density of the field, and the resonant backscattering coefficients of the
vegetated layer. Simple expressions for the copolarized and cross polarized
backscattering coefficients are obtained in terme of the dyadic scattering
amplitude of an individual scatterer.

In Chapter V, a general discussion is presented and numerical results

obtained by modeling a forest canopy as a collection of lossy dielectric discs.

The results are examined,
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CHAPTER 1I
GENERAL FORMULATION Of KESONANT BACKSCATTERING

. FROM VEGETATION

In this chapter we present the general formulation for scattering
from discrete random medium in the limit of small fractional volume., We

adopt an approach which has been originally developed by Lang [1981].

First, we consider the proktlem of scattering of a time harmonic electro-

magnetic wave from N discrete identical lossy dielectric scatterers which
have random position and orientation. Scatterers are considered to be in-
dependent of one another, and as a result, neighboring particles are not
necessarlly aligned. Then we will consider single scatterers. In both cases
we will obtain the necessary equations interms of the transition operator. We
will develop an approximate equation for the coherent field by employing the
Foldy approximation [Foldy, 1945]. We will also obtain the macroscopic form
of Maxwell's equations and the macroscopic permittivity operator which de-
scribes the average behavior of the equivalent medium.

Finally, the distorted Born approximation will be employed to obtain

the correlation of the field in the equivalent anisotropic medium. |

Problem Formulation

We consider the problem of scattering of time harmonic electromagnetic

waves from N discrete scatterers located in a volume V as is shown in fig. 1.
The particles are identical and each has a volume Vp, and a relative dielec-

tric constant er. We assumed that the relative dielectric constant of

A e e £ g
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background medium 1is € d(y. The only real restriction on the background
mediuni is that it be constant inside V.

The location of the ith particle is specified by the vector _:_:1 ,
extanding from an origin 0 to the center of that particle., The particle's

center is located by the center of the smallest circumscribed sphere in
whirk the particle can be placed. Although the particles are identical they
have a rotation with respect to a fixed direction. The rotation for the
ith particle is specified by _5_2_1-(01,%) where Oi and 451 are polar and azimuth
angles, respectively, with 0< 015 T and 0% Qi <2am,

The electric field E and the magnetic field H obey
Maxwell's equations

~lweg € (X)E -~ VxH = -J
(2.1)
VxE ~ iwuog'= -M
where a time dependence e-iwt has been assumed. In (2.1) J and M are, re-

spectively, the vector electric current density and magnetic current density.

"Lx

Fig. 1. Distribution of perticles within volume V
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the funstion U(x), where

P 2.2)

Using eq. (2.2), we express er(_:g) as

"
-

N
e (X) = eg(x) +A(x) I Ux~-X,0) , ¥x¢ R, (2.3a)
=]
where
A(x) = e (x) - €,(x) (2.3b)
and
U(x,2) = UR()x) (2.3c)

r—,

In eq. (2.3c) U(x,2) is the function U(x) rotated by 2, and R(Q) is
a rotational dyadic.

Equations (2.1) can be written in matrix form,

-'-iweoer(_:g); -Vxl E J(x)

. ® e (2 L] 4)
VxI ~lup Il | H M(x)

Here 1 is the unit dyadic and I'E = E, I'H = H.

Using (2.3a) in (2.4), we have for all x

-’imeoed(gc_); -Vx1 N -imeoA(i)U(i-J—{i’&i)z o1l |E o
+ .
vxI -wuy §] 1 0 JIE
(‘ J(x)
o) - (2.5)
M(x)

Equation (2.%) can be represented in the operator form [Felsen and

Marcuvitz, 1973; Harrington,1968].
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N
L-§ V¥ =g (2.6)
gy 1

where L is the operator descriptive of the field equations. The ¥ is a wave
vector characterizing the field variables and the % is a wave vector de-
scribing the excitation,

Since L is &n operator; it is necessary for uniqueness to state that
¥ lies in a prescribed domain of the operator L, a remark that is equivalent
to the statement of initial and boundary conditions on the elemnents of ¥, We
1ist below the matrix form taken by the operator L and the wave vectors ¥, g

and V for the electromagnetic field.

p-
-iweoed(i)l -VxI
L= 2.7
R ~fwmyl
E(x)]
Y= (2.8)
H(x) h
r-~. ¢
J(x) I- fwe AU (x-X,,9,)1 0
g = - ’ v, = : 2.9)
M(x) 0 0

The matrix multiplication of equation (2.6) represents a dot product !

between the elements of the 2x2 matrix operators L, V, and the wave vector V.

i

The elements of L. and V, are dyadics while the wave vector elements are

i

vectors.

At times it will be convenient to write

() = ¥o(x) + ¥ () (2.10a)

where
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Ey(x) E, (%)
Yo = and Y, - (2.10b)
H,(®) H (x)

and Yo(g) is the solution to eq. (2.6) when no scatterers are present, i.e.,
LY (x) = g (2.11)

and Va is the scattered field from the particles.

Single Scattering Equation and Transition Operator

Before proceeding with the N particle scattering problem, we will
consider scattering from one particle located at the origin. Putting N=1 in

eq. (2.6) with x.=0 and Q.=R, we obtain

1 1
(L-V)y = g (2.12a)
where
e
V= (2.12b)
h
imeoAU(g,g_); 0
0 0

The definition of L and g are given by (2.7) and (2.9) respectively. The

eq. (2.12b) can be written as

Vv = Wo + Ws (2.13a)
where
£ s,
Yo = and  y_ = (2.13b)
hy hy

and wo is the solution to eq. (2.6) when no scatterer is present, i.e.,
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LWO =8 . (2.13¢)

We have ;sed the ¢ notition’inltead of the ¥ for the field here to
remind us that there is only one scatterer present.

If we use (2.13) in (2.12), we get
LWB = Vy (2.14)

From (2.14) we see that the term on theright, Vy, can be viewed as the source

of the scattered field. We write

geq = VY (2.15)

where Beq is an equivalent source term. Since we know that V=0 when x ¢ Vp,
the sources geq, exist only inside of the particle boundaries.

It is more natural to think of the equivalent sources as being induced
by the incident field wo. Because Maxwell's equations are linear, hence we
an write »

Boq = TV (2.16)

eq
The operator T in eq. (2.16) is knowp as the transition operator in the
scattering literature [Lax, 1951}. Now using eq. (2.15) and eq. (2.16) in eq.
(2.14) and multiplying through by Lﬂl, we have

-1 n
WS =L"T wo (2.17)

Thus the knowledge of T completely characterizes the scattering properties of
1
the particle and quantities of physical interest.
The transition operator is a linear bounded operator and, as a result,

can be expressed in integral form

g

eq® = T¥g = I dx "t (x,X")¥ (x7) (2.18)

where the limits for the integral extend over all space and
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t(x,x”) = (2.19)
£21  E22

§21 " E12" 22" 0
and (2.20)
81 7 1 £ (x,x")

The t(x,x”) in eq. (2.20) is the same as the one Lang [1981] obtained

when he solved the vector wave equation and iﬁ:— is the normalization constant
0 ,
associated with the source term.
One can show that t is 0 when x or x~ are outside the particle

[Frisch, 1968}, i.e.,

2(3{_,5’) = ( , X ¥ Vp or x° g Vp (2.21)

The property follows directly from the fact that the equivalent sources for
the scattered field are located within the particle boundaries.
The transition kernel t can be expressed in terms of its plane wave

representation g, i.e.,

£(xx") = —— J"E dkE (i, k-yel (K%~ K7x7) (2.22)
(27m)
or inverting eq. (2.22) :
E(k,k") = (21)3 fds dx’t (x,x")e TEX - kX7 (2.23)
m

In a similar manner, we can define the Fourier transform of t(x,x”)

t(k,k”) = e~ilex - k™' x7)

L 3 Jdg dx“t (x,x") (2.24)

(2m)

We have used the notation that ﬁ_is the Fourier transform of h. More

specifically
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The dyadic scattering amplitude, £(0,i), is defined in terms of the

asymptotic expression for & in the radiation zone. We have

ik | x|
e (x,1) - £, 1) F—— , x| s = (2.25)
2. xI
where ko = wVpoeo is the free space wave number,

0 1is a unit vector in the x direction, U =

EAR

and i is a unit vector in the direction of the wave incident upon the
scatterer.

The relationship between £ and é can be found for large IEJ- (Appen-

dix A). The result is
£00,1) = 21°(1-00) - E(kQ3kyi)* (I-11) (2.26)

From this relationship, we see

0-f£ =0 , £1=0 (2.27)

firn

Thus £ is a four component tensor--all combinations of two incident
and two scattered polarizations. We also note that f does not completely
determine é but rather only partially specifies it.

Before concluding this section, transition operators for particles
that are not located at the origin will be needed. As we know, the equiva-
lent sources g£:> for a particle located at .9 can be related to the in-

cident field, It follows that

gé:)(g) =Ty = ffi(zmi')wéi)(zf)dg’ (2.28)

By shifting the sources and the incident field to the origin, tj can

be related to t. One finds that

SRR
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£, (%27) = t(x-X,,x"-X,) (2.29)

Note that throughout the discussion the dependence of t on rotations

has been suppressed for convenience of notation.

Approximate Mean Field Equation

In this section, we will develop an approximate equation for the co~-
herent field by employing the Foldy approximation [Foldy, 1945]. The equation
is in terms of the transition operator and the particle density of the
equivalent medium.

After the equation has been derived, it is pointed out that inside V,
the mean field obeys Maxwell's equations with free space medium permeability
and macroscopic permittivity that is inhomofeneous, anisotropic, and spatial-
ly dispersive.

The total field ¥(x) can be thought of as a sum of the incident
(1)

field TO plus a sum of the fields scattered from each particle, WS .

We have

SES ?
¥ o=y, o+ It (2.30) s
i=1

The total field incident on the ith particle is called tho effective
(1)

g gt g

field and is denoted by W(i). Thus Ti? represents the equivalent sources

e

generated by the incident field in the ith particle and thus the scattered

field by the ith particle is: g
A BRAC) (2.31) ‘
8 i
Using eq. (2.31) in eq. (2.30) we have
N .
¥ =¥+ [ L 1 T, y (D (2.32)
i=1

This is the equation that we wanted to obtain., Now, we average this equation

and the result 1is




o

N M N
TS [ 3 R S h
Cliuerdewb bl U b 20 3

16 OF PGOR QUL’—’RL?F)«Q

N
> =y + 7 L0 er, vy (2.33)

0 i

To obtain an approximate equation for the mean, we follow [Foldy, 1945] and
assume

W(i) = <y> ‘ (2.34)
This means that the random quantity W(i) is to first order, equal to a de-

terministic quantity. Using eq. (2.34) in eq. (2.33) and noting that

<Tiw(i)> = <Ti<w>> = <Ti><w> (2.35)

We have the approximate equation for the mean fields

N
> =y + § L7ler >evs (2.36)
0 5 i

We need the dependence of average Ti upon and Qi' For this, we

X
_.i
assume that the position vectors X, and rotation vectors 2, are random
variables that are specified by a 5N dimensional distribution function.

Assuming the particles have identical distribution functions, we have:

P (x,w) = P_ _(x,w) i=1,2,...,N (2.37a)
%2 2
where w=(0,¢). We assume that the particle’s location and rotation are

independent, thus
= . b
Px Q(x,w) P,(x)PQ(w) (2.37b)

with the usual property:

f Py(x)dx =1 I Po(wdw =1 (2.38)
v

The particle density is defined by

p(x) = NP_(x) (2.39)

X

so that

[ p(x)dx = N (2.40)
\'
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Now, we have

where

T(s) = f dw Po(W)T(s,w)
4 -
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(2.41)

(2.42)

In (2.42) the bar over T has been used to indicate only an average of angular

variables. By substituting eq. (2.41) in eq. (2.36), noting that the

terms are identical, and by using eq. (2.39) we obtain

<Y> = WO + Jdg_p(g)L-lfK§)<W>

\Y

Multiplying from the left by L and using eq. (2.11), we obtain

& <> = ¢

where

Y=-1- Jdg p(s)T(s)
v

scattered

(2.43)

(2.44)

(2.45)

This is the equation for the mean field which has been obtairied essenti-

ally by assuming that the effective field is approximately equal to the

mean field (equation 2.34), Equation (2.34) is only valid when the frac~

tional volume occupied by the particles is small compared to the total volume

[Twersky, 1978]. We shall refer to a distribution of scatterers satisfying

this condition as a sparse distribution.

We now write the equation for the mean in a more explicit form.

Using

eqs. (2.28) and (2.29) in eqs. (2.44) and (2.45) we obtain the macroscopic form of

e g ey
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Maxwell's equation:
L<¥(x)> - I Idx p(s)t(gfg___-s)<W(x )> =g (2.46)
v
where
t(x,x") = [dg’_PQ(su_)t(zs.zs’ ") (2.47) '

4n
Here the kernel t(x,x”,w) is the same as eq. (2.29), however, we have explicitly
shown its dependence on the angular coordinate w.
By writing eq. (2.46) out in vector components, we explicitly obtain
Maxwell's equations.

The macroscopic form of Faraday's law:
Vx<E(x)> = dwn,<H(x)> - <M(x)> (2.48)
and the macroscopic form of Ampere's law with displacement current: !
Vx<H(x)> = ~iw<D(x)>+<J(x)> , <D> = go§e§§> (2.49)

vhere £e is a macroscopic permittivity operator which describes the average

behavior of the medium. We have

Hm
[

{x) = ;ed(gp + JE fdsjdx P(8)t(x-5,x"~8)" (2.50)

ko v

This expression simplifies to ;ad(g) when X V. To see this we note that ;
when x ¢ V, we have x-s ¢ Vp, since s eV except for a small region near the
boundary. Now using eq. (2.21) we have E;O.' When xeV, eq. (2.44) does not
simplify in general. It describes anisotropic, inhomogeneous, spatially
dispersive medium,

Lang [1981] showed that eq. (2.50) reduces to some more familiar ex-

pressions in certain special situations.
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The Correlation Field Equation

In this section we will calculate the correlati n of the field. The
distorted Born approximation will be employed. It is a single scattering
approximation where the scatterers are assumed to be embedded in the equiva-
lent anisotropic bulk medium. Tﬁe procedure is valid when the albedo of a
single particle islémall. The latter condition implies that the energy
absorbed by a particle must be much larger than the energy scattered by it.

We start by considering a volume V of equivalent medium which was
mentioned before. There are N particles embedded in V as shown in fig. 1.
The scattered field due to the ith particle can be calculated by modifying eq.
(2.31). We assume that the incident field on the ith particle is the mean
field <¥> and that the operator L is replaced by the equivalent medium
operator S? as given in eq. (2.45). |

We have

N
Ws - iZ se

1
where (2.51)

i) _ -1
Yse = 4 Ty
Before proceeding, we point out that our main interest in finding the cor-

relation of the field is to use it to calculate backscattering cross

sections. We define the correlation of the field fluctuations as
Wf = Ws - <WS> <Wf> =0 (2.52)

Now computing the correlation of the fluctuation compcnent of the scattered

field, we obtain

<Wf(§)WI($)> = <WS(§)W;(3)> - <ws(£)><wz(g)> {2.53)

where W+ denotes the conjugate transpose of V.

iy
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In eq. (2.53) ¢ is conformable to V+

for matrix multiplication. The
elements of ¥ and W* are vectors. Therefore, eq. (2.53) represents a 2x2
matrix with elements of dyadics.

Putting eq. (2.51) in eq. (2,.53) and noting that a por:ion of <W8V2>

cancels the term <W5><WZ>. We also assume that N>>1. Then, we .btain

<\Pf(§)‘l’g(§§)> = Id_@p&(_ug)di’f(zt)\i’g(ft_)@_ (2.54)
4m
where
Y VI = f ap @Y, (x,8)¥] (%,3) (2.55)
- € e
v
with
¥ () =& 1w (2.56)
e

Here we have separated the average inte rotation and coordinate space
averagec, and thus we introduce the conditional expectation, <waz>w, with
respect to given w, -

The field WS defined in eq. (2.56) represents the field scattered
by a single particleelocaCed in the equivalent medium at s. V is the volume
of the medium. We see that wquation {2.55) is just an incoherent addition of
the single scattering contributions from each particle. This is a result of
the assumed independence of particle statistics.

The correlation of the fluctuation field Wf(z) is calculated instead
of the correlation of Ws(gj, so that coherent effects will be eliminated from
the backscatter coefficient expressions.

The backscattering coefficients are then directly related to the trans-
verse Fourier transform of equation (2.55) with respect to X, and ﬁt evaluated
at the upper interface (z=0). This work will Ue done in chapter IV.
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To write equation (2.56) more explicitly, we introduze the Green's '

function G(x,x”) for the opetatorsz It satisfies

Lo(x,x”) = 16(x-x") (2.57)
where'gyis given by eq. (2,45). The I is a square diagonal matrix of the

unit dyadics,

. rl o]
’I » (20 58)
o I
o
and
611 (xx7) Gy (x:x7)
C(x,x") = (2.59)
-221(3_‘)5 ) 922(3&’3_ )
where gll’ 912’ §21 and 222 are dyadic Green's functions., [See Felsen and
Marcuvitz, 1973). Now equation (2.56) becomes .
¥, (x,8) = Jdgg’G(gg,i‘)Jd_&”t(_:g’-§_,3c."-§)<'¥(§")> (2.60)
e

Equation (2.60) simplifies in the low frequency or Rayleigh
limit.

Before proceeding to a specific application, we would like to point
out the relationship between the distorted Born approximation as presented
here and the Twersky equation for the correlation. Basically, the wvector
analog of the scalar Twersky equation [Twersky, 1964] can be found by applying
the method of smootliing when the frrcticnal volume is small. If one then
solves this equation under the assumption of small albedo, the result should

be the same as the distorted Borm method we have employed.




CHAPTER 111
MEAN FIELD AND GREEN'S FUNCTION IN THREE MEDIA

The mean fiéid and Green's function in three layered media are develop-
ed in this chapter. We begin first by obtaining the transverse wave vector,
then we obtain a fluctuation equation. Using the two-variable expansion procedure,
the equation will be solved approximately. The two-variable expansion procedure
is a perturbation technique for approximating sclutions to differential equa-

tions, and it is the principal mathematical technique used in this study.

g

Some particular applications of this method has been made by Tsang and Kong
[1976], Tan and Fung [1979], Tsang and Kong [1979), and Zuniga and Kong [1981].
We conclude the mean field study by obtaining the mean field of three
media in a small volume limit (pr<<1). The small volume limit or sparse
distribution is natural for vegetation where leaves and stems make up a re- §
latively small percentage of the volume. This in turn leads to the concept
that the mean field acts as though it propagates in an equivalent medium ?
which is anisotropic. Because of this condition, we expect interface effects
to be relatively unimportant. The most important effect is the decay of the
mean field ae it progresses through and reflects from the ground.
Finally, we will compute the transverse dyadic Green's function'in
three layered media but will only give explicit expressions for it in the

slab region.

The Evaluation of the Eigenvectors

A, Transverse Fourier Transform

To illustrate the application of the method developed in the previous

22
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ifk sections, we will calculate the mean field in a three layerad medium. As
shown in fig. 2, this consists of free space at the top, the vegetation layer
and the ground. A plane wave is assumed to be incident at an angle 60 and
scattered at an angle 65. The unit polarization vectors for incident and
scattered wave are shown in fig. 2. The interface between the ground and the
vegetation is taken to be smooth.

z

L 4

P

Medium O

Medium 1

[
2 0 O (egEer¥g)
I A EESEEEEBEEEEEAEEEA TTT('IIT'I'lf'lll'llll’l'll'l

z==d Medium 2

O

Fig. 2. Geometrical configuration of the problem

Qﬁﬁ Medium C is free space having permeability Hg and permittivity ¢

4 o°

The scattering particles are all assumed to be identical and each has a

volume Vp, relative dielectric constant €y and free space permeability Ho in

Medium 1. Medium 2 is the ground underlying the vegetation with relative

=R ST
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dielectric constant eg and permeability uo.

The equations satisfied by the mean fields in the three media, which
are mentioned ahzve, have been derived in chapter II. There it was shown
that the average electric field, <E(x)>, and the average magnetic field,
<H(x)>, obey Maxwell's equations in an equivalent medium having relative
permeability 1 and .relative permittivity ge(ﬁ). The relative permittivity
58(5) is dyadic since the scatterers are arbitrarily shaped.

In this section we consider first the abstract formulation of the
guided-mode wavevector representation of Maxwell's equations. We start by

writing the macroscopic form i Maxwell's equations which were obtained in

chapter II. Assuming g=0, we have

Ly (x)> = Jd_S_fdg‘p ($)t(x-5,x"~8)<¥ (x")> (3.1)
V
where
-iwsosd(g); ~UxI 1 ’ z>=d
L = with ed(§)= ed(z) = (3.2)
Vxl —iwpol Eg s z<~-d
and
P<E('}-(-)>ﬂ
<\y(_,_<_)> = (3-3)
<H(x)>
oo -
Fg 0
- _ =1
0 0

The left side of eq. (3.1) becomes zero when xfV. To see this we note that
when x£V, we have gfgﬁvp since seV. Now using eq.(2.21), we have t=0. Thus the
integral over V in eq. (3.1), can be replaced by infinite limit if x is

restricted to lie in the slab region.

R S
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LY (x)> = 3Idgjdi‘p(§)Ek§:§,§fg§)<v(§f)> rectd(z) (3.5)
where
0 , z»0 (free space)
rectd(z) ={ 1 , —d<z<0 (slab) (3.6)
0 , Z<~d (ground)

-

The general field in the vegetation can be described either in terms of a first-
order system of field equations, or it can be reduced to a higher-order equation in
terms of a particular field component. The reduced field formulation (eq. (3.5))
frequently leads to analytical complexities in identification of energy express-
ions, reciprocity properties, eigen modes, etc.. The first-order formulation
avoids many of these difficulties. In this work the first-order formulation will
be used. Also this formulation will be more suitable to apply to the two-variable
expansion procedure.

In order to simplify eq. (3.5), we should like to take the transverse
Fourier transform of it. For this purpose, we assume p has no transverse

variation, i.e.,

p(s) = p(s) (2.7)

where

Also we define

X (X 1%7,2-5,27~8) = JdEtt(ﬁt-§t’5%-§t’z's’z -s) (3.8a) |
and let LI P ds, = ds, (3.8b)

Using eq. (3.8b) in (3.8a) we have

;Yﬁt,gé;z-s,z’-s) st t(-s, ,x -x »2=S,2 -8)

ttt

= ;(5,;-35;;2-5.2‘-5) (3.8¢c)

T

E.
~
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As seen 1in eq. (3.8c) we suppress the 5, dependence by using eq. (3.8a).

Substituting (3.8¢), and (3.7) into (3.5) we have

L<¥(x)> = ’stJdﬁfp(s)ilgﬁfzé;z-s,z‘-s)<?(5f)> rectd(z) (3.9)

In eq. (3.9) we have written the difference in transverse coordinates because
the ©particle density p does not depend on S+ Because of the exponential
dependence of the incident wave on x and the invariance of the mean equation

in the transverse direction, we assume

ik, *x

<W(§)>E<W(§t,z)>= <@(Et,z)>e Tt ot (3.10)
where
- 0 =
Et = kbg , kt kosine (3.11)

The system of ordinary differential equations is obtained by substituting eq.

(3.10) into eq. (3.9). This is equivalent to taking the transverse Fourier

transform of eq. (3.9). We find:

i<@(§t,2)> = ’stﬁh’p(s)i(gt,z-s,z’-s)<@(§t,z‘)> rectd(z) (3.12)

where
<E(k, ,2)>
Wlkpr2z)> = | (3.13)
<§'(1‘(t’z)>

The transverse Fourier transform of the operator L is

ot . d
L= ~-ik + PE;- (3.14)

with the component operators K and ' defined by

0
wepe (z)L K xI 0 -z x]
K = ’ and r = (3.15)
k1 gL 2% 0

¢

oy b
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From eqs. (2.20), (3.8a) and (3.11) we see that

¥ (z=s,27=8) 0
'Y(Et,z—s,z‘-s) z X(z=s,2"~5) = (3.16)

B. Eigen-Functions for the Particle Free Medium

The complete solution to eq. (3.12) is obtained by a perturbation tech-
nique under the assumption that the fractional volume is small. As a first
step in implementing this procedure the homogeneous solutions no£<@>-0'are
found. The homogeneous solutions are of the form:

ik z

<> = ye ° (3.17)

where Wa and Ky will depend upon whether z>-d or z<-d. Substituting eq.

(3.17) into the homogeneous equation Ley>=0 yields

Lwa = (K-KaP)Wa = 0
or

KWa = KaPWa (3.18)

where K and I' are defined by eq. (3.15). It is seen that the Ky and Wa are
eigen values and eigen vectors respectively of the operator K.

To establish the orthogonality of the eigen vectors, we introduce the
product

(¥,,¥g) = ¥l y ‘E_ + H_°H (3.19)

g = EyEg + H,'Hy

where WT is the transpose of ¥. The adjoint operator L+ is defined by
@wy,vy) = (¢ ,L7v)
a’ B at B8

For the product defined in eq. (3.19), we conclude

- w: Ty =Tty

T
(L Wa,WB) = (L Wa) ¥ 8 a 8

8
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Now the adjoint eigen function problem for eq. (3.18) can be defined as

+,+ o+t
K‘P“-Kal‘ \Pa

T . I' the adjoint problem is the same as the original

Since K' =KL =K and I'" = T
eigen value problem; thus W:i?a and n:-ga. As a result we say the eigen value

problem is self adjoint.

We can now show that two eigen vectors having different eigen functions
are orthogonal. Conéider eigen vectors Wa and WB and their corresponding eigen

values Aa and AB . We have
(Kwa,WB) - (KWQ,WB) = 0

(KWG,WB) - (Wa,KWB) = 0

(AaPWu,WB) - (Wa,ABPWB) = 0
Aa(PWa,WB) - AB(Wa,F?B) = 0

()\& AB) <P‘ya"‘y6) = 0
If AafAB then
(TWa,WB) = 0 ‘ (3.20)

The eigenvectorswa and WB are orthogonal to each other as defined by eq: (3.20).
Actual computation of the eigen vectors and values proceeds in a direct
manner from eq. (3.18). The calculation follows the method of Felsen and
Marcuvitz, 1973 and thus will not be repeated here. The results of the calcula-
tion shows that there are four eigen vectors and four eigen values. The eigen

values are given by

Kt(z) = +x(2) (3.21a)

o At

AR
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where
K » z>~-d
K(z) = (3.21b)
K » z<~d
g
with
k= koeos8 , K= i-ki . kg = kgl (3.22)

and kt is given in‘eq,.(3.11). We note that there are only two distinct eigen
values; each has multiplicity two. Thus two eigen vectors correspond to each

distinct eigen value, The eigen vectors are:
0

0

v (2) h

‘P+1(z) m[ - 0] ‘1‘+2(z) -[ 0 ] (3.23)
- L-n(z)h - n(z2)y, (2)

where the unit polarization vectors are given by

0 0 0 0

h"=h,=h, =2 (3.24)
1‘1 »  z>-d
v = { 0 (3.25a)
- —g ’ z<~d
with
0o_ 1.0 0
vo= (+x" +kz)/ky (3.25b)
0 ~ .0 0
Voo = (X + ke z)/k, (3.25¢)
and

ENE (z)
n(z) =‘/ 2d (3.26)
Ho

An examination of the eigen vectors shows that they obey the following

orthogonality relationship

(Wa,WB) = ZNaGaB . a,B & {£1,+2} (3.27a)

where saB is the Kronecker delta function and Na is a normalization coefficient
given by
- - hx(z)
Nti iNT(z) ’ NT(Z) kO ’ i=]1,2 (3.27b)

';%
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This result embodies the orthogonality relationship given in eq. (3.20),
plus the fact the eigen functions corresponding to the same eigen value were
choosen to be orthogonal.

The eqs. (3.23) represent the eigen vectors for z>-d and for z<-d, For

further use we write these eigen vectors explicitly in each region. We have

0
vy b
wtlg . R Wtz = . for z>-d (3.28a)
€
with n= ~ -9- ’
0
v )
, y = for z<-d (3.28b)
2g 0
v
nh gg

with Ve .
Ng = NVEg

In obtaining eq. (3.28b), we have used gg=gg_. Due to radiation con-
dition,xg+ will not come into our development,

The Solution of the Mean Wave Equation

* A. Reduction to Slowly Varying Coefficients:

We start with substituting eqs. (3.23) in eq. (3.17), then we obtain

v - . voy =ikz . o +ikz

<Y(z)> (w_la + W_za de + (W+lb + W+2b Je (3.29)
where the form of the eigen values and vectors will depend on whether z<-d
or z>-d.

The problem is now reformulated in terms of slowly varying parameters

[Kohler and Papanicolaou ,1973]. These parameters are defined by the trans-
formation

Az) = a*(2)¥° (2) + a”*(2)n°

(3.30)

]

B(z) = b~ (z)v (z) + b”(z)h

Here A(z) and B(z) are the slowly varying wave amplitudes associated incident

and scattered wave, respectively.

s
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y (2) = W_l}:,g () + ¥_jh°
(3.31)
+ 0 0
y(2) =¥y, (@) + ¥
where W+1 and W+2 are defined by eq. (3.23)., The ¥'s are 2x1 matricies
whose elements are vectors, therefore y and y+ are 2x1 matricies where
each element is a d}adic.
Using eq. (3.30) and (3.31) in (3.29) we obtain
<§(z)> = yfég_iKz + yfﬁgikz (3.32)
Defining the vector ¢(zj by
A(z)
$(z) = (3.33)
B(z)
and the 2x2 matrix y(z) of dyadics by
- - +, 01
y(z) = [y (2)e ™%,y  (2)e%) (3.34)
We cast eq. (3.32) in matrix form as follows:
<¥(z)> = y(z)¢(2) (3.35)

where we denoté the matrix y(z) in the two regions by
y s 2>=-d
y(z) =

z<~d
Yg s

The equation (3.35) represents the transformation from field quantities
to slowly varying amplitudes which we wanted to obtain.

Using eq. (3.23) in eq. (3.31) we obtain

I"(2) 1" (2)
y (z) = y (z) = (3.36)
n(2)1%0 " (2) (@)1 (2)

where igﬂz) are unit vectors in the direction of the up and down going waves.

They are defined by

R e st e et £ g wAge $1e At —breaEe i
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(k i.KEP)/ko ’ z>=d

(k, +x z)/k z<~d

0
—t._ 8... 8 »
and

fh)* hh+x&ﬂ£@)
Here ;i(z) have the property E'(z)'éﬂz) = A(z) and £+(z)'§ﬁz) = B(z).

The ;_(z) and ;+(z) are unit dyadic tensors associated with up and

down going waves respectively.

Using eq. (3.36) in eq. (3.34) we obtain the y matrix as

é-(z>e—inz £+(z)eikz
y(z) =
n@ (17N ) (it (2

Crne can define dyadic inner product similar to eq. (3.19) [Friedman, 1962], as

(yi.Pyt) = (yi)TP(yi)

Substituting eqs. (3.36) and (3.15) into eq. (3.19) and proceeding with

the matrix multiplication, we obtain the results

+

SRR ICH NI

+ —
with (y“)Tr(y+) = (), The normalization coefficient NT 1s given by eq.

(3.27b).

Now we define the inverse matrix, _y—l, as:

-1 -1 - i 1+ -ixz,T
y (z) = [§§; vy (2)e %, + Eﬁ; y (z)e *%)

(3.37a)

(3.37b)

(3.38)

(3.39)

(3.40)

(3.41)

PRI v
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or
- - 1
(et on(z) (@1 (2))e
- = (3.42)
y “(2) = 35" : 0 .+ —ikz
I+(z)e' Kz n(z) (L, xI (2))e
The inverse matrix has the prope;cy that
-1
y Ty = I¢ (3.43)
where
1 0
=
I¢ = | (3.44)
o I
Here I¢ is a identity matrix in the 4 space where I¢¢' $.
Next we substitute eq. (3.35) into the transverse mean wave eq.
(3.12). We obtain
fay(z)c}(z) =(Jd‘sjdz’p(s)i(z-s,z‘-s)y(z’)qa(z‘)) rectd(z) (3.45)
where :
~ _ d d d¢ n
Ly(2)¢(2) = [(~1K+T 7y (2))¢(2) = (~iKy+T =y ) ¢+Ty 3~ (3.46)
Using eq. (3.34) we obtain
d d,, - -1 + +ikz ?
(~IRHT )y = (-1KHT3) (e %, yTe )
= [(~iK-1kD)y e 3%% ) (miktire)yteti®?) (3.47)

Using eq. (3.31) in eq. (3.47) and proceeding the matrix multiplication, we

obtain

(-1x+r-§;)y(z) =0 (3.48)

Hence eq. (3.45) becomes

ryig{_z); =([dsjdz ’D(s)?(z-s.z’-s)Y(Z‘)Mz‘)) rect (z) (3.49)

T
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Myltiplying both sides of eq. (3.49) by y >(z) and using (3.43) ve

find the fluctuation equation to be

;lqz-\t(z) -( stsz ‘p(s)y'l(z)'?y(z‘)tb(z‘)) rect (z) (3.50)

with boundary conditions: i) tangential components continuoys, i.e., I'y(z)¢(z) is

continuous at z = O and z=-d, and 11) radiation condition at e, VUe also have

‘i’g":") '§<-|+)

y L)Xy (z*) = PRGOS (3.51)
'i’('.'»') %("'p"')

with

»

i(aoa) (z'zl'.)- é_%% E@.'le(”k“to,z_.’za_') .28 e-:lk(uz-ﬂz—)

a,B & {+,~}

B. Application of the Two-variable Procedure:

The eq. (3.50) can be solved along with the appropriate boundary con-
ditions by using exact or approximate methods. The two-variable perturbation
procedure will allow us to determine the approximate solution to eq. (3.50)
directly without having to find the more complicated exact solution first.

The main advantage of the two-variable procedure is the simplicity of
the formalism. The higher approximations are more easily calculated. A
disadvantage of the method, however, is that the proper choice of fast and

slow variables are not always obvious [Cole, 1968]. ‘

We assume a slow variable Z=6z, and then we assume p(z)=6p(Z). Thus
P(Z) is a slowly varying function. Next we consider ¢(z) %o be both a
function of z and Z. We have

$(2,2,8) =] ¢™ (2,236 = 4P, + 6P 2,7y ... (3.52)
n=0

$(z)

If we proceed one step further by expanding p(3) in power series around s=z,

then we have

S T
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3%
- n
P@=1 %M@ L. 5@ ... (3.53)
=0
vhere
-
PR . Eea

with §<<1, and total derivative with respect to z can be written as a sum of

partial derivatives,

) 3

We substitute egs.(3.54), (3.53) and (3.52) into eq. (3.50). Using
the fact that Efg) is slowly varying over the support of ?} it can be taken
in front of the integral as p(z). Thus eq. (3.50) takes the following form

@ [ m ~ ®
2l ¥ o®,7) 6“-{ ) a“'*%““"(‘i)fafdz'—(i;ﬁl—y'liy 20¢(“1z‘.?)6“}rectd(z)
=0 m=0 nw= '

9z 9Z

We also need to expand ¢(n)(z‘,;“) around z“=z. Doing that we get 3-3%)
6@ @7 = 40D 4 8 Rt Do) + e (3.56)
Using eq. (3.56) in (3.55) and by equating coefficients of &, we find
§@: 2 4@, 3 -0 (3.57a)
therefore {%z,2)=6 (¥ (@) (3.57b)

6 oM + L e =5 {(st[dz‘y'lczﬁy(z'»"’(z‘.?)}:ec;dm)
(3.58a)
From eq. (3.58a),we obtain by using (3.57b)

¢(1)(z z)--dﬂz)z+ p(z) ; dz” dstz"y (z° )YY(Z"); (ohrectd(z)wm(z)
(3.58b)

Following the two-variable procedure, which requires that the ¢(1) term does

not grow as fast as z, i.e.,

B T — ety g T S
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lim 1 (1 m
z-: z ¢( )(z,z} =0 (3.59)

In Appendix B, the condition given by eq. (3.50) is evaluated. The regult
leads to the following equation for 4(0) (z):

£69@ = 5@m @ @rect () (3.50)
where
m 0|
0 m

and employing

3 -
i4 = 0 ,
p® = B Pl 1 . B elt,-} (3.61b)
1f we use eq. (2.z6) along with the fact that f- h ho + l°x°++ _j;OI 12 in

eq. (3.61b), we have

b = 62"1 f(i ,19) (3.62)

Equation (3.60) can now be written as:

L40®=- 2L 0@ B0 (3.63)
where ‘
A@D
B(2) ‘
and
fal,1%) 0
£ = (3.64)
0 -f 194°
L (__'_o_'_)
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Equation (3.63) represers two independent equations, namely

0 —
dA " (2) - -
- -5 T .10 ® (3.65)

dz

ng(E) 2nd

dz

7@ T w1 ’@ (3.66)

The enuations (3.05) and (3.66) are two first order systems of

difierential equations for slowly varying coefficie ‘s.

C. The solution of the slowly varying equations:

Here we will solve the slowly varying differential equations in order
to obtain the mean field in the air, the ground and the vegetated slab as shown
in fig. 3. We assume the transverse mean field is excited by a plane wave

. 0 -ikoz )
<Y, (2)> = y'q. e qe{h,vl , 520 (3.67)

O -
having polarization g~ and propagation constant KO kocoseo

We can write the mean field in the three regions using eq. (3.32)

and eq. (3.67). It is:

-0 =ik .2z + 0 ikz

<W(z)> = ye. q e 0%+ yT goa_e i ) z>0 (3.68)
<F(z)> = y A@)e 0%+ yiB(2) el 0 0>z>-d (3.69)
- - ~-ik 2

¥(z)> =y Ae g0 z<~d (3.70)

where Es ia the dyadic reflection coefficient and.l_\g is constant vector.
The subzerc. on quantities such as Ko and k_ which indicate an angle of
incidence 60 will be suppressed through th;Grest of section C for nota-
tion convenience, and xgo is given by

Kgor ko(e8 - ai.nzeo)ll2 (3.71)
The y and y+ in eqs. (3.68)~(3.70) are given by eq. (3.36) and‘éﬁ;).

P,

e 2 1e0 repinge P .4 T
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g(?) are the slowly varying coefficients. Assuming constant P, from eqs.

(3.66)8nd (3067)’ we find

25 @, 1% _ E7 Fadade
A(z)=e Ay s B(z)=e '!0 (3.72)

where AO and §0

can be expressed as

are constant vectors. The mean field eqs. (3.68)-(3.70)

Y¢f ’ z>0
<y> = o, , 0>z>-d (3.73)
yg¢g N z<-d
where
q° A@) A,
be=| cobem| . by - (3.74)
Teq_ B(z) L 0

Boundary Conditions:

(1) At z=z=0, the tangential field has to be continuous, hence
I‘<\ff

where <f!"f>-y¢8 and <Ws>-y¢s represent the mean fields for 2z>0

> = r<@s> {3.75)

and 0>z>~d, respectively.
After substituting eq. (3.73) into (3.75), we multiply both

sides by y-l. Then using eq. (3.43), we obtain

¢f - ¢s - (3.'76)
z=2=0
Using eqs. (3.74) in (3.76) we conclude that
Sg = A(0) = A (3.77)
req® = B(O) ~ B (3.78)
B - — _.o .

P
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(i1) At z=-d, -z'--;i.. the tangential field has to be continuous, hence
I‘<.‘r'> - I‘<\l’8> (3.79)

vhere <W8>-y 8¢8 represents the mean field for z<-d.
After substituting eq. (3.73) 1in (3.79), we multiply both

sides by y"l. Then using (3.43), we obtain
- -1
$pg(=d) = (y I’ygwg (3.80)

Substitueing ¢y, ¢, and (y‘lryg) into eq. (3.80), we obtain

- -1 T _ -i(x-xg)d |
A(~d) = ﬁfT-[(y )Ty IA e (3.81)
B(-d) ZNT((y )Ty, kA e (3.82)

where NT-nK/kO and y; is given by eq. 3.36 for z<-d.
Now we introduce

ég = T-A(~d) (3.83)
and
B(-d) = [-A(-d) (3.8¢)

where T and I' are dyadic transmission and reflection coefficients at the
ground, respectively.

Using eqs. (3.83), (3.84) in eqs. (3.81) and (3.82) we obtain

(3.85)

where

h™h™ + T v, Vv (3.86)
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In eq. (3.86) '1‘gh and Tgv are Fresnel transmission coefficients

which are given by

2V k
T - 2K T =—28 (3.87)
gh £+K‘ gv e‘w+x8

These calculations have been carried out in Appendix C.

(;

0

1

2

|
Fig. 3, Mean wave in equivalent medium
iz§ We obtain for dyadic reflection coefficient
r E; eZiocd (3.88)
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where

[ = + v 3.89

In egs. (3.89) T gh and T gV are Fresnel reflection coefficients which

are given by

K =K €E K=K
—K - B
I'sh "+ Kg ’ rSV o Y g (3.90)

We also obtain using eqs. (3.72), (3.77) and (3.78)

1c'a 1x7d
Le = a . Egge (3-91)
where
* o, 2o ,,0 .0
£ =k + 5P F (1,,1,) (3.92)

For the final solution, we write the mean field in three regions as

a° L.
~ -ikz ikz
<¥(z,q)> = e + e » 2>0
- 0 .+
n(? x17)g’ n(i,x1 )'53‘98 (3.93)
and
[ 1 T +
- = ik z o ik 2z 0 ,
<¥(z,q)> = e .q_ + .e '£§ﬂ- , 0>2>~d
0 - 0 .+
n(,!-__ x; ) n (LXL ) (3.94)
and i \
i =g ikd o =i (zHd) ‘
<¥(z,q)> = ' e q_e g ,» 2<=d (3.95)
0
i xT
| Ng=g*s=g

where _i_g is io_ (z) for z<-d as given in eq. (3.37a).

The first term in eq. (3.93) is the incoming wave and the second term
represents the reflected wave after travelling through the equivalent medium
and having been reflected from underlying ground. The same is true inside

the equivalent medium except that propagation constant now is K as defined by
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eq. (3.92). The original wave after decaying through the equivalent medium
is partially transmitted into the ground where it travels with a propagation
constant Kg. These results, in the case of low frequency (Rayleigh regime),

are ideantical to those obtained by Lang and Sidhu {1982].

Transverse Dyadic Green's Function in Three Media

To compute the backscattering coefficients we have to evaluate the

transverse spectral density. To evaluate it we will need the transverse
Green's function in the equivalent medium which gives the scattered field at
x in response to a unit dipole located at x“. The Green's function will be
calculated in the equivalent medium and thus, is an averaged quantity. We
have defined the Green's function problem at the end of chapter II. Now, if
we take the transverse Fourier transform of eq. (2.57) and proceed in the

same way we did in the mean wave case, we obtain

ié(gt,z,z‘) - Is(z-z’)+3fdsjdz"p(sji(gt,z—s,z“-s)a(gt,z“,z’) }t@ctd(z)

(3.96)
+ radiation condition

The definition of i} I and L are given by eqs. (3.16), (2.58) and (3.14),
respectively.
We write

G(k, ,2,27) = G(z,2") = y(2)8(z,2") (3.97)

}
Substituting eq. (3.97) into eq. (3.96) and using the identical pro-

cedure as we did in the mean wave case, we find

j‘;a(z.Z‘) - y-l(z‘)G(z-z‘PHdstz”o (s)y'l(z)'i(z-s,2“’-S)y(z“)§(z“.z‘)

. rectd(z) (3.98)
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We would like to put eq. (3.98) into a more familiar form by multi-

plying from the right side by I'y(z°), and using y-lt'y-I ¢ we obtain

~

aqié(z 2') = I.B(z—z “)+{Idljdz"p (o)y-]'(z)i(:-s .z"-l)y(:“)é(z“.z ‘)}

* rect,(z) (3.99)
where
G(z,2°) = &(z,2")y(z") (3.100a)
From eq. (3.100a) we have
8(z,2°) = G(z,2*)y L(z") (3.100b)
Using eq. (3.100b) in eq. (3.¢7) we obtain that the transverse Fourier
{ .
* transform of Green'’s function is in the form of gsimilarity transformation,
i.e.
- &(z,27) = y(2)G(2,2")y 1 (z") (3.100c)

We will solve eq. (3.99) approximately by utilizing the two variable method.
We expand the Green's function in a power series and assume that the unit

source is inside the slab, i.e. 0>z°>-d. We have

é(z,z‘) - é(z,?;,z‘,?‘,&) - Z é(n)(z,;,z‘,;‘)c
n=0

n

where z = 6z and z“=8z° with 8<<l.
Proceeding in the same manner as in the mean wave, we obtain i

6(0): lé(o)(z,;;z‘,'z_‘) =1

Py §(z~z") (3.101a)

¢

From eq. (3.101a) we have for z¢z”

é(o)(z.,;;z’,;‘) = G(O) (z32°,2°)

6(1): ;a‘;é(l) (2,232°,2°) +3L? 6(0) (;;z‘.'z_‘)';(;)gIds[dz“y-l:iy }6(0) (;;z‘,;‘)rectd(z)

(3.101b)

R P
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Following the two variable procedure which requires that the
term does not grow as fast as z, 1i.e.,
11 A 1 - P ™
z*:'% &¢ )(z.:;z 2°) = 0
then we obtain

2nd

[P T pf (3-102)

QAN
o»

d.
dr
where € is given by eq. (3.64) and

&=80G,2279

o

In eq. (3.102), represents slowly varying terms for three media, and

in each medium is noted by

«Q»

£ . z>0
{ 2+ .
a G ’ 0>2z>z
G=4.° (3.103a)
s . z">2z>~d
ag Y z"d
with
£ - £ - ~ -
0 0 AT (z) A (2) A (2) A (2)
2 At ®1 52 A 81 &2
Gf = , Gs - , GS -
— — +
Be (z) B (2) B, (2 B (2) 0 0
£ £ 51 8,
(3.103b)

{
Now the boundary conditions to be used are that ré(z,z‘,s), has to be
continuous at z=0 and z=-d. In addition, Green's function must satisfy the

ﬂ:% Jump condition at the source.

The boundary condition at z=0 gives us

A © =0, i=1,2 (3.104)
1

R I
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and

-+
B, (0) =B, , i=1,2 (3.105)

i i

The boundary condition at z=-d, z=~d gives us

- — -1 ! - 1(K‘-‘)d
b, (D = g TY) 4y e 11,2 (3.106)
k 3
i(K+K8)d

- - 1,4 -
B, (=d) = 55-[y Ty 1-A e 1=1,2 (3.107)
8y L N A ’

Equations (3.106) and (3.107) are the same as the ones we obtained in the mean

wave case. Proceeding in the same way

,A_si - g_iu_xsi(-d) 1=1,2 (3.108)
and
gsi(-d) = Li-g\,si(-d) i=1,2 (3.109)

Therefore following Appendix C, we ¢btain

i(n-xg)d
I =L, =I=Ie (3.110)
- =P = 2ikd
I =L=L=Ie (3.111)

where 28 and are given in eqs. (3.86) and (3.89) respectively .

I
-'81
Integrating eq. (3.10la) from z“-c to z°+c and letting e*0 yields the
{
Jump condition across the delta function. It io:

A4 ) A= pu

Gs(z ) -G (2z°)= I¢ (3.112)
From eq. (3.112) we have

AV Z)-A" Z) =4 i=1,2 (3.113)

=s, =5, -A1 ? '
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and
5
i
vhere
J
-Al
J -
-Bl
21p =
+ ~ 58
és (z)-e n.
i
2mp

where -f"- I( _i_.g , l0+) .

We assume 1_&01 and l_so are known, then the rest of the terms will be ex~

pressed in terms of é-i and 1_3‘6'1. After that, using jump condition ‘351 and 1_331
will be determined. We have:
. .o T
1_&5 (z)=e ' "20 » Es (z)=e 'Zé‘i‘o , 1=1,2 (3.118)
i i i
‘2‘& .é Y é = - .g ' 1.1,2 (3-119)
g =i 0y 0y Ay :
and
+ "1220 [ -
B, =e *J, +T <A y 1=1,2 (3.120)
()i Bi s Oi
Where ‘-IA ’ in and 31 are defined by eqs. (3.115), (3.116) and (3.110),
i i
respectively.
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(z) - B, (z°) = 3, 1=1,2 (3.114)
1
-1 ; =0 (3.115)
= gAz
-0 ; 3, =1 (3.116)
2

1210 T 7
+ K + .
i By (z)=e “B, , 1=1,2  z"<z<0
1 1
(3.117)
L ERTT
3 By (2)=e ‘B, y 1=1,2  ~d<z<z”
1 1
o

ki o
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We also obtain for Za the following expression

1t 1¢™d
I,=e I e ., el,2 (3.121)

where 51 and 28 are given by eqs. (3.92) and (3.89).
Substituting A's and B's into the eqs. (3.103) and using eq. (3.100c)
we can write the Green's functions in three media, It will only be

needed in the region 0>z>z~,

Gy e r2,27) = 3(2)GE,27)y " (27) (3.122)

where the slowly varying term G is given by-

r 0 0 7]
At — (3.123)
G (z,z2")= - B e e
s iZZp:fE z, 12"p_f+z
e *B e K *B
+ +
and B, and B, are defined by eq. (3.120)
'01 '02
Substituting y(z), ¥ (z°) an f}s into eq. (3.123), we obtain
. fn S12
G'(kt,z,z') - i i (3.124)
21 £22
where i
. wHy 1§+(z-z") in_<+z ik z* (3.125)
911 2 e te Is e
4+ ..
ko | 1" (z-2") L0+ K" 2 -2
‘:"12 "2%x)e e (LxI') te "Ly e (i _xl1 )§ (3.126)
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+ + -
k ik (z~2”) ic 2 e z°
~ 0 - 0 - [
601" 7 t(_g* AL e Hipde " oL }

1K+(z-z’) 0 + 1x+a 1 g 0

MEO

e L SR AL e

* ’ 0>z>z“>-d
with
. ik, (x -x”)
Gg(x,x") = IG.(_lsc.z.z’)e Tt oTe T dk,

ORIGINAL PRSI
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(3.128)
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CHAPTER IV

ELECTROMAGNETIC BACKSCATTERING COEFFICIENTS FROM

) A LAYER OF VEGETATION

In this chapter we will illustrate the application of the methods
developed in the previous chapters by calculating the backscattering co-
efficients from a vegetated slab of scatterers that are comparable in size
to a wavelength. The physical configuration is shown in fig. 2.

First, we will evaluate the transverse Fourier transform of the

¢ scattered field. The knowledge of the transverse mean fileld due to an in-
cident plane wave and the transverse Green's function in the equivalent
- medium, will be used in conjunction with the spuitzal density to obtain the :
general form of backscattering coefficients.

Then we will obtain explicit expressious of the electromagnetic back-
scattering coefficients in terms of the bistatic scattering cross section of
an individual scatterer. After determining the backscattering cross sections,
their behavior will be studied by associating each term in the total back-~

scattering cross section with a physically understandable scattering process.

i
The Transverse Fourier Transform of the Scattered Field

In chapter II we found, by employing the distorted Born approximation,

that the correlation of the fluctuating component of the scattered field is:
- W OV X)> = |dsp ()Y, (x.8)¥ (%,8) (4.1)
£ = £33 w —p -s—- ae .’.‘.’-s— se E’g *
v

where V is the volume of the slab of vegetation and We (x,8) 1s the scattered
e
field at x in the effective medium, 419: is given by

_,
e
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¥ (x,8) = Idgc_’G(zg.zg’) I dx”“t(x"~8,x""-8)<¥(x")> (4.2)
e
From chapter II, we have
Er O
t(?_‘,”_‘_‘) - (4.3)
0 0
with t. = =1 (x,x7)
=11 iwuo =\t
and  gxx?) = —i Idk di” £k kel KX~ KTx) (4.4)
(2m)

We have written in chapter I[I1 for the mean wave

. ke 0
<Y(x"°)> = <w(1_<to.z"> e » ky "koeindox (4.5)
where
<F(k, 277)> = y(2")9,(z"") (4.6)

0

The Green's function used in eq. (4.2) can be written as

G(x,x") = G(x,~x{,2,2") (4.7)
The Green's function can be represented by its transverse Fourier transform:

- ik - (x _-x7)
I@gt G(Et,z,z Je (4.:8)

G’(ﬁt-ﬁéiz y27) = (2.“)2

in order to obtain the transverse Fourier transform of eq. (4.2}, wve

substitute eqs. (4.5) and (4.8) into eq. (4.2), and also use

L - ko)

t(&‘,_’_‘”) = 1 2 Idkédl—cg.'%(k‘-é’zo;kga’zaa)e (4.9)

(2m) .~

In eq. (4.9) E(k;,z';hé‘,z") 1s different from £(k”,k"”). We have used the

same symbol for convenience of notation.

.

e
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e

Novt we have

e 3 1%

o 2 PPy P - Py Yy P
‘Pse(zt.z.g) = (2n) sz dz” G(k,»2,z")t (K, ,2 --;Ltto.z -8)<¥(k, ,2°°)>
'“-!‘t"!to) "L
- e (6-10)
~
From eq. (3.122), we have
~ » | 2 . -1 »
G(Etazsz ) = Y(B_t.Z)G(_&t,zpz )y (!'-t’z ) (4.11)
- 2
where we have explicitly shown the dependencs an Et iny, y 1 and G. We now
@L use eqs.(4.6) and (4.11) in eq.(4.10). The Greens function é(gt,ifi') and the
g — 3 — e —
mean field ¢ _(k, ,z”°”) are replaced by G(k_,z,s8) and ¢_(k, ,s). This is a good
8 --t:o —t 8 -—t:o -
approximation to first order in § due to the behavior of t about z° = 8 and ;
¥
z°” = g, The result is: %
a -i(k -k, )°s y
- - —t -t %
wse@t,z,g) - \l‘se(_lgt,z,s)e o (4.12a)
where g
2 2 2 — —_ ;
wse(l‘-t’z’s) = (2m) y(Et’z)G(B‘t’z’s)p(l"t"k-to's)¢8(ht0's) (4.12b)
with & = &8 and
4 o, -1 Ld - » g ll- , o a
p<5t*5to’s) - Idz dz*’y (kt,z )t(kt.z -s,gto,z s)y(gto,z ) (4.13) ;
[ !
(:} The Formulation of the General Form of the

Backscattering Coefficients

The backscattering coefficients are directly related to the transverse

Fourier transform of eq. (4.1) with respect to X,

and gt evaluated at the
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upper interface (z=0). We start by taking the transverse Fourier transform

with respect to X, and i: of eq. (4.1). We have

<?f(3t.z)?;(_ﬁ{.i)> - pfdg{‘ia (_lgc,z,_s_)i: (gc,é._-_); (4.14)
v e e

where p 1s the constant particle density.

Now, by putting eq. (4.12) into eq. (4.14) and by integrating over

8, and by setting z=£-0, we have
~ ~~t- -~ A
where 0
S(Et’qlw) - DJ ds‘;se(l‘-t’o’s)‘;:e(l‘-t’o's) (4.16)

Here S(Et,qlm) is the transverse spectral density of ‘i’f(zg) at the interface.
The symbol q represents the polarization of the incident wave and w the orien-
tation of a typical scatterer. The spectral density S is a 2x2 matrix of

dyadics. We write ;

§11 §12 ‘
S(k,»q|w) = (4.17) i
f1 22 5

where §11 and §22 are the dyadic spectral densities of electric and magnetic
fields respectively. In our development, we will concern ourselves only with §11.

It is shown by Lang [1981] that §11 (Lang has used S for §11) is directly

\
related to the backscattering coefficients ogq by

2 2
0 kocos 60 0 0 .
%q ", 3 BoEnksale . pge (v (4.18)

where 60 is the angle of incidence of the plane wave with respect to the slab
normal, and g_o.loe{_tlo,y_o} are unit vectors indicating the polarization of the
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To simplify the remaining couputation for §11, we note from eq. (4.18)
0
that s(gt.qhu) will only be required for k, = -y_to = ~k,8in6,x", The trans-

verse transition operator t in eq. (4.13) can ba expressed

... :, | ~ - ik’ (z-8)=ik"*(z""-8)
“'Etoaz -s’-&to’z -8) 2 I“‘Etoﬂc "'k't

E( ’Kll)e dK‘dK“

0

(4.19)
Using eq. (4.19), y-l and y from chapter III, we compute eq, (4.13);

then we substitute this value of p, y, ¥y, G and ¢8 from chapter III in

eq. (4.16). We find that the spectral density 1s:

4 4
- - £27) *
§11( .l.‘.to,ﬂl“’.) 70 (Hi) (Hj )ds (4.20)
K
-d 4,j=1
where _
- - + +
-ik,.8 ~-ik 8 ik s ik s
=0~ 0 - () =0 0 ;
Hyme oL o9 My milge v Ene ¢ Ll
(4.21)
- - +
ik 8 -1k 8 -1k 8 ik s
-7 =0 0 -e 0 . 0 =
g3 ee o fII‘Ie o« 9_ 34 e » gﬁe . gsog_
0
with
£I = £(-l—(-'t ’Kdl"-t ’-Ko) £II S("l_(t :-‘B;l_(t )Ko) (4.22)
0 0 0 0
'
fr11 " £(-ltto-’-'5=l<to»-'<o> fiv ™ 5“-‘&0"6;%0"‘0’ (4.23)

In obtaining e¢s.(4.20) through (4.23), we have used the relationsihp between

£ and t given in eq.(2.26). 1In addition, 53 and I are 51 (as given in eq.
8

(3.92)) and I' (as given in eq.(3.91)) respectively gith k, replaced by k. _ .
. 8 :I.gad .  1kHd - 0 ? 0 0 )
Finally g.o(kt o)-z.o(.lg_t o)-e . zs.c and “I;‘-I"h hh +T gvi-Ys-

AR A
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Substituting eq. (4.20) into (4.18) we have the general form of back-

scattering cross section as

o .
4
0o _ ., 0 »{ 0
%pq lmo[g_-{ 1,§-1(Ei) (Ej )}-g_ ds (4.24)

Now substituting eq. (4.21) into eq. (4.24), we see that there will
be sixteen exponential integral terms to evaluate. We examine these terms
and find that phase cancellation gives 6(0) order terms and phase accumula-

ticn gives 6(1)

order terms.
Pzg
Omitting the 6(1) order terms, which are much smaller than 6(0), eq.

(4.24) can be written as
o _..0 + 0 0

i ) + .
¢ °pq " %pad T %par T padr (4.25)
where
0 - ~%
ik s -ik s ik s ik, s
0 . 0 =0 * “20 ° 0
apqd 4ﬂp{f[g:(e . gie ¢’ g )p e =0, £fe . g_)]ds} (4.26)
-d
0 + + +% %
- ik 8 ik _s8 . -1k, 8 -ik 8
o . 0, . e =0 0 0y 0  fx 0 Tk T Tk 0
opqr 41!9”[}3 (Iso e -gﬁe . lI;.g_) g_.(lSO e ° f']‘:le H L%l )lds
-d
4.27)
t
and .
0 + -k +
-1Kk.8 ik.8 iks 8 -ik. &
. 0. =0 =0°, 0,0 . 0 0
Opqdr 4"9{[{[2 (e . fIv e o 2'9,.)2.:“ . fIv e © .I:B'Q..)]

in+s ic s 1K+* ix-*s
iy =0 - 0 - -.08*
+ [B(-)°(£so' e Vg Capo-Clhe T fhe e g

R e
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55
- . +% -
-ik. 8 ic s * ~ix. 8 o ic. s 0
1l gy Lt 2 F e Mg e T
0 (1}
s - i ) +R
- ik .8 -ik_ 8 i, 8 -ik,. 8
0,7 S0°. . S0% 0, 0 S0 % % %s 0
+ [_g_-( 280. e o SIIf . ﬂ.).?..‘(e slv'e * _%g_)]}ds}
A (4.28)
P »,9q e{h Vv }
4 0 -
Here opq a’ Opqr and °pq dr represent the direct, reflected, and direct

reflected backscattering contributions as shown in figs. (41), (4b) and (4c-

4d), respectively.

The Calculation of Backscattering Cocefficients

In this section, we simplify the expressions for the backscattering
coefficients by assuming the scatterers have no average depolarization at the

level of the mean, i.e.,

f = f = 0 (4.29)

It was shown by Lang, 1981 that dipole discs having a uniform distribution in
the ¢ coordinate (azimuth symmetry) obzy ed. (4.29). It is conjectured that
eq. (4.29) holds for all scatterers having azimuthal symmetry. It should.be

noted the eq. (4.29) also implies that the average or bulk medium is uniaxial.

Using eq. (4.29), the scattering amplitude can be written as

Tt e Y 00 4+ ¥ 00
£° = f,bh +£ vy, (4.30)

where
* 0 0.0 0 a1

P
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Next a simplified expression for a_:; can be obtained by employing eq. (4.30) in
eq. (3.92). It is

t _£.00 + 00

%o Ky hh +x v v, (4.32)
wvhere Cor Oy

x 2mp =t Y v Py

Kp Ko + *o fpp . Ko kolineo (4.33)

Since 53 has no off diagonal terms, the exponential terms appearing in eqs.

(6,26)~(4.28) can be written as

+ + +
ik.z ik, 2z ix™z
e.o - e h hoho+e v !0130: (4.34)
A. Calculation of like polarization cross sections:
From eq. (4.24) we have
9 4
*
o = 4mp ﬁzo. 7owowte%s|, poeth v (4.35)
PP - 1,3=1 i J -
-d ’
where
0 1] 0 0
= + + .
%pp = %ppd * “ppr T “ppdr (4.36)

We proceed by dotting both sides of eqs. (4.26), (4.27) and (4.28)
with g?, using eq. (4.34) and taking the average over all particle orienta-

tions gives

——e -loImx;d
cgpd - 4"p|?,g£.22|2 1 =< - ’ P e{h’v.} 440.37)
41Imk
P
0 4Imx+d
0 0,2 e -1 4
o} - lmplp_'_ &P l — II' | (4.38)
PPIX +=]1~+ I;Imn; sp

0
The °pp dr has three components:
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0 0 0 0
- + + 4.39
“ppdr ~ ppdr, * “ppdr,  ppdr, (4.39)
where
ZIm(KP-K;)d
0 0,2 e -1 2
r 4.40
°ppdr lmplg sfri:8 PRI | .pl (4.40)
PP
21m(!<+-0<;)d
0 0.2 e -1 2
" o - lmplp-f P, | - (4.41)
"P"'z V= 21m(n<+-o< ) Irspl
ppl -
‘? P and
zIm(x,*-x‘)d
) o . = &mwhRe {(p-_mp ) (e215E) L LI
, PPer4 2Im(k -k ) P
p P
with
i(K; + K;)d
I‘sp = ng e , p e(h,v} (4.43)

We note that 1if K: = K; then eq.(4.40)~(4.42) changes as follows:

| 2Im(x’ - k7)d
of e P p - 1 -+ d ‘(‘; 44)
; + - .
; 21 -
m(ncp xp)

The Fresnel reflection coefficients appearing in eq.(4.43) are given by

t; Ko =K €.Kg =K ( )
gh Ko -Hcs ’ gv egKO +|<8
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(4.46)

k. = k_cosb

and

kg = Ko (e, s1a%0)) /2 (4.47)

8 0

0
Th
€ Oppd

fig. (4a). The incoming wave propagates into the vegetation and is scattered

represents the direct backscattering contribution as shown in

directly back to the observer. When summed over all scatterers, eq. (4.37)
results, The backscaktering coefficient ogpr given by eq. (4.38) represents
the sum of all waves which are first reflected from the ground, then scatter-
ed, and finally reflected again by the ground towards the observer as shown in
fig. (4b). The reflection coefficient |P8p|4 appears in the equation since
the wave in this case has been reflected by the ground twice.

The third term ogpdr as given by eq. (4.39), results from two differ-
ent but similar mechanisms as shown in fig. (4c) and fig. (4d). In one case,
the wave 1s scattered and then reflected toward the observer; whereas in the
second case, the wave is first reflected from ground interface and then
scattered toward the observer. The third term, eq. (4.42), occurs due to a
combination of both cases. These terms interfere coherently. The
12 factor represents single reflection from the ground.

The coefficients Igf.gigglz

[T
8p

§
and |E(.);—£I’IE3.|2 represent the backscatter-

, n
ing cross sections in p~ and_gi directions, respectively. The coefficients

ijl £ 2_ |2 and IBP 'f 22]2 represent the bistatic cross sections in
different directions. Note that the bar over the expression represents the

average over angular veriables.
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B. Calculation of cross polarization cross sections:

In this case the incoming and reflected waves have different polari~-
zations. Thus the equation for ngdr cannot be reduced to a simple term as
in the previous two cases. But othervise, following a similar procedure, we

obtain
0. 0 0 0 0
- + + o
%p = %q " qpd ¥ %qpr * gpar * P % (4.48)
where
-ZIm(x;+x;)d
0 0,2 -
o = 7o 07 L= (49
-..
m(xq xp)
0 2Im(K;4K:)d
- Q o012 e -1 2 2
oqpr = 4™ IBiErmd, Im(c ) ITaq!"I7gpl (4.30)
q P
The co has three compo tss
pqdr ponents
o _ 0 0 0
%gpdr ~ %gpdr, * %gqpar, * qpar (4.51)
1 2 3
where
; ~2Im(x - :)d
0 0,2 1-~-e 2
o = 4mp |pef.eq | Ir | (4.52)
qpdr, <+=I1I- 21m(x’-x+) 8p
q P i
0 —_— 2Im(x+-x;)d
0 02 e -1 2
o = 4mp |pifra. | ITgql
d Z—m - ‘ (4.53)
qpdr, IV 21m(xz-xp) 8q
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and
0 0., 0, 0% 0
“qpar 81 Re { (R3f1119-) (P2£173,)
- Kk
1(k -k 4k -
[r"‘r 1me R D (4. 54)
sqep L - F_FRF .54,
. ( kqtkpKq *Kp )
b »

Note that if K: =k or K; - K: + K; - K; =0 then one obtains the correct

form of eqs. (4.52)-(4.54) by taking the limit as those equalities are
approached.

It is interesting to note that only the imaginary part of the effective
pernittivity enters the expression for agq. This 1s a result of the fact that
cgq represents an incoherent sum of the scattered power from individual par-

ticles embedded in the effective medium.

If the particles' sizes are small in comparison to the wavelength,

. these results reduce to the results obtained by Lang and Sidhu [1983].
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CHAPTER V

NUMERICAL RESULTS AND DISCUSSION

-~

Our main interest in this chapter is to obtain the numerical results
for the theory we have developed in the previous chapters. For this purpose,
we use our method to model a forest canopy by a collection of lossy dielectric
discs, which are assumed to have radfus a, thickness T and relative dielectric
constant Cpe Our formulation 1s applicable for arbitrarily shaped scatterers
in the Rayleigh, resonant and geometric optics regimes; however, because of
the availability of Rayleigh and geometric optic scattering amplitude algorithms
we will limit our calculation to those regimes.

Using the parameters encountered in active remote sensing of vegetation
layers, we will present the numerical results for the skin depth and for the
backscattering cross sections in the Rayleigh and geometric optics regimes.
Before proceeding with this calculation, we will discuss the relative dielectric

constant of the leaves and the scattering albedo of scatterers.

The Relative Dielectric Constant of the Leaf

Our calculation of the relative dielectric constant follows the model of
de Loor [1968], and Fung and Ulaby [1978]. We conclude on the basis of mea-
surements conducted by Broadhurst [1970] that this model is not suitable (for

Eoanm onon s dom tmdmee 1 G}{»

- 3o o Bien Lol D can,
ALTYUTHLLCD VCAUW 4. o UutT LY ALDd L

@LiuUTE LU acoount
losses within the leaves; however, we will use this model below 1 GHz in order

to recover results obtained by Lang and Sidhu [1983]. The dielectric formula is
given for the real and the imaginary parts of the relative dielectric permittivity

below,

em-s.s
€7 = 5,5 4 — ot - (5.1)
r 1+(£1)2
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Fig. 5. Real and Imaginary part of dielectric constant vs frequency

e2” = (e = 5.5) -—‘3——2- (5.2)
m 1+(£1)

with € = e; + is;'. The letter T 1s the relaxation time of water which de-
pends on the temperature and f is the frequency. At 20°C, fT is approx}mately
equal to 1.85/)\, where A 1s the free space wavelength in centimeters. fhe €0
appearing in eqs. (5.1) and (5.2) is the relative macroscopic static permittiv-
ity of a leaf and given by

€, = 5 + 51.56 Vm (5.3)
where Vm 1s the volume filling factor which lies between 0.1 and 0.6. For

illustrative purposes, we plot a real and imaginary part of €, a8 a function
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of the frequency as shown in fig. 5 with Vm = 0,3.
We observe that €”” has a maximum around 15 GHz and €” is constant un-
til 1 GHz, then it decreases monotonically. We also have observed that chang-

ing parameters did not effect the overall shape of the curves.

‘'The Albedo of a Single Leaf

In this secticn we will calculate the albedo of a single dielectric
disc. This is necessary due to the fact that our theory is limited to low
albedo particles where absorptive 1loss 1s then the dominant mechanism. First,
the dyadic scattering amplitude for a lossy dlelectric scatterer is required.
In the Rayleigh regime, [see Lang 1981], the dyadic scattering amplitude f is

related to the polarizability, a, by
t 3

0.,..0 ké)
foq =2 Ea '(7;7 g »  P»qe{h,v} (5.4)
Ishimaru [1978] then gives expressions for the polarizability of a lossy
dielectric disc.

The dyadic scattering amplitude for a lossy dielectric disc in the
geometric optics regimes has been calculated by LeVine, et al, [1982]. An
approximate expression for the dyadic scattering amplitude is obtained by
considering a plane wave incident on an infinite dielectric slab. The intezy-
nal fields in the slab are calculated ex~ctly. Then the equivalent sources
generated by these fields in the region of the slab corresponding to the disc
are used to calculate the scattered field. The approximation requires that
the leaf be many wavelengthsin diameter and have a thickness, T, small com~
pared to the diameter.

From LeVine, et al.,we have the following expression for the dyadic

scattering amplitude in the geometric optics regime:
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where A-er-l.. and the Fourier transform of the cross sectional shape of

the disc is given by

- iv -Et
S(y,) = IS(_:_EE)e T ax” (5.6a)
- R

with 1 x; € disk face

S(x7) = {

where the prime quantities are coordinates in the face of disk and v, =

o , 5; ¢ disk face

ko[itfgt]. Rere 1 and Qt'are the projections of 1 and 0 of fig. 6 onto the
face of the disk. In eq. (5.5), F is related to an integral of the induced
charge in the infinite dielectric slab., It is given by ELeVine, et al, [1982].

For a circular disk of radius a eq. (5.6a) becomes

\Y
t

where Jl(c) is the Bessel function of first order and V"

§(vt) = 3, (v, (5.6b)
[v, |-

From Ishimaru [1978], we have the following expressions for total,

scattering, and absorption cross sections.

ol - (%E)Im[g(io,f;q)-go] » qefh v} (5.7)
Oéq) = J lg(gp,io;q)lzdﬂ ‘(5.8)
4m
and
ol® 4 Ikoe;‘(g) lEx") | 2av” (5.9)
i

where 5199,10

,q) 1s the vector scattering amplitude due to an incident plane
wave with polarization q. These vector scattering amplitudes are related to

the dyadic scattering amplitude by

e e
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0

= £(0 ’1°;h)h° + _f_(go._i_o;V)f (5.10)

In addition,in eqs. (5.7)-(5.9), dQ is the differential solid angle, dV is the
differential volume element, and E(x”) is the electric field inside the par-
ticle. Using the total scattering cross section, a£Q) and the scattering

cross section, cgq)‘we can define the scattering albedo wgq’ by

)

@) . 8 _
Wo 0(q) (5.11)
N

The total cross section qu) represents the total power loss from the
incident wave due to the scattering and absorption of the wave by the scatter.

One can show that [Born and Wolf, 1964],

Fig. 6. The geometric configurati ;o =i & leaf
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o'(:q) - oé‘” + ogq) qe{h,v} (5.12)

The geometric configuration of a leaf for an albedo calculation is shown in
fig. 6.
We evaluate eqs. (5.8) and (5.9 ) for the horizontal and vertical

polarization cases,_ The results =t low frequency (Rayleigh regime) are:

(h) _ ne
Oy koer v (5.13)
2
/ sin“o
), oo 2 0
0, = kyel V(cos 8, + 2) (5.14)
le..|
X
4.2
kv
() _ o 2
o o (4] (5.15)
and 2
wy  Kev? [a]? L2, M0 .
cs = ——_6-1?-— 0 IE '2 ( . )
Tr
where
V= —g— naT (5.17)

In fig. 7 we plot eqs. (5.13)-(5.16) as a function of the frequency
at zero incident angle with g=7 cm, T=0.3 mm and Vm-O.l. Typical dimensions
of a leaf having radii of one to several centimeters and thicknesses of

tentlis ¢f a millimeter have been used. J

At zero inclident angle, using the above eqs. we conclude that o(h)=0(v)so
S 8 8

\Z
and og])wg )an as seen in fig. 7. The curves show that absorption and scattering

cross sections increase with the frequency. For large values of frequency O
is greater than a,-
Following the LeVine, et al [1982] work, we evaluate oa and Oy for the

horizontal and vertical polarization cases at zero incident angle in the geomet-

tric optic regime.
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The absorption and scattering cross sections are given by

cﬁq) - koc;’§o g(l:;lz + Ie: 2 :‘jf;':-.ﬁ
4+ 2R [e;e:*(ﬂoe _-_.10: P un::"n] } (5.19)
and )
osq) - l(tz?oscezo W(q)(er’¢r) * w(q)(et"’t)] (5.20)
where
WDe,0) = |stneeHels), + stac(eTreral |2 (5.21)
with §, = §(0)=7a®, ¢ = |£421]? and i
6% = [x k)0, "]1/2 ,0; =00 . 0° (5.22)

Quantities not explicitly defined in eqs. (5.19)-(5.22) are defined
in the LeVine, et al, reference. We note that the ei are forward and back-
ward going wave amplitudes in the dielectric slab for polarization q. The
propagation constant in the z direction inzide the slab is k = Kp + ixi.

Using the same parameters we used for the Rayleigh regime, i.e. a=7 cm,
T= 0.3 mm, and Vm- 0.1, we plot 9, and Oy as a function of the frequency‘at

zero incident angle (fig. 8). As we see from this figure, at a low fre-

quency of around 1 GHz both of the curves are linear; however as the frequency
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optics regime
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increases the g, curve becomes greater than the 0, curve.

Now, substituting 08 and Ot into the eq. (5.11) a low albedo check is
made for both regimes. We plot the albedo as a function of the frequency in
the Rayleigh regime and geometric optic regime, as shown in figs. (9) and
(10) with the same parameters (a=7 cm, T=0.3 mm, VméO.l and 60-0°). In
these figures it was observed that albedo increases almost linearly in the
Rayleigh regime and monotonically in the geometric optic regime. The ex-
pression for the geometric-optic albedo obtained by using eqs. (5.19) and
(5.20) in eq. (5.11) can be substantially simplified when the phase variation
of the internal field across the slab thickness is small (k T<<1). The

simplified expression for the albedo is

wo *1+0 /o (5.23)
a'"s
where
o Ze”’cosb
2=t 9 (5.24)

2
s k,T|4]

From eq. (5.24), we conclude that the albedo is independent of the
leaf radius, but very sensitive to the thickness, incident angle, and water

content of the leaf.

The Skin Depth

A knowledge of the skin depth gives a better understanding of the

mean wave's behavior inside the vegetation layer. The skin depth is defined

by the depth of penetration at which the wave's amplitude decreases to e-l
of its initial value, we write
Skin Depth = -1 ,  pelh,v } (5.25)

Im K
p
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vhere from eq. (4,33), we have
- b 2mp 7 0,0
np LocOleo + koc°'°o fpp(g 1) pe{h,v} (5.26)

We have used the fact the ?;h;?h =0 and x+-n'~x « These results can be obtained
v |

from (Lang, 1981) for Rayleigh discs and from ‘ppendix D for geometric-optic discs.
We can see from eq. (5.25) that if the vegetation depth is large com-
pared to the skin depth, then the effect of the ground reflections are neg-
1igible, whereas, when the skin depth is large compared to layer thickness,
the characteristics of the ground become important in interpreting radar
backscatter infowmation.
An examination of eq. (5.26) shows that the skin depth for both h
and v polarizations contains a factor of coseo in the numerator. This
forces the skin depth to zero as the angle of incidence approaches grazing.
Due to the increasing angle of incidence, the effective depth of the propa-

gation keeps decreasing monotonically as seen in the following figures. 1In

_ fig. (11) and (12), the skin depth is plotted as a function of the incidence

angle for both polarizations in Rayleigh and geometric optic regimes, re-
spectively. In figs. (13) and (14) the skin depth is plotted as a function
of the frequency for two different regimes.

Now, let us examine figs. (11) and (12) in more detail. In the case
of horizontal polarization, the electric field is approximately parallel to
the leaves at all angles of Incidence and thus the skin depth has only‘c;seo
dependence. The same thing 1s true for vertical polarization, but only when
the angles of incidence are small. Thus, both have the same skin depth at
small angles. As 60 bacomes larger, the electric field tends to become per-

pendicular to the leaves and each leaf absorbs less energy. This explains 5

the increasing skin depth as a function of the incidence angle for vertical ?
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polarization. Eventually, the skin depth decreases due to the cosa0 in
the numerator in the vertical case.

The curves of Rayleigh and geometric optics regimes have identical
shape as seen from figs. (11), (12), (13) and (14). The only real differences
are that the curves for Rayleigh regime decrease more rapidly with increasing
frequency and the skin depth is much higher than values obtained for the geo-
metrical optic regime. These results were expected due to the fact that the
physical size of the scatterers become an Important factor in the high fre-
quency regime.

Both figs. (11) and (12) have tlie same parameter: e=7 cm, T=.5 mm and
p-SOO/m3. In figs.(13) and (14), we have chooser a=7 cm. A value of T=.5 mm was
picked for fig. 13 to recover Lang and Sidhu's result, but in fig. 14 we have
used T=,1 mm in order to obtain a low albedo. The Rayleigh results have used

scatterers with polar angle 6 distributed uniformly between 0 and A6;=30° (see

Lang, 1981) and the geometric uptic results have used scatterers with a fixed

" gm30°,

The Curves of the Backscattering Coefficients

We developed a computer program that provides numerical solutions for
the backscattering cross sections which we have obtained in chapter IV. 1In
the Rayleigh region the results are identical to those obtained by Lang and
Sidhu{1983). For purposés of completeness, we present some of their results in
through figs. (15), (16), (17) and (18). These figures have common paéa-
meters: a=7.5cm, T=0.5mm, p=500/m”, £=400Miz, £,=30.8+10.62 and € =12+3.

In fig. (15), 00 0

hhd® “hhdr’
this case, the term oghdr is greater than oghd for all angles of incidence.

and qghr are shown as a function of 60. In

This means that the energy backscattered from the ground is a significant

part of the total Lackscattered energy. Since the skin depth is large
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compared to the layer thickness for all angles of incidence, we are re-
celving scattering back from the same number of scatterers for each angle of
incidence, resulting in a flat behavior for aghd‘ The reflected terms oghdr
and Oghr slopes up with an increasing angle of incidence with the increasing
reflection constant.

Figure (16) shows the total backscattering coefficients plotted for
a perpendicular distribution of leaves. At small angles of incidence éiv
and ogh are equal, and as the angle of incidence increases, ogv decreases
because the vertically polarized wave becomes parallel to the leaves and thus
gets absorbed. On the other hand, Ugh has u flat response because the chang-
ing angle of incidence does not affect the polarization orientation with
respect to the leaves.

Figure (17) shows the total backscattering coefficients plotted for
a parallel distribution of leaves. In this case as the angle of incidence
is increasing, the horizontal polarization iz not affected since the leaves
are parallel to the polarization at all angles. The backscattering cross
section is higher as compared to the perpendicular distribution at small
angles of incidence. Comparing Cgh in figs. (17) and (16), we see that the
vertically inclined leaves give rise to more depolarization as compared to
the horizontally inclined leaves.

To see the effect of moisture in the underlying ground, we have !
selected two different dielectric constants. For dry ground, we have used
es- 12+13 , while for very wet ground we have used the dielectric constant

of water obtained from Debye's formulation [1929], i.e.,

e =g’ 4 4e””
g g g
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with
. on(kE)
€ B — 1.85 ) (5-27)
e (142)
and
cms g 2
88 Eg 1.85 (5.28)

where A 1s the wavelength in centimeters. From eqs. (5.27) and (5.28) we
have 53-80+11.5 at £=400 MHz. Figure 18 shows ogh plotted for these two
different ground conditions. From this figure we see that there is a large
difference in the backscattering coeffictents for different ground moistures
because the ground reflected terms are dominant. When the layer thickness

i8 increased, the ground reflected terms become small. Hence their effect

is masked and only the direct component, dgpd, pe{h,v} is important.

Next, we present the backscattering curves for the geometric optics
regime. All of them have the same parameters: £=5 GHz, a=7 cm, T=0.1 mm,
and er=9.75+il.31. An example of the results is shown in fig. (19) for h
polarization. In this computation the discs all have an inclination angle
of 30° with respect to the slab normal (6=30°), however they are uniformily
distributed in the azimuth coordinate. To aid in the interpretation of the
results, the direct, reflected, and direct-reflected components have alﬁo
been plotted. An examination of fig. (19) shows that Ggh has two majdr
peaks: one at an incidence angle of 0° and the other at 30°. The peak
at 30° comes from the direct and reflected components and is due to specular
reflection from the front and back faces of correctly oriented leaves. The

larger term at 0° is caused by the direct-reflected components of the

backscattering coefficient and is caused by the transmitted energy through
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the leaves that are reflected from the ground. The width of each peak is
related to the radiation pattern or the beam-width of an individual leaf.
The leaves considered have been chosen to be thin. This was necessary to
keep their albedo small so that the distorted Born results could be applied.
It is anticipated Ehat by introducing a distribution of leaves, which have
an inclination angles that depart somewhat from 30°, a considerable smoothing
of the curve will occur. The parameters which we used in fig. (19) are
p=500/m3, d=1 m, 6=30°, and € ~73.5H21.1.

We again obtain eg from Debye's formula to see the effect of moisture
in the underlying ground. We use the parameters of fig. {19) in order to
plot fig. (20) with a new ground dielectric constant 58-13+12. This value
corresponds to volumetric water content (cm3/cm3) of 0.3, which is relatively
dry ground, Wang and Schmugge [1980].

From figs. (19) and (20), we can see that, except for small incident §
angles, there is almost no difference in the backscattering coefficients for ’
different ground moistures. This result differs from the result obtain in
the Rayleigh regime as is shown in fig. (18). The difference is due to the ;
physical optic scatterers which we are employing. They have a gain in the §

direction of the incident wave. It is this gain that was essentially com-

e e £ o e

pensating for the reflection loss at the interface. In fig. (20) we also
0 0
plot Oy and Ouh for illustrative purposes. o
In fig. (21) we use the same parameters as in fig. (20) except P and
d are increasing to values of p-2000/m3 and d=10 m. We plot ogh, o%v and

00 in this figure. A comparison of the two figures shows that they are the

v
same except that £ig. (21) no longer has the peak at 6= 0°. This is because
increasing p and d made the skin depth substantially smaller. Thus the in-

cident mean wave never reached the ground and there was no dr component in
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the backscatter., The layer essentially looks like a half space.
In fig. (22), we 1llustrate the effect of 6 on the backscattering

cross section in the geometric optics case. Since 6=90°, this figure

corresponds to the leaves perpendicular to the ground. We also plot ogv

0 ,
t f L ] -
Oupn o0 he same igure In this case, we have of dfogpr 0 and O%P-appdr

We see that cgp has flat response due to the fac: that the leaves act like

a corner reflector.

and

At zero angle of incidence the wvalue of ogv and ogh are equal, but as

the angle of incidence increases, go decreases because the vertically po-

R
larized wave gets abscrbed. I% waa observed that figs. (16) and (22) follow
almost the same trend, except thé depolurization is smaller in the geometric
optics case.

So far, we have shown some backscattering coefficient curves. These

curves are not smooth as obtained in the Rayleigh regime. This is due to

the radiation pattern of the scatterers. In the Rayleigh regime, the dipole

radiation pattern has a large beamwidth which in turn gives a smooth response.

But in the high frequency domain, the radiation pattern has a smaller beam-
width compared to the Rayleigh regime, and the scatterers behave as a strong
radiator. This in turn gives us the backscattering coefficients as we have
shown throughout figs. (19)-(22). This is the reason why we observe a peak
at 30° in the geometric optic regime. |
We have analyzed numerically discrete scaitering model for vegétation.
We have calculated the skin depth and backscattering coefficients explicitly
in terms of the scattering amplitude. The scattering albedo was calculated

to make sure that it is small. It was found that the leaves had a much

Ligher albedo than was previously anticipated at microwave frequency above

5 GHz.
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It was found that for vegetation layers less than one skin depth
thick and for moist ground that o:qdr was the dominant term. It was also
observed that thin layers had backscattering coefficlents that were almost

flat functions of angle of incidzence in the Rayieigh regime. In the
geometric optics rezime thls was not the case because the scatterers which
we vere employing had gain in the direction of the incident wave. It was

thils gain that was essentlally compensating for the veflection less at the

interface.

GRS
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APPENDIX A

RELATIONSHIP BETWEEN THE TRANSITION OPERATOR

B AND THE SCATPERING AMPLITUDE

In this Appendix we will find the relationship between £ and . We
start with equation (2,14). Usiag (2.15) and (2.16), we can write (2.14)
in terms of the transition operator and incident field for N particles

. - -1_.N
LY, =T¥y = ] LELVY, (A.1)
N=1
From (A.1) we can write
T -1 .N
T= ) L(LY) (A.2)
N=1
.From eq. (A.2), we have
¥ = vy + i lyy 4 vo v ey 4 L (A.3)

Substituting eq. (2.8) for ¥, (2.12¢) for V and (2.19) for T in eq. (A.3)

along with the free space dyadic Green's function for L-l, we obtain

Li ][] [r@ oJ[E] k@ offfen S ]fw oo
TY = = + dx’
In Dof|B] 1O O] 1O ojf [S2 S2ff 0 ofjr:)
L@ oG, &, L) o an Gra L& O|E
+ dx“dx”” +oo. (ALG)
O €2 S2)| © Oj€a | 0 O]
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where Y(x) -iweoAU (x)1

Using eq. (2.18), (A.4) can be expressed as

511(3‘-’3‘_‘) 512(?_‘.’2‘.") E(x") I(}S_‘) 0 _
dx” = § dx” 8(x-x") +
th1 (%oX7)  E,, CexT) |1 H(x") L 6 o0
1028y (=) 0\ X(X) 8y, x(x7) Gy gy (x™)
-+ + d}_"
0 0 0
E(x")
+ ...
H(x")

(A.5)

Now, we can conclude by comparing both sides of eq. (A.5) that for dielectric

scatterer

E190 " Loy =Ly =0
and

£11xx") #0
with

£12 T i(;ulo £(x,x7)

To find the relationship between the transition operator and the

scattering amplitude, we write out eq. (2.;:7) explicitly:

¥ (x) = L_J'T‘i’o = j dﬁ’G(}i’l{‘)jd_)_{_ﬂ‘t(i‘,_ﬁj”)‘yo(ﬁa’)
( } Here the free space dyadic Green's function G(x,x”) is obtained from
- Felsen and Marcuvitz, Chapter I, Sec. 1l.1,it is given by

(A.6)

(A.7)

(A.8)
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-1muo(‘1_+1%) Vxl ikolgt_-_:_c_’[
G(x,x") = ko e - (A.9)
~VxL -:I.meo(I + ) b l""'_!' l

0
To obtain Ws(g) in the radiation zone, the far field expression for
G(x,x ) will be required [Twersky, 1967]:
oo’ 1k |.¥.b
-1k, ox” ;0

G(x,x") v H e Ta | x|+ (A.10)
where _
H= | ' (A.11)
-1k09_x(p —iweo(z -09)
Substituting eqs. (A.10) and (A.11) in (A.8) and using for a incident
ikoi‘i"
wave ‘t‘o(g) = ‘1’0((")) e (A.12)
and
1 - » » iko(i.x 0 5 )
t(ko_, O~) - ———-———j- jdl dﬁ ’t(}_ ,E”) e (A.13)
(27)
we obtain
ikoizl
\l’ (x) = 21r H t(ko_, o_)‘l’ (0) (A.14)
where
e
=8 .
¥ = (A.15)
h
=g

Using egs. (A.15) and (A.7) and substituting H into the eq. (A.14), we obtain

for dyadic scattered wave

(A.16)

The definition of scattering amplitude given by [Ishimaru, 1978]
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ik . [x|
0 —
e, g 0,) & , x| e, geg® (A.17)

x|

—

Assuming dyadic incident wave, 21(0) = (I -11), finally we obtain the re-

quired result

£ (0,1) = 2151 - 0 01+ E(k 0,k 9T - £ 1) (A.18)

Equation {A.18) 1s the same as Lang [1981] obtained with different method.

From eq. (A.l4) we can also obtain
nll

b, (x) = 27 n[(OxI)'t(ko__,k 1ye, (0)] = | ]— (A.19)
X .

The definition of scattering amplitude for the H field given by
R’ |x]

v P E— x| v (.20)
X

For a dyadic incident wave g,(0) = (I - 1 1) we have

k €
n = EO - ,D‘Q (A.22)
a Vo

In order to obtain the relationship between two different scattering

£ @0 = 210 (@ 0k (T - L D (4.21)

where

amplitudes, we take the cross product of eq. (A.21) with respect to 0 direction

we find j

0 x f(u) ~2n n0 x (0xI)- t.'(,I_ i1) (A.23)
but
0x(0xI) = -(I-00) (A.24)

then eq. (A.23) becomes

0x £’ -0 0FE -1 (a.25)
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Using eq. (A.18) in eq. (A.25) we obtain the following relationship for

scattering amplitudes for E and H fields

=

0
o

£, - 0 x £ (0,1)

g e s gy - v G Rl e ' v ez

TAG

(A.26)

TR, R
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APPENDIX B

EVALUATION OF ZEROTH ORDER SOLUTION

OF SLOWLY VARYING COEFFICIENTS

In this section, we will evaluate eq. (3.59), which is given by

11111 ¢(1) (z, z) = 0

z-'°°z

where

zZ

- 07y -
PYC o QU hakel € N p(z)U Idsj 2"y U2y (2" )9 © )(z);rectd(z)

dz o

Performing eq.(B.1l), we obtain
;f—l: 6@ = 5@Mp© Zyresc 4@
z

where
VA [- -2 )

l ,p "
M= %33?] Idsjdz y (2" )X(kt »2°=8,2""=8)y(2"")

0 =% ~o
Now, using eq. (3.51) we ha"e
. o e
M - o lf dz” fdsdz“

2o 2 - !
F(+,-) "'"(+)+)
% %
where
i;a.ﬁ) (zﬂ’zoa’s) - _2(__5_)__ (k o,z -8 z” -3) I e-iK(az‘_Bz‘*)
Q)B E {+|-}
98

(B.1)

(B.2)

(B.3)

(B.4)

. (B.5)

(B.6)
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The integrals over ds and dz“” will now be evaluated. First define

E(G'B) - stdz”ii“’s) (z,z7%,8) (B.7)

By using eq. (B.6) in eq. (B.7), we obtain

g(aba) __2_%%% ;a » 9(“)8) . ;B (B.B)
where
(G’B)-Idsdz“; (k z.o_s z..;_s)e"iK(Gz’-BZ“) (B-g)
2 Bl

The quantity X., will be related to E We note that

=11 11°
% = e e
')'sll(!-to’z ~g,2"7-g) = Jdﬁtzll(zt’z -8,2""-8)e d-x_t (B.10)
and from eq. (3.86) we have
X5 (% o27-8,27"-5) = Jd?ig £11(-Br-%,~8,r2"-8, 27 =8) (B.11)

We also have from eq. (2.22)

-~ » P - 1 » ;:‘_ e ” -
Entespen) = b faacacoch o)
e:[_l:c_t°_}gt -k "X¢ + K2 = K Z ] (B.12)

By using eqs. (B.10), (8.11) and (B.12) in eq. (B.9), evaluating the resulting
integrals over d.’_‘.tn d_ét »ds:and &““, and ueing the resulting Dirac delta fundtions

to eliminate the remaining integrals, we obtain

g‘*® - (2ﬂ>}§151(.lsto’BKsEto,BK)ei”(B"““ (B.13)
Putting eq. (B.13) in eq, (B.8), we have
3 - -
(a,8) o L2)(2m) %t B_einc(B-u)z (8.14)

B ZNT = "ll(Eto'BK ;l's_to.BK) ';
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The final expression for M can now be obtained. We put eq, (B.1l4) into eq.
(B.5) and perform the integration over z” and also take the limit as z goes to

infinity. We obtain

m 0
M = (5.15)
0 §+
where
of - 82T > Bt (k. Bk, ,BK)IP (B.16)
= 2N, = SR PR FER .
8 - {+,-}

Now employing eqs. (2.20), (2.23), (3.27b) and (3.37a), we have

3 ~
B _pl4n® B, =, 0. 0 . B
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APPENDIX C
EVALUATION OF T AND T

To find an expression for I we use eq. (3.83) in eq. (3.81), We

find
_ T _1(k_~k)d
A(-d) = -'QFT"(Y Ty,) I-A(-d)e 8 (c.1)

where (y‘TI‘y;) is a dyadic and NT-'nK/kO. By taking the inverse of this
dyadic an expression for T can be obtained. It is:

T
= 2N (5 Ty rex
T g -

1(k-k_)d
g (c.2)

o0
L

n3

T T
where we have used the identities I *A = A and (y~ I‘y;) 1'(}"- I'y;) = ;;o The -

expression for ' can now be obtained by employing eq. (3.84) and eq. (C.2).
We have
T T
= =] = 2
L= - Iy rypThr B (c.3)

T T
The quantities y+ I‘y; and y_ I‘y; need to be evaluated. From eq. (3.31),

we write

0 + 0 l,‘0

y =¥, ¥, +Y¥ h and y ™ ‘i’+1 vt \P+2 h y 2z>=d
- C.4)
y =Y vo + ¥ ho > z<~d ' ¢

where \l/_ﬂ, \i’tz, \Plg and ‘*'28 are given by eq. (3.28). Using these expressions,

we find

4T - 00,.0,0,+.00 0,0 .

y Tyg =ev v +é& b +dhv +dhh (C.5a}
and

T

- 0 0, ~00 .00 00

- +avh + .
y I‘y8 av_v vh +bhv +bhh (C.5b)

S T
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where

8= (¥ oY)

b= (?wzarwzs)

cm= (\y‘"'l'r\yls)

-

dm= (w+2,rw23)

Substituting the expressions for wti’ ?ig’ i=1,2 in eqs. (C.6) we have

in

Now using

we have

d

Proceeding, we use the orthogonality results of eqs. (C.7) which yield

OilCh.L [AC2 1
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~N

aw= (v_psT¥p0)

o

= (Y0¥ )

0>

ng‘_'o. 20’ - nho's.oxxg a=0
»ngt_to-goxxg + e 20 t o
ngfl°_?x§9 - q_ngégzg c=0
~ng§9-gpxgg + nvi_-zoxho d=0

(C.6a)

(C.6b)

(C.6¢c)

(c.6d)

(C.7a)

(C.7b)

(C.7¢)

(C.7d)

eqs, (3.24) and (3.25) in the expressions for a-d in eqs. (C.7),

—n(egk + Kg)/kg
-n(k + Kg)/ko
n(egK - Kg)/kg

n(x - "g) /ko

- 0.0
Fyg C'JL4“!8 +
- 0.0
ly = +
Vg T ALY

0,0

(=N
=
=

3

0,0

o
=
=

(C.8a)

(C.8b)

(C.8¢c)

" (C.8d)

(C.9a)

(C.9b)
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T
To complete the calculation, the invsrse of y I‘y' is required. 1t

requires that

(v Ty "y Ty = Lo (c.10)
or
T
- 1,,..0.0 0,0 00,.00
. - c.
€ Ty) "(ay_yo +bh'h) =vovo +hh (c.11)
1f
T
- -1 _100 ,1.00
(y l‘yg) s Y. tfhh (C.12)

then eq.(C.11) is satisfied. Putting eqs. (C.9a) and (C.12) into egqr.

(C.2) and C.3) we have

1({x -~k )d
I =Ie & (.13)
where
0,0 0.0
= h + c.
Ig = Ten BB T wp¥. €.14)
and
[ = [, e*™ (C.15)
where
0.0 0.0
I' =T _h + c.16
Lg=Tga bbb +T, v v, (c.16)
The Fresrel transmission and reflection coefficients are given by
" 2xve
Tgh - E%E—' ’ Tgv "EKFK (C.17)
8 - g " g ‘
and
K=K €K =K
r - —E& ’ r = (c.18)
gh n<+uc8 BV EBK + -"g
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APPENDIX D

CALCULATION OF £ (i 1 )

In this Appendix, we will show that £ vh vh"o' We start by writting

scattering amplitude that is given by LeVine, et al [1982].

2
k
;(_i_o._qo) - (,ﬂ)ms(» ) (2%n° e.h + v° oe:)aince"
+ %% + v* 0 &) sincet (p.1)
==~ h Tg=—=V

0

where _i_o and 0" are the directions of incident and scattering waves respectively.

2 s

The expressions appearing in eq. (D.l) are defined in chapter V.

We need fvh in forward direction. Using 10_00 and dotting eq. (D.1) by h

1
from 4w right and by _»;2 from the left, we find:

0 0
fvh - g_i-_( 0) —i = 6{[ae +b ce ]since +[ae +b_ce ]aince } (D.2)
where
AN
B =\7r TAS,
a = n)@’n)
(D.3)
0
by = YV 4 -
c xo _1_11
and hg, _\_r_: are the unit horizontal and vertical vectors of the incident wave.

Next by expanding the unit vectors ir cartesian coordinates, we determine

that fvh has the following dependence on '5 = ¢ - ¢1
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fon ™ n(sind) cosd (D.4)

where h(z) is a single valued functioz of r. Using eq. (D.4), and assuming

é 18 uniformily distributed, we have:

L .
£, - 'Z%r' I £ .44 = -21&- I £,4¢ = -%; I h(sin¢)cosédy = 0 (D.5)
L -K -

The last integral is zero because of the even and odd character of

cos ¢ and sin ¢; thus fvh-o. We also find that fvh

Using & similar procedure one can show that

=0 using the same method.

+
- - .6
ko K K (D.6)
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