```
(NASA-CR-170901) TEST HEPORT FOR MSFC TEST
N84-10181
NO. 83-2: PRESSURE SCALED WATER INPACT TEST
OF A 12.5 INCH DIAMETER MODEL CF THE SPACE
SHUTTLE SOLID ROCKET BOOSTER FILAMENT NCUND UnClaS
CASE AND EXPERNAL TVC PCD (Chrysler Corp.) G3/20 42295
```

TEST REPORT
FOR
MSFC TEST No. 83-2

PRESSURE SCALED WATER IMPACT TEST
OF A 12.5 INCH DIAMETER MODEL OF
THE SPACE SHUTTLE SOLID ROCKET BOOSTER
FILAMENT WOUND CASE
AND

EXTERIAL TVC PCD

SEPTEMBER 1983

CONTRACT NAS8-35017

PRESSURE SCALED WATER IMPACT TEST

OF A 22.5 INCH DIAMETER MODEL OF
THE SPACE SHUTTLE SOLID ROCKET BOOSTER FILAMENT WOUND CASE AND EXTERNAL PVC POD

SEPTEMBER 1983

Prepared by:
STRUCTURES AND MECHANICS DEPARTMENT
CHRYSLER CORPORATION
ELECTRONICS PRODUCTS DIVISION
ENGINEERING OFFICE
HICHOUD ASSEMBLY FACILITY
P.O. BOX 29200
NEW ORLEANS, LOUISIANA

For:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER HUNTSVILLE, ALABAMA

FOREWORD

```
This report represents results of Pressure Scaled Water Impact Test, using a
12.5 inch diameter model of the Space Shuttle Solid Rocket Booster (SRB)
configured to represent the Filament Wound Case (FWC) and Trust Vector
Control (TVC) Pod.
The tests were conducted in May/June }1983\mathrm{ by Chrysler Corporation, for
NASA/MSFC at the Hydroballistics Facility of the Naval Surface Weapons
Center, White Oak, Maryland.
Results include local surface pressures in the model aft skirt/motor case
region, simulated nozzle actuator force moments, and overall vehicle
acceleration dynamics.
```


TAELE OF CONTENTS

SECTION		PAGE
NUMBER		NUMBER
I	INTRODUCTION	1
II	MODEL DESCRIPTION	2
III	ELECTRICAL INSTRUMENTATION	7
IV	TEST FACILITY	32
V	PHOTOGRAPEIC INSTRUMENTATION	36
$V I$	TEST FROGRAM	37
VII	TEST OPERATIONS	46
$V I I I ~$	TRANSDUCER DATA REDUCTION	75
	REFERENCES	76

APPENDIX

PRESSURE, FORCE, AND ACCELERATION DATA TIME HISTORY PLOTS

ORIOMAL PACE IS of POOR QUALTTY

LIST OF TABLES

TABLE PAGE
NUMBER NUMBER
I INSTRUMENTATION IIST 9
II TEST PROGRAM 39
II TEST NUMBER MATRIX 41
iV PHOTOGRAPFIC DATA 44

LIST OF ILLUSTRATIONS

FIGURE PAgE
NUMBER NUMBER8 Model Instrumentation TVC Pod
9 Accelerometers 18
$i 0$ Actuator Transducer Locations 19
11-19 20-2820Nozzle Force Balance Axis System
21 Model Axis System 30
22 Sign Convention and Arrangement ofActuator Transducers
23 Hydroballistics Tank Building 33
24 Sectional View of Hydroballistics Tank 34
25 Inside View of Hydroballistics Tank 35
26 Launcher 50
27 Model Loaded in Carriage Dolley Clamp 51
28 Carriage Dolley Clamp 52
EIGURE PAGE
number NUMBER
29
Carriage Dolley Clamp 53
30
Clamps (Adjustment Side View) 5431
Clamps (Model Side View) 55
32 Rear View of Horizontal Support Arm with 56
Release Cam in Place
Rear View of Release Cam Attached to Horizontal 57
Support Beam
Release Cam Removed from Horizontal Beam 58
Release Cam Model Side View 59
Adjusting Dolley Clamp to Receive Model for 60Angle Drop TestAcjusting Dolley Clamp61
Hanging Instrument Cable 62
Model in "o" Horizontal Velocity Status 63
Spool, Chain Drive Sprocket and Disc Brake Ass.y. 64View Looking Down at Chain Drive Assembly65
View Looking Down 66
Spool, Chain Drive Sprocket and Disc Brake Assy. 67
View of Port Hole with Special Cover in Place 68
Port Hole with Cover Removed 69
Cover in Place 70
View of Tank Top 71
View of Manhole from within Tank 72
View from in Tank for "o" Horizontal 73
Velocity Test

LIST OF ILLUSTRATIONS (Concluded)

FIGURE PAGE
NUMBER NUMBER
50 Launcher Just after Release 74
51 Data Sample Run \#30 77
(THIS PAGE INTENTIONALLY LEFT BLANK)

```
Water impact tests using a }12.5\mathrm{ inch diameter model representing a 8.56
percent scale of the Space Shuttle Solid Rocket Booster configuration were
conducted May/June 1983 at the Naval Surface Weapons Center, White Oak,
Maryland.
The two primary objectives of tnis SRB scale model water impact test program
were:
    1. Obtain cavity collapse applied pressure distributions for
        the }8.56\mathrm{ percent rigid body scale model FWC pressure
        magnitudes as a function of full-scale initial impact
        conditions at vertical velocities from 65 to 85 ft/sec,
        norizontal velocities from 0 to 45 ft/sec, anc angles
        from -10 to +10 degrees.
    2. Obtain rigid body applied pressures on the TVC
        pod and aft skirt internal stiffener rings at initial
        impact and cavity collapse loading events. In
        addition, nozzle loads were measured. Full scale
        vertical velocities of 65 to }85\textrm{ft}/\textrm{sec},\textrm{horizontal
        velocities of 0 to 45 ft/sec, and impact angles
        from -10 to +10 degrees simulated.
A total of 47 tail first drops were made during this test. Model entry
conditions were Froude scaled vertical velocities of approximately 65 to 85
ft/sec, with norizontal velocities up to 45 ft/sec and impact angles from
-10 to +10 degrees. These tests were conducted at scaled atmospheric
pressures (1.26 psia or 65 mm.Hg).
This report contains a description of the model, test program, eest facility, test equipment, instrumentation system, data rečuction procedures, and test results.
```


SECTION II - MODEL DESCRIPTION

Abstract

The model used for this test program was a 8.56% Froude scaled rigid body simulation of the STS-1 configuration of the space Shuttle 146 inch diameter solid rocket booster. It consists of a 12.5 inch diameter cylindrical body section 88.7 inches long and a short 18 degrees flared skirt for an overall model lengtr of 102.5 inches.

The forward end of the model is closed with a flat bulkhead and the aft end has a hemispherical bulknead with a 3.9 to 1 area ratio nozzle. Figures l, 2 and 3 illustrate the model geometry and principal dimensions. This configuration represents the SRB with the nozzle extension jettisoned.

The model was fabricated from 2219 aluminum with a skin thickness of .08 inches. The forward cylindrical body sections were rolled and welded with machined flanges and stiffener rings at the end of each component. The aft body section, skirt, bulkhead, bellmouth and nozzle were machined from aluminum billets. The frontal area, geometry, and location of aft skirt stiffener rings were simulated on the model. After installing instrumentation and ballast the model had the following mass characteristics:

Weight -------------- 88.5 lbs
Moment of Inertia - 27.3 slug sq.ft.
CG Location ------- 45.9 from base

The above measurements were made without the instrument cable attached to
the model. The instrument caile was supported independently of the model
prior to each of the 47 free fall drops, therefore no weight of the
instrument cable is considered.

ORIGANAL PAGE GS
OF POOR QUALTTY

FIGURE 1. MODEL OVERALL CONFIGURATION

FIGURE 2. AFT ASSEMBLY (BARRELL)
MODEL GEOMETRY

SECTION III - ELECTRICAL INSTRUMENTATION
The model was instrumented with 51 transcucers. These consisted of 5
crystal type accelerometers, 38 piezoelectric pressure transducers, a 4
component force balance which measured nozzle loads, and 4 uniaxial foil
strain gage located on the actuators to measure their bending moments.
These transducers along with their location and function are listed in Table
I and inlustrated in Figure 4 through lg.
Figure 9 shows model accelerometer locations. These consisted of axial,
pitch, and yaw accelerometers. Three accelerometers were located at the
model center of gravicy and two on the aft bulkhead. Accelerometer sign
convention is positive axial toward the model nose and positive pitch toward

The model nozzle and bellmouth were attached to the aft bulkhead through a 4 component strain gage force balance. This balance encircled the bellmouth one inch forward of the nozzle throat and was of a moment cage design so that forces and moments are measured by individual strain gage bridges. This balance measured axial force, normal force, pitching moment, and yawing momewnt. All forces and moments are referenced to the balance moment center which is one inch forward of the nozzle throat and on nozzle centerline.

ORIGAAL PAGE IS OF POOR QUALITY

Figure 20 shows the balance sign convention. Model instruments were water proofed with a combination of scotcn cast epoxy resin, RIV and silicone grease. To protect pressure transaucers from thermal shocks, the diaphrams were recessed approximately $1 / 16$ of an inch bejow the model skin ano covered with RTV. All instruments were bench calibratea prior to installation in the model and were check calibrated through the model instrument system after all wiring had been completed.

Transducer signals were transmitted from the model through instrument cables that attached to model top centerline near the $C . G$. These cables were approximately 100 feet long. The instrument cables were made up of 20 conductor and 12 conductor shielded, 20 gage tefion insulated wire and a power cable. All instruments used a 5 volt common power which was connected to the individual transducers through a terminal strip. Pressure, acceleration and strain gage outputs from the instrument cable were fed through appropriate couplers or signal conditioners/amplifiers into two, 28 Channel, FM tape recorders. Data was recorded at 30 IPS, wide band, (108 KHZ center frequency). IRI6"B" time was recorded on channel 14 and 28 of each recorder.
ORIGINAL PAES :S
OF POOR QUARTM

MEAS NO.	MEAS TYPE	RANGE	LOCATION	REMARKS
D10	PCB		STATION $16.0 \emptyset=30^{\circ}$	ALL RUNS
D11	PIEZOTRONIC HIGH FREQ		STATION $16.0 \emptyset=60^{\circ}$	ALL RUNS
D12	$\begin{aligned} & \hline \text { MODEL } \\ & \text { H113A24 } \end{aligned}$		STATION $16.0 \emptyset=180^{\circ}$ (BDC)	ALL RUNS
D13	PRES. TRANSDUCER		STATION $16.0 \emptyset=270^{\circ}$	ALL RUNS
D14			STATION $16.0 \emptyset=315^{\circ}$	ALL RUNS
D15			STATION $16.0 \emptyset=345^{\circ}$	ALL RUNS
D16			STATION $10.8 \emptyset=15^{\circ}$	ALL RUNS
D17			STATION $10.8 \emptyset=30^{\circ}$	ALL RUNS
D18			STATION $10.8 \emptyset=60^{\circ}$	ALL RUNS
D19			STATION $10.8 \emptyset=180^{\circ}$ (BDC)	ALL RUNS
D20			STATION $10.8 \emptyset=270^{\circ}$	ALL RUNS
D21			STATION $10.8 \varphi=315^{\circ}$	ALL RUNS
D22			STATION $10.8 \phi=345^{\circ}$	ALL RUNS
D23			STATION $17.1 \varphi=15^{\circ}$	ALL RUNS
D24			STATION $17.1 \emptyset=345^{\circ}$	ALL RUNS
D25			STATION $14.5 \emptyset=15^{\circ}$	ALL RUNS
D26			STATION $14.50=345^{\circ}$	ALL RUNS
D27			STATION $12.2 \phi=15^{\circ}$	ALL RUNS
D28			STATION $12.5 \phi=345^{\circ}$	ALL RUNS
D29			$\begin{aligned} & \text { STATION } 35.75 \quad \emptyset=00^{\circ} \text { (TDC) } \\ & \text { ON OUTSIDE SKIN - AFT } \end{aligned}$	ALL RUNS

$\begin{aligned} & \text { MEAS } \\ & \text { NO. } \end{aligned}$	MEAS TYPE	RANGE	LOCATION	REMARKS
P01	PCB		$\begin{aligned} & \text { TVC YOD-TOM (TDC) } \\ & \text { STATION } 9.3 \emptyset=0^{\circ} \text { (TDC) } \end{aligned}$	RUNS I THRU 5 AND 12 THRU 47 RUNS 6 THRU 11
	PIEZOTRONICS HIGH FREQ			
PO2	$\begin{aligned} & \text { MODEL } \\ & \text { H113A44 } \end{aligned}$		TVC POD-CENTER (TDC) STATION $4.47 \emptyset=354.0^{\circ}$	RUNS 1 THRU 5 AND 12 THRU 47 RUNS 6 THRU 11
	PRES. TRANSDUCERS			
P03	1		TVC POD-BOTTOM (TDC)	RUNS 1 THRU 5 AND 12 THRU 47 NOT RECORDED G THRU 11
P04			TVC POD-END STATION $11.65 \emptyset=348.35^{\circ}$	RUNS 1 THRU 5 AND 12 THRU 47 RUNS 6 THRU 11
P05			TVC POD END	RUNS 1 THRU 5 AND 12 THRU 47 NOT RECORDED 6 THRU 11
P06			BULKHEAD $\emptyset=0^{\circ}$ (TDC)	ALL RUNS
P07			FWD RING BOTTOM $\emptyset \doteq 0^{\circ}(\mathrm{TDC})$	ALL RUNS
P08			MID RING BOTTOM $\emptyset=0^{\circ}$ (TDC)	ALL RUNS
P09	-		AFT RING BOTTOM $\emptyset=0^{\circ}$ (TDC)	ALL RUNS

ORIGINAL PACE IS
OF POOR QUALT OF POOR QUALTTY

FIGURE 4. SRB FWC SCALE PRESSURE TRANSDUCER LOCATIONS

$X S T A=16.0$
FIGURE 5. SRB FWC SCALE MODEL PRESSURE TRANSDUCER LOCATIONS

ORIGMNAL PAGE IGS OF POOR QUALITY

ORIGINAL PACE Iᄌㅜㅄ OF POOR QUALITY

FIGURE 10
ACTUATOR TRANSDUCER LOCATIONS

ORICINAL PACR H OF POOR QUALITY

ORIGINAL PACE IS
OF POOR QUALITY

SECTION IV - TEST FACILITY

Abstract

This test was conducted in the Hydroballistics Tank at the U.S. Naval Surface Weapons Center, White Oak, Maryland. This tank is 35 feet wide, Ioo feet long and 75 feet deep with a water depth variable from zero to 65 feet. To preserve water clarity the tank is lined with stainless steel and the water is continuously filtered. A two foot thick reinforced concrete honeycomb structure surrounds the tank and is designed to permit reduction of air pressure above the water for model scaling. Steam ejectors located on the building roof are used to evacuate the tank for pressure scaled test.

Depending upon water levez, access to the tank is obtained either through a door in the bottom of the tank, two personnel hatches in the ceiling, or by removing one of nine 3 -foot diameter gun ports located in the north wall and ceiling. Work inside the tank is performed from either a rait, a catwalk or a movable bridge 6.5 feet nigh by 10 feet wide which spans the 35 Foot width of the tank at the 61 foot elevation. For photographic or visual observations 16 inch diameter portholes are located 11 feet on center in the tank floor, walls, and ceiling. Figures 23,24 and 25 are illustrations of the hydroballistics tank.

ORIGINAL PACE [OF POOR QUALITY

HYDROBALLISTICS TANK

The Hydrohallistics Tank provides experimental data on water entrs, simulating the performance of any missiles which enter the whter after supersonic flipht. Studies can also be made of underwater launching and water mit and of powemed, manemed dile, sealed models of submarines and torpedoes. The massive, reinforcedronctete honeviomb around the tank is designed to permit redertion of ait pressure dbewe the water for cavitation sealing. I wo hundred th-inch diameter ghas windows in the tank nalls permit photographeand visual observations. Cium lameh models into the tank though 3-foot ports in the end, top, and bothon the stanlese steel tank lining presersesthe tarity of the evtensively-fitered one and threr quater million gallons of wates.

The 4 -inc h powder guns use a sathoting technigue which prevents powden gexes and contammants from entering the tank. A firesontrol system permits the atomatis sequencing of 30 timing operations to a thate instrumentation during a latur hing.

The hudrodynamicist or engineer mat paticipate in basic and applied weseduh comerning water entryand exit phenomena, utizing NOI's multimillion dollar hidentallistics farilis. The latoraton is intermed in surh things as the forres and moments that misciles experience when entering the watey at high velocit: Whe motion of missiles during waterentry and while riding in the water-entry cavitw; and ar oustic sudies of the sgnak generated during savity ollopse

Figure 24. SECTIONAL VIEW OF HYDROBALLISTICS TANK

ORIGNAL PREE 臈 OF POOR QUALHT

Figure 25. INSIDE VIEW OF HYDROBALLISTICS TANK

ORIGNAL PACE
OF POOR QUALITY

SECTION V - PHOTOGRAPHIC INSTRUMENTATION

Abstract

Photographic coverage for this test was provided by two high speed I6mm data cameras, and one 16 mm documentary camera. The data cameras were set up in and perpendicular to the model pitch and yaw planes in port holes 504 and 524 which were located at the water surface. They were sighted so that the lens centerline was at the water surface to permit split water line viewing above and below water with each camera. Both cameras ran at approximately 250 FPS, used a $1 / 650$ sec. exposure time, had a 60 CPS timing signal and were force processed one stop.

The documentary camera was located in port hole 624 which was 41 feet in front of and 11 feet above the model impact point.

The tank lighting consisted of 7 banks of 12 bulbs each below the water and 2 banks of 12 bulbs each and 4 light bars with 2 bulbs each above the water line. All bulbs were 650 watt. A blue vinyl back drop 25 ft. wide by 20 feet long was suspended from the bridge to improve tank lighting. The west wall of the tank hac been previously covered with white vinyl.


```
            SECTION VI - TEST PROGRAM
Water impact tests using a 12.5 inch diameter scale model of the Space
Shuttle SRB were conducted at the U.S. Naval Surface Weapons Center, White
Cak, Maryland, from May 7, 1983 througn May 23, 1983. These tests were
conducted in accordance with Marshall Space Flight Center document "Test
Requirements for the SRB 8.56% Scale Model Water Impact Test Program."
(Reference l & 2).
During the test program a total of 47 drops were made. 44 drops were made
at a scaled atmospheric pressure of 1.26 psia and 3 drops were made without
pressure scaling at Pa = 14.7 psia.
The model configuration was varied as noted in the Test Program (Tabie II)
to the following:
```

CONFIGURATIONS:

I Baseline - TVC Pod on lee side, actuators at 225 degrees and 315 degrees.

I/180 Baseline - Except instrumentation cable connector relocated 180 degrees to BDC

II Pod Removed

ORIGNAL PACE ES OF POOR QUALITK

Abstract

This test program was conducted at Froude scale impact velocities simulating the fuli scale vertical velocities of 65,75 and 85 ftisec and horizontal drift velocities of $0,15,22.5,30$, and $45 \mathrm{ft} / \mathrm{sec}$. at impact angles of 0 , 5 and 10 degrees. Table II lists programmed model impact conditions by order cf drop number and Table III lists the drop numbers as a function of model impact condition. Actual test conditions achieved are defined in Table IV as measured by the 250 FPS photographic data.

The model test velocities were Frouae scale values of full scale as shown below:

DROD TEST VELOCITIES

VERTICAL		HORIZONTAL	
VELOCITIES FPS	VELOCITIES FPS		
FULL	MODEL	FULI	MODEL
SCALE	SCALE	SCALE	SCALE
65	19.02	15	4.4
75	21.94	22.5	6.6
85	24.9	30	8.8

ORIGINAL PACE IS
OF POOR QUALITY
TABLE II TEST PROGRAM (MODEL SCALE VALUES)

$\begin{aligned} & \text { CONF. } \\ & \text { NO. } \end{aligned}$	TEST NUMBER	VERTICAL VELOCITY FT/SEC	$\begin{aligned} & \text { HORIZONTAL } \\ & \text { VELOCITY } \\ & \text { FT/SEC } \end{aligned}$	IMPACT ANGLE - θ DEGREES	$\begin{aligned} & \text { ROLL } \\ & \text { ANGLE - } \theta \\ & \text { DEGREES } \end{aligned}$	TEST PRESSURE mm.HG.
I	1	21.94	8.8	0	180	65
	2	21.94	8.8	0	180	65
	3	21.94	4.4	0	180	65
	4	21.94	4.4	+5	180	65
	5	21.94	4.4	-5	180	65
II	6	21.94	4.4	0	180	65
	7	21.94	8.8	0	180	65
	8	21.94	4.4	-5	180	65
	9	21.94	8.8	+5	180	65
	10	21.94	0	0	0	65
	11	21.94	0	-5	180	65
	12	21.94	0	-5	180	65
	13	21.94	0	0	0	65
	14	21.94	0	+10	0	65
	15	21.94	0	-10	0	65
	16	21.94	0	-5	0	65
I	17	21.94	8.8	0	0	65
	18	21.94	8.8	-5	0	65
	19	21.94	8.8	-10	0	65
	20	24.9	0	0	0	65
	21	24.9	0	+5	0	65
	22	24.9	0	$+10$	0	65
	- 23	24.9	0	-10	0	65

TABLE II TEST PROGRAM
(MODEL SCALE VALUES)

TABLE IIT
TEST NUMBER MATRIX

TES'T NUMBEETETATRTX

$\begin{aligned} & \text { CONF. } \\ & \text { NO. } \end{aligned}$	FULL SCALE VERTICAL VELOCITY	FULL SCALE HORIZONTAL VELOCITY	MILLIMETERS MERCURY P_{∞}	$\begin{aligned} & \text { ROLL } \\ & \text { ANGLE } \\ & \emptyset \end{aligned}$	IMPACT ANGLE (θ DEGREE) TEST NUMBER				
					-10	-5	0	5	10
	75	0	65	180	-	11	-	-	-
II		15	65	180	-	8	6	9	-
		30	65	180	-	-	7	-	-
		45	65	180	-	-	-	-	-
	75	0	65	0	-	-	10	-	-
$\mathrm{I} /{ }_{180}$	65	0	65	180	32	33	28	-	-
	1								
	75	0	760	180	-	-	-	29, 30, 31	-
	75	0	65	180	-	-	-	-	-
		15	65	180	-	35	34	36	-
		22.5	65	180	-	-	40	-	-
		30	65	180	-	38		26	37
	\checkmark	45	65	180	-	-	39	27	-

ORIGINAL PAGE IS
OF POOR QUALITY

CONFIGURATIONS:

I Baseline - TVE Pod on lee side, actuators at

 225 degrees and 315 degrees.I/180 Baseline - Except instrumentation cable connector relocated 180 degrees to $B D C$

İİ Pod Removed

TABLE IV PHOTOGRAPHIC DATA ORIGMAL PAGE 謁

TABLE IV PHOTOGRAPHIC DATA
ORIGMAS PRES B

ORIGINAL PACE IS OF POOR QUALITY

SECTION VII - TEST OPERATIONS

This pressure scaled water impact test was conducted using the SRB model launcher (Figure 26) fabricated under the direction of Chrysler in 1974. For this test it was removed from storage at the NSWC, White Oak, MD, where it was refurbished, installed, and calibrated, by Cnrysler personnel. The jauncher's two major components are the horizontal support deam and the mode? carriage release dolley. The structures were fabricated of 1.5 inch square 6061 aluminum tubing with a combinea weight of approximately 400 lbs. Installation and assembly of the SRB model launcher was accomplished in April 1983 it was attached to the movable bridge within the tank with (4) I-Beams. The tank water level was lowered to the 24 -foot elevation and the gur port hatch adjacent to the loacing dock was removed for access to the tank. The horizontal support beam, model Carriage, I-Beams, rails, work platforms, and dummy model were moved into the tank and placed on a raft. This raft was moved to center tank and tied below the briage. The gun port hatch was replaced and tank pumps used to raise the water for assembly of the launcher. This required approximately 8 hours. Calibration and testing started May $15 t$ and ended May 23rd after 47 test drops with varied vertical and horizontal velocities. Vertical velocities were varied by changing the travel of the model carriage. The carriage dolley was propelled (on rails) along the horizontal support beam through the release cam assembly, by means of a 426 lb . drop weight. The carriage dolley held the model in a spring loaded clamp that opened when it contacted the release cam assembiy, Figures 27 through 31. The clamp was alsc used fo: variation of model impact angle. The release cam assembly, Figures 32 through 37,

ORIGINAL PACE OF POOR QUALITY

was attached to the horizontal support beam with $2-2$ " "C" clamps. Cam locations were pre-determined during valibration horizontal velocities and a model drop "free fall window" was established. Calibration was accomplished using a dummy model for approximately 15 calibration drops. The drop weight was the only propelling force used for the launcher and was shackled to a $3 / 8$ inch wire rope 12 ft . long with a $1 / 2$ inch round dog on the end. The instrumented model was initially loaded into the launcher through a port hole (in the top of the test facility) directly into the model carriage dolley clamps, using an overhead crane, located outside and above the tank top. The carriage dolley clamp was positioned under the port hole near the end of the horizontal beam. Once the model was initially loaded inside the tank the port nole cover was replaced. subsequent loadings were accomplished using the same over head crane but with a cable that was lowered thru a small hole in the port hole cover. After model loading the line was removed and a cap placed on the nole.

The model was held in the carriage dolley clamp by two launching lugs secured to the model sides, Figure 39. To insure correct angle and tight fit (4) bolts on each clamp were used to snug the clamp around the lugs (Figure 30). When the model was secured in the dolley clamp, the dolley was then backed up along the norizontal beam a predetermined distance established for the desired horizontal velocity. Once the dolley was in the proper location the release cam assembly was "c" clamped to the horizontal beam at a predetermined calibration location . This release cam assembly was equipped with three circuits, including pencil leads on $2^{\prime \prime}$ centers. A knife type blade on the dolley was used to break the leads, and circuits,

URIGINAL PACR IS
 OF POOR QUALTY

thus allowing the carriage horizontal velocities to be calculated. Three velocities were calculated; (1) prior to release, (2) at release, (3) after release. This circuitry was checked before closing the tank. With the cam assembly in place, the excess instrument cable was then hung on a drop arm located on the underside of dolley. This removed all weight of the cable from the model. (Figure $26 \& 38$). It should be noted at this time that considerable problems were encountered during this test with the model rolling. A number of tests had to be rerun due to unacceptable model roll prior to water impact. Much of this problem was overcome by loading the instrument cable on the drop arm to create a spring effect to counteract the roll. A roll of 15 degrees was considered acceptable.

The final loading procedure was to hang the drop weight. This was accomplished using a winch located on the underside of the tank top above the drop weight. The winch hook was lowered to pick up the drop weight, lifting it to allow the wire rope attached to the weight, (dog end) to be wrapped around and inserted into a hole in the spool, of the chain drive sprocket, and brake assembly.

The spool, chain drive sprocket, and disc brake were mounted on a l-inch shaft, Figures 40 through 43. This assembly was used to drive the dolley along the horizontal beam tracks through a chain attached to the carriage dolley. The disc brake part of this assembly was used to hold the loaded drop weight, release the weight, and assist in the stopping of the carriage dolley after model release. Once the wire rope was wrapped the correct numbers of turns and the dog installed in the spool, the weight was then lowered to hang from the spool by the wire rope, and held by the disc brake.

Two stop ropes were attached to the drop weight. One was used as a stop; to prevent the weighi from falling to the bottom of the tank, the other was a backup. When the disc brake was released the weight pulled on the wire rope wrapped on the spool thus propelling the dolley along the horizontal beam through the release assembly, dropping the model into the water within the free fall window (Figure 50). A retrieval line secured to the top of the model was used to raise the model from the water after pressure drops, before venting of the tank. This was accomplished with a second winch located inside the tank and operating remotely from the data control area. (Figures 47 and 49).

Zero horizontal velocity test drops were accomplished without the use of the horizontal launcher. A solenoid release mechanism installed in the special porthole cover was used, Figures 44 through 46.

Ine model was hung with a wire rope attached to a ring that was dropped from a pin released by the solenoid. Angles and velocities were varied by changing the length of the wire rope (model height) and the angle at which the model was held. A wood support (2x4) attached to the movable bridge was used to hold the cable drop arm, Figure 49.

ORIGNAL PAGE IS OF POOP OUALITY

ORIGINAL PACE IS OF POOR QUALITY

URIGINAL PACE OF POOR QUALITY

ORGGNAR PACE MS OF POOR QUALTI

ORIGINAL PACR IS OF POOR QUALITY

ORIGINAL PAGS IS OF POOR QUALITY

ORICINAL PAGE OF POOR QUALITY

ORCWNA PAEE TS
OF POOR OUALTTY

ORICINAL PAGE PS OF POOR QUALITY

 OF POOR QUALITY

SECTION VIII - TRANSDUCER DATA REDUCTION

The first phase of data reduction was accomplished at the MSFC computation laboratory. The data tapes were demodulated, filtered with 5000 HZ low pass filters, digitized at 10,000 samples per second and converted to engineering units. Digital tapes containing the data from each rest drop were forwarded tc the Slidell Computer Center for further processing and plotting.

Transcucer data in this report are presented in numerical order, I plot per page, for each test drop. Time zero on the plots is approximately . 3 to . 4 seconcs prior to release. The zero reference time differs for each run. Approximately 50 milliseconds of daえa at 10,000 samples per second are presentee for each measurement. Each time slice is chosen to illustrate the largest magnitude load event. All transducers are biased to zero at time zerc. Units on the plots are g's for accelerations, psig for pressures, and pounds or inch pounds for actuator loads.

It should be noted that the nozzie force data has not been corrected for balance interactions or for "g" loads. The interaction corrections are small, generally being less than 1%, the "g" corrections, however, are a substantial magnitude and should be considered when using the data. These corrections are: 6.9 \# normal/g pitch, 5.9 \# axial/g axial, 5.865 in-\# pitch/g pitch, and 8.988 in-\# yaw/g axial.

Figure 51 presents a typical set of data for Run \#30. The Appendix contains a complete set of all digitized data plots for all valid test runs.

REFERENCES

1. Marshall Space Flight Center Document Test Requiremeni for SRR Filament wound dase (FWC) Rigid Body Scale Model Cavity Collapse Water Impact Test Program March 16, 1983, ED 22-83-48
2. Marshall Space Flight Center Document Test Requirements for SRB Thrust Vector Control (TVC) Pod Rigid Body Scale Model Water Impact Test Program, March 1983, ED 22-83-49
3. Marshall Space Flight Center unpublished document - Test Requirements for SRB Aft Skirt Segment Simulation Water Impact Test Program, January 1983.
4. Chrysler Corp. Technical Note, TN-FT-75-58, Pressure-Scaled Water Impact Test of a 12.5 -inch Diameter Model of the Space Shuttle Solid Rocket Booster (SRB), MSFC Test No. TMS-333 April 1975.
5. Chrysle: Corp. Technical Note TN-SM-82-3, Pressure-Scaled Water Impact Test of a 12.5 -inch Diameter Model of the STS-1 Space Shuttle Solid Rocket Booster (SRB), MSFC Test 881 May 1982
6. Chrysler Corp. Technical Note TN-SM-82-5, Pressure-Scaled Water Impact Test of a 12.5-inch Diameter Model of the STS Space Shuttle Solid Rocket Booster (SRB), MSFC Test 82-1 May 1982
7. Chrysler Corp. Technical Note TN-SM-82-9, Pressure-Scaled Water Impact Test of a 12.5 -inch Diameter Model of the STS-1 Space Shuttle Solid Rocket Booster (SRB), MSFC Test 82-2 August/September 1982

PAGE 494

Figure 51. Data Sample Run

ORIGINAL PRCE IS OF POOR QUALITY

ORIGINAL PACR RS OF POOR QUALITY

PAGE 496

original pace ls OF POOR QUALITY

PAGE 497


```
ORIGINAL PHEE 縣
OF POOR QUALIY
```


0

```
ORIGINA PARE PS OF POOR QUALMTY
```


of POOR QUALrr?

PAGE 501

```
ORICNAL EF*
OF POOR glmun
```


Page 502

ORIGINAL PACE E OF POOR QUALITY

ORIGINAL PRGE OF POOR QUALIT

o

ontamal pues sat

PAGE 507

TEST 83-2-30 $\quad V V=75 \quad \mathrm{VH}=0 \quad$ THETA=5 $\mathrm{PHI}=180 \quad \mathrm{P}=14.7$ CONF 1

PAGE 508
(THIS PAGE INTENTIONALLY LEFT BLANK)

