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FOREWORD

This interim report presents the results of work performed under
Contract NAS8-34975 for rthe National Aeronautics a'd Space Administration,
George C. Marshall Space Flight Center, Huntsville, Alabama. This work was
performed by personnel in the Product Engineering & Development Section of
the Lockheed-Huntsville Research & Engineering Center and by the Computa-
tional Mechanics Company, Austin, Texas, subcontractor to Lockheed during
this effort.

The period of performance for this study was from August 1982 through

August 1983, The MSFC Contracting Officer's Representative for this study
is Larry A. Kiefling, ED22.
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SUMMARY

This report contains the results of a study whose objective was to add
the capability of analyzing a coupled dynamic system of flowing fluid and
elastic structure to the SPAR computer code., A comprehensive literature re-
view was performed and a méthod was developed and adopted for use in SPAR.
The method utilizes the existing assumed-stress hybrid Pian element cur-
rently in SPAR. An operutional module was incorporated in SPAR which pro-
vides the capability for analyzing the flow of a two-dimensional, incompres-
sible, viscous fluid within rigid boundaries. Equations were developed to
provide for the eventual analysis of the interaction cf sucin fluids with an
elastic solid.
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1. INTRODUCTION

Virtually every structure is in contact with a fluid, be it air, water,
or a gas flowing by design or by its natural course over and through the
structure's surfaces, The fluid thereby exerts loads on the structure pro-

ducing deformations which may, in turn, alter the flow of the fluid,

In most situations encountered in the design of engineering systems,
this fluid-structure inceraction is insignificant, and the structure and the
tluid can be analyzed independently., There are important cases, however, in
which the interaction of fluid and structural behavior is an intrinsic fea-
ture of the response of both media, and this interaction must be taken into
account in any rational analysis and cdesign. Such is the case, for example,
in the analysis of flutter phenomena in aircraft, the sloshing of fuels or
other liquids in flexible tanks, flow-induced vibrations of submerged struc-
tures or tall buildings, the safety analysis of nuclear reactor components -
particularly the study of pressurized reactor cores - the flow of liquids in
flexible pipes as in the flow of blood in elastic arteries or oil o: water
in rubber hoses, the effects of underwater explosions on submerged struc-

tures, etc.

Fluid-structure interaction problems such as these are inherently non-
linear: the Aomain of fluid media obviously chaunges with the deformation of
the structure and pressures exerted by the fluid act on material surfaces
the locations of which depend upon the deformation, There are, however,
significant classes of fluid-structure interaction problems for which useful
results can be obtained by using only linearized equations. Indeed, the
bulk of the work published on this subject deals with one special case or

another for which the analyses can be dealt with using linear or mildly
nonlinear theories.

1
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In very recent timcs, important applications have arisen in which a
study of rather general and highly nonlinear fluid-structure interaction
phenomena is needed. Because of the formidable mathematical difficulties
inherent in such nonlinear problems, most analysis procedures in use today
are designed for computer implementation. Indeed, for mcre than two dec-
ades, a significant volume of literature on the numerical analysis of fluid-
structure interaction problems has accumulated and much of the work over the
last decade has involved the .evelopment of finite element methods and has

primarily focused on problems of nuclear reactor safety.

This report contains a survey and a critical analysis of current nu-
merical schemes used for fluid-structure interaction problams., Special
emphasis 18 placed on finite element methods and »n various models and algo-
rithms now in use or under study for a wide class of such problems. We will
adopt a deductive approach to this subject, considering first the formula-
tion of very peneral models for fluid-structure interaction and then reduc-

ing these to various special casres that may arise in specific applications.

Following this Introduction, Section 2 contains a brief survey of some
of the relevant literature. The principal sources consulted in the prepara-
tion of this document are collected in the Bibliography. In Section 3, we
discuss so-called mixed Eulerian-lagrangian descriptions of motion and the
corresponding kinematical equations. An attempt is made to present this
subject in a relatively thorough and complete way and to provide some clar-
ity and precision in deriving fundamental kinematical relations that are
critical to subsequent developments., Derivation of the equations of motion
of an arbitrarj fluid or solid in such a mixed reference frame is taken up
in Section 4, These equations provide the basis for derivation of the semi-
discrete systems governing finite—element models of fluid structure interac-
tion, discussed in Sections 5 and 6, Interface conditions are tiken up in
Section 7, Section 8 contains a derivation of a linear fluid-structure
interaction model for nearly incompressible viscous flows., Modificatioms to
the SPAR code to permit incompressible viscous flow calculations are given
in Section 9, Results of example problems are¢ presented in Section 10,

2
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2, PFINITE ELEMENT METHODS FOR FLUID-STRUCTURE INTERACTION

2.1 GENERAL REMARKS

Interest in the development of finfite element methods for fluid-
structure interaction problems began primarily in the mid-1970s when concern
over the structural integrity of nuclear coutainment vessels called for
better methods for modeling the reactor core, the liquid coolant, surround-
ing gases and the vessel walls under various conditions. The names
Belytschko, Donea, Kennedy, and Liu are prominent in this body of litera-
ture, and several survevs of literature on computational methods for fluid-
structure interaction in nuclear reactors have been presented by Belytschko
and Donea and their associates., In this regard, see, for example,
Belytschko (Refs. 1 and 2), Kennedy and Belytschko (Refs. 3 through 5),
Belytschko and Kennedy (Refs. 6 and 7), and the references the~ein to the
series of articles by Donea, Fasoli-Stella, and Giuliani (Refs. 8 through
10), Donea, Giuliani, and Halleux (Ref. 11), Donea (Ref. 12), and the dis-
sertation of Liu (Ref. 13). The voluminous collections of proceedings of
the biannual SMIRT (Structural Mechanics ir Reactor Technology) conferences
contain numerous papers on computational methods for fluid-structure inter-

action problems and there one can find a heavy emphasis on finite element
methods.

A significant but relatively smaller collection of papers has been pub-
lished on finite element methods for flow-induced vibrations ol structures,
wave effects on submerged structures, and sloshing of liquids in elastic

tanks. We shall cite representative examples of this literature later,

3
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2.2 VARIOUS DESCRIPTIONS OF MOTION

The first and most fundamental issue that confronts one iu modeling
fluid-structure interaction is the choice of an appropriate framework for
the description of the motion. Traditionally, in solid mechenics it is
natural to adopt a material or Lagrangian description of motion in which the

motion of material particles is traced relative to a fixed reference con-
figuration. Thus, one can imagine an actual mass of material, the particles
of which are identified (labeled) in some way, and then one proceeds to de-
scribe the motion of this mass by giving the spatial positions of each par-
ticle relative to a specified (generally fixed) frame of reference at each
time, t. Some of the earlier analyses of special clasees of fluid-structure
interaction problems employed such Lagrangian descriptions, and we mention
in this regard the 1980 publication by Kennedy and Belytschko (Ref. 14).

On the other hand, theoretical fluid mechanics traditionally employs a
spatial or Eulerian description of motion in which the motion of the fluid

through fixed positions in space is chiaracterized as a function of time.
Then different fluid (material) particles may occupy the same place in space
at different times, and the object is to develop the kinematical description
of motion in terms of these places rather than in terms of the particles.
Perhaps most of the computational procedures in use for hydrodynamics prob-
lems employ an Euierian description of motion, and some of these have been
applied to problems of fluid-structure interaction. See, for example, Chang
and Wang (Ref. 15), Harlow and Amsden (Ref. 16), Wang (Ref. 17), Belytschko
(Ref. 1), and Dianes, Hirt, and Stein (Ref. 18).

It is clear that in a general fluid-structure interaction problem,
neither the Lagrangian/material nor the Eulerian/spatial descriptions are
completely satisfactory. It would be fruitless, for example, to attempt to
trace the motion of fluid particles in most complex flow phenomena (e.g.,
stirring of fluid in containers); moreover, the velocity of the fluid st

4

LOCKHEED-HUNTSViiic RESEARCH & ENGINEERING CENTER




+ MSC-F..EC TR DE67285

fixed points in its domain 18 generally the quantity of interest, not the
displacement of a particle relative to « fixed point. On the other haud,
the motion of a solid through a fluid is most naturally characterized using
a material description, but it is this very wmotion that alters the epatial
domain of the fluid with time.

There are also computational advantages and disadvantages inherent in
each of these classical descriptions of motion. In the material descrip-
tion, the finite element or finite-difference mesh is imprinted on the ma-
terial. Thus, with large deformations of the structure, severe distortions
of the mesh frequently occur, and this has an adverse effect on the numer-
ical stability, efficiency, and accuracy of most computatiovnal procedures.
This mesh distortion can be somewhat compensated for by using rezoning tech-
niques wherein new meshes are drawn on *he deformed configurations at var-~
ious time intervals; but these procedures are expensive, difficult to
implement, and not completely effective in many situations. The use of an
Eulerian scheme to trace both the motion of the fluid and the eulid 1is also
imperfect: one must locate material particles of the structure in an
Eulerian mesh, and at any particular time the material surfaces of the solid
will not, in general, coincide with the spatial grid lines defining the
mesh, Some analysts have, nevertheless, attempted to model the geometric
changes in (he structure with time in an Eulerian description by using a
very complex catalogue of material orientations possible in each grid cell
(see e.g., Chang and Wang (Ref. 15)). The complexity of such proccuures,
and of their implementation has discouraged their use in most fluid-
structure analysis procedures. One might alsoc mention the presence of con-
vective terms in the momentum equations for Eulerian descriptions of motion.
These destroy symmetry inm ihe resulting stiffness equations and lead to many
notorious numerical difficulties, While such terms are unavoidable in an
Eulerian description of nonuniform fluid flow, their uic in the description
of the motion of solid bodies can lead to ill-conditioning of the systems of

equations governing the discrete model.
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2.3 MIXED EULERIAN LAGRANGIAN DESCRIPTIONS

In view of the difficulties noted above, several {nvestigators have at-
tempted to develop mixed Lagrangian Eulerian descriptions of motion, which
will be studied in soue detail in the Appendix A, These descriptions gen-
erally employ, in addition to the spatial and the material frames of refer-
erce, a referential or grid system that illows one to displace the finite
element mesh so that it is either fixed, in space, moves with the body, or

assumes a motion intermediate to ihese extremes.

The use of a so~called referential frame, distinct from the material
and spatial frames of reference, to describe the motion of a continuum can
be found in several sources on continuum mechanics. A brief discuscion of
such systems is given by Truesdell (Ref. 19) in his "Mechanical Foundations
of Elasticity and Fluid Mechanics.” However, the intent of such develop-
ments does not seem to be to provide a basis for studying the interaction of
fluids and solids, nor can one find discussions of kinematics of continua
suificiently general to apply directly to interaction problems in any of the
standard references on continuum mechanics. Interest in "mixed Eulerian-
ragrangian® descriptions seems to have originated in the computational

mechanics literature,

The first attempt at developing computational procedures which employed
a mixed Lagrangian-Eulerian description appears to have been in the 1964
papers of Frank and Lazurus (Ref, 20), and Noh (Fef. 21). These authors
developed a finite difference scheme for compressible fluid flow in which
the motion of the fluid relative to an arbitrary moving grid appears in the
governing equaticns of motion. These formulations attempt to provide for
the proper hardling of boundary nodes on the fluid-structure interface while
allowing nodes interior to the Eulerian mesh to remain fixed and undistorted
by the motion of the fluid. Since the resulting formulation rztains mary
features of the Eulerian schemes (e.g. convection like terms), the term
quasi-Eulerian is also used to describe them. Another quasi-Eulerian finite

6
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difference method was proposed in 19€5 by Trulio (kef, 22) with regard to
the APTON hydrodynamic codes and, a decade after the paper of Frank and
Lazarus (Ref. 20), Amsden and Hirt (Ref. 23), of Los Alamos lLaboratories,
introduced the ALE-technique: Arbitrary Lagrangian-Eulerian (ALE) scheme,
which was a finite~difference procedure designed to handle Eulerian and
Lagrangian descriptions of motion simultaneouslv, More recently, finite
element codes based on certain aspects of the ALE-strategy have beea Ais-~
cussed by Belytschko and kcnnedy (Refs. 6 and 7), Belytschko, Kennedy, and
Schoeberle (Ref. 24), Donea et al (Refs. 8 and %), Kennedy and Belytschko
(Refs. 3 through 5 and 24}, Hughes et al (Ref. 25), Liu (Ref. 13), and Liu
and Ma (Ref. 26). These mixed/quasi-Fulerian schemes are not without short-
comings: while they provide for flexibility in descriptions of kinematics
and physics, they involve certain features which lead to the necessity of
nonconforming finite element methods (see Hugles, Liu, and Zimmerman (Ref.
25)) and the effects of these built-in discontinuities on the accuracy and
stability of finite element calculations is, as yet, not known,

In the next section, we shall examine the question of sppropriate de-
scriptions of motion in more detail,

7
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3. KINEMATICS OF MOTION AND DEFORMATION

3.1 PRELIMINARIES

In modern continuum mechanics, the study o. kinematice of continua gen-
erally begins with a mathemetical characterization of a continuous body: &
bodv "B" is a differentiable manifold the elements of which are called par-
ticles; there is assigned to B a o-finite Borel measure, called mass of the

body. Thus, B is a natural model of a given quantity of matter as a "con-
tinuum.”

Kinematics aims at describing the motion of B as a function of time,
Tor this purpose, we introduce a time scale S ¢ R an¢ measure the motion of
B beginning with a fixed instant T = 0 and over a time 1aterval 1 ¢ § =
(0,t]. At each 1, the particles of B are in one-to-one correspundence with
points in regions of three-~diamensional Euclidian space E = R3; indeed,
the motion of a body implies the existence of bijective (indeed, diffeo-
worphic) maps ¢ : B -+ ETC R3 for each time where EI—T is the closure of an

3

T -
open region QT C R°. The regions QT (or, technically, QT) are called the

configurations of the body.

To give mcaning to the maps K. and tyv effect a labeling of the par-
ticles of R, a particular configuration ﬂR' called the reference cunfigu-
ration, is selected. Typically, fig = Qg i.e., the reference configura-
tion is the actual region in ll3 occupied by the body at t = 0, but this

1s not a necessary choice of the reference configurstion. We proceed to

introduce in QR s fixed coovdinate on IR3 with origin O ¢ ﬂR’ and wve

denote by X the position vector of points in ﬂg. In particular, if QR
- QT-O’ and x = Ko» Ve set

3

X . x(X); s n+ﬁxc R (3.1)
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and say that the particle X occupies the position 3 in the reference config-
uraiion of the body. If xk. k = 1,2,3, denote the components of X rala-
tive to some fixed basis, then (xk) - (xl. xz, x3) are referred to

as the material coordinates of the particle X.

Physically, the situation can be viewed as this: We wish to name
(label) the elements of B, neighborhoods of which can be regarded as actual,
physical pieces of matter. To do this, we pick one of the regions in space
occupied by the body during its motion, called the reference configurationm,
and establish in this region & fixed coordinate system X ~ (xk). Rat-
urally, since we usually trace the motion of the body from an initial time
T = 0, this reference configuration is ordinarily the actual region occupied
by the body at T = 0, 1If X is the position (in space) occupled by the par-
ticle X at T = 0, then the correspondence X = «(X) effectively assigns the
nunbers (xl, xz, x3) as labels (material coordinates) to the particle
X. Thus, X has the same label (xl, XZ, x;) for all times T > 0. Since
K 1ie an isometric isomorphism (relative to the usual Euclidean metric), it
is usually unnecessary co distinguish between X and its label X in all sub-
sequent descriptions of the motion of the body B. When the equations of

motion of B are written in terms of the material coordinates X, we obtain a

*
material description or Lagrangian description of motion, as will be

further expanded upon below,

Some argue that this is a misnomer since the equations of motion in terms of
the material coordinates were first given by D'Alembert and not Lagrange.
See Truesdell (Ref. 19). However, reference to Lagrange here may be due to
the analogy of this strategy with that employed by Lagrange in his Mechan-
ique Analytic where he labeled collections of discrete particles and traced
their motion relative to a fixed spatial frame of reference. This is essen-
tially wl:t is done here with one fundamental exception: a discrete system
has a countable number of particles; thus, natural numbers n N can be used
as particle labels. The Body, B, being a continuum, is nondenumerable;
thus, a labeling .- eme such as the use of triples (xl, X2, X3) of real
numbers is needea to label the material particles.

9
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Now, in addition to the material coordinate frame, points in R3 are
identified by the position vectors x denotes the spatial position occupied
by particle Xe B in a given configuration Qes then there aust exist a
bijective map Ke? B g, such that

x = k(%) (3.2)

The coordinates (xk) of x relative to a given basis are called the
spatial coordinates of the particle X at timc, t. For each time 1eS, thete
exists a unique configuration nT of the body, and the family {QT} of con-
figurations, dependent on the real parameter, v, is called the motion of the

body. Instead of Eq. (3.1) we describe the motion by a map «:

Bx [0,t] + R of the form,

x = v(X,t) (3.3)

Then the curve x(t) = y(X,t) for finding X, is the path followed by the pai-
ticle X during the motion of the body. Recalling that X = ¢(X) and that k
is bijective, we can also describe the motion in terms of the material

coordinates X:

x = v(Et) = v L (X,.t)
or
x = X(X,t) (3.4)
vhere
X = §o§ (3.5)

Thus, the equation X = Z(g,t) describes the motion of the body relative to the
reference configuration in terms of the vectors X or, equivalently, th: ma-
terial coordinates xk. When the equations of motion of the body B are
written in terms of the spatial positions, x, we obtain a spatial or Eulerian
description of the motion. When no confusi;n 1s 1likely, we shall refer to X
and X interchangeably as "a material particle.”

10
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The velocity of the material particle X at time t (relative to 0) is
the vector

ox (!ot)

If f is a scalar-values funct.on of particles XcB, the rate at which f
changes in time for fixed X is called the material rate of change of f. We

can describe this rate using the material time derivative

Df
o " i (3.7)

Thus,
v = Dx/Dt (3.8)

If g is given as a function of the spatial coordinates x = X(X,t) of
particles X, then

ag(x,t)
g _ 27 _La *x (3.9)
Dt 3t axk 3t

where xk denote, for instance, coccdinates of x relative to a fixed basis
in R (say Cartesian) and repeated indices are summed, k = 1,2,. . .,N.

Thus, 1if V) are the corresponding components of v,

- 98 8
% 3t T Yk bx, (3.10)
3.2 THE QUASI-EULERIAN DESCRIPTION

We now set out to derive a description of motion which is sufficiently

general to encompass both the material and spatial descriptions as well as
iantermediate mixed descriptions that may be appropriate for fluid-structure
interaction problems. We continue to employ the notations and conventions
introduced earlier: for a material body, B, a family of smooth bijective
maps {KT}Of_Tit exist such that

11
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Ko B~ 2 C RN. 18 the reference configuration

X = 50(X) = labels of material particles

= positions of particles in the reference configurations

ki B>0, R, 3, 1s configuration of the body at time t.

o=k (0 = g (6T (B X(Kt)
= the spatial position of particle X at time t

N = 1, ., or 3,

In addition to these quantities, we introduce a smooth bijective map ¢ from
Q x (0,T) into RN, such that ﬁt is the image of ¢ at time t:

For te[O0,T], ¢: Q -+ 5; and we write

x = ¢(y,t) (3.11)

or

y = ¢ (), xeq, te [0,T] (3.12)

-~
~

Since the map X is invertible, we can also write

-1
y = ¢ (x (X,t), t) = Y(X,t) (3.13)
The vectors y are said to specify referential positions of particles at
various times, t. y refers to the position x of particle X at time t relative
* A -
to a moving frame of reference in @ with origin 0. Thus, we imagine O

In this respect, we depart from certain mixed Lagrangian-Eulerian descrip-
tions found in the literature which hold  fixed for all times but allow
Q(-QR) and Q_ to be time dependent; see, for example, Hughes et -1

(Refy 25), LIu (Ref. 13), and Liu and Ma (Ref. 26).

12

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER




LMSC-HREC TR D867285

moving with time through space and y = y(x,t) a vector from é to the spatial
positions x of particles. We also Intr;duce coordinates Xk, xk, yk, k

=1, ..., N, relative to fixed set of basic vectors in each of the respec-
tive domains. These notations and the geometrical situation are depicted in

Fig. >-1 for the case in which o and 0 coincide and are fixed in space.

The coordinates yk are frequently called the grid- or mesh-coordinates,
for reasons which will become clearer later. It is worth noting here, how-
ever, that if we lay a f’ 'ed mesh on 5. the choice y =X (.., y = I = the
identity) yields a lagrangian grid whereas the choi;e y=x prod;ces an
Eulerian grid. )

In addition to the particle velocity field, (Eq. (3.4)), we introduce

the grid velocity YG, which 18 the rate at which a "grid point™ y moves
from a fixed position x in space; 1i.e.,

R I - 3.1
y fixed
The so-called difference velocity YD, defined by,
v oa oy -y (3.15)

is then the velocity of a material particle relative to the moving grid ﬁ.

As preparation for a major transformation rule pertaining to material
derivatives, we establish the following lemma:

Lemma 3.1, Subject to the conventions and assumptions ectablished

above.

13
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the Motion of a Material Body, B
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OF POOR QUAL

-1 -1
Wy Wy G
. - ok v§ (3.16)

vhere w-l

-~

is the inverse of the map ¥ of Eq. (3.11) and the summation

convention is used (j, k =1, 2, ... , N).

Proof: Let Y denote Cartesian coordinates of y. Then, according to
Bq. (3.13),

e = Ve @B = w4y (a0,

Differentiating this expression with respect to time holding Yy fixed

yields
-1 -1

W'O'axj‘t"'at

as asserted.

Let u be scalar field given as a differentiable real-values function f
of the material coordinates X and time t:

r = f(X,t) (3.17)

Then the material rate of change of y is the rate p changes in time for
fixed X:

o 3E(X, t)
bt ot

The fsllowing result allows us to compute the material time derivative of

in terms of the grid coordinates and the difference velocity.

Theorem 3.1. Let the conventions established earlier hold and let u be
given by Eq. (3.17). Let

15
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8,t) = £ (,8), ©)

(3.18)
h(x,t) = £¢77 (x,t), t)
Then
28(y,t)  oh(x,t)
D x,t)
EE Tt + axj VJ (3.19)

Proof: The important idea to be kept in mind here is that we wish to
write u as a function of y but compute its time-rate-of-change holding X
fixed. We have,

+ —
t t
ax_1 3 9

L R I N
Dt ot 3yk

But

Bh(x,t)  h((y,t),t)  Bgpt  2B(y.t)  dep

axj ¥y 'c)x.1 Ay * axj

and, from Lemma 1,

28(y,t) 20y o8(y,t) 2071 o oh(x,t)
3y, =~ ot oy, " ox, vy < 3%, vy
Thus,
3g(y,t) dh(x,t)
Dy y X G
e - T + xj (vj-vj)

as asserted.

It is important to note that Eq. (3.16) reduces to conventional Lagran-
gian or Eulerian descriptions with appropriate choices of the coordinates
yk or the map ¢:

16
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h‘ru_xgian:
axX(X,t)
Q'X-!G"——a?—"!»!b'?
pu  2B(KE,E),t)  3E(X,t)
% - 3t - 3
Eulerian:
¢ = Ly = -0y -y
§ﬁxed

D Ig(x,t) dh(x,t)

3 5t F T

3.3 OTHER KINEMATICAL EQUATIONS

Some simplifications in the developments can be realizel by considering
the referential coordinates to coincide with the material coordinates of a
particle X at time T = 0 and to regard the "grid” as moving relative to the
reference configuration Q at an arbitrary velocity YG which 18 not di~-
rectly dependent on the particles. If x“, X, ¥y are Cartesian compo-

nents of X, x, and y relative to fixed bases, we have

G Wy
yk - “'k (gnt)t vk - "_a? (3020)
Let
ayk
J(X,t) = det|— (3.21)
' ax*
Then wve have the following results:
Lemma 3,2
G
v,
DJ G _ _k
ot JV.v: = J ayk (3.22)

17
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Proof: lat

and let ¢°BY, £14k denote the alternating tensors. Then

- - 1 aBy 13k
J det(y, ] g€ € YiaT48 Yk

and
7’_13-11—6) - 7 fiar Y1,0 73,8
Since
M
ax oYy 1
we have
o cofactor [yk,a] 1 pBa

yy,  deely T X

Thus, from Eqs. (3.23) and (3.24)

9
oJ oX
- factor = J e
TS B X 5y,
]
Also note that
2 T TS S -
3t 'r,0 .x0 ot r,o
Thus,
18
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G
-J.gi -a—vi
Ye ax°

ng G

- J - = Jy ., v
3y, v

Lemma 3.3. Given a differentiable real-values function g = g(y,t) =
g(¥(X,t),t), ve have

d 28 , 38 G s
¢H) T - 5%+§§:vk (3.27)

Similarly,
2 2D . g2y L (@) (3.28)

Proof: Conditior (1) is obvious. To obtain (2), note that

V.0 = yg-; (8(y,t) v5(y,t))

- 87 .+ .
Jv . (va) = gJy . vG + JvG .78 = 8 %%-+ Jvc . V8 (3.29)

where we have made use of Lemma 3.2, Thus, from Eqs. (3.27) and 3.29)
d(gJ) . 238 G
- HE

- g3 28 4+ v6
J 3%'+ J 5t +V .98

- Ty . %

is asserted.

19
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We will use these results in the next section to derive equations of
motion in the grid (referential) coordinates )

3.4 A SPECIAL REFERENTIAL DESCRIPTION OF MOTION

A fairly general discussion of kinematica in a grid or referential sys-
tem was given earlier. We will now focus on spacial extensions and applica-
tions of those ideas which lead to a convenient framework for treating
practical problems in fluid-structure interaction, The structure of this
kinematical description is outlined in the following five steps:

1, Spatial Frame. We establish an absolutely fixed (spatial)
ference frame in RF; the position vectors x are defined
by their Cartesian comporents xi, 1 < k < N,

2, Materisl Frame, At time t = O, a material body B occupies a
region § C RN and ve use as labels of the particles of B
the coordinates,Xy,of their positions in this reference
configuration; the corresponding places of particles {Xy}
are identified by vectors X.

3. Motion, The motion of B is, as usual, defined by the specifi-

cation of the position x ¢ RY of uch perticle X at each
tiu. 0 < t < T:

x = X(Xt) (3.30)

The motion X | is assumed to be a differentiable bijective map
from { into g into o C RN at each tiame, t.

4, Grid Positions. We introduce an arbjitrary, differentiable,
injective function ¢: 2 x [C,T] - R° x [0,T], such that for
each £ ¢ [0,T], the range of ¢ is a region Qt C R3. The

“positinn® vectors

y = 6(x,0), vy e ' (3.31)

are said to define the grid positions in RN, Note that y
is a position vector of a point (place) in RN, These posi-
tions depend only iadirectly on the locations x of material
particals, vieg,

y = ¢l (x,£),8) = y(x,t) (3.32)

S. Displacements and Velocitiers., One can define the particle
displacemant u and the particle velocity, y, by

20
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9(;»‘) - x-X = X(!.t) -X
' (3.33)
2X (X, t)

Dx
et ® * o

and the grid displacement uC and grid velocity v% by

ub(x,t) = y-X = ¢(Xt)-X
G (X, t) 3y
v (!.t) - ._-_.a_t_._ - Y

X fixed

These quantities and notations are iliustrated in Fig. 3-1,

(3.34)

3.5 JACOBIANS AND TIME RATES

Let yk'xa denote components of y and X relative to a fixed basis, We
denote by j the Jacobian of the transformation xl-» ¢(X,t) for each t:

3Yk 3¢k(§,t)
j(X,t) = det|—| = det ——l (3.35a)
- X 9X
o Q
Likewige, we denote
X, 3¢y (X,t)
J(X,t) = det x " det S (3.35b)
a a
Then, as was proved in Section 3.3,
G
v
4 . j—k = jv. ve
at ayk ~ -~
(3.36)
v,
3J k
T3 s J rxk- = JY7.v

21
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Note that the operator V is the same spatial gradient operator ia both of
thes: expressions owing to our definition of Yy lo both expressions, the
time-rate-of-change is taken with X fix~d.

ticles and time, and introduce tha notations

vhere

= value of field at particle X at time t

- E(§'t) - ;(Ett) - i(!’t)

;(!0t) - E(K-l (fot)ot)

B@t) = BT (0,0

R

materisl time-derivative of g

time-rate~of-change of g for fixed particla X

-~

where it {8 underetood that

the time-rate-of-change of g holding the

spatial position y fixed.

22
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Thus, while the forms of the functions E and & may be different, the par-
tials ai/at and 3g/3t both repregent the ra.e g changes in t at a fixed

spatial position.

Combining the above results, we arrive at the equations

a(jg) - 2(38)
3t Ix fixed ot
= TE+y.vD
(3.41)
a(3p)] . g
ot lg fixed ot
- T 38 -
JGerY . ve)
Also note that
¥ig) - j(a- +v.vyg+gv. v®)
3t 1X fixed L ARER: -
- (3.42)
2&%%1[ - 338+ ve . +ey .y
|X fixed

* A
We nov make a fundamental observation : the partial derivatives 3g/

it and 3&/ t represent time-rates-—of-change at fixed points in space., The
values of these rates coincide if we take ¢ = X and gG = 0. Thus,

ki
This observation was apparently first made by Donea et al (Ref. 10); see
also Dones (Ref. 12) and Belytschko and Kennedy (Ref. 27).

23
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28(x(X,t),t)| 3g($(X,t),t) .3
ot - - at (3.43)

~G

v =0

This relationship proves to be crucial in deriving local equations of motion
in referential coordinates since it enables us to transform any standard
Eulerian form (spatial time rates) into a corresponding time derivative in
grid coordinates. We will explnit this idea in Section 4.

24
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4. EQUATIONS OF MOTION

4.1 TINTRODUCTORY REMARKS

-

We consider the motion of a material body subjected to body forces of
intensity, b, per unit mass and surface tractions, S, on a portion, Mg

of its boundary. We focus our attention on control volumes QC ]RN with

boundary QN = BﬁlkJ 852, the velocities being prescribed on 3Q. and

1
the tractions on 392. Alternatively, to obtain equations of motion in

referential coordinates, we consider a control volume, ﬁt = ?cl,t), moving
with the grid velocity, vG, and with boundaries, 38 = 3, U 3.. Com-

1 2
ponents of vectors are referred to a fixed orthonormal basis characterizing

the spatial coordinates, X Indicial notation and the summation conven-

tion are used in some of the relationships which follow, The following
additional notations are introduced:

p = the value of the mass density of the body in the cur-
rent configuration,

o = p(x,t) = p(x(X,£),8) = B(X,t)

nQ

= the Cauchy stress tensor, with Cartesian components
relative to spatial coordinate directions of

o1 = 013(%:t) = opj(X(x,£),t) = Tyy(X,t)

o

= the body force vector per unit m3gss in the current
configuration with Cartesian compouents

by = by(x,t) = by(x(X,t),t) = bi(X,t)

€ = the internal energy per unit mass in the current con-~
figuration of the body, defined by functions

€ = E(x,t) = e(X(X,t),t) = E(X,t)

Other notations will be introduced later.

25
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4.2 LOCAL EULERIAN FORMS

The local Eulerian (spatial) forms of the equations of motion of an
arbitrary continuum are:

1, Conservation of Mass

3p ~
W‘FY . (pv) = 0 (4.1)

2. Balance of Linear Momentum

v 50
k 3 (oL ~ ki
T T Vi) T PRt (4.2)
3. Balance of Angular Momentum
4. Conservation of Energy
- 30, V.
opE 3 (ST EY = oh v ik'k , =
i i
 where
E = total energy per unit mass
1
- ‘2‘ Y . Y + € (405)
6 = heat working
9, ..
= —— +0r (4.6)
%Xy

and q are the components of the heat flux vector and r is the heat sup-
plied per unit mass per unit time in the current configuration. For sim—
plicity, we will take 6 = Q in subsequent developments; but it should be
clear that the addition of Q and thermal effects produced no significant

complications in any of the following developments.

26
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4.3 LOCAL REF&RENTIAL FORMS
A direct application of relations (3.41) and (3.43) derived in the pre-
vious section and the above Eulerian forms leads to local equations of mo-

tion in the grid-coordinates, Y+

The superposed caret () denotes functions of the referential coordi-

nates y, and time. Thus, for example, the mass density is given by
p = p(y,t)
vhere it is understood that

P(y,t) = P(4(X,t),t)

- - 4,7
= P& = pGb) 4.7
etc.,
1, Conservation of Mass. In view of Eq. (3.4la),
238 o ‘ G
p - 3 -
—3;' IGE+ 7 .oy
X
where X indicates that the time derivative is taken with X held fixed.
But, according to Eqs, (3.43) and (4.1),
0(yst)  3p(X(X,t),E) .
B R
.
V=0
Thus,
A ~
N N T & (4.8)
ot :
X
27
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where vD is, again the difference valocity

voe -y (4.9)
Alternatively, since
adol . 52l »
3 Iy P Y + 3 Y3 (X fixed)

A

= BJV . vG + 3 3

-~ -~ at

X
we have
3wl L s S D% G .
at: oV . v +vkay +py.(y v)
X k
or
-g% = yD . YB - SY .V (4.10)
X
2., Balance of Linear Momentum. Let
9C

a s ki
p; = pb, + (4.11)

i 1y

Then a calculation similar to that leading to Eq. (4.8) yields the momentum

equation in referential form,

ap/j}
ke 322 v, VD) + 3p (4.12)
Bt |y 3y, Pk "1 k .

Similarly, by expanding the left-hand side of this equation and using
Eq. (3.41), we have the equivalent equations,

28
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. 9V ~p Yy 2p3 3 D
o-a—t—{x - et rm v PR -5 6w (4.13)

According to Eq. (4.8), the term in brackets vanishes if mass is con-
stant locally.

3. Balance of Angular Momentum. Denoting

611(!,:) aij(?(gat)ot)

91j(X,t)

T13(¢7hx, ), 8)

- Sij(g,c) (4.14)

angular momentum is balanced locally if

4. Conservation of Emergy. B following the identical process used to

obtain Eqs. (4.8) and (4.12), we arrive at the following referential form of

the conservation of energy,

7\

, ’} n “n

3%%— = ] (3%%-+ v . oEvG)
X ~ -

AA A

3 N

3 1D
+ 3vg (pEVy)] (4.16)

Since E = 1/2 vZ + € (v2 = Vv . V), we can also write this result in the
form

29
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a(goe 3 -+ D A"
Adoed| o g BevD) + 16y,

ot X yk "k ik Byi
A
2 3gol -3 PV
2 t X Yy
. v av 30
k ~ D"k ik
jvk [p 3t . C)V.1 ayj " 7, ] (4.17)

~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~

If mass is conserved, the term with a single wavy underline vanishes,
by virtue of Eq. (4.8). Likewise, the term with double wavy underlines re-
duces then to the local momentum equation (Eq. 4.13) which also vanishes,

Then if linear momentum is balanced, we have

-~ an av.
3(Jpe) - 3 D -
3t b Y (Dﬁvk) + ] Oik 3y (4'18)
X k k
Finally, since .
250\ 5
€ €
= 3 BE| 4+ pedy . v
at X ot X -~
we have
s o EZE.+ oD 20€ _ oe 43 (4.19)
3t|y ki By, T Tk 3y 3 .

5. Summary. In summary, the local equations of motion in referential
form are given by

30
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aA ~D 'y ~ ~

=V -wmey.d
v v 30,

i - ki
— BB ————— +

€ " Pk, TPty
313 = Gji (4.20)
e | g age s ko Y

3 Yk 3, 3y, | ki 3y,

1<4,j,k <N; N=1,2, or 3

wherein it is understood that the time-derivatives on the left side of the
equality are computed holding X fixed and that the quantities appearing on
the right side are regarded as functions of the grid coordinates, y,.

4.4 GLOBAL FORMS

Let dv be a differential volume element in Q an¢ ds an element of
surface area of the boundary, BQt, with unit exterior normal, n. The con-

trol referential voluue, Q_, 1s moving with the grid velocity, vG, rela-

tl
tive to the fixed spatial frame of reference as before. Let dvo denote a

material volume element in the reference configuration, so that

~ 3)’1
dv = | det SE;-‘duo = Jdvo

Finally, let G be a quantity to be conserved in a physical process and sup-

ot) = f 8.0 a¥
f

t

posed G is given by

Then the time-rate-of-change of G 1s

31
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, 8( ? )
t

do(t 3

t t -
aﬂ

= f 8(4(X,),0)3 dv,
Q

383
f T

Q
38 c:
j B +y . V) v
‘0

f 38 4 + fv.vcgdv
2 Q

t

Hence, an application of the divergence theorem yields

dG(t) _ 38 4% G & . 4z
Tt—— “f 3t dv + 3§f‘! .gsds (5.21)

1, Mass. Since

LY

[ &4 - - [ .ha (4.22)
Qt t

Hence, if M(t) is the total mass of Q. at time, t,

) . L _/'Bd{v- fﬁyb.iad; (4.23)
9 . ~
t oRy

2, Linear Momentum. If P(t) is the total linear momentum of ﬁt at

time, t, then an application of Eq. (4.21) yields for the global form of the
rate-of-charge of P,
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e " T ) v
fQ
t
- .fpg(vc . n) ds
Ny N N

LYY

+ [ (divo+ ob) av
¢ -

3. Energy. Likewise, the rate-of-change of totul energy is

LD Sfplzch;- f b .vav+ [ GEVD.
t Q an

t

+8 .V)ds
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5. VARIATIONAL PRINCIPLES
5.1 SPACES NF ADMISSIBLE FIELDS

We shall introduce abstract linear spaces of adumissible densities,
velocities, and internal energy: Ilet  denote a "control volume" in tie
referential systea moving with a velocity field, !G’ relative to the fixed
spatial frame and let 30 denote its boundary, The boundary, aﬁ, is further
decomposed int? portior:l, aﬁl, and aﬁz where the velocities v, !G and

the tractions 8, = Opny are prescribed, respectively, fx being a unit
normal to 3%, We have thus, for each t ¢ [0,T], @ = (¢,t)

Lot
V = space of admissible velocities
i . avk " N
- lv | f qu(v) -éy—dv | <w, ve0 on an, (5.1)
- - A -
Q .

R = space of admissible densities

B
—————
“©

I j o0 . v+ 0 -g-%) v | <wWt e [o,r]l (5.2)
Q

E = gpace of admissible internal energy densities

]
————
«<-

vy D .
‘f(wou-ar;-+¢wg CVEYY L THY) dv| < =,
Q k )

VéeR, Vv e V, yt € [o.n} (5.3)
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éﬁgkoiguoly defined to have importcat
More specific properties of these spaces can be

established once constitutive equations for the matevrial have been defined.

Typically, the spaces ¥

these spaces in later developments,

5.2 VARIATIONAL PROBLEM IN REFERENTIAL FORM

We now cousider the followiug variational problem:

» R, and E will be Orlicz~Sobolev spaces such as
R = w*P (f, A (0,T), etc. We shall give more concrete definitions of

Given body forces f, grid velocity field vc, and trsc-
tions § on 392. find a triple (p, u, €) £ x V x E such
that

.f(-g%wwg.g)d\? . f v+ 900 dv
n ~

Q

D 2Y4
f (ov) . t - pv Vk r) dv

f(ckiay +pb )dv+ fsivida

92
f(wa“ S S 1Y O
. 3¢ T VFE 5y 5 "V Y ¥y %1 By, 3Y) v

Q

V("hY: W)CRxYxE

(5.4)

ciently smooth solution of Eq. (5.4) is at least a weak solution of

Eq. (4.20). Thus, Eqs. (5.4) represent a set of variational equations
equivalent to the equations of motion ir referential form,
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6., FINITE ELEMENT MODELS

6.1 THE DISCRETE VARIATIONAL PROBLEM
The construction of finite element models of the general fluid-
structure interaction problem embodied in Eqs., (5.4) follows the stendard

steps:

1. The domain, ﬁ, is partitioned into E finite elements such that for
each t ¢ [0,T] ‘

e - U/ 17 8N 2, = ¢e = f

2, Piecevise polynomisl shape functions are defined over each element
which rpovide a basis for local approximations of p, u, and €., Typically,
these have the properties

palt) by(y)

PECID DR WIS (6.1)

”

[

L.
Cg - ;‘Z_l ee(t) w:(g)

vhere R, N,, and K, denote the numbers of element-degrecs-of -freedom
for the respective local approximations; p:, u:, and e: denote nodal
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values of p:, gﬁ, and e: at time t, and the local shape functions

usually satisfy conditions of the type

M ¥
sg(gp) = & leM, N<R )
e, N M
ou(¥,) = 8 l<M, NN (6.2)
e N M
) = &, 1L, N2K )

with y:, yﬁ, and yg the element coordinates of nodes corresponding to the

local appraxiutions of p, u, and &, respactively.

3. The shape functions are designed so that they match at inter-

element boundaries so as to produce g .obal basis functions
Bi(Z)’ Qj(!)s ‘i’k(_):) Qa < J <R, 1 <j<N, 1 f_k ix)’

which are defined over the entire domain Q and which provide basic functions

for finite-dimensional spaces Rh, Yh, and Eh, respectively, and so that

e e e
Bl = By %y ops Yie| = Yy (6.3)
Q Q Q
e e e

In conforming finite element approximations, frequently have

RPcRr, Vicv, PcE (6.4)

~

where R, V, and E are the spaces of admissible functions introduced in the
previous secton. We shall not, however, restrict our analyses to conforming

finite elements.

37

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER



ORICIN/L 7RI 0 LMSC-HREC TR D867285
OF POGR QUALiTY

6.2 SEMI-DISCRETE MODEL

The semi-discrete, Galerkin, finite element approximation of the varia-
tional problem (Eq. (5.4)) is characterized by the following discrete prob-

lem:
Given f, \_r", and S, find (Poys Yyy» eh)e A
Rh, Yh, E" such that
Py - D 1 .
f nh3e *4Pn? - %) - f Y+ Ph % O
Q Q
9
h . p “Yni, .-
f (PpYy - at T Pn V1 Vhk 3y, ) dv
(o T, b, V,.) dv + S, v, ds ) (6.5)
- k1 3y, T b 1 'hi f 1 'nt :
0 i 392
, "nn Pk D nen
at Yo Ph €h 3y, " ¥h Thk By
Ju
hk -
—UkiWk—wh) dv = 0
V%, Vh, Yh) € Rb x vh x EP
where
D G 7
*h M
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7. INTERFACE CONDITIONS

The ma‘n difficulty in employing a general ALE-type description of
motion for fluid-structure interaction problems is the specification of
boundary conditions at the interface of Eulerian and Lagrangian meshes and
&t free boundaries. If I' denotes any material surface on which such condi-

ticns are to be imposed, then a necessary condition to be met {s=
v =v_ on . (7.1)
where vG = vG e n, Vv =vVeD, and

= the grid velocity
= the particle velocity

<
J=!<!°

= g unit normal to T

To generalize this condition, consider the situation shown in Fig. 7-1
in which a nodal point N is assigned a given trajectory and velocity vG.

The material surface, ', 18 assumed to be given by the equation

X, = ¢(x1) or x; -lb(xz)

If

11 unit orthonormal basis vectors

position vector of points on surface T

i
]

then
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S~ Free Material Surface,
/ rs x, = ¢(x1)
/

(3]

):@
- \
r
<1
{.2 / Node
\ Assigned Node
Trajectory

Fig. 7-1 - Geometry of Free Surface
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and

vn - vn - (v1 11 + v2£2) * E

‘*—t_T 1
= v —v———T
1 2 1/2 2 2 1/2

(1 +4') Q1 +¢')

If x, denotes a coordinate tangent to the node trajectory path, then

vG = 0, and we have the condition

-y (7.2)

In general (for three dimensions), 1f T is given by an equation of the

form

SERLAC Y
the interface condition is

G _ _ oy Y
vi=Vv TV, 5;2 v, 5;5 (7.3)

If T 18 a fluid-solid interface, we have

vG - vFluid - vSolid on T (7.4)
n n n
at all nodes on T,
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8. A LINEAR FSI-MODEL FOR NEARLY INCOMPRESSIBLE VISCOUS FLOWS

8.1 GENERAL

We would like to construct a formulation of the fluid-structure inter-
action problem which has the following features:

1. Is applicable to the problem of a viscous incompressible or

slightly compressible fluid interacting with an elastic solid.

2. 1s characterized by linear equations.

Unfortunately, linear FSI-models for compressible flow almost exclu~
sively deal with the small-perturbation acoustic approximations of plane or
spherical waves impinging on an elastic body and these problems are of se-
condary interest here. We shall therefore, consider a model which arises

from a penalty treatment of the continuity equation for incompressible vis-

cous fluids, thereby allowing for a non-zero "bulk viscosity” of the fluid.
8.2 GOVERNING EQUATIONS OF THE FLUID

For the general Stokesian fluid, the governing equations of motion are:

Continuity:

ap

Y + Vi pk + ka.k = 0 (8.1)

Momentum:

av
p5T:.+ pv:l vk,j - pbk+0kj,j (8.2)
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Constitutive:

g - (- ﬂ+)‘drr)6k (8.3)

K + 2u dk

3 3 1

where

p = the fluid density

<
L}

~

Cartesian components of velocity
= body force density

Uk = components of the Cauchy stress tensor

T = the thermodynamic pressure

1
19 3'(vi,j + vj,i) = the deformation rate

A,u = deletatfonal and shear viscosities.

The thermodynamic pressure 7 is given in terms of p and the absolute temper-
ature 0, by the equation of state of the fluid., Since we are ignoring ther-

mal effects here, we have

Equation of State:

T =7 (p) (8.4)

For polytropic gas, for example,

T(p) = p o' (8.5)

where P, " constawt and Yy is a material constant.

Upon substituting Eq. (8.3) into Eq. (8.2), we obtain the Navier-Stokes

equations for isothermal, viscous, compressible flow:

v

p k+pv Pb, = T + (A+u) v + U

K K (8.6)

17 1,3k k,33
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which can also be written in the vector form

pv = b~ Yn-+ (A + ZU)Y (Y . V) - uz x Y xVv (8.7)

-

vhere v is the material time derivative of tne velocity:

. Dv v
YU 5 " wrty-ly (8.8)
8.3 A PENALTY FORMULATION
Let g denote the vector defined by
pP = p(i = b) + u¥ x curl v (8.9)

Then the equations of motion can be written compactly as

b = - divv
pP = kVdivv -VUrm (8.10)

~

vhere k = kz + U 18 a "bulk" viscosity for the fluid. In the case of an

incompressible fluid, these equations reduce to

div v = 0
pP - Y— m (8.11)

where 7 18 now the unknown hydrostatic pressure.

A penalty approximation of the incompressibility condition (div v = 0)
in Eq. (8.11) yields alternatively, the modified momentum esquation

pP = ~e-1 Vdivv + kVdivyv (8.12)
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div ve +0
as €+ 0 (8.13)
T o+
€
with
-1
e = =g div vE (8.14)

and the convergence in Eq. (8.13) is in (H'(Q))N for Ve and LZ(Q) for L

It 18 clear that

1. The penalized wmomentum (Eq. (8.12)) corresponds to that of a

compressible fluid with an equation of state given by Eq.
(8.14).

2. If this compressible fluid is characterized as a baratropic (?)

gas according to Eq. (8.5), then the continuity ecuation is of
the form

o = € pop'tl (8.15)

3. Over any d.umain Q,CQ on which p,x = O (p varies only with
time) we have

t
__Ld -

that 1s, the density in {}; can be determined by a quadrature.

We shall employ the approximationes (Fq. (8.12) and Eq. (8.16)) in sub-

sequent discussions.

8.4

GOVERNING EQUATIONS OF THE SOLID
The motion of an elastic solid is governed by the classical equat.ions,

(Eijkﬂ “k,l)’j + Py f1 = 0 u (8.17)
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where
Eijkl = the elastic constants of the material (Hooke's tensor)
. ’ exhibit standard symmetries and ellipticity
ug = the Cartesian components of the displacement vector
Pg = the mass density of the solid
fy = the components of body force of the solid

8.5 BOUNDARY AND INTERFACE CONDITIONS

Consider the geometrical situations and notations indicated in Fig.

8-1. 1In this case, the FSI-Problem is governed by the following equations.
Fluid
C, )
pvr (e -k) Vdlvv+ Wxcurlv = pb in Qg
v.= v on Tpy » (8.18)
F
t, = 8 on T
~F ~ F2 J
Fluid-Solid Interface
v = & on FI (8.19)
Solid
\
v. + = Q
~ % B pB £ ps 4 on 8
u = 0 onTl_ ) (8.20)
3 . E 2 = S8 on FsZ J
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v g

U’}zf.l:;‘:"-‘ . rit
of pUCR @V

(%Y

Fig. 8-1 - Fluid-Solid Interface

Initial Conditions

! <
~
tE ]
-
o
~
[ ]
<

0 onQF w

ux.0) =y only 5
(8.21)

in Eq. (8.18), v and sF denote prescribed velocity or tract .s
along FF, with

8 = n.g (Z) (8.22)
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vhere gp(v) is defined in Bq., (8.3) and n 1s a unit vector exterior and
normal to the surface FF' The interface condition, Bq. (8.19) charac-
ter{zes the so~called no-slip condition; i.e., the fluid is to adhere to the

solid at the interface: to do otherwige would suggest a discontinuity in
traction acrois the interface.

In certain instances which suggest that this no-slip condition be
relaxed, we can use instead of Eq., (8.19) the slip~interface condition

c o F
U= Vv (i !) . 1 U . T on TI (8.23)

where U, =u.n v =v.n 1 is a unit vector tangent to FI’ vis a
film coefficient (which may depend upon temperature and density of the

fluid) and SF 1s given by Eq. (8.22).

8.6 VARIATIONAL FORMS

Let 28 (CIGIF))3 and Q¢ (Cl(?fs))3 be sufficiently smooth
vectors defined over?fF and ﬁ;, respectively, Taking the inner product
of the momentum equations of the fluid and the solid with y and ¢ , respec-

tively, integrating over the respective domains, and applying the Green-
Gauss theorem yields:

-
r.
fp"k Y dx + f (4 vy g W g+ A1V v v y] dx
p “p
= OF (v) n, Yy ds + pb . Ydx
1k- i k 0 ~ <
g F > (8.24)
) f ps % kX7 f B Yk, 1,1 dx
2 2
]
- fpsf.(pdx-o- fcik(‘i) n, @, ds )
Qs GQS
48

LOCKHEED-HUNTSVILLE RESEARCL & ENGINEERING CENTER



LMSC-HREC TR D867285

. w3t
=

Gi o e v e e 3
OF PCOR QUAL&TY
vherein

- 3
k = A4+ y-~-¢ 1
€
oF(v) = v, +k divva (8.25)
ki~ i,k € ~ "1k
3
°k1(‘~') Ekiu“r,s J

on DQF we take

= F F
1Y T oW =8
Thus,

f":i(l’)“k"’id" - f '
0, .

F ]

F2
Similarly, with¥y = 0 on Tg U Typ,

fG‘sd(u)nk  ds = Qfsiwkds

ans S2

Thus, we irrive at the variational boundary-initial-value problem of
finding v(t), u(t), te[0,T], such that

1
v ¢, dx + /. oF (v) ¥ dx
i " " '/ Yk, 1
o
F
b + s¥ y d
Qf"k“’kd" rfk“’k‘
F F2 ) (3.26)
. S
f Ps % P Ix * Qf k(¥ Py g 9%
QS S
£ dx + fssw ds
pS “k Px k Yx
iy Ts2 J

49

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING: CENTER



L LMSC-HREC TR 1857285
ORIG!It. "~ . e
OF POCR Uit

for all sufficiently smooth functions Y, ¢ which vanish on ?;1 L’T; and
PSI v T'I, respectively.

8.7 FINITE ELEMENT MODELS

We partition 1] -'Q'F ¥ ﬁs into finite elements in the usual manner,
The approximate velocities and displacements are of the form

(RIS DI PRSI DR (8.27)
J J
vhere vJ, uJ denote values of i and v at a nodal point J in the

respective fluid and solid meshes. Introducing these approximations into
Eq.(8.25) yields the corresponding element equations of motion in terms of
the nodal values. The final system of equations for the discrete model is

of the form

Mer Mer 2 Vp r K1 0 Ve
M., M., M o T4+l kE kf o y
~IF ~II 2IS Y SIF <II =~ ~1
0 M M u 0 0 0 u

o o o [ w] ]

10 Kig K o Sl R RS (8.28)
0 Ko1 Kss Us £
— - L. — L. -
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Here the matrices %‘F’ cee 3 ’.’.ss are mass matrices, EFF’ «ss are
fluid "stiffness” matrices, IS-IS""’ lsss are stiffness matrices for the
solid. The vectors v and u of nodal values of velocity and displacement are
partitioned into column vectors corresponding to nodes on the interior of

the fluid/solid mesh and nodes on the fluid-structure interface:

The no-slip interface condition enters the formulation by setting Vi ©
u;- Hence, the division of nodal-point degrees of freedom in Eq. (8.28)

corresponds to a convention of the type indicated in Fig. 8-2,

Fig. 8-2? - No-Slip Interface
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Since §§F is invertible, the second equation (the interface equa-
tions) in Eq. (8.28) can he written

—f £ -
My i+ M i + K v + K0+ l511 4y *Kgg ug = fp  (8.29)
where
- -1 N
Yrr = Y1 7 Mip Mer Y1
—f £ -1 .f
Kt = %ir " Yir Yor Xpr
s (8.30)
—f £ -1 .f
Kir = K~ Mpp Yer Kpp
- -1
f1 = & Y lYewd J
(matrix condensation).
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9. SPAR MODIFICATIONS FOR INCOMPRESSIBLE VISCOUS FLOW CALCULATIONS

9.1 ORIENTATION

In the standard program, SPAR computes the stiffness matrix k for the
four-node (E4l) element by the formula

3
[
-3
t3--]
3

where T and H are the matrices

ds, and

]
b
R
-
e

H = fPTNdedy.
~ Q ~ e N

In these formulas, the following notation is used:

e P 1is the matrix defining the stress components o = {9131»
~ 022, 01217 1in terms of the vector B of stress”
degrees—of-freedom

g = PB (Order P = 3 x 5)

e N 1s the 3 x 3 matrix of material constants, and in the case
~ of a viscous incompressible fluid is

o

© O 1s the area of the element and [ is its boundary

e R is the matrix defining the surface tractions § = {s1,
bz} in terms of the stress parameters 8

S = RB (Order R = 2 x 5)
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T

This corresponds to the Cauchy stress principle,

nl n2 0 o
S = oy = 8 1, = 7
3 231 N Ny |3y
L |
A
n
S = ngog = nPB8 = RR; i.e., :

R
]
18>

P la-]

n = matrix of components of unit
normal to T

e L 1is the matrix defining the toundary displacements v =
~ {vi(s), v2(8)}T in terms of the 8 x 1 vector q of nodal
displacement degrees of freedom

t <
]
e
0

(Order L = 2 x 8)

9.2 Q MATRIX CALCULATION

We wish to compute an additional matrix Q that is similar to T except

that it 1s of order 1 x 8:

f[nl, ny) L ds
9] 1x2

2x8

The computation of Q proceeds as follows:

54

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER

RS, - e R -



LMSC-HREC TR D867285

CRIC L v

OF POOR QUALIY

Using the notation below

Along boundary 1-2

u = qq, Vv = 0, ds = dx

2 X,
/ - / [(0) q; + (-1) (0)] dx = 0
1 0

Along boundary 2-3

3 Y3

f - f(r'f u+n v)ds
o 1 2
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~ Y3 A X2 7 %3 )
n, = —1—, n, = P dg = -y—3-dy
y y
u = (1--)q,+7—gq u = g
y3© 1 ¥, ’ Y, 3

2 0 Y3

y y (x, = x,)
3 2 3

2 Wtz 2t 9%

Along boundary 3-4
4 X4 A .
/ = / (nl u + n, v) ds
3 X,

where
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(v, = v3) (v, - ¥3) - (x, = x3) (x, = xq)
I T D R B T

Along boundary 4-1

where

SR S S
1 2’ 2 2
y y g
u = -—4gq,, vV = == q., dg = - — dy
v, 4 Y, Y,
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0
X
4 d
- - (-ygq +—yq) =X
,‘/ ./ 47y, 3Ty,
Yq

it 2, S N 1
-

2 4 1
r 1 2 3 4
Q = 3 (3,8, * 7,8, * (x, = %) a4 - 53, +
7 (Y393 + 7,9, + (xy = x,) 43 = ¥49, * X345]

9.3 THE NEW PENALIZED STIFFNESS MATRIX

We are now ready to compute the new stiffness matrix for the incom—

pressible viscous flow problem.

3% LT s

. I
o 1 ~
Step 1: Compute the usual stiffness matrix K using N =
P " & 20 3x3

R B R e

(¢] T 1

Step 3: Add K and Ke to get the element stiffness matrix

o= T

Step 2: Let Ae denote the area of the element. Using the Q matrix g
discussed earlier, compute the perturbation stiffness matrix %
1 1 .T §

K.o= ==.3-Q0Q

~€ e Ae~~ %

#

%

K = K2 +K
~ A ~€
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The theory behind these calculations is given in Appendix A,

These modifications have been incorporated into the SPAR code.
pages to the SPAR user's guide are presented in Appendix B.
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10. RESULTS

Solutions were attempted for four two-dimensional example problems,
The first three consisted of viscous flow of an incompressible fluid within
rigid boundaries. The fourth problem consisted of two elastic plates
coupled by a Stokesian fluid. Reasonable results were obtained for the
velocity field for the first three problems. Descriptions of the example
problema with sketches, finite element grids, SPAR input data listings, and
tabulated results, are presented in Appendixes € through E. A pressure cal-
culatior. routine was implemented but calculated pressureg were not reason-

able and no results are presented in this report.

The first example (Appendix C) consists of parallel flow through a
straight channel with uniform pressure boundary conditions applied at the
entrance and exit of the chammel. This problem has a linear pressure dis-
trihutioa in the flow direction and a parabolic velocity profile in the
transverse direction, An 8 x 8 element mesh was used. A plot of the finite
element grid, with the transverse scale enlarged for clarity, is shown. As
can be geen from the tabulated results, the velocity remained essentially

constant in the flow direction verifying that incompressibility is enforced,

The second example (Appendix D) is a plane slider bearing lubrication
problem. This problem consists of a moving guide surface separated from a
stationary slide block by an incompressible viscous lubricant. As can be
seen from the dimensions on the sketch, this model has a length-to-width
ratio of 900, This caused a problem with element aspect ratios in SPAR with
an 8 x 8 mesh, so an 8 x 18 megh was used for this prohblem. Again, a plot
of the model with the y-direci rn scale enlarged for clarity is shown., The

computed velocities agreed very well with the analytical values.
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The third example (Appendix E) consists of incompressible flow in a
driven cavity. The problem consists of a square box enclosed on three sides
containing a viscous incompressible fluid driven on the upper surface with a

uniform velocity.
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Appendix A

The following equations govern the steady uniform flow of a viscous

incompressible fluid:

’. . A
011,1 p'1 ® fl
.. = ¥ (v. . +v. )
ij i,j 3. L in Q
d ] . g’ (A.1)
ij 2n Yij
dkk = div z - 0
0
v, = vi on Fv )

Here o{j are the deviatoric stress components,

p is the hydrostatic pressure, fi

volume, d..
1]

velocity components,

denote prescribed tractions and velocities on portions Fo

the boundary [ of the domain § R3

R

3 °ij %Kk

the components of body force per unit

the components of the deformation rate tensor, vy the

p the viscoscity of the fluid, and Si and V?

and Fv of

with unit exterior normal n .

-~

A-1
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We shall momentarily set f = 0, s = 0 without loss in generality.

-~ ~ -

We next introduce a special complementary energy functional ¢ defined

on a space of gelf-equilibrating deviatoric stresses and hydrostatic pres-

sures:
$: I +» R

E = {(g"P) SxP | G;JaJ _p’i = 0, (A.Z)

(oij -p Gij) nj =0 on FC }

”» ‘ l - rd
o ( g yP) = -f ey oij °ij dx
f (A.3)

0
+ fl“ (oij P Gij) nj v, ds
v

Here S and P are spaces of stresses and pressures, respectively,

defined on the closed body  which contain functions sufficiently smooth
that the functional ¢ is well-defined. The functional ¢ is essentially

that introduced by Bratineau and Atluri¥*

Formally, the Euler-Lagrange equations corresponding to the stationary

condition
¥(@ ,p): 6§80 p), (@, 0)=0 (A.4)
are

(A.5)

*Bratineau.c., Ying, L. A., and Atluri, S. N., "Analysis of
Stokes Flow by a Hybrid Method,'" Finite Element Flow Analysis, University
of Tokyo Press, pp. 981-988, 1982.
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Our next step is to introduce a perturbation @e of ¢ associated
with the hydrostatic pressures p . Let ¢ denote an arbitrary positive

number. Then we define

2
°e (g',p)-o(g‘,p)ﬂ-—g- fp dx (A.6)

2
Let

-~ ~

2 f 2 (A.7)
=/ p dx
Hpll Q

Then, for any fixed pos,P » the functional ¢ + ¢ (o°,p) is concave,

2
Hg‘”o -fg o‘1'.5 G{J dx = (%0

differentiable, and coercive:

belan p) = g Hlg%le ¢ (07 T v v Clrgy v
1 .12
<5 ety + Hall, Ha vl

+ C(po, v)

°€ (g‘ s po) + -® as Hg'llo + + @

Likewise, for any fixed ¢g“€ S , the functional p =+ <b€ (0% p + is concave,
~0 ~ ’
differentiable and coercive (¢e (g”,p) +»+»as ||p|| + =). Hence, we
~0
can conclude that
s for every ¢ > 0, there exists a unique saddle point (o0~ , pc)
£
o Qe

cags e+ 0, (ce‘ , pe) conveys to a critical point (o”’,p) of

the functional ¢ .

A-3

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC TR D867285
OR g‘ t 'v_ r' b ; "
OF POOR QUnLITY

Notice that (oé , pc) satisfies the variational equations

] » o
f( -z-u— oij* v(i.j)) oij dx = 0 }
a .
. - > (A.B)
f(vi,i+ep€)pdx = 0
Q
for all (3, p) &l )

Thus,

- - gj ‘
A A (A.9)

It appears that the use of oe is equivalent to appending the complimentary
energy with an exterior penalty term corresponding to che incompressibility

constraint.

We can relax the constraint ai'j TPy T 0 (equivalently, (o”, p)
. ’ -~

€ S x P) by introducing the functional,
I..e : AXSxP-+R
(A.10)

I‘e (é . (g » P)) = Qe (g’.p)- + f >‘i (ci.j,j - P’i) dx
Q0

with A = (1.-2(3'2))3 , the Euler equations of which aras (formally),

|

-——0

2 %43 VL, T 0
v. . = 0
i,i

%55 i " O

Ai-vi = 0

i.e., A is the velocity field defined on the interior of the dcmain ( .

A-4

LOCKHEED—HUNTSVILLE RESEARCH & ENGINEERING CENTER

R v -

P B~ S P T T



Oiucip ri o LMSC-HREC TR DB67285
OF PGOR GuALiTY

Lat us now consider the construcriun of an assumed-stress hybrid
finite element approximation using the functional Oc (and ultimately
Le . We begin 1n the traditionsl way by introducing approximations of
.the stress g‘ and the boundary velocities v form

(%1
o‘-ﬁ"zz - P (x)E
~ ~ - (A.11)
92
e
f
v‘(x)
Lgq

v ) -~ -
1 "2(3.‘)

wﬁere P is a matrix of polynomials in local element coordinates Xps %o

8 is a vector of stress parameters, L iy a matrix of polynomials in

X, X, and q 1is a vector of nodal velocities associated with boundary
nodes. Likewise, we approximate the element hydrostatic pressure field
P by

p= A(x)p (A.12)

wvhere A is, again, a new matrix of polynomials of , 1is a vector of

pressure degrees-of-freedom. At this stage, p and A should be selectea

so that ¢’ p,. (or, in macrix notationm, Ta Vp=0).

ij,j = i g
With these notatiuns, the functional °c for a typical finite element

becones
|
% B, P - 7 £1HE « 8TTq - p Qg (A.13)
Ay,

A-5
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where
ﬁ
H om o= f PT p dx
- 2u 0 ~ -
T = .[ T n L ds
- r “T - - S (A.14)
Q= [ A aras
T
ne e
~’

GQF
T ~EB+Tq
(A.15)
3Qe = 0 -~ Qq+eM
El s J
Thus
B = H'Taq (~.16)
|l
R LAY @an
and, therefore,
. kgl (A.18)
oe 2 S Ee g
where Ke is the perturbed stiffness matrix,
K, - TR - —::— e x' o (A.19}

The matrix TT H-l T is the usual assumed-stress hybrid stiffness matrix

~ -~ -

for the el=ment whereas -QT M-'l Q is a penalty-type matrix associated
with the constraint div v = 0 . Notice that the hydrostatic pressure has
been eliminated completely from the formulation, and is computed a posteriori

by the formula

A-6
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p-Ap-%AH-qu (A.20)

Interior Velocity Formulation. An enriched approximation, which may

lead to coordirate-invariant stiffness matrices, is obtained if we repeat
the above calculations using the perturbed Lagrangian Le of (4.10). This
necesaitates that we introduce an independent approximation of the interior

velocity X\ = V of the tyne

A
A = «by (A.21)
- \s -

where b is 2 matrix of "bubble functions” (generally vanishing on T)
associated with degree-of-freedom parameters | . For a typical element,

we have,

)
x
™
+
-3
X3
+
1
®
| ]
o

(A.23)

B -f bY b’ P dx
Q (A.22)
¢ -f bTVTAdx
- Q-& ~ -~
|
J

A-7
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from which we compute

where
- h
fO = Ee E § I
s = R eM!q L
-l ~€ <~ 2
= B H-l BT + L [J M-l cT
~
Hence,
-~

P = 7}- M Qe+l 9 g

w

with S =§ =-¢ § Finally, the element stiffness matrix is

K= (T + BT )T g (reBTs) -¢!

~

Q+ct )T

~ ~

and the hydroscatic pressure is given by
P=-tap
€ ~ ~

where p is defined in (A,26).

~

A-8
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SPAR USER'S MANUAL UPDATES

LMSC-HREC TR D867285

LOCKHEED-RUNTSVILLE RFSEARCH & ENGINEERING CENTER

i
PSR PR S



Appendix B

Included as an attachment to this appendix are update pages to the SPAR
Structural Analysis System Reference Manual (NASA CR 158970-1) dated

December 1978. These updates describe the use of a new processor, EKSF,

used to generate element intrinsic stiffness matrices for incompressible
viscous flow analyses. Also described is the velocity vector version of
PLTB, PLTB/VVEC, used for plotting flow vectors _..icating the magnitude and

direction of velocities.

B-1



Attachment to Appendix B

Update pages to the SPAR Structural Analysis System
Reference Manual (NASA CR 158970-1)
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3.2 ELD- ELEMENT DEFINITION PROCESSOR
3.2.1 General Rules, ELD Input

1 Error Conditions

2 Element Reference Frames

.3 Element Group/Index Designation
4 The MOD Command

5 The INC Command

3.2.2 Structural Element Definition
. Line Elements

3.2,2.1
3.2.2,2 Area Elements
3.2.2.3 Three-Dimensional Elements

3.2.3 Thermal Element Definition

3.2 E- E-STATE INITIATION ’

3.4 EKS- ELEMENT INTRINSIC STIFFNESS AND ;TRESS MATRIX GENERATOR

3.5 EKSF- INCOMPRESSIBLE VISCOUS FLOW ELEMENT INTRINSIC STIFFNESS
MATRIX GENERATOR

4 SPAR FORMAT SYSTEM MATRIX PROCESSORS

4.1 TOPO- ELEMENT TOPOLOGY ANALYZER

4.2 K- THE SYSTEM STIFFNESS MATRIX ASSEMBLER

4.3 M- RYSTFi1 CONSISTENT MASS MATRIX ASSEMBLER

4.4 KG- SYSTEM INITIAL STRESS (GEOMETRIC) STIFFNESS MATRIX ASSEMBLER
4,5 1INV-  SPAR FORMAT MATRIX DECOMPOSITION PROCESSOR

4,6 PS- SPAR FORMAT MATRIX PRINTER

5 UTILITY PROGRAMS
5.1 AUS-  ARITHMETIC UTILITY SYSTEM

5.1.1 Miscellaneous
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Table 1-2:

NAME AND
SECTION
REFERENCE
TAB 3.1
ELD 3.2
E 3.3
EKS 3.4
EKSF 3.5
TOPO 4.1
K 4,2
M 4.3
KG 4,4
FSM 12
INV 4,5

D, YN e

SPAR PROCESSOR FUNCTIONS

FUNCTION

Translates user inputs into data sets containing basic
tables of information such as:

Joint Locations

Material Constants

Element Section Properties

Joint Reference Frame Orientations
Constraint Conditions

Rigid Lumped Mass Data

(See Section 3.1 for a complex list)

Produces data sets containing basic element definitions,
i.e., connected joints, integers pointing to applicable
lines in tables of section properties, material constants,
etc.

Generates a system of data sets called the 'E-state,’
censisting of individual element information packets
containing data such as element geometry (dimensions,
orientation), and literal section properties. E also forms
the system diagonal mass matrix,

Computes element stiffness and stress influence matrices,
and inserts them into the 'E-state.’

Computes incompressible viscous flow "stiffness” matrices
and inserts them into the 'E-state.’

Analyzes element interconnection topology, and produces
data sets used to gulde other SPAR processors in forming
and factoring assembled system matrices.,

Forms system elastic stiffness matrix.

Forms system consittent mass matrix,

Forms system geometric (pre-stress) stiffness matrix.

Forms system matrices (dilitational strain energy,
gravitational energy, kinetic energy) associated with fluid

elements.

Factors system matrices in SPAR's standard sparse-matrix
fomat, e-g.’ K, K+KG. K—CM.

1.2-4




Section 3
STRUCTURE DEFINITION

To define the basic finite element model of the structure, the user

proceeds as follows.

All of
should

Execute TAB to define joint locations, joint reference frame
orientations, tables of section properties, and other basic
components of the problem definition, as summarized on Table TAB-1
in Section 3.1,

Execute AUS/TABLE to generate tables of section properties for
three-dimensional solid and fluid elements, if required, as decribed
in Section 3.2.2.3.

Execute ELD to generate data sets containing basic element
definitions, i.e., connected joints, integers pointing to applicable
lines in tables of section properties, etc.

Execute E to generate a system of data sets called the "E-state,”
consisting of individual element information packets containing data
such as element geometry (dimensions, orientation), and literal
section properties.

E also produces the sysiem diagonal mass matrix,

EKS is executed tn~ compute individual element stiffness and stress
recovery matrices, and insert them into the E-state.

or

EKSF is executed to compute individual element incompressible
viscous flow intrincic "stiffness” matrices, and insert them into
the E-state.

the basic structural definition data sets produced as outlined above
be retained in Library 1.

3-1
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Table 1-1: SPAR ELEMENT REPERTOIRE
Name Description See Volume 1 Sections:
E21 General straight beam elements such as 3.1.7 - 9
such as chamels, wide-flanges, angles,
tubes, zees, etc.
E22 Beams for which the intrinsic 3.1.10
stiffness matrix is given
E23 Bar - Axial Stiffness only 3.1.11
E24 Plane Beam 3.1.12
E25 Zero-Length Element Used to Elastically 3.1.10
Connect Geometrically Coincident Joints
Two-Dimensional (area) Elements 3.1.13
E31 Triangular Membrane
E32 Triangular Plate
E33 Triangular Combined Membrane and Bending
Element
E41 Quadrilateral Membrane, or 2-D Incom-
pressible Viscous Flow Element (when
used with EKSF).
E42 Quadrilateral Plate
E43 Quadrilateral Combined Membrane and Bending
Element
E44 Quadrilateral Shear Panel 3.1.14
Three-Dimensional Solids 3.2.2.3
S41 Tetrahedron (Pyramid)
S61 Pentahedron (Wedge)
s81 Hexahedron (Brick)
Compressible Fluid Elements: 12., 3.2.2.3
F41 Tetrahedron (Pyramid)
F61 Pentahedron (Wedge)
F81 Hexahedron (Brick)
Notes:
- See Section 7.2 for examples of stress output
- See Volume 2 (theory) for element formulation details
- Aeolotropic constitutive relations permitted, all area elements
- Laminated cross sections perm’tted for E33, E43
- Membrane/bending coupling permitted for E33, E43
- E41, F42, E43, E44 may be warped
- Aeolotrovic constitutive relations permitted for 3-D solids

- Non-structural mass permitted for line and area elements.



EKSF

3.5 EKSF-INCOMPRESSIBLE VISCOUS .'LOW ELEMENT INTRINSIC STIFFNESS MATRIX
GENERATOR

Function. EKSF functions similarly to EKS, i{.e., based on the
dimensions, section properties, etc., currently embedded in the element
informatior packets originated by processor E, EKSF computes intrinsic
stiffness and stress matrices for all elements other than E4l elements
(e.g., E2]1 elements) and inserts them into the packets, For E4l elements,
EKSF computes Iincompressible viscous flow "stiffness” matrices and inserts

them into the packets.

RESET Controls. Two additional reset controls have been incorporated

into EKSF which apply to E4l elements only.

RESET Controls

Default
Name Value Meaning
ELIB 1 Library containing the element information packets,
TIME 0 Nonzero value causes printout of intermediate CP and
wall clock times,
GAZERO 10.=20  zero-test parameter, (beam area) x (shear modulus).
C1ZERO 10.720  zero-test parameter, beam non-uniform torsion constant,
EPSILN .001 The penalty parameter, ¢, used to enforce
incompressibility.
XMU 10,4 Shear viscosity of the fluid,

Note: EPSILN and XMU apply to E41 elements only.

Core Requirements. EKS requires only a buffer area through which

element information packets are transmitted. About 5,000 - 15,000 locations
are usually suitable, IO counts will vary in inverse proportion to ccre

space.
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PLTB

Velocity Vector Version (PLTB/VVEC)

PLTB/VVEC functions like PLTB except that for all “derormed” plots, the
"displacements” (flow velocities when executing in the viscous flow mode)
are plotted with arrows indicating the magnitude and direction of the joint
"displacements.” The control statement DNORM remains iu effect for
normalizing joint "displacements” (velocities). Options 24 and 25 do not
apply to this processor. All "deformations” are plotted as flow vectors.

(See examples in Appendix.)

Note: PLTB/VVEC is available for plotting on the FR-80 plotter only.

10.2-06
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Appendix C

PARALLEL FLOW IN A STRAIGHT CHANNEL
MODEL PROBLEM A
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a. Domain and Boundary Condition
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Calculated Velocity Field

Fig. C-1 -~ Parallel Flow in a Straight Channel
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OF FOUR QUnLI-’

Table C-1
INPUT DATA FOR MODEL PROBLEN A

PEARSNBIN202#SPAR(]1).TEST A2/R

1 aXQT TAB

P4 START 81 3 45 6 $ 2-0U o NO wOTATIONS
3 TITLE® MODEL PROBLEM A

4 MATC

) 1 30.+06 33

6 JLOC

7 1 Ce O. O 2 I8 01 C. 9 :
8 9 .08 O. 0. .08 «01 Ce
9 SA

10 1 167

11 CONZ1

12 ZERO 1,2: 9,861,
13 ZERO 2: 1,73, 2,8: 74,80
14 aXQT ELD
15 £E41

16 1 13 11 2 1 8 8
17 axXQT E

18 4 XQT EKSF

19 RESET XMU=2.-04
20 aPMD,E
21 «XQT TOPO
22 aXaT K
23 RESET SPLCP 2
24 aXQT INV
25 axXQT AUS
26 SYSVEC
27 APPLIED FORCES
28 CASE 1
29 IZ1: J=248: 165

30 I21: J=1: 75
31 I=1: JU=74,80: 1.02

32 T=212 J=13: Q51

i3 dXCT SSOL
34 GdXCT VPRT

38 PRINT STAT RFAC 1 )

36 PRINT SYAT QISP 1 1

37 aXQT DCU

38 T0C 1

C-2
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OnIGLLAL -t
OF PCOR QuUALITY

Table C-2
COMPUTED VELOCITIES FOR MODEL PROBLEM A

STATIC DISPLACEMENTS.

JOUNT 1 2 26 e 735403 - 664+NY
1 e 316404 .000 » 217 «000 ® « 030 *
2 « 311<04 «NCI » 28 e 315404 « 000 ]
3 e296+(CH + 000 * 29 « 210404 -117+91
4 «2T1%04 00 ¥ 30 e295+04 2 192+01
5 «226+CH . 000 2 31 «270+04 e225+01
6 «191+,4 «7C0 * 32 «2364 .4 «242+01
! « 137404 «NC0 » X3 «192+0u «199¢N]
8 e 772403 <00 * 3y «132+404 «e137¢0]1
9 «C0D0 « ¢« 200 » 35 e 73843 «6.0+0y

10 «315+04 « 200 * 36 «N0C % « 000 »
) 6 | « 310434 e230+01 37 e 318404 « 160 »
12 e 295+ 4 e 354+ 7] 38 e ING+(y e 294200
13 «270+04 JUEI N1 39 « 295404 s 483410
14 «236+04 444401 40 « 270404 «353+03
15 «192+¢.4 LJIuTeD) 41 « 236404 -« 305+20
16 « 138404 «210C+0] 42 «192+04 -e578+N0
17 e 7128403 « 710+00 43 «17E+04 = 664400
18 «0CO0 ¥ + 100 * by e 739¢33 -.436+00
19 « 315404 « 200 » 45 « 000 % +0C0 *
Fa & «31C*04 ~e192+0) e e 215474 «CJ0 =
21 «295+ 4 -~.318+01 47 «31C+04 ~e 98670
2 e2TU*CH -+ 363+0C1 48 «295+04 = 161+01
3 «23E+ 4 -e353¢01 49 « 270404 -s158+0.
24 «192+04 ~e277+71 50 n236+34 -« 730+20
c

«13E+04 -c¢175+01

\

{Continued)

C-3
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51
52

[
-

54
55
56
57
58
59
60
ol
o2
63
64
o5
56

68
69
70
71
72
72
74
75
76
17
78
79
sC
31

EXIT
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Table C-2 (Concluded)

«192+0y
+138+04
e 738403
«3J0C *
« 315404
«310+04
«295+C 4
27C+304
ec36+J4
« 192434
«138+4
e 7374023
« 000 *
»315+34
«310+04
«295+ 14
«271+04
«276+24
«152+34
e138+44
e 737403
« 314434
« 3C9+04
«e295+04
e 270404
2236404
e 1924+ 4
«1356+04
s TU1+(02
«C0C =

2792

C-4

«112+0Q0
«337+0C
«236+70
. ;'y‘

«000

e 27C+N_
«376+00
« 14 7+00
«S514+00
«8C5+74
« 783400
«434+70
« 200

«3J00

U467+
« 895470
e 127¢2}
0102’01
«153+01
«105+01
sU444 40D

[k
s UL

«"C0
«N00
.N30
« 202
« 00
« 200
«0CC
«0CO

« 02

=]

*
»

*
o

#O% OB ¥ % o o B B
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Appendix D

PLANE SLIDER BEARING
MODEL PROBLEM B
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c. Calculated Velocity Field

Fig. D-1 - Plane Slider Bearing
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Table D-1
INPUT DATA FOR MODEL PROBLEM B

PEARSNBIN202*SPAR(1).TESTB/R

VDI E WN -

aXGT TAB
START 171 3 456 $ 2-0 , NO ROTATIONS
TITLE® MODEL PROBLEM B
MATC
1 30.+06 .33
JLOC

1 Ce Ce Ce O, «000¢ e 9 1 19
Y 36 (9 De «36 «C0C04 Coe
SA

1 1.0
CONZ=1
ZERO 1423 94171,9
ZERO 2: 1,163,9
NONZERO 1: 1,163,9
eXQT ELD

Eul

1 10 11 2 1 18 8

dXQT E

axgT EKSF

RESET XMUZ=2. -Ju
aXxeTl TOPO

aXGT K

RESET SPOP 2
axQT INV
axQv AUS

SYSVEC

APPLIED FORCES

CASE 1

Iz1: JZ2,3:1.0

IZ1: J=164,17G6: 0.5
SYSVEC

APPLIED MOTIO* .

CastE 1

Iz1: U=1,163,9: 100.0
aXQT SsoL

aXeT VPRT

PRINT STAY REAC 1 1
PRINT STAT DISP 1 1
axXqQTl DCU

TO0C 1}

D-2
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Table D-2

COMPUTED VELOCITIES FOR MODEL PROBLEM B

STATIC DISPLACEMENTS,

JOINT

L N N
£ D= DO OO &N -

1o bt b Pos puo e
O Vvoo~yoU»

o N
[y

NN
& W

(8]
‘n

1

«100+03x%

»781+02
e 622402
R 1-1VE 4 Y
e332+02
«225+02
«125+02
« 726401
« 300

«100+03x

«828¢32
+636+(2
o455+ 02
e 346+C2
0223402
e133+02
e 363+01
« 000

«100+0 3%

e 792402
e 6U43+2
dd4806¢J2
e 360402
«2514(02
e 146+02

2

« 0G0
-0179’00
=«355+00
-+413+00
-2 464 +9(0
-+401+00
-+ 335+00
~¢163+20

100

«000
«156+70
«3C7+20
«354+00
«395+00
¢ 339+04
«283+00
«136+70

« 000

. 060
~+139+30
~+271+0Q
~e313+20
~«350+70
-+ 302+00
-e252+00

*

D-3

26 e 846+
27 « 200 %
28 «100+0 3%
29 e BU(j+02
30 e 657402
21 e S14402
32 «e3T4432
33 +25C+02
3y e155+0G2
35 49101
36 « 000 *
37 «100+03*
38 «806+02
39 e 666¢0)2
40 eS514+02
41 e 389442
&2 e 278+02
43 «167+02
44 « 971401
45 «000 *
45 «100+03
47 e 853402
48 0679402
49 «543+32
3n 405402
(Continued)
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~+123+00
«J00 *
«0CC *
«117+70
e 225+70
«255+00
«283+90
«241+00
« 200+0C
»953-01
«300 *
. 000 %
-.101+00
-.195’30
~e222+70
“e246+7(0
-e212+30
“0176’00
~«861~01
» 000 *
« 000 %
«833=-01
«151+00
«166+30
«181+0Q0



51
52
53
54
55
56
57
58
59
63
61
62
63
64
55
06
o7
o8
59
70
11
72
73
74
15

ORIGINAL PAGE |

OF POOR O!'At 17y

LMSC-HREC TR D867285

Table D-2 (Continued)

S1e 76 e 579402 -.671-01
3533125 :}33.33 17 .458+52  -.693-01
629431 .574=31 78 o342e52  -.573-01
000 » .N00 79 «218+02 ~slyy~-n}
"100+33%  .900 80  +127+02 =.210-01
«821402 =.673-01 61  .CO0 *  .000 %
«691402 =,126+00 82 «100+03% .300 %
«5U5+02 -.140+00 33 »885¢,2 «165-C1
WU21402 ~+.153+00 By e 733422 «22C-01
. 308402 -.130+00 85 611402 «139-01
e191432 «137+00 86 o‘i78*92 «512-02
e111402 -.521=01 87 e 3U8+52 -«501=02
. 000 * .000 38 o23“¢92 -.1}1—01
«100+03% .100 89 e953+] -e139-91
«868+32 «470-01 90 .CO0 =+ ,000 =
e 704432 «834=01 91 «100+0 3% « 000 %
e 575402 e865="1 92 e 856402 -e719-02
e439402 .891=-01 93 e 75C+02 ~.584-02
0311402 «69T7=01 94 e 618402 =e757=73
204452 .538=01 95 c499+02 «670-72
.781441 .221-01 S6 ¢ 381+02 «924=12
« 100G * 050 97 0250’;2 »130~01
«100+03% . 150 98 «145+02 «731=C2
837402  -.360-01 %9 .0C0 ¢ 000  x
718402 -.630-01 130 «10G+u3x . N30 *

(Continued)
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Table D-2 (Continued)

131 »905+02 ~«1156-01 126 +COC * «0C8 *
132 « 168402 “e344=-91 127 +100+03» « 00 »
123 e684+(2 ~e529~-31 128 «905+02 s438=-01
104 e 524+ “e727-71 129 eB834+02 «950~01
165 0351402 - T47=91 13C e 723402 «116+00
136 «e268+22 s 719=01 131 «611+32 «141+00
107 0115’32 -0“40-31 432 s486+02 -126*’30
108 000 * 000 * 122 0334402 « 113470
1179 «100+403x « 100 * 134 e194+32 «562-01
110 « 878402 +193-71 135 « 300 * . 000 *
111 e 7874032 s 466-01 136 «100+03% «0C3 x
112 « 665402 «600-01 137 «959+02 -e610-01
113 e SU9+y2 e T64-01 138 e 80242 ~¢135+400
il4 el284.52 «752=-1 139 o T12¢02 =e174+70
118 «287+2 e655=-11 i40 W 6UG ;2 ~e215+¢N0
216 e167+U2 «331-"1 141 «508+02 -.203+00
117 «00C » « N30 * 142 « 361402 =+1864+3(
118 «10C+G3» « 030 * 143 «173+402 =e998-01
119 e 929+2 ~e373-71 144 «3G0 % «030 %
120 « 809402 “e55T7=-N1 145 «100+G3% « 100 %
121 e 7106+L2 =«1i5¢N0 l46 e 939402 «664-01
ié2 «580+02 =¢1:6+00 147 «393+.2 «139+0C
123 sl 3472 -« 141+00 148 197+ 2 e 167430
124 «309+02 ~e129+0C 149 e 691402 «199+0(0
125 «139+022 -e715=-01 150 «561+02 «176+30
(Continued)
D-5
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Table D-2 (Concluded)

151 » 394432 «156+0y
152 «229+02 «765=01
153 « 000 ¥ «3C0 »
154 «100+0 3% « 200 »
155 «100+y3 -«827=01
156 .930’02 ~.180+00
157 e 857402 ~e229+10

158 e TH1402 -+260+00
159 .59“‘Q2 -.263*00
io0 «430+02 ‘0237‘00

161 «209+02 -.127+00
162 « 100 % « 000 *
163 «100+C3x « 000 »

loe4 .986’)2 -868-?1
165 « 973402 «179+70
166 «897+02 «213470
167 « 7197402 «250+00
l68 e 660432 «220+00
169 473402 «193+00
170 2276402 «932-01
171 . 00C * « N30 &
EXIT 477 U 6
D-6
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Appendix E

DRIVEN CAVITY FLOW
MODEL PROBLEM C
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Fig. E-1 - Driven Cavity Problem
Finite Element Mesh and Boundary Conditions
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Fig. E~2 - Driven Cavity Problem
Computed Velocity Field
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Table E-1
INPUT DATA FOR MODEL PROBLEM C

PEARLNDBIN202#SPAR(1),TESTC/R

1 eXQUT TAR
2 START 121 I 4 5 6 $ <=0 o NO ROTATIONS
3 TITLE® MODEL PRORLEM C
4 MATC
) 1 303.+06 .33
6 JLOC
7 1 0. Ce G. 1.0 0. Ce 11 1 i1
8 11 Coe 1.7 G 1.0 1.7 Q.
9 SA
10 1 1.3
11 CONZ1
12 ZERO 1922 1,111,111
13 ZERD 1921 11,121,111
14 2ERC 192 2,10
15 2ERO 2: 112,120
16 NONZERO 1: 112,120
17 aXQTV ELD
18 £41
19 1 2 13 12 1 10 10
20 axXuT E
21 SXQT EKSF
22 RESEY XMUZ=,1
23 aPMD,E
Py aXGT TOPO
25 aXQT K
26 RESET SPOP 2
27 s XWT 1INV
28 aXeT AUS
29 SYSVEC
3o APPLIED MOTIONS
31 CASE 1
32 IZ1: U=112,120: 1CC.Q
33 aXQT SSOL
3y IXCT VPRT
35 PRINT STAT REAC 1} 1
36 PRINT STAT DISP 1 1
37 aXQ7 DCU
38 T0C 1
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Table E-2

COMPUTED VELOCITIES FOR MODEL PROBLEM C

STATIC DISPLACEMENTS.

JOINT

OO N E N

)
« 000
«000
« 000
« 3200
« 300
« 200
.000
.00
« 300
«000
«000
+ 002

=e179+(C1

~-s951+UL0
=.453+01

-+330+C1

-e5B84+ 1

e 326441

e ll4Be+J]

-.9C1+C0O

-e178+J1
«J0C
«Z200
«539+00

- 062+¢(1
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2
«0NC0
« N30
« 000
. DGO
«» 000
.0Ccoe
« 200
«000
- 000
«0u0
«000
«03C
~e215+70
«+ 13801
«202+9C
«568+NC
-s337-71
'05“6’00
=.235+00
°013“’01
«218¢0(
« 300 *
« 000 *
«303+01
«246+M)

L R B BE BE B BRI R B R R
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28
29
30
31
32
13
34
3s
36
37
38
33
4
41
42
§3
™
45
46
47
48
49
50

~e«524+01
~e123402
~eSl4+ ]
-el22+52
~«512+01
‘obS’*Ul

«SR8+00

«000 *
« 200 *

ol 7+]1
-.320+01
-e156+02
-2127+72
~.215+,2
-e126+02
~s156+22
-+ 309+01
~s4lU6eQl
«000 *

« 003 &

e113+31
~el29+.22
~cll4+()2
=e275+402
-e202¢02

(Continued)

«332+C1
«1.6+0)
-e259="N1
-0136’31
e328+71
242401
~e29743G1
+C0 *
« 020 *
Wk96+7]
«843+7]
641401
«4269+01
~e$672-01
-.439eN])
-e639¢0]
~«8344+N])
~slsyen}
«2CC *
«NCO *
«1303+02
«138+32
e 14002
«T79+01
‘0107'00



ORI - LMSC-HREC TR 867285

»
v L

OF POOR QuALST

H

Table E-2 (Continued)

51 =.275+032 =« 795+01 76 2247251 ~s 21402
2 =«113+402 ~e141+02 77 «C00 * « NG00 *
83 =,128+42 -e137+02 78 +»J0Q * « 030 *
54 «117+31 -+101+02 79 =.125+432 e 296+N2
55 «200 % 000 * 30 =.351+01 «380+02
56 + 000 * « 0G0 * 81 =,26%+02 «3844+72
57 =.739+01 «146+02 82 =471%+01 «120+N2
58 =.444+0]} 0226+N2 83 =~a127+.2 247=21
59 =.247+32 0220412 84 ~,T749+4} -el121+72
60 =~-,208+32 e 140402 85 =,270+02 ~+384¢72
61 =.363+02 ~e722-21 £E6 =.361+01 -+381+02
02 =.208+02 ~el142+22 87 =4126+C2 -e2%6+02
63 =,247+02 -a221+02 88 «CC0 * «0GC *
ol -s45C+01 ~a224+02 89 OCOC x « 000 *
65 =4.745+(1 e 144472 30 e 622451 «380+N¢
66 +300 & « 030 2 51 <=.282+02 +532+92
67 « 200 * «1C0 * 92 e 786401 124402
58 « 243401 «215+02 »2 «126+02 «115+02
69 =,188+U2 2319402 94 « 205432 «111+7C
TC =.129432 «291+02 $5 0126402 =e114+02
71 =o319+.2 «2301+0¢ 96 e 776431 ~s 126472
72 =,2735+22 -e1444+7(0 37 =.283+(32 -+533+02
73 =.320+02 -e202+M72 38 «630+01 ~«379+02
74 =o132+32 ~e290+02 99 «00C * «NC0 *
715 =.,189+02 ~«319+02 e «000 * «000 *
(Continued)
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Table E--2 (Concluded)

idl =4341+02 e 639402
132 0 287+(2 «799+00
4323 «4325+02 0117472
124 e531+02 -+ 149400
108 « 549402 «123-11
i0e6 2532402 «232+00
147 426402 ~«119+02
1.8 « 287402 -.1C07+01

1¢9 - 342452 -e636+02

110 « 000 % » €00 *
11 +000 * « 030 *
il2 «100+03% o Oud *
113 «100+33% « 700 %
ila «10C+03=* . 026G b
115 «100+032 « 330 *
116 e10C+53» <230 *
117 «10C+03x 000 *
ile +»100¢03» » 000 *
il9 +100+03» « 700 *
120 «100+03x +N00 *
121 « 900 * « 030 *
EXLT 13.996 e 6
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