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FOREWORD

This interim report presents the results of work performed under

Contract NAS8-34975 for the National Aeronautics a-id Space Administration,

George C. Marshall Space Flight Center, Huntsville, Alabama. This work was

performed by personnel in the Product Engineering & Development Section of

the Lockheed-Huntsville Research & Engineering Center and by the Computa-

tional Mechanics Company, Austin, Texas, subcontractor to Lockheed during

this effort.

The period of performance for this study was from August 1982 through

August 1983. The MSFC Contracting Officer's Representative for this study

is Larry A. Kiefling, ED22.
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WOMY

This report contains the results of a study whose objective was to add

the capability of analyzing a coupled dynamic system of flowing fluid and

elastic structure to the SPAR computer code. A comprehensive literature re-

view was performed and a method was developed and adopted for use in SPAR.

The method utilizes the existing assumed -stress hybrid Pian element cur-
rently in SPAR. An oper"tional module was incorporated in SPAR which pro-
vides the capability for analyzing the flow of a two-dimensional, incompres-

sible, viscous fluid within rigid boundaries. Equations were developed to

provide for the eventual analysis of the interaction of such fluids with an

elastic solid.
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1. INTRODUCTION

Virtually every structure is in contact with a fluid, be it air, water,

or a gas flowing by design or by its natural course over and through the

structure's surfaces. The fluid thereby exerts loads on the structure pro-

ducing deformations which may, in turn, alter the flow of the fluid.

In most situations encountered in the design of engineering systems,

this fluid-structure it..:eraction is insignificant, and the structure and the

fluid can be analyzed independently. There are important cases, however, in

which the interaction of fluid and structural behavior is an intrinsic fea-

ture of the response of both media, and this interaction must be taken into

account in any rational analysis and design. Such is the case, for example,

in the analysis of flutter phenomena in aircraft, the sloshing of fuels or

other liquids in flexible tanks, flow-induced vibrations of submerged struc-

tures or tall buildings, the safety analysis of nuclear reactor components -

particularly the study of pressurized reactor cores - the flow of liquids in

flexible pipes as in the flow of blood in elastic arteries or oil or water

in rubber hoses, the effects of underwater explosions on submerged struc-

tures, etc.

Fluid-structure interaction problems such as these are inherently non-

linear: the d omain of fluid media obviously changes with the deformation of

the structure and pressures exerted by the fluid act on material surfaces

the locations of which depend upon the deformation. There are, however,

significant classes of fluid-structure interaction problems for which useful

results can be obtained by using only linearized equations. Indeed, the

bulk of the work published on this subject deals with one special case or

another for which the analyses can be dealt with using linear or mildly

nonlinear theories.

I
LOCKHEED-HUNTSVILLE RESEARCH 6 ENGINEERING CENTER



r

1

t
1
r
t

LMSC-HREC TR D867285

In very recent times, important applications have arisen in which a

study of rather general and highly nonlinear fluid-structure interaction

phenomena is needed. Because of the formidable mathematical difficulties

inherent in such nonlinear problems, most analysis procedures in use today

are designed for computer implementation. Indeed, for mere than two dec-

ades, a significant volume of literature on the numerical analysis of fluid-

structure interaction problems has accumulated and much of the work over the

last decade has involved the ;evelopment of finite element methods and has

primarily focused on problems of nuclear reactor safety.

This report contains a survey and a critical analysis of current nu-

merical schemes used for fluid-structure interaction problems. Special

emphasis is placed on finite element methods and 3n various models and algo-

rithms now in use or under study for a wide class of such problems. We will

adopt a deductive approach to this subject, considering first the formula-

tion of very general models for fluid-structure interaction and then reduc-

ing these to various special cases that may arise in specific applications.

Following this Introduction, Section 2 contains a brief survey of some

of the relevant literature. The principal sources consulted in the prepara-

tion of this document are collected in the Bibliography. In Section 3, we

discuss so-called mixed Eulerian-iagrangian descriptions of motion and the

corresponding kinematical equations. An attempt is made to present this

subject in a relatively thorough and complete way and to provide some clar-

ity and precision in deriving fundamental kinematical relations that are

critical to subsequent developments. Derivation of the equations of motion

of an arbitrary fluid or solid in such a mixed reference frame is taken up

in Section 4. These equations provide the basis for derivation of the semi-

discrete systems governing finite-element models of fluid structure interac-

tion, discussed in Sections 5 and 6. Interface conditions are taken up in

Section 7. Section 8 contains a derivation of a linear fluid-structure

interaction model for nearly incompressible viscous flows. Modifications to

the SPAR code to permit incompressible viscous flow calculations are given

in Section 9. Results of example problems arc presented in Section 10.

LOCIMEED-HUNTSVILLE RESEARCH 6 ENGINEERING CENTER
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1
2. FINITE ELEMENT METHODS FOR FLUIfl-STRUCTURE INTWCTION

2.1 GENERAL REMARKS

Interest in the development of finite element methods for fluid-

structure interaction problems began primarily in the mid-1970s when concern

over the structural integrity of nuclear containment vessels called for

better methods for modeling the reactor core, the liquid coolant, surround-

ing gases and the vessel walls under various conditions. The names

Belytschko, Donea, Kennedy, and Liu are prominent in this body of litera-

ture, and several surveys of literature on computational methods for fluid-

structure interaction in nuclear reactors have been presented by Belytschko

and Donea and their associates. In this regard, see, for example,

Belytschko (Refs. 1 and 2), Kennedy and Belytschko (Refs. 3 through 5),

Belytschko and Kennedy (Refs. 6 and 7), and the references the-ein to the

series of articles by Donea, Fasoli-Stella, and Giuliani (Refs. 8 through

10), Donea, Giuliani, and Haileux (Ref. 11), Donea (Ref. 12), and the dis-

sertation of Liu (Ref. 13). The voluminous collections of proceedings of

the biannual SMIRT (Structural Mechanics in Reactor Technology) conferences

contain numerous papers on computational methods for fluid-structure inter-

action problems and there one can find a heavy emphasis on finite element

methods.

A significant but relatively smaller collection of papers has been pub-

lished on finite element methods for flow-induced vibrations o-: structures,

wave effects on submerged structures, and sloshing of liquids in elastic

tanks. We shall cite representative examples of this literature later.

f

f
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1	 2.2 VARIOUS DESCRIPTIONS OF MOTION
The first and most fundamental issue that confronts one iu modeling

fluid-structure interaction is the choice of an appropriate framework for

the description of the motion. Traditionally, in solid mechanics it is

natural to adopt a material or Lagrangian description of motion in which the

motion of material particles is traced relative to a fixed reference con-

figuration. Thus, one can imagine an actual mass of material, the particles

of which are identified (labeled) in some way, and then one proceeds to de-

scribe the motion of this mass by giving the spatial positions of each par-

ticle relative to a specified (generally fixed) frame of reference at each

time, t. Some of the earlier analyses of special classes of fluid-structure

interaction problems employed such Lagrangian descriptions, and we mention

in this regard the 1980 publication by Kennedy and Belytechko (Ref. 14).

On the other hand, theoretical fluid mechanics traditionally employs a

spatial or Eulerian description of motion in which the motion of the fluid

through fixed positions in space is characterized as a function of time.

Then different fluid (material) particles may occupy the same place in space

at different_ times, and the object is to develop the kinematical description

of motion in terms of these places rather than in terms of the particles.

Perhaps most of the computational procedures in use for hydrodynamics prob-

lems employ an Eulerian description of motion, and some of these have been

applied to problems of fluid-structure interaction. See, for Example, Chang

and Wang (Ref. 15), Harlow and Amsden (Ref. 16), Wang (Ref. 17), Belytechko

(Ref. 1), and Dianes, Hirt, and Stein (Ref. 18).

It is clear that in a general fluid-structure interaction problem,

neither the Lagrangian/material nor the Eulerian/spatial descriptions are

completely satisfactory. It would be fruitless, for example, to attempt to

trace the motion of fluid particles in most complex flow phenomena (e.g.,

stirring of fluid in containers); moreover, the velocity of the fluid at

t
t
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fixed points in its domain is generally the quantity of interest, not the

displacement of a particle relative to a fixed point. On the other hand,

the motion of a solid through a fluid is most naturally characterized using

a material description, but it is this very motion that alters the spatial

domain of the fluid with time.

There are also computational advantages and disadvantages inherent in

each of these classical descriptions of motion. In the material descrip-

tion, the finite element or finite-difference mesh is imprinted on the ma-

terial. Thus, with large deformations of the structure, severe distortions

of the mesh frequently occur, and this has an adverse effect on the numer-

ical stability, efficiency, and accuracy of most computational procedures.

This mesh distortion can be somewhat compensated for by using rezoning tech-

niques wherein new meshes are drawn on •he deformed configurations at var-

ious time intervals; but these procedures are expensive, difficult to

implement, and not completely effective in many situations. The use of an

Eulerian scheme to trace both the motion of the fluid and the a.jlid is also

imperfect: one must locate material particles of the structure in an

Eulerian mesh, and at any particular time the material surfaces of the solid

will not, in general, coincide with the spatial grid lines defining the

mesh. Some analysts have, nevertheless, attempted to model the geometric

changes in :he structure with time in an Eulerian description by using a

very complex catalogue of material orientations possible in each grid cell

(see e.g., Chang and Wang (Ref. 15)). The complexity of such procedures,

and of their implementation has discouraged their use in most fluid-

structure analysis procedures. One might also mention the presence of con-

vective terms in the momentum equations for Eulerian descriptions of motion.

These destroy symmetry in Li ►e resulting stiffness equations and lead to many

notorious numerical difficulties. While such terms are unavoidable in an

Eulerian description of nonuniform fluid flow, their Lie in the description

of the motion of solid bodies can lead to ill-conditioning of the systems of

equations governing the discrete model.
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1	 2.3 MIXED EULERIAN LAGRANGIAN DESCRIPTIONS
In view of the difficulties noted above, several investigators have at-

tempted to develop mixed Lagranglan Eulerian descriptions of motion, which

will be studied in sowe detail in the Appendix A. These descriptions gen-

erally employ, in addition to the spatial and the material frames of refer-

ence, a referential or Eid system that allows one to displace the finite

element mesh so that it is either fixed, in space, moves with the body, or

MP	 assumes a motion inte:mediaZe to these extremes.

The use of a so-called referential frame, distinct from the material

and spatial frames of reference, to describe the motion of a continuum can

be found in several sources on continuum mechanics. A brief discussion of

such systems is given by Truesdell (Ref. 19) in his "Mechanical Foundations
of Elasticity and Fluid Mechanics." However, the intent of such develop-

ments does not seem to be to provide a basis for studying the interaction of

fluids and solids, nor can one find discussions of kinematics of continua

sufficiently general to apply directly to interaction problems in any of the

standard references on continuum mechanics. Interest in "mixed Eulerian-

:Agrangian" descriptions seems to have originated in the computational

mechanics literature.

The first attempt at developing computational procedures which employed

a mixed Lagrangian-Eulerian description appears to have been in the 1964

papers of Frank and Lazurus (Ref. 20), and Noh (ref. 21). These authors

developed a finite difference scheme for compressible fluid flow in which

the motion of the fluid relative to an arbitrary moving grid appears in the

governing equations of motion. These formulations attempt to provide for

the proper hardling of boundary nodes on the fluid-structure interface while

allowing nodes interior to the Eulerian mesh to remain fixed and undistorted

by the motion of the fluid. Since the resulting formulation ratains many

features of the Eulerian schemes (e.g. convection like terms), the term

quasi-Eulerian is also used to describe them. Another quasi-Eulerian finite

e

c	 a
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I

difference method was proposed in 190 by Trulio (Ref. 22) with regard to

the AFT014 hydrodynamic codes and, a decade after the paper of Frank and

Lazarus (Ref. 20), Amaden and Hirt (Ref. 23), of Los Alamos Laboratories,

Introduced the ALE-technique: Arbitrary Lagrangian-Eulerian (AL.E) scheme,

which was a finite-difference procedure designed to handle Eulerian and

Lagrangian descriptions of motion simultaneous)-. More recently, finite

element codes based on certain aspects of the ALE-strategy have beea dia-

cussed by Belytschko and krnnedy (Refs. 6 and 7), Belytschko, Kennedy, and

Schoeberle (Ref. 24), Done& et al (fiefs. 8 and 0), Kennedy and Belytschko

(Refs. 3 through 5 and 24), Hughes at al (Ref. 25), Liu (Ref. 13), and Liu

and Me (Ref. 26). These mixed/quasi-Eulerian schemes are not without short-

comings: while they provide for flexibility in descriptions of kinematics

and physics, they involve certain features which lead to the necessity of

nonconforming finite element methods (see Hughes, Liu, and Zimmerman (Ref.

25)) and the effects of these built-in discontinuities on the accuracy and

stability of finite element calculations is, as yet, not known.

In the next section, we shall examine the question of appropriate de-

scriptions of motion in more detail.

A
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3. KINEMATICS OF MOTION AND DEFORMATION

3.1 PRELIMINARIES

In modern continuum mechanics, the study o kinematics of continua gen-

erally begins with a mathematical characterisation of a continuous body: &

body "B" is a differentiable manifold the elements of which Are called ar-

ticles; there is assigned to B a v-finite Borel measure, called mass of t;tr

body. Thus, B is a nataral model of a given quantity of matter as a "con-

tinuum."

Kinematics aims at describing the motion of B as a function of time.

For this purpose, we introduce a time scale S c R an4 measure the notion of

B beginning with a fixed instant T- 0 and over a time idtarval T E S

(0,t]. At each T, the particles of B are in one-to-one correspondence with

points in regions of three-dimensional Buclidian space E 2 1t 3 ; indeed,

the motion of a body implies the existence of bijective (indeed, diffeo-

morphic) maps K B + 11 3T CR for each time where 9 T is the closure of an

open region 0 C R3 . The regions sl
T 

(or, technically, S1 are called the

configurations of the body.

To give meaning to the maps K T and to effect a labeling of the par-

ticles of R, a particular configuration A R, called "he reference configu-

ration, is selected. Typically,3 OR = Sl o , i.e., the reference configura-

tion is the actual region in R occupied by the body at T - 0, but this

is not a necessary choice of the reference configuration. We proceed to

introduce in 
9  

a fixed coordinate on 
R 
3 with origin 0 c a R, and we

denote by X the position vector of points in Q R. In particular, if R R

• 0T-0' and 
K W K O , we set

X - K(X); K : B - ER C R3	(3.1)

t	 8
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and say that the particle X occupies the position X in the reference config-

ura ion of the body. If Xk, k - 1,2,3, denote the components of X rela-

tive to some fixed basis, then (Xk) - (Xl , X2 , X3 ) are referred to

as the material coordinates of the particle X.

Physically,the situation can be viewed as this: We wish to name

(label) the elements of B, neighborhoods of which can be regarded as actual,

physical pieces of matter. To do this, we pick one of the regions in space

occupied by the body during its motion, called the reference configuration,

and establish in this region s fixed coordinate system X - (X
k
). Nat-

urally, since we usually trace the motion of the body froa an initial time

T - 0, this reference configuration is ordinarily the actual region occupied

by the body at T - 0. If X is the position (in space) occupied by the par-

ticle X at T - 0, then the correspondence X - K(X) effectively assigns the

numbers (X1 , X2 , X3 ) as labels (material coordinates) to the particle

X. Thus, X has the same label (X1 , X2 , X3 ) for all times T > 0. Since

K is an isometric isomorphism (relative to the usual Euclidean metric), it

is usually unnecessary co distinguish between X and its label X in all sub-

sequent descriptions of the motion of the body B. When the equations of

motion of B are written in terms of the material coordinates X, we obtain a

material description or Lagrangian * description of motion, as will be

further expanded upon below.

Some argue that this is a misnomer since the equations of motion in terms of
the material coordinates were first given by D'Alembert and not Lagrange.
See Truesdell (Ref. 19). However, reference to Lagrange here may be due to
the analogy of this strategy with that employed by Lagrange in his Mechan-
ique Analytic where he labeled collections of discrete particles and traced
their motion relative to a fixed spatial frame of reference. This is essen-
tially w1 l..t is done here with one fundamental exception: a discrete system
has a countable number of particles; thus, natural numbers n N can be used
as particle labels. The Body, B, being a continuum, is nondenumerable;
thus, a labeling _: ..'teme such as the use of triples (X l , X2 , X3 ) of real
numbers is needea to label the material particles.

9
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1 Now, in addition to the material coordinate frave, points in R 3 are

identified by the position vectors x denotes the spatial position occupied

by particle X¢ B in a given configuration 11 t , then there must exist a

bi jective map Kt : B -► at such that

X - Kt (X)
	

(3.2)

The coordinates (xk) of x relative to a given basis are called the

spatial coordinates of the particle X at tim e, t. For each time TES, there

exists a unique configuration 
0T of the body, and the family {Q

T} of con-

figurations, dependent on the real parameter, T, is called the notion of the

body. Instead of Eq. (3.1) we describe the notion by a map K:

B x [0,t] -► R3 of the form,	 ~

x - V(X,t)
	

(3.3)

Then the curve x(t) - v(X,t) for finding X, is the path followed by the par-

ticle X during the motion of the body. Recalling that X - K(X) and that K

is bijective, we can also describe the motion in terms of the material

coordinates X:

I - V(Xst) - V(K -1 (X)ft)

or

	

x - X(X, t )	 (3.4)

where

X -	 o K -1	 (3.5)

Thus, the equation x - X(X,t) describes the motion of the body relative to the

reference configuration in terms of the vectors X or, equivalently, thi ma-

terial coordinates Xk . When the equations of motion of the body B are

written in terms of the spatial positions, x, we obtain a spatial or Eulerian

description of the motion. When no confusion is likely, we shall refer to X

and X interchangeably as "a material particle."

10
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The velocity of the material particle X at time t (relative to 0) is

the vector	 ~

ax Q. t)
'	 at

If f is a scalar-values function of particles XeB, the rate at which f

changes in time for fixed X is called the material rate of change of f. We

can describe this rate using the material tine derivative

Df - af{	 (3.7)
Dt	

atlX fixed

Thus,

v - Dx/Dt	 (3.8)

If g is given as a function of the spatial coordinates x - X(X,t) of

particles X, then

(3.6)

Dg	
ag(11.0	 ax

Dt '	 at	 axk at
(3.9)

where xk denote, for instance, coccdinates of x relative to a fixed basis

in a (say Cartesian) and repeated indices are summed, k - 1,2,. . .,N.

Thus, if vk are the corresponding components of v,

A - 338t + vk2AL(3.10)
axk

3.2 THE QUASI-EULERIAN DESCRIPTION

We now set out to derive a description of motion which is sufficiently

general to encompass both the material and spatial descriptions as well as

intermediate mixed descriptions that may be appropriate for fluid-structure

interaction problems. We continue to employ the notations and conventions

introduced earlier: for a material body, B, a family of smooth bijective

maps {KT}O<T<t exist such that

a

	

11
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K0: B -► i C RN , is the reference configuration

X - K
0 (X) - labels of material particles

positions of particles in the reference configurations

Kt : B -i 9 RN, ?f is configuration of the body at time t.

x - Kt (X) - Kt (
K-1 

M) X(%,t)

- the spatial position of particle X at time t

N - It ., or 3.

In addition to these quantities, we introduce a smooth bijective map 0 from

9 x (0,T) into R , such that i2 t is the image of 0 at time t:	 ~

For te [O,T], 0: S2 ; _n and we write

x - f(y,t)	 (3.11)

or

y-	
-1 

(x,t), x e at , t o [0,T]	 (3.12)

Since the map X is invertible, we can also write

y - ^ (X (X,t), t) _ MM	 (3.13)
The vectors y are said to specify referential positions of particles at

various times, t. y refers to the position x of particle X at time t relative

to a moving frame of reference in with origin 0. Thus, we imagine 0

In this respect, we depart from certain mixed Lagrangian-Eulerian descrip-
tions found in the literature which hold 6 fixed for all times but allow
n(-QR) and 9 to be time dependent; see, for example, Hughes at -1
(Ref. 25), Liu (Ref. 13), and Liu and Ma (Ref. 26).

12
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moving with time through space and y - V+(x,t) a vector from 0 to the spatial

positions x of particles. We also introduce coordinates X k xk 0 yk , k

1, ..., N, relative to fixed set of basic vectors in each of the respec-

tive domains. These notations and the geometrical situation are depicted in

Fig. 3-1 for the case in which o and 0 coincide and are fixed in space.

The coordinates y  are frequently called the $rid- or mesh-coordinates,

for reasons which will become clearer later. It is worth noting here, how-

ever, that if we lay a P •ed mesh on 6, the choice y = X (i.e., * - I - the

identity) yields a Lagrangian grid whereas the choice y ~- x produces an

Eulerian grid.

In addition to the particle velocity field, (Eq. (3.4)), we introduce

the grid velocity vG, which is the rate at which a "grid point" y moves

from a fixed position x in space; i.e.,

G	
a	

a^(y,t>
v (3.14)

- 
at 

yXfixed	 at

The so-called difference velocity vD, defined by,

D y	G
v - v - v	 (3.15)

is then the velocity of a material particle relative to the moving grid n.

As preparation for a major transformation rule pertaining to material

derivatives, we establish the following lemma:

Lemma 3.1. Subject to the conventions and assumptions established

above,

13

LOCKHEED-HUNTSVILLE RESEARCH 6 ENGINEERING CENTER



2

LMSC-HREC TR D867285
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Fig. 3-1 - Various Regions and Coordinate Frames Characterizing
the Motion of a Material Body, B

14
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-1	 -1
3*k	 a^'k	 G

at	 - 
ax 	

v j

where 
*-1 

is the inverse of the map Vr of Eq. (3.11) and the summation

convention is used (j, k - 1, 2, ... , N).

(3.16)

Proof: Let yk denote Cartesian coordinates of y. Then, according to

Eq. (3.13),

lYk - V k (x 't) - 
*kl 

(*
j
 (Y.t),t)

Differentiating this expression with respect to time holding yk fixed

yields

ayk	
"k1	

j a
^k1

t - °	 ax 	 t + at
as asserted.

Let u be scalar field given as a differentiable real -values function f

of the material coordinates X and time t:

V - f(X,t)	 (3.17)

Then the material rate of change of u is the rate p changes in time for

fixed X:

af(X,t)
-

Dt	 at

The following result allows us to compute the material time derivative of

In terms of the grid coordinates and the difference velocity.

Theorem 3.1. Let the conventions established earlier hold and let u be

given by Eq. (3.17). Let

15
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I I

8(Y, t) - M -1 (Y, t ). t)

h(:,t) - f(T 
-1 

(x . t ). t)

I	 Then

Du - ag( ►̂ ,t) + ah(x,t) v 
	 (3.19)

BF	 at	 ax 	 j

Proof: The important idea to be kept in mind here is that we wish to

write u as a function of y but compute its time-rate-of-change holding X

fixed. W. have,

s 8(Y,t) + a8(>V
-1 (X(E,t),t).t) (3^k1 ax + a^—k

Dt	 at	 ayk	 ax  at	 at

But

ah(x,t)	 ah(0(y,t).t)	 a$k1 	a8(Y,t)	 a^-1

axj
ayk
	 axj i ayk	 TX 

and, from Lemma 1,

ag(Y,t)	
a0k1	

a8(Y,t)	
e^-	

G
1	

ah(x,t) G

ayk	at	 — ayk	 ax  
vj	 ax 	 vj)

Thus,

ag(y,t)	 ah(x,t)
Du -	 _ G

Dt	 ^t +	 xj	 (vj "j)

as asserted.

It is important to note that Eq. (3.16) reduces to conventional Lagran-

gian or Eulerian descriptions with appropriate choices of the coordinates

yk or the map

16
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Lagrangian:

G	
aX(X't)	

D
X' 

v	
at	 y'	 0ti

Du	 380Q10.0	 af(X,t)

s	 at	 at

Eulerian:

	I, VG 	 it	x - 0, v  . v
t x fixed

	

DU	
ag(x,t)	 ah(x,t)

	

Dt	 at + ax  vi

3.3 OTHER KINEMATICAL EQUATIONS

Some simplifications in the developments can be realize: by considering

the referential coordinates to coincide with the material coordinates of a

particle X at time T - 0 and to regard the "grid" as moving relative to Lhe

reference configuration n at an arbitrary velocity v  which is not di-

rectly dependent on the particles. If Xa , xk yk are Cartesian compo-

nents of X, x, and y relative to fixed bases, we have

	

G _ 4k
Yk	 *k Q' t) ' vk	 at	

(3.20)

Let

J(X,t) = detl 
ayk	

(3.21)
at'

Then we have the following results:

Lemma 3.2

Gav
BJV . vG = J 

ay

	
(3.22)

k

17
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Proof: Let

_ ayk

yk`
a	

ae

and let easy. fijk denote the alternating tensors. Then

	

J - dot[yk
. a J	 a easy 

eijk yi

.a yj ►s yk,Y

and

aJ	 1 ease e

	

^—)	 'f	 ijr yi .a yj.s	
(3.23)

r,e

Since

I yk m?
* ayj	 aaz	 ij

we have

ax	 cofactor 
[yk a ] _ 1 psa

ayj s	 dot [yk,aJ	 2J a
	 ekij 

yk•p ys, i 	
(3.24)

Thus, from Eqs. (3 .23) and (3.24)

e

	(y i	
cofactor yr ^e 	J 

x	
(3.25)

Also note that

ay
r

	

at yr,e	 axe- at . vr,e
	(3.26)

Thus,

is
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'	 aJ	 aJ	 ayr 8
3(Yr,eS •--t

J axe avr

lyr • ax,

G

J ^- - Jp . vG
r

Lemma 3.3. Given a differentiable real -values function g - g(y,t)

g(*(x,t) , t), we have

(1) d	
a$ + UL VG	 (3.27)t	 at	 ayk It

Similarly,

(2) -̀ gJ 	 JIa$ + V . (gvG )l	 (3.28)

Proof: Condition. (1) is obvious. To obtain (2), note that

V	 (8vG ) 	 (g(y,t)vk(Y,t))
k

g p vG +vG . pg

Jp . (gvG) - gJp . VG + JvG . pg - g at + JvG . Vg	 (3.29)

where we have made use of Lemaa 3.2. Thus, from Eqs. (3.27) and 3.29)

dt - aL + vG D$

• J A + J M + VG
 . Vg

• J	 + JV (gvG)
at

Is asserted.

19
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We will use these results in the next section to derive equatii

notion in the grid (referential) coordinates yk.

3.4 A SPECIAL REFERENTIAL. DESCRIPTION OF MOTION

A fairly general discussion of kinematic3 in a grid or referen

ten was given earlier. We will now focus on special extensions and

tions of those ideas which lead to a convenient framework for treat

practical probleas in fluid-structure interaction. The structure o

kinematical description is outlined in the following five steps:

1. Settial Frame. We establish an absolutely fixed (spatial)
Reference frame in RN; the position vectors x are defined
by their Cartesian components xk, 1 c k c N.

2. Material Frame. At time t - 0, a material body B occupies
region ?r R and we use as labels of the particles of B
the coordinates , Xk,of their. positions in this reference
configuration; the corresponding places of particles {Xk}
are identified by vectors X.

3. Motloa. The motion of B is, as usual, defined by the specifi-
cation of the position x E RN of each particle X at each
tine, t, 0 < t < T:

x	 X(X,t)
	

(3.30)

'	 The motion Z is assumed to be a differentiable bijective map
froa n into Sl into pt C RN at each time, t.

4. Grid Positions. We introduce an arbitrary, differentiable,
'	 injective function ¢: n x 'O,T] -► R x (O,T), such that for

each f e (0,T], the range of ® is a region Q t C R 3 . The
"position" vectorsr	 Y	 ^( r t )r	 V E fit

	
(3.31;

are said to define the grid positions in R N. Note that y
is a position vector of a point (place) in ]R N.  These posi-
tions depend only indirectly on the locations x of material
particaes, viz,

y - i(X-1 (x,t),t) - Vx,t)	 (3.32)

S. Displacements and Velocitiem. One can define the particle
displacement u and the particle velocity, y, by

1	 20
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u(X,t) - x - X .w, X(X,t) - X

(3.33)
Dx	 ax(x,t)

v(X,t) - Dt
	 at

and the grid displacement uG and grid velocity vPI by

uG(X,t)	 y - X - #(X,t) - X
(3.34)

a^(X,t)	 ay
vG(X,t)	 •

at	 at X fixed

These quantities and notations are illustrated in Fig. 3-1.

3.5 JACOBIANS AND TIIM RATES

Let yk ,Xa denote components of y and X relative to a fixed basis. We

denote by j the Jacobian of the transformation Xl- ,,- m(X,t) for each t:

	

ayk 	

I
j(X,t) 	detlax I - det)	

ax

	

a	 a

Likewise, we denote

lJ(X,
t)

axka^k(x,t)

 det 
ax
	 dot	

ax

	

a	 a

(3.35a)

(3.35b)

Then, as was proved in Section 3.3,

Cav
at - j ayk - J v vG

k

(3.36)

av

• 1 W - J o . v

21
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Note that the operator V is the same spatial gradient operator in both of

then expressions owing to our definition of y k . In both expressions, the

tine-rate-of-change is taken with x fix!,,G.

Next, we let g denote values of a given real-valued function of tar-

ticles and tine, and introduce the notations

g	 value of field at particle % at time t

(3.3?)

Rx.t) - g(x.t) . 8(y.t)

where

RX

(3.31)

S(y .t)	 10	 (f.titt)

ADt
 - material tine-derivative of g

tine-rate--o€-change of g for fixed particla R

(3.39)

dw ?$ + V V2
a

• A+ vG PS

where it is underetoad that

the time-rate-of-change of g holding the
at	 spatial position J fixed.

(3.40)

22
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Thus, while the foram of the functions g and g say be different, the par-

tials ag/at and ag/at both represent the race g changes in t at a fixed

spatial position.

Coabining the above results, we arrive at the equations

1

a_(j$)i	 a( $)

at I % fixed	 at

= 3 (A + V . vG$)

-JAN a. g
at ' 

g fixed	 at

J ( + V . vg)

(3.41)

Also note that

(-^) 	 . v8 + gv	 vG)3(	 + v
I B fixed

(3.42)

a(J)	 J(a-i + v 	 og + gV	 v
t	 at11 fixed

We now make a fundamental observation : 	 the partial derivatives ag/

at and ag/at represent time-rates-of-change at fixed points in space. The

values of these rates coincide if we take ¢ = X and vG = 0.	 Thus,

M1

This observation was apparently first made by Donea et al (Ref. 10); see
also Donea ( Ref. 12) and Belytschko and Kennedy (Ref. 27).

23
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ag(x(X.t).t)

at	 g
vG-0

a0W4.t).t^

at
(3.43)

LMSC-HREC TR D867285

t
This relationship proves to be crucial in deriving local equations of motion

in referential coordinates since it enables us to transform any standard

Eulerian form (spatial time rates) into a corresponding time derivative in

grid coordinates. We will exploit this idea in Section 4.

e

24
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I
4. EQUATIONS OF MOTION

4.1 INTRODUCTORY REMARKS

We consider the motion of a material body subjected to body forces of

intensity, b, Per unit mass and surface tractions, S, on a portion, a02,

of its boundary. We focus our attention on control + volumes Q C IR N with

boundary aft a51 U ao 2 , the velocities being prescribed on aS2 1 and
the tractions on ail 

2* 
Alternatively, to obtain equations of motion in

referential coordinates, we consider a control volume , S2t - ¢(Q,t), moving

with the grid velocity, vG , and with boundaries, an - aS2 1 U as^1 2 . Com-

ponents of vectors are referred to a fixed orthonormal basis characterizing

the spatial coordinates, xk . Indicial notation and the summation conven-

tion are used in some of the relationships which follow. The following

additional notations are introduced:

P - the value of the mass density of the body in the cur-
rent configuration,

o - P(x ' t ) - P(X(X.t),t) - P(X.t)

a - the Cauchy stress tensor, with Cartesian components
relative to spatial coordinate directions of

ai j - ai j(x,t) - ai j(X(x,t),t) - ai j(X,t)

b - the body force vector per unit mass in the current
configuration with Cartesian components

bi - b1(x,t) - bi(X(X,t),t) - bi(R,t)

e - the internal energy per unit mass in the current con-
figuration of the body, defined by functions

C - e(x,t) - e(X(X,t),t) - e(X,t)

Other notations will be introduced later.
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I
The local Eulerian (spatial) forms of the equations of motion of an

arbitrary continuum are:

1. Conservation of Mass

LPat + V	 ( py)	 =	 0 (4.1)

2.	 Balance of Linear Momentum

aQ

a atk +	 (Pvivk )	 =	 Pbk +	 i (4.2)
axi i

3.	 Balance of Angular Momentum

aij	 Q3i (4.3)

4.	 Conservation of Energy

^` 	
as	 V

+	 (PV E)	 pbiv +	
iX k + Qa-a (4.4)

at	 axi	 i

where

E	 =	 total energy per unit mass

_-v	 v+e (4.5)

Q	 heat working

aqi=	 + pr (4.6)
ax i

and q
s 
are the components of the heat flux vector and r is the heat sup-

plied per unit mass per unit time in the current configuration. For sim-

plicity, we will take Q = Q in subsequent developments; but it should be

clear that the addition of Q and thermal effects produced no significant

complications in any of the following developments.

26
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4.3 LOCAL REFhRENTIAL FORMS

A direct application of relations (3.41) and (3.43) derived in the pre-

vious section and the above Eulerian forms leads to local equations of mo-

tion in the grid-coordinates, yk.

The superposed caret (") denotes functions of the referential coordi-

nates Yk and time. Thus, for example, the mass density is given by

P - P(y,t)

where it is understood that

P(Y,t) - P(0(X1t)1t)

- P(X,t) - P(X,t)	
(4.7)

etc.,

1. Conservation of Mass. in view of Eq. (3.41a),

n

aat	 - Y t + V . PvG)
x

where 
iX 

indicates that the time derivative is taken with X held fixed.

But, according to Eqs. ( 3.43) and (4.1),

ap(Y, t )	 ap gq,t),t)
at	 at	 Sy

	 - —v . pv

v -0

Thus,

A

^lX	
jV . PvD	(4.8)

27
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where v 	 is, again the difference velocity

F 
D	 vG	 vv	 ^ (4.9)

i
Alternatively, since

^i p	 + j 
8i	

( X fixed)
X	 at

-
A

=	 pj 0 . v 	 + j
atjX

we have

a
I	 - p0 . vG + vkD a-y - + pv
jX

(vG - v)
k

or

ap
at`X =	 vD 	Op - p0" v" (4.10)

2.	 Balance of Linear Momentum.	 Let

o a ki
pi	 pbi + (4.11)

ay 

k

Then a calculation similar to that leading to Eq. (4.8) yields the momentum

equation in referential form,

a(Jvk	 a	 , ,	 ,.D

=	 j	 (pvk v
i ) + jpk (4.12)

at ay
X	 i

Similarly, by expanding the left-hand side of this equation and using

Eq. (3.41), we have the equivalent equations,

28
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A

P avt	

= 

p k 8v

i + pi - vi fW
	

-	
-^ (Pvk ) l

(g
(4.13)

%	 8 Yk Yk

According	 o E.	 4 8	 he	 a	 in bracke tsng	 q	 (	 ) , t	 term	 c	 is vanishes if mass is con-

stant locally.

3.	 Balance of Angular Momentum. 	 Denoting

a ij(Y . t )	 -	 aijWX1 t).t)

~ =	 Gij(X,t)

=	 aij(x-1(x,t),t)

=	 Q i (x .t)j (4.14)

angular momentum is balanced locally if

Qi (Y. t )	 '	 o i (Y. t )
j	 j (4.15)

4.	 Conservation of Energy.	 B;• following the identical process used to

obtain Eqs. (4.8) and (4.12), we arrive at the following referential form of

the conservation. of energy,

aatEl

'	 j 

(°at	
0

PEvG)i X	 +
'	 J[ pbkvk + aYk (aikvi)

+	 ( pEvk)) (4.16)
8 k

Since E = 1/2 v 2 + c (v2 - v	 v), we can also write this result in the

~form

29
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avA A	 A

a at E 	- j	 (Pevk) + Jax	 ytt	 ik 8
i

D
v2 

-a " 

I
	 j 1pvk

	

2	
"`x	 yk

a	

av	 aQ

jvk .p at^ - pvj ayk - pbk - ay ik	 (4.17)

x	 j	 i

If mass is conserved, the term with a single wavy underline vanishes,

by virtue of Eq. (4.8). Likewise, the term with double wavy underlines re-

duces then to the _local momentum equation (Eq. 4.13) which also vanishes.

Then if linear momentum is balanced, we have

	

-^^^	
a v

	

a(E)	 j ay	
k(pevat	
) + j °ik ayk	

(4.18)
x	 k	 k

Finally, since

a^E) - j 
^tlX

 + AEj V • v 
X 

we have

ap^ - Q 
avk + v 
	 - 0  avk	 (4.19)

	at,x	ki ay 	 k ayk	ayk

5. Summary. In summary, the local equations of motion in referential

form are given by

30
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at - vD vp - p v v

A	 A	 A

av  	 aQ

at Pi ayk + pbi + ayki

Qij - Qji

DPC - "D apc "^ 
avk A avk

va	 k ayk - Pe ayk + 
aki ay{

1 < i, j,k < N; N - 1,2, or 3

(4.20)

wherein it is understood that the time-derivatives on the left side of the

equality are computed holding X fixed and that the quantities appearing on

the right side are regarded as functions of the grid coordinates, yk.

4.4 GLOBAL FORMS

Let dv be a differential volume element inil t and ds an element of

surface area of the boundary, ait t , with unit exterior normal, n. The con-

trol referential volume, Pt . is moving with the grid velocity, ~vG , rela-

tive to the fixed spatial frame of reference as before. Let dv o denote a

material volume element in the reference configuration, so that

dv - I det a yi
aX fdu

o - jdvo

a

Finally, let G be a quantity to be conserved in a physical process and sup-

posed G is given by

G(t) - n 

f 

g(y,t) dv

Gt

Then the time-rate-of-change of G is
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dGtt . at A	 i(Y,t) dv

^t

3 . at f g(t(X.t).t)j dvo

a-$t dv oo

SZ

A

a 

S2 

r (
i
t) + 0 • vGg ) j dvo

	

• A r	 dv + A r p vGg dv

Sgt	
SZt

Hence, an application of the divergence theorem yields

dG-	 A J	 6v+ f vG n g di
at

cat 	an

1. Mass. Since

(4.21)

-	 - °	 Pva

j

A

2 dv
y A

A f	 pv	 n ds	 (4.22)

sz t as't

Hence, if M(t) is the total mass of Sg t at time, t,

dM(t)	 .	 d
dt	 at p dv

Af p v	 n ds	 (4.23)f
Qt

At

2.	 Linear Momentum.	 If P(t)  is the total linear momentum of SZ 	 at

time, t, then an application of Eq. ( 4.21) yields for the global form of the

rate-of-change of P,

1	 32
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dP(t) 
d

dt 	 w	 pv dv

Dt

w jpv(vG n) do
ant

f(div Q
w

 + p b) dv
^t	 ^

3.	 Energ)_ Likewise, the rate-of-change of total energy is

dE(t)	 d
t	 Ttj

f ^^
w / 	PE

^	 ^	 w
^	 pb . vdv+

^^	 D	 ^
(pEv	 n

t nt	 an

+ s . v) di
	

(4.25)

(4.24)
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5. VARIATIONAL PRINCIPLES

5.1 SPACES nF ADMISSIBLE FIELDS

We shall introduce abstract linear spaces of admissible densities,
A

velocities, and internal energy: Lat R denote a "control volume" in the

referential system moving with a velocity field, v G , relative to the fixed

spatial frame and let 8R denote its boundary. The boundary, 8n, is further

decomposed into portions, an,,, and 8122 where the velocities v, vG and

the tractions sk - °kini are prescribed, respectively, n being a unit

normal to 8n. We have thus, for each t e [0,T], n • 40t)

L=t

V • space of admissible velocities

w	 8vk w
•	 v I ^	 aki(v) 

8y 
dv ^ < •, v	 0 on ei21	(5.1)

i
R

R	 space of admissible densities

m li	
j (vD	 ¢Vo + 0 ^) dv ( r m tilt c [O,Tj	 (5.2)

n

E	 space of admissible internal energy densities

V	 w

• W I^ w I ( ^'Qki 8yk
 + m^0 v + *VD . 7^*) dvj < m.

S2	 k

VOCR, VV a V, Vt a [O,T)	 (5.3)

34
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At this state, these ©pacces arVtAW Xguely defined to have importzat

mathematical significance. More specific properties of these spaces can be

established once constitutive equations for the matarial have been defined.

Typically, the spaces V, R, and E will be Orlicz-Sobolev spaces such as

R - W ' p (0, Lq (O,T), etc. We shall give more concrete definitions of

these spaces in later developments.

5.2 VARIATIONAL PROBLEM IN REFERENTIAL FORM

IWe now consider the following variational problem:

Given body forces f, grid velocity field v G , and trac-
tions S on 362, find a triple (p, u, c) d x V x E such
that

J (at f + ^pV . u) dv - / VD • Vpm dv
it	 n

f

au	
D aui

(pv) . dT - Pvivk T-) dv

f1

avkj'
1 (vki a 

yi 

+ pbivi ) dv + ^ 1 Si vi de

ant

apc//'

„ 3 0 at + *PC ayk-V+vk^-vki a k*) d., .0

f2

d(^, v, *)c R x V x E

It is easily shown that any solution of the equations of motion (4.20)

Is also a solution of the variational Eqs. (5.4). Conversely, any suffi-

ciently smooth solution of Eq. (5.4) is at least a weak solution of

Eq. (4.20). Thus, Eqs. (5.4) represent a set of variational equations

equivalent to the equations of motion it referential form.

5.4)
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h-1

N

uh . L..r	 ue(t) mM(Y)
M-1

I

1 (6.1)
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6. FINITE ELEMENT MODELS

6.1 THE DISCRETE VARIATIONAL PROBLEM

The construction of finite element models of the general fluid-

structure interaction problem embodied in Eqs. ( 5.4) follows the sttndard

steps:

I. The domain, t, is partitioned into E finite elements such that for

each t e [O,T]

n	 U na, Oe (i P. - m e - f
e

2. Piecewise polynomial shape functions are defined over each element

which rpovide a basis for local approximation • of p , u, and E. Typically,

these have the properties

s

s

K

^P`

Eh - L^	 ee( t ) ^L(Y)
L-1

where Re , Ne , and Ke denote the numbers of element-degrees-of-freedom

for the respective local approximations; pe, 'e, and ee denote nodal
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values of ph, uh, and eh at time t, and the local shape functions

usually satisfy conditions of the type

	

SM(!0)= 6 ,
	 1<M, N< e

^M(yu )	 dN•
	 1<M, N < N e	 (6.2)

	

,L(YN) = dL,
	 1<L, N< e

with yQ , yu, and y  the element coordinates of nodes corresponding to the
local approximations of p, u, and c, respectively.

3. The shape functions are designed so that they match at inter-

element boundaries so as to produce g'.obal basis functions

Bi (y), 01 (y ), `Yk (y) (1 < 9 < R, 1 < j < N, 1 < k < K),

which are defined over the entire domain G and which provide basic functions

for finite-dimensional spaces Rh , Vh , and Eh , respectively, and so that

	

Bil

_	 _ fie , 
(, j (_	 0M, TI	 = ^N	 (6.3)

	

^e	 0e	 0e

In conforming finite element approximations, frequently have

	

Rh C R, Vh C V, Eh C E	 (6.4)

where R, V, and E are the spaces of admissible functions introduced in the

previous secton. We shall not, however, restrict our analyses to conforming

finite elements.
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6.2 SEMI-DISCRETE MODEL

The semi-discrete, Galerkin, finite element approximation of the varia-

tional problem (Eq. (5.4)) is characterized by the following discrete prob-

lem:

Given f, vG , and S, find (P h , uh , Eh)E

Rh , Vh , Eh such that

JOh 3th + Who . uh ) dv ^ ^ f vh . VPh 
Oh 	

dv

S2	 D

f

3uh	 h D 3uhi

 (P h7h 3t - P h vi vhk 3yk ) dv
0

^ f (a 
y

ki 3 hi 
+ Ph b  Vhi ) dv +	 r Si vhi ds

0	 i	 30 3
2

3PhEh	 'uhk _	 D aP hEh
f N 3t + *h Ph Eh 3yk wh vhk oyk

S?

-aki 
3yhk

k ^ h) dv - 0

(6.5)

V( Oh, vh, ^h) E RhxVhxEh

where

D	 Gvh - v - vh.
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7. INTERFACE CONDITIONS

The main difficulty in employing a general ALE-type description of

motion for fluid-structure interaction problems is the specification of

boundary conditions at the interface of Eulerian and Lagrangian meshes and

at free boundaries. If r denotes any material surface on which such condi-

tions are to be imposed, then a necessary condition to be met is

vG - v on	 (7.1)
n

where v  - v  . n, vn - v • n, and

vG - the grid velocity

v - the particle velocity

n - a unit normal to r

To generalize this condition, consider the situation shown in Fig. 7-1

in which a nodal point N is assigned a given trajectory and velocity vG.

The material surface, r, is assumed to be given by the equation

x2 - ^(x1) or x  - ^(x2)

If

it - unit orthonormal basis vectors

r - position vector of points on surface r
M

then

1
n	 1	 [^ i t

 - 12]
+ ^,2 
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;^-- Free Material Surface,
n	

/ r: xL - m(x1)

t

Trajectory

Fig. 7-1 - Geometry of Free Surface
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C9,

and

V" - vn - ( vt i t + v21 2) n
-ft 	 ft

'
v	

_	 1
l w	

'2 
1/2	 v2	

12 1/2

If x  denotes a coordinate tangent to the node trajectory path, then

vG = 0, and we have the condition

Gdd*
vl v  - v2 

dx2
(7.2)

In general ( for three dimensions), if t is given by an equation of the

form

x  - ^ (x 2.x3)

the interface condition is

	

v1 - vl - v2 ^ - v3 ^
	

(7.3)

2	 3

If F is a fluid-solid interface, we have

v  . vFluid = vSolid	
on t	 (7.4)

n	 n	 n

at all nodes on r.
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8. A LINEAR FSI-MODEL FOR NEARLY INCOMPRESSIBLE VISCOUS FLOWS

8.1 GENERAL

We would like to construct a formulation of the fluid-structure inter-

action problem which has the following features:

1. Is applicable to the problem of a viscous incompressible or

slightly compressible fluid interacting with an elastic solid.

2. Is characterized by linear equations.

Unfortunately, linear FSI-models for compressible flow almost exclu-

sively deal with the small-perturbation acoustic approximations of plane or

spherical waves impinging on an elastic body and these problems are of se-

condary interest here. We shall therefore, consider a model which arises

from a penalty treatment of the continuity equation for incompressible vis-

cous fluids, thereby allowing for a non-zero "bulk viscosity" of the fluid.

8.2 GOVERNING EQUATIONS OF THE FLUID

For the general Stokesian fluid, the governing equations of motion are:

Continuity:

ap
at + v

k Pk + pvk k - 0	 (8.1)

Momentum:

avk
P at + Pv3 vk , j - Pbk +ak3,i	

(8.2)
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Constitutive:

o k = (- 7r + A d rr) 6 k + 2U d k 	(8.3)

^	 ^	 1

where

p - the fluid density

v  = Cartesian components of velocity

bk - body force density

°k - components of the Cauchy stress tensor

7T = the thermodynamic pressure

dij	
2
1 

(viJ + vjli ) - the deformation rate

A,p - deletational and shear viscosities.

The thermodynamic pressure n is given in terms of p and the absolute temper-

ature 6, by the equation of state of the fluid. Since we are ignoring ther-

mal effects here, we have

Equation of State:

Tr - 7T ( P)	 (8.4)

For polytropic gan, for example,

n (P) - Po p Y	 (8.5)

where po = constant and y is a material constant.

Upon substituting Eq. (8.3) into Eq. (8.2), we obtain the Navier-Stokes

equations for isothermal, viscous, compressible flow:

avk
P at + pv j vk ^ i	

P bk - ^k + (X + u) °i, jk +' "k,jj	
(8.6)
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I ,t

which can also be written in the vector form

t	 •
P 	 - b-Vtt+(a+2U)V (V.v)-uV x V x v

- '	 N	 N p	 N p N	 p	 p N

where v is the material time derivative of the velocity:

	Dv 	 av

	

v - nt	 at +N'V°

8.3 A PENALTY FORMULATION

Let P denote the vector defined by
N

P P - P (v - b) + PV x curl v

	

N	 N N	 N	 N

Then the equations of motion can he written compactly as

P - - div v

P P - kV div v - VTr
p	 N	 p

(8.7)

(8.8)

(8.9)

(8.10)

where k - a2 + u is a "bulk" viscosity for the fluid. In the case of an

incompressible fluid, these equations reduce to

where 7 is now the unknown hydrostatic pressure.

A penalty approximation of the incompressibility condition (div v - 0)

In Eq. (8.11) yields alternatively, t:ie modified momentum equation

	

P P - -e-1 V div v + kV div v	 (8.12)
N	 pE	 N	 Ne
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	s:hpre E is a positive number and one hopes that
	

OF POOP QU ALi Y

div v -0
^E

as E i 0
	

(8.13)

n ^ n
E

with

	

Tre - -e 1 div vE
	

(8.14)

and the convergence in Eq.. ( 8.13) is in ( H'(2)) N for v  and L2 ( S2) for TrF

It is clear that

1. The penalized momentum ( Eq. (8.12)) corresponds to that of a
compressible fluid with an equation of state given by Eq.
(8.14).

2. If this compressible fluid is characterized as a baratropic (?)
gas according to Eq. (8.5), then the continuity e quation is of
the form

P	 E Po pY+1	 (8.15)

3. Over any d.,main Q,CQ on which p,k - 0 (p varies only with
time) we have

ftO	 pdp - 

E po t	 (8.16)

that is, the density in Qo can be determined by a quadrature.

We shall employ the approximationQ (Fq. (8.12) and Eq. (8.16)) in sub-

sequent discussions.

8.4 GOVERNING EQUATIONS OF THE SOLID

The motion of an elastic solid is governed by the classical equations,

(Ei jkk uk, Q) ' j + P  f i	 p s ui
	 (8.17)
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EiikR -	 the elastic constants of the material (Hooke's tensor)
exhibit standard symmetries and ellipticity

uk =	 the Cartesian components of the displacement vector

Ps -	 the mass density of the volid

f i a	 the components of body force of the solid

P v r ( e l - k) 0 div v+ u0 x curl v- p b in $^ F
N	 N	 N	 N	 N	 N

v - v	 on rF1

tF = sF	 on rF2

(8.18)

8.5 BOUNDARY AND INTERFACE CONDITIONS

Consider the geometrical situations and notations indicated in Fig.

8-1. In this case, the FSI-Problem is governed by the following equations.

'r
r

F luid

F

E

{
Q

`F

P

t

r

Fluid-Solid Interface

Solid
{

A

w

I

S

I

v - u	 on r 

0. Eu+p f	 p u	 on S2
N N N	 s-	 s N	 s

u - 0	 on rsl

n Eu - Ss	on rs2

(8.19)

(8.20)
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Fig. 8-1 - Fluid-Solid Interface

Initial Conditions

v(x,0) - v0	on OF

u(x., 0) - u0 	on Q s

(a.21)

u(x, 0) r u0	 on 0 s

v0 - u0	on f 

F
in Eq. ( 8.18), v and s denote prescribed velocity or tract ..s

along rF , with

	

t  - n . a F (v)	 (8.22)
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where 1(v) is defined in Eq. (8.3) and n is a unit vector exterior and
Y	 Y	 ...

normal to the surface r F . The interface condition, Eq. (8.19) charac-

terises the so-called no-slip condition; i.e., the fluid is to adhere to the

solid at the interface: to do otherwise would suggest a discontinuity in

traction acro ►s the interface.

In certain instances which suggest that this no-slip condition be

relaxed, we can use instead of Eq. (8.19) the slip-interface condition

u	 - v ; ( •i - v) . T = uF . T	 on 
rI	

(8.23)
n	 n	 Y	 Y	 ,.

where u  = u . n, v  - v . n, T is a unit vector tangent to PI , v is a

film coefficient (which may depend upon temperature and density of the

fluid) and SF is given by Eq. (8.22).

8.6 VARIATIONAL FORMS

Let vie (C1C )) 3 and cps (C 1 G7 ) ) 3 be sufficiently smooth
vectors defined over ?7 F and Sts , respectively. Taking the inner product

of the momentum equations of the fluid and the solid with ^ and W , respec-

	

t	 Y

tively, integrating over the respective domains, and applying the Green-

Cause theorem yields:

C rpvk ^k dx +^ J • ^ vki ski+k,divvdiv t^] dx
JJ	 ,	 Y	 rr

F	 F

faFik(v) 
n  ^k 

do +r Pb . ^dx

F	
S2F	

,.

J P s K k dx + r Ei jkk uk, i, j dx

^S	 S

f
Ps f . ce dx + f Gsik ( u) n i cok do

U S	BSS

48

LOCKHEED-HUNTSVILLE RESEARCE b ENGINEERING CENTER

(8.24)



t
1
1
I

I

I

L

E
f

LMSC-HREC TR D867285

vi
nF PCJR QUADI Y

wherein

k	 x + u _ e-1
c

a	 eF (v)	 uvi k + k div v 61k	 (8.25)

aki ( .	 Ekirsur,s

on n  we take

*k - 0
	 on rFl V r I ; aki (v) n  - 

Si 
on rF2

Thus,

f aki(y) nk ^i do - r Sk

F	 •/	

*k do

BSt 
 F2

Similar3y, withtOk - 0 on rSl U rI,

3 ak,(u) nk i do -	 f SF Ok do
Ms	 ^S2

Thus, we srrive at the variational boundary-initial-value problem of

finding v(t), u(t), t e [O,T], such that

pvk *k dx +

	

	 /' aik'v) ^k i dx

^F

k
=	 pbk ' dx +	 j Sk ^,k do

^F	 rF2	 (8.26)r PS uk 
(Pk
	

Q

dx +	 f a ik (u) ^Ok i dx

S	

S^ J

fPS fk ^k dx + f Sk c'k do

Q  
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for all sufficiently smooth functions V+, c^ which vanish on 
rFl U 

I and

rSI U 
fiI' respectively.	 ~

8.7 FINITE ELEMENT MODELS

We partition df - ff F 
U 'as into finite elements in the usual manner.

The approximate velocities and displacements are of the form

vk	
6.r 

vk *J	 uk	
L.^ 

uk cp J	
(8.27)

J	 J

where vJ , uJ denote values of v  and u  at a nodal point J in the

respective fluid and solid meshes. Introducing these approximations into

Eq.(8.25) yields the corresponding element equations of motion in terms of

the nodal values. The final system of equations for the discrete model is

of the form

	f 	 f
aFF MFI 

2	
!F	 KFF KFI	 ^F

	

f	 f
MIF Ni MIS	 uI + KIF K 1 

0	
u 

0 Ni MSS	 us
	 0	 0	 0	

us

0	 0	 0	 °F	 b
M	 ti	 ti

+	 0 K
IS KSS	 uI	

fI	 (8.28)

0-
 

KSI KSS	 !S	 f
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Here the matrices ^._... , MSS are mass matrices, Kam , ... are
rF'

fluid "stiffness" matrices, 
K
IS' '' KS5 are stiffness matrices for the

solid. The vectors v and u of nodal values of velocity and displacement are

partitioned into column vectors corresponding to nodes on the interior of

the fluid/solid mesh and nodes on the fluid-structure interface:

VF
uI

v u =,
]

v
u 

The no-slip interface condition enters the formulation by setting v i =

uI . Hence, the division of nodal-point degrees of freedom in Eq. (8.28)

corresponds to a convention of the type indicated in Fig. 8-2.

vF

UI

IT
-S

Fig. 8-? - No-Slip Interface
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Since MFF is invertible, the second equation ( the interface equa-

tions) in Eq. (8.28) can he written

MII uI + MISs + If
	 =f
 vF + KII ui + KII uI + KSS uS 	 fI	 (8.29)

where

_	 -1
NI MII - MIF MFF MFI

f	 f	
M ^ 1 Kf

KIF - KIF - MIF FF _FF
(8.30)

--ff	 M 1 f_

KII	 KII - MIF MFF KFI

1
f I - fI - MIF MFF b

(matrix condensation).
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9. SPAR MODIFICAPIONS FOR INCOMPRESSIBLE VISCOUS FLOW CALCULATIONS

9.1 ORIENTATION

In the standard program, SPhR computes the stiffness matrix k for the

four-node (E41) element by the formula

k - TT H-1
 
 T

where T and H are the matrices

	

T	 f RT L do, and

	

r

 fH  	 PT N P dx dy.

In these formulas, the following notation is used:

• P is the matrix defining the stress components o

Q22, Q121T in terms of the vector R of stress -
degrees-of-freedom

a = Ps (Order P=3x5)
ti	 h N	 N

9 N is the 3 x 3 matrix of material constants, and in the case
of a viscous incompressible fluid is

1 0 0
1

N	 - 0 1 0
2u

0 0 1

o 0 is the area of the element and r is its boundary

• R is the matrix defining the surface tractions S - {Sl,
- S2 IT in terms of the stress parameters S:w

S - R (3	 (Order R-2x5)
V	 M V	 ti
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This corresponds to the Cauchy stress principle,

nl n2 0	 a

	

Si = aij n^
	

2x1	 0 n
l n2 3x1

-V i

n

S - n a - n P	 R R; i.e.,

R - n P	 n - matrix of components of unit
normal to r

• L is the matrix defining the boundary displacements v -
"' {vl(s), v2(s))T in terms of the 8 x 1 vector q of nodal

displacement degrees of freedom

	

v- L q	 (Order L- 2 x 8)

9.2 Q MATRIX CALCULATION

We wish to compute an additional matrix Q that is similar to T except

that it is of order 1 x 8:

Q - f (nl , n2 ) L ds

	

1x8	 S2	 1x2	 2x8

The computation of Q proceeds as follows:
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OF P 0 0 R Qv; ^'^ d
Using the notation below

n^

in

x,u

Along boundary 1-2

	

/^
2 	 x2

J	 =	 (n1 u + n1 v) ds

1	 0

nl = 0,	 n2 = -1

u = ql,	 v = 0,	 ds = dx

2	 x

f2
 [(0) q1 + (-1) (0)J dx - 0

1	 0

Along boundary 2-3

	

f 3	 y3
(n 

12
2
J	

u + n v) ds
,^

0^
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where	 OF P 0 0 R Q _ A LIrf

Q -;(x^2)+ 

^	 y3	 x2 - x3	
R

n1	
k 

1	 n2 •	
k9	

do	
y3 dy

	

u s (1 - y) q+ y q .	 u	 y q3

	

Y3 1 y3 2	 y3

3	
y3

( 1 - y) q1 + y q2 + ( x2 - x3) 2 q3 dy

2	 0

	

J	 3	 3	 y3

Y
3
	y3	 (x2 - x3)

2
q 1 + 2 q 2 +	 2	 q3

Along boundary 3-4

4	 x4

J

f i f
(n1 u + n2 v) do

	

3	 x3

where

2

J(X7:74
 + (y3 - y2)2

y4 - y3
n

x3 - x4

n
1	 Q

'

2 Q

x-x4 x-x4

u 1 -
q 4 - x4	 q2x3 _ x4 x3
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v
	 - (

x-x4 	x-x4
-x3 _ x4 q

5 
+ x3 _

X4)q3

de = (	 ) dxx4 - x3

^	 ,I

t

x4 
J[ Y4

 - y.3 x - x4	 x - x4	 .

f 	
[(l

	 x4 q4 + (-x3 - x4) q2
x3

+ x3 x4	 l_ x-x4	 q + x-x4 q
	

kdx [

R	 Vx3 - 4))
5	 x3 - x4 3 (x4-x3^

(Y4 - Y3 )	 (Y4 - Y3 )	 (x4 - x3 )	 (x4 - x3)

^^ q4 + 2 q2	 2 q5	 2 q3

1	 Y1

_	 (ni u + 1R2 v) do
^^JJ

4	
Y4

Qx4 - Y4

Along boundary 4-1

where
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q5,	 do = -	 dy
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0f (_y q4 +y4yg5)f4	 Y4

x4 	Y4

	

2 q 5	 2 g4

2	 4	 1

1 11-.	 1	 2	 3	 4

f

Q	 2 [ Y3g 1 + Y4g 2 + (x2 - x4) q 3 - Y 3g 4 + x345]

9.3 THE NEW PENALIZED STIFFNESS MATRIX

We are now ready to compute the new stiffness matrix for the incom-

pressible viscous flow problem.

I
Step 1: Compute the usual stiffness matrix K  using N s1 3x3

K  ` TT H-1 T

Step 2: Let A  denote the area of the element. Using the Q matrix

discussed earlier, compute the perturbation stiffness matrix

K	
1. _L 

QT Q
_e	 a Ae - -

Step 3: Add K and K to get the element stiffness matrix

K . Ko +K
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The theory behind these calculations is given in Appendix A.

These modifications have been incorporated into the SPAR code. Update

pages to the SPAR user's guide are presented in Appendix B.
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t
10. RESULTS

Solutions were attempted for four two-dimensional example problems.

The first three consisted of viscous flow of an incompressible fluid within

rigid boundaries. The fourth problem consisted of two elastic plates

coupled by a Stokesian fluid. Reasonable results were obtained for the

velocity field for the first three problems. 	 Descriptions of the example

problems with sketches, finite element grids, SPAR input data listings, and

tabulated results, are presented in Appendixes C through E. A pressure cal-

culation. routine was implemented but calculated pressures were not reason-

able and no results are presented in this report.

The first example (Appendix C) consists of parallel flow through a

straight channel with uniform pressure boundary conditions applied at the

entrance and exit of the channel. This problem has a linear pressure dis-

trihuLlo n in the flow direction and a parabolic velocity profile in the

transverse direction. An 8 x 8 element mesh was used. A plot of the finite

element grid, with the transverse scale enlarged for clarity, is shown. As

can be seen from the tabulated results, the velocity remained essentially

constant in the flow direction verifying that incompressibility is enforced.

The second example (Appendix D) is a plane slider bearing lubrication

problem. This problem consists of a moving guide surface separated from a

stationary slide block by an incompressible viscous lubricant. As can be

seen from the dimensions on the sketch, this model has a length-to-width

ratio of 900. This caused a problem with element aspect ratans in SPAR with

an 8 x 8 mesh, so an 8 x 18 mesh was used for this problem. Again, a plot

of the model with the y-direc:.*,r•n scale enlarged for clarity is shown. The

computed -elocities agreed very well with the analytical values.
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The third example (Appendix E) consists of incompressible flow in a

driven cavity. The problem consists of a square box enclosed on three sides

containing a viscous incompressible fluid driven on the upper surface with a

uniform velocity.
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A MODIFIED HELLINGER-REISSNER FORMULATION
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Appendix A

The following equations govern the steady uniform flow of a viscous

E
incompressible fluid:

i

b	 aij ► j	 p'i	 fi

	

(v.	 + v	 )dij	 lrj	 j,i
d	 1

•	 iJ	 2 u aij

dkk	 d iv v - 0

n. (al. - p 6• .) - S. on r
J	 1]	 ij	 i	 a

v .	 v	 on ri	 i	 v

Here aij are the deviatoric stress components,

_	 1
aij - aij	

3	 6 ij akk
p is the hydrostatic pressure, f  the components of body force per unit

volume, d
iJ

. the components of the deformation rate tensor, v i the

velocity components, p the viscoscity of the fluid, and S i and v0

denote prescribed tractions and velocities on portions r
a	 v

and r	 of

the boundary r of the domain Q C R 3 with unit exterior normal n .

E
Ef-
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OF POOR	 ALM'S'^

We shall momentarily set f a 0 , s a 0 without loss in generality.

We next introduce a special complementary energy functional t defined

on a space of self-equilibrating deviatoric stresses and hydrostatic pres-

sures:

E	 {(o^, P )	 S x 
PQi J ,] - P, i - 0 ,	 (A.2)

(oil - P d id ) n. = 0 on r }

( a , , P >	 J	 4 alb a.. dx

(A.3)

+
fr	

(v i . - p d i .) n. v0 ds
J	 J	 J

v

Here S and P are spaces of stresses and pressures, respectively,

defined on the closed body S2 which contain functions sufficiently smooth

that the functional 0 is well-defined. The functional 0 is essentially

that introduced by Bratineau and Atluri*.

Formally, the Euler-Lagrange equations corresponding to the stationary

condition

Y (Q- , P)	 d 0 (a', P) , ( a , , p )) - 0	 (A.4)

are

1	 ,
v (i1 ^ ) = 

di J 	211 oiJ

(A.5)

vii	 v v a 0

Bratineau , C., Ying, L. A., and Atluri, S. N., "Analysis of
Stokes Flow by a Hybrid Method," Finite Element Flow Analysis, University
of Tokyo Press, pp. 981 -988, 1982.
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OF ^^1L1 lJ'r+^-E I 1

Our next step is to introduce a perturbation 0 
E 

of 0 associated

with the hydrostatic pressures p . Let E denote an arbitrary positive

number. Then we define

	

^E (Cr' P)	 4 (C ' , P) + 2 J 
p^ dx
	

(A.6)

n
Let

	

{ I a'{ 1

2 

'	 a'ij af. dx - (o',ar')
- 

o fn

(A.7)

{{PI12 
-fn

 P2 dx

Then, for any fixed po & P , the functional v' +	 (a' ,p ) is concave,

differentiable, and coercive:

s
mE (v',

	

P
O ) 	 4u { IQ ^I I o + (a, 0 v) + C(p0 , v)

_ 4u IIQ' I1 2 + IIQIIa 116 vllo

+ C(p0 , v)

i.e.,

0E (a' , p0) + — as ( 1Q-I 1
0 

+ +co

Likewise, for any fixed Q' E S , the functional p + 	 (a' p ',is concave,
.o	 E _0 ,

differentiable and coercive (0 (Q 	 p) +	 as {{p11 ► cc).	 Hence, we
e »o

can conclude that

• for every E > 0, there exists a unique saddle point (v' p E)

of 0
e

• as E + 0 , (a , pE ) conveys to a critical point (a',p) of

the functional 0 .

A-3
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OF POOR QUALITY

Notice that (cr PE ) satisfies the variational equations

(- 2p 
olj + v(i ^ j) ) Qij dx 0

i2

r (-v.	 * CPC ) p dx	 0	
(A.8)

•J	 .i

SI

for all (a , p) 6 E

Thus,

pe	 -	 div v	 (A.9)

It appears that the use of me is equivalent to appending the complimentary

energy with an exterior penalty term corresponding to the incompressibility

constraint.

We can relax the constraint off.	 - p,.	 0 (equivalently, (a ,p )

	

i J, j 	 1	 -

E S x P) by introducing the functional,

LE A x S x P- R

r	
(A.10)

LE (a , (Q', P))	 it (a', P)- *	
J ^i (^ij,j - p,

i ) dx

with A - ( L 2 (S2)) 3 , the Euler equations of which are (formally),

2u 6 ij * v (i,j) ' 
0

v.	 i 0
i,i

'	 0_p
i

a i - v i no

i.e., X is the velocity field defined on the interior of the ' ,-main P. .
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Let us now consider the construcr_ivn of an assumed-stress hybrid

finite element approximation using the functional O E (and ultimately

LE . We begin in the traditionPi way by introducing approximations. of

the stress c' and the boundary velocities v form

X11

Q'	 (122	 P (x)

(112

v(x)1 
v	 •^	 L q

V
2 

(X)	 ..

where P is a matrix of polynomials in local element coordinates x 1 , %2,

s is a vector of stress parameters, L iu a matrix of polynomials in

x i y x2 and q is a vector of nodal velocities associated with boundary

nodes. Likewise, we approximate the element hydrostatic pressure field

p by

p - A(x)p
	

(A. 12)

where A is, again, a new matrix of polynomials of j, is a vector of

pressure degrees-of-freedom. At this stage, p and A should be selected

so that al.	 - p, i	(or, in matrix notation, DTa - V p - 0).

With these notations, the functional 
0  

for a typical finite element

becomes

P)	 2 BT H B + BT T q - PT Q q	 (A.13)

Z pT N. P
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where

K	 . 2 	̂ f P
T P dx

u 

T	 -	 PTnLds
Jr	 " (A.14)

Q	 0 
fr 

AT n L ds

M • 4ATAdx

The discrete functional assumes a stationary value whenever

8mF
- 0	 -B8+Tq

- (A.15)

2mE^0	 -Qq+EM

Thus	 -

B	 i	 H 1 T q
(x..16)

1 M-1 Q q (A.17)

and, therefore,

L q  K q (A.18)
E	 2	 -	 ..E -

where	 K	 is the perturbed stiffness matrix,
_e

K	 TT H, T	 _	 QT M I Q
(A.19i

..E	 E

The matrix	 TT H-I T	 is the usual assumed-stress hybrid stiffness matrix

for the elament whereas	 -Q	 M	 Q	 is a penalty-type matrix associated

with the constraint	 div v - 0 .	 Notice that the hydrostatic pressure has

been eliminated completely from the formulation, and is computed a posteriori

by the formula

A-6

LOCKHEED-IIUNTSVILLE RLUARCH b ENGINEERING CENTER



OF t^^f.,, C ,	
,3

LMSC-HREC TR D867285

Ap	
1 

AM -1 CC9E
(A.20)

L	 - 4	 ( B , P 10 + P  B S - UT C P

is	 (13)(S p)wherein	
0 

given by	 and

B	 -	 r	 b 	 DT P dx

Q

c	 - f b 	 VT A dx
lZ

Thus, instead of	 (15)	 we have

-HS +TS+BT U	 0

-Q4 + EM p- cTU	 -	 0

B B- c p	 -	 0

El

A-7

(A.22)

(A.23)

IJ

Interior Velocity Formulatiou. An enriched approximation, which may

lead to coordinate-invariant stiffness matrices, is obtained if we repeat

the above calculations using the perturbed Lagrangian L E of (A.10). This

necessitates that we introduce an independent approximation of the interior

velocity X - V of the tyne

b	 (A.21)

^2

where b is a matrix of "bubble functions" (generally vanishing on t)

associated with degree-of-freedom parameters U . For a typical element,

we have,

p -
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from which we compute

1
u- so q - E S q

OF Po()R QUALi'0(

(A.24)

where

s0 = RE B H I T

s, = RE ' c M ' Q

R = B H- ' BT + 1 c M 1 CT
-E	 - - -	 E -- -	 j

Hence,

S	 H I (T+BT S) q

I>PM	 (Q+cT S) q	 l_	
J

with S = SD - E- ^ S, . Finally, the element stiffness matrix is

K = (T + BT S ) T H-I (T + BT S) - E- ^ (Q + c  S)1

M- ^ (Q + T S)

and the hydrostatic pressure is given by

P 
e 

A P

where p is defined in (A.26).

(A.25)

(A.2E)

(A.27)

(A.28)
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Appendix B

Included as an attachment to this appendix are update pages to the SPAR

Structural Analysis System Reference Manual (NASA CR 158970-1) dated

December 1970. These updates describe the use of a new processor, EKSF,

used to generate element intrinsic stiffness matrices for incompressible

viscous flow analyses. Also described is the velocity vector version of

PUB, PLTB/WEC, used for plotting flow vectors _....icating the magnitude and

direction of velocities.



Attachment to Appendix B

Update pages to the SPAR Structural Analysis System

Reference Manual (NASA CR 158970-1)
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' 3.2 ELD- ELEMENT DEFINITION PROCESSOR

3.2.1 General Rules, ELD Input

3.2.1.1	 Error Conditions
3.2.1.2	 Element Reference Frames
3.2.1.3	 Element Group/Index Designation
3.2.1.4	 The MOD Command
3.2.1.5	 The INC Command

3.2.2 Structural Element Definition

3.2.2.1	 Line Elements
3.2.2.2	 Area Elements
3.2.2.3	 Three-Dimensional Elements

3.2.3 Thermal Element Definition

3.2 E- E-STATE INITIATION
3.4 EKS- ELEMENT INTRINSIC STIFFNESS AND ;TRESS MATRIX GENERATOR
3.5 EKSF- INCOMPRESSIBLE VISCOUS FLOW ELEMENT INTRINSIC STIFFNESS

MATRIX GENERATOR

4	 SPAR FORMAT SYSTEM MATRIX PROCESSORS

j 4.1 TOPO- ELEMENT TOPOLOGY ANALYZER
4.2 K- THE SYSTEM STIFFNESS MATRIX ASSEMBLER
4.3 M- SYSTF.1 CONSISTENT MASS MATRIX ASSEMBLER
4.4 KG- SlbTEM INITIAL STRESS (GEOMETRIC) STIFFNESS MATRIX ASSEMBLER
4.5 INV- SPAR FORMAT MATRIX DECOMPOSITION PROCESSOR
4.6 PS- SPAR FORMAT MATRIX PRINTER

5	 UTILITY PROGRAMS

5.1 AUS- ARITHMETIC UTILITY SYSTEM

5.1.1 Miscellaneous
5.1.2 General Arithmetic Operations

5.1.2.1	 SUM
5.1.2.2	 PRODUCT
5.1.2.3	 UNION
5.1.2.4	 XTY, XTYSYM, STYDIAG
5.1.2.5	 NORM
5.1.2.6	 RIGID
5.1.2.7	 RECIP, SORT, SQUARE
5.1.2.8	 RPROD, RTRAN, RINV
5.1.2.9	 ..TOG, GTOL

PRECEDING PAGE BLANK NOT FILMED
iii



Table 1-2: SPAR PROCESSOR FUNCTIONS

NAME AND
SECTION
REFERENCE	 FUNCTION

TAB	 3.1	 Translates user inputs into data sets containing basic

ELD	 3.2

E	 3.3

EKS	 3.4

EKSF	 3.5

TOPO	 4.1

K	 4.2

M	 4.3

KG	 4.4

FSM	 12

INV	 4.5

tables of information such as:

- Joint Locations
- Material Constants
- Element Section Properties
- Joint Reference Frame Orientations
- Constraint Conditions
- Rigid Lumped Mass Data

(See Section 3.1 for a complex list)

Produces data sets containing basic element definitions,
i.e., connected joints, integers pointing to applicable
lines in tables of section properties, material constants,
etc.

Generates a system of data sets called the 'E-state,'
consisting of individual element information packets
containing data such as element geometry (dimensions,
orientation), and literal section properties. E also forms
the system diagonal mass matrix,

Computes element stiffness and stress influence matrices,
and inserts them into the 'E-state.'

Computes incompressible viscous flow "stiffness" matrices
and inserts them into the 'E-state.'

Analyzes element interconnection topology, and produces
data sets used to guide other SPAR processors in forming
and factoring assembled system matrices.

Forms system elastic stiffness matrix.

Forms system consistent mass matrix.

Forms system geometric (pre-stress) stiffness matrix.

Forms system matrices (dilitational strain energy,
gravitational energy, kinetic energy) associated with fluid
elements.

Factors system matrices in SPAR's standard sparse-matrix
format, e.g., K, K+KG, K-CM.

1.2-4
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Section 3

'	 STRUCTURE DEFINITION

To define the basic finite element model of the structure, the user

proceeds as follows.

-	 Execute TAB to define joint locations, 	 joint reference frame
orientations, tables of section properties, and other basic
components of the problem definition, as summarized on Table TAB-1
in Section 3.1.

-	 Execute AUS/TABLE to generate tables of section properties for
three-dimensional solid and fluid elements, if required, as decribed
in Section 3.2.2.3.

-	 Execute ELD to generate data sets containing basic element
definitions, i.e., connected joints, integers pointing to applicable
lines in tables of section properties, etc.

-	 Execute E to generate a system of data sets called the "E-state,"
consisting of individual element information ackets containing dataP	 g
such as element geometry (dimensions, orientation), and literal

section properties.

-	 E also produces the sysLem diagonal mass matrix.

-	 EKS is executed to compute individual element stiffness and stress
recovery matrices, and insert them into the E-state.

or- EKSF is executed to compute individual element incompressible
viscous flow intrin-c "stiffness" matrices, and insert them into

the E-state.

All of the basic structural definition data sets produced as outlined above
should he retained in Library 1.



ITable 1-1: SPAR ELEMENT REPERTOIRE

Name Description See Volume 1 Sections:

E21 General straight beam elements such as 3.1.7	 9
such as channels, wide-flanges, angles,
tubes,	 zees,	 etc.

E22 Beams for which the intrinsic 3.1.10
stiffness matrix is given

E23 Bar - Axial Stiffness only 3.1.11

E24 Plane Beam 3.1.12

E25 Zero-Length Element Used to Elastically 3.1.10
Connect Geometrically Coincident Joints

Two-Dimensional (area) Elements 3.1.13

E31 Triangular Membrane
E32 Triangular Plate
E33 Triangular Combined Membrane and Bending

Element
E41 Quadrilateral Membrane, or 2-D Incom-

pressible Viscous Flow Element (when
used with EKSF).

E42 Quadrilateral Plate
E43 Quadrilateral Combined Membrane and Bending

Element
E44 Quadrilateral Shear Panel 3.1.14

Three-Dimensional Solids 3.2.2.3

S41 Tetrahedron (Pyramid)
S61 Pentahedron (Wedge)
S81 Hexahedron (Brick)

Compressible Fluid Elements: 12.,	 3.2.2.3

F41 Tetrahedron (Pyramid)
F61 Pentahedron (Wedge)
F81 Hexahedron (Brick)

Notes:
- See Section 7.2 for examples of stress output
-
-

See Volume 2 (theory) for element formulatior. details
Aeolotropic constitutive relations permitted, all area elements

- Laminated cross sections permitted for E33, E43
- Yembrane!bending coupling permitted for E33, E43

E41, E42, E43, E44 may be warped
Aeolotrooic constitutive relations permitted for 3-D solids

- Non-structural mass permitted for line and area elements.



3.5-1

f.

EKSF

3.5 EKSF-INCOMPRESSIBLE VISCOUS :'LOW ELEMENT INTRINSIC STIFFNESS MATRIX

GENERATOR

Function. EKSF functions similarly to EKS, i. p ., based on the

dimensions, section properties, etc., currently embetided in the element

information packets originated by processor E, EKSF computes intrinsic

stiffness and stress matrices for all elements other than E41 elements

(e.g., E21 elements) and inserts them into the packets, For E41 elements,

EKSF computes incompre3sible viscous flow "stiffness" matrices and In"ertb

them into the packets.

RESET Controls. Two additional reset controls have been incorporated

Into EKSF which apply to E41 elements only.

RESET Controls

Default
Name	 Value	 Meaning

ELIB	 1	 Library containing the element information packets.

TIME	 0	 Nonzero value causes printout of intermediate CP and
wall clock times.

GAZERO	 10.-20 Zero-test parameter, (beam area) x (shear modulus).

C1ZERO	 10.-20 Zero-test parameter, beam non-uniform torsion constant.

EPSILN	 .001	 The penalty parameter, E, used to enforce
incompressibility.

XMU	 10.-4	 Shear viscosity of the fluid.

Note: EPSILN and XMU apply to E41 elements only.

Core Requirements. EKS requires only a buffer area through which

element information packets are transmitted. About 5,000 - 15,000 locations

are usually suitable. IO counts will vary in inverse proportion to core

space.

r
r
r
f
c
r.
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Av-*.

Velocity Vector Version (PLTB/VVEC)

PLTB/VVEC functions like PUB except that for all "detormed" plots, the

"displacements" (flow velocities when executing in the viscous flow mode)

are plotted with arrows indicating the magnitude and direction of the joint

"displacements." The control statement DNORM remains ii: effect for

normalizing joint "displacements" (velocities). Options 24 and 25 do not

apply to this processor. All "deformations" are plotted as flow vectors.

(See examples in Appendix.)

Note: PLT3/VVEC is available for plotting on the FR-80 plotter only.

W1

PUB
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Appendix C

PARALLEL PLOW IN A STRAIGHT CHANNEL
MODEL PROBLEM A
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Flow	 P 1 1200 ti v
	 0, v	 Q

_4	
P2	 816 --\

v =0 	 a=2x.10 	
v	 0	

h=0.01

Y	 V = 0

L = 0.08

a. Domain and Boundary Condition Definitions

I

11j,	 2	 6p	 3	 JM	 1	 k7	 5	 La	 6	 7	 3

b. Finite Element Mesh

U - Analytical Solution

c. Calculated Velocity Field

Fig. C-1 - Parallel Flow in a Straight Channel
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Table C-I

1NTPUT DATA FOR MODEL PROBLEr, A

PEAK.)NBIN202*SPARl1 ?.TEST AZ/k
1 dXQT	 TAB
2 START	 81	 3	 4	 5	 6 £	 ,	 NO	 nOTATIONS

` - ^

3 TITLE 	 MO CEL	 PROBLE M A

4 `"ATC
S 1	 30. • 06	 .33
6 JL OC
7
A

1	 C.	 0.	 0.
9	 .O8	 C.	 0.

'1 •	 .01	 C.	 9
.08	 .01	 C.

9 SA

10 1	 1.J

11 CJN:1
12 ZERO	 1,2:	 9,61 •9
13 ZEP.O	 '2':	 1,77,9: 2,8:	 74,6r
14 dXr1T	 E L D
15 E41

16 1	 11	 1 	 2 1	 b	 8
17 @XQT	 E
18 wXUT	 E K S F

• i9 RESET	 AMU=21.-04
2G oPhD,E
21 "XJT	 TOPO

^2 aX.iT	 K
23 RESET	 SPrP	 2
24

25
,iXLT	 INV

aXQT	 AUS
26 SYSVEC
27 ;APPLIED	 FJRCES

2E CASE	 1
2S I:1:	 J : 2,b:	 1.5
'c I=1:	 J=1:	 .75
31 I:l:	 J : 74.8:x:	 1.('2

sj+ 32 I=1:	 J=73:	 J.51
33 dXLT	 '•SOL
34 uXGT	 VPRT

35 PkINT	 ST AT	 RVAC	 1	 1

36 PdINT	 S1AT	 JISP	 1	 1
37 &XGT	 DCU
38 TUC	 1

C-2
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Table C-2

COMPUTED VELOCITIES FOR MODEL PROBLEM A

S14TIC OISPLACEMENTS.

JUiNT 1 2 z6 .735 ► 03 -.664+nU
1
2

.31E•+Ou

.311<G4
.roc
.00O	 v

27
28

.000	 +

. 315+J4
.030	 s
.C1U0

3 .296+C,> . %c 29 . ?1 L+04 1 .1 7 +'11 
4
5

.271+.,4

.2'6+;4
.^OC	 *
.'!OG	 v

z0

31
.295+U4
.270+04

.152+n1

.225+01
6 .191+,,4 .11G0 32 .236+,.4 .242*01
7 .13 ;+u4 .11zS	 * 33 . 1 9 2+J 4 . 159*n1
8 .7'-2+03 .000	 0 34 .11B*-4 137+,.,1
9 .COO	 * .^i3O	 a 3S .73E'+J3 .6-C*OU

119 315 *,j .'DLO	 * 3E• .^CC	 * .COC	 +

i12
11

13

. 31 G* 34

.295.,4

.270+04

. 2 3 0 * C 1

. 354+-1

.4L1+01

37
38
34

. 31 1: + C4

. 3^9+u4

.295+',;•4

.OGO

.294 >(1,-

.463•'1-
14 .236+04 .444+21 4C' .270+34 .353+00
15 .192+,.4 .347+11 41 .236+C4 -. ICS+'IO
16 ..' 38 + u4 .?1C*01 4? . 1 9 2+04 -.578*'10
17 .738*A .710*7-10 43 .)'6+04 -.6c4*11G
18
19

.2C0

.315+04
.-A	 *
.0.00	 +

44
1+5

.739*.;3

.000	 *
- ,436+ ^0

.00O	 +
Ir .31C+04 -.1'>2*^1. 4t .315 +J 4 .7','I
21
22

.205•J4

.270+	 4
-.?18*01
-.3o3+r'1

47
4E

. 31C+G4

.295+04
-.966*",
-.161+C1

?.3 .2!C+.4 -.353+('1 49 .270+04 -.158+0,
24 .192+04 -.?77+71 3b*;i4 -.7't	 +10
2` .13E*-4 -x,75+O1

1 Continued)

l

j C-3
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OF P0UR

Table C-2 (Concluded)

5'. .19_+04 -.112+00
52 .138+04 .3;17+00
53 .738+J3 .336+11C
54 . JCG
55 . 3? 5+;.,4 .000
36 .316+04 .?7c+l-
57 .295+C4 . 376*90
58 "7-^+J4 .147+00
D9 .c _1 6+,J4 - .Si4+00
6^ .192+u4 -.SZ5+7u
of .1?E +.j4 - .783+00
u2 .737+03 --.434+70
b 3 . C00 . OGO	 #
64 .315+J4 .'10C
U5 .31U+G4 .467+^J
'.)6 .295+14 .89s+7i,
67 .271+G4 .127+'1
68 .276 +^4 .1u2+01
69 .192+34 .153+01
70 .138+04 .1G9+01
71 .737

*+

 .3 .444*00 
f 1

7? .314 +,,4 ."	 0
74 .3r9+049+04 . CU0
75 .2Q5+04 .1100
76 .270+;;4 .IG2
77 ,236+1:4 .7U0	 x
76 . 1Q2+J4 .ico
7 a .136+04 .00:
aC .741+L3 •n0c
-^1 .coc	 ^ .^cc

EXIT 2.792 C	 6

C-4
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Appendix D

PLANE SLIDER BEARING
MODEL PROBLEM B
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;I It,%' H10, K

ti = ii j

o

o	
_ !.0 x 10 -14 ^= 

I ^
u	 J	 1

cl„Iv S,,ri—

I t	 -	 ---	 -

a. Domain and Boundary ConditioT Definitions

b. Finite Element Mesh

lytical

uticn

.

i

T

T

t

.0

r
'r

r
c

1r

c. Calculated VeluA ty Field

Fig. D-1 - Plane Slider Bearing
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PEARSNBIN202*SPAR ( 1 ).TESTS/R
1 oXQT TAB
2 START	 171	 3	 4	 5	 6	 S	 2-0	 ,	 NO	 ROTATIONS
3 TITLE'	 MODEL PROBLEM B
4 MA TC
5 1	 30:+06	 .33
6 JLOC
7 1	 0.	 0.	 0.	 0.	 .000b	 u.	 9	 1	 19
8 9	 .36	 G.	 0.	 .36	 .0004	 J.
9 SA

10 1	 1.0
11 CON=1
12 ZERO	 192:	 99171,9
13 ZERO	 2:	 1,163,9
14 NONZERO	 1:	 1,163,9
15 &XQT ELO
16 E41
17 1	 10	 11	 2	 1	 18	 8
18 WXQT E
19 dXQT EKSF
20 RESET	 XMU=2- -u4
21 &XjT TOPO
22 @XQT K
23 RESET	 SPOP 2
24 oXQT INV
25 aXQT AUS
26 S YSVE C
27 APPLIED FnRCES
28 CASE	 1
29 I=1:	 J=2,3:1.G
30 I=1:	 J=164,17x,:	 0",5
31 SYSVEC
32 APPLIED	 MOTIO",
33 CASE	 1
34 I=1:	 J=1916399:	 100.0
35 FXQT SSOL
:6 6XQT VPRT
37 PRINT	 STAT REAC	 1	 1
38 PRINT	 STAT	 OISP	 1	 1
39 dXQT DCU
40 TOC	 1

0

t
t
t
e
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Table D-1

INPUT DATA FOR MODEL PROBLEM B

D-2
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OF PUuef

Table D-2

COMPUTED VELOCITIES FOR MODEL PROBLEM B

STATIC DISPLACEMENTS.

J31NT 1 2
1 .100+03* .Ouo
2 9781+02 - .179+00
3 .622+02 -.355+00
4 .46u+U2 -.413+00
5 .332+02 - .464 +00
6 .225+02 -.401+00
7 .125+02 - .335 +70
8 .726+01 -.163+70
9 .000	 * .100

10 .100+03* .000
`1 .828+32 9156 +130
12 .636+G2 .3C7+00
13 04's8+02 .354+00
14 0346.02 .395*00
15 .223 +u2 .339+00
16 .133+:2 .283*00
17 .363+mil .I36+00
18 .000	 * 0000
19 .100+03* _000
_0 .793+02 -.139+00
21 .643+02 -.271+00
22 0486+.i2 -.313+20
23 .36.:+U2 -.35V+00
24 .251+G2 -.302+00
25 .146+02 - .252 +PO

26 .846*01 -.123+00
27 0000	 * .ojo
28 .100+03* 0000
29 .8407*02 .117+110
30 .657+1J2 .225 +10
31 .514+02 0255+00
32 .374+02 .263+00
33 .25C+02 .241+00
34 .155+02 .2G0+4C
35 .491+u1 .953-01
36 .000	 * 0000
37 .100+03* .000
36 .806+02 -.101+00
39 .666*:)2 -.195+:=J
40 .514*u2 - .222 +10
41 .389+62 -.246+10
42 .278+02 - .212 +00
43 .167+02 -.176+00
44 .971*01 -.861-01
45 .000	 * .000
4u 0100+03* 0000
47 .853+02 .803-01
48 .679+02 .151+00
49 .543+02 .166+30
50 0405+G2 .181+00
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Table D-2 (Continued)

51 .279+02 0151+00 76 9579+G2 -.671-01

52 .178+02 .124+00 77 .458+:;2 -.693-01

53 .629+01 .574-01 78 .342+Z2 -.573-01

54 00 00 .000	 * 79 .218+02 -.444-P1

55 .100+03* .000	 * a0 .127+02 -0210-01

56 987.1+02 -9673-01 61 .000	 * .000

57 .691+02 -.126+00 82 .100+U3* 0000

58 .545+w-2 -.140+00 83 .885+Ij2 .165••C1

59 .421+61'2 -.153+00 94 .733+)2 .?2C-01

60 9308+02 -.130*00 65 .611+02 .139-01

61 .191+u2 .1 J7+00 86 .478+02 .512-02

62 .111+02 -.521-01 87 .348+32 -.501-02

63 6000	 * .000	 * 98 .234+,i2 -.111-G1

64 9100+03* .000	 * 89 .953+61 -.139-01

S5 .868+0Z .470-01 90 .(M	 * .000

66 .704 +02 .334-01 91 .100+03* .000

67 .575+02 .865-^1 92 .856+02 -.719-02

68 .439+02 .891-01 93 .75C+02 -.584-02

S9 .311*02 697-01 94 •618 +u2 - .757 - 93

70 .204+J2 .539 - 01 95 .499 +::2 .670 - 72

71 .781+.'j1 .221-01 96 .381+02 .924-^2

72 .70G	 * .0;;;0	 * 97 .250 +u2 .130 - 01

73 .100+03* . rIZIC	 * 98 *145+J2 .731 - 02

74 9837+02 -.360-01 99 Dec. 	 * .000

75 .718+02 -.630-01 !JO .100+J3* .n00

(Continued)
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ITable D-2 (Continued)

1131 .905+02 -.115-01 126 *COG	 * .000
1:2 .768*02 -6344-11 127 .100+03* *^00
1:3 .654+02 -0529-01 128 .905+02 .438-PI
104
105

.524+C?
0351 +u2

.727-11
-0747-01

129
13C

.834+02

.723*G2
.950-01
.116+00

106 .268+32 .719-01 131 -611+J2 .141+00
107 -115*.02 -.4	 0-31 L32 9486*J2 .126*%
108 .000 -000	 * 133 0334*02 .113+-0
109 *ICD+03* .000	 * 134 .194+02 .562-01
110 .878+02 .193-01 135 .000	 * .000
111 0797*02 -466-01 136 .100+03* 6,100	 #
112 .665*02 -6JO-01 137 .959*,02 -.610-01
113 -549+u2 .764-01 138 .862*,^2 -.135+iO
114 .428 +.12 .7u2-71 139 * 7 -42 +02 -. 174+nC

C
115 .287+:12 *655-11 140 *649 +62 -.215*00
4.16 .167+02 .331-"1 141 .508+02 -.203+00
117 .000	 * 6000	 * 142 *361*J2 -0164*0G
118 -100 +0 3* *000	 * 143 .1760+02 -.998-71
119 .929+132 -.373-11 144 0000	 * . t100
120 .809+02 -.5G7-1% 145 .100+G3* .100
121 .706+C,2 ..+n0 146 9939+02 .664-01
lit -580+02 -.1>6+0U 147 .893*;,2 .139+OG
123 .443*72 -.141*00 148 .7974L2 9167 +^j
124 .309+02 -0129+00 149 .691+02 .199+10

r ' 125 .139+,12 -.715-C1 150 .561+02 .176+0U

(Continued)
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Table D-2 (Concluded)

I .

151 . 394 *02 . 156+OU
152 9229+J2 .765-01
153 .Ono	 * .000
154 0100+03* .QO(1
155 .100+#j3 - 0827 -01
156 9930+02 -.180+00
157 .857 +u2 -.229+10
158 9741+02 -.260+00
159 .594+j2 -.263+nO
100 .430+02 - .237 +00
161 9209+02 -.127+00
162 .1)00	 * 0 000	 +
163 .100+C3* .000
164 .986+j2 .868 -%
165 .973+02 .179+10
166 .897+02 .213+10
1.67 .797+02 .250+00
168 9660+02 .220+00
169 9473+02 .193+00
170 .276+02 .932-01
171 .00C	 * .^o0

EXIT 9.477 0	 6
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DRIVEN CAVITY FLOW
MODEL PROBLEM C
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OF POOR QUALITY

1x1Box	 u-0.1

--i u- 100, v-0

U-0, v-0	 d

Fig. E-1 - Driven Cavity Problem
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	 Finite Element Mesh and Boundary Conditions
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Fig. E-2 Driven Cavity Problem
Computed Velocity Field
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OF P0071 Oi,^iLIT1f

Table E-1

INPUT DATA FOR MODEL PROBLEM C

PE A R SND I N 202 *SP AR l 1 l. T EST C/R
3 1 o1XQT	 TAP

2 START	 121	 3 4	 5 6	 S ^-U	 , NO	 ROTATIONS
3 TITLE'	 MODEL	 PROBLEM C
4 MATC
5 1	 30.•06	 .33
6 JLOC
7 1	 0.	 G.	 00	 100 ^. r1.	 !1	 1	 :1

i 8 11	 C.	 1.1	 G.	 100 1.r: 0.
9 SA

10 1	 1.0
j 11 CUN_1
' 12 ZERO	 1.2:	 1,111,11

13 ZERO	 1 •2:	 11,121,11_
14 ZERO	 1.2:	 2910
15 ZERO	 2:	 1129120
16 NONZERO	 1:	 1129120
17 &XQT ELD
18 E41

i 19 1	 2	 13	 12	 1 10 10
LO BXQT E

i 21 nXQT EKSF
22 RESET	 XMU =.1
23 dPMD,E
24 dXQT	 TOPO
25 biXQT	 K
26 kESET	 SPOP	 Z
27 ,mxwT	 :NV
28 nXQT	 AUS
29 SYSVEC
3n APPLIED Mo7IONS
31 CASE	 1
32 I=1:	 J=112 9 1211:	 ICC.O
33 nXQT	 SSOL
34 ;XQT	 VPRT
35 PRINT	 STAT REAC	 1	 1

9 36 PRINT	 STAT	 DISP	 1	 1
37 nXQT DCU
38 TUC	 1

E-3

LOCKHEED-HUNTSVILLE RESEARCH 6 ENGINEERING CENTER



LMSC-HREC TR D867285

	

_	 Table E-2

	

(	
COMPUTED VELOCITIES FOR MODEL PROBLEM C

i

STATIC DISPLACEMENTS.

JOINT 1 2
1 0000	 * .00O	 * 26 -.524+01 .332+C1
2 .000	 * .100	 * 61- 7 -.123+.,2 .1Z6+01
3 .000	 * 0000	 * 2P -9844+j1 -.2:. 9 -^1
4 .300	 * .000	 * 29 -9122+2 -.136+11
5 .00G	 * 0000	 * 30 -.512+01 -.318+"1
6 .:!00	 * .000	 * 31 -.657+U1 -.242+01
7 .000	 * .000	 * 32 0586+00 -.297+01
8 .Q00	 * .000	 * 33 .COO	 * *IC0

-	 9 0A0	 * .Quo	 * 34 0000	 * .000
10 0000 .0j0	 * 35 -.447+31 .496+11
11 0000	 * .000	 * 36 -.320+01 .943+71

-	 12 .COO	 * 000C	 * 37 -.256+U2 .641+01
13 -.179+01 -.215+'7U 38 -z1?7+72 .426+01
14 -0951+U0 .ISA+01 39 -x.215+,j2 - .t72 -01
15 -.453+01 .?C2 +1)0 4C -0126+02 -.439+%
16 -.330+01 .568+1C 41 -.156+Z2 -.639*Cl
17 -.584+_1 -.337-01 42 -.309+G1 -.834+1
18 - .326 +,J1 -.546+00 ti3 -.446+01 -.4d4+01
19 -.448+J1 - .235 +10 44 .000	 * .3GC
20 -0901+00 -.134+01 45 0000	 # .00O
21 -.178+01 .218+0C 46 9113#31 .103+02
22 .:BOG	 * .aUO	 * 47 -.129+2 .138+72
23 6700	 * .000	 * 48 -6114+02 .1.40+02
24 .539+00 0303+01 49 - 02 7 5 +02 .779+01

-.662+GI .246+nl 50 -.202 # J2 -.107+00

(Continued)
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Table E-2 (Continued)

51 -.275+02 -.795+01 76 .247+U1 -.214*02
52 -.113+02 -0141+02 77 .COO	 * .000	 #
53 -.128*u2 -.137+02 78 4300	 # .000
54 .117+31 -.171+02 79 -.125+02 .296+92
55 .700	 # .000	 * 80 -.351+01 .380+02
56 6000	 * .00O	 * 81 -.765*C2 .384+R2
57 -.739+01 .146+02 82 -.719+u1
58 -.444+01 .226+02 83 -.127+-,2 .247-'?1
59 -.247+02 .220+12 84 -.749+J1 -.121+22
60 -.208+02 .140+02 85 -.270+02 -.384*^2
61 -.363+^"2 -.722-11 E6 -9361*01 -.381*02
o2 -.2C8*:;2 -9142+32 67 -.126+02 -.296+12
63 -.247+02 -.221+02 88 .COO	 * .00C
64 -.450+01 -.224+02 89 .COL	 * .000.
65 -.745+01 -.144+72 90 .622*:;1
66 .000	 # .000	 * 51 -.283+02 .532.02
67 .^00	 * 0 13c 92 .7d6+G1 .124*n2
68 .243+01 .215+02 93 .126+62 .115+02
69 -.188+02 .319+02 94 .205+02 .I11*^C
7C -.129*J2 .291+7^ 95 .126+u2 -.114+92
71 -.319+;,2 .201*01 96 .776+J1 -.126*^2
72 -,2'.}5*.;2 -.144+00 y7 -.283+02 -.533+02
73 -.320+02 -.2,2+n2 98 .630+01 -.379+02
74 -.132*u2 -.290+02 99 .000	 * .90c
75 -.189+02 -.319+02 =C0 0000	 * .000

(Continued)
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Table E•2 (Concluded)

ial -.341+G2
1::2	 .287+G2
A.33 	 .435+C2
1 '4	 .531+02
105	 .549+02
106	 .532+U2
107	 .436+02
i.8	 .287+02
169 -.342+u2
110	 0000
:11	 .000
.12	 .100+03*
113	 .100+03*
114	 .IDC+03*
115	 .100+03*
116	 010E+03*
117	 .IOC+03*
118	 .100+03*
i19	 .100+.i3*
120	 .100+03*
121	 .000	 #

E A 1 T	 13.996

.639+02

."99+00

.117+12

.149*no

.123-n1

.232+00
-.119+02
-.1C7+01
-.636;02
.COO
.OJO
.0"i

	

.^QO	 *
	.000	 #

.Duo

.000

. nor)

.000

.lu0

.!loo

.000
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