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ABSTRACT

The controls analysis based on a truncated finite element model
of the 122m. Hoop/Colummn Antenna System foﬁuses on an analysis of the
controllability as well as the synthesis of control laws, Graph theore-
tic techniques are employed to consider controllability for different
combinations of number and locations of actuators, Contreol law synthesis
is based on an application of the linear regulator theory as well as
pole placement technigues. Placement of an actuaﬁor on the hoop can
result in a noticeable improvement in the transient characteristics.

The problem of orientation and shape control of an brbiting flexible
beam, previously examined, 1s now extended to include the influence of
solar radiation evirrmmental forces; For extremely flexible thin
structures modification of control laws may be required and techniques
for accomplishing this are explaired, Effects of environmental torques
are also included in previously developed models of orbiting flexible
thin platforms, and & preliminary analysis.of related thermallx.induced
deflections and torques on thin structures is provided, Finally, it

is conciuded, based on an evaluation of the coupling coefficients in

the rigid modal equations and the generic modal equations for the first

seven modes of the Hoop/Column S5ystem, that when the system is performing
within nominal specifications (surface deflections of the order of mm),
that the relative magnitude of the laxgest of these coefficients is at i

least one order of magnitude smﬁller than the principal coefficients.
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I. INTRODUCTION

The present grant extends the research effort initiated in previous
grant years (May 1977 - May 1982) and reported in Refs. 1-8%, Techni-
ques for controlling both the shape and orientation of very large in-
herently flexible proposed future spacecraft systems are being studied.
Possible applications of such large structures in orbit include: large
scale multi-beam communications systems; earth observation and resource
sensing systems;orbitally based electronic mail transmission; and as
orbital platforms for the collection of solar energy and transmisgsion
{via microwave) to earth based receivers,

This report is subdivided into seven chapters. Chapter II is
based primarily on a paver to be presented at the 34th International
Astronautical Congress and presents preliminary results on the controlla-
bility and contrel law synthesis for the Hoop/Column orbiting large
flexible antenna system., Graph theoretic techniques previously intro-
duced in Ref. 7 and further deacribed in Ref. B are employed to consider

system concrollability for different proposed actuator arrangements

¢ i gty o A g . - ats”
Py

(number and location). Control laws are then designed based on the

ORACLS computer algorithm?

» primarily using linear quadratic Gaussian \

techniques., The mode shapes (eigenvector:)_and frequencies of the system

were obtained previously by finite element techniques and supplied by

NAsA-Lre, 0
At the operational altitudes of the future missions involving

large space structures, the principal environmental disturbance 1s

*For references cited in this report, please see list of references
at the end of sach chapter.
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that due to sclar radiation pressure. The effect of solar radiation
(presaure) disturbance on a flexible uncontrolled orbiting free-free

beam was examined in Ref. 8, and to the authors' knowledge represented

a first attempt to include such dist.cbances in the system dynamics of

a flexible structure in orbit. Chapter III of this report, based on

a paper recently presented at the 1983 AAS/ATAA Astrodynamilcs Conference,
extends this work to consider the closed loop dynamics of an orbiting
flexible beam under the influence of solar pressure induced moments.,
Actuator control laws previously designed for the case where environmental
effects were neglected are now re-evaluated especially for extremely flexi~
ble beams. Shape and orientation control (about two different nominal
orientations - local horizontal and local vertical) are considered.

In Chapter IV, the effect of solar radiation pressure on the open-
loop dynamics of a more complex structure, a thin homogeneous flexible
square plate is analyzed. The mode shapes and frequencies of the plate
are obtained numerically using a finite element computer algorithm., As
in the case of the beam only small transverse deformations are assumed,

Solar pressure torques can also result on large flexible space
structures due to the interaction of the incident solar radiation on
the thermally deflected bodies. Chapter V presents a preliminary formu-
lation of the solar radiation heating effects on thin rectangular plates
and beams, The amount of thermal deflection depends on the thermal
gradient across the structure, tﬁe thermal conductivity of the material,
the thermal expansion coefficilent, and the thickness. Expressions for

the thermal gradients can be obtained by simultaneously considering

1.2
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the thermal radiation and heat conduction properties. These expressions
can be used teo develop equations for the thermal deflections and sub-
sequently a model for the induced moments on the (thermally) deflected
structure. These moments will have to be considered in addition to
those generated by the interaction of solar pressure on the freely
vibrating system.

Chapter VI describes the developrent of a computer algorithm to
evaluate the relative magnitude of coupling coefficients in both the
rigid and elastic modal equations of motion. These coefficlents desrribe
coupling between the rigid and flexible modes and also intramodal
coupling and are usually neglected when a finite element analysis is
employed., The evaluation of the relative magnitude of these coefficients
is based on the numerical parameters for the Hoop/Column system.

Chapter VII describés the main general conclusions together with .
future recommendations. The effort deseribed in Chapters II, IV, and
V is being continued during the 1983-84 grant period in accordance with

11
our proposal submitted Jan, 1983.
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II. ON THE CONTROLLABEILITY AND CONTRCL LAW DESIGN FOR
AN ORBITING LARGE FLEXIBLE ANTENNA SYSTEM

stTRES '

The concrollabilizy and control law syuthes.s
based on & fintza elecment awdel of the Hoop/Colim
orbicing antszas sysien is cansideved. Graph theo~
Tetic techniquas ara exployed fo analyze the con-
crollabili{ty ~f che systan for possible proposad
sctuator arTangemants whick include torquars and
Point acivatora along the zast and a single actua-
to placed on the hoop assenbly. Ouce comtvoll-
abiliecy is established for a given combinatioun of
oumbar and locatica of accuators, the synchaesis of
control laws is baged on an applicationm of the
linear regulicor theory ead also pole placemants
techniquas. Ia general, suzface tovsion and feed
mASt torsion ate awong Rodes having the lomgesc
tina constants, System STansient perforzance is
uoticeably degraded whea the hoop actuazor is aot
ineludad.

I, Introduction

Large flexibla orbizing systems have besea pro-
posad for posaible use in commmications, elec—
tromic orbital based oall systexms, detaction of
sarth feasources, snd i solar energy collection,
The site snd low weight to area racio of such sys-
tens dictate that systez flexibility i3 now the
eain cousiderarion in the dynamies mad comtrol prob-
lem as comty -+ with the {nherently rigid caturs
of earlier - . - -aft syscems, For such lacze
flex’ ,l= . .ers boch or. eataticn and shape con~
trol will .lien be raquized. It 1a the purpose of
the prusenc paper to considar che coacrollabilicy

and tha subssquent dasign of ccntrol laws based on -

a mocdel of & proposed orbiting anturma system =
tha Hoop/Coluzm system.

The Hoop/Calumn sntemas systes is cue of the '
configururitms under considatacion for use in the
future zulti-beam Land Mobile Satellits Systend,
desigmed to provide poin: o peint commmications
for 250,000 subscribers scross the U,S. in the
aid 1990's. The svscen 13 Sased ¢t a large gac=
synchromous rfalay antenna end a numher of cobile,
Earzh-based receivers. In order to achieve the
required RF performmnce 2 poiating accuracy of
+ (0.03 = 0.10) degree PMS and a surface (enteana)
agcuracy of l2mm RMS will be requived. The Eoop/
Cali=n antenna systec?, depicred in Fig. 1, 4n -
deployed configuration, ccoriins the deployablae
(calescoping) mast system cuncectad te the hoop by
support cables under seasics.

: ticnal wodes.

The hoep ccatains 43 rigid seccioms, =2 ta danloyed
by zmocor doive units. The desizved shape of ctha &F
Tellacsive =ash i3 produced by a secsciry dIan ag
surface w3ing surface contro) cablas, ke o Jlae-
tive aash i3 connected to the hoop by suazT:iy o
draphitza sc=izgers. AL one end of ke =asT cha
telactrouic fead assa=bhlims are posizissad, vhe-sas
ac tha other end are tha primcijpasl solav arvays
connecsed o ke main bus based concyol.

Raceatly zraph cheoretic :a:hn:qu¢s3 were ugad
to scudy esanrallabllicy of linear systems which
could repraseat large flexibls orbicing syscems
with ichereat Zsoping. It was sesn that the Sers
Tank daficiency in the stiffnesa magrix dizcates
tha requized number 45 well a3 the location of tha
accuators raquired for concrollapilicy, whareas
the prasance ¢f the danping =atrix does not iz~
fluence tie requized cucher of actuators but Proe
vides greater flexibilizy to the availadla azfuator
locaticns for which the sys:tea Ls controllable.
Specific eu:zl.cs wers based on a previcusly de~
valopad =cdel® of an assumed hocogeneous shallew
thin sphesical shell Ia urbi:, whers botz ozienta-
tion mmd shape countrol vere assuzed to Se provided
by point agtuasors placed ou the shall's suzface.

It 13 the objective cf this paper to apply
these tecmiquas, £icst Co analyze the controlls
abiliry of the Zoop/Coluxa system based cn a possi-
ble arrangezen: of aciuazors, and, once goutrzali-
abilicy {s assured, to coanstder vezrious ways to
devalop concrol laws. A rscezc ralated Creat=ened
of the preilxizsasy coacTols syathesis for shis sys-
ten was based cn & mzndal vhich contained zhree
tigid=body rutatiomal modas and a awvmber of flaxu~
Tal oodes, but iznored the three rigid transla-
dctuators in the fora of soTquers
only, vers asstmed to be plase! cnly alczgz the zast
assechly, md comtTollability was eazablished in~
diractly throug: pucericel seams. Comtzal sym-
thesis vas acsesplished based cn linear juadracic
Caussizn tecimiques and also & related lizear
asalysis assumi=z the colloezgion of actuassrs z=md
seasors.

I7. Mashamarieal Yodae)

In the present payewn, & finfis slazesr =odel of
the Hoop/Columm systen that Zacludes all six =igid
mdes and the flexural oodes i3 used., Tor tha pus~
poses of this study the systes Ls odelled using
112 mede (grid soincs) with each sode havisg a Taxie
mm of six degzses of Ireecdon,® Thus, t2e liz-
eaTized drmazics of the Zoop/lolumm antazong svssexm
can be descrided (iz che abseace of servezc=al cT
othar daspisg) w:

:'q:—z-.?c by}
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Table 1 - Hoop/Column single layer sucface

M is the 672x672 mass/inertia macrix modal etzenvalias

K i3 the 672x672 sciffness magrix

! X s tha 672xl matrix consisting of the
! Mode Frecuency  Cenevalized Generalized
:i::i:ctmnr.s and rotations at the nodal No. B nass, %1 K, Stiffness
! P, is the control vector of dimensionalicy (Io-sec’/1a)  (Ib/1n)
b 672x1 1 0.0 16.44388 0.0
i After '~ing the transformation betwesn the § g‘g g'gﬁ;ggg g'g
:mdll coordinates, q, and X given by 3 0.0 9.704152 0.0
: . 5 0.0 2.940632 0.0
; X=tq @ 6 0.0 8.418909 0.0
i . 7 .1188347 183.1373 85.28542
|equacion (1) can be rewritten as: 8 .2142455  £.232954 9482657
Top o = T, . ¢ 9 .2709558 3.u73094 8.907021
PHIQ O M moTF, b 10 .5063228 1046446 3.083247
! 11 .7288725 1.992988 40.88663
.. 'The left side of equation (3) can be :xpressed in 12 3897594 723.5216 22612.90
tarms of diagoual matrices, based on the pro- 9192343 6531203
fperties of the eigeunvaluas and associated eigen~ 13 ‘ - ¢ 21.35403
~ vectors, according co: ‘
CCa I 3+ 1 q=ofF ) ITT. Coatrollabilicw Congideraticns
' | b Y [
E ‘where Equation (4) can be rewritten with the aid of
; TS = diag. (3,1 = [*m, ] equacion(5) as: ,
E : oTRS = diag. (Ky1 = [k, ] §=€a, 17V T q+ 0 17T ()
Y- o iCh 2 b N .
By 1th generalized (vodal) mass and then cast into standard state space format with
‘1. a {** generalized stiffnass. the resulr:
The first thirey-four (imcluding the six rigid af. 0 EREn ’
" wodas) eigenvectors and eigenvalues derived from o - ]-lE‘R ] 0 »
- the NASTRAN softwars for the system described by q ey 1. l 1
: equations (1) and (2) vere supplied;? hovever,
- only the firat 26 wodas had appreciable nom-zero - Q N
" valuss “or the corresponding modal masses, - -1 ,T u
~ C mL] 4°3
Tha influecce of a finite number (z) of com-
trol actuators or torquers is imcorporated into The number and location of the actuators are
~ tha model by determined after considering the comtrollability
o . in additicn to physical consideracicns. The dyna-—
P F_ =30 (5) -  wmic system represenced by equatien (7) is con=
b ‘. trollable’ 1f and only £ the pair
i jubere .
: B » §72xn comtrol iInfluence matrix - -1 .~ -1 .T
. ‘ U = exl matrix associlated wvith the comtrol -t mh] [..K:L..] and [ ai.] ®'B is controll-
! vactor
: ble.
: En::nn:rzl; influence matrix, B, (672xn) is formed The systen matrix, § = -C*ﬂi“]"lf‘xi‘l
- If there is an actuator that fafluences the for the 13 mode model can ba evaluated as:
© 1%8 node (1< 4 < 112) fa the §th direction — -
. (L£4 <6), then B(K,L)=l where K = {i-1)xé+1, 0
i, .aad L = oumber of the actuator. Thus the B matrix Y 0
| cousists of zeros and cnss, showing the influence 0 0
¢ of the force actustors cn the tramslational de~ s 0 3
i graes of freedom of the nodes, and also that of = <, /oy @
tha torque actuators oo the rotational degrees of .
freedom. .
The twodel considered -hu:e consiscy of six .
rigid body modes (3 cranslacicn + 3 rotatiom) and .
the firse seven flaxible =odes. The values of tha CRY;
: generalized misses and stiffnesses are ligced in 13
© Table L. - .
:
ro
~
ro
e : Elg
o URIGINAL PAG

OF POOR QUALITY.
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The digraph of tha matrix § i{s shown in Fig. 2.
For controllabilicy” che actuators must be placed
in such a way that they will influencs all the
modes directly since, in thismodel, there is no
coupling between che modes. The number of actua-
tors vill be dictated by the term rank (7) of the
matrix, 5. Becauss of the six rigid modes (with
zaro sljenvalues), the system matrix, 5, has a
rapk deficiency of six; to augment the term rank
[¢TB] muat have at least six linearly independent
non~zero colunss, indicating a winimum of six pro-
perly placed acLuators is needed for controll-
abilicy.

A possible priposed arrangemant of a maximum
of 13 actuators crmaiscing of combinacions of
point actuators and a torquer, assumad to be lo—
cated along the mast and at selected points in the
fead assembly, s depicted in Fig. J. In addi-
tion, & single point actuator is assumed to be
poaitioned oo ote of the rigid links of the hoop
agssembly. The actuators are assumed to be placed
sv that the various modes indicated in Table 2
would be directly affected.

Table 2 -~ Relatiomship between actuators
and modes directly influenced

Actuator no.

ACTUBLOT noO. Mode being affected
(circled in Fig. 3)

123 andd Feed Mast Torsion (12)

5 First Bending (about y
exis) (8)

4 First Bending {(abdut x
sxis) (9)

7 Surface Torsicn (10)

8 (Torquer) Zaw (rotation avoutr axis)
and Pirst Torsion (7)

9 Translation alcng x and
2nd mast bending (11)

10 Translation alcog ¥ and
20d wmasc bendiag (12)

11 Translation along z

12 Pitch (rotatiom about y
axis)

13 Roll (rozation about x
axis)

Possible sets of the minimum number of actuns-
tors include (1,2,3,4,5,12) and (8,9,10,11.12,13).
On the contrary, the six &ctuators (1,2,3,4,6,7)
are insufficient to control the thirteen system
rodes as states 14,15, and 26 in the digraph
(Fig. 2) can not be reached from any of these six
inputg (under the asgumption that any elexent in
the $’B matrix which 1s less than 1077, and six
or seven orders of magnitude less than the maximum
eniry, s treated numerically equal zo zero).

IV, ContrSl Lauv Svuthesis

Once controllability has been established
control law design is based on: 1) applicatiem of
the linear regulator problem from optimal control
:heoryé and 2) pole allocation algorithms. The
ORACLS® software package has been used to obcain
the control law gains and generate the required
time histories of the actuator forces as well as
the dynamic transieat responses.

2.4

‘{actuator numbers 7 to 13 in Teble 2) a parametTiz

1) Application of the Linear Ragulator Problex i

The control law of the form:

U = -FX (9
for the dynamical system
X =AX+BU (0

15 selected such that the Sfollowing performance
index 1is minimized?

3 = & (xFoxeutRY) de (20
-]

vhere Q and R &re positive sezi-definite and posi-
tive definite weighting matrices, respectively.

The gain matrix, F, 1is gziven by:
F = R-187p

where P corresponds to the positive definica solu-
ticn of the matrix Riccati differentiel equation:

{11}

-PA-ATP+PBR 1BTP-q = dP/ét (13)

The steady state golution (as t = =) of the
Riccati matrix equation can be obtained by solvwing
equation (13) sfter serting dP?/de=0. The steady
state Riccati matrix solution results in a con=-
stant gain matrix which is relatively easy to i
plewent as compared with the tize varying solutiem
of the matrix Riccati differential equatica.

Yn order to guarantee controllability in the
event that one of the actuators might fall, it was
decided to select tue minim: number of actuators
in this study to be seven Insteand of the six pre—
viously discussed. For seven actuators assused

study was peérformed showing the effect of varying
Q (100I to 10,0001I) and R (I to 100I, where I 1s
the appropriately dimensioned identity matyix) on
the leas: damped mode of the closed-loop system
(Fig. 4). It can be concluded that Q = 10001 ané

Rel is a reascnable operzting (starting) point in
the Q and R dotain as the curve correspon'ing to
RwI 18 relatively less sensitive to changes in Q as
compared with other values of R.

[

O W

As an example, Teble 3 shows the effect of
varylng the number of actuators ({rom seven to
thirteen) on the maximm force amplitude required
of any simgle actvator for the same sat of inigial
conditions in the wodal coordinaces and the s me
state and control waighting matrices., As indica:ted,
the maximum peak force required of any actrvator Is
reduced 28 the number of actuators is increased.
The system transient performance is improved by i1~
creasing the mmber of actuators (Tavle &), but a3
the expense of a slight increase in control eff
Other sculies showing the effects of: (1) removin
thras of the rigid modes from the modal; or (2)
ignoring initial displacements in these modes,
could result in overly optimiszic results Iz tercs
of control system requiremeats {Tables 5 and 6).

- '
-
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Table 3 - Sucmary of max'mnm actuator forces{amplitudes) required

Hoop/Colurm - verying tha no. of actuators (7-13)
Initial Condiziom: 41(0)-0.01 i=1,2....13, Q=1000L, Rl

- Max. Actuator
Force Amplitudes

¥o. of Actuators

Pounda 7 8 9 0 11 12 13
{1 0.3500
!2 0.1364 0.0569
13 0,3158 0.3357 0.3000
!k 0.3251 0,2101 0.1364 0.0569
!5 1.303 1.3029 1.3027 1.3027 1.3027
16 0.6632 0.6631 0.1831 0.2898 0.2847 0.2833
27 1.694 1.514  1.515 1.4734  1.2798 1.2781 1.2761
!a (in.-1b) 0.10% 0.104 0.104 0.1004 0.C124 0.0117 0Q.0123
29 1.1891 1.1889 0.287 0.2276 0.2369 0.2369 0.2369
‘10 1.0602 0.7380 0.7380 0.1673 0.1501 0.;573 0.1573
!11 0.4209 0.4089 0.4326 0.4199 0.4055 0.4061 0.4061 '
!12 0.1208 0.1208 0.3521 . 0.3521 @.3521 0.3521 0.3521
513 ¢.2998 0.1866 0.1866 0.0669 0.0658 G.0673 0.0688
2.7

-y



e Rt R TR e e B o o -

ORIGINAL PAGE 19
OF POOR QUALITY

Table 4 ~ Comparison of closed loor poles - Hoep/Column with 7 aad 13 actuacors

Q = 10001, R-I 13 modes

7 Actuators - Poles 13 Actuators - Poles
0-(Real)~1/sec Juw-(Inagizary) o= (M) ~1/sec ju-(Imginnry)
-0.0077 5.5905 ~0.008 5.,5905
-0.0077 -3.5905 -0.008 -5.5905
-0.0100 0.7465 -0.7045 0.7788
=0.0100 ~0.7465 _  —0.7045 -0.7788
-0.4343 0.4053 -0.4179 0.4544 ‘
~0.4343 ~0.4053 -0.4179 -0.4544 ‘
~0.8578 1.7117 -2.1916 1.6704
-0.8578 . -1.7117 -2.1916 ~1.6704
~0.9033 2.7007 . =0.9806 2.6637
-0.9035 -2.7007 ~0.9806 -2.6637
-3,0979 1.666 -3.6151 1,7994 |
-3.0979 ~1.666 -3.6151 -1.7994
-0.45689 1.3636 -1.0058 0 i
-0.4689 ~1.3656 -1,0117 0 i
~0.5583 0.4892 . -1.0247 0 i .
~0.5583 -0.4892 ~1.0260 0 1 -
~1,0059 0 ~1.0868 0 '
~1.0226 0 ~1.0987 0
-1.0287 0 -1.2914 0
~1.2830 0 -1.5808 o
-1.5977 0 -3.9913 0
-2.4285 0 ~5.4766 0
-3.4297 0 -6.2706 0
-6.9508 o ~10.019 0
-11,.8231 0 =12.424 o
-18.1405 0 ~30.186 0
2.8
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! Table 5 - Comparison of maximum actuator ferce amplitudes
“. Q = 1000I, R=I, q,(0) = 0.01,
: Max. Actuator 13 Actuators/13 Modes 10 Actuators/l) Modes
Foree Amplitudes
Pounds
fl 0.3300
tz 0.0569
13 0.3030
£, 0.0569 ° 0.2514
25 1.3000 1.3756
£6 G.2830 0.2850
f7 1.2700 0.3713
fa {in~1b) 0.0124 0.0171
fg 0.2360 0.4031
'10 0.2570 0.2508
| £11 0.4060 0.1554
J £12 0.3520 0.2078
f 215 0.0688 0.4115

Table § - Comparison of maximum actuator force amplitudes
Q = 1000I, Rel 13 Actuators/13 Modes

Max. Actuator q’i_(o)-o.cu. i=1,2...13 q,(0)=0, i=1 to &
force Amplitudes g (00,01, £=7 €5 13
£ 0.3500 0.3462
£, 0.0569 0.0324
f £, 0.3030 0.2923
! £, 0.0569 "t 0.0324
i £ 1.3000 0.9846
£ 0.283 0.3021
£ 1.2700 0.8423
fg (Lo.-1b) 0.0124 0.0124
, £ 0-236 0.1671
) £10 0.157 0.1366
, £ 0.406 0.0327
j Elz 0.3520 0.0976
] £, 0.0638 06931
2.9
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2) Application of the Pole Placement Algorithm

As.an example of the application of the pole
placement technique, Fig. 5 flluatrates the tran-
sient responss in key modal amplitudes, as wall
as required actuator force history for an initial
condition only in the tiEst torsional mode. The
pole placement algoricho® raquires that all of che
poles be placed along & line parallal to the imag-
inary axis. It is seen that the raquiremsant that
each mode have a time constant of 100 secs, is a
less stringent requivement on the control system
then for the case depicted in Table 3 and 4 (13
actuators) where the most damped moda has a time
constant of approximmtely 1/30 sec.

3) Effect of Removing Hoop Mounted Actuator

If the seventh actuator is removed from the
system leaving a total of 12 working actuators,
thare Is 2 deterioracion in the lowest damped
modal time constants. The magnitude of the real
part of the least damped mode is reduced from
0.008 (Table 4) to 0.0024 and there are now ten
polas with ampljtudes of real parts less than 1.0.
The maximun actuator forces tequired in response
te initial displacements of 0.0l Jin all 13 modes
are not greatly different from those shown in
Table 3 for the casa of 12 or 13 actuators.

Oa the other hand if a total of omly seven
actuators is now assumed {fy.4,fy4,f91,8100 504508
there i1s considerable loss %? p%gto%%anég 13 tge 6)
least dauped mode. The least daoped modal gime
constant has nov incrcased to about 2000 sec as
coupared with 130 sec (as shown in Table 3}. It
should be noted that the least damped modes
throughout this study cortespond to both Ieed mast
torsion end surface torsion. Again the maximum
actuator forces requirad in response to inicial
displacements of 0.0} in 211 13 modes are essen-
tially the same order as shown in Table 3 for the
case of seven actuators (including 17).

Additional results explained in Ref. 10, consgi-
der the effect of varying the elements in the stata
penalty matrix sc tha: the modes with poorest
transient characteriscics would be penalised more.

* There azppears to be some advantage in appropriate~

ly selecting the "split" weighting elements so as
to 1 mprove performance in the lowest dazped modes
without unduly increasing the actuator-force re-

quirements.

¥. Concluding Comments

Generally, it can bé concluded that the use
of the graph theory enables the designer to have
an intuitive gqualicative idea about whers actua-
tors can be placed In order to achieve controll-

,abilicy. In most cases simulated, surface torsion
'and feed mast torsicn are among modes having the

! longest time constants. Transient performance
can be improved by approprimtely changing the
related elexdents in the state penalty matrices,
but usually at the expense of control system ef=-
The linear quadracic Gaussian technique
offers more flexibiliecy to the coptrzols designer

. in atrempting to meet the performance requirements,

.- while also maintaining propellant comnsumption at
.desired levels.

System transient characteristics
are degraded when the hoop-mounted actuator is

vy .
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not included. This degradaZion 15 more prouounced
as the nuzper of (remaining) actuacors is reduced,

The control efforts depicted here for the transieat
tices considared appear reascnable in terms of the
over-all pystem mass and surface and pointing re-
quirezeat. Befora meaningful conclusions can be
nade tegarding RMS pointing and surface accuracy
requi: woents the effects of both sensor and plant
noige ad also environmental disturbances should be
incorpo' ated into the existing model and are sug-
gesced for further study.
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. uxm-!,r POLE PLACEMENT:
T = 100 sec,
2 INITIAY, CONDITIONS:
8xl0 -! V q3 _qs q,7 = 0.1 ql-qz-".q],S =- 0.0

S, ’
\;7~_a=:_.€§ﬁF;=3;'—_ 600

Tine (secs)
(ALl other modes are excited very litcle.)
-8x107%
v TIME RESPONSZ - MODAL AMPLITUDES
ax10™ .
_ 4 .!3 i
2x10 |
2 U ~ 200 400 600
-2x10

TIME (secs)

(Peak forces for all ocher actuators aras far lass)

Fig. 5 Pole placement - time response, modal amplicudes and
required actuazor force tiva history.
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1I.B ADDITIONAL RESULTS ON CONTROL LAW DESIGN FOR HOOP-COLUMN USING
LINEAR QUADRATIC CONTROL THEORY

The concept of split weighting of different modes in the quadratic
cost function is used to further penalize modes 7 (combinations cf yaw
and first torsion of the system), 10 (surface torsion), 12 (feed mast
torsion) and their rates. These modes are penalized 10 times more
than the rest of the modes and the resulting closed loop poles are
tabulated in Table 7 tegether with the uniform weighting results.
It 18 observed that the time constant of the least damped mode (-0.0120)
for the case of gplit welghting is improved without increasing the
most damped mode (-30.1864) as compared to the uniform weighting case.
The effect of split weighting is also apparent in the maximum actuator
force amplitude [Table 81, with the requirement of a slightly larger
control effort.

The actuator of the hoop (#7) is then removed; for the values of ;
Q= 1000 I and R = I the closed loop poles are compared with those for
the case with the actuator on the hoop in Table 5. The corresponding
required actuator forces are given in Table 10. The closed loop poles i
with the bnop actuators removed for a total of 7, 10, and 12 actuators,
respectively, and with: ¢ = 1000 I, R=I; Q = 10,000 I, R = I; and
Q= 100,000.I, R = I; are given in Jables 11, 12 and 13. The split
welghting case 1s also considered and the corresponding closed loop
poles are given in Table 14, The maximum actuator forces for the
various cases described above are given In Tables 15, 16, and 17.

To have an understanding of the relation between the actual coordi-
nates and the modal coordinates (as the complete eigenvector matrix is

not available) certain initial conditions are assumed for the modal

2.12

()



Fnll-.l!..‘;'l-.“m-"\"“‘ R I R R L
I

coordinates (qi, i=1, -~13) and the corresponding displacements are
calculated. The nodes that experience maximum displacements together
with the values of the displacements are shown in Table 18, It can be
seen that nodes 100 and 101 have experienced the maximum displacements
for the various initial conditions assumed for the modal coordinates.
The general conclusionsfor the various cases described so far are
enumerated below.

1. As the number of actuators is increased, for a given set of
initial conditions, the maximum force amplitude required for
any actuator 1s, in general, reduced.

2, In general, by increasing all elements in the Q matrix in the
same relative amount, transient performance in the least damped
modes 1s improved, but at the «xpense of a larger control effort.

3. Split weighting of appropriate elements {1 the Q matrix can
result in improved transient performance without unduly increasing
the control effort.

4, Systemtransient characteristics are degraded when the hoop
mounted actuator is not included. Degradation is more pronocunced

as the number of (remaining) actuators is reduced.

5. For most cases simulated surface torsion and feed mast torsion
are among modes with largest time constants.

6. For the same initial displacements in each of the 13 modal
coordinares, it 1is seen that the maximum translational dis-
placements are reallized at nodes 100, 101 (at the ends of the
lower solar panels).

2.13
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COMPARISON OF CLCSEDLOOP POLES HOOP/COLUMN 13 ACTUATORS-13 MODES

13 Actuators Poles Q=1000I, R=I

(Real)

"0-0080
"0-70"5
-0.4179
""2- 1916
-2.1916
"0-9806
-3.6151
-1.0058
-1.0117
-1.0247
-1.0987
"'1 o291q
"1. 05808
‘3 09913
~10.0190
-12.4240
-30.1860

jw({Imaginary)

5.5905
-5 -5905
0.7788
-0.7788
0.4544
-0.4544
1.6704
-1.6704
2.6637
"2 06637
1.7994
-1.7994

QOO OO0DOCOoOOODO000O00OO0O

2.14

13 Actuators Poles QJ=1000I
Except Q(7,7)=Q(10,10)=Q(12,12)
=Q(20,20)=Q9(22,22)=Q(25,25) =
100001, R=I

(Real)

-0.0120
-0.0120
-0.4179
-0.“179
-1.0922
-1.0922
~2.1916
-2.1916
-3.6167
~-3.6157
~1,005%
~-1.0120
-1.0250
-1.0260
-1.0864
-1.0987
-1.,1993
-1.29C7
~-1.5844
-2.5898
-3.8914
-5.4866
-6.3240
-10.06.7
-25.4183
-30.1864

Jw(Imag

5.5905
~=5.5905
0.4545
=0,4545
1.5579
-1.5579
1.6704
-1.6704
1.7991
-1.7991

OO0 0O OO00OO0COOO0O
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ORIGINAL PAGE 18
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COMPARISON OF MAXIMUM ACTUATOR FORCES HOOP/COLUMN 13 ACTUATORS-

13 MODES

Max. Actuator Forces 13 Actuators 13 Modes 13 Actuators 13 Modes
(Amp.)-Pounds

£{7)
£(8)
£(9)
£(10)
£(11)
£(12)
£(13)

(ft-1b)

Qi(0)=0.01,1i=1,..

Q=1000I, R=I

0.3500
0.0569
0.3000
0.0569
1.3027
0.2833
1.2761
0.0123
0.2369
C.1570
0.4061
0.3521
0.0688

2.15

,13 Qi(0)=0.,01,1i=1,..,13
Q=10201I, Except
Q(7,7)=Q(10,10)=
R(12,12)Y=0(20,20)=
Q(22,22)=Q(25,25)=
100001, R=I

1.7450
0.0061
1.7330
0.0061
1.3029
0.7393
2.3580
0.0817
0.2277
0.1693
0.4178
0.3521
0.0978

tIB
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Table 3 OF POOR QuALITY

COMPARISON OF CL JSEDLOOP POLES HOOP/COLUMN 12/13 ACTUATORS
Q=1000I,R=1

13 Mode Model
13 Actuator-Poles

13 Mode Model W.0 Actuator?
12 Actuator-Poles

(Real) jw({imaginary) (Real) jw(Imsginary)
-04003 -S 05905 "0 -002“ -5 0590,1
-0.7045 0.7788 -0.0162 3.1813
-0.,7045 -0.7788 -0.0162 ~-3.1813
-0,4179 0.u4544 -0.2654 0.56%3
-0.4179 -0. 4544 -0.2654 -0.5658
-2.1916 1.6704 -0.4179 1.6704
-2.1916 -1.6704 D.4179 -1.6704
-0.9806 ~-2.6637 -0.9173 -1.7994
-3.6151 1.7994 -2.1916 0
-3.6151 -1.7994 -2.1916 0
-1.0058 0 -3.6153 0
-1.0117 0 -3.6153 0

. =1.0247 0 -1.0117 0
-1.0260 0 - =1,0247 0
-1.0868 0 -1.0258 0
-1.0987 0 -1.0859 0
-1.2914 0 -1.0987 0
-1.5808 0 -~1.2785 0
-3.9913 0 -1.6052 0
-5.47¢6 0 -3.9913 0
-6.2705 0 -5.4867 0
-10.019 0 -6.3275 0
-12.424 0 -10.0673 Q
~-30.186 0 -30.1860 0

2.16
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COMPARISON OF ACTUATOR FORCES VARYI!NZ THE ACTUATORS WITH SEVENTH
ACTUATOR REMOVED

Max. Act.

Forces{Amp) lbs

£(1)
£(2)
£(3)
£(u)
£(5)
£(6)
£(7)
£(8)
£(9)
£(10)
£(11)
£{12)
£{13)

1b.ft

Table 10

Q=10091, R=I

T Actuators

o QOO -0 =

L4019
L4499
. 1859
3411
.3512
.1299

2.17

10 Actuators

1.9999
0.5261
1.3924
0.5685
0.0536
D.2369

0.2047
0.3603
0.3520
3.1072

ot 9
ORIGINAL PAGE |

12 Actuators

1.5187
0.0176
1.5298%
0.0175
1.3024
0.5597

0.0u423
n.2279
0.1695
0.3685
0.3520
0.0739

Ca e il e
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Table 11
OF POOR QUALITY

COMPARISON OF CLOSEDLOOP POLES HOOP/COLUMN SYSTEM WITH SEVENTH
ACTUATOR ON HOOP REMOVED- 13 MODES Q=1000I, R=I

T Actuators 10 Actuators 12 Actuators
(real) jw(Imaginary) (Real) jw(Imaginary) (Real) jw(Imaginary)

-0.0004 5.5905 -0.0016 5.,5905 -0,0024 5,5905
-0.0004 -5.5905 -0.0016 -5.5905 -0,0024 -5.5905
-0.0007 3.1813 -0.0010 13.1813 -0.0162 3.1813
—0.0007 -301813 "0.0010 "'3.1813 -0.0162 ""3.1813
-0.0063 0.7467 -0.3084 10,6657 ~0.265%4 0,5678
-0.0063 -0.7467 -0.3084 ~0.6657 -0.2654 -0,5678
-0,0434 0.0433 -0.4179 0.4544 -0.4179 02.4544
-0.0434 -0.0433 -0.4179 -0,4544 -0.4179 -0.4544
-0.4343 -0.4053 -0.4505 -0.,4712 -0.9173 -0.5968
-0.4690 11,3656 -2.1¢16 1.5704 -2.1916 1,6704
-0.4690 -1.3656 -2.1916 -1,6704 ~2.1916 -1.6704
~-0.5243 0.5476 -3.6515 1.8369 -3.6153 1.7994
-0.5243 -0.5476 -3.6515 -1.8369 -3.6153 ~1.7994
-3.5693 1.8574 -1,0150 O -1.0117 0O
-3.5693 -1.8674 -1.,0247 90 -1.0247 0
-1.2180 0 -1.0365 O -1.0258 0
-1.0287 O -1.0907 O -1.0858 0
-1.0681 O -1.0987 O -1.0987 O
-1.2746 O -1.2839 O -1.2785 0
-1.6147 0 -1.5947 0 -1.6052 0O
-2-u285 0 "'3-9913 0 -309913 0
-3.4220 0 -3.9989 0 -5.4867 O
-6.0668 0O -6.1550 O -6.3275 O
-10,6556 0 -10.661 0 -10.067 O
-18.141 O -30.186 0O -30.186 0
2.18
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Table 12

COMPARISON OF CLOSEDLOQP POLES HOOP/COLUMN SYSTEM WITH SEVENTH
ACTUATOR REMOVED 13 MODES Q=10000I, R=I

B,

AR T

T Actuators 10 Actuator s 12 Actuators
(Real) jw(Imaginary) (Real) jw(Imaginary) (Real) jw(Imaginary)
-0.0005% 5.5905 -0.0038 5.5905 -2.0062 5.599%
-0.0005 =5.5905 -(.0038 -5.5906 -0.0062 -5.53905
-0,.0008 3.1813 -0.0230 33,1812 ~0.0329 3.1809
-0.0008 -3.1813 -0.0230 -3.1812 -0.0329 -3.1809
-0.0113 0,7467 -0.2550 0.55623 ~-0,2497 0,5597
-0.0113 -0.7467 -0.2550 -0.5623 -0,2497 -0.5597
-0.0774 0.7693 -0.5012 0.5193 =0.5012 0.5193
-0.0774 -0,7693 -0.5012 -0.5193 -0,5012 -0.5193
~-0.4855 0.5456 -~1.3077 0.4208 -1.,0011 O
-0.4855 ~0.5466 -1.3077 ~0.4208 -1.0023 O
-0,6087 0.1463 ~-1.0014 ¢ -1.0023 0O
-0,.5087 ~0.1463 -1.0023 0O -1.0081 O
-0.6576 0.6T713 -1.0033 0 ~1.0086 0O
-0.6U476 -0.6713 -1.0085 0O -1.0124 0
-1.0017 O ~1.0086 0 -1.0549 Q
-1.0026 O -1.0125 QO -1.,3041 0
-1.,0062 0 -1.3041 O -1.%257 0O
~-1.0124 0 -1,321% 0 -3.7535 0
-1.0924 0 -6,3906 0O -5.4054 O
-6.,4271 0 -11.895 0 -12.655 0
-12.387 O -13.183 0O -13.193 0
-13.099 O -14.993 0 -19.119 0
-27.282 0 -27.292 O -27.31%3 0O
-34,811 0 -34,828 0 -34.853 0
-62.659 0 -38.551 @ -38.551 0
2.19
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Table 13
ORIGINAL PAGE 15
OF POOR QuaLmTY

COMPARISON OF CLOSEDLOOP POLES HOOP/COLUMN SYSTEM WITH SEVENTH
ACTUATOR ON HOOP REMOVED 13 MODES Q=100000I, R=I

7 Actuators 10 Actuators 12 Actuators
(Real) jw(Imaginary) (Real) Jjw(Imaginary) (Real) jw(Imaginary)

-0.0007 5.5905 -0.0079 5.5905 -0.0096 5.5905
-0.0007 -5.5905 ~-0.0079 ~5.5905 -0.0095 ~5.5905
-0.0011 3.1813 -0.0369 3.1807 -0.0399 3.1806
-0,0011 =3.1813 -0.0369 -3.1807 -0.0399 -3,1306
-0.0314 -0.,7468 -0.2488 -0.5592 -0.2483 -0.5590
-0.1383 0.1358 -0.5429 0.5572 -0.5249 0.5572
~0.1383 -0.1358 -0.5429 -0.5572 -0.5249 -0.5572
-0.4809 0.5699 -1.0001 O -1.0001 O
-0.4809 -0.5699 -1.0002 O -1,0002 0
-0.6212 1.4837 -1.0003 O -1.0002 0O
-0.6212 -1.4837 -1.0008 0 -1.0008 0
-0.6585 0.7347 -1.0009 O -1.0009 0
-0.6585 ~0.7347 -1.0012 0 -1.0012 0O
-1.0000 0O -1.0211 0 -1.0047 0O
-1.0002 O -1.0293 0 -1.0293 O
-1.0006 0O -1.0357 © -1.0349 0
-1.0013 O -5.9089 0O -12.513 0
-1.,0085 O -20,43%8 0 -20.,487 ©
-1.0232 0 -28.795 0 -28.795 0
-20,551 O -37.884 0 -40.434 0
-39.367 0 -41.900 © -41.900 0O
-41.914 0 =47.751 0 -60.609 0
-88.147 0 -88.174 0 -88.248 0
-110.47 O -110.53 0 -110.60 0
-199.66 O -312.59 0 -312.59 0
2.20
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‘ Table 14 ORtQimaL PAGE 13

¢ OF POOR QuaLTy

COMPARISON OF CLOSEDLOOP POLES HOOP/COLUMN SYSTEM WITH SEVENTH
ACTUATOR REMOVED 13 MODES Q=1000I EXCEPT Q(7,7)=Q(10,10)=Q(12,12)

’ =Q(20,20)=Q(22,22)=Q(25,25)=10000I, RsI

f 7 Actuators 10 Actuators 12 Actuators

E (Real) jw(Imaginary) (Real) jw(Imaginary) (Real) jw(Imaginary)

; -0.0013 5.5905 -0.0050 5.5905 -0.0068 5.5905

i -0.0013 -5.5905 -0.0050 -5.5905 -0,0068 -5.5905

] -0.0024 3,1813 -0.0277 3.18M -0.0381 3.1808

. -0.0024 ~3.1813 -0.0277 -3.1811 -0.0381 -3.1808
-0.0200 0.7467 -0.2389 0.3015 -0.2367 0.3100
-0.0200 -0.7467 -0.2389 -0.3015 -0.2367 -0.3100
-0.0434 0,0433 -0.4179 0.,4544 -0.4179 0.4544
-0.,0434 -0.0433 -0.4179 -0.4544 -0,4179 -0.u4544
-0.4343 00,4053 -0.9883 0.6871 -2.1916 1.6704
-0.4343 -0.4053 ~-0.9883 -0.6871 -2,1916 -1.,6704
-0.,4630 1.3656 ~2,1916 11,6704 -3.6158 1.7991
-0.4690 -1.3656 -2.1916 -1.6704 ~3.6158 ~1.7991

, ~0.5240 0.5478 -3.6401 1.8295 -1.0017 O

_ -0.5240 -0.5478 -3.6401 -1.8295 -1.0247 0O

i ~3.5683 1.8675 -1.0150 0 i -1.0258 0O

' ~-3.5693 -1.8675 -1.0248 0O -1.0853 ©
-1.0180 O -1.0349 0O ~1.0987 ©
-1.0287 0 -1.0879 O ~1,1684 0
-1.0680 0O ~-1.0987 0 -1.2852 0
-1.2750 0 -1.2831 0 -1.5958 0
~1.6150 0 -1,5966 0 -2.6473 0
"30“220 0 -u03071 0 "5-“889 0

; -6.0669 O -6,1674 0 -6.3662 0O

! -10.066 O -10.661 © -10.673 O

‘ -18.141 0 -30.186 0 -30.186 O

i

g‘

! 2.21
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COMPARISON OF ACTUATOR FORCES VARYI!NS TYE ACTUATORS WITH SEVENTH
ACTUATOR REMOVED

Max. Act.

Forces(Amp) 1bs

T Actuat

4.0402
3.3862
4,3702
2.3451
1.1247
0.2135

1.2184

Table 15

Q=10000T,

ors

2.22

10

R=1I

Aztuators

4.4356
3.3324
3.6011
1.4979
0.2539
0.8500

0.56595
1.1955
0.9438
0.3166

12 Actuators

3.5095
0.0958
3.3440
0.0958
3.6010
1.2351

v.1721
0.85923
0.6543
1.1875
0.9437
0.2844

[#)
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Table 16 OF POOR QuaLTY

COMPARISON OF ACTUATOR FORCES VARYING THE ACTUATORS WITH SEVENTH
ACTUATOR REMOVED

Q=1000001, R=I

Max. Act. 7 Actuators 10 Actuators 12 Actuators

Forces(Amp) 1lbs
£(1) 9.6904 8.4849 5.5981
£(2) 20,7948 8.6722 4.5791
£(3) 14.6512 1.1022 5.6822
£(4) 8.8780 3.5757 0.4579
£(5) 3.5327 1.4109 1.1023
fEG) 1.2470 3.3063 3.1263
£(7)
£(8) lb.ft H.1667 2.7808 1.2149
£(9) 3.9409 2.3061
£(10) 2.4642 2.8507
£(11) 1.0831 3.9445
£(12) 2.4643
£(13) 1.0771

Table 17

Q=1000I, EXCEPT Q(7,7)=Q(10,10)=Q(12,12)=Q(20,20})=Q(22,22)=
Q(25,25)=10000I, R=I

Max. Act. 7 Actuators 10 Actuators 12 Actuators

Forces(Amp) 1bs
£(1) 3.0869 4,9872 3.5906
£(2) 1.2538 1.1888 0.0696
£{(3) 1.1868 1.3020 3.6637
£(u) 1.4440 1.5255 0.0696
£(5) 0.3660 0.2012 1.3022
£(6) 0.12009 0.2367 1.2361
£(7) . ‘
£f(8) 1lb.ft 0.5030 0.2294 0.14861
£(9) 0.3169 0.23569
£(10) 0.3520 0.1751
£(11) 0.2888 0.3452
£(12) 0.3520
£(13) 0.1141

2.23



Table 18

ORIGINAL PAGE %
OF POOR QUALITY

RELATIONSHIP BETWEEN DISPLACEMENT IN THE MODAL COORDINATES AND
MAXIMUM TRANSLATIONAL DISPLACEMENT (AT NODE 101)

Node Intl. Condition Max., translatio-
Qi(0) nal Disp.-Inches
(100) 101 0.01 (0,2840) 0.3009
(100) 101 0.02 (0.5680) 0.6019
(100) 101 0.03 (0.8519) 0.9029
{(100) 101 0.04 (1.1359) 1.2039
(100) 101 0.05 (1.4199) 1.5048
- (100) 101 0.06 (1.7039) 1.8058
(100) 101 0.07 {(1.9878) 2.1068
(100) 101 0.08 (2.2718) 2.4078
(100) 101 0.09 (2.5558) 2.7087 ‘
(100) 101 0.10 (2.8398) 3.0097 j
L
i -
2.24 !
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ITI, ORIENTATION AND SHAPE-CONTROL OF AN
ORBITING FLEXIBLE BEAM UNDER THE INFLUENCE
OF SOLAR RADIATION PRESSURE

In this paper, the uncontrolled and controlled dyna-
mics of a thin flexible beam in orbit and in the
presence of solar radiation disturbance are analyzed.
A beam nominally oriented a]ong (1) the local hori-
zontal and carrying a gimballed rigid dumbbell for
gravity stabilization, and (11) a beam nominally
oriented along the local vertical are considered.
The uncontrolled dynamics of the beam in the pres-
ence of the solar radiation pressure disturbance
shows the excitation of the rigid pitch mode, The
control laws previously designed for the case where
the environmental effects were neglected, are found
to be inadequate to control the shape and orienta-
tion of very Tlexible beams that are exposed to
solar radfation disturbances. The control laws

and the gain parameters are reevaluated for both
cases of nominal beam orientations; this results, in
general, in increased robustness of the closed-loop
system. Methods of obtaining a robust control sys-
tem in the presence of environmental perturbations
are discussed. :

INTRODUCTION

At the operational altitudes of propgsed future missions involving

large space structures, the principal environmental disturbance will,

in general, be due to solar radiation pressure. Seolar pressure torques,
induced on the structure, are dependent on the surface properties and
the surface geometry.! Expressions for the induced solar pressure

3.1



torques on a free-free flexible beam were develaped earlier.2 The un-
controlled dynamics of a thin flexible beam in orbit under the 1in-
fluence of solar radiation pressure forces were considered for two cases
of beam orientations, namely, (1) nominally oriented along the local
vertical and (11) nominally oriented along the Tocal horizontal and gra-
vity-stabilized using a rigid dumbbel] attached at the center of mass

of the beam. The uncontrolled and controlled dynamics for the two cases
of nominal beam orientations have also been gozsidered previously but

in the absence of environmental disturbances?s

The objective of the present study {s to evaluate the validity of the
previously developed control laws, which were obtained disregarding

the environmental effects, for controlling the shape and orientation of
a beam actually under the influence of solar radiation disturbance. It
1s proposed to evaluate the robustness of the previously developed con-
trol laws for the beam under the influence of the solar pressure dis-
turbances by considering a parametric study of the controlled dynamics
for various initial conditions. Particular attention will be given to
highly flexible structures under larger initial displacements. The
feedback gains will be modified, where required, to achieve satisfactory
transient performance while minimizing control force effort. Where
modification of gain values are found not effective, modification of
cont;g] Igws and reselection of actuators and their locations will be
considered.

THE MATHEMATICAL MODELLING OF A FLEXIBLE ORBITING BEAM

Dumbbel]l Stabilized Flexible Beam in Orbit Neminally Oriented Along
the Local Horizontal

A flexible orbiting beam nominally oriented along the local horizontal
represents a gravitationally unstable configuration, A passive sta-
bilization of the beam can be obtained by using a rigid dumbbell with
proper moment of inertia. In Ref. 3, the equations of motion for a
beam with a dumbbell assumed to be attached at the center of mass of
the beam (Fig. la) through a spring loaded hinge and with viscous rota-
tional damping have been developed. It is assumed that the dumbbell
mass is concentrated at the tips, that the viscous force at the hinge
is linear, and that all displacements and deformations occur within the
orbital plane. With the usual assumptions of small pitch ampiitude and
dumbbell oscillations and flexural deformations, the linearized equa-
tions of motion are obtained as3,

Wy - - T (n)_ 2
g"+ce'+(k-3)6-ca -Fh-F%(Cen+ken)Cz = Cy/Jymc (1)
-'a"+c]Eh'+(c1F¥3)a-?1Eb'-c]an %(EEA+EEH)C1C£") =0 (2)

euoh-3ey- Ra-0 Tl -0 16", My 1243 (G ™)
= B /Muwis (3)

GKIGINAL PAGE §S
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(mn) _ 4 alm)oln) .2, = = nth
where C, -JyCz Cz /an y (myn = 1,2,...) and M, =1 modal mass

£ = undeformed beam length
8 = pitch angle
we = orbital angular velocity
Cy = axternal torque about the pitch axis
Jy = beam pitch axis moment of inertia
Ay = nth flexural modal amplitude
€ = Anlz,znondimensiona1ized nth fiexural modal amplitude
k = k/Jywc; c = q/Jymc
K = torsional restoring spring constant at the hinge
c = viscous damping coefficient
o = angle between the dumbbell axis and the local vertical
o(n) _ 20f"
F X x=0 .
¢£") = beam shape function of the nth transverse mode
¢ = Jy/Id’ Id = pitch moment of inertia of the dumbbell
Q= wfue; owy = nt natural frequency
( }' = d/dt where 1= w t
t = time

The following observations can be made from a study of Egqs. (1),(2)

and (3) in the absence of external forces on the system: (a) the

pitch motion of the beam, the dumbbell motion (a), and the elastic
motion of the beam (= ) are all coupled t? ?ach other; (b} within the
linear range the elastic modes for whichcinl= 0 (the symmetric modes),
are completely independent of the pitch afid dumbbell motions. Further-
m?re these modes do not influenceeither the pitch or the dumbbell mo-
tion.

A Flexible Beam in Orbit Nominally Oriented Along the Local Vertical

The equations of motion for a thin uniform flexible beam in orbit with
its axis nominally along the local horizontal (Fig. 1b) are developed
in Ref. 3 and represent a gravitationally stable system. With the
assumptions of small transverse in-plane vibrations and small ampli-
tude pitch osci]]ation§ of the beam, the linearized equations of
motion are obtained as”,

' - 2
a"+38 Cy/J_y“‘c URlGlNA" Pﬁifrﬁ (4)
E;."ﬂ'zﬁsn = En/anER, OF PCOR QU | (5)
\
3.3
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Active control is required to maintain the pitch orientation of the
beam and to damp out the modal oscillations in the presence of the
environmental disturbances. A point actuator located at one end of
the beam is considered for shape and orientation control of both the
dumbbell stabilized beam and the beam oriented along the local verti-
cal. The development of the forcing terms on the right hand side

of Egs. (1)-(5), due to the solar radiation pressure is reviewed in
the next section.

SOLAR RADIATION DISTURBANCE MODEL

A detatled study of the effect of solar radiation disturbance on the
uncontrolled dynamics of a flexible beam appears in Ref. 2 and a
summary of the disturbance model obtained is given below. Fig. 2
shows the geometry of refiection of a flexible beam vibrating in one
of the free beam modes and exposed_to solar radiation pressure. The
incidence solar radiation vector, T, and the unit normal to the sur-
face, n, are assumed_to be_in the plane of the transverse vibration
of the beam. Then, T and n can be expressed as

T = a°T+ COF (6)
n = (¢'T-kK)// T+¢'% (7)

where, ¢' = d¢/d&, ¢ is the free-free beam shape function and & is
the nondimensionalized longitudinal coordinate of the beam.

The solar radiation force, F, . and moment, N3, acting on a completely
absorbing surface is given by

Fy = hoT £ Ten ds (8)
N, ==hT x £ R(T-n) ds (9) .

wilere ho = 4.64x10"6 Nt/m2 is a constant for earth orbiting space-
craft. “The integration over the area, s, is bounded by the condition

Ton >0 (10)

The corresponding force and moments for a completely reflecting sur-
face ahegiven vy

= —— =2
Fp = -2h, £ n(ten)“ ds (11)
= — =, 2

N, = 2h, £ n x R(t-n)" ds (12)

where R is the position vectér of ds with respect to the center of
mass of the beam. For a surface with an arbitrary reflection

riGiuAL PAGE 19 -
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coefficient, ep, the force and moment expressions become :

Fer = Faten(FeoFy) (13)

re Na~+er(Nr-Na) (14)

=|

€

Only the moment expressions are of importance in analyzing the atti-
tude motion of the beam. The expressions for the moments per unit
width of thg beam are developed using £qs. (6) and (7) in Egs. (9)
and (12) asé:

N, = -hoaocoﬁ° (for symmetric modes)
= 0 (for asymmetric modes) (15)
‘ 2
Nr’ -Zhog ——('r_grz')—{ ¢'¢ + (5"’{)} & T (16)

The numerical integration of Eq. (16) has shown that the moment due
to any asymmetric mode of the beam is extremely small as compared
with the magnitudes for the symmetric modes and the moments, N,
gue %?sgge symmetric modes can be expressed in the form {similar to
Q. s

Ny =a,c.8, (for the symmetric modes) (17}

Eq. (17) is valid for all symmetric modes and for small deflections
of the beam. Egs. (15) and {17) are used in Eg. (14) to obtain the
total moment due to solar radiation pressure on a beam with a coef-
ficient of reflectivity, .. Further, the deflection at one end of
the vibrating beam for a Eiven mode can be written as

8,(t) = €, (t) 2

Thus, the total moment on the beam due to any one of the symmetric
modes of the beam can be expressed as

N(t) = e (t) 2 N ac, (18)

where a, = sin 8y and €, = COs & and 8, is the solar incidence angle
given by

05(t) = w.t + 8(t) + 0,(0) (19)
Where w, = orbital angular velocity

8(t) = pitch angle of -the beam.

ORIGINAL PAGE IS
OF POOR QUALITY
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The effect of the distugbance on the generi¢ mode is obtained by .
evaluating the integral

E.=/9 () (¢ 3+ F ds (20)

where, F is the exterral force due to solar pressure. Egs. (8) and
(11) are substituted into Eq. (20) and the vesulting integrals are 2
evaluated under small amplitude approximations with the result that,

Ena = E"r =0 |
= - \ =

and E, Ena+ er(Enr Ena, 0 (21)

Thus, the principal effect of solar radiation pressure on the flex-

ible beam is to produce a net moment about the pitch axis ef the beam.

For a beam of length 100m and e, = 0.5, the maximum pitch moment per

unit deflect}on. Np» in Eg. (18) is obtained using Egs. {14), (15

and (16) as,

Ny = 2.23x10°
= 1,58x10"

(NW calculated here is for a beam with unit width). Eq. (18) is
now ready to be used as the pitch forcing function in Egs. (1) and (4).

4
4

5

+ 0.5(9.4x107°-2.23x10"%)

Nt-m

CONTROL OF THE ORBITING BEAM SYSTEM

For applications of control theory the sets of second order equations,

Eqs. (1)=(3), and (4) and (5) are transformed into a-state vector 1
form given by

X = A +BU+ D - (22) . ;

where X is the state vector of order (2m), m is the total number of
rigid and flexible modes in the system. The plant matrix has dimen-
sionality (2mx2m), B, (2mxr), where r denotes the number of actuators
and D is a vector of order 2m denoting the disturbance and is a
function of both time and the state of the system. For the dumbbell
stabilized beam with two flexible modas inciuded in the model, the
order of the system will be 8, and for the beam oriented along the
lgg?I vertical the order of the system with the two fiexible 1.:des,
W be 6.

A single point actuator located at one end of the beam was considered
for both cases of the beam's nominal orientation in Ref. 4. An ideal
feedback law of the form Y = -KX is assumed to obtain a control law
and the corresponding gain values, K. In the following sections the
rontrol problem is considered separately for the two cases of the
beam orientation.

3.6
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Control of the Dumbbéll Stabilized Flexible Beam

The disturbance due to the solar radiation effects on the dumbbell is
neglected in the following study, since the dumbbell is assumed to
be rigid. The solar radiatfon disturbince vector, D, is then gfven
by

D = [0,0,” ", N/duit, 0,0,0 (23)

and .
N = €12 Np sin 8, cos P (from Eq. 18) (24)

In the abs+-.uce of both the control and the disturbance, an initial
displacement in the first modal amplitude would correspond to simple
harmonic motion in the first mode only. With the inclusion of the
solar radiation disturbance (given by Eq. (23)) into the model, it is
seen that the pitch motion is also excited. As an example, Fig. 3
i1lustrates the response of the beam to an inftfal displacement of
e,(0) = 0.0 in the »resence of the solar radfation disturbance where
the fundamert®l fle.iral frequency is assumed to be ten times the
orbital rate. The pitch motion aiso induces the dumbbell motfon and
oscillations in the second mode through coupling. The induced pitch
amplitude is nearly 20. ,

The method adopted here to obtain controi laws and the gain parameters
for which an acceptable transient response would result in the pre-
sence of the disturbance is to first consider the control problem by
ignoring the disturbance, D, in Eq. {(22) The transient response of the
system with the disturbance is obtained next, and then the gain para-
meters and, if necessary, aiso the form of the control laws will be
modified to obain an acceptable system response under the action of !
the disturbances. :

A set of gain parameters was obtained earlier by examining the charac-
teristic equation of the dumbbell stabilized beam with one actuator

at one end of the beam, for which the disturbances were completely : P
ignored. The control law obtained was of the form '

F. = -0.076 -0.005¢; -0.03¢, (25)
The transient responses with this control law for the dumbbell sta-
bitized beam with and without the disturbances included in the system
are shown in Fig. 4 for an initial displacement of 0.012 in the first
mode only. The fundamental frequency of the beam s assumed to be
ten times the orbital frequency. The effect of the solar radiation
disturbance is to increase the induced pitch amplitude slightly as
shown in Fig. 4. The peak control force required 13 also fncreased
by a small amount, but still.is of the order of 10-% Nt. only.

) ~ the control Taw for this case is seen {0 be acceptable under
the expected solar radiation disturbance on the beam.:

3.7
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To study the robustness of this control system, an extreme case of
the solar radiation disturbance is considered with an initial dis-
placement of 0.12 in the firct mode for a beam whose fundamental fre-
quency is 7 times the orbital frequency. For this case of the beam
and .based on the previous control law, Eq. (25), the transfent re-
sponse of the system is shown in Fig. 5 with and without the solar
radiation disturbance. It is c¢learly seen that the dumbbell sta-
bilized beam whose pitch motion is well controlled in the absence
of the solar :adiation disturbance, experiences extremely large ampli-
tudes of pitch oscillations (+159) due to the solar radiation dis-
turbance. The transient performance of the system in all modes is
improved simply by increasing the gain value corresponding to the
modal rate by ten times and also the gain proportional to the pitch
angle from -0.07 to -0,3,(Fig. 6), for the same initial conditions
and beam parameters as in Fig. 5. The large amplitudes in the pitch
motion disappear as the first modal amplitude is quickly damped re-
ducing the magnitude of the solar radiation disturbance. The peak
control force now increases by two orders of magnitude as compared
with the cases in Fig. 3 and Fig. 4, but the peak force value of
2x10-2Nt. is sti1l a smal! value. Thus, the need to consider the
solar radiation disturbance in designing a control system for a
highly flexible system is demonstrated.

Control of a Flexible Beam Nominally Oriented Along the Local

Vertical

The same procedure used for the dumbbell stabilized beam is repeated
here to obtain a robust control law and the gain parameters for use
with the solar disturbance input. The control law, with the gain
parameters selected to provide damping in pitch and t'.c first mode
is given by

F. = -0.01 & -0.01 ¢, (26)
The second mode is not included in this model, because the second
mode is decoupled from pitch and the firsﬁ mode, even in the pre-
sence of the solar radiation disturbance.¢ The system transient
response with the solar radiation disturbance is shown in Fig. 7

for €1(0) = 0.012 and the fundamental frequency of the beam assumed
to be ten times the orbital frequency, and with and without the
application of control. In the absence of control, the magnitude of
the induced pitch oscillations (=0.25°) is small as compared with
the case of the dumbbell stabilized beam (Fig. 3), because of the
stabilizing gravity forces. With the application of the control,
damping in both pitch and the modal amplitude results

The same control law, (Eq. 26), applied to a more flexible beam

(w1 = 3.0) and a larger initial amplitude in the first mode

(e7(0) = 0.12) shows (Fig. 8) that the pitch amplitude overshoot

is nearly 30°. An attempt was made to increase the feedback gain
proportional to the first flexible mode, €7, as before, for the case

3.8

R



A L L L e L - agnhy rN-0 TR e %4 w - N o ‘T

of the dumbbell stabilized beam. The transient responses {not shown)
indicated large overshoots in the pitch ampiitude and a further in-
crease in the feedback gain value made the system unstable., Similar
attempts of varying the gafn values corresponding to the pitch rate
and providing the feedback proportional to the pitch angle failed

te provide an acceptable transient response of the system. Two
actuaters were then assumed, one at the center of the beam (pro-
viding control over the flexible mode only) and the other at one of
the nodal point ( f = 0.776) of -the flexible mode to control the
pitch motion only.™ The pitch and the flexible mode were then de-
coupled except for the influence of the flexible mode on the pitch
motion through the solar radiation disturbance. The following control
laws were selected for the two actuators to provide critical damping
in both pitch and the flexibie mode.

fi =-0.1138  f, = 0.3, (27)

The transient response for the same initial conditions in Fig. 8 and
under the new control law [Eq. (27)] is shown in Fig. 9. The pitch
motion and the flexible modal oscillations are quickly damped out.
The peak control force required is of the order of 10-2Nt. for both
the actuators - the same order of magnitude required in Fig. 8.

CONCLUSIONS

The uncontrolled and controlled dynamics of a thin flexible beam in
orbit and in the presence of solar radiation disturbances are
analyzed. Control Taws and gain parameters are obtained to control:
(1) the beam nominally oriented along the local horizontal and
carrying a gimballed rigid dumbbell for gravity stabilization, and
(19) the beam nominally oriented along the local vertical. The
control laws previously developed ignoring the environmental effects
are found to be inadequate to control the shape and orientation of
very flexible beams that are exposed to solar radiation disturbances.
In order to obtain a robust control system in the presence of enviro- -
mental perturbations, it is sometimes more desirable to increase

the number of actuators rather than simply modifying selected gain

values. For further research related to the problem of minimizing

the overshoot under large disturbances (in a qualitative manner) the

use of pole placement techniques and application of 1inear quadratic

Gaussian method are suggested as a follow on effort, especially for

large order systems. -

b a————
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IV. EFFECT OF SOLAR RADTATION PRESSURE ON THE DYNAMICS OF A THIN
HOMOGENEQUS SQUARE PLATE IN ORBIT

IV.1 Introduction

Proposed future applications of large space struétures require ._ontrol
of the shape and orientation of Lhe structure in orbit. It has been shown
previouslyl, considering a long, thin and uniform beam, that the principal
environmental disturbance acting on these structures could be due to the
gsotar radiation pressure. In the present work the dynamics of a more
important basic structure, namely, a thin, homogeneous and flexible square
plate exposed to solar radiation disturbance will be considered. The force
and moment expressions as given by Karymovz will be used te obtain the
expressiong for solar radiation disturbing forces and moments acting on
the free-free square plate in orbit, The dynamics of such a plate nominally
oriented along the local vertical was consldered earlier disregarding the
environmental disturbances.3 In the present study it 1s proposed to recon-
sider the dynamics of the square plate nominally oriented along the local
vertical with the solar radiation force and moment expressions included in
the dynamic model.

The mode shapes and the frequencies of the plate are obtained using
the finite element program,STRUDL.4 To obtain expressions for solar
radiation forces and moments, 1t is convenient to express the mode shapes
of the plate as a combination of the mode shapes of a free-free beam.5

The first five modes of the plate will be considered for study here.

The plate is assumed to have only small transverse vibrations, so that the
shadowing of the plate due to any deflected part of the plate can be
néglected. The small deflection assumption also allows the superposition

of the beam mode shapes in representing the mode shapes of the plate.
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IV.2 Solar Radiation Forces and Moments Acting on a Thin Homogeneous
Flexible Square Plate

Fig. 4.1 shows a square plate exposed to solar radiation. Let n
denote the outward unit vector normal to the surface, ds. and let T
be the unit vector in the direction of solar radiation dencted as

T = aoi + boj + <, k (4.1)
The direction co.ines of ?} namely, &y bo and ¢ can be axpressed in
terms, of the solar incidence .anglc-zs,(‘)‘L and wi,(defined in Fig. 4.1)
as
a sin Bi gos wi
bo = gin 6i sin wi (4.2)
c, = cos 91

Then, the solar radiation force, F;, and the moment, Na’ on a completely

absorbing surface are given by2

F=htJt T*n ds (4.3)
°© s
and N=-hTx /R (tn) ds (4.4)
a o s

where, h, = 4.64x1070 Nt/m2 is a constant for near earth spaca structures,
The integration over the area, s, 1s bounded by the condition
T*n > 0 (4.5)

The force, f;, and moment, ﬁ; acting on a completely reflecting surface

can be developed asz,

- — =2

Fr = -2ho £ n {(T*n)° ds (4.6)
and N_= 2h [ nxr (?-':I)z ds (4.7)

T o] a

where, R is the position vector of ds with respecf to the center of mass of

the plate.
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For a surface with an arbitrary reflection coefficient, €,, the force and

2
moment expressions become™:

For = Fo¥ er(Fr-Fa)

NEr = Na+ Er(Nr-Na) (4.8)
The shape function of a rectangular plate can be represented as a
product of the two beam functions given by5 {considering only the trans-
verse vibration),
Zp,n 6¥) = 8 () Y (y) (4.9)
8 and Y are the free-free beam shape functions given by
Bn(x) = On(sinﬂnx + sinhﬂnx) + (cosﬂnx + coshﬂnx)
forn=2,3, 4. ... (4.10)
where, o, = (cosﬂn-coshﬂn)/(sinhﬂn-sinﬂn)
and Gn(x) = 1-2x for n=1
= a constant for n=0
and en(x) = ¢n(30 '
For a square plate, certain special modes which are combinations of the
1
modes of a rectangular plate are shown to he existing.5 The frequency |
expressions for such modes are also given in Ref. 5. The first five
modes of a square plate im which the second and third modes represent

special combinations of "beam modes" (Fig. 4.2) are considered in the

present study.

4.3
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A unit normal to the syrface, n, is given by,

n = ali + blj'+ clk

= P(d8/dE)T + O(aW/dn)] ~ k

Jlfw d0/d£)2 + @ (dwdn)2 +1 ¢h.11)

(¢,n, L) are non-dimensional. coordinates in the x,y,z directions, respectively.)

The position vector, R, is represented as,

Re G-P I+ MM-PT+ak (4.12)
Eqs. (4.1), (4.11) and (4.12) are substituted into Eq. (4.4) and then the
resulting integrals are evaluated to obtain the expression for the moment
acting on a plate having a completely absorbing surface as,

N, = -hof2l{b symc (s,75,/2)} T + (e (s;-5,/2)-a 85} §

+ {a_(8,78,/2) ~ b, (sy-8,/2)} k] : (4.13)
where,
8, = i Escdgdn 8, = [/ ns d&dn
8 s c
= d&d
Sq g 58, £dn 8, = S schdn
do dy
?c = (aowm -&En— + bO en d_ngl - CO)

sue integrals s, to s, can be evaluated analytically. The moment express-
ions are obtained for the first five plate modes (Fig. 4.2) by evaluating

5y to 8, for'cgmbinations of corresponding (m,n) modes and are'given as,
_ hi2 _ a9 -
N. = — [aocoi -bocoj + (bo—a0 Ykl z4 (for mode I)
2 P ——y
= h 2% [boi + aoj] z, (for mode II)

= hoﬂ.zco [b&f - aojj 2, (for mode III)

= o, (for modesIV and V) (4.14)
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where, 295 29 and zy are deflectivns at one corner of the plate asso-
clated with the I, II and III modes, respectively.

The moment due to solar radliation pressure, ﬁf, acting on a completely
reflecting surface is obtained by substituting Egs. (4.11), (4,12) and
(4.1) in Eq. (4.7). The resulting integral is simplified to obtain the
expression,

Er = 2h0 £ [(azc-a3n')1:+ (335‘-81553 +(aln'—aZE')Ej scdgdn (4.15)
where, £'=E -0.5and n' =n - 0.5
Eq. (4.15) involvas complicated integrals and to find an analytical solu-
tion is very dlfficult, Instead, a numerical evaluation of the integrals
involving different modes are carried out and the results are shown in
Fig. 4.3. The plate dimension is considered to be 100mx100m and the
deflection at the corner ;f the plate for each mode is assumed to be
Z] = 2,= 2q9 = 1.0m. Similar results are also shown in Filg. 4.3 for a
plate having a complétely absorbing surface and are obtalned using Eq.
(4.14). The solar incidence angle, 8,, is varied from 0 to 90°, with
wi = 0, Only the first three modes give rise to appreciable moments for
both completely absorbing and completely reflecting surfaces. The
magnitudes of the moments are seen to be an order of magnitude higher
(2x10-2Nt-m) for a completely absorbing surface as compared with the case
of a completely reflecting surface (10—3 Nt-m). The moments due to

modes II and III, and for both completely reflecting and completely ab-

sorbing surfac s, can be visualized as extensions of the result obtained

1 ,
for the case of the beam. For wi = 0° (incidence only in the z,x

Plane) the moment o1 a beam is shown to be about the y axis for any given

mode of the beam.

-
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But, for the same case, interaction of the solar pressure on the plate
vibrating in only the first mode, results in a moment about the x-axis.
The reason for the latter phenomena can be explained by considering
the force distribution for a completely absorbing surface (Fig. 4.4).
There is a finite moment about the x-axis along the cross section
y'—y' as shown in Fig. 4.4 because of the uniform variation in the
angle of incidence along y'—y'. All the cross sections must be
similarly considered from £= 0 to 1, and the net moment result will,
in general, be non zero. A similar explanation can be given for the case
of a completely reflecting surface.

Based on the numerical results shown in Fig. 4.3, in which ¥y is
varied from 0 to 90° (not shown) the moment expressions for a completely
reflecting plate can be written as,

— e —

N, = h,¢ (ai-b j) =z (for mode I)

r 170 "o o 1
= h,e (boI;aoj) z, {(for mode II).
= h,e, (boIFaOE) zq (for mode III) \
whete, “ hy = 3.25x107% and h, = 1.09x10"
Eq. (4.16) is found to be valid for magnitudes of z. to z, up to 0.011.

1 3

The moments about the X,y and z axes are obtained by collecting the coeffi-
clents of 1, E'and E,respectively, from Egs. (4.14) and (4.16) as,

N, = h, {(a°/3)21 + bo(z2+z3)}

Nay = —hj {(b°/3)zl +bo(23-22)} (4.17)

. 2 2
Naz (h3/3) (b6 ao)zl.
_ 2
where h3 = hcl ey

ORIGINAL PAGE iS5 i
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N -~ co{hlaozl + hzbo(ZZ_ZS)}

rx
Nry = _co{hlbozl + hzao(zz-z3)} (4,18)
er = 0

Eqs. (4.17) and (4.18) are now substituted into Eq. (4.8) to obtain the
mctent acting on a plate with a surface of general coefficient of reflec-

tivity, € -
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IV.3 Modal Forces Due to Solar Radiation Pressure

The effect of the disturbance on the generic mode is obtained by
evaluating the integral6
E =/ z (x,y) kedF (4.19)
where, F represents the force due to solar radlation pressure, Alsa,

E =E _+¢e. (E ) (4.20)

~E
n na nr na

Eq. (4.3) 1s substituted into Eq. (4.19) and after evaluating the re-

sulting integrals, E a is found to be equal to zero for all modes of the

n
plate. Eq. (4.6) is used in Eq. (4.19) to get

E = 2h, f [z(aa +b b e )/(aitbi+1)] dkdn (4.21)

The slopes, dq‘/dﬁ and ddh/dg, are assumed to be very small so that

ai+bi+ci = 1, Thus, the integral in Eq. (4.21) can be easily evaluated

to show that Enr is also equs. to zero for all modes of the plate. Hence,
the solar radiation pressure. dnes not give rise to any generic force. The
results obtained can now be used in the dynamic model of a flexible ﬁlate

in the orbit. \\_
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IV.4 Effect of Solar Radiation Pressure on a Plate Nominally Oriented
Along the Local Vertical

The major surface of the plate is assumed to be perpendicular to
the orbital plane (Fig. 4.5). From the general formulation of Refs. 3 and
5, the equations of motion of the structure are obtained, under the assump-
tion that the transverse deformations are small compared to the charac-

teristic length of the plate. The linearized equations of motion are

given by3
& = -2wc$ + mgw + Nx/Jx
f = mcw + Ny/Jy (22)
o = -wle 4N /I,
e+ @glu)le =0

where V¥, ¢, and O refer to the yaw, roll, and pitch modes, respectively,
W, is the orbital amngular rate, Qn 1s the nth médal frequency, €, is

the non-dimensional modal amplitude, and Jx are the principal plate

' ¥ Z
moments of inertia.
The roll and yaw equations of motion are coupled to each other
and the characteristic equation shows a double pole at the origin indi~
cating instability in the roll-yaw motion. However, for an initial con-
dition of Y(o) = ¢(o) = 0, the roll and yaw motions will not build up.
To study the effect of solar radiation disturbance, a square plate whose
fundﬁmental frequency is ten times the orbital frequency is considered.
it

Only the first three flexible modes are included in the dynamic model

with initial conditions of 0.01 in each mode. The transient response of

the plate under the ianfluence of solar radiation pressure is shown in Fig. 4.6.
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The torque about the normal to the plate due to the first modal amplitude
acts in one direction only (Fig. 4.3b); as the solar incidence angle

changes in the orbit, it is seen that the cyclic contribution due to Ny
averages to zero. This torque induces a steady drift in the roll angle

(= 1.5° in 6 orbits). The yaw motion 1s seen to be oscillating with

a very small amplitude (0.3°). The solar radiation pressure disturbance

also induces a small amplitude (0.03°) pitch oseillation., The modal oscilla-
tions are unaffected in the presence of the solar radiation disturbance.

The magnitude of the pitch, roll and yaw angular metions due to the

solar radiation pressure are small becuase of the stabilizing gravity=-

gradient forces acting on the plate.

4.10
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V. SOLAR RADIATION HEATING EFFECTS ON THIN RECTANGULAR PLATES AND BEAMS

V.l Introduction

The thermal gradients induced in large flexible space structures due
to solar radiation heating can cause large deflections depending on the
thermal properties of the material and the geometric shape of the struc-
ture. The thermal deflections are functions of both time and elastic
diSplacements}’2 The heat being radiated from a thin solid is also
proportional te the fourth power of the surface temperatures, Therefore,
in order to study the effects of solar heating, a number of realistic
assumptions, depending on the problem, will have to be made to obtaln
expressions for the important thermal effects.

The objective of the study here is to find expressions for thermal
deflectiona of large, flexible, thin beams and plates exposed to solar
heating. The major assumptions made hure are: (a) the reflected solar
radiation by the Earth (albedo) can be neglected; (b) the inherent time
lags in the heat transfer process are very small compared with the orbi-
tal period; (c) the radiation from the edge surfaces can be neglected;
and, (d) the beams and plates have uniform thickness and thermal pro-
perties resulting in a uniform temperature distribution of the surface
facing the sun. The effects of the Earth's shadow and shadowing due to

a part of the structure ure not included in the study.

5.1 q
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V.2 Equilibrium Temperatures of Thin Plates and Beams

The one dimensicnal beam bending analysis alsoc applies to the two

3

dimensional plate bending. Flg. 3.1 shows the beam e... - d to solar

radiation. The solar incidence angle, 91, is taken to be a constant
during a small interval of time. During this interval the surface facing
the sun, B,» attains temperature Tl and the surface away from the sun, 89,
attains a temperature, Tz. The equilibrium temperatures, T1 and Tz, can
be determined by writing the thermal balance squations. The total heat
leaving the beam from the two surfaces, 8, and 8g» should be equal to
the heat received by the beam., Therefare,

) UT4 + E 0T4

where, L 22

El and Ez

g = Stefan~Boltzman constant

e asG cos B (5.1)

i

are the emissivities of the surfaces,su and g9 regspectively

= 56.7x10% Ku/m® °%

a, = absorptivity of the surface, Su

G = intensity of sclar radiation = Q.8 KW/m2
The heat flowing through the plate, at equilibrium, is also equal to the

heat radiated from the surfa- -, 8y

4
EZO’T2 = K(Tl—Tz)/tc (5.2)

where ,

K = thermal conductivity Gﬂd/mok) of the plate material

tc = thicknesas of the plate

Equations (5.1) and (5.2) can be rearrany - as

EZUtc 4
Tl u TZ + 5 T2 {(5.3)
T4 } aSG cos ei _ E& .34 (5.4
2 Ezd E2 !

5.2

i

- —— - B Crrem e =M e aarme! e v o vm v ammmam et e — e & S Y e am e [ R S b w1
m,ﬂ,m enio om st eI b RV UL ST 4 . .
P RE TPEAE P L A S e T Pr PPy o N o B



Eqs. (5.3) and (5.4) can now be solved to obtain Ty and T, by
assuming an approximate value of Tl or T2 and then through numerical
iteration. Assuming E1 = E2 = (.05 and a, = 0.2, the temperature
difference, AT = Tl-Tz, is obtained as a function of the solar inci-

dence angle, 0,, and various parameter ratios of kr = k/tc, as shown in

i’
Fig. 5.2. A higher value of kr Indicates a larger value of thermal
conductivity and, hence, the temperature difference between the two

surfaces becomes smaller. A plate of thickness lcm and made of Polyamide

(K = 0.25x10-3Rme°K) willl have a maximum temperature difference of 2.3%K.

The temperature gradient is found to vary approximately linearly with Bi
from Fig. 5.2. Expressions for deflections of the plate as a function of

the temperature gradient are developed, next.

3.3
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V.3 Pure Bending of a Beam (or a Plate)3:

Fig. 5.3 shows a beam of length, %, and width, b. The temperature
of the mid-plane of the beam is denoted by Tn' The temperature of the
surface facing the sunm, 8, is then Tn+(AT/2), and the temperature of
the surface, 8> is given by Tn-(ATIZ). According to the theory of beam
bending analyzed in Ref. 3, we have

$H= £ STyda (5.5)

¥y
where

z is the transverse deflection of the beam,
a, coefflcient of linear expansion
Jy = moment of inertia of the beam about the y axis

Eq. (5.5) is rewritten by evaluating the integral

oz -a, %1 = a constant (5.6)
¢

The expression for the thermal deflection is then given by

2
z=—ae%§52— (5.7)

The thermal deflection can be mimimized by selecting a material of
low coefficient of expansion or by using a material of high thermal con-
ductivity. An increase in the thickness of the plate will also increase
the temperature difference (Filg., 5.2) and also increase the weight of
the plate. Hence, the parameter, teo should be as small as possible.
The other important properties of materials not reflected in Eq. (5.7)
are the density and the cost of the material as shown in Table 5.1.4
For a beam of length 100m and thickness 0.0lm, and made of polyamide

(a low density and low cost material), the maximum thermal deflection is

found to be approximately 7m.

5.4



If the beam is made of aluminum, the maximum deflection would be about
2mm. Once a tolerable thermal deflection 1s specified the material can
be selected to meet the conflicting requirements of low density, high
thermal conductivity, and low cost. In the next section the solar radia-
tion pressure moment resulting from a thermally deflected beam (also

applicable to a plate} is discussed.



V.4 Effect of Solar Radiation Preassure on a Thermally Deflected
Beam (or Plate)

The moment expressions derived by Karymov (Eqns. 4.3-4.7) are used
to obtain the moments acting on a thermally deflected beam. The equation
for thermal defleétion is given by (5.7). The moment on a completely
absorbing surface is obtained (after integration) as,

N, =a, c, 60 2bj (5.8)

where
bo’ c, are the direction cosines of the solar incident

a_,
radiation vector
60 = paximum deflection (from Eq. (5.7)) = Z ax
The maximum deflection, 60, can be obtailned as a function of Gi by
selecting a function to represent AT in Fig. 5.2, and then by using the
function for AT in Eq. (5.7). The moment acting on a completely reflecting
surface 1is obtained through numerical integration, as,

Nr = -0.05 a ¢, 60 23 (5.9)
The corresponding moment expressions for a plate are obtained as

Na =c, 60 2 b (boi + aoj)

N = -0.05 ¢, 6 % (b I+ at) (5.10)

The moment on a beam (or a plate) with a surface whose general coefficient

of reflectivity is €., can then be obtained by using Eq. (4.8).
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Table 5.1. Properties of Representative b-!at:m'ialls.4

Material Dersity Expansion Thermal = Cost
(Kg/m3) Coefficient, ag Cond. K ($/Kg)
(m/m °C) K w/n-CK
Graphite 1.5x10° 8.3x107° 8.65x10 2 500
Beryllium  1.8x103 3,5%10~° 12.25x107% 10,000
Aluminum 2.7x103 2.1x107° 28.8x10 > 1.1
Polyamide  1.13x10°  25x107° 2.45%x1072 15
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VI. EVALUATION OF HOQP/COLIMN COUPLING COEFFICIENTS

The generic mode equations and the equations of rotational wmotion of
a flexible orbiting body contain coupling terms between the rigid and flexi-
ble modes and terms due to the coupling within the flexible modes that are
assumed to be small and, thus, are usually neglected when a finite element
analysis of the dynamics of the system is undertaken. In this Chapter
a computational algorithm that permits the evaluation of the coefficients
in these coupling terms in the equations of motion as applied to a finite
element model of the Hoop/Column aystem 1is developed.

Using a Newton-Euler approach, one-can express the equations of motion

of an elemental mass of the system, in the frame moving with the body, as1

LN |

— o, T —

{Ecm+ :ﬁmmmx(a'ﬁ) lodv = {E+e+L(q)/p}pdv C O (6.1)

where p = mass per unit volume,
2 = external forces per unit mass,

elastic transverse displacements of the
element of volume.

-]
]

]
]

force due to the gravity on the unit mass, and

L = the linear operator which when applied to'E yields
the elastic forces acting on the element of volume
considered.

T = position vector of element dv

E}
| ]

inertial angular velocity of the body frame

6.1
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VI.1 EQUATIONS OF ROTATIONAL MOTION

The equations of rotational motion of the body are obtained by taking
the moments of all the external, internal and inertial forces acting on

the body, i.e., from Eq. (6.1)

/T x [;cm + T + 2uxr + wxr + wx(wxr)]pdv

= [ Tx[L(q)/p+ £ + e]pdv (6.2)
v
one can obtain the following form for the equations of rotational

(m) ¢ (6.3)

R+ 2q™+ 1™ -G + 13
n=1 n=1l n=1
where R = £[r°x(mxro) - (ro'w) (mxro)] pav
fa ®) o [ w42 0 e @) 4 e, )
~(r W) (wxa)-(q+w) (wxr )] pdv

=(n) _ - _F 2 - .7 (n)
n?ID £q pdvx(acm fo) + n?l wnAn £ rox¢ pdv

GR =f r‘:)x!‘lro pdv

T 5™ o /[T aigrquir,] pdv
n=1 v
C = frxe pdv
v
T = T +q

M= matrix operator1 which when applied to T yields gravity-gradient forces

8.m = acceleration of the center of mass

?; = force/mass due to gravity at the undeformed center of mass

=~ (n)= modal shape vector for the nth mode

=

= frequency of the nth mode

A = time dependent modal amplitude function
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VI. 2 GENERIC MODE EQUATIONS OF Poog 3

QuALrTy
The generic mode equation 1is obtained by taking the modal components

of all internal, external and inertial forces acting on the body, i.e.,

4 »

ST 3 i duwrterrax (@xr) ] odv
v cm
= ,r$(“)- [L (Q)/p)+E+e] pdv (6.4)
v

The generic mode equation is obtained in the following form:

1) 2 - ,
A twlA + P + Elcpmmn [gn+£lgm+En+Dn]/_Mn (6.5)
wvhere P = I8 G +F O T (@nc )] pav
n v (o] o]
T = 128 G T 0 g T @) 1 pdv
p=1 00 v
. fF T odv: e = 7 Todys
g, ) Mr pdv; mEJ.gm ‘J;¢ Mqpdv;

- "'(n)._ (- 5 (n) ofn F
En Jé epdv and D ‘J;‘:' pdv (acm fo).

E
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VI.3 CARTESIAN OOMPONENTS OF_-THE DIFFERENT COUPLING TERMS

The expressions for R, gnt ER, gin) ¢9n
' ’

‘ﬁ?mno n’ gmn-in Cartgsian components are presented in this

section. -

-

One can express the following vectors in

thelr Cartesian component form as

rongxi+5yj+gzk; ® =mxi+myj+mzk

as.ﬁA

=(n) = ,. =(n)_, (m)%, (n)5,, ()2
RRMCIAGEREEC ML PR L e

=(n) _ (M)} . ()% . (o)
Q' Qx i+ QY i+ Qz k

and & - o™i 4 6] 4 G,
where {, 5, £ are unit vectors along the body principal axes
of ivertia in the undeformed state; 5x: Ey’ Ez are the co-
ordinates of a point in the undeformed state.

With the use of the compenent forms of the
vectors given above,'one can expand the various vector ex-’
pressions given in Egs. (6.9) &nd (6.5) -to cbtain

R = [Jxm:; + (Jz-Jy_)mysz i

+ [T w

'y +'(Jx-Jz)mzmx1 3

+ [Tu, + (JY-Jx)mxwYJ X _{B.6)
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(n) _ x (g(n)_g(n 2 {n) _.(n), _ o(n)
Q. An(Hyz sz ) + 2An[(Hyy +sz )“x ny Wy

_ gin) (n) . (n}, o _ {(n) _(n),.
- mzl + An[z(nyy +H, ., Juy, (ny +ny )wy

_ (pin) gn)ye (n) __(n}, _ - (n)
(B, +H. . u, 2“y“z(sz HYY ) mme(sz_

(n) g fn) L (n) c2_ 2 o(n)
+Hzx ) + ”xmz!ny +ny ) + (“z .ny)(Hyz
(n)
+sz )] (6.7)
Gp = (J,=J,)0My31 + (T,=0 )5, + (=T )M,k

(6.8)

(n) - (n) ,(n), _ (n) ,..(n)
Gx = An[(M33 1“122)(111}1‘_z +sz ) M., (H +Hzx )

“21'xz
{n) . (n) (n) _.(n)
+ M31(ny -i-ny ) + 2M23(HYY sz }1 -(6.9)

- (n) _ (nf . (n) _{(n) . {n) _.(n)
d?h mx(Hyz sz ) + my(sz sz ) * mz(ny ny )

+ w w (H(n)+H(n)) + W W (H(n)-i-H(n)) -+ mzmx(H(n’

Ly Uy yx vWz'lyz TCzy 2x
- wi(gii’+g§§’) (6.10)
on © zin{thn;gh?-Léﬁn)) + my(ﬁéin)-Légn’)
+ wz(Lgn)-L}{f””) T+ Amf':ix(L:gm-L;;n’)
. +'éytL;2n)-L:. + éz(Liin)-L;in))
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(L(mn)+L(mn)) . W (L(mn)+L(mn))

+ W w
X'y . Xy yx Yz yz zy
(me) _(mn) 2 {(mn) . (mn)
f wzmx(sz gz ) mxu‘yy T )
- wlyp (mn) (mn), _ 2. (mn} . (mn)
“y(Lzz Loy ) = wallL +I..yy )1 (6.11)
(n)
g =ILH ., M
n aB aB afB
%on = Am Zg Légn) Mas
af

(n) w(n) . . (mn)_ (m)  (n), .
where HcB =‘{Ea¢6 dm; L —i ¢a ¢ dm; and

af 8
a, B=x,y,zo0or 1, 2, 3. When a is x in Hég’ or Légn)

the corresponding value of a in MGB is 1. In a similar

(n) {mn)
ag a

(n) (mn)’ @ is 3 in M_,. The same rea-

way when a is y in H or L , & is 2 in MaB and when

a is 2z in Hpg orkL

ag
soniné holds for 3 also.
. . ain) (n)
The expressions for QY and Q, " are

obtained by the cyclic permutation of %, y, z in the

(n)
x

are obtained by the cyclic permutation of

{n)
X

expression for Q

(n) (n)
GY and Gz

X, Y, 2 in the expression for G

in Eq. (6.7) and the expressions for

in Bq. (6.9).
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For a discretized model the expressions for the volume integrals are

replaced by the following summations:

(@ - 3 ) 6™ (6.12)
af i=1 (s M B i1 )
(@,B = x,y,2)
(mn) (m) (n)
where
k = total number of discrete masses

[ d
]

index identifying a nodal point
m, = mass concentrated at the ich node.

coordinates of mi in the undeformed state

gm
]
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Vi.4 EVALUATION OF COUPLING COEFFICIENTS IN THE EQUATIONS OF MOTION AS
APPLIED TO A FINITE ELEMENT MODEL OF THE HOOP/COLUMN SYSTEM

VI. 4.1 Model Description

The structural dynamic modeling of the Hoop/Column antenna has gone
through many stages before reaching the single surface model which will
be analyzed in this chapter.

Initially, it had 231 nodes distributed as foliows: 192 nodes omn
the 8 support circles including the hoop (24 nodes on each circle spaced
at 159 intervals); 28 nodes on the mast and the feed mast; and 1l nodes
at the points of location of the solar panels (upper and lower), the
S band reflector, and the feed panels (up-link and down-link)--see Figs.

5.1 and 5.2. After reduction the number of nodes was diminished to 114

including a total of 96 nodes on the circles: 1100, 1200, 1300, and 1400;

7 nodes on the mast and the feed mast; and 11 nodes at the locations of

the solar panels, the S band reflector, and the feed panels (Fig. 6.1).
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VI. 4.2 Approximate Mass Distribution

From an unpublished document prepared by the Harris Corporation,2
and submitted by NASA Langley Research Center, it has been possible to
arrive at the mass distribution shown in Table 6.1, 9803.0 lb. out of
the total weight of the Hoop/Column Antenna (10,070 1b.) were distributed
between the final grid points. The distribution was done in agreement with
the information found in the Harris Corporation document. The page numbers
appearing in Table 6.1 refer to particular mass/moment of inertia calcula-
tions in the Harris Corporation document.2

The small (2%) discrepancy between the calculated total mass (9803.0 1b.)
and the stated weight of the system (10,070 1b) is thought to be attributed
to: (1) uncertainties in the weight of specific stringers; (2) uncertainties
inh=-ent ﬁith the finite element reduction technique where the ianitial mass
nug. bHe czdistributed between a reduced, final number of grid {node) points;
zuc (¥} other miscellaneous uncertainties, such as the exact weight/location

of the optical instrument, etc.

VI. 4,3 Cartesian Coordinates of all the Nodal Points in the Final
NASTRAN Output

Reference 2 contains the cylindrical coordinates of all the nedal peints
on the mast, the feed mast, and at the location of the panels and electronics.
It also contains the Z coordinates of the planes which contain the circles
along with their respective diameters. Thus, the Cartesian coordinates of

all the nodal points were obtained by a simple transformation from cylindrical

to Cartesian coordinates.
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VI.4.4 Development of a Computational Algorithm for Evaluation of
the Coupling Coefficilents

After receipt of the tape containing the modal functions, this
information was stored in our IBM 360 in such a manner that when one
calls subroutine,GETMP(2), he can refer to the kth component of the Ith
mode shape vector at the grid point J by VECMP(I,J,K). Based on this,
an algorithm described in the flow diagram, Fig. 6.2, was deslgnea and
tested. As indicated in Fig. 6.2, the available data, such as: the
Cartesian coordinates of the grid peints on the mast, the feed mast and
the ones at the locations on the appendages; and such as the mass concen-
trations at all the nodal points are input into the software routine and
these data will consequently have to be updated according to any develop-
ment in the Hoop/Column modeling. The subroutine, DCS, (given the radius
of the circles and the Z component of their centers) computes the Cartesilan
coordinates of the nodal points on the circles.

Subroutine GETMP(2), which makes the ¢§f; available,is called and
the values of components of the desired mode shape vector at the particular
grid point are incorporated into a loop mathematically described by Egs.
(6.12) and (6.13). It should be noteu that, for reasons of effectiveness,
each coefficient is evaluated separately on the circles and on the other
grid points and then combined to yield the corresponding coupling coefficient
for the entire Hoop/Column system.

The algorithm has been tested for two modes (the 7th and the ath)
successfully, but only after the ev;luation of the coefficients corresponding

to all the 13 modes will one be able to make positive comnclusions.
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VI.4.5 Normalization of the Equaticns

In order to make a valid comparison between the terms in the rigid
modes and the ones due to the coupling between the flexible modes, the
equations of motion and the generic modal equations are non-dimensionalized
in this section.

The Euler anples and their rates are assumed to have the following
form:

o

8= 0 sin Ot + eo cos Qt and & = éo cos At -BOQ sin Ot
When 6 ~ 0, the amplitude of 8 is governed by that of éO/Q. In order
to guarantee the small amplitude approximation for these angles,é/ﬂ
must have as a maximum the order of 1/10. For a gravity stabilized
structure, & 1s proportional to the orbital angular velocity, wc,
with the proportionality constant depending on the differences in
apprgpriate moments of inertia, and whether pitch, roll, or yaw motion
is under consideration. For thisreason we select 6 wc/200/§ and
similarly for $O and io' (It is well known that the frequency of a
rod shaped dumbbell librating near the local vertical is /3 mc).
According to an assumed Fuler sequence [(1)¢, (2)8, and (3)y¥] from

the local vertical to the principal body axes,

w, = (9—wc)sin ¢ - Y sin 6 cos ¢
wy = (é-mc)cos ¢ + & gin 6 sin ¢

w, = & cos § + $
Therefore, W, & (é-mc)¢ - &6 ~ 0; wy :'(é—mc); and w, 3’¢ + $ and the

corresponding gravity gradient matrix operator, Ml, is calculated as

2 0 0

-l
M wc -1 0
0 -1

6.11
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The terms in the rigid modal equations are normalized by dividing
each by Rzmg {where £ = 100m is selected as the characteristic length
of the system and wq is the frequency of the 7th mode); the terms in
the generic modal equations are normallzed by dividing by £m7. The
elastic displacementsare assumed in such a manner that An 2w A ; A =

wi An. Examples of normalization follow:

{n) - H (:3‘)

(n) ,,2 2 (n) (n)y _
Gy /05wy = A LMy M) (B T4 B 0T) = My (B

(n) (n) (n) (n) 2 2
+ M31(ny + ny ) + 2M23(Hyy ~H,, 1178 (o
¢n/£w§ = {w7mx(ﬂ(2) - Hi;) + w7wy (Héz)— Hiz)) + m7wz(Hi;)~ Hég))
+ wxwy(Hi;) + H;:)) + wywz (H;S) + H:E)) + w W (Hi:)+ Hi:))

2 . (n) (n)y _ 2 (uyin) (m)y _ 2 ym)  ,(n) 2
- W (Hyy + sz ) wy (sz + Hxx ) W (Hxx + Hyy )}/m7

In connection with the normalization of ¢n and ‘similar terms invelving

time derivatives of the angular velocities, it should also be noted that

d d
ar =Yy T where T = w7t, i3 a dimensionless time parameter.
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V1.4.6 Comparison of the Terms

Table 6.2 shows the comparison between the magnitudes of the components
of R and the components of the largest coupling coefficients in 6 for
both assumed wvalues for An = 1m, lmm for all modes.

It appears that when the system 1s operating within the mission speci-
fications (deflections of the order of mm), the finite eleﬁent assumptions
are valid; when the deflections are of the order of meters the coupling
between the flexible and rigid modes should be incorporated into the equations
of motion.

In Table 6.3, a comparison of pertinent terms in the generic modal

“ )
equationsis given. R = A + w A 1is compared with P = {¢n—gn+

13

t
2-7 (an 8hn)}/Mn where Mn is the modal mass assoclated with the n
The comparison, after norwalization of the different terms in the equations,

h mode.

shows that the time dependent amplitude of the modes can be approximated

as an harmonic oscillator at least up to the point where An = 1lm for all n.
One can therefore conclude that even though the time dependent modal

amplitude function An can be modelled as an harmonic oscillator, the coupling

between rigid and flexible modes has to be taken into consideration once

the displacements exceed the order of mm, based on the parameters of the

Hoop/Column system.

6.13
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Given X,Y,Z (cartesian coordinates of the nodal
points on the mast and feed) and the mass concen-
tration at each nodal point in the system (approxi-
mate mass distribution)

Call Subroutine DCS which
computes X,Y, and Z of the
nodal points on the d..fferent
circles

Subroutine GETMP (2)
makes ¢ EI[)( available
y

I = mode number
J = node number
K = x,vy,2 component of ¢

Feed + Mast Appendages 1 Circles
(1), (1) D= *%)
LTERERSAN B HiE 3 518"
mn m n
aB % ¢J,a¢jﬁ "y Lug § b1.afy,8 M

: Fig.

For the total system
gD L
aB af

6.2. Flow Diagram Describing the Algorithm Used in
the Evaluation of the Coupling Coefficients.
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Terms in
le 6.2 Comparison of Pertiment
e the Rigid Modal Equatioms

Anﬂlm
! - 1
.1ection R ng7Qn
X -1,48922 E-01 2.642388 E4+00
Y 1.49854 E-~-01 -8.816196 E<4+00
A 9.26317 E~02 -1.480150 E+"70
An-lmm
X 1.48922 E=01 2.642388 E-03
Y 1.49854 E-01 -8.816196 E-03
Z 9.26317 E-0Z -1.480150 E-03
r
!
O
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Table 6.3 Comparison of Pertinent
Generic Modal Equation

Terms 1in the

A= lom
Mode Number Frequency Modal Mass Rhlzwg Pn/2w§
rad/sec
- 0. 7489559 153,157 .629344x107°>| 1.9543x10™°
1 1.3692409 5.232954 .210346x10"| -2.10287x10710
9 1.7471481 3.232954 .34248x10"% | 8.7299x1077
10 3.2148494 0.3046446 .115957x107°| -4.901252x10™°
11 4.535031 1.992988 .230747x1073] -3.46559x10™°
12 5.5926659 723.5216 .350924x1073]  3,226x107°
13 5.7942225 0.6561203 .376674x10" |  4.678578x10" 7
A= 1m
Mode Number Frzquency Modal Mass R /Emz P Iﬂ.m2
rad/sec a7 w7
10 3.2148494 3046446 .115957 .4901252x10™%
11 4.535031 1.992988 .230747 .337854x10™
12 5.5926659 743.5216 . 350924 3.2362x1075
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VII. GENERAL CONCLUSIONS AND RECOMMINDATIONS

The graph theory approach has been utillized to define controlla-
bility in terms of term rank and input-state reachability concepts and
applied to the placement of actuators for the proposed Hoop/Column
system, The linear quadratic Gaussian techniques appear to offer
greater flexibility to the controls designer in attempting to meet
pverformance requirements while also maintaining propellant consumption
at desired levels. System transient characteristics are noticeably
degraded when an actuator, assumed to be mounted on the hoop, is then
removed from the system. Before defluitive conclusions can be arrived
at relative to RMS pointing and surface accuracy requirements the effects
of both sensor and plant noise and also environmental disturbances
should be incorporated into the existing model and such .studies have
been initiated. ‘

It 18 found that control laws previously designed for the case
where envircnuental effects were neglected, may be inadequate to control
the shape and orientation of very flexible beams that are exposed to L
solar radiation. For simple systems intuitive methods (suitable gain
adjustuencs) of obtailning more robust closed-loop systems in the presence
of the disturbances are indicated., For more complex flexible systems,
such as platforms or antenna-type structures, numerical 1QG techniques
appear to offer the most promise and such studies are continuing,

Preliminary results evalua;ing the effect of thermally induced

deflections due to solar heating of thin structures, indicate that



such deflections may give rise to apprecirlle disturbance torques,
depending on the thermal properties and thickness of the materials
used. Additional research in this important area is suggested,

A computer algorithm has been developed and used to evaluate the
relative magnitude of coupling terms between the rigid rotational and
flexible modes and also intra-modal coupling terms in the general
equations of motion using the Hoop/Column mass and material properties.
Such coupling terms are usually not included in finite element models
based on the Earth~based vibrational and rigid modes only, It 1s seen
that when the surface deflections are of the order of mm. (rithin
mission specifications), that the relative magnitude of the largest
of these coupling coefficients 1s at least one order of magnitude
smaller than the principal coefficients. For surface deflections of
the order of centimeters or even meters (still within the small ampli-~
tude deformation assumption) the coupling coefficients can be of the
gsame order as the principal ones, indicating that these terms might
Lhave to be added to the finite element formulation if an accurate re-

presentation of the dynamics would be required.
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