HIGH-VOLTAGE (270 V) DC POWER-GENERATING SYSTEM FOR FIGHTER AIRCRAFT

Kevin M. McGinley Naval Air Development Center Warminster, Pennsylvania 18974

The Naval Air Development Center's high-voltage, direct-current advanced over-generating system will be used to retrofit current and future military lircraft.

Some of the reasons for choosing high-voltage direct current are the rollowing:

(1) Reduced weight in power-generating systems. Weight is reduced mainly by eliminating the constant-speed drive through direct coupling. Also, the use of more-efficient direct-current generators allows the peripherals, espec-

ally coolers, to be smaller and therefore lighter. Also, use of a flat-cable onductor, rather than the conventional round conductor, increases current ensity by increasing the busing area, and therefore reduces the amount of opper, saving weight. The weight of avionic power supplies is reduced mainly by using high-frequency switching regulators.

(2) Increased efficiency. Efficiency has been increased to 85 to 90 percent by eliminating the constant-speed drive.

(3) Elimination of power interruptions with direct current. Load relays can make contact with a second bus before breaking connection with the first.

(4) No speed restrictions. The main power generators operate between 9000 and 18 000 rpm.

(5) No powerline constraints.

APPENDING TO A THE PARTY AND A THE

5

(6) Increased personnel safety by eliminating the hold-on frequency, present in ac systems, which causes muscle contractions.

By using 270 V dc most aircraft loads can be kept below 2 A. This reduces conductor size. The Naval Air Development Center (NADC) has 2-A power controllers, which can be used for almost all of the aircraft loads.

The NAFD advanced aircraft electrical system (fig. 1) comprises three subsystems:

(1) Power-generating subsystem. A 270-V, 43-kVA generator will be used, either a solid-rotor generator (new technology) or a wound rotor. The choice will depend on the results of in-house testing. The generator control unit (GCU), which acts as a normal regulator for the generator, also supplies fault interruption signals to the bus contactor. This isolates the generator from any downstream faults. The bus contactor presently used has arc suppression by means of a semiconductor switch. The semiconductor switches on to suppress the initial a.c and then an electromechanical relay takes over. Powerconditioning devices are used in retrofit aircraft to convert the 270 V to existin 400-Hz, 115-V power or to 28-V power.

existin 400-Hz, 115-V power or to 28-V power. (2) Solid-state electrical logic system (SOSTEL). This system is used for power management. It comprises the main and redundant processors (Navy AYK14 computer), solid-state switches or transducers, a multiplex system, power controllers (used instead of electromechanical devices and circuit breakers to save weight), and a demultiplex system. The system built-in test unit (BITE) monitors the condition of the power controllers and the solid-state switches, either the on-off condition or the fault condition. Under fault condition the processors provide either a redundant source of power or fault isolation.

(3)General-purpose multiplex system. The 1553B databus is used as a datalink between the aircraft avionic systems and the SOSTEL system.

13

PRES /2_DATENERSKALLY BAR

Table I shows the status of hardware development. Most of the material is at NADC under advanced development or scheduled to be delivered. Some of these due dates, especially the August 1982 dates, have been delayed 6 to 8 months because of funding constraints.

The NADC will be testing the solid-rotor generator within the next month or so. The 500-W bidirectional power converter and the ground power monitor have been delivered. The flat power cable is under development. Again, 28-V power controllers have been delivered and tested. The alternating-current controllers have not been delivered. A 270-V, 1-hp brushless motor will be tested shortly.

Figure 2 shows the 270-V dc solid-rotor generator. The regulator is large because it was developed under funding that required few size constraints. The generator weighs about 65 lb.

Table II shows the power distribution. Under full-load conditions efficiency is 85 to 90 percent.

Figure 3 shows changes to be proposed in the power characteristic curves for military standard 704. The low limit will be raised from the standard 125 V to 175 V, and the high limit will be lowered from approximately 425 V to 350 V. Data for preliminary testing on a solid-rotor generator are well within those limits both under fulland low-load conditions. Further testing may indicate that those limits can be brought to an even closer tolerance.

Figure 4 shows the hybrid bus contactor. It uses an electromechanical relay, which is current technology, but includes the recent development of arc suppression with semiconductor switches. In the future, complete semi-conductor circuit breakers may replace this contactor.

Figure 5 shows the dc-to-dc power converter. Full-load efficiency for a 3-kW unit is approximately 80 percent. The power converter can go either from 270 V dc to 28 V dc or the reverse. It supplies an emergency source of power by allowing the use of shipboard batteries. Its characteristics are given in table III.

Figure 6 shows a ground fault monitor. It integrates ground cart power to prevent getting transient power from the ground cart. When the ground cart power is within the range of military standard 704, the contact supplying ground power to the aircraft closes.

Figure 7 shows a bus fault sensor. It supplies fault signals to the SOSTEL system. It is not a switching unit but merely supplies the signals for switching redundant power sources and fault isolation.

Figure 8 shows the flat conductor cable that will be used. This cable is rated at 140 A. A round conductor containing a similar amount of copper would be rated at about 80 A. So again, both weight saving and increased current are achieved. NADC has found that because of insulation restraints the use of flat conductor cable is only feasible at 10 A and above. Average percent weight savings (table IV and fig. 9) are approximately 24 percent on a metal aircraft and 32 percent on a composite aircraft. The reason for the different values is that the composite aircraft uses the standard two-conductor system, whereas the metal aircraft uses aircraft shielding as the ground return. The weight of a typical military aircraft could probably be reduced by approximately 880 lb.

Figure 10 shows the 270-V dc controllers, which handle most of the aircraft loads that use the 270-V system. The controllers are approximately 2-1/2 in. long, 1-1/2 in. wide, and 3/4 in. thick. They weigh about 8 oz.

.* .

> Something new NADC is doing with this system is using computer-aided stability analysis. The software (designated EASY) was developed by Boeing for the U.S. Air Force. Boeing has developed a high-voltage direct-current component library for NADC. This library mathematically models different

system components. Therefore different parameters can be input to study the

effect of transients on overall system stability. Figure 11 shows the airframe/system simulator. The power controllers and some of the SOSTEL system are already installed on it. It will be operational, funding permitted, probably in late 1983. The long-range goals of the NADC program are shown in table V.

\$

للمالية المحالية والمحالية المحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والم

÷,

フェチ

ŕ

ORIGINAL PAGE IS OF POOR QUALITY

TABLE I. - AAES HARDWARE DEVELOPMENT STATUS

•

1

. . . .

ŝ

ITEM	STATUS & REMARKS	
45 KW 270 VDC WOUND ROTOR GEN	ADM SCHEDULED DELIVERY AUG 1982	
45 KW 270 VDC SOLID ROTOR GEN	6.2 MODEL UNDER TEST, TRANSITIONS FY-83	
90 KW 270 VDC [TBD] GEN	ADM DEV FY-84, ROTOR TYPE TBD	
500 W BI-DIRECTIONAL PWR CONV	28 VDC 270 VDC ADM UNDER TEST	
3 KW PWR CONVERTER	ADM UNDER TEST	
10 KVA PWR CONVERTER	6.2 MODEL UNDER TEST, TRANSITION TED	
GROUND PWR MONITOR	ADM UNDER TEST	
GROUND PWR CONVERTER	ADM DEV COMPLETED TEST SCHEDULED TY-82	
HYBRID BUS CONTACTER (400 A)	UNDER 6.2 DEV, TRANSITIONS FY-83	
FLAT PWR CABLE	UNDER 6.2 DEV, TRANSITIONS FY-83	
SOSTEL CONTROL GROUP	FTM SCHEDULED DELIVERY AUG 1982	
28 VDC PWR CONTROLLERS	ADM INSTALLED IN SIMULATOR	
115 VAC PWR CONTROLLERS	ADM SCHEDULED DELIVERY AUG 1982	
270 VDC PWR CONTROLLERS	6.2 MODEL UNDER TEST, TRANSITIONS FY-82	
TRANSDUCER SWITCHES	ADM TOGGLE, PROXIMITY, & PUSH BUTTON IN TEST	
ROTARY TRANSDUCER SWITCHES	ADM UNDER TEST	
MIL-STD-1553 DATA MUX	ADM UNDER TEST	
SYSTEM LOAD CENTER	INITIATE ADM DEV FY-84	
270 VDC EMERGENCY GEN	INITIATE ADM DEV FY-84	
BUS FAULT SENSORS	INITIATE ADM DEV FY-85	
270 VDC BRUSHLESS MOTORS	6.2 EFFORT TRANSITIONS FY-85	

CRIGINAL PAGE 19 OF POOR QUALITY

Voltage, V	s	Front bearing	Rear bearing	Coolant inlet	Coolant outlet
		Ten	perature,	• F	
270.05 270.03 270.03 270.00 270.00 270.00 270.00 270.00	9 076 9 190 9 245 14 300 14 008 17 997 18 100	110 150 166 200 220 258 270	110 140 156 190 210 242 248	68 71 76 75 81 89 87	78 81 88 90 97 107 92

, 1

A CANADA AND AN

AND ADDRESS OF THE T

- Martin - Martin

A REAL PROPERTY CONTRACTOR REAL PROPERTY OF

11-

TABLE II. - 270-V dc SOLID-ROTOR GENERATOR (45 kW) [Efficiency, ~90 percent; MIL-L-23699 oil; current, 166 A.]

dc	dc	Va	oltage,	۷	Ci	rrent,	A		Power,	. W	Efficiency
voltage, V	current,	A	В	С	A	В	С	A	8	С	
				1	0-kva i	nverter					
2 50 2 50 2 50 2 50 2 50	11.5 22 32.5 44	116 115 114.5 113.5	116 115 114.5 113.5	116 115 114.5 113.5	7.25 14.5 21.75 29	7.25 14.5 21.75 29	7.25 14.5 21.75 29	850 1650 2500 3300	850 1650 2500 3300	850 1650 2500 3300	0.89 .90 .92 .90
					Test d	lata		·		•	
270 270 270 270 270	10.5 20.5 30.5 40.5	116 115 114.5 114	116 115 114.5 114	116 115 114.5 114	7.25 14.5 21.75 29	7.25 14.5 21.75 29	7.25 14.5 21.75 29	850 1675 2500 3250	850 1675 2500 3250	850 1675 2500 3250	0.90 .91 .91 .89
			_		Effic	iency					
280 280 280 280 280	10.5 20 29.5 39	115.5 114.5 114 113.5	116 115 114.5 114	116 115 114.5 114	7.25 14.5 21.75 29	7.25 14.5 21.75 29	7.25 14.5 21.75 29	850 1700 2500 3300	850 1650 2500 3300	850 1700 2500 3300	0.87 .90 .91 .91

17

. . . .

ORIGINAL PRACT OF POOR QUALITY

	(a) General characteristics							
Inlet voltage, V	Inlet current, A	Outlet voltage, V	Outlet current, A	Efficiency, percent				
290	1.20	32.78	0					
270	1.21	32.56	0					
240	1.23	31.89	U					
290	3.73	28.15	25	65				
270	3.93	28.01	25	66				
240	4.32	27.66	25	66				
290	6.36	27.69	50	75				
270	6.75	27.62	50	76				
240	7.46	27.51	50	77				
290	8.98	27.56	75	79				
270	9.57	27.49	75	80				
240	10.65	27.39	75	80				
290	11.63	27.43	100	81				
270	12.43	27.36	100	82				
240	13.89	27,26	100	82				

TABLE III. - CHARACTERISTICS OF BIDIRECTIONAL POWER CONVERTER

(b) Upmode characteristics

24 V dc				Efficiency,		
Voltage, V	Current, A	Power, W	Voltage, V	Current, A	Power, W	percent
24.0	3.77	90.5	260.5	0.2	52.1	57.6
	4.85	116.4	260.8	.3	78.2	67.2
	7.25	174.0	261.0	.5	130.5	75.0
	9.75	234.0	261.5	.7	183.0	78.2
	12.4	297.6	261.8	.9	235.6	79.2
	13.7	329.8	261.9	1.0	261.9	79.4
	16.4	393.6	261.9	1.2	314.3	79.8
1	17.8	427.2	261.9	1.3	340.5	79.7
1	19.2	160.8	262.0	1.4	366.8	79.6
1	20.0	480.0	262.0	1.45	379.9	79.2
V	21.0	504.0	262.0	1.5	393.0	78.0

(c) Downmode characteristics

24 V dc			270 V dc			Efficiency,
Voltage, V	Current, A	Power, W	Voltage, V	Current, A	Power, W	percent
28.0 27.9 27.8 27.6 27.4 27.3 27.2 27.2 27.2 27.1	0.5 1.94 4.25 7.30 9.80 11.65 13.30 15.00 15.40	14.0 54.1 118.2 201.5 268.5 318.0 361.8 408.0 417.3	270.0	0.10 .60 .90 1.20 1.40 1.60 1.80 1.85	27.0 108.0 162.0 243.0 324.0 378.0 432.0 486.0 499.5	51.8 50.0 80.0 82.9 84.1 83.7 83.9 83.5

5

٠., • ·

í...

. . .

ORIGINAL PAGE 13 OF POOR QUALITY

TABLE IV. - WEIGHT ANALYSIS SUMMARY^a

-

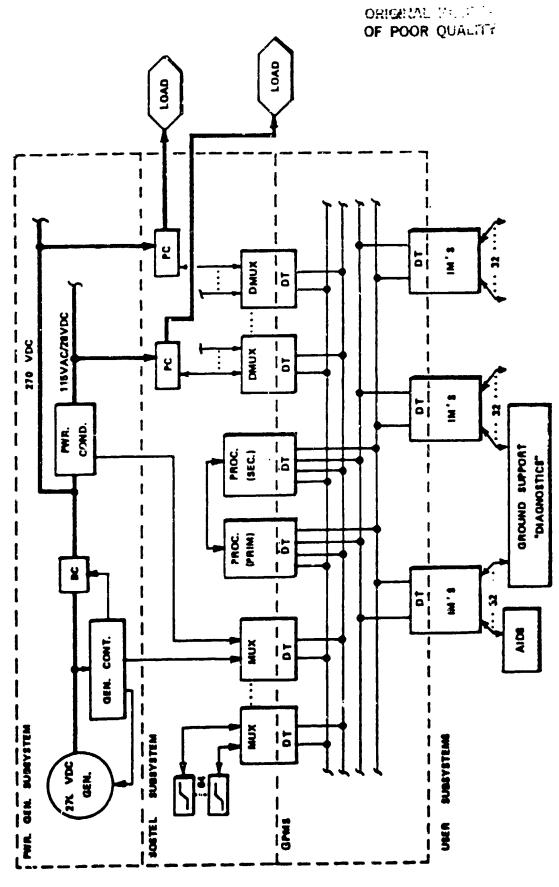
・ ・ ま とうごう またまたまち

1

J

	Metal aircraft	Composite aircraft
	Flat cable weig	ht saving, percent
High	+22.0	+33.6
Medium	+26.8	+31.2
Low -1	+ 4.5	-15.6
Low -2	-40.6	-69.0

^aIf all power runs above 10 A in a typical military aircraft were converted to flat cable, this would result in a weight saving of 880 lb.


TABLE V. - LONC-RANGE GOALS OF NADC PROGRAM

١,

*

۱

FUNCTION	CONVENTIONAL	ADVANCED	
POWER GENERATION	115/208 VAC 400 HZ	270 VDC	
POWER CONVERSION	TRANSFORMER/RECTIFIER	DC-AC & DC-DC CONVERTERS	
BUS CONTACTORS	ELECTROMECHANICAL	SOLID STATE	
POWER BUS	STRANDED CABLE	FLAT	
• FLEXIBILITY	NONE	PROGRAMMABLE	
CONTROL & PROTECTION			
 CONTROL SWITCHES 	ELECTROMECHANICAL	SOLID STATE-LOGIC LEVEL	
 FEEDER PROTECTION POWER TRANSFER 	THERMAL/MAGNETIC CIR BRKR ELECTROMECHANICAL RELAY	SOLID STATE POWER CONTROLLER	
 LOAD MANAGEMENT 	MANUAL & FIXED	AUTOMATIC & FROGRAMMABLE	
 CONTROL WIRING 	DEDICATED	TSP & FIBER OPTICS	
• CONTROL DATA TRANS.	POINT-TO-POINT	DIGITAL MULTIPLEXED	
BUILT-IN-TEST	NONE	100% TO WRA	
REDUNDANCY	LIMITED	UNLIMITED	
PACKAGING	BLACK BOX	MODULAR	

:

,

÷

<u>'</u>-

Figure 1. - Advanced aircraft electrical system (AAES).

3 T. . .

··· ···

ORIGANIAL - MAN TH OF POOR QUALTIN

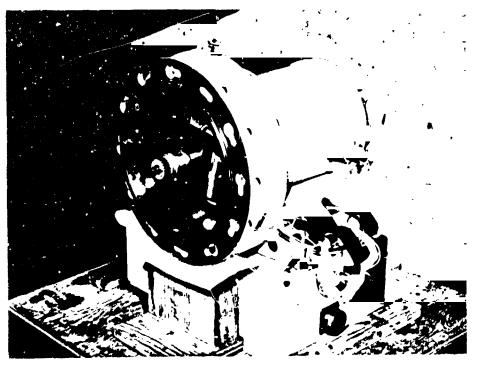
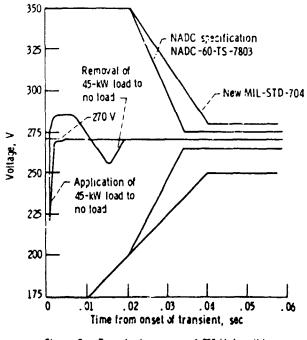
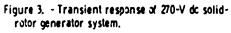




Figure 2. - 270-V dc solid-rotor yenerator.

.

ORIGINAL PAGE IS OF POOR QUALITY

4

.

, *

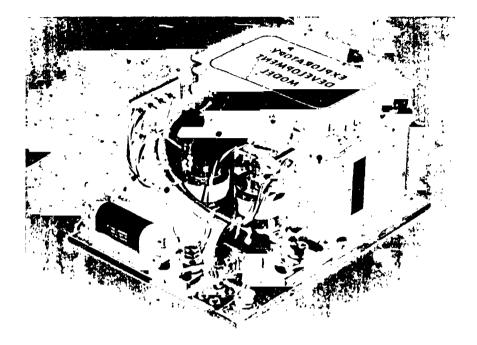


Figure 4. - 250-A, 270-V dc hybrid bus contactor.

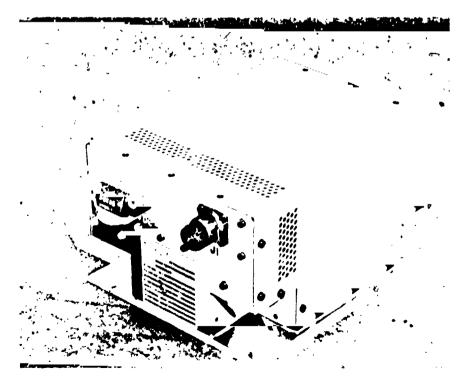


Figure 5. - 270-Y-to-28-V, 3-kW power conditioner.

ORIGINAL FAGE IS OF POOR QUALITY

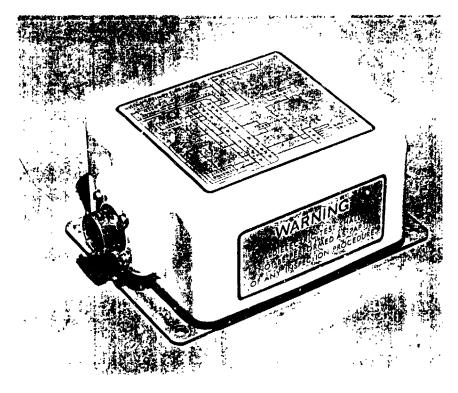
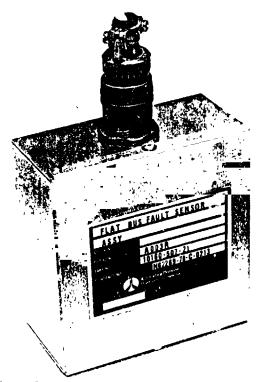



Figure 6. - 270-V dc power monitor.

Ŷ

Ì

ē;

'n

ę. Ę

Figure 7. - Flat bus fault sensor assembly.

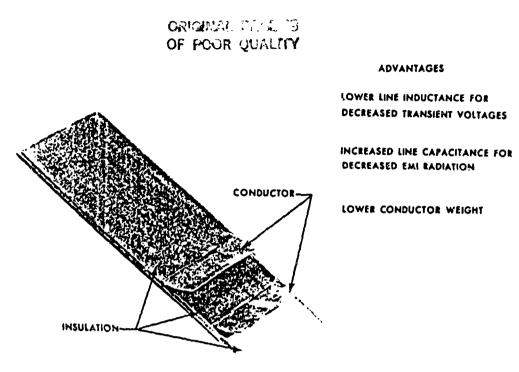
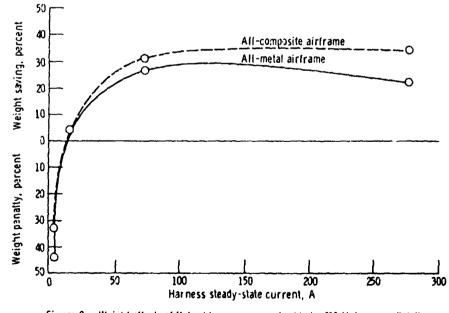
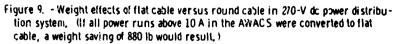




Figure 8. - Flat conductor cable.

.

۰<u>،</u>

41.5

ORIGINAL FINGE 13 OF POOR QUALITY

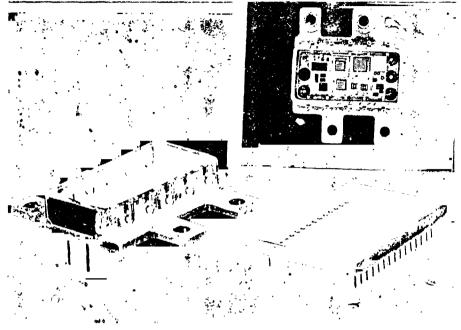
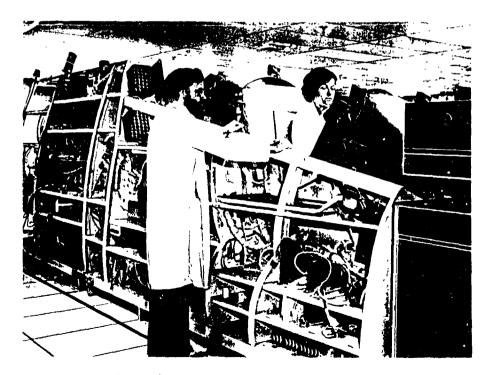



Figure 10. - 270-V dc power controllers.

ī,

Figure 11. - AAES airframe/system simulator.

į