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AR3TRACT

The controls analysis based on a truncated finite element model

of the 122m. Hoop/Column Antenna System focuses on an analysis of the

controllability as well as the synthesis of control laws. Graph theore-

tic techniques are employed to consider controllability for different

combinations of number and locations of actuators, Control law synthesis

is based on an application of the linear regulator theory as well as

pole placement techniques. Placement of an actuator on the hoop can

result in a noticeable improvement in the transient characteristics.

The problem of orientation and shape control of an orbiting flexible

beam, previously examined, is now extended to include the influence of

solar radiation evirrnmental forces. For extremely flexible thin

structures modification of control laws may be required and techniques

for accomplishing this are explained, Effects of environmental torques

are also included in previously developed models of orbiting flexible

thin platforms, and a preliminary analysis of related thermally induced

deflections and torques on thin structures is provided. Finally, it

is concluded, based on an evaluation of the coupling coefficients in

the rigid modal equations and the generic modal equations for the first

seven modes of the Hoop/Column System, that when the system is performing

within nominal specifications (surface deflections of the order of mm),

that the relative magnitude of the largest of these coefficients is at

least one order of magnitude smaller than the principal coefficients.

ii
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I, INTRODUCTION

The present grant extends the research effort initiated in previous

grant years (May 1977 - May 1982) and reported in Refs. 1-8*. Techni-

ques for controlling both the shape and orientation of very large in-

herently flexible proposed future spacecraft systems are being studied.

Possible applications of such large structures in orbit include: large

scale multi-beam communications systems; earth observation and resource

sensing systems;orbitally based electronic mail transmission; and as

orbital platforms for the collection of solar energy and transmission

(via microwave) to earth based receivers.

This report is subdivided into seven chapters. Chapter II is

based primarily on a pa?er to be presented at the 34th International

Astronautical Congress and presents preliminary results on the controlla-

bility and control law synthesis for the Hoop/Column orbiting large

flexible antenna system. Graph theoretic techniques previously intro-

duced in Ref. 7 and further described in Ref. 8 are employed to consider

system controllability for different proposed actuator arrangements

(number and location). Control laws are then designed based on the

ORACLS computer algorithm9 , primarily using linear quadratic Gaussian

techniques. The mode shapes (eigenvectors) and frequencies of the system

were obtained previously by finite element techniques and supplied by

NASA-LRC,10

At the operational altitudes of the future missions involving

large space structures, the principal environmental disturbance is

*For references cited in this report, please see list of references
at the end of each chapter.

1.1
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that due to solar radiation pressure. The effect of solar radiation

(pressure) disturbance on a flexible uncontrolled orbiting free-free

beam was examined in Ref. 8, and to the authors' knowledge represented

• first attempt to include such dist . . .bances in the system dynamics of

• flexible structure in orbit. Chapter III of this report, based on

• paper recently presented at the 1983 AAS/AIAA Astrodynamics Conference,

extends this work to consider the closed loop dynamics of an orbiting

flexible beam under the influence of solar pressure induced moments.

Actuator control laws previously designed for the case where environmental

effects were neglected are now re-evaluated especially for extremely flexi-

ble beams. Shape and orientation control (about two different nominal

orientations - local horizontal and local vertical) are considered,

In Chapter IV, the effect of solar radiation pressure on the open-

loop dynamics of a more complex structure, a thin homogeneous flexible

square plate is analyzed. The mode shapes and frequeLcies of the plate

are obtained numerically using a finite element computer algorithm. As

In the case of the beam only small transverse deformations ate assumed,

Solar pressure torques can also result on large flexible space

structures due to the interaction of the incident solar radiation on

the thermally deflected bodies. Chapter V presents a preliminary formu-

lation of the solar radiation heating effects on thin rectangular plates

and beams, The amount of thermal deflection depends on the thermal

gradient across the structure, the thermal conductivity of the material,

the thermal expansion coefficient, and the thickness. Expressions for

the thermal gradients can be obtained by simultaneously considering

11
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the thermal radiation and heat conduction properties. These expressions

can be used to develop equations for the thermal deflections and sub-

sequently a model for the induced moments on the (thermally) deflected

structure. These moments will have to be considered in addition to

those generated by the interaction of solar pressure on the freely

vibrating system.

Chapter VI describes the developrent of a computer algorithm to

evaluate the relative magnitude of coupling coefficients in both the

rigid and elastic modal equations of motion. These coefficients desn.ribe

coupling between the rigid and flexible modes and also intramodal

coupling and are usually neglected when a finite element analysis is

employed. The evaluation of the relative magnitude of these coefficients

is based on the numerical parameters for the Hoop / Column system.

Chapter VII describes the main general conclusions together with
	

i

future recommendations. The effort described in Chapters II, IV, and

V is being continued during the 1983-84 grant period in accordance with	
f

our proposal submitted Jan. 1983.11
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II. ON THE CONTROLLAEILITY AND CONTROL LAW DESIGN FOR
AN ORBITING LARGE FLEXIBLE VUENNA SYSTEM

Abstract

She controllability and control law syothea^
based on a !inita element model of the Hoop/Cola
orbiting antacoa system is ,considered. Graph theo-
retic techniques are employed to analyze the con-
trollability +f the system for possible proposed
actuator arangamancs which include torguers and
pope actuators along the mast and a single acrua-
to placed on the hoop assembly. Once coucroll-
ability is established for a given combination of
number and location of actuators, the synthesis of
conceal laws is based on an application of the
linear regulixor theory and also pole placement
techniques. In general, surface torsion and feed
meet torsion are &mots modes having the longest
time constants. System :rsastent performan ce is
noticeably degraded when the hoop actuator is not
included.

I. Introduction

Large flexible orhitimg systems have been pro-
posed for possible use in couaunications, oleo-
rronie orbital based oail systems, detection of
earth resources, and in solar energy collection.
She size and law

	 to area ratio of such sys-
tems dictate that system flexibility is new the
win comsiderarlon is the dynamics and control prob-
lem as cont-,	 with the inherently rigid natura
of earlier

^
	-,aft systems. For such large

flex',1^ :; .._w4 both orientation and shape con-
trol will. )ten be required. Ie is the purpose of
the prcsenc paper to consider the controllability
and the subs&quent design of control laws based on
a model of a proposed orbiting anteffia system
the Haop/COl, mm system.

The Hoop/Colurm antamta system is one of the
configurations under consideration for use in the
future multi-beam Land Mobile Satellite Systanl,
designed to provide point to paint communications
for 230,000 subscribers across the U.S. in the
aid 1990's. The systam is based on a large goo-
symehronous relay antenna and a number of cob "I ,
Earth-based receivers. In order to achieve the
required RF performance a painting accuracy of
± (0.03 - 0.10) degree P1 •S and a surface (antenna)
accuracy of 12ae RMS will be required. The Hoop/
Column setema syetm2 , depictad in Fig. 1, it
deployed configuration, one*il=3 the deployable
(teleseaping) mast system cumcaeted to the hoop by
support cables under tenaian.

oR1d^AL PUAL^
OF POOR Q
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She hoop con:a3s 1.a r'_g:d sections, co be deployed
by motor drive units. i..e desired shape of the :.y
re!lse:ivs rash is produced by a seined.,-y dcs<:':g
surface uaia; surface control. Cables. :ca 11

 cash is connected to the hoop by ;sear.,,-.
graphi:a stri--gars. At one and of the mast the
electronic Used assemblies are posi:ictad, whereas
at the other end are the print'-pal solar araya
coonerad to :he aaiz bus bases control.

Recemt17 graph theoretic techniquas 3 were used
to scud? eturra Lh abilit7 Of linear sys:ema which
could tepresan: large flex•-ble orbi:iag systems
with irberamc dampin;. It use seen that the tare
rank da!iciata7 is the stiffness matrix ditcaces
the required r.0=ber as veil as the location o! cha
actuators required for ecn:rollab'-li y, whereas
the presence of the damp Le g matrix does mac in-
fluence :-'% required number of actuators but pro-
vides greater flexibility to the avaLabla actuator
locations for which the sys:an is controllable.
Specific esi^?les were based on a prev-ivjsly da-
valoped model of an assumed homogeneous sh.allw
thin spharicai shell in orbit, where both oriemca-
cion and shape control were assumed cc be provided
by point actuazars placed on :he shell's surface.

It is the objective of this paper to app17
these tech - , sari, first cc analyze the control-'-
ability of the 300p/Cal +ms system based cn a possi-
ble arrangemem: of actuators, and, once concrol!-
ability is assured. cc consider various ways co
develop control laws. A recemc ralaced treatzents
of the Preis 'teary controls synthesis for this sys-
tem was based cc a mndal which contained three
rigid-body rotational modes and a number of f'-aru-

h tal modes, but -.-homed the three rigid :raasla-
^Cional modes, dctuators in the :arm of totquers
only, were assced to be placewi eoly slccg the cast
assembly, sad e^r_oLI&b •:1:7 was escab'_ished •_z-
directly through eu=erical meatus. Control syn-
thesis was acccmplished based on linear quadratic
Caussian rechntques and also a related '.near
analysis asses --g the collocation of ac:acors and
sensors.

I:. Mathematical Model

In the present paper.a ! •Wit& sle_eac model of
the Hoop/Colin system that Imcludes all siY rigid
modes and cha !laewral modes is used. For the pa=-
paws of :his smdy cha Sys-am is modelled using
112 made (arid ;eincs) with each node hrr'=g a -axi-
aum of six degrees of !reedom. o Taus, t:.e
earized d —A=;Lcs oe the ?aop/Cohn u :a=a sys:ec
can be desC::bed (In the absence of sc—_c-=-al cr
other damping) by:

:CC ^ yc	 (z7

2.1
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Fig. 1. The Hoop/Column antenna system.
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where
N is the 672.x672 mass / inertia matrix
K is the 672x672 stiffness matrix
E is the 672x1 matrix consisting of the

displacements and rotations at the nodal
Points

PC is the control vector of dimensionality
672x1

i	 After - -tng the transformation between the
:modal coordinates, q, and I given by
,

X -m q
	

(2)

,equation (1) can be rewritten as:

OTHO Q + OTRIq - OTFC 	(3)

;The left side of equation (3) can be expressed in
terms of diagonal matrices, based on than pro-
tpertSes of the eigenvalues and associated eigan-
:vectors, according to:

C, mi .3 q + [' R1 3 q ' OTFC	(4)

:where
OTltO - ding. Emil - I'mi 3

0TKO - diag. [Ri3 - [^R1 3

m1	- ith generalized (modal) mass

Al	- ith generalized stiffness.

The first thirty-tour (including the six rigid
modes) eigeovectors and eigenvalues derived from
the NAS'IRAN software for the system described by
equations (1) and (2) were supplied; y however,
only the first 26 modes had appreciable non-zero
values 'or the corresponding modal =sees.

Table 1 - Hoop /Col= single layer surface
model eigenvalues

Mode	 Frequency	 Generalized Generalized
No.	 B:e	 uss,	 R. Stiffness

(rb-sec /in) ( fb/in)

1 0.0 16.44388 0.0

2 0.0 8.923020 0.0
3 0.0 7.349353 0.0
4 0.0 9.704152 0.0
5 0.0 2.940632 0.0
6 0.0 8.418909 0.0
7 .1188347 153.1373 85.38542
8 .2142455 :.232954 9.482657

9 .2709558 3.073094 8.907021
10 •5063228 •3046446 3.083247
11 .7288725 1.992988 40.88663
12 .8897594 723.5216 22612.90
13 .91923'.1 .6581203 21.95405

III. Cmtrollability Considerat'__ns

Equation (4) can be rewritten with the aid of
equation(S) as:

q .	 m1. 3 -1 [ ,R1 J q + [`mi J-1 0TBQ (6)

and then cast into standard state space format with
the result:

- ^ Ifl,Lq -C,m1 3-1C,RS. J	 I Q

+ 0 U (7)
C^mi 3-1 OTB	

1

The influence of a finite number (m) of con-
trol actuators or torquars is incorporated into
the model by

PC - BU	 (5)
i
1where

S - 672m control influence matrix
U - and matrix associated with the control

vector

E
Tbe control Influence matrix, B. (672=) is formed
as follows:

If there is an actuator that influences the
Sch node (111 < 112) in the 3th direction
'(1 < 3 16). then B (&, L)-1 where R - (i-1)x6+3,
.and L - number of the actuator. Thus the B matrix
consists of zeros and ones, showing the influence
Of the farce actuators on the translational de-
grees of freedom of the nodes, and also, that of
the torque actuators on the rotational degrees of
freedom.

The model considered here consists of six
rigid body modes ( 3 translation + 3 rotation) and
the first seven fla..xible [ :odes. The values of the
generalized masses and stdffnesses are listed in
Table 1.

The amber and location of the act"tors are
determined after considering the controllability
in addition to physical considerations. :ha dyna-
mic system represented by equation (7) is can-
troLlable7 if and only if the pair

rxij and [`mi 3-1 0TB is controll-

ble.

The system matrix, S	 [^m1 3-1[`I1,J

for the 13 mode model can be evaluated as:

0 0
0 0

0 0

S -	 -F7/m7	 (8)

-&13/m13

UNIGINAL PAGE 19
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digraph of the Matrix S is show in Fig. 2.
For controLlabiLity3 the actuators must be placed
in such a way that they will Influence all the
modes directly since, in this model, there is no
coupling between the modes. The number of actua-
tors will be dictated by the term rank (7) of the
matrix, S. Because of the six rigid modes (with
zero eigenvalues), the system matrix, S. has a
rank deficiency of six; to augment the term rank
COTBI mast have at least six linearly independent
mon-zero columns, indicating a minimum of six pro-
perly placed actuators is needed for controll-
ability.

A possible pr3posed arrangement of a maximum
of 13 actuators crmsisting of combinations of
point actuators and a torquer, assumed to be lo-
cated along the mast and at selected points in the
feed assembly, is depicted in Fig. 3. In addi-
tion, a single point actuator is assumed to be
positioned on one of the rigid links of the hoop
assembly. The actuators are assumed to be placed
to that the various modes indicated in Table 2
would be directly affected.

Table 2 - Relationship between Actuators
and modes directly influenced

Actuator no. Mode being affected
(circled in Fig. 3)

1 2 3 and 4 Feed Mast Torsion (12)
5 First Bending (about y

axis) (8)
5 First Bending (about x

+xis) (9)
7 Surface Torsion (30)
8 (Torquer) Taw (rotation aboutz axis)

and First Torsion (7)
9 Translation along x and

2nd mast bendic6 (11)
10 Translation alcmA 7 and

2nd mast bandimg (12)
11 Translation along z
12 Pitch (rotation about y

AXIS)
13 Roll (rotation about x

axis)

Possible sets of the minimum number of actua-
tors include (1,20,4,5,12) and (8,9,10.11,12,13).
On the contrary, the six actuators (1,2,3,4,6,7)
are insufficient to control the thirteen system
erodes as states 14,15, and 26 in the digraph
(Fig. 2) can not be reached from any of these six
input (under the assumption that any element in
the 8 R matrix which is lees than 10-5 , and six
or seven orders of Magnitude less than the maximum
entry, is treated numerically equal to zero).

TV. Contrdl Law Synthesis

Once controllability has been established
control law design is based on: 1) application of
the linear regulator problem from optimal control
theoryg and 2) pole allocation algorithms. The
ORACLS software package has been used to obtain
the control law gams and generate the required
time histories of the actuator forces as well as
the dynamic transient responses.

r
I

LI

1) Application of the Linear Regulator Problem

The control law of the form:

C - -FX	 (9)

for the dynamical system

X -AX+BO	
C10)

Is selected such that the .`olloving performance
index is minimized9

J - It (XT	 RU) dt	 (.1)
0

where Q and R are positive semi-definite and posi-
tive definite weighting matrices, respectively.

The gain matrix, F. Is given by:

F - R 1BTP 	 ('—')

where P corresponds to the positive definite solu-
tion of the matrix Riccati differential equation:

-PA-ATP+PBR 
x
'BTP-Q - dP/dt	 (L3)

The steady state solution (as t - -) of the
Riceatt matrix equation can be obtained b y solv+img
equation (13) after setting dP/dt-0. The steady
state Riccaci matrix solution results in a con-
stant gain matrix which is relatively easy to im-
plement as compared with the time varying solution
of the matrix Riccati differential equation.

In order to guarantee controllability in the
event that one of the actuators might fail, it was
decided to select taro 

minimum 
number of actuators

In this study to be seven instead of the six pre-
viously discussed. For seven actuators assumed
(actuator numbers 7 to 13 In Table 2) a parametric
study was pdrformed showing the effect of varying
Q (100I to 10,0002) and R (I to 100I, where I Is
the appropriately dimensioned identity matrix) on
the least damped mode of the closed-loop system
(Fig. 4). It can be concluded that Q - 1000I and
R-I is a reasonable operating (starting) point in
the Q and R domain as the curve correspo r'ing to
R-I is relatively less sensitive to changes in Q as
compared with other •ralues of R.

As an example, Table 3 slows the effect of
varying the number o: actuators ( from seven to
thirteen) on the maximum force amplitude required
of any single act ,,ator for the same set of initi4
conditions in the modal coordinates and the s:^e
state and control weighting matrices. As indicated,
the maximum peak force required of any actuator is
reduced as the number of actuators is increased.
The system transient performance is improved by '=-
creasing the number of actuators (Table 4), but at
the expense of a alight increase in control effort.
Other stuaes showing the effects of: (1) renoving
three of the rigid modes from the model; or (2)
ignoring initial displacements in these modes,
could result in overly opt!.mistic results in terms
of control system requirements (Tables 5 and 6).
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Table 3 - Su®ar7 of maxlmun actuator forces (amplitudes) required
Hoop/Column - orrying tha no. of actuators (7-13)
Initial. Condition: 	 gi (0)-0.01 1-1,2.... 13, Q-10002, R-I

Max. Actuator Ho. of Actuators
Force Amplitudes

pounds 7 8 9 10 11 12 13

fl 0.3500

f2 0.1364 0.0569

f3 0.3158 0.3357 0.3000

!4 0.3251 0.2101 0.1364 0.0569

15 1.303 1.3029 1.3027 1.3027 1.3027
f6 0.6632 0.6631 0.1831 0.2898 0.2847 0.2833

!7 1.694 1.514 1.515 1.4734 1.2798 1.2781 1.2761

f 
(in. -lb) 	 0.109 0.104 0.104 0.1004 0.0124 0.0117 0.0123

!9 1.1891 1.1889 0.287 0.2276 0.2369 0.2369 0.2369
f10 1.0602 0.7380 0.7380 0.1673 0.1601 0.1573 0.1573

f31
0.4209 0.4089 0.4326 0.4199 0.4055 0.4061 0.4061	 ....

f12 0.1208 0.1208 0.3521 0.3521 0.3521 0.3521 0.3521

f  0.2998 0.1866 0.1866 0.0669 0.0658 4.0673 0.0688

2.7
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Table 4 - Comparison of closed loop poles - Hoop /Colum with 7 and 13 actuators
;a

Q - 10001, A-1	 13 modes

7 Actuators • Poles 13 Actuators - Poles

'I

0-(Rea1)-1/sae ju~(ImaBinarY) o-(Real)-I/see Ju UmazinarO

-0.0077 5.5905 -0.008 5.5905

-0.0077 -5.5905 -0.008 -5.5905

-0.0100 0.7465 -0.7045 0.7788

F
^I -0.0100 -0.7465 -0.7045 -0.7788

-0.4343 0.4053 -0.4179 0.4544

-0.4343 -0.4053 -0.4179 -0.4544

-0.8578 1.7117 -2.1916 1.6704

-0.8578 -1.7117 -2.1916 -1.6704

-0.9035 2.7007 -0.9806 2.6637

-0.9035 -2.7007 -0.9806 -2.6637

-3.0979 1.666 -3.6151 1.7994

i
-3.0979 -11666 -3.6151 -1.7994

j -0.4689 1.3636 -1.0058 0

/

-0.4689 -1.3656 -1.0117 0

-0.5583 0.4892 -1.0247 0

-0.5583 -0.4892 -1.0260 0

-1.0059 0 -1.0868 0

-1.0226 0 -1.0987 0

^I
-1.0287 0 -1.2914 0

it
-1.2830 0 -1.5808 0

-1.5977 0 -3.9913 0

-2.4285 0 -5.4766 0

-3.4Z3r 0 -6.2706 0

-6.9508 0 -10.019 0

-11.8231 0 -12.424 0

-18.1405 0 -30.186 0
C.
t

;w

i^
2.8

I

i

i

I

R ^.



fl 0.3500

f2 0.0569

f3 0.3030

f4 0.0569

f5 1.3000

9 Wk
0.283

f7 1.2700

f8 (im.-lb) 0.0124

f9 0.235

f10 0.157

fll 0.406

f12 0.3520

f13
0.0688

0.3462

0.0324

0.2923

0.0324

0.9846

0.3021

0.8423

U.0124

0.14:1

0.1366

0.0327

0.0976

0.09'1

2.9

a

^I
A> I

n^

of.r,^^.at
Po°R

Rrrf^^4 ie,
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Table 5 - Comparison of maximum actuator fcrce amplitudes

Q - 10001, R-I,	 qi (0) - 0.01,

' Max. Actuator	 17 Actuator3/13 Modes 10 Aetuators/:0 Modes
'	 Force Amplitudes

Pounds

fl	0.3500

f2	0.0569

f3	0.3030

2 i4	 0.0569 ' 0.2514
F
"-p
t

f5	 1.3000 1.3759

f6	 0.2830 0.2850

f 7	 1.2700 0.3713

f 	
(in-lb)	 0.0124 0.0171

f9	0.2360 0.4031

•

f10	 0.1570

f1.1	 0.4060

0.2508

0.1554

I f12	 0.3520 0.2078

f11	 0.0688 0.4115

Table 6 - Comparison of maximum actuator force amplitudes

Q 10001, R-I	 13 Actuators/13 Modes

Max. Actuator	 qi(0)-0.01, i-1,2...17	 qi(0)-0, i-1 to 6
Force Amplitudes

• Pounds	
gi(0)-0.01, 1 .7 to 13
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2) Application of the Pole Placement Algorithm

As.an example of the application of the pole
placement technique. Fig. 5 illustrates the tran-
sient response in key modal amplitudes, as well
as required actuator force history for an initial
condition only in the ffist torsional mode. The
Pole placement algorithm requires that all of the
poles be placed along a line parallel to the imag-
inary axis. It is seen that the requirement that
each mode have a time constant of 100 secs, is a
less stringent requirement on the control system
then for the case depicted in Table 3 and 4 (13
actuators) where the most damped mode has a time
constant of approximately 1/30 sec.

3) Effect of Removing Hoop Mounted Actuator

If the seventh actuator is removed from the
system leaving A total of 12 working actuators,
there is a deterioration in the lowest damped
modal time constants. The magnitude of the real
part of the least damped mode is reduced from
0.008 (Table 4) to 0.0024 and there are now ten
polas with amplitudes of real parts less than 1.0.
The maximum actuator forces required in response
to initial displacements of 0.01 !a all 13 modes
are not greatly different from those shown in
Table 3 for the case of 12 or 13 actuators.

On the other hand if n total of only seven
actuators is now assumed (fl:) •f12 ff 11 1f10 1f9 •f 'f6)
there is considerable loss of perPormance In the
least damped soda. The least damped modal time
constant has now increased to about 2000 sec as
compared with 130 sec (as shown in Table 4). It
should be noted that the least damped modes
throughout this study correspond to both feed must
torsion and surface torsion. Again the maximum
actuator forces required in response to initial
displacements of 0.01 in all 13 modes are essen-
tially the same order as shown in Table 3 for the
case of seven actuators (includinS f7).

Additional results explained in Ref.10, consi-
der the effect of varying the elements in the state
penalty matrix so the- the modes with poorest
transient characteristics would be penaldced more.
Thera appears to be soma advantage in appropriate-
ly selecting the "split" weighting elements so as
to iaprove performance in the lowest da--ped modes
without unduly increasing the actuator-force re-
quirements.

V. Concluding Comments

not included. This degradation is more pronounced
as the n=ber of (remaining) actuators is reduced.
The control efforts depicted here for the transient
tines considered appear reasonable in terms of the
over-all system mass and surface and pointing re-
quire--enc. Before meaningful conclusions can be
made regarding RKS pointing and surface accuracy
requirements the effects of both sensor and plant
noise end also environmental disturbances should be
incorpo,tted into the existing model and are sug-
gested for further study.
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Generally, it can bb concluded that the use
of the graph theory enables the designer to have
an intuitive qualitative idea about where actua-
tors can be placed in order to achieve controll-
ability. In most cases simulated, surface torsion

rand feed most torsion are among modes having the
!longest time constants. Transient performance

.	 can be improved by appropriately changing the
!''	 related elements in the state penalty matrices,

but usually at the expense of control system ef-
fort. The linear quadratic Gaussian technique
offers more flexibility to the controls designer
in attempting to meet the performance requirements,
while also maintaining propellant consumption at
;desired levels. System transient characteristics

Fes'.. are degraded when the hoop-mounted actuator is
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12x10 ? POLE PLACEMENT:

T - 100 sec.

q3	
INITIAL CONDITI04S:

-,2— q5	 q^ o 0.1 ql q2 .. . q13 ' 0.0

0.0

v-° 	4UU	 600

7	 Time (secs)

(All other modes are excited very little.)

TIME RESPONSE — MODAL AMPLITJDES

^ v v
200	 400	 600
TIME (sees)

(Peak Forces for all other actuators are far 'less)

Pig. 5 
Pole placement — time response, modal amplitudes and
required actuator force time history.
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II.B ADDITIONAL RESULTS ON CONTROL LAW DESIGN FOR HOOP-COLUMN USING
LINEAR QUADRATIC CONTROL THEORY

The concept of split weighting of different modes in the quadratic

cost function is used to further penalize modes 7 (combinations cf yaw

and first torsion of the system), 10 (surface torsion), 12 (feed mast

torsion) and their rates. These modes are penalized 10 times more

than the rest of the modes and the resulting closed loop poles are

tabulated in Table 7 together with the uniform weighting results.

It is observed that the time constant of the least damped mode (-0.0120)

for the case of split weighting is improved without increasing the

most damped mode (-30.1864) as compared to the uniform weighting case.

The effect of split weighting is also apparent in the maximum actuator

force amplitude [Table 81, with the requirement of a slightly larger

control effort.

The actuator of the hoop (#7) is then removed; for the values of	 i
{

Q = 1000 I and R - I the closed loop poles are compared with those for

the case with the actuator on the hoop in Table 9. The corresponding

required actuator forces are given in Table 10. The closed loop poles

with the hoop actuators removed for a total of 7, 10, and 12 actuators,

respectively, and with: Q = 1000 I, R = I; Q = 10,000 I, R = I; and

Q e 100, 000, I, R = I; are given in 'Tables. 11, 12 and 13. The split

weighting case is also considered and the corresponding closed loop

poles are given in Table 14. The maximum actuator forces for the

various cases described above are given in Tables 15, 16, and 17.

To have an understanding of the relation between the actual coordi-

nates and the modal coordinates (as the complete eigenvector matrix is

C'	 not available) certain initial conditions are assumed for the modal
r.

2.12
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coordinates (q i , i-1, --13) and the corresponding displacements are
4• ^

calculated. The nodes that experience maximum displacements together

with the values of the displacements are shown in Table 18. It can be

seen that nodes 100 and 101 have experienced the maximum displacements

for the various initial conditions assumed for the modal coordinates.

The general conclusionsfor the various cases described so far are

enumerated below.

1. As the number of actuators is increased, for a given set of
initial conditions, the maximum force amplitude required for
any actuator is, in general, reduced.

2. In general, by increasing all elements in the Q matrix in the
same relative amount, transient performance in the least damped
modes is improved, but at the expense of a larger control effort.

3. Split weighting of appropriatu elements it, the Q matrix can
'.	 result in improved transient performance without unduly increasing

the control effort.

4. System transient characteristics are degraded when the hoop
mounted actuator is not included. Degradation is more pronounced
as the number of (remaining) actuators is reduced.

5. For most cases simulated surface torsion and feed mast torsion
are among modes with largest time constants.

6. For the same initial displacements in each of the 13 modal
coordinates, it is seen that the maximum translational dis-
placements are realized at nodes 100, 101 (at the ends of the
lower solar panels).

e

^i I

^I
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Table 7

ORIgNAL PAGE (.1
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COMPARISON OF CLOSEDLOOP POLES HOOP/COLUMN 13 ACTUATORS-13 MODES

13 Actuators Poles Q=1000I, R=I 13 Actuators Poles Q=1000I
Except Q(7,7)=Q(10,10)=Q(12,12)
=Q(20,20)=Q(22,22)=Q(25,25)=
10000I, R=I

(Real) ,jw(Imaginary) (Real) ,jw(Imaginary)

-0.0080 5.5905 -0.0120 5.5905
-0.0080 -5.5905 -0.0120 -5.5905
-0.7045 0.7788 -0.4179 0.4545
-0.7045 -0.7788 -0.4179 -0.4545
-0.4179 0.4544 -1.0922 1.5579
-0.4179 -0.4544 -1.0922 -1.5579
-2.1916 1.6704 -2.1916 1.6704
-2.1916 -1.6704 -2.1916 -1.6704
-0.9806 2.6637 -3.6157 1.7991
-0.9806 -2.6637 -3.6157 -1.7991
-3.6151 1.7994 -1.0055 0
-3.6151 -1.7994 -1.0120 0
-1.0058 0 -1.0250 0
-1.0117 0 -1.0260 0
-1.0247 0 -1.0864 U
-1.0260 0 -1.0987 0
-1.0868 0 -1.1993 0
-1.0987 0 -1.29V 0
-1.2914 0 -1.5844 0
-1.5808 0 -2.5898 0
-3.9913 0 -3.4914 0
-5.4766 0 -5.4866 0
-6.2706 0 -6.3240 0
-10.0190 0 -10.0617 0
-12.4240 0 -25.4183 0
-30.1860 0 -30.1864 0

1
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Table 8

ORIGINAL PAGE h

OF POOR QUALITY,

COMPARISON OF MAXIMUM ACTUATOR FORCES HOOP/COLUMN 13 ACTUATORS-
13 MODES

Max. Actuator Forces 13 Actuators 13 Modes 13 Actuators 13 Nodes
(Amp.)-Pounds Qi(0)=0.01,i=1,. -,13 Qi(0)=0.01,1=1,--,13

Q=1000I,	 R=I Q=1000I,	 Except
:.i Q(7,7)=Q(10,10)=
_ Q(12,12)=Q(20,20)=

Q(22,22)=Q(25,25)=
10000I,	 R=I

W) 0.3500 1.7450
f(2) 0.0569 0.0061
f(3) 0.3000 1.7390
f(4) 0.0569 0.0061
f(5) 1.3027 1.3029
f(6) 0.2833 0.7333
M) 1.2761 2.3530
f(8)	 (ft-lb) 0.0123 0.0817
f(9) 0.2369 0.2277
f(10) 0.1570 0.1693
f(11) 0.4061 0.4178
f(12) 0.3521 0.3521
f(13) 0.0688 0.0978

o-,

2.15L - A,
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COMPARISON OF CLISEDLOOP POLES HOOP/COLUMN 12/13 ACTUATORS
Q=1000I,R=I

13 'lode Model
	

13 Mode Model W.0 Actuator7
13 Actuator-Poles
	

12 Actuator-Poles

(Real) ,jw(Imaginary) (Real) ,jw(Imaginary)

-0.008 5.5905 -0.0024 5.5905
-0.003 -5.5905 -0.0024 -5.594.,
-0.7045 0.7788 -0.0162 3.1813

t -0.7045 -0.7788 -0.0162 -3.1813
i, -0.4179 0.4544 -0.2654 0.5603
t -0.4179 -0.4544 -0.2654 -0.5658
` -2.1916 1.6704 -0.4179 1.6704

-2.1916 -1.6704 •0.4179 -1.6704
-0.9806 2.6637 -0.9173 1.7994

> -0.9806 -2.6637 -0.9173 -1.7994
-3.6151 1.7994 -2.1916 0
-3.6151 -1.7994 -2.1916 0
-1.0058 0 -3.6153 0
-1.0117 0 -3.6153 0
-1.0247 0 -1.0117 0
-1.0260 0 -1.0247 0
-1.0868 0 -1.0258 0

G -1.0987 0 -1.0859 0

I -1.2914 0 -1.0987 0
-1.5808 0 -1.2785 0
-3.9913 0 -1.6052 0
-5.47(6 0 -3.9913 0
-6.2705 0 -5.4867 0
-10.019 0 -6.3275 0

1 -12.424 0 -10.0673 0
-30.186 0 -30.1860 0

k

n

PM 1
Yv ^

i•
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0

Table 10

Q=1000I, R=I

7 Actuators	 10 Actuators	 12 Actuators

1.4019 1.9990 1.5187
0.4491 0.5261 0.0176
1.1969 1.3024 1.5298
0.3411 0.5695 0.0176
0.3612 0.0636 1.3024
0.1209 0.2369 0.5597

0.2296 0.2047 0.0423
0.3603 0.2279
0.3520 0.1695
0.1072 0.3696

0.3520
0.0789

a

COMPARISON OF ACTUATOR FORCES VARYING THE ACTUATORS 'AITH SEVENTH
ACTUATOR REMOVED

Max. Act.
Forces(Amp) lbs

f(1)
f(2)
f(3)
f(11)
f(5)
f(6)
f(7)
f(8) lb.ft
f(9)
f(10)
f(11)
f(12)
f(13)

2.17



Table 11
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COMPARISON OF CLOSEDLOOP POLES HOOP/COLUMN SYSTEM WITH SEVENTH
ACTUATOR ON HOOP REMOVED- 13 MODES Q=1000I, R=I

7 Actuators	 10 Actuators	 12 Actuators
(real) ,jw(Imaginary)	 (Real) ,jw(Imaginary)	 (Real) ,jw(Imaginary)

-0.0004 5.5905 -0.0016 5.5905 -0.0024 5.5905
-0.0004 -5.5905 -0.0016 -5.5905 -0.0024 -5.5905
-0.0007 3.1813 -0.0010 3.1813 -0.0162 3.1813
-0.0007 -3.1813 -0.0010 -3.1813 -0.0162 -3.1813
-0.0063 0,7467 -0.3084 0.6657 -0.2654 0.5678
-0.0063 -0.7467 -0.3084 -0.6657 -0.2654 -0.5678
-0.0434 0.0433 -0.4179 0.4544 -0.4179 0.4544
-0.0434 -0.0433 -0.4179 -0.4544 -0.4179 -0.4544
-0.4343 0.4053 -0.4505 0.4712 -0.9173 0.5968
-0.4343 -0.4053 -0.4505 -0.4712 -0.9173 -0.5968
-0.4690 1.3656 -2.1<16 1.6704 -2.1916 1.6704
-0.4690 -1.3656 -2.1916 -1.6704 -2.1916 -1.6704
-0.5243 0.5476 -3.6515 1.8369 -3.6153 1.7994
-0.5243 -0.5476 -3.6515 -1.8369 -3.6153 -1.7994
-3.5693 1.8674 -1.0150 0 -1.0117 0
-3.5693 -1.8674 -1.0247 0 -1.0247 0
-1.0180 0 -1.036r 0 -1.0258 0
-1.0287 0 -1.0907 0 -1.0858 0
-1.0681 0 -1.0987 0 -1.0987 0
-1.2746 0 -1.2839 0 -1.2785 0
-1.6147 0 -1.5947 0 -1.6052 0
-2.4285 0 -3.9913 0 -3.9913 0
-3.4220 0 -3.9989 0 -5.4867 0
-6.0668 0 -6.1550 0 -6.3275 0
-10.656 0 -10.661 0 -10.067 0
-18.141 0 -30.186 0 -30.186 0

A
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Table 12

COMPARISON OF CLOSEDLOOP POLES HOOP/COLUMN SYSTEM WITH SEVENTH
ACTUATOR REMOVED 13 MODES Q=10000I, R=I

7 Actuators
	

10 Actuator;	 12 Actuators
(Real) ,jw(Imaginary)
	

(Real) ,jw(Imaginary)	 (Real) ,jw(Imaginary)

-0.0005 5.5905 -0.0038 5.5905 -0.0062 5.5905
-0.0005 -5.5905 -0.0038 -5.5905 -0.0062 -5.5905
-0.0008 3.1813 -0.0230 3.1812 -0.0329 3.1809
-0.0008 -3.1813 -0.0230 -3.1812 -0.0329 -3.1809
-0.0113 0.7467 -0.2550 0.5623 -0.2497 0.5597
-0.0113 -0.7467 -0.2550 -0.5623 -0.2497 -0.5597
-0.0774 0.7693 -0.5012 0.5193 -0.5012 0.5193
-0.0774 -0.7693 -0.5012 -0.5193 -0.5012 -0.5193
-0.4855 0.5466 -1.3077 0.4208 -1.0011 0
-0.4855 -0.5466 -1.3077 -0.4208 -1.0023 0
-0.6087 0.1463 -1.0014 0 -1.0023 0
-0.6087 -0.1463 -1.0023 0 -1.0081 0
-0.6476 0.6713 -1.0033 0 -1.0086 0
-0.6476 -0.6713 -1.0085 0 -1.0124 0
-1.0017 0 -1.0086 0 -1.0549 0
-1.0026 0 -1.0125 0 -1.3041 0
-1.0062 0 -1.3041 0 -1.9257 0
-1.0124 0 -1.3215 0 -3.7535 0
-1.0924 0 -6.3906 0 -6.4054 0
-1.2619 0 -8.7613 0 -8.7613 0
-6.4271 0 -11.895 0 -12.655 0
-12.387 0 -13.193 0 -13.193 0
-13.099 0 -14.993 0 -19.119 0
-27.282 0 -27.292 0 -27.313 0
-34.811 0 -34.828 O -34.853 0
-62.659 0 -98.551 0 -98.551 0

i

.q

+Z.
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Table 13

ORMINAL PACE 13
OF POOR QUALITY

COMPARISON OF CLOSEDLOOP POLES HOOP/COLUMN SYSTEM 'JITH SEVENTH
ACTUATOR ON HOOP REMOVED 13 MODES Q=100000I, R=I

7 Actuators	 10 Actuators	 12 Actuators
(Real) ,jw(Imaginary) (Real) 	 ,jw(Imaginary) (heal)	 ,jw(Imaginary)

-0.0007 5.5905 -0.0079 5.5905 -0.0096 5.5905
-0.0007 -5.5905 -0.0079 -5.5905 -0.0096 -5.5905
-0.0011 3.1813 -0.0369 3.1807 -0.0399 3.1806
-0.0011 -3.1813 -0.0369 -3.1807 -0.0399 -3.1806
-0.0314 0.7468 -0.2488 0.5592 -0.2483 0.5590
-0.0314 -0.7468 -0.2488 -0.5592 -0.2483 -0.5590
-0.1383 0. 1 358 -0.5429 0.5572 -0.5249 0.5572
-0.1383 -0.1358 -0.5429 -0.5572 -0.5249 -0.5572
-0.4809 0.5699 -1.0001 0 -1.0001 0
-0.4809 -0.5699 -1.0002 0 -1.0002 0
-0.6212 1.4837 -1.0003 0 -1.0002 0
-0.6212 -1.4837 -1.0008 0 -1.0008 0
-0.6585 0.7347 -1.0009 0 -1.0009 0
-0.6585 -0.7347 -1.0012 0 -1.0012 0
-1.0000 0 -1.0211 0 -1.0047 0
-1.0002 O -1.0293 0 -1.0293 0
-1.0006 0 -1.0357 0 -1.0349 0
-1.0013 0 -5.9089 0 -12.513 0
-1.0085 0 -20.433 0 -20.487 0
-1.0232 0 -28.795 0 -28.795 0
-20.551 0 -37.884 0 -40.434 0
-39.367 0 -41.900 0 -41.900 0
-41.914 0 -47.751 0 -60.609 0
-88.147 0 -88.174 0 -88.248 0
-110.47 0 -110.53 0 -110.60 0
-199.66 0 -312.59 0 -312.59 0

d^
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Table 14
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OF PODR QUAUTy

COMPARISON OF CLOSEDLOOP POLES HOOP/COLUMN SYSTEM WITH SEVENTH
ACTUATOR REMOVED 13 MODES Q=1000I EXCEPT Q(7,7)=Q(10,10)= Q(12,12)
=Q( 20,20)=Q(22,22)=Q(25,25)=10000I, R=I

7 Actuators	 10 Actuators	 12 Actuators
(Real) jw(Imaginary)	 (Real) jw(Imaginary)	 (Real) ,jw(Imaginary)

-0.0013 5.5905 -0.0050 5.5905 -0.0068 5.5905
-0.0013 -5.5905 -0.0050 -5.5905 -0.0068 -5.5905
-0.0024 3.1813 -0.0277 3.1811 -0.0381 3.1808
-0.0024 -3.1813 -0.0277 -3.1811 -0.0381 -3.1808
-0.0200 0.7467 -0.2389 0.3015 -0.2367 0.3100
-0.0200 -0.7467 -0.2389 -0.3015 -0.2367 -0.3100
-0.0434 0.0433 -0.4179 0.4544 -0.4179 0.4544
-0.0434 -0.0433 -0.4179 -0.4544 -0.4179 -0.4544
-0.4343 0.4053 -0.9883 0.6871 -2.1916 1.6704
-0.4343 -0.4053 -0.9883 -0.6871 -2.1916 -1.6704
-0.4690 1.3656 -2.1916 1.6704 -3.6158 1.7991
-0.4690 -1.3656 -2.1916 -1.6704 -3.6158 -1.7991
-0.5240 0.5478 -3.6401 1.8295 -1.0017 0
-0.5240 -0.5478 -3.6401 -1.8295 -1.0247 0
-3.5693 1.8675 -1.0150 0 -1.0258 0
-3.5693 -1.8675 -1.0248 0 -1.0853 0
-1.0180 0 -1.0349 0 -1.0987 0
-1.0287 0 -1.0879 0 -1.1684 0
-1.0680 0 -1.0987 0 -1.2852 0
-1.2750 0 -1.2831 0 -1.5958 0
-1.6150 0 -1.5966 0 -2.6473 0
-2.4280 0 -3.9914 0 -3.9913 0
-3.4220 0 -4.3071 0 -5.4889 0
-6.0669 0 -6.1674 0 -6.3662 0
-10.066 0 -10.661 0 -10.673 0
-18.141 0 -30.186 0 -30.186 0
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Table 15	
Op POOR QUALITY

COMPARISON OF ACTUATOR FORCES VARYING THE ACTUATORS WITH SEVE417H
ACTUATOR REMOVED

Max. Act.
Forces(Amp) lbs

f(1)
f(2)
M)
f(4)
f(5)
f(6)
W)
f(8) lb.ft
f(9)
f(10)
f(11)
f(12)
f(13)

4.0402
3.3862
4.3702
2.3451
1.1247
0.2136

1.2184

4.4356
3.5324
3.6011
1.4979
0.2539
0.9500

O.b595
1.1955
0.9438
0.3166

3.5095
0.0958
3.3440
0.0953
3.6010
1.2351

u.1721
0.8503
0.6543
1.1675
0.9437
0.2844

Q=100001, R=I

7 Actuators	 10 Actuators
	

12 Actuators

2.22
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COMPARISON OF ACTUATOR FORCES VARYING THE ACTUATORS 'WITH SEVENTH
ACTUATOR REMOVED

Q=100000I, R=I

Max. Act.	 7 Actuators	 10 Actuators	 12 Actuators
Forces(Amp) lbs

f(1) 9.6904 8.4849 6.5981
f(2) 20.7948 8.6722 4.5791
f(3) 14.6512 1.1022 5.6922
f(4) 8.8780 3.5757 0.4579
f(5) 3.5327 1.4109 1.1023
NO 1.2470 3.3063 3.1263
M)
f(8)	 lb.ft 4.1667 2.7808 1.2149
f(9) 3.9409 3.3061
f(10) 2.4642 2.8507
f(11) 1.0831 3.9445
f(12) 2.4643
f(13) 1.0771

Table 17

Q=1000I, EXCEPT Q(7,7)=Q(10,10)=Q(12,12)=Q(20,20)=Q(22,22)=
Q(25,25)=10000I, R=I

Max. Act.	 7 Actuators	 10 Actuators	 12 Actuators
Forces ( Amp) lbs

f(1) 3.0869 4.9872 3.5906
f(2) 1.2538 1.1888 0.0696
M) 1.1868 1.3020 3.6637
f(4) 1.4440 1.5255 0.0696
f(5) 0.3660 0.2012 1.3022
f(6) 0.1209 0.2367 1.2361
M)
f(8)	 lb.ft 0.5030 0.2294 0.1461
f(9) 0.3169 0.2369
f(10) 0.3520 0.1751
f(11) 0.2888 0.3452
f(12) 0.3520
f(13) 0.1141
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Table 18
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RELATIONSHIP BETWEEN DISPLACEMENT IN THE MODAL COORDINATES AND
MAXIMUM TRANSLATIONAL DISPLACEMENT (AT NODE 101)

Node Intl.	 Condition Max.	 translatio-
Qi(0) nal Disp.-Inches

(100) 101 0.01 (0.2840)	 0.3009
(100) 101 0.02 (0.5680)	 0.6019
(100) 101 0.03 (0.8519)	 0.9029
(100) 101 0.04 (1.1359)	 1.2039
(100) 101 0.05 (1.4199)	 1.5048
(100) 101 0.06 (1.7039)	 1.8058
(100) 101 0.07 (1.9878)	 2.1068
(100) 101 0.08 (2.2718)	 2.4078
(100) 101 0.09 (2.5558)	 2.7087
(100) 101 0.10 (2.8398)	 3.0097

i

^I
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ORIENTATION AND SHAPE-CONTROL OF AN
ORBITING FLEXIBLE BEAM UNDER THE INFLUENCE

OF SOLAR RADIATION PRESSURE

In this paper, the uncontrolled and controlled dyna-
mics of a thin flexible beam in orbit and in the
presence of. solar radiation disturbance are analyzed.
A beam nominally oriented along (i) the local hori-
zontal and carrying a gimballed rigid dumbbell for
gravity stabilization, and (ti) a beam nominally
oriented along the local vertical are considered.
The incontrolled dynamics of the beam in the pres-
ence of the solar radiation pressure disturbance
shows the excitation of the rigid pitch mode. The
control laws previously designed for the case where
the environmental effects were neglected, are found
to be inadequate to control the shape and orienta-
tion of very flexible beams that are exposed to
solar radiation disturbances. The control laws
and the gain parameters are reevaluated for both
cases of noninal . beam orientations; this results, in
general, in increased robustness, of the closed-loop
system. Methods of obtaining a robust control sys-
tem in the presence of environmental perturbations
are discussed.

INTRODUCTION

At the operational altitudes of proposed future missions involving
large space structures, the principal environmental disturbance will,
In general, be due to solar radiation pressure. Solar pressure torques,
induced on the structyre, are dependent on the surface properties and
the surface geometry.' Expressions for the induced solar pressure

t'
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torques on a free-free flexible beam were developed earlier. 2 The un-
controlled dynamics of a thin flexible beam in orbit under the in-
fluence of solar radiation pressure forces were considered for two cases
of beam orientations, namely, ( i) nominally oriented along the local
vertical and (ii) nominally oriented along the local horizontal and gra-
vity-stabilized using a rigid dumbbell attached at the center of mass
of the beam. The uncontrolled and controlled dynamics for the two cases
of nominal beam orientations have also been So gsidered previously but
in the absence of environmental disturbances.

The objective of the present study is to evaluate the validity of the
previously developed control laws, which were obtained disregarding
the environmental effects, for controlling the shape and orientation of
a beam actually under the influence of solar radiation disturbance. It
is proposed to evaluate the robustness of the previously developed con-
trol laws for the beam under the influence of the solar pressure dis-
turbances by considering a parametric study of the controlled dynamics
for various initial conditions. Particular attention will be given to
highly flexible structures under larger initial displacements. The
feedback gains will be modified, where required, to achieve satisfactory
transient performance while minimizing control force effort. Where
modification of gain values are found not effective, modification of
control laws and reselection of actuators and their locations will be
considered.

THE MATHEMATICAL MODELLING OF A FLEXIBLE ORBITING BEAM

Al

A flexible orbiting beam nominally oriented along the local horizontal
represents a gravitationally unstable configuration. A passive sta-
bilization of the beam can be obtained by using a rigid dumbbell with
proper moment of inertia. In Ref. 3, the equations of motion for a
beam with a dumbbell assumed to be attached at the center of mass of
the beam (Fig. la) through a spring loaded hinge and with viscous rota-
tional damping have been developed. It is assumed that the dumbbell
mass is concentrated at the tips, that the viscous force at the hinge
Is linear, and that all displacements and deformations occur within the
orbital plane. With the usual assumptions of small pitch amplitude and
dumbbell oscillations and flexural deformations, the linearized equa-
tions of motion are obtained as3,

e"+ce'+(k-3)9-ca' -ka + n(cen+ken )Czn)= Cy /dy^C	 (1)

a"+elca'+(c1 k+3)a-c ic9'-t ike- I:(ce^+ken )c1 Czn) = O	 (Z)
n

e^+(s - 3 )en-{k(a-e)+c(a'-e')}Czn)Jy/MnRZ+E cem+^cE m)CZmn)

En/MnWI t	 (3)
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where C(mn) = JyC (m) C (n) /Mnk2 ; (m,n - 1,2,...) and M n = nth modal mass

R	 = undeformed beam length

6	 = pitch angle

we 	- orbital angular velocity

Cy = external torque about the pitch axis

Jy = beam pitch axis moment of inertia

An = nth flexural modal amplitude

en 	AnA, nondimensionalized n th flexural modal amplitude

k	 = k/Jyw2; c = c/Jywc

k	 = torsional restoring spring constant at the hinge

c	 = viscous damping coefficient

a	 = angle between the dumbbell axis and the local vertical

C (n) = aOzn)
z	 Ix=0

0z n) = beam shape function of the n th transverse mode

cl 	= Jy/Id , I d = pitch moment of inertia of the dumbbell

sin 	= wn/wc
 ; 

wn = nth natural frequency

( )' - d/di where r= wct

t	 = time

The following observations can be made from a study of Eqs. (1),(2)
and (3) in the absence of external forces on the system: (a) the
pitch motion of the beam, the dumbbell motion (a), and the elastic
motion of the beam (e ) are all coupled tqq @@ach other; (b) within the
linear range the elasiic modes for which C`n1= 0 (the symmetric modes),
are completely independent of the pitch aid dumbbell motions. Further-
more these modes do not influenceeither the pitch or the dumbbell mo-
tion.

A Flexible Beam in Orbit Nominally Oriented Along the Local Vertical

b1

beam in orbit with
lb) are developed
;tem. With the
and small ampli-
equations of

The equations of motion for a thin uniform flexible
its axis nominally along the local horizontal (Fig.
in Ref. 3 and represent a gravitationally stable sy.
assumptions of small transverse in-plane vibrations
tude pitch oscillation of the beam, the linearized
motion are obtained as ,

I
l:

e +3e = Cy/Jyw2

En+S2^En = En/Mnw^R

uRJGINAL PAGE 19
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Active control is required to maintain the pitch orientation of the
beam and to damp out the modal oscillations in the presence of the
environmental disturbances. A point actuator located at one end of
the beam is considered for shape and orientation control of both the
dumbbell stabilized beam and the beam oriented along the local verti-
cal. The development of the forcing terms on the right hand side
of Eqs. (1)-(6), due to the solar radiation pressure is reviewed in
the next section.

SOLAR RADIATION DISTURBANCE MODEL

A detailed study of the effect of solar radiation disturbance on the
uncontrolled dynamics of a flexible beam appears in Ref. 2 and a
summary of the disturbance model obtained is given below. Fig. 2
shows the geometry of reflection of a flexible beam vibrating in one
of the free beam modes and exposed to solar radiation pressure. The
incidence solar radiation vector, T, and the unit normal to the sur-
face, n, are assumed to be in the plane of the transverse vibration

of the beam. Then, T and n can be expressed as

T = aoT + cok

where, 0' = do/d^, 0 is the free-free beam shape function and E is
the nondimensionalized longitudinal coordinate of the beam.

The solar radiation force, Fa and moment, Na, acting on a completely
absorbing surface is given by l

Fa = hoT t —T--n ds
s

Na =-hoT x f T(T • n) ds	 (9)
S

where h
o
 = 4.64x10 -6 Nt/m2 is a constant for earth orbiting space-

craft. The integration over the area, s, is bounded by the condition

T•n > 0	 (10)

The corresponding force and moments for a completely reflecting sur-
face are given oy

Fr = -2ho t n(T-n) 2 ds	 (11)

Nr = 2ho ssn x T(T•, ) 2 ds	 (12)

where T is the position vector of ds with respect to the center of
mass of the beam. For a surface with an arbitrary reflection
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coefficient, er, the force and moment expressions becomel:

Fer = Fa + Er(Fr-Fa )	 (13)

Ner = N
a 

+C r 
(ffr -  Na)	 (14)

Only the moment expressions are of importance in analyzing the atti-
tude motion of the beam. The expressions for the moments per unit
width of thC beam are developed using Eqs. (6) and (7) in Eqs. (9)
and (12) asz:

Na = - hoa0C060 (for symmetric modes)

n 0	 (for asymmetric modes) 	 (15)

Nr = -2h0 I1 (ao— +^^ z°f- { ^'^ + (E- L) } d^ T	 (16)
0

The numerical integration of Eq. (16) has shown that the moment due
to any asymmetric mode of the beam is extremely small as compared
with the magnitudes for the symmetric modes and the moments, Nr,
due to the symmetric modes can be expressed in the form (similar to
Eq. (15)),

Nr c aoco 6o (for the symmetric modes)	 (17)

Eq. (17) is valid for all symmetric modes and for small deflections
of the beam. Eqs. (15) and (17) are used in Eq. (14) to obtain the
total moment due to solar radiation pressure on a beam with a coef-
ficient of reflectivity, e . Further, the deflection at one end of
the vibrating beam for a Eiven mode can be written as

6n (t) - en (t) R

Thus, the total moment on the beam due to any one of the symmetric
modes of the beam can be expressed as

N(t) = en (t) k NM 
aoco	 (18).

	

where a = sin e and c = cos a	
i

and e 9s the solar incidence angle
given byo	

i	 o	 1 

ei (t) = wet + e(t) + ei(0)
	

(19)

Where we = orbital angtilar velocity

e(t) = pitch angle of -the beam.
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The effect of the disturbance on the generic mode is obtained by	 a
evaluating the integral

En = t	 (n) It )- .F ds	
(20)

where, F is the external force due to solar pressure. Eqs. (8) and
(11) are substituted into Eq. (20) and the resulting integrals are
evaluated under small amplitude approximations with the result that, 2

E _E =0na	nr

and	 En = En + e r(E n -F.n ) = 0	 (?.1)
a	 r a

Thus, the principal effect of solar radiation pressure on the flex-
ible beam is to produce a net moment about the pitch axis of the beam..
For a beam of length 100m and e
unit deflect Ion, Nm, in Eq. (18^ is obtained using Eqs. (14), (14
and (16) as,

Nm = 2.23x10
-4
 + 0.5(9.4x10 -5 -2.23x10 4)

= 1.58x10-4 Nt-m

(ti calculated here is for a beam with unit width). Eq. (18) is
noW ready to be used as the pitch forcing function in Eqs. (1) and (4).

CONTROL OF THE ORBITING BEAM SYSTEM

For applications of control theory the sets of second order equations,

Eqs. (l)-:-(3), and (4) and (5) are transformed into a state vector
form given by

X = AX+BU+D	 (22)

	where X is the state vector of order (2m), m is the total number of 	 ^.
rigid and flexible modes in the system. The plant matrix has dimen-
sionality (2mx2m), B, (2mxr), where r denotes the number of actuators
and D is a vector of order 2m denoting the disturbance and is a
function of both time and the state of the system. For the dumbbell
stabilized beam with two flexible modes included in the model, the
order of the system will be 8, and for the beam oriented along the
local vertical the order of the system with the two flexible r„!des,
will be 6.

A single point actuator located at one end of the beam was considered
for both cases of the beam's nominal orientation in Ref. 4. An ideal
feedback law of the form U = -KX is assumed to obtain a control law
and the corresponding gain values, K. In the following sections the
rontrol problem is considered separately for the two cases of the
beam orientation.

3.6
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Control of the Dumbbell Stabilized Flexible Beam

The disturbance due to the solar radiation effects on the dumbbell is
neglected in the following study, since the dumbbell is assumed to
be rigid. The solar radiation disturbance vector, 0, is then given
by

D = [0,0," r), N/Jw2 k, 0,0,071
	

(23)

and
N = c l k N. sin e i cos e i	 (from Eq. 18)
	

(24)

In the abso- oce of both the control and the disturbance, an initial
displacement in the first modal amplitude would correspond to simple
harmonic motion in the first mode only. With the inclusion of the
solar radiation disturbance (given by Eq. (23)) into the model, it is
seen that the pitch motion is also excited. As an example, Fig. 3
illustrates the res ponse of the beam to an initial displacement of
C AM = 0.01 in the 'iresence of the solar radiation disturbance where
tt^e fundamer.t ^l fle,.aral frequency is assumed to be ten times the
orbital rate. The pitch motion also induces the dumbbell motion and
oscillations in the second mode through coupling. The induced pitch
amplitude is nearly 20.

The method adopted hereto obtain control laws and the gain parameters
for which an acceptable transient response would result in the pre-
sence of the disturbance is to first consider the control problem by
ignoring the disturbance, D, in Eq. (22.). The transient response of the
system with the disturbance is obtained next, and then the gain para-
meters and, if necessary, also the form of the control laws will be
modified to obain an acceptable system response under the action of

	
I

the disturbances.

A set of gain parameters was obtained earlier by examining the charac-
teristic equation of the dumbbell stabilized beam with one actuator
at one end of the beam, for which the disturbances were completely
ignored. The control law obtained was of the form

Fc = -0.07e -0.005E 1 -0.03e2	(25)

The transient responses with this control law for the dumbbell sta-
bilized beam with and without the disturbances included in the system
are shown in Fig. 4 for an initial displacement of 0.011 in the first
mode only. The fundamental frequency of the beam is assumed to be
ten times the orbital frequency. The effect of the solar radiation
disturbance is to increase the induced pitch amplitude slightly as
shown in Fig. 4. The peak control force required ij also increased
by a small amount, but still.is of the order of 10-Nt. only.

the control law for this case is seen to be acceptable under
the expected solar radiation disturbance on the beam.'
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To study the robustness of this control system, an extreme case of
the solar radiation disturbance is considered with an initial dis-
placement of O.lk in the first mode for a beam whose fundamental fre-
quency is 7 times the orbital frequency. For this case of the beam
and .based on the previous control law, Eq. (25), the transient re-
sponse of the system is shown in Fig. 5 with and without the solar
radiation disturbance. It is clearly seen that the dumbbell sta-
bilized beam whose pitch motion is well controlled in the absence
of the solar radiation disturbance, experiences extremely large ampli-
tudes of pitch oscillations L150 ) due to the solar radiation dis-
turbance. The transient performance of the system in all modes is
improved simply by increasing the gain value corresponding to the
modal rate by ten times and also the gain proportional to the pitch
angle from -0.07 to -0.3,(Fig. 6), for the same initial conditions
and beam parameters as in Fig. 5. The large amplitudes in the pitch
motion disappear as the first modal amplitude is quickly damped re-
ducing the magnitude of the solar radiation disturbance. The peak
control force now increases by two orders of magnitude as compared
with the cases in Fig. 3 and Fig. 4, but the peak force value of
2x10- 2Nt. is still a small value. Thus, the need to consider the
solar radiation disturbance in designing a control system for a
highly flexible system is demonstrated.

The same procedure used for the dumbbell stabilized beam is repeated
here to obtain a robust control law and the gain parameters for use
with the solar disturbance input. The control law, with the gain
parameters selected to provide damping in pitch and t',e first mode
is given by	 j

Fc = -0.01 9 -0.01 e l	(26)
t..

The second mode is not included in this model, because the second
mode is decoupled from pitch and the firsjl mode, even in the pre-
sence of the solar radiation disturbance.	 The system transient
response with the solar radiation disturbance is shown in Fig. 7
for e l (0) = 0.011 and the fundamental frequency of the beam assumed
to be ten times the orbital frequency, and with and without the
application of control. In the absence of control, the magnitude of
the induced pitch oscillations (=0.25 0 ) is small as compared with
the case of the dumbbell stabilized beam (Fig. 3), because of the
stabilizing gravity forces. With the application of the control,
damping in boO pitch and the modal amplitude results

The same control law, (Eq. 26), applied to a more flexible beam
(wl = 3.0) and a larger 'nitial amplitude in the first mode
(e l (0)	 0 lk) shows (Fig. 8) that the pitch amplitude overshoot
is nearly 300 . M attempt was made to increase the feedback gain
proportional to the first flexible mode, e l , as before, for the case

3.8
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of the dumbbell stabilized beam. The transient responses (not shown)
indicated large overshoots in the pitch amplitude and a further in-
crease in the feedback gain value made the system unstable. Similar
attempts of varying the gain values corresponding to the pitch rate
and providing the feedback proportional to the pitch angle failed
to provide an acceptable transient response of the system. Two
actuators were then assumed, one at the center of the beam (pro-
viding control over the flexible mode only) and the other at one of
the nodal point ( f.-  0.776) of-the flexible mode to control the
pitch motion only. The pitch and the flexible mode were then de-
coupled except for the influence of the flexible mode on the pitch
motion through the solar radiation disturbance. The following control
laws were selected for the two actuators to provide critical damping
in both pitch and the flexible mode.

fl - -0.1136	 1`2 - -0.3e 1	(27)

The transient response for the same initial conditions in Fig. 8 and
under the new control law [Eq. (27)] is shown in Fig. 9. The pitch
motion and the flexible modal oscillations are quickly damped out.
The peak control force required is of the order of 10- 2Nt. for both
the actuators - the same order of magnitude required in Fig. 8.

CONCLUSIONS

The uncontrolled and controlled dynamics of a thin flexible beam in
orbit and in the presence of solar radiation disturbances are
analyzed. Control laws and gain parameters are obtained to control:
(i) the beam nominally oriented along the local horizontal and
carrying a gimballed rigid dumbbell for gravity stabilization, and
(ii) the beam nominally oriented along the local vertical. The
control laws previously developed ignoring the environmental effects 	 j
are found to be inadequate to control the shape and orientation of
very flexible beams that are exposed to solar radiation disturbances.
In order to obtain a robust control system in the presence of enviro- 	 i-
mental perturbations, it is sometimes more desirable to increase
the number of actuators rather than simply modifying selected gain
values. For further research related to the problem of minimizing
the overshoot under large disturbances (in a qualitative'manner) the
use of pole placement techniques and application of linear quadratic
Gaussian method are suggested as a follow on effort, especially for
large order systems.

a
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IV. EFFECT OF SOLAR RADIATION PRESSURE OrN THE DYNAMICS OF A THIN
HOMOGENEOUS SQUARE PLATE IN ORBIT

IV.1 Introduction

Proposed future applications of large space structures require ,_ontrol

i
of the shape and orientation of the structure in orbit. It has been shown

previouslyl , considering a long, thin and uniform beam, that the principal

environmental disturbance acting on these structures could be due to the

solar radiation pressure. In the present work the dynamics of a more

important basic structure, namely, a thin, homogeneous and flexible square

plate exposed to solar radiation disturbance will be considered. The force

and moment expressions as given by Karymov will be used to obtain the

expressions for solar radiation disturbing forces and moments acting on

the free-free square plate in orbit. The dynamics of such a plate nominally

oriented along the local vertical was considered earlier disregarding the ,

environmental disturbances. 3 In the present study it is proposed to recon-

sider the dynamics of the square plate nominally oriented along the local

vertical with the solar radiation force and moment expressions included in

the dynamic model.

The mode shapes and the frequencies of the plate are obtained using

the finite element program,STRUDL. 4 To obtain expressions for solar

radiation forces and moments, it is convenient to express the mode shapes

of the plate as a combination of the mode shapes of a free-free beam.5

The first five modes of the plate will be considered for study here.

The plate is assumed to have only small transverse vibrations, so that the

shadowing of the plate due to any deflected part of the plate can be

neglected. The small deflection assumption also allows the superposition

'r

of the beam mode shapes in representing the mode shapes of the plate.

4.1
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IV.2 Solar Radiation Forces and Moments Acting on a Thin Homogeneous
Flexible Square Plate

	

Y	 _

Fig. 4.1 shows a square plate exposed to solar radiation. Let n

jdenote the outward unit vector normal to the surface, ds. and let T
F.j

	E`	 be the unit vector in the direction of solar radiation denoted as

	

{	 T = aoi + b OT+ co k	 (4.1)

The direction co.,ines of T, namely, so , bo and co,can be expressed in

terms of the solar incidence angles,e ., and ^ i,(defined in Fig. 4.1)

as	
ao = sin e i ooa Vi

bo = sin 6  sin ^i	
(4.2)

co = cos a 

Then, the solar radiation force, F a , and the moment, Na , on a completely

absorbing surface are given by 

F = ho ! T on ds	 (4.3)
.4

(4.4)
and	 N=^hT x I R (T on) dsa o 

a

where, ho = 4.64x10-6 Nt/m2 is a constant for near earth space structures.

The integration over the area, s, is bounded by the condition

T•n > 0	 (4.5)

, and moment, Nr acting on a completely reflecting surfaceThe force, Fr 

	

&!	 can be developed as2,

Fr	o= -2h I n (T o n)
2
 ds	 (4.6)

a

and	 N  o 2h J nxr (T o
n) 	 (4.7)o 

a

where, R is the position vector of ds with respect to the center of mass of

the plate.

4.2
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For a surface with an arbitrary reflection coefficient, Er, the force and

moment expressions become 2:

Fer Fa+ Er (Fr-Fa)

Ner m 
N a + e r (Nr-Na)
	

(4.8)

The shape function of a rectangular plate can be represented as a

product of the two beam functions given by  (considering only the trans-

verse vibration),

2m,n (x ,Y) = en (x) V M (Y)	 (4.9)

9 and ^ are the free-free beam shape functions given by

9n (x) = an (sinQ x + sinhS2rx) + (cosQ x + coshQnx)

for n = 2,3, 4 . . . .	 (4.10)

where, an = (cosS3n coshRn)/( sinhOn sinQn)

and 6 W = 1-2x for n=1

a constant for n=0

and	 en (x) = 4) (Y)

For a square plate, certain special modes which are combinations of the

modes of a rectangular plate are shown to be existing. 5 The frequency

expressions for such modes are also given in Ref. 5. The first five

modes of a square plate in which the second and third modes represent

special combinations of "beam modes" (Fig. 4.2) are considered in the

present study.

4.3
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A unit normal to the syrface, n, is given by,

n ° all + b lj + cik

° ^ (de/d^)_ + 9 (dV /dn) J - k

(* de/d^) 2 + e (#/dn) / + 1
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(4.11)

4) are non-dimensional coordinates in the x,y,z directions, respectively.)

The position vector, R, is represented as,

R	 (^- Z) i + (n - Z) j + z k 	 (4.12)

Eqs. (4.1), (4.11) and (4.12) are substituted into Eq. (4.4) and then the

resulting integrals are evaluated to obtain the expression for the moment

acting on a plate having a completely absorbing surface as,

Na o _h 0 X2[{b o s 3- c0 (s2-s4/2)} i + { co ( sl s4/2)-ao s 3} j

+ {ao (a2 a4/2) - b  (sl s 4/2)} k]

where,

81	 I Es Cdgdn	 s2 = I nscd^dn
s	 a

s3 = s Cscd9dn	 s4 I acdUri

den	
d'm

Be 	 (ao4'm d^ 
+ bo 9n do - co)

(4.13)

.ae integrals s l to s 4 can be evaluated analytically. The moment express-

ions are obtained for the first five plate modes (Fig. 4.2) by evaluating

s  to a4 for combinations of corresponding (m,n) modes and are given as,

_	 h8k	 _	 _
Na ° 3 [aocoi -bocoj + (bo-ao )k] z1 (for mode I)

ho R2 co [bo + aoj] z2 (for mode II)

= hof,2 co [boi - aoJ] z 3 (for mode III)

= o, (for modes IV and V)	 (4.14)

4

M^
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where, z l , z 2 and z 3 are deflections at one corner of the plate asso-

ciated with the I, II and III modes, respectively.

The moment due to solar radiation pressure, Nr , acting on a completely

reflecting surface is obtained by substituting Eqs. (4.11), (4.12) and

(4.1) in Eq. (4.7). The resulting integral is simplified to obtain the

expression,

Nr - 2h0 I [(a2C-a3ri	 + (a3 -al ^) j +(aln -a2Ek7 scd^dn	 (4.15)
s

where, E' _ E - 0.5 and n'	 n - 0.5

Eq. (4.15) involv,as complicated integrals and to find an analytical solu-

tion is very d,Cfficult. Instead, a numerical evaluation of the integrals

involving different modes are carried out and the results are shown in

Fig. 4.3. The plate dimension is considered to be 100mx100m and the

deflection at the corner of the plate for each mode is assumed to be

Z  = z 2= z3 = 1.0m. Similar results are also shown in Fig. 4.3 for a

plate having a completely absorbing surface and are obtained using Eq. 	 I

(4.14). The solar incidence angle, 9 1 , is varied from 0 to 90 0 , with	 \'

^i 0. Only the first three modes give rise to appreciable moments for

both completely absorbing and completely reflecting surfaces. The

magnitudes of the moments are seen to be an order of magnitude higher

(2x10 2Nt-m) for a completely absorbing surface as compared with the case

of a completely reflecting surface (10 3 Nt-m). The moments due to

modes II and III, and for both completely reflecting and completely ab-

sorbing surfac.a, can be visualized as extensions of the result obtained

for the case of the beam. l For ^i 00 (incidence only in the z,x

Plane) the moment of a beam is shown to be aoout the y axis for any given

mode of the beam.



But, for the same case, interaction of the solar pressure on the plate

vibrating in only the first mode, results in a moment about the x-axis.

The reason for the latter phenomena can be explained by considering

the force distribution for a completely absorbing surface (Fig. 4.4).

There is a finite moment about the x-axis along the cross section

y
I
-y^ as shown in Fig. 4.4 because of the uniform variation in the

angle of incidence along y'-y'. All the cross sections must be

similarly considered from E = 0 to 1, and the net moment result will,

in general, be non zero. A similar explanation can be given for the case

of a completely reflecting surface.

Based on the numerical results shown in Fig. 4.3, in which ^i is

varied from 0 to 900 (not shown) the moment expressions for a completely

reflecting plate can be written as,

Nr ° h 1 c 0 (a0i-b0j) z 	 (for mode I)

. h2 c0 (bo -a0D z2 (for mode II)

h2 co (bo aJ) z3 (for mode III)

where, - hl e 3.25x10-4 and h2 = 1.09x10-3

Eq. (4.16) is found to be valid for magnitudes of z  to z 3 up to 0.018.

The moments about the x,y and z axes are obtained by collecting the coeffi-

cients of i, j and k.respectively, from Eqs. (4.14) and (4.16) as,

q
i

Nax - h3 {(a0 /3)z1 + b0 (z2+z3)}

Nay - -h3 {(b 0/3)zI +b0 (z3 z2)}

N82 ° (h3/3) (bb-a2)zI.

where	 h3 = h022c0

4.6

(4.17)
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Nrx	 co{h1 oz1 + h2b0(z2-z3)}

Nry	 co{h1boz1 + h2
ao (z 2-z 3)}	 (4.18)

N	 0rz

Eqs. (4.17) and (4.18) are now substituted into Eq. (4.8) to obtain the

i

	

	
mcnent acting on a plate with a surface of general coefficient of reflec-

tivity, Er.

a

w'
T'	

4.7



IV.3 Modal Forces Due to Solar Radiation Pressure

The effect of the disturbance on the generic mode is obtained by

evaluating the integral6

En ^ I z (x,y) k •dF	 (4.19)

where, F represents the force due to solar radiation pressure. Also,

En - Ena + Er (Enr Ena)	
(4.20)

Eq. (4.3) is substituted into Eq. (4.19) and after evaluating the re-

sulting integrals, Eha is found to be equal to zero for all modes of the

plate. Eq. (4.6) is used in Eq. (4.19) to get

Enr 2ho I Cz(aoal+bo l+co)/(a2+b2+l)] d&dq	 (4.21)

The slopes, d8./d& and djA/drj, are assumed to be very small so that

ai+bi+ci r 1. Thus, the integral in Eq. (4.21) can be easily evaluated

to show that Enr is also equa _ to zero for all modes of the plate. Hence,

the solar radiation pressure . does not give rise to any generic force. The

results obtained can now be used in the dynamic model of a flexible plate

in the orbit.

4.8 y
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IV.4 Effect of Solar Radiation Pressure on a Plate Nominally Oriented
Along the Local Vertical

The major surface of the plate is assumed to be perpendicular to

the orbital plane (Fig. 4.5). From the general formulation of Refs. 3 and

5, the equations of motion of the structure are obtained, under the assump-

tion that the transverse deformations are small compared to the charac-

teristic length of the plate. The linearized equations of motion are

given by 

- - 2wc0 + w^iy + Nx/Jx

W  + Ny/Jy 	 (22)

9 .	 -3w2	 z0 + N/Jz

en + (On/wc)
2 

en = 0

where ^; 0, and 6 refer to the yaw, roll, and pitch modes, respectively,

we is the orbital angular rate, Stn is the nth modal frequency, en is

the non-dimensional modal amplitude, and J
x, y, z 

are the principal plate

moments of inertia.

The roll and yaw equations of motion are coupled to each other

and the characteristic equation shows a double pole at the origin indi-

cating instability in the roll-yaw motion. However, for an initial con-

dition of ^(o) _ ^(o) = 0, the roll and yaw motions will not build up.

To study the effect of solar radiation disturbance, a square plate whose

fundamental frequency is ten times the orbital frequency is considered.
J

Only the first three flexible modes are included in the dynamic model

with initial conditions of 0.01 in each mode. The transient response of

the plate under the influence of solar radiation pressure is shown in Fig. 4.6.

p.l

:=1
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The torque about the normal to the plate due to the first modal amplitude

acts in one direction only (Fig. 4 . 3b); as the solar incidence angle

changes in the orbit, it is seen that the cyclic contribution due to Nax

averages to zero. This torque induces a steady drift in the roll angle

(= 1.50 in 6 orbits). The yaw motion is seen to be oscillating with

a very small amplitude (0.30). The solar radiation pressure disturbance

also induces a small amplitude (0.030) pitch oscillation. The modal oscilla-

tions are unaffected in the presence of the solar radiation disturbance.

The magnitude of the pitch, roll and yaw angular motions due to the

solar radiation pressure are small becuase of the stabilizing gravity

gradient forces acting on the plate.

a

ry
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V.	 SOLAR RADIATION HEATING EFFECTS ON THIN RECTANGULAR PLATES AND BEAMS

V.1 Introduction

The thermal gradients induced in large flexible space structures due

to solar radiation heating can cause large deflections depending on the

thermal properties of the material and the geometric shape of the struc-

ture. The thermal deflections are functions of both time and elastic

displacements 
l,2 

The heat being radiated from a thin solid is also

proportional to the fourth power of the surface temperatures. Therefore,

in order to study the effects of solar heating, a number of realistic

assumptions, depending on the problem, will have to be made to obtain

expressions for the important thermal effects.

The objective of the study here is to find expressions for thermal

deflections of large, flexible, thin beams and plates exposed to solar

heating. The major assumptions made here are: (a) the reflected solar

radiation by the Earth (albedo) can be neglected; (b) the inherent time

lags in the heat transfer process are very small compared with the orbi-

tal period; (c) the radiation from the edge surfaces can be neglected;

and, (d) the beams and plates have uniform thickness and thermal pro-

perties resulting in a uniform temperature distribution of the surface

facing the sun: The effects of the Earth's shadow and shadowing due to

a part of the structure ..re not included in the study.

5.1 Y	 .^
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V.2 Equilibrium Temperatures of Thin Plates and Beams

The one dimensional beam bending analysis also applies to the two

dimensional plate bending.3 Fig. 5.1 shows the beam e.., 	 d to solar

radiation. The solar incidence angle, 8 1 , is taken to be a constant

during a small interval of time. During this interval the surface facing

the sun, au , attains temperature T l and the surface away from the sun, a,,,

attains a temperature, T 2 . The equilibrium temperatures, T 1 and T2 , can

be determined by writing the thermal balance equations. The total heat

leaving the beam from the two surfaces, au and si , should be equal to

the heat received by the beam. Therefore,

El°T4 + E2oT4 m a8G cos 81	 (5.1)
where,

El and E2 are the emissivities of the surfaces,s u and a., respectively

°	 Stefan-Boltzman constant

56.7x1012 KW/m2 °I

ae	 absorptivity of the surface, s 

G	 intensity of solar radiation = 0.8 KW/m2

The heat flowing through the plate, at equilibrium, is also equal to the

1

ti

heat radiated from the surfa -, aR

E2oT4 = K(Tl T2)/tc

where.,

K	 thermal conductivity (KW /w°k) of the plate material

t  a thickness of the plate

Equations (5.1) and (5.2) can be rearranor, as

T1 T2 + 
E2tc 

T
K	

2

	

T4	
a a G cos B i - E1 4

	

2	 E2°	 E2

(5.2)

(5.3)

(5.4)
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Eqs. (5.3) and (5.4) can now be solved to obtain T 1 and T2 by

assuming an approximate value of T 1 or T2 and then through numerical

iteration. Assuming E 1 - E2 . 0.05 and as a 0.2, the temperature

difference, AT a TL T2 , is obtained as a function of the solar inci-

dence angle, 6 1 , and various parameter ratios of k  - k/t c , as shown in

Fig. 5.2. A higher value of k  indicates a larger value of thermal

conductivity and, hence, the temperature difference between the two

surfaces becomes smaller. A plate of thickness lcm and made of Polyamide

(K - 0.25x10 3 KW/m K) will have a maximum temperature difference of 2.30K.

The temperature gradient is found to vary approximately linearly with 61

from Fig. 5.2. Expressions for deflections of the plate as a function of

the temperature gradient are developed, next.

t
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V.3 Pure Bending of a Beam (or a Plate) 3:

Fig. 5.3 shows a beam of length, 1, and width, b. The temperature

of the mid-plane of the beam is denoted by T n . The temperature of the

surface facing the sum, s u , is then Tn+(AT/2), and the temperature of

the surface, sR , is given by Tn (AT/2). According to the theory of beam

bending analyzed in Ref. 3, we have

2	 _
I T y d A	 (5.5)

y
where

z is the transverse deflection of the beam,

a  = coefficient of linear expansion

Jy = moment of inertia of the beam about the y axis

Eq. (5.5) is rewritten by evaluating the integral

2d. -ae 
AT = 

a constant	 (5.6)
c

The expression for the thermal deflection is then given by

2
Z	 - CL t 2	

(5.7)c
The thermal deflection can be mimimized by selecting a material of

low coefficient of expansion or by using a material of high thermal con-

ductivity. An increase in the thickness of the plate will also increase

the temperature difference (Fig. 5.2) and also increase the weight of

the plate. Hence, the parameter, t c , should be as small as possible.

The other important properties of materials not reflected in Eq. (5.7)

are the density and the cost of the material as shown in Table 5.1.4

For a beam of length 100m and thickness 0.01m, and made of polyamide

(a low density and low cost material), the maximum thermal deflection is

found to be approximately 7m.

5.4
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If the beam is made of aluminum, the maximum deflection would be about

2mm. Once a tolerable thermal deflection is specified the material can

be selected to meet the conflicting requirements of low density, high

thermal conductivity, and low cost. In the next section the solar radia-

tion pressure moment resulting from a thermally deflected beam (also

applicable to a plate) is discussed.
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V•4 Effect of Solar Radiation Pressure on a Thermally Deflected
Beam (or Plate)

The moment expressions derived by Karymov (Egns. 4.3-4.7) are used

to obtain the moments acting on a thermally deflected beam. The equation

for thermal deflection is given by (5.7). The moment on a completely

absorbing surface is obtained (after integration) as,

Na	 a0 co 60 1 b j	 (5.8)

where
a 	 co are the direction cosines of the solar incident

radiation vector

60 = maximum deflection (from Eq. (5.7)) = zmax

The maximum deflection, 60 , can be obtained as a function of 6 1 by

selecting a function to represent AT in Fig. 5.2, and then by using the

function for AT in Eq. (5.7). The moment acting on a completely reflecting

surface is obtained through numerical integration, as,

N  = -0.05 a 0 c0 60 R j	 (5.9)

The corresponding moment expressions for a plate are obtained as

Na = c0 60 1 b (b01 + a0j)

N = -0.05 co 60Rb (b 01 + aoâ,T)	 (5.10)
r

The moment on a beam (or a plate) with a surface whose general coefficient

of reflectivity is e r , can then be obtained by using Eq. (4.8).
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Table 5.1. Properties of Representative Materials.4

Material Density Expansion Thermal = Cost
(Kg/m3 ) Coefficient, ae	Cond. K ($/Kg)

(m/m oC) KW/m-OK

Graphite 1.5x103 8.3x10-5 8.65x10-3 500

Soryllium 1.8x103 3.5x10 6 12.25x10 3 10,000

Aluminum 2.7x103 2.1x10 6 28.8x10 3 1.1

Polyamide 1.13x103 25x10 6 2.45x10-3 15

5.8
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0.0246 (poiyamide)

,t—k_ = 0.1
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Fig. 5.1. Thermal Gradient in a Beam Due to Solar Radiation
Heating.
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Fig. 5.2. Thermal Gradient in a Beam as a Function
of Solar Incidence Angle and Thermal
Conductivity.
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VI. EVALUATION OF HOOP/COLUMN COUPLING COEFFICIENTS

The generic mode equations and the equations of rotational motion of

a flexible orbiting body contain coupling terms between the rigid and flexi-

ble modes and terms due to the coupling within the flexible modes that are

assumed to be small and, thus, are usually neglected when a finite element

analysis of the dynamics of the system is undertaken. In this Chapter

a computational algorithm that permits the evaluation of the coefficients

in these coupling terms in the equations of motion as applied to a finite

element model of the Hoop/Column system is developed.

Using a Newton-Euler approach, one-can express the equations of motion

of an elemental mass of the system, in the frame moving with the body, as 

{—a c +r+2uH r_,j=r+wx(wxr)}pdv - (f+e+L(q)/P}Pdv	 (6.1)

where p - mass per unit volume,

e - external forces per unit mass,

q - elastic transverse displacements of the
element of volume.

T - force due to the gravity on the unit mass, and

L - the linear operator which when applied to q yields
the elastic forces acting on the element of volume
considered.

r - position vector of element dv

w - inertial angular velocity of the body frame

6.1
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VI.1 EQUATIONS OF ROTATIONAL MOTION

The equations of rotational motion of the body are obtained by taking

the moments of all the external, internal and inertial forces acting on

the body, i.e., from Eq. (6.1)

I r x [a cm + r + 2wxr + wxr + wx(wxr)]pdv

rx[L(q)/p+ f + e]pdv	 (6.2)

v
one can obtain the following form for the equations of rotational

motion.

R + F, Q(u) + E D(n) = GR + E G (n) + C	 (6.3)

n=1	 n=1	 n=1

where R = ![rox(wxro ) - (ro •w) (wxro)] Pav
V

Q (n) = f[rcxq+2r0x (wxq)+r0x(wxq)+gx(wxr0

n=1	 v

-( ro °w) (wxq)- (q'w) (wxr0)] Pdv

D (n) = Jq pdvx ( acID fo ) + I w2An f rox T (n) pdv

U-1	 v	 n=1	 v

GR = I roxMro pdv

(n) a f[ roxMq+gxMro ] pdv
n=1	 v

C Irxe pdv
C	 v

r - r0+q

M - matrix operator l which when applied to r yields gravity-gradient forces

a - acceleration of the center of mass
cm

fo = force/mass due to gravity at the undeformed center of mass

(n)= modal shape vector for the n th mode

On - frequency of the nth mode

_.^	 An = time dependent modal amplitude function

r (
°' I
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VI. 2 GENERIC MODE EQUATIONS
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The generic mode equation is obtained by taking the modal components

of all internal, external and inertial forces acting on the body, i.e.,

t (II)• [acm+"rt2wxr+wxr+wx(wxr)] Pdv
v

f T (a) . (L (q ) /P)+f4 ] Pdv	 (6.4)
v

The generic mode equation is obtained in the following form:

A +w 7A + CP/M + 7 CP /M . (g + g +E +D']/M
a n n n n M.,l mn n	 n m.l mn n n. n

whereCAn v(^(n)•wxto+ (II)•wx(mxr0)]F+v

E CQ - I(2^(n)•wxq+ ^ (n) •wxq+ m (n)•wx(wsq)] pdv
MMl mn v

gn 
f (n) • Mropdv; m£lg^ v (n) •Mgpdv,

E	 W.epdv and D'	 I4 In) Pdv•(a
n	 n v	 Cm o

(6.5)
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VI.3 CARTESIAN OW. ONENTS OF TIE DIFFER13VT COUPLING TERMS

The expressions for R, a(n),  GR' a(n),  c9 
n,

49 =, gn, gmn in Cartesian components are presented in this

section.

One can express the following vectors in

their Cartesian component form as

• A	 A	 A	 A	 A	 A

ro Cxi+gyj+g zk ; Z =oxi+wyj+wZk

i =1
awl.

A(t)^. (n) ^rL ) : C (n)^Xn) i+^yn) J44zn) k

Q (n)	 p (n) i+ 0 (n) 7+ Q (n) kx	 y	 z

It

and	 G (n) a Gx I + G(n)3 + GZ(n)k,
Y

A A A
where i, j, k are unit vectors along the body principal axes

of inertia in the undeformed state; fix , ^y , ^z are the co-

ordinates of a point in the undeformed state.

With the use of the ccmpcnent forms of the

vectors given above, one can expand the various vector ex-

pressions given in Eqs, - (6.9) -and (65) to obtain

R ° [Jz:, + (Jz- y)wyw 21 i

+ [Jyruy '+ (Jx JZ )w ZwXj j
•	 + [JZw 2 + (Jy Jx)wxwY i k	 f5.6)"

6.4

_.	 _.... y __ r	 -,



ORIGINAL PAGE IS
OF POOR QUALITY

Q (n) a A (H (n) _H (n) ) + 2A ((H (n) +H (n) ) w - 
H (n) w

x	 n yz zy	 n yy zz x	 yx y

- HZX ) wz l + An I2(Hyy ) +HZX) ) wx - (HXy) +HyX))wy

(H (n) +H (n)) w - 2w w ( H 
(n) -H (n)) - w 'w (H (n)

zx xz	 z	 y z zz yy	 x y xz.

+HzX)) + wxwz (Hxy +H (
Y
X)) + (wz-w2)(H(

Y	 yzY 

+H(n)))	 (6.7)
zy

GR = (Jz-Jy ) M23 i + (Jx-Jz ) M31 J + (Jv-Jx)421k

(6.8)

G(n) a A HM -M ) (H(n)
+H(n)) - M. (H ( n) +H (n) )

x	 n 33 22 yz zy	 21 xz zx
r

+ m31 
(H(n) +H (n) ) + 2M^3 M (n ) -H2z ) ))	 (6.9)

4:9 = w (H(n)-H(n)) + w (H(n) _H(n)) + m (H(n)_H(n))
nx yz zy	 y z:< xz	 z xy yx

+ wxwy (HXy ) +HyX)) + wyw z (HyZ ) +Hzy)) + wzwx( HzX)

+H (n)xz - 
ur2 ( H(n)
x

+H(n))
YY	 zz - 

w2(H(n)+H(n))
y	 zz	 xx

a

w2 (H (n) +H (n) )
z xx yy

4? a 2A `wx (Lymii) _Lz(mn) ) + wy (L (mn) _LXmn) )
 zx

+ wz (L^ ) _L (mn) . + A.(;;x(Lymn) _Lz(mn) )

+'my(Lymn)_L^.	 + wz(L	
)-Lymn))

(6.10)

a
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+ wxwy (L (m ) +L ( )) + wywz(Lymn)+Lz(mn)1

+ wzwx(L(mn)+L(mn)) - w2(LYS)+Lz(mn))

2W  (L (mn)+L (mn)) - w2(L (mn)+L (mn) ) ) 	 (6.11)y zz	 xx	 a sx	 yy

gn = EE Has) Mai
a8

(Mn)

g s m a8 La3 Mai

where Has) ftQ0an) dm t Las )=f Dam) 0, dm: and
v	 v

a, s x, y, z or 1, 2, 3. when a is x in Has) or Las )
the corresponding value of a in Mas is 1. In a similar

way when a is y in Has) or Las ), a is 2 in Mas and when

a is z in Has ) or Las ), a is 3 in Mas . The same rea-

soning holds for 3 also.

The expressions for Q (n) and 0 (n) are
obtained by the cyclic permutation of x, y, z in the

expression for Q (n) in Eq. (6.7) and the expressions for
Gyn) and GZn) are obtained by the cyclic permutation of
X, y, z in the expression for GXn) in Eq. (6.9).

!I
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For a discretized model the expressions for the volume integrals are

replaced by the following summations:

H
(n)
as) a 

k

E (^a ) i (0 
Sn))imi	 (6.12)

i=1	
(o ,S	 x,Y,z)

k
Las )° E (ma 1°) ) i (^s° ) ) im1 	 (6.13)

1=1

where
It - total number of discrete masses

i = index identifying a nodal point

mi = mass concentrated at the ith node.

% = coordinates of m  in the undeformed state

6.7

s



VI.4 EVALUATION OF COUPLING COEFFICIENTS IN THE EQUATIONS OF MOTION AS
APPLIED TO A FINITE ELEMENT MODEL OF THE HOOP/COLUMN SYSTEM

S

VI. 4.1 Model Description

The structural dynamic modeling of the Hoop /Column antenna has gone

through many stages before reaching the single surface model which will
^ f

be analyzed in this chapter.

Initially, it had 231 nodes distributed as follows: 192 nodes on

the 8 support circles including the hoop (24 nodes on each circle spaced

at 150 intervals); 28 nodes on the mast and the feed mast; and 11 nodes
t
e:

at the points of location of the solar panels (upper and lower), the

S band reflector, and the feed panels (up-link and down-link)—see Figs.

5.1 and 5.2. After reduction the number of nodes was diminished to 114

including a total of 96 nodes on the circles: 1100, 1200, 1300, and 1400;
F

t	 7 nodes on the mast and the feed mast; and 11 nodes at the locations of

!	 the solar panels, the S band reflector, and the feed panels (Fig. 6.1).

R
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VI. 4.2 Approximate Mass Distribution

From an unpublished document prepared by the Harris Corporation,2

and submitted by NASA Langley Research Center, it has been possible to

arrive at the mass distribution shown in Table 6.1. 9803.0 lb. out of

the total weight of the Hoop/Column Antenna (10,070 lb.) were distributed

between the final grid points. The distribution was done in agreement with

the information found in the Harris Corporation document. The page numbers

appearing in Table 6.1 refer to particular mass/moment of inertia calcula-

tions in the Harris Corporation document.2

The small (2%) discrepancy between the calculated total mass (9803.0 lb.)

and the stated weight of the system (10,070 lb) is thought to be attributed

to: (1) uncertainties in the weight of specific stringers; (2) uncertainties

inhe•ent with the finite element reduction technique where the initial mass

mus. bc- .distributed between a reduced, final number of grid (node) points;

ci_k ('' other miscellaneous uncertainties, such as the exact weight/location

of the optical instrument, etc.

VI. 4.3 Cartesian Coordinates of all the Nodal Points in the Final
NASTRAN Output

Reference 2 contains the cylindrical coordinates of all the nodal points

on the mast, the feed mast, and at the location of the panels and electronics.

It also contains the Z coordinates of the planes which contain the circles

along with their respective diameters. Thus, the Cartesian coordinates of

all the nodal points were obtained by a simple transformation from cylindrical

to Cartesian coordinates.

!a
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VI.4.4 Development of a Computational Algorithm for Evaluation of
the Coupling Coefficients

After receipt of the tape containing the modal functions, this

information was stored in our IBM 360 in such a manner that when one

calls subroutine, GETMP(2), he can refer to the k th component of the Ith

mode shape vector at the grid point J by VECMP(I,J,K). Based on this,

an algorithm described in the flow diagram, Fig. 6.2, was designea and

tested. As indicated in Fig. 6.2, the available data, such as; the

Cartesian coordinates of the grid points on the mast, the feed mast and

the ones at the locations on the appendages; and such as the mass concen-

trations at all the nodal points are input into the software routine and

these data will consequently have to be updated according to any develop-

ment in the Hoop/Column modeling. The subroutine, DCS, (given the radius

of the circles and the Z component of their centers) computes the Cartesian

coordinates of the nodal points on the circles.

Subroutine GETMP(2), which makes the ^(I) availablej is called and

the values of components of the desired mode shape vector at the particular

grid point are incorporated into a loop mathematically described by Eqs.

(6.12) and (6.13). It should be noteu that, for reasons of effectiveness,

each coefficient is evaluated separately on the circles and on the other

grid points and then combined to yield the corresponding coupling coefficient

for the entire Hoop/Column system.

The algorithm has been tested for two modes (the 7 th and the 8th)

successfully, but only after the evaluation of the coefficients corresponding

to all the 13 modes will one be able to make positive conclusions.

6.10
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VI.4.5 Normalization of the Equation.q

In order to make a valid comparison between the terms in the rigid

modes and the ones due to the coupling between the flexible modes, the

equations of motion and the generic modal equations are non-dimensionalized

in this section.

The Euler angles and their rates are assumed to have the following

form:

0 = Sb sin ilt + 0 0 cos Sgt and 6 = 60 cos att -0o sin Qt

When 60 = 0, the amplitude of 0 is governed by that of 6 0/Q. In order

to guarantee the small amplitude approximation for these angles,6/Q

must have as a maximum the order of 1/10. For a gravity stabilized

structure, Sn is proportional to the orbital angular velocity, wc,

with the proportionality constant depending on the differences in

appropriate moments of inertia, and whether pitch, roll, or yaw motion

is under consideration. For this reason we select 6 = w e/200 and

similarly for 
$0 

and ^0 . (It is well known that the frequency of a

rod shaped dumbbell librating near the local vertical is V r3 wc).

According to an assumed Euler sequence 1(1)^, (2)0, and OM from

the local vertical to the principal body axes,

wx - (6-wc)sin - $ sin 0 cos

my = (6-WC)cos + sin 0 sin

w
z 

=$ Cos 0+^

Therefore, mX (6-wc)^ - ^0 0; 
W  

(6•wc); and w 	 + $ and the

corresponding gravity gradient matrix operator, M 	 calculated as

2 0 0
 [

M=aC	 0- 1 0

0 0 -1
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The terms in the rigid modal equations are normalized by dividing

each by R 2w2 (where k = 100m is selected as the characteristic length

of the system and w 7 is the frequency of the 7th mode); the terms in

the generic modal equations are normalized by dividing by 9w7. The

elastic displacementsare assumed in such a manner that ;n = w n 
A n ; An

wn An . Examples of normalization follow:

G(n) /R2w2 = A 
C(M -M )(H (n)+ H(n) ) - 

M (H (n)_ H(n))
x	 7	 n 33 22 yz	 zy	 21 xz	 zx

	

+ M31 (H (n) + Ham) ) + 2M23 yy	 zz(H) _ H))3/12w7

^n/Rw7 _ {w7wx (HYz) - Hzy> + w7wy (H 
(n)_

HXZ ) ) + w7wz (Hxy)- xYX

+ w w (H (n) + H (n) ) + w w (H (n) + H (n) ) + w w (H (n)+ H(n))
X y xy	 9x	 y z yz	 zy	 z x zx	 xz

- 
w2 

(H (n) + H(n)) - w2 (H (n) + H (n) ) _ w2 
(H 

(n) + H(n))}/91W2
x yy	 zz	 y zz	 xx	 z xx	 yy	 7

In connection with the normalization of 
^n and similar terms involving

time derivatives of the angular velocities, it should also be noted that

dt = w7 d where T = w7 t, is a dimensionless time parameter.

6.12



F. i

VI.4.6 Comparison of the Terms

Table 6.2 shows the comparison between the magnitudes of the components

of R and the components of the largest coupling coefficients in Q for

both assumed values for An - lm, lmm for all modes.

It appears that when the system is operating within the mission speci-

fications (deflections of the order of mm), the finite element assumptions

are valid; when the deflections are of the order of meters the coupling

between the flexible and rigid modes should be incorporated into the equations

of motion.

In Table 6.3, a comparison of pertinent terms in the generic modal

equationsis given. Rn - n+ w2An is compared with Pn - {fin-gn+

13
E (Qm-g=)}/Mn where Mn is the modal mass associated with the n th mode.

.j	 m-7
The comparison, after norwalization of the different terms in the equations,

shows that the time dependent amplitude of the modes can be approximated

as an harmonic oscillator at least up to the point where A n - lm for all n.

One can therefore conclude that even though the time dependent modal

amplitude function An can be modelled as an harmonic oscillator, the coupling

between rigid and flexible modes has to be taken into consideration once

the displacements exceed the order of mm, based on the parameters of the

Hoop/Column system.

1

c
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Given X,Y,Z (cartesian coordinates of the nodal
points on the mast and feed) and the mass concen-
tration at each nodal point in the system (ap proxi-
mate mass distribution)

Call Subroutine DCS which
computes X,Y, and Z of the
nodal. points on the d:.fferent
circles

I

Subroutine GETMP (2)

makes ¢J IK available
I = mode number
J = node number
K = x,y,z component of ¢

Feed + Mast Appendages 	 j Circles

For the total system
g(Z)	 Lmn
as	 a$

Fig. 6.2. Flow Diagram Describing the Algorithm Used in
the Evaluation of the Coupling Coefficients.
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Y	 1.49854 E-01

Z	 9.26317 E-02

An.lm

eetion

x

Y
s.

Z

A =lmmn x

R

1.48922 E-01

1.49854 E-01'

9.26317 E-02

1.48922 E-01

12
nw

2.642388 E+00

-8.816196 E+00

-1.480150 E+10

2.642388 E-03

-8.816196 E-03

-1.480150 E-03

i

C }
	 ORIGINAL PA-"Z 1.9
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Table 6.2 Comparison of Pertinent Terms in
the Rigid Modal Equations

A

C - 3L.-
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Table 6.3 Comparison of Pertinent Terms in the
Generic Modal Equation

A - lmm

Mode Number Frequency	 Modal Mass	 1w2	 Pn /Rw2
rad/sec

0.7489559 153.157 .629344x10 5 1.9543x10 8

{ 1.3692409 5.232954 .210346x10 4 -2.10287x10 10

9 1.7471481 3.232954 .34248x10-4 8.7299x10 7

10 3.2148494  0.3046446 .115957x1) 3 r
.-4.901252x10

11 4.535031 1.992988 .230747x10 3 -3.46559x10 5

12 5.5926659 723.5216 .350924x10 3 3.226x10 8

13 5.7942225 0.6561203 .376674x10 3 4.678578x10'7

A - lm

Mode Number	 Frequency	 Modal Mass
rad/sec

R/W2	 nPAw2n 

i
I

e,

I

10 3.2148494 .3046446 .115957 .4901252x10 4

11 4.535031 1.992988 .230747 .337954x10 4

12 5.5926659 723.5216 .350924 3.2362x10 8

OF POOP. QUALITY

>1
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VII. GENERAL CONCLUSIONS AND RECOMMENDATIONS

The graph theory approach has been utilized to define controlla-

bility in terms of term rank and input-state reachability concepts and

applied to the placement of actuators for the proposed Hoop/Column

system. The linear quadratic Gaussian techniques appear to offer

greater flexibility to the controls designer in attempting to meet

performance requirements while also maintaining propellant consumption

at desired levels. System transient characteristics are noticeably

degraded when an actuator assumed to be mounted on the hoop, is then

removed from the system. Before definitive conclusions can be arrived

at relative to HMS pointing and surface accuracy requirements the effects

of both sensor and plant noise and also environmental disturbances

should be incorporated into the existing modal and such.studies have

been initiated.

It is found that control laws previously designed for the case

where envircnmental effects were neglected, may be inadequate to control

the shape and orientation of very flexible beams that are exposed to

solar radiation. For simple systems intuitive methods (suitable gain

adjustments) of obtaining more robust closed-loop systems in the presence

of the disturbances are indicated. For more complex flexible systems,

such as platforms or antenna-type structures, numerical TAG techniques

appear to offer the most promise and such studies are continuing.

Preliminary results evaluating the effect of thermally induced

deflections due to solar heating of thin structures, indicate that

7.1
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such deflections may give rise to appreci. lile disturbance torques,

depending on the thermal properties and thickness of the materials

used. Additional research in this important area is suggested.

A computer algorithm has been developed and used to evaluate the

relative magnitude of coupling terms between the rigid rotational and

flexible modes and also intra-modal coupling terms in the general

equations of motion using the Hoop/Column mass and material properties.

Such coupling terms are usually not included in finite element models

based on the Earth-based vibrational and rigid modes only. It is seen

that when the surface deflections are of the order of mm. (i1thin

mission specifications), that the relative magnitude of the largest

of these coupling coefficients is at least one order of magnitude

smaller than the principal coefficients. For surface deflections of

the order of centimeters or even meters (still within the small ampli-

tude deformation assumption) the coupling coefficients can be of the

same order as the principal ones, indicating that these terms might

have to be added to the finite element formulation if an accurate re-

presentation of the dynamics would be required.
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