Improved Transistor - Controlled and Commutated Brushless DC Motors For Elcstric Vehicle Propulsion

```
(NASA-Ch-j0UN5j) IMLHCVEL SO4-1045U
```



```
EbuPulSiuN Flnal neport (Viryinia unclas
Polytectinicinist. dad State Uriv.l 40< k GJ/ju 42<6U
```

N. A. Demerdash, R. H. Miller. T. W. Nenl. and T. A. Nyamusa Virginia Polytechnic Institute and Staie University

January 1, 1983

Frepared for
National Aeronautics and Space Administration
Lewis Research Center
Under Contract DEN 3-65
for
U.S. DEPARTMENT OF ENERGY

Conservation and Renewable Energy
Office of Vehicle and Engine R\&D

NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees, nor ariy of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Improved Transistor-Controlled and Commutated Brushless DC Motors for Electric Vehicle Propulsion

N. A. Demerdash, R. H. Miller, T. W. Nehl, and T. A. Nyamusa Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061
Key Personnel: B. P. Overton, C. J. Ford, and F. A. Fouad

January 1, 1983

Prepared for National Aeronautics and Space Administration Lewis Research Center
Cleveland, Ohio 44135 Under Contract DEN 3-65
for
U.S. DEPARTMENT OF ENERGY

Conservation and Renewable Energy
Office of Vehicle and Engine R\&D
Washington, D.C. 20585
Under Interagency Agreement DE-A101-77CS51044

TABLE OF CONTENTS

summary Page
LIST OF FIGURES 2
LIST OF TABLES 9
1.0 INTRODUCTION 11
1.1 Background. 11
1.2 The Project Goals and Accomplishments 15
1.3 References 20
2.0 GENERAL DESCRIPTION OF MOTOR-CONDITIONER SYSTEM 22
2.1 Motor-Conditioner System Components 22
2.2 Motor-Conditioner Interaction 28
2.3 Discussion of Impact on Key Design Parameters on System Rating 38
3.0 MOTOR DESIGN 55
3.1 Determination of Preliminary Magnetic Circuit Geometry and Winding Parameters 55
3.2 Magnetic Circuit and Winding Design Options Resulting from the Finite Element Analysis 71
3.3 Assessment of Design Options Through Dynamic Simulation of Machine System 114
3.4 Finalization of Motor Design 136
3.5 References 159
4.0 POWER CONDITIONER DESIGN 163
4.1 Power Components 163
4.2 Cooling of Power Conditioner Components 171
4.3 Position Sensor 174
4.4 Low Level Control Electronics 177
4.5 References 187
5.0 PERFORMANCE OF MACHINE-POWER CONDITIONER SYSTEMS 188
5.1 Test Setups of MPC Systems 188
5.2 Test Results of MPC Systems 197
5.3 Methods of Calculation of MPC System's Performance Characteristics 237
5.4 Corrected Test Results and Interpolation 256
5.5 Vehicular Drive Cycle Efficiency. 274
Page
5.6 References 288
6.0 CONCLUSIONS AND PROPOSED IMPROVEMENTS. 289
6.1 Project Accomplishments 289
6.2 Proposed Machine Improvemeni; 290
6.3 Proposed Power Conditioner Improvements. 290
ACKNOWLEDGEMENTS 292
APPENDIX (1) ON THE MAGNETIC FIELD ANALYSIS BY FINITE ELEMENTS 293
APPENDIX (2) ON MAGNETIC FIELD ANALYSIS BY FINITE ELEMENTS 305
APPENDIX (3) ON CALCULATION OF MACHINE WINDING INDUCTANCES BY ENERGY PERTURBATION AND FINITE ELEMENT METHODS 309
APPENDIX (4) ON CALCULATION OF MACHINE WINDING INDUCTANCES BY ENERGY PERTURBATION AND FINITE ELEMENT METHODS 321
APPENDIX (5) ON SIMULATION OF MACHINE-POWER CONDITIONER DYNAMIC INTERACTION OF BRUSHLESS DC MOTOR SYSTEMS. 325
APPENDIX (6) ON SIMULATION OF MACHINE-POWER CONDITIONER DYNAMIC INTERACTION OF BRUSHLESS DC MOTOR SYSTEMS. 337
APPENDIX (7) ON SIMULATION OF MACHINE-POWER CONDITIONER DYNAMIC INTERACTION OF BRUSHLESS DC MOTOR SYSTEMS. 341
APPENDIX (8) ON IMPACT OF INDIJCTANCES OF MACHINE WINDINGS ON BRUSHLESS DC SYSTEM PERFORMANCE. 354
APPENDIX (9) ON EDDY CURRENT LOSSES IN METALIC MAGNET RETAINING SLEEVES OF BRUSHLESS DC MOTORS 363
APPENDIX (10) ON THE PERFORMANCE OF THE SAMARIUM-COBALT AND STRONTIUM-FERRITE BASED BRUSHLESS DC MACHINE-POWER CONDITIONER SYSTEMS 370
APPENDIX (11) ON THE PERFORMANCE OF THE SAMARIUM-COBALT AND STRONTIUM-FERRITE BASED BRUSHLESS DC MACHINE-POWER CONDITIONER SYSTEMS 380
APPENDIX (12) UN THE PERFORMANCE OF A FUNCTIONAL PROOTYPE OF A SAMARIUM-COBALT BASED BRUSHLESS DC MACHINE-POWER CONDITIONER SYSTEM - PHASE (I) 387

OPICiNAL PAGE IS OF POOR QUALTTY

SUMMARY

The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless do machine systems, for propulsion of electric vehicles are detailed in this report. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation.

These machine systems were designed for continuous rated power output of $15 \mathrm{hp}(11.2 \mathrm{kw})$, and a peak one minute rated power output of $35 \mathrm{hp}(26.1 \mathrm{kw}$). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 15 volts. That is, an internal source voltage of 120 volts dc.

Each machine consisted of permanent magnets mounted on the rotor shaft, in addition to a three phase wound armature mounted on the stator. Each machine is controlled by an electronic power conditioner. The power conditioner consists of a two quadrant transistor-based chopper for dc line current and machine torque control purposes, in addition to an inverter/converter arrangement. This inverter/converter portion of the power conditioner consists of a six transistor/antiparallel diode bridge, for inverting dc to ac during motoring, and converting ac to de during regeneration. One conditioner was designed to operate both the samarium cobalt and strontium ferrite based machines.

Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine-power conditioner system dynamic interaction. These simulation processes are detailed in this report.

Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about $88^{\circ} \%$ and 84° for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp . Under a standard SAE drive cycle J227a Schedule D, the cycle efficiencies were found to be 84% and 75°, for the samarium cobalt and strontium ferrite based systems, respectively.

Design Concepts, methods and hardware developed for this system are equally applicable to many other systems such as in electromechanical actuation, industrial and machine tool drives, and robotics.

LIST OF FIGURES

Figure (1.1-1) Functional Block Diagram of a Brushless DC Prime Mover System in an Electric Vehicle from DC Source to Wheels
FIGURE (1.2-1) The SAE J227-a Schedule D Drive Cycle
FIGURE (2.1-1) Block Diagram of Motor-Conditioner System
FIGURE (2.1-2) Stator Laminations for Samarium Cobalt and Strontium Ferrite Based Machines
FIGURE (2.1-3) Motor-Power Conditioner Network Schematic
FIGURE (2.1-4) Advanaced Firing Concept
FIGURE (2.1-5) Snubber Network
FIGURE (2.1-6) Clamping Network
FIGURE (2.1-7) Logic Diagram
FIGURE (2.2-1) Six Switch, Three Phase Inverter.
FIGURE (2.2-2) Inverter Switching Sequence During Motoring, 0° Commuitation Advance.
FIGURE (2.2-3) Inverter Switching Sequence During Motoring, 30° Commutation Advance
FIGURE (2.2-4) Discrete Hopping Nature of the Stator MMF.
FIGURE (2.2-5) Machine Torque Production
FIGURE (2.2-6) Idealized Machine Torque Profiles with 0° and 30° Commutation Advance
FIGURE (2.2-7) Comparison between Idealistic and Realistic Torque Profile with 30° Commutation Advance
FIGURE (2.3-1) Current Patterns During the Commutation of Current from Phase (a) to Phase (b)
FIGURE (2.3-2) Status of Phase Currents and EMFs During Commutation of Phase Current From Phase (a) to Phase (b), With a Commutation Advance Angle, $\delta_{c}=0^{\circ}$.
figure (2.3-3) Behaviour of Phase Currents During Commutation
FIGURE (2.3-4) Actual Shape of the Phase Current at Rated Load Showing Commutation Periods, τ_{1} and τ_{2}.
FIGURE (2.3-5) Equivalent Circuit Model of MPC System During Commutation of Current from Phase a to Phase b Before the Recovery of Diode, D_{R} and D_{4}.
FIGURE (2.3-6) Equivalent Circuit Model of MPC System During Commutation of Current from Phase a to Phase b Before the Recovery of Diode, D_{R} and, After Recovery of Diode, D_{4}.
FIGURE (2.3-7) Equivalent Circuit Model of MPC System at Completion of Commutation, Diodes, D_{R} and D_{4} Recovered.
FIGURE (2.3-8) Approximate Values of ${ }^{\tau} 1_{1 \text { max }}, i_{b}$, and $d_{b} / d t$ During the First Commutation Period, ${ }^{\tau} 1$, for Zero and Thirty Electrical Degrees of Commutation Advance $\left(\delta_{c}=0^{\circ}\right.$ and $\left.\delta_{c}=30^{\circ}\right)$

FIGURE (2.3-9) Effect of the Third Harmonic Component on the induced Phase EMF During the First Commutation Period - Commutation Advance $\delta_{c}=0^{\circ}$ and 30°.
figure (3.1-1) Schematic of Permanent Magnet
FIGURE (3.1-2) Operating Point of the Magnet in the Samarium Cobalt Machine
FIGURE (3.1-3)
Schematic of a Stator Slot
FIGURE (3.1-4)
FIGURE (3.2-1)
Torque - Angle Characteristic
Representation of Equivalent Magnetic Effect for the Magnetic Shapes of the Brushless Machines for Purposes of Finite Element Field Analysis
FIGURE (3.2-2) Geometrical Interpretaion of Apparent, Effective, and Incremental Inductance
FIGURE (3.2-3) Change in Energy Per Unit Elemental Volume Due to Perturbed Excitation, Using Incremental Reluctivity
FIGURE (3.2-4) Change in Energy Per Unit Elemental Volume Due to Perturbed Excitation, Using Apparent Reluctivity
FIGURE (3.2-5) Finite Element Grid of Samarium Cobalt Machine at a Given Rotor Position
FIGURE (3.2-6) Finite Element Grid of Strontium Ferrite Machine at a Given Rotor Position
FIGURE (3.2-7) No-Load Equal MVP Conturs (Flux Plot) of the Samarium Cobalt Machine for a Given Rotor Position
FIGURE (3.2-8) No-Load Equal MVP Conturs (Flux Plot) of the Strontium Ferrite Machine for a Given Rotor Position
FIGURE (3.2-9) Midgap Flux Density Waveform at No Load in the Sa-
FIGURE (3.2-10) Marg Cobalt Machity Weak Value 40 , Midgap Flux Density Waveform at No Load in the Strontium Ferrite Machine - Peak Value 19,050 !ines/in ${ }^{2}$
FIGURE (3.2-11) Midgap Flux Density Waveforms at No Load in the Strontium Ferrite Machine - Peak Values are 19,058 lines/in ${ }^{2}$ and 19,049 lines/in ${ }^{2}$ Respectively
FIGURE (3.2-12) Equal MVP Contours of the Samarium Cobalt Machine at Rated Load for a Given Rotor Position
FIGURE (3.2-13) Midgap Flux Denisty Waveform at Rated Load in the Samarium Cobalt Machine - Peak Load 50,470 lines/ $i n^{2}$
FIGURE (3.2-14) Equal MVP Contours of the Strontium Ferrite Machine at Rated Load for Roter Postion No. 1
FIGURE (3.2-15) Midgap Flux Density Waveform at Rated Load in the Strontium Ferrite Machine for Roter Position No. 1 Peak Value 18,680 lines/in ${ }^{2}$
FIGURE (3.2-16) Equal MCP Contours of the Strontium Ferrite Machine at Rated Load for Rotor Position No. 2
FIGURE (3.2-17) Midgap Flux Density Waveforms at Rated Load in the Strontium Ferrite Machine for two Rotor Positions No.'s 2 and 1 - Peak Values are 18,470 lines/in ${ }^{2}$ and 18,680 lines/in ${ }^{2}$
FIGURE (3.2-18) No Load Armature EMF Waveforms Calculated by the FE Analysis for the Strontium Ferrite Machine, Assuming no Armature Slot Skewing, Half Slot Skewing, and Full Slot Skewing

FIGURE (3.2-19) Schematic of Machine Phase Windings and Inductances
FIGURE (3.2-20). The Field Distribution for a Quiescent Point at No Load for A Given Rotor Position - The Samarium Cobalt Machine
FIGURE (3.2-21) The Perturbed Field at No Load Due to ($+\Delta i_{j}$) For
FIGURE (3.2-22) The Perturbed Field at No Load Due to ($-\Delta i_{j}$) For
FIGURE (3.2-23) Perturbed Field Solution Due to a Perturbed Current $\left(i_{a}+\Delta i_{a}, i_{b}\right)$
FIGURE (3.2-24) Perturbed Field Solution Due to a Perturbed Current ($i_{a}-\Delta i_{a}, i_{b}$)
FIGURE (3.2-25) Quiescent Field Soltuion at Rated Luad, Rotor Position at Beginning of State No. 1
FIGURE (3.2-26) Quiescent Field Solution at Rated Load, Rotor Position at Middle of State No. 1
FIGURE (3.2-27) Quiescent Solution at Rated Load, Position at End of State No. 1
FIGURE (3.2-28) Series Winding Connection
FIGURE (3.2-29) Parallel Winding Connection
FIGURE (3.2-30) Armature Winding Self Inductance Per Phase, $L_{a a}(\theta)$, for Series Connection, Function of Rotor Postion - Samarium Cobalt Machine
FIGURE (3.2-31) Line to Line Armature Winding Inductance, For Series Connection, Function of Rotor Postion - Samarium Cobalt Machine
FIGURE (3.2-32) Armature Winding Self Inductance Per Phase, $L_{a a}(\theta)$, for Parallel Connection, Function of Rotor Postion - Samarium Cobalt Machine
FIGURE (3.2-33) Line to Line Armature Winding Inductance, For Parallel Connection, Function of Rotor Postion - Samarium Cobalt Machine
FIGURE (3.2-34) Example No Load Quiescent Field Solution Point for Calculation of Strontium Ferrite Machine Inductances
FIGURE (3.2-35) Example Rated Load Quiescent Field Solution Point for Calculations of Strontium Ferrite Machine Inductances
FIGURE (3.2-36) Armature Winding Self Inducatarice per Phase, $L_{\text {aa }}(6)$, for Parallel Connection, Function of Rotor Position - Strontium Ferrite Machine
FIGURE (3.2-37) Line to Line Armature Winding Inducatances, for Parallel Connection, Function of Rotor Position Strontium Ferrite Machine
FIGURE (3.3-1) Machine Model.
FIGURE (3.3-2) Power Conditioner Schematic
FIGURE (3.3-3) Machine - Power Conditioner System Network Graph
FIGURE (3.3-4) Flow Chart of Machine - Power Conditioner Dynamic Model
FIGURE (3.3-5) Maximum Power Curves for the Samarium Cobalt Machine
FIGURE (3.3-6) Peak Current Curves for the Samarium Cobalt Machine

FIGURE (3.3-7) Maximum Fower Curves for the Strontium Ferrite Machine
FigURE (3.3-8) Peak Current Curves for the Strontium Ferrite Machine
FIGURE (3.3-9) Simulated Current Buildup in the Strontium Ferrite Machine for 12 Turns and Zero Degrees E Commutation Advance
FIGURE (3.3-10) Simulated Current Buildup in the Strontium Ferrite Machine for 9 Turns and Zero Degrees E Commutation Advance
FIGURE (3.3-11) Simulated Current Buildup in the Strontium Ferrite Machine for 9 Turns and $30^{\circ} \mathrm{E}$ Commutation Advance
FIGURE (3.3-12) Typical Effect of Skewing on Armature Induced EMF in the Strontium Ferrite Machine for No Skewing, Half Slot Skewing, and Full Slot Skewing at 8000 rpm.
FIGURE (3.3-13) Armature Induced EMF Waveform of the Samarium Cobalt Determined by Finite Elements, 9000 r.p.m.
FIGURE (3.3-14) Armature Induced FMF Waveform of the Strontium Ferrite Determined by Finite Elements, 9000 r.p.m.
FIGURE (3.3-15) Strontium Ferrite Machine Phase Current and Electromagnetic Torque in Amperes and Newton Meter, No Skewing, Zero Commuiation Advance, at 8000 r.p.m., 9 Turns/Path/Phase.

FIGURE (3.3-16) Strontium Ferrite Machine Phass Current and Electromagnetic Torque in Amperes and Newton Meter, Half Slot Skewing, Zero Commutation Advance, at 8000 r.p.m., 9 Turns/Path/Phase.
FIGURE (3.3-17) Strontium Ferrite Machine Phase Current and Electromagnetic Torque in Amperes and Nawton Meter, One Slot Skewins, Zero Commutation A.tvance, at 8000 r.p.m., 9 Turns/Path/Phase
FIGURE (3.3-18) Armature Induced Phase EMP and Phase Current for Normal and Advanced Commutation by 30° Electical,
FIGURE (3.3-19) Phase Current and Electromagnetic Torque for the Case of 0° Advanced Commutation of the Strontium Ferrite Machine, at 8000 r.p.m., $9 /$ Turns/path/phase
FIGURE (3.3-20)

FIGURE (3.3-21)

FIGURE (3.3-22) Phase Current of the Samarium Cobalt Machine with the 12 Turn Winding at 9000 rpm and 30° Advanced Commutation.
FIGURE (3.3-23) Electromagnetic Power of the Samarium Cobalt Machine with the 12 Turn Winding at 9000 rpm and 0° Commutation Advance
FIGURE (3.3-24) Electromagnetic Power of the Sanarium Cubalt Machine with the 12 Turn Winding at 9000 rpm and 30° Commutation Advance.
FIGURE (3.4-1) Cross Section of the Samurium Cohalt Machine

FIGURE (3.4-2)
FIGIIRE (3.4-3)
FIGURE (3.4-4)
FIGURE (3.4-5)
FIGURE (3.4-6)
FIGURE (3.4-7)
FIGURE (3.4-8)
FIGURE (3.4-9)
FIGURE (3.4-10)
FIGURE (3.4-11)
FIGURE (3.4-12)
FIGURE (3.4-13)
FIGURE (3.4-14)
FIGURE (3.4-15)
FIGURE (3.4-16)
FIGURE (3.4-17)
FIGURE (3.4-18)
FIGURE (3.4-19)
FIGURE (3.4-20)
FIGURE (3.4-21)
FIGURE (3.4-22)
FIGURE (3.4-23) Shaft and Magnet View Number 2 - Strontiu:n Ferrite Machine
FIGURE (3.4-24) Shaft and Magnet View Number 3 - Strontium Ferrite Machine
FIGURE (3.4-25) Components of Strontium Ferrite Machine
FIGURE (3.4-26) Assembled Strontium Ferrite View Number 1
FIGURE (3.4-27) Assembled Strontium Ferrite View Number 2
FIGURE (3.4-28) Assembled Strontium Ferrite View Number 3
FIGURE (3.4-29)
FIGURE (3.4-30) Samarium Cobalt and Strontium
FIGURE (4.0-1)
FIGURE (3.4-30) Samarium Cobalt and Strontium
The Power Conditioner Viewed From the Chopper Choke and Filter Capacitor Side
FIGURE (4.0-2) The Power Conditioner Viewed From the Top With the Base Drive Circuits in Full View
FIGURE (4.0-3) The Power Conditioner-A Side View
FIGURE (4.1-1) Snubber Network
FIGURE (4.1-2) Clamping Network
FIGURE (4.1-3) Base Drive
FIGURE (4.2-1) Steady State Thermal Model of Power Conditioner Transistors and Diodes
FIGURE (4.2-2) Maximum Steady State Power Dissipation Versus
FIGURE (4.2-3) Maximum Steady State Fower Dissipation Versus
FIGURE (4.3-1)
FIGURE (4.3-2)
FIGURE (4.4-1)
FIGURE (4.4.2)
FIGURE (5 |-1)
Cross Section of the Strontiun Ferrite Machine Stator Core View No. I Samarium Coba!t Machine Stator Core View No. 2 Samariun Cobalt Machine Armature View Number 1 Samarium Cobalt Machine Armature View Number? Samarium Cobalt Machine Armature View Number 3 Samarium Cobalt Machine Armature View Number 4 Samarium Cobalt Machine Assembled Rotor Samarium Cobalt Machine Components of Samarium Cobalt Machine
Assembled Samarium Cobalt Machine View Number 1 Assembled Samarium Cobalt Machine View Number 2 Assembled Samarium Cobalt Machine View Nu iber 3 Sator Core View Number 1 Strontium Ferrite Machine Sator Core View Number 2 Strontium Ferrite Machine Partially Wound Armature View Number 1 - Strontium Ferrite Machine
Partially Wound Armature View Number 2 - Strontium Ferrite Machine
Armature View Number 1 Strontium Ferrite Machine Armature View Number 2 Strontium Ferrite Machine Armature View Number 3 Strontium Ferrite Machine Armature View Number 4 Strontium Ferrite Ma;hine Shaft and Magnet View Number 1 - Strontium Ferrite Machine

Samarium Cobalt and Strontium Ferrite Machines View Number 1

ORIGINAL PACE IS OF POOR QUALITY

FIGURE (5.1-2)
FIGURE (5.1-3)
FIGURE (5.2-4)
FIGURE (5.1-5)
FIGURE (5.1-6)
FIGURE (5.2-1)

FIGURE (5.2-2)

FIr,URE (5.2-3)

FIGURE (5.2-4) Temperature Rise in the MPC System (Strontium Ferrite Case), Run 3, at 15 hp Output For 145 Mi nutes Duration.
FIGURE (5.2-5) Oscillogram, See Table (5.2-9)
FIGURE (5.2-6) Oscillogram, See Table (5.2-9)
FIGURE (5.2-7) Oscillogram, See Table (5.2-9)
FIGURE (5.2-8) Oscillogram, See Table (5.2-9)
FIGURE (5.2-9) Os‘illogram, See Table (5.2-9)
FIGURE (5.2-10) Oscillogram, See Table (5.2-9)
FIGURE (5.2-11) Oscillogram, See Table (5.2-9)
FIGURE (5.2-12) Oscillogram. See Table (5.2-9)
FIGURE (5.2-13) Oscillogram, See Table (5.2-9)
FIGURE (5.2-14) Oscillogram, See Table (5.2-9)
FIGURE (5.2-15) Oscillogram, See Tabie (5.2-9)
FIGURE (5.2-16) Oscillogram, See Table (5.2-9)
FIGURE (5.2-17) Oscillogram, See Table (5.2-9)
FIGURE (5.2-18) Oscillogram, See Table (5.2-9)
FIGURE (5.2-19) Oscillogram, See Table (5.2-9)
FIGIIRE (5.2-20) Oscillogram, See Table (5.2-9)
FIGURE (5.2-21) Oscillogram, See Table (5.2-9)
FIGURE (5.2-22) Oscillogram, See Table (5.2-9)
FIGURE (5.2-23) Oscillogram, See Table (5.2-10)
FIGURE (5.2-24) Oscillogram, See Table (5.2-10)
FIGURE (5.2-25) Oscillogram, See Table (5.2-10)
FIGURE (5.2-26) Orcillogram, See Table (5.2-10)
FIGURE (5.2-27) Osxillogram, See Table (5.2-10)
FIGURE (5.2-28) Oscillogram, See Table (5.2-10)
FIGURE (5.2-29) Oscillogram, See Table (5.2-10)
FIGURE (5.2-30) Oscillogram, See Table (5.2-10)
FIGURE (5.2-31) Oscillogram, See Table (5.2-10)
FIGURE (5.2-32) Oscillogram, See Table (5.2-10)
FIGURE (5.2-33) Oscillogram, See Table (5.2-10)
FIGURE (5.2-34) Oscillogram, See Table (5.2-10)
FIGURE (5.2-35) Oscillogram, See Table (5.2-10)
FIGURE (5.2-36) Oscillogram, See Table (5.2-10)
FIGURE (5.2-37) Oscillogram, See Table (5.2-10)
FIGURE (5.2-36) Oscillogram, See Table (5.2-10)
FIGURE (5.2-39) Oscillogram, See Table (5.2-10)
FIGURE (5.2-40) Oscillogram, See Table (5.2-10)

FIGURE (5.3-1) Power Flow - Test Setup (1)
FIGURE (5.3-2) Rotational Losses as Function of Speed for the Permanent Magnet Alternator of Test Setup (1)
FIGURE (5.3-3) Power Flow - Test Setup (2)
FICURE (5.3-4) Rotational Losses Versus Speed - Samarium Cobalt Machine
FIGURE (5.3-5) Rotational Losses Versus Speef - Strontium Ferrite Machine
FIGURE (5.3-6) Plot of Electrical and Mechanical Powers Versus Tcinque at 3500 RPM for the Strontium Ferrite MPC System Before Torque Shift
figure (5.3-7) Plot of Electrical and Mechanical Powers Versus Torque at 5400 RPM for the itrontium Ferrite MPC System Before Torque Shift
FIGURE (5.3-8) Plot of Electrical and Mechanical Powers Versus Torque at $\mathbf{i} 200$ RPN for the Strontium Ferrite MPC System Before Torque Shift
FIGURE (5.3-9) Plot of Electrical and Mechanical Powers Versus Torque at 3500 rpm for the Strontium Ferrite MPC System After Torque Shift
FIGURE (5.3-10) Plot of Electrical and Mechanical Powers Versus Torque at 5400 rpm for the Strontium Ferrite MPC System After Torque Shift
FIGURE (5.3-11) Plot of Electrical and Mechanical Powers Versus Torque at 7200 rpin for the Strontium 「errite MPC System After Torque Shift
FIGURE (5.4-1) Power Flow - MPC Svatem (Motoring)
FIGURE (5.4-2) Power Flow - MPC System (Regenerating)
FIGURE (5.4-3) Equi-Efficiency Contours - Samariam Cohalt Case
FIGURE (5.4-4) Equi Efficiency Contours - Strontium Ferrite Case
FIGURE (5.4-5) Equi-efficiency Contours Samarium Cobalt Case

LIST OF TABLES

TABLE (5.2-7) TEMPERATURE TEST DATA OF THE MPC SYSTEM (STRONTIUM FERRITE BASED MACHINE) FOR THE 15 hp RATED OUTPUT 145 MINUTES RUN NO. 3 AS INDICATED BY THEROMOCOUPLES DEFINED IN TABLE (5.1-1)-TEST SETUP (1) WAS USED, DATA TAKEN EVERY 5 MINUTES
TABLE (5.2-8) TEST DATA OF REGENERATION RUNS FOR THE STRONTIUM FERRITE BASED MACHINE WHEN armature paths were connected in parallel
TABLE (5.4-1) CONSTANTS OF MPC SYSTEM LOSS FORMULA, EQUATION (5.4-1)
TABLE (5.4-2) SAMARIUM COBALT (parallel) MACHINE - MOTORING
TABLE (5.4-3) SAMARIUM COBALT (parallel) MACHINE REGENERATION
TABLE (5.4-4) STRONTIUM FERRITE (parallel) MACHINE MOTORING
TABLE (5.4-5) STRONTIUM FERRITE (parallel) MACHINE REGENERATING
TABLE (5.4-6) PERFORMANCE OF THE SAMARIUM COBALT AND STRONTIUM FERRITE MACHINES AT RATED POWER CONDITION
TABLE (5.4-7) PERFORMANCE OF THE SAMARIUM COBALT AND STRONTIUM FERRITE MACHINES AT PEAK POWER CONDITION

ORIGINAL PAGE: 15 OF POOR QUALTTY

1.0 INTRODUCTION

1.1 BACKGROUND

Public and U. S. Government attention to the undesirable consequences of national dependence on foreign sources for supplying the nation's needs of petroleum and its various products has been brought into sharp focus by events which took place in the early 1970's, and continued on throughout the decade of the seventies. A large portion of the nation's petroieum needs is consumed in the form of gasuline used for transportation purposes, particularly in private vehicular use.

A substantial portion of this private vehicular utilization is for purposes of urban and suburban commuting, and other relatively short local trips, for which storage battery powered electric vehicles may be quite suitable. Such electrically powered vehicles appear to represent an attractive alternative, particularly in view of the ease with which one can convert various forms of energy from sources other than petroleum into electric energy. Examples of such alternative "petroleumless" energy sources include:

1. fission type nuclear power plants in which the energy released from the nuclear fuel fission process, in the form of heat, is converted to electric energy by means of conventional steam generator-turbine-generator systems,
2. coal fueled power plants, where heat is again converted to electric energy by means of conventional boiler-turbine generator systems,
3. solar and fuel cells in which solar and chemical energy are converted directly into electricity, and
4. prospective future nuclear fusion based power plants in which generation of electric energy may be accomplished either through a direct energy conversion process, or through conversion to heat, which is then converted to the electric form by means of steam generator-turbine-generator systems, whih perhaps would be similar in nature to existing conventional systems found in central power stations.

This background of facts and events led the U.S. Department of Energy (DOE) to the initiation of resaarch programs in the areas of electromechanical propulsion and electrical energy storage (battery) research and development. This research included utilization of state of the art technology in the development of improved and new components
of electromechanical drive trains for propulsion of electric vehicles. This research effort was managed through an interagency agreement by the National Aeronautics and Space Administration (NASA).

A major component in such a drive train is the prime mover. In this case, the prime mover is a de electric motor. Usually such a motor is of the conventional brush type traction motor class (series would or heavily compounded shunt motor). Hence, the focus of this investigation was directed toward the development of alternative brushless dc prime mover systems with better potential for further improvements in performance, and perhaps more adaptability to electric passenger vehicle applications.

The recent development of high energy product permanent magnets (rare earth samarium-cobalt alloys), and the development of high power solid state switching devices (power transistors and SCR's) have made it practical to construct electronically commutated brushless dc motor systems, see Reference [1-4]. ${ }^{1}$ These systems usually consist of an electrical machine connected to a solid state power conditioner (PC). The electrical machine consists of a three phase wound armature mounted on the stator, and a rotor which consists of a steel shaft on which permanent magnets (made from samarium-cobalt or strotium-ferrite for example), are mounted, in order to provide the magnetomotive force necessary for rotor excitation. The three phase armature terminals of the machine are in turn connected to the power conditioner (PC) which consists of a three phase full wave inverter/converter bridge in series with a two-quadrant chopper circuit with its two terminal energy source side connected to the dc source. The dc source is naturally a storage battery in case of installation of such a system in an electric vehicle. A schematic block diagram of such a system is shown in Figure (1.1-1).

Power flows from the dc source to the machine-power conditioner (MPC) system, with the inverter/converter bridge functioring as an inverter during the motoring mode. Also, during motoring the two quadrant chopper may be used for dc line current magnitude limiting and control. Thus, in turn, the chopper controls the motor torque and speed.

Power flows from the mechanical load (stored energy associated with the vehicle inertia and speed), when the machine is functioning as a generator in the regenerative braking mode, while the inverter/converter bridge is functioning as a converter (full wave rectifier bridge). In this regenerative braking mode of operation, the two quadrant chopper

[^0]
ORIGINAL PAGE IS OF POOR QUALITY

machine power-conditioner system block diacram

POUER FLOW DURING MOTORINC
power flow durimg regenerative braxime

Figure (1.1-1) Functional Block Diagram of a Brushless DC Prime Mover System in an Electric Vehicle from DC Source to Wheels
is used for dc line current magnitude limiting and control. It also functions as a voltage booster to enable one to feed current into the battery, against the internal dc source (battery) emf. The motoring and regenerative braking modes of operation of the MPC system are required since the system subject of this work must be designed to meet the rigors of the SAE standard J227a - Schedule D, driving cycle, sa Reference [5].

A brushi iss dc MPC system has a number of advantages over a conventional brush type dc traction system. Some of these advantages can be summarized as follows:

1. The elimination of the classical brush type commutator allows one to design such machines for operation at much higher speeds than conventional brush type do machines. Such high rated speeds lead to considerable reduction in weight and volume of these electronically commutated brushless machines in comparison with brush type machines of the same rated horsepower.
2. The use of permanent magnets leads to the elimination of rotating armatures. Accordingly, with the resulting stationary armature, considerable improvement in the thermal characteristics of such motors can be achieved for a given horsepower rating.
3. The elimination of a rotating armature leads to a number of additional armature winding design simplifications, as well as electromechanical modeling simplifications that render analysis and improvements easier to perform.
4. The brushless MPC systems lend themselves much more readily 'to further improvements in efficiency and ease of construction resulting from fast developing technologies in solid state power switching, magnet materials, and bearing technology than conventional equivalent systems.

The emergence on the scene of sophisticated computer aided design techniques, has led to the development of very powerful tools for the design of such brushless dc MPC systems. These powerful tools center on

1. the ability to numerically analyze the magnetic fields within machines such as those used in the dc brushless systems at hand, using methods such as the finite element ($F E$) technique, and hence one can determine with relatively good certainty the values of parameters associated with such machines, as winding inductances, emf waveforms, losses, etc., see References [6] through [9].
2. the ability to use these parameters in models which numerically simulate the dynamic performance of such dc brushless MPC systems, including the effects that such parameters have on the electronic commutation process, etc., see References [4] and [10] through [12].

Accordingly, by means of employing these computer aided design techniques one is able to predict, with a high degree of certainty, peak and rated power capabilities and other critical performance characteristics of such MPC systems during the preliminary design stages. These are the stages during which design modifications, which would be necessary to meet critical performance requirements, can be made easily and without costly modifications to constructed hardware that may otherwise would have been built and found inadequate. This design process will be clearly highlighted and detailed in later chapters of this report.

In light of the above background, the goals set by NASA/DOE were envisaged in two phases for this project, Phase (I) and Phase (II). These goals and the accomplishments achieved throughout this investigation are discussed in Section (1.2) of this report.

1.2 THE PROJECT GOALS AND ACCOMPLISHMENTS

This project was conceived by NASA/DOE to be carried out in two stages or phases, Phase (I) and Phase (II). Phase (I) was envisaged as that during which a functional MPC system (breadboard PC and a preliminary motor) would be built and tested. The experience gained in Phase (I) would serve as the starting point from which Phase (II) of this project would be launched. Phase (II) was envisaged as that portion of the project during which the data base accumulated in Phase (1), in addition to the sophisticated computer aided design methods of References [6-12], would be used to obtain and execute an engineering design of an MPC system (or systems), and test such a system to ensure that it meets all the power and other performance requirements. The Phase (II) design of the MPC system is supposed to bring closer to fruition the goal of practical (or even mass) production of such a systern for installation in electric vehicles.

The intended MPC systems to be constructed under Phases (1) and (II) were supposed to provide the capability of propulsion of a 1363 Kg (3000 Lb.) passenger vehicle over a standard SAE J227-a Schedule D drive cycle, of repeated application for two continuous hours, see $\operatorname{Re}-$ ference [5]. This cycle is of a total duration of 122 seconds. According to the specifications of this cycle, Figure (1.2-1), an MPC system must be capable of accelerating such a 1363 Kg vehicle from a speed of zero km / H to a speed of $72.5 \mathrm{~km} / \mathrm{H}$ (45 mph) in 28 secends. According to the above drive cycle, this is followed by a 50 seconds period of cruising at $72.5 \mathrm{~km} / \mathrm{H}$ (45 mph), followed by a period of coasting of 10 seconds, during which a vehicle is brought to stand still (zero speed). To complete the 122 seconds drive cycle, a period of idling 25 seconds long follows the braking period. Also, the intended MPC systems were required to have the capability of propelling such a vehicle at a cruising speed of $88.5 \mathrm{~km} / \mathrm{H}$ (55 mph) for two hours, as well as propelling the same vehicle at a speed of about $48 \mathrm{~km} / \mathrm{H}$ (30 mph) over a hill of 10% gradient for a period of one minute.

THE ASAE 1227-a SCHEDCLIE (D) DRIVE CYCLE

FIGURE (1.2-1) The SAE J227-a Schedule D Drive Cycle

The above design constraints led NASA/DOE to specify that the MPC systems which were to be developed during the course of this investigation, that is Phases (I) and (II), must meet the capability of a continuous two hours rating of $15 \mathrm{hp}(11.2 \mathrm{kw})$ and peak one minute rating of $35 \mathrm{hp}(26.1 \mathrm{kw}$). It was further specified that the tests for peak power rating of 35 hp must immediately follow the two hours 15 hp continuous rating tests, with the machine and power conditioner temperatures at their highest rated values.

It was further stipulated that these MPC systems must be capable of regeneration at rated (15 hp) and peak power (35 hp) conditions. All the above power ratings were to be accomplished using an external dc source of 120 volts.

At this stage, a summary of the salient goals accomplished during Phases (I) and (II) is desirable. It must be emphasized that the main thrust of this report is intended to report the details of the work accomplished in Phase (II) since much of its accomplishments have rendered the work of Phase (1) absolute. Hence, Phase (1) is reported on to the extent necessary to provide the proper background to design decisions taken in the course of performance of Phase (II).

In Phase (1) the following is a summary of the main accomplishments:

1. A 4-pole, samarium-cobalt based permanent magnet, 15 slot three phase armature, brushless dc machine was designed, constructed and tested.
2. A solid state transistor based power conditioner, which consists of a two quadrant chopper in series with a six legged inverter/ converter bridge was designed and built in "breadboard" form to operate the 4 -pole machine mentioned above.
3. The above MPC system, see the block diagram schematic of Figure (1.1-1), was tested for continuous and peak power rating capabilities, as well as losses and efficiency. The MPC system was found to be capable of developing a 15 hp output for a pericd of two continuous hours, at an overall MPC system efficiency of about 78.6%.

The MPC failed during testing to meet the requirement of a peak one minute rating of 35 hp output. The peak one minute rating was found to be about 22 hp . This limitation was not due to the motor, which could have met that output requirement of 35 hp easily on the basis of both its tested thermal, electromagnetic, and mechanical characteristics. However, the power conditioner was found to be the weak link in that Phase (I) MPC system. Voltage transients across the power transistors led to failure of switching elements in the inverter/converter bridge, as well as in the chopper at ratings higher than 22 hp output. Major design changes in the power conditioner would have been required. These changes were beyond the scope cf Phase (1), and were left for the Phase (II) effort of designing, constructing and testing an
improved power conditioner. Further details on the Phase (1) system are to be found in Appendices (5) and (12).

The experienca with the motor of Phase (1) highlighted the high cost of rare earth samarium cobalt materials, and the difficulties which may be encouniered wtih cobalt with regard to availablity and security of supply. This would be an important factor if such a motor design gained widespread use in vehicular propulsion. These aspects prompted these investigators in concurrence with NASA/DOE to obtain two different designs for the machine associated with this MPC system. The first design was an improvement on the Phase (1) motor, with samariumcobalt still used as a permanent magnet material, for supplying rotor excitation. The second design was developed assuming the use of the cheaper and more readily available strontium ferrite as the permanent magnet material used for rotor excitation. Both designs were implemented in such a manner that both machines can be operated from the same power conditioner. Accordingly, the following is a summary of the main accomplishements achieved during the course of Phase (II):

1. A 6-pole, samarium cobalt based permanent magnet, 18 slot three phase armature, brushless dc machine was designed, constructed and tested.
2. A 6-pole, strontium ferrite based permanent magnet, 18 slot three phase armature, brushless dc machine was designed, constructed and tested
3. A solid state transistor based power conditioner, was designed and built to operate both of the samarium-cobalt based and strontium-ferrite based machines of Phase (II). The power conditioner consists of a two quadrant chopper in sines with a six legged inverter/converter bridge.
4. The above power conditioner, see the block diagram schematic of Figure (1.1-1), was tested for operating the samarium cobalt based and strontium ferrite based machines mentioned above.
(4.a) In case of operation of the Phase (II) power conditioner (PC) in conjunction with the samarium cobalt based machine of Phase (11), the MPC system was found to be capable of developing a 15 hp output for a period of two continuous hours, at an overall MPC system efficiency of ahout 878 . Furthermore, the MPC system achieved the requirement of a a peak one minute rating of 35 hp output at an overall MPC system efficiency of 77%.
(4.b) In the case of operation of the Phase (II) power conditioner (PC) in conjunction with the strontium ferrite based marhine of Phase (11), the MPC system was found to be capable of developing a 15 hp output for a period of two continuous hours, at an overall MPC system efficiency of about 84%. Furthermore, the MPC system achieved the requirement of a peak one minute rating of 35 hp output at an overall MPC system efficiency of 71°.

The following chapters will detail the steps of development of preliminary designs, final designs, construction, testing and performance characteristics of both systems of Phase (II). Specifically, Chapter (2.0) is dedicated to the MPC system component description, motorpower conditioner interaction, and discussion of the key design paramters. In Chapter (3.0) the preliminary designs fo the samarium cobalt based, an strontium ferrite based machines are arrived at, then analyzed by state of the art computer aided design methods, using finite elements for motor parameter determination, and dynamic simulation methods for motor-power conditioner performance analysis. On the basis of these analysis results, both machine designs are finalized in Chapter (3.0). In Chapter (4.0) the PC design steps are detailed. Meanwhile, in Chapter (5.0) the test procedure, test results and resulting analysis of performance of both motor systems of Phase (II) are given. Based on the results of Chapter (5.0) and the work detailed in the previous chapters an improvement assessment is made in Chapter (6.0) for both machines of Phase (1i) and their power conditioner.

REFERENCES

1. Delco Electronics, "Final Report on the Electromechanial Flight Control Actuator," Final Report NASA-JSC Contraci No NAS9-14952, General Motors Corporation, Delco Elec i:nics Div., Santa Barbara Operations, Goleta, CA, 1978.
2. Sawyer, B. and Edgo, J. T., "Design of a Samarium-Cobalt Brushless DC Motor for Electromechanical Actuator Applications," Proceedings of the IEEE-National Aerospace and Electronics Conference, Dayton, Ohio, 1977.
3. Edge, J. T., "An Electromechanical Actuator Technology Development Program," Paper No. 780581, Society of Automotive Engineers, Proceedings of the Aerospace Fluid Power and Control Technologies Symposium
4.
5. Demerdash, N. A., and Nehl, T. W., "Dynamic Modeling of Brushless DC Motors for Aerospace Actuation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 16, No. 6, 1980, pp. 811-821. [See Appendix (7).]
6. "Electric Vehicle Test Procedure-SAE J227a," Society of Automative Engineers, Inc., 1976.
7. Fouad, F. A. , Nehl, T. W., and Demerdash, N. A., "Magnetic Field Modeling of Permanent Magnet Type Electronically Operated Synchoronous Machines Using Fintie Elements," IEEE Transactions on Power Apparatus and Systems, PAS-Vol. 100, 1981, pp. 4125-4135. [See Appendix (1).]
8. Fouad, F. A., Nehl, T. W., and Demerdash, N. A., "Permanent Magnet modeling for Use in Vector Potential Finite Element Analysis in Electrical Machinery." IEEE Transations on Magnetics, Vol. MAG-17, 1981, pp. 3002-3004. TSee Appendix (2).!
9. Nehl, T. W., Fouad, F. A. and Demerdash. N. A., "Determination of Saturated Values of Rotating Machinery Incremental and Apparant Inductance by a Perturbation Method." IEEE Transactions on Power Apparatus and Systems, PAS-Vol. 101, 1982. pp. 4441-1451. [See Appe: dix (3).]
10. Demerdash, N. A., Fouad, F. A., and Nehl T. W., "Determination of Winding Inductances in Ferrite Type Permanent Magnet Electric Machinery by Finite Elements," IEEE Transactions
on Magnetics, Vol. MAG-18, 1L\&2. pp. 1052-1054. [See 'npendix (4).]
11. Nehl, T. W., Fouad, F. A., Demerd: : N. A., "Digital Simufation of Power Conditioner-Mzehip : insraction for Electronical|y Cornmutated DC Permanent Mas :n Ararhines," IEEE Transactiofis on Magnetics, Vol. MAG-17 ix. 6, 1981, pp 3284-3286. [Sé Appendix (6).]
12. Nehl, T. W., Fouad, F. A, Mrerdash, N. A., and Maslowski, E., Dynamic Simulater of Radially Oriented Permanent Magnet Type Electronically Operated Synchronous Machines With Parameters Obtained from fiaite Element Field Solutioins," IEEE Transactions on Inciustry Applications, Vol. IA-18, No. 2, pp. 172-182, 1982. [See Appellí^ (5).]
13. Nehl, T. W., Demerdas: N. A., Fouad, F. A., "Impact of Winding Inductances and Other Parameters on the Design and Performance of Brushless DC Motors," Paper accepted for publication in the iEcti Transactions on Power Apparatus and Systems, and Presentation at the 1984 IEEE-PES Winter Meeting, Dallas, Texas. [See Appendix (8).]

2.0 GENERAL DESCRIPTION OF MOTOR-CONDITIONER SYSTEM

2.1 MOTOR-CUNDITIONER SYSTEM COMPONENTS

The major components of the motor-conditioner system are the motor, which converts the energy from electrical to mer.hanical form, the power electronics, which convert the electrical energy from dc to ac of the proper frequency and phase (and vice-versa during regenerative braking), and the low-level electronics, which receive information concerning the state of che system and the desired operation and furnish the appropriate control signals to the power electronic. This arrangement is shown schematically in Figure (2.1-1). Each of these major components can be divided into smaller component groupings. These more detailed component groupings are described below.

The motor itself can be divided into several components. The rotor consists of shaft on which are milled six flat surfaces for mounting the magnets. These magnets (either samarium-cobalt or strontium ferrite) furnish the magnetic excitation for the field of the machine. The region of the shaft on which the magnets are mouirted serves as a yoke for conducting the flux between poles. Surrounding these magnets is a non-magnetic steel sleeve which serves to hold the magnets securely in place. After this sleeve has been shrunk into place, the entire rotor assembly is plotted to insure dimensional stability of the magnet positions. This rotor is mounted to the stator by means of sealed ball bearings.

The stator consists of the housing, the lamination stack, and the windings. The totally enclosed, non-ventilated housing, which protects the motor from dust and other adverse environmental factors, is made of black anodized aluminum for good hat transfer. The silicon steel laminations have eighteen slots, as shown in Figure (21-2) for the samarium-cobalt and strontium ferrite machines. These eighteen slots provide for one slot per phass per pole. In each slot are four coil sides, each coil consisting of four turns, each turn consisting of 12 strands of No. 16 AWG magnet wire. The coils are connected in series into two windings per phase. These windings can be connected in series for low speed, high torque operation or in parallel for high speed, low torque nperation.

Attached to the motor at the end opposite the output shaft end is 3 position sensor. The fuction of this sensor is to measure the rotor position at 30° (electrical) intervals and to transmit this information to

FIGURE (2.1-1) Block Diagram of Motor-Conditioner System

FIGURE (2.1-2) Stator Laminations for Samarium Cobalt and Strontium Ferrite Based Machines
the low-level control electronics for processing. This sensor consists of a set of six magnets attached to the rotor which set up a radial field pattern similar to the main field. On the stator, just outside of these magnets are mounted two sets of three Hall sensors each. Within each set, these sensors are mounted 120 electrical degrees apart. When acted upon by the magnets, which have a flux pattern which changes every 180 electrical degrees, an appropriate change occurs in the electrical oistput every 60 electrical degrees. The second set of Hall-Effect sensors is identical to the first, but is mounted at a position equivalent to 30 electrical degrees away from the first set. This provides a second set of switching signals in the proper phase to provide for advanced firing of the inverter transistors when this is necessary.

The signals from the rotor position sensor, processed by the low-level electronics, control the power electronics so as to apply to the motor the phase current pattern shown in Figure (2.1.3). In this figure, the commutation of the phase currents is accomplished by the three phase inverter/converter (motoring/regenerative braking) bridge comprising the six transistors, Q_{1} through Q_{6}, and the six diodes, D_{1} through D_{6}. The current control is accomplished by the two quadrant chopper comprising transistors Q_{M} and Q_{B} diodes D_{M} and D_{B}.

In the motoring mode the chopper regulates the current to the motor by turning on Q_{M} if the inductor current is too low. When the inductor current has increased by a predetermined increment beyond the set value, Q_{M} turns off, and the inductor current flows through diode D_{M} until it has decreased to the value which causes Q_{M} to turn on. During regenerative braking, the transistor Q_{B} is turned on until the inductor current has risen by an increment above the set value. Q_{B} is then turned off, and the inductor current flows through D_{B} and into the battery.

In the motoring mode, proper switching of Q_{1} through Q_{6} leads to phase a, b and c waveforms such as are idealized in Figure (2, 1-3). In this figure one can see the existence of six distinct armature states. This establishes in the motor a stator (armature) mmf which travels in discrete jumps of 60 electrical degrees. The rotor mmf (magnets) is continually forced to follow that motion. The result is equivalent to a synchronous machine in which the torque angle (between the two mmf's) varies during each switching cycle between an initial 120° and a final 60° electrical angle. For advanced firing of the transistors, this angle varies between 150° and 90° electrical as shown in Figure (2.1-4).

$$
\begin{aligned}
& \text { - . } \because 1 / \mathrm{Hn} \\
& 5 \text {-1.jeif. }
\end{aligned}
$$

MOTOR POWER CONDITIONER SCHEMATIC AND IDEALIZEC MOTOH CURRENTS

FIGURE (2.1-3) Motor-Power Conditioner Network Schematic

FIGURE (2.1-4) Advanaced Firing Concept

The diodes, D_{1} through D_{6}, provide current paths during the switching operation when the inverter transistors are momentarily off. They also function as a three-phase full wave rectifier bridge in the regenerative braking mode. Diode D_{R} provides a path tor the inductor current during the switching instances when the path through the inverter is momentarily blocked.

In order to minimize the power devices used, which reduces cost, and to prevent any accidental firing of Q_{M} and Q_{B} simultaneously, a single transistor was used for both functions. This transistor was switched between the two positions by means of a DPDT relay.

The inductor, L, served to reduce the frequency of the chopper operation, thereby reducing the switching losses. This inductor, consisting of 25 turns of 10 strands of No. 8 AWG magnet wire on a triple thick $\mathrm{L}-10$ core, had an inductance of $425 \mu \mathrm{H}$ at 200A. In order to maintain the hysteresis between turn on and turn off of Q_{M} within 15A, the maximum chopping frequency is about 4.5 KHz .

Each power transistor is driven by a base drive circuit. This circuit receives a signal from the low-level electronics through an optical coupler for voltage isolation and furnishes a current of sufficient amplitude to saturate the power transistors. It is also capable of driving the power transistor base negative with respect to the emitter so as to renove rapidly the stored charge during turn-off. Each base drive circuit is powered by a separate output module of a multiple output d.c. power supply.

In order to prevent excessive voltage spikes during turn-off of the power transistors, each inverter transistor was furnished with a snubber circuit consisting of a diode shunted resistor and a capacitor as shown without detail in Figure (2.1-5). These snubbers were not adequate for the chopper transistor. Therefore, the collector and emitter terminals of this transistor were clamped to the positive and negative busses to further reduce voltage spikes. This method, which is shown in Figure (2.1-6), although very effective in reducing the amplitude of the spikes, caused some increase in switching loss.

The commutation contro! function of the low-level electronics was accomplished by a pair of 256×4 programmable read-only memories (PROMS) type N825126. The configuration of the low-level control electronics is shown schematically in Figure (2.1-7), the eight inputs to these PROMS consisted of the six rotor position sensor outputs together with signals representing the selection of forward/reverse operation and normal/advanced firing of the inverter transistors. Six of the PROM outputs (three from each PROM) were used to control the six inverter transistors. The other output of each PROM was used as an alarm signal to indicate an illegal combination of input signals from the rotor position sensor. Each PROM was equipped with two "inhibit" inputs. One of these inputs was used to shut down the inverter in case of certain alarm signals. The other was used to inhibit the inverter operation in the braking mode.

FIGURE (2.1-5) Snubber Network

FIGURE (2.1-6) Clamping Network

FIGURE (2.1-7) Logic Diagram

The other major component of the low-level electronics package was the accelerator/brake torque control. This control provided the signal to the chopper transistor to maintain the proper current through the system. Two Hall effect current sensors were placed in series with the filter inductor. One of these was used to measure current in the motoring mode, the other in the regenerative braking mode. Eaish of these sensors was buffered by an operational amplifier which also served to balance the output to zero when the inductor current was zero. The output of these buffer amplifiers was compared to the buffered output of the accelerator and brake potentioneters. The difference was fed to a pair of op-amps which contained a small amount of positive feedback so as to saturate either positive or negative with enough hysteresis to establish the desired hysteresis in the inductor current. Details with the necessary schematics are given later in Chapter (4.0).

A signal, taken directly from the brake potentiometer, was amplified and used to control the relay which switches the chopper transistor from the motoring to the braking position. A 500 m second pulse generator was used to turn off the chopper transistor during the switching process from motoring to braking or vice-versa. This insured that all switching was done "dry", and permitted the use of a much smaller relay contact than would otherwise have been possible.

A circuit was also provided to control a relay for switching from parallel to series operation of the motor at low-speed, high-torque operation. Since the drive cycle specifications can be met without series operation, this relay has not been included. However, the inclusion of the cuntrol electronics would make the addition of such a relay a simple matter. The same pulse gei.crator which turns off the chopper transistor during motoring/braking switching is connected to turn the transistor off during series/parallel switching also, so as to insure "dry" switching.

Three protective circuits have been provided, any one of which, when activated, will inhibit the ROMs and turn off the inverter. The first, which has been mentioned above, is activated by the ROMs themselves in case of an illegal rotor position sensor command. The second responds to a measurement of excessive inductor current. The third detects anci responds to an excessive difference between the two current sensors. If any of these alarm signals is activated, an alarm toggle circuit is energized and furnishes the inhibit signal to the ROMs. The low-level electronics package is powered by three separate output modules in the same dc supply package which powers the base drives.

$\underline{2} .2$ MOTOR-CONDITIONER INTERACTION

The electromagnetic interactions between the PCU (power conditioner

GIX SHITC! THREE PHASE INVERTER

FIGURE (2.2-1) Six Switch, Three Phase Inverter.

ominulac mate is
 OF POOR QUALITY

unit) and the machine during motoring are explained by examining the relationship between the stator mmf, produced by the injected phase currents, and the mmf distribution produced by the permanent magnet rotor. The stator mmf is produced by the injected three phase currents. The injection of these currents is accomplished by the three phase inverter bridge shown in Figure (2.2-1). The injected phase currents are shown as rectangular blocks of current of 120 electrical degrees duration. The phase relationship between these currents and the open circuit phase to neutral emfs during the motoring mode of operation are given in Figures (2.2-2) and (2.2-3) for 0° and 30° commutation advance, respectively. The status of the six inverter transistors during a complete ac cycle are also given in these figures. Inspection of these figures reveals that each ac cycle can be divided into six discrete current states of 60° electrical duration.

In machines with one slot per pole per phase, as is the case here, the stator winding, when carrying such currents, produces a spatial mmf distribution in the air-gap, such as shown in Figure (2.2-4). This mmf interacts with the spatial air-gap mmf distribution produced by the permanent magnet rotor. These mmfs produce torque on both the rotor and stator assemblies that is proportional in magnitude to the product of the positive mmf peaks times the sine of the angle between them. The magnitude of the stator mmf is proportional to the magnitude of the current flowing in the stator winding, while the rotor mmf is constant because it is supplied by permanent magnets (poles). Therefore, the machine torque is a function of only the stator current and the displacement between the rotor and stator mmfs, as shown in Figure (2.2-5). Examination of the torque equation giveri in this figure reveals that the average machine torque is maximized by centering the stator phase current conduction period around the point where the rotor and stator mmfs are displaced by 90 electrical degrees, that is zero commutation advance. The conduction period ciuring each current state is for 60 electrical degrees, therefore for maximum average torque, the phase current is switched "on" when the mmfs are 120 degrees apart, and switched "off" when this angle closes to 60 degrees. During one complete period of the stator phase currents (360 electrical degrees) this pattern is repeated six times, resulting in a stator mmf which takes discrete jumps (or hops) of 60 electrical degrees at a time as shown in Figure (2.2-4). The six jumps per cycle result in the idealized torque profile shown in Figure (2.2-5). Machines with mmfs of high harmonic content, on the other hand, produce torque profiles which are more triangular in nature with sharper peaks depicted by the dashed line.

0° Commutation Advance
FIGURE (2.2-2) Inverter Switching Sequence During Motoring, 0° Commutation Advance.

FIGURE (2.2-3) Inverter Switching Sequence During Motoring, 30° Commutation Advance

FIGURE (2.2-4) Discrete Hopping Nature of the Stator MMF.

FIGURE (2.2-5) Machine Torque Production

The above description is valid for most loads encountered during the motoring mode of operation including the rated 15 hp point. Under heavy loads, however, such as the peak 35 hp point, the phase currents are injected 30 electrical degrees earlier than in the previous case in order to reduce the magnitude of the phase back emfs opposing the current buildup. This advance in the injection of the phase currents with respect to the phase back emfs is referred to as advanced firing or 30 degree commutation advance. The effects of advanced firing on the overall sysiem performance are discussed in greater detail in the Section (2.3).

In terms of machine torque production, however, the effect of advancing the firing angle is a dramatic increase in machine torque at a given speed due to a higher current buildup, but with a much larger torque ripple. The higher machine torque is due to the increased rate of current buildup in this case.

In tarms of the relationship between the stator and rotor mmfs, the advanced firing means that at the beginning of a state these mmfs are separated by 150 degrees electrical. Since the period of a given current state lasts for 60 electrical degrees, the angle between the two MMF's shrinks to 90 degrees electrical at the end of that state. Therefore at the beginning of a state, the electromagnetic torque, T_{em}, is given by

$$
T_{e n l}=k M_{R} M_{S} \sin 150^{\circ}
$$

while at the end of a state $T_{e m}$ becomes

$$
T_{e m}=k M_{R} M_{S} \sin 90^{\circ}
$$

This pattern is repeated six times per electrical cycle, resulting in the idealized torque profile given by the solid line in Figure (2.2-6). The dashed line represents the corresponding torque profile. For zero commutation advance with the stator and rotor magnitudes of the mmfs M_{S} and M_{R} held constant. Notice that the commutation advance of 30 degrees results in much larger torque ripple (50\%) versus (13.48) for zero advance. There is also a decrease in the average value of the torque constant (sensitivity). In the case of zero advance, the average torque is given by

$$
\begin{equation*}
\text { Average [} \left.T_{e 0_{0^{\circ}}}\right]::\left(6 \mathrm{KM} \mathrm{~S}_{\mathrm{R}} / 2 \pi\right) \delta^{120^{\circ}} \sin \theta d \theta=0.95 \mathrm{~s} \text { p.11. } \tag{2.2-1}
\end{equation*}
$$

[^1]For the case of advanced firing we have

FIGURE (2.2-6) Idealized Machine Toratie Profiles with 0° and 30° Commutation Advance

$$
\begin{equation*}
\text { Average }\left[T_{e m_{30^{\circ}}}\right]=\left(6 \mathrm{kM}_{S^{M}} / 2 \pi\right) \int_{30^{\circ}}^{90^{\circ}} \sin \theta d \theta=0.827 \mathrm{p} . \mathrm{u} . \tag{2.2-2}
\end{equation*}
$$

Therefore the percent reduction in the ayerage torque (horsepower) at a given operating point is

$$
\begin{equation*}
\text { Torque Reduction }=[(0.955-0.827) / 0.955] \times 100=13.48 \tag{2.2-3}
\end{equation*}
$$

It will be shown later in this report that this small reduction in the average value of the electromagnetic torque constant is more than compensated for by the much larger values of phase currents, and hence M_{S}, that can be achieved by advancing the firing by ${ }^{3} 0$ degrees at a given machine speed. In fact it will be demonstrated later by means of both test and simulation results that both the samarium cobalt and strontium ferrite machines could not have reached the peak one minute rating of 35 hp without this shift in the firing angie.

It must be emphasized that the torque profiles given in Figures (2.2-5) and (2.2-6) are only approximate. This is due mainly to the following three factors:

1. The phase currents cannot be switched instantaneously due to winding inductances. Consequently the mmfs do not jump instantaneously during the transition from one current state to another. This point is illustrated in Figure (2.2-7) by means of the idealized and the more realistic torque profiles during advanced firing. The realistic torque profile reilects the fact that in ar. actual machine the mmf's do not change instantaneously and hence the length of the commutation period, ${ }^{6} c$, is 3 reater than zero.
2. The phase voltages and currents contain harmonics which influence the machine torque. The phase voltages were assumed sinusoidal and the currents rectangular as shown in Figures (3.2-2) and (2.2-3), for purposes of this initial analysis.
3. The effects of magntic saturation in the machine are neglected for purposes of this initial analysis. These effects are all included later in Chapters (30) and (4.0) on the dynamic simulation model of the system.

TOROUL. I'ROFIIF WITH 30° e ADVANCED COMLTTATION

FIGURE (2.2-7) Comparison between Idealistic and Realistic Torque Profile with 30° Commutation Advance

2.3 DISCUSSION OF IMPACT OF KEY DESIGN PARAMETERS ON SYSTEM RATING

The question of whether or not a given machine-power conditioner design can meet its specified ratings depends largely on the behavior of the phase currents during the commutation period. Four factors which strongly influence this behavior are: 1) the maximum de supply voltage 2) the winding inductances, 3) the induced winding emf waveforms, and 4) the instant in time at which commutation is initiated. In this work, the de supply voltage was constrained to a maximum value of 120 volts. Therefore, this section will concentrate on the impact of the remaining three factors on the system performance and rating, subject to this dc voltage constraint. The analysis presented in this section is for illustrative purposes only. Details on the computer aided design and analysis performed in support of this project are given in Chapters (3.0) and (4.0).

The key factor affecting the maximum power rating of a given machine-power conditioner system is whether or not a current of a specified magnitude can be successfully commutated from one phase to another at the rated speed. If for example, the winding inductances are too large, then the period required to perform this commutation may exceed the maximum time allowed for this process at the given speed. In such cases, the phase currents would not build up to the specified values, and hence the machine output power would be reduced. The emfs and commutation angle can have similar impact on the machine output.

2.3.1 DESCRIPTION OF COMMUTATION

The rectangular block (wave) nature of the three phase machine currents produces a stator mmf which ideally takes instantaneous jumps of sixty electrical degrees at the onset of each current state. In other words, the phase currents are commutated instantaneously. In reality, the stored magnetic energy associated with the machine windings, due to the winding currents, precludes the possibility of such instantaneous jumps of the stator mmf. The magnitude of the stored energy is proportional to the values of the winding inductances and proportional to the square of the winding currents. Therefore, the winding inductances play a key role in how close to the ideal case would a givell machine-power conditioner system behave especially at peak ratings where the winding currents reach their maximum.

Another factor which affects the overall machine-power conditioner rating anc serformance is the shape and magnitude of the induced winding emf waveforms. In order for the machine to cperate in the motoring mode, the line to line induced winding emfs must be lower than the battery voltage minus all the ohmic (iR) drops. The rate of
current buildup during this mode of operation is a linear function of the difference between the battery voltage (minus all iR drops), and the opposing winding emf. Since the magnitudes of the winding emfs are linearly proportional to the machine speed, the rate of current buildup is therefore inversely proportional to the machine speed. Consequently, both the shape and magnitude of the emf waveform at a given speed ard load are important factors that need to be examined in such systems.

In addition to varying the machine inductances and emfs, one can control the maximum-power rating of the machine-power conditioner system by varying the instant of firing of the inverter transistors with respect to the induced phase winding emfs. The instant of this firing is referred to here as the commutation angle, and was discussed in the previous section.

The impact of these three factors or the system ratings and performance will be illustrated here by means of a typical example. In particular, the process of commutating the current from Phase a to Phase b will be examined in detail.

The current pattern in the machine-power conditioner unit during the transition from positive current in Phase a to positive current in Phase b is stown in Figure (2.3-1). During this commutation period, the current in Phase a decays from its initial average value of 1 pu to zero, while the current in Phase b builds up from a value of zero to 1 pu. The relationship between the phase currents and emfs during this period is displaved in Figure (2.3-2) for the case where there is no commutation advance. The commutation period, ' C ' in this case, is defined as the time interval between the points in time at which transistor Q_{1} is switched off (start of commutation) and the point in time at which H_{4} ceases conduction (end of commutation).

There are three possible commutation patterns depending upon speed, load, etc. These three patterns are shown in Figure (2.3-3). The first of these, Case 1, occurs when the decaying current, i_{a}, decreases at a faster rate than the rising current, i_{b}. This occurs when the machine is operating near maximum speed. The change in the slope of the rising current at the point in time, $t=t_{2}$, is due to the turn off of diode D_{4} when i_{a} reaches zero. Notice that this causes the chacteristic notch in the current waveform, see Figure (2.3-4). In the second case, the magnitudes of the slopes of i_{a} and i_{b} are cqual. This is due to equal time constants associated with the transients of the decaying and rising currents. In this case there is no reflected transient in i_{c}. The third case occurs at low machine speeds when the rising current, i_{b}, increases at a more rapid rate than the rate at which the current, i_{a}, decreases. Notice that in this case the current transient is a spike rather than a notch.

-...-.... Increasing Phase Curr:nt
———. Decreasing Phase Current

FIGURE (2.3-1) Current Patterns During the Commutation of Current from Phase (a) to Phase (b)

Commutation of Phase Currents with 0° Advance

$$
\begin{aligned}
& e_{a}=E \sin (\omega t+30-\delta c) \\
& e_{b}=E \sin (\omega t-90-\delta c) \\
& e_{c}=E \sin (\omega t-210-\delta c)
\end{aligned}
$$

FIGURE (2.3-2) Status of Phase Currents and EMFs During Commutation of Phase Current From Phase (a) to Phase (b), With a Commutation Advance Angle, $\delta_{c}=0^{\circ}$.

Phase Current Spikes During Commutation

FIGURE (2.3-3) Behaviour of Phase Currents During Commutation

COMMUTATION TIME CONSTANTS DEPICTED BY OSCILLOGRAM OF PHASE CURRENT

FIGURE (2.3-4) Actual Shape of the Phase Current at Rated Load Showing Commutation Periods, τ_{1} and τ_{2}.

Attention here will be focused on the first case, since it is applicable at the maximum power points, and therefore is important in determining the maximum rating of a given MPC system. The commutation period will be divided into two regions. The first, ${ }^{\tau}{ }_{1}$, corresponds to a period in which i_{a} decays to zero through diode, D_{4}, while the second covers the period after D_{4} turns off. This is the time during which i_{b} is still increasing, and occurs before diode, D_{R}, turns off, see Figure (2.3-3). The actual shape of the Phase current under these conditions is shown in Figure (2.3-4).

Simplified network models of the machine-power conditioner during these two periods are giver in Figures (2.3-5) and (2.3-6), respectively. Notice that during both τ_{1} and τ_{2} the chopper inductor, L_{CH}, is effectively shorted by the diode, D_{R}. This is due to the fact that there is no path for the entire chopper inductor current through the inverter during the commutation period. Immediately after the completion of commutation, diode, D_{R}. turns off and the circuit of Figure (2.3-7) can be used to approximate the MPC system performance. The machine model per Phase, in all three cases consists of a series connected resistance, inductance, and induced emf.

THE FIRST COMMUTATION INTERVAL, τ_{1}
The first commutation interval, τ_{1}, lasts from time, $t=t_{1}$, to $t=$ t_{2}, see Figure (2.3-3). This is the period during which both diodes, D_{4} and D_{R}, are conducting. During this ieriod, the Phase a current decays through diode, D_{4} while thi Phase b current increases through transistor Q_{2}. The diode, D_{R}, provides a path for "he chopper inductor current which is larger than the current through Phase b. The current passing through D_{R} is equal to the difference between the choke current and the Phase b current. To simplify the analysis, and to avoid obscuring the discussion on the effects of the various factors on the system rating, the voltage drops in the switching elements will be neglected in this discussion. However, these voltage drops were not neglected in the design calculations. It also must be pointed out that these voltage drops are included in the detailed computer aided analysis of the system performance which is given in Chapter (4.0).
equivalent metwork mooel of mpC system - during commtaition

FIGURE (2.3-5) Equivalent Circuit Model of MPC System During Commutation of Current from Phase a to Phase b Before the Recovery of Diode, D_{R} and D_{4}.

FIGURE (2.3-6) Equivalent Circuit Model of MPC System During Commutation of Current from Phase a to Phase b Before the Recovery of Diode, D_{R} and, After Recovery of Diode, D_{4}.

FIGURE (2.3-7) Equivalent Circuit Model of MPC System at Completion of Commutation, Diodes, D_{R} and D_{4} Recovered.

Based upon the above mentioned assumptions, one can obtain the time derivative of i_{b} by writing two Kirchoff voltage loop equations for the loops shown in Figure (2.3-5), in adrition to one Kirchoff current equation at the neutral. After some simplifications this yields the tollowing:

$$
\begin{equation*}
\left(d i_{b} / d t\right)=\left[(2 / 3) V_{B A T}-R_{p} i_{b}-e_{b}\right] / L_{p} \tag{2.3-1}
\end{equation*}
$$

The Phase to reeutral voltages, e_{a}, e_{b}, and e_{c}, are defined in Figure (2.3-2), and below as follows:

$$
\begin{align*}
& e_{a}=E \sin \left(\omega t+30^{\circ}-\delta_{c}\right) \tag{2.3-2}\\
& e_{b}=E \sin \left(\omega t-90^{\circ}-\delta_{c}\right) \tag{2.3-3}\\
& e_{c}=E \sin \left(\omega t-210^{\circ}-\delta_{c}\right) \tag{2.3-4}
\end{align*}
$$

where, δ_{c} is the commutation advance in electrical degrees. The amplitude of these eri: E, is linearly proportional to the machine speed, $N(R P M)$. The neasured emf constants $E_{s c}$ and $E_{s F}$ for the samarium cobalt and strontrium ferrite machines respectively are

$$
\begin{align*}
& E_{S C}=0.00689 \mathrm{~N} \text { Volts } \tag{2.3-5}\\
& E_{\text {SF }}=0.00600 \mathrm{~N} \text { Volts } \tag{2.3-6}
\end{align*}
$$

The measured values of effective winding inductances (phase-to-neutral $=$ half-line-to-line) for the two machines are designated as $L_{P_{S C}}$ and $L_{P_{S F}}$ for the samarium cobalt on strontium ferrite machines, respectively, and have values as follows:

$$
\begin{array}{ll}
L_{P_{S C}}=44.95 & u H \\
L_{P_{S F}}=46.00 & u H \tag{2.3-8}
\end{array}
$$

The phase to netural winding resistances were also measured and were found to be equal to

$$
\begin{array}{ll}
R_{P_{S C}}=0.00235 & \text { Ohms } \tag{2.3-9}\\
R_{P_{S F}}=0.00245 & \text { Ohms }
\end{array}
$$

Substitution of these machine parameters, in conjunction with an assumed battery voltage of 115 volts yields two expressions for the time derivative of i_{b}, namely

$$
\begin{align*}
\mathrm{di}_{b} /\left.\mathrm{dt}\right|_{S C} & =\left[76.67-0.00235 i_{b}-0.00689 \mathrm{~N} \sin \left(\omega t-90^{\circ}-\delta_{c}\right)\right] / 44.95 \times 10^{-6} \\
& =1.706 \times 10^{6}-52.28 i_{b}-153.3 \mathrm{Nsin}\left(\omega t-90^{\circ}-\delta_{c}\right) \tag{2.3-11}
\end{align*}
$$

and

$$
\begin{align*}
d i_{b} /\left.d t\right|_{S F} & =\left[76.67-0.00245 i_{b}-0.006 N \sin \left(\omega t-90^{\circ}-\delta_{c}\right)\right] / 46.00 \times 10^{-6} \\
& =1.667 \times 10^{6}-53.26 i_{b}-130.4 N \sin \left(\omega t-90^{\circ}-6_{c}\right) \tag{2.3-12}
\end{align*}
$$

Inspection of Figures (2.3-2) and (2.3-3) reveals that at the beginning of the commutation period under consideration $t=t_{1}$, wt equals 120 electrical degrees. Substitution of $\omega t=120$ electrical degrees into Equations (2.3-11) and (2.3-12) gives the initial rate of current buildup at the start of the commutation period. The value of this initial di/dt is a key factor in determining the peak rating of the MPC system. This is the case because the rate of current rise is maximum at this point due to the fact that the induced emf opposing current buildup as well as the voltage drop from the winding resistance are both at their minimums. Because of the finite amount of time available to commutate the Phase currents, the peak rating of such MPC systems at a given speed is directly related to the values of the initial rates of current buildup.

In order to illustrate these points, Equation (2.3-11) should be used to approximate the behavior of i_{b} during the first commutation interval, ${ }^{1}{ }_{1}$, for the samarium, cobalt machine. Let it be assumed that the maximum period available during this interval is thirty electrical degrees, which is a reasonable assumption based upon experience with oscillograms of the Phase currents of such MPC systems at rated condition. Based upon this assumption, the maximum time available to complete is is a function of machine speed and can be written as follows:

$$
\begin{equation*}
\tau_{1_{\text {max }}}=1.6667 / \mathrm{N} \text { Seconds } \tag{2.3-13}
\end{equation*}
$$

where N is the speed in RPM.
Because of the time varying nature of the induced Phase emfs, the time derivative of i_{b} given in Equation (2.3-11) is also time varying. Therefore, in order for one to obtain an average value of this derivative neglecting R_{p}, the average value of e_{b} during τ_{1} is obtained as follows:
2. Eor Zere Commutation_Advance_8 $=0^{\circ}$
150°
$e_{b_{\text {AVG }}}=6 / \pi \rho\left[153.3 \mathrm{~N} \sin \left(\theta-90^{\circ}\right)\right] d \theta$
120°
$=107.31 \mathrm{~N}$ Volts
Therefore, the average value of $\mathrm{di}_{\mathbf{b}} / \mathrm{dt}$ as a function of machine speed, neglecting R_{P}, becomes

$$
\begin{equation*}
d i_{b} /\left.d t\right|_{A V G}=\left(1.706 \times 10^{6}-107.31 \mathrm{~N}\right) \text { Amperes } / \text { Second } \tag{2.3-14}
\end{equation*}
$$

b. For Thirty Degree Commutation Advance $\delta_{c}=30^{\circ}$

$$
e_{b_{A V G}}=6 / \pi \int_{120^{\circ}}^{150^{\circ}}\left[153.3 \mathrm{~N} \sin \left(\theta-120^{\circ}\right)\right] d \theta
$$

$$
\begin{equation*}
=39.23 \mathrm{~N} \quad \text { Volts } \tag{2.3-15}
\end{equation*}
$$

and therefore one obtains the following:

$$
\begin{equation*}
d i_{b} /\left.d t\right|_{A V G}=\left(1.706 \times 10^{6}-39.23 \mathrm{~N}\right) \text { Amperes/Second } \tag{2.3-16}
\end{equation*}
$$

The values of i_{b} at the end of ${ }^{\tau} 1$ max can be now approximated as follows: a) for $\delta_{c}=0^{\circ}$

$$
\begin{align*}
\left.i_{b}\left(t_{2}\right)\right|_{\delta_{c}}=0^{\circ} & ={ }^{\tau} 1_{\max }\left[\mathrm{di}_{b} /\left.\mathrm{dt}\right|_{A V G, \delta_{c}}=0^{\circ}\right] \\
& =\left(2.84 \times i 0^{6} / \mathrm{N}-178.8\right) \text { Amperes } \tag{2.3-17}
\end{align*}
$$

b) for $\delta_{c}=30^{\circ}$

$$
\begin{align*}
\left.i_{b}\left(t_{2}\right)\right|_{\delta_{c}}=30^{\circ} & =i_{i_{\max }}\left[\mathrm{di}_{b} /\left.\mathrm{dt}\right|_{\left.A V G, \delta_{c}=30^{\circ}\right]}\right. \\
& =\left(2.84 \times 10^{6} / \mathrm{N}-65.38\right) \text { Armperes } \tag{2.3-18}
\end{align*}
$$

Notice that advancing the firing of the inverter transistors by 30 electrical degrees increases the final value of the rising Phase current during the first commutation period, ${ }^{2} 1$.

A better understanding of the interactions between $N,{ }^{\tau} 1_{\text {max }}{ }^{8}{ }_{c}$, $d i_{b} / d t$, and i_{b} is possible by plotting the quantities defined in Equations (2.3-13), (2.3-14), (2.3-16), (2.3-17), and (2.3-18) versus machine speed, N, as shown in Figure (2.3-8). Notice that the maximum available time to complete the first commutation period, ' ${ }_{1}$ max' is inversely proportional to the machine speed, N. Notice, using the same assumptions as above, one can see that the average value of the time derivative of the increasing fhase current also decreases with machine speed, but at a linear rate. Since the amount of current buildup during ${ }^{1} 1_{\text {max }}$ is a function of the product of ${ }^{1} 1_{\text {max }}$ times the average value of the derivative of the Phase current with respect to time, it is easy to see that the magnitude of this current buildup decreaser very rapidly with increasing N. This behavior is clearly shown in Figure (2.3-8).

EFFECT OF COMMUTATION ADVANCE ON MACHINE RATING

The effect of the commutation advance angle, δ_{c}, on the magnitude of current buildup is also clearly shown in Figure (2.3-8).

Notice that for $\delta_{c}=30^{\circ}$, the value of the current buildup is consistantly higher than that for $\delta_{c}=0^{\circ}$. Since the power rating of the MPC system is proportional to the sum of the products of the phase currents and emfs, the advanced firing case, that is wher $\delta_{c}=30^{\circ}$, increases the MPC system power rating over the entire speed range.

EFFECT OF WINDIAG INDUCTANCE ON MACHINE RATING

The effects of machine winding inductances on the system rating can be deduced from Equation (2.3-1) and Figure (2.3-8). Notice that the rate of current buildup in a phase is inversely proportional to the value of effective phase to neutral winding inductance. Therefore, both the slopes and inixial values of $\left(\mathrm{di}_{\mathrm{b}} / \mathrm{dt}\right)$ for $\delta_{c}=0^{\circ}$ see $\delta_{c}=30^{\circ}$, see Figure (2.3-8), are inversely proportional to the value of the inductance. Consequently, high values of effective phase to neutral machine inductance will result in smaller current buildups, at a given frequency, than would be the case with lower inductances. Therefore, it results in a lower MPC system power rating at that speed (frequency). Winding inductances can be reduced by decreasing the total number of turns since the inductance is proportional to the square of the number of series turns. Inductances can also be reduced through redesigning slot dimensions and other geometries of the magnetic ciruit. The reduction of machine winding inductances and the impact of these reductions on the overall MPC system performance and ratings are analyzed in detail in Chapters (3.0) and (4.0) of this report, by means of sophisticated magnetic field analysis and r.: chine-power conditioner dynamic simulation techniques.

IMPACT OF MACHINE PHASE TO NEUTRAL EMF WAVESHAPES ON SYSTEM RATINGS

The discussion up to this poirit has only been centered on sinusoidal phase-to-neutral emf waveforms as shown in Figure (2.3-2). However, in machines with fewer number of slots per pole per phase, such as the case here, the phase-to-neutra! voltage will contain a strong influence of some of the low order odd harmonics. This is especially the case if no means for thamonic reduction is employed. The third harmonic can be eliminated by a coil pitch of 120 electrical degrees (2 slots). Also, this harmonic is absent at the line to line terminals of a Y-connected armature. On the other hand, the harmonics $(5,7,11,13, \ldots)$ in the gap flux density distribution cannot be reduced by short chording for such arriatures with one slot per pole per phase of the type at hand. In this case, skewing or fractional slot windings are required. These points concerning the emf waveform are elaborated on further in Chapter (3.0).

FIGURE (2.3-9) Effect of the Third Harmonic Component on the Induced Phase EMF During the First Commutation Period - Commutation Advance $\delta_{c}=0^{\circ}$ and 30°.

The impact of the emf harmonics can be deduced by examining Figure (2.3-9) which gives an example of a phase emf with a fundamental and a third harmonic component. The sum of these two components is also plotted in this figure. Inspection of this figure reveals that the third harmonic increases the phase emf during commutation, and therefore decreases the rate of current buildup for both cases of zero and thirty degree commutation advance. Therefore, the total current buildup and maximum power rating at a given speed is reduced by this harmonic. The impact of other harmonics on the rate of current buildup can be determined in a similar manner. The harmonics in the emf waveforms of the samarium cobalt and strontium ferrite machines were reduced by skewing the stator core as will be detailed in Chapter (3.0). The proper degree of skewing was determined by means of finite element analysis of the magnetic field in these machines. in conjunction with a dynamic model of the machine power conditioner (MPC) system which is given in Chapters (3.0) and (4.0).

THE SECOND COMMUTATION INTERVAL τ_{2}

The second commutation interval begins when the decaying Phase current reaches zero, (diode D_{4} turns off). The simplified circuit model for this case is given in Figure (2.3-6). The rate of current rise in this case becomes:

$$
\begin{equation*}
d i_{b} / d t=\left[V_{B A T}-2 R_{p} i_{b}+e_{c}-e_{b}\right] /\left(2 L_{p}\right) \tag{2.3-19}
\end{equation*}
$$

This rate of current rise is considerably less than that during the first commutation interval. For this reason, and because the majority of the current buildup occurs during the first commutation period, the second commutation interval, ${ }^{2} 2^{\prime}$ will not be considered further.

COMPLETION OF COMMUTATION

Commutation is completed as soon as the diode, D_{R}, recovers (turns off). This occurs when the increasing (rising) phase current reaches the value of the chopper inductor currrent. After D_{R} turns off, the chopper inductor is no longer shorted, but is now in series with two legs of the three-phase machine armature winding and the battery as shown in figure (2.3-7). In this case, the time derivative of i_{b} beomes:

$$
\begin{equation*}
d i_{b} / d t=\left[V_{B A T}-i_{b}\left(R_{C H}+2 R_{p}\right)+e_{c}-e_{b}\right] /\left(L_{C H}+2 L_{p}\right) \tag{2.3-20}
\end{equation*}
$$

In the two systems under consideration here, the chopper inductance, L_{CH}, was chosen roughly ten times the value of L_{p} in order to keep the switching losses within reasonable bounds. For this reason, the rate of current rise during this period is relatively low in comparison with the previous two periods, and therefore has littie impact on the MPC system rating.

The above discussions have highlighted the impact of various parameters on the MPC system performance and ratings. It was shown that the machine inductances and emfs are critical factors in determining whether or not a givan power and speed rating could be met by a given MPC system design. It was also demonstrated that the peak power rating at a given speed could be significantly increased by advancing the firing of the inverter switcles by thirty electrical degrees.

The analysis presented in this section required a number of aproximations and simplifications as described earlier. Hence, this analysis was intended only for qualitative and illustrative purposes. The actual analysis of the two machine systems was performed using two computer aided design tools. The first of these is a finite element magnetic field analysis set of programs (package) developed for use in this investigation. This package was used in the determination of machine tlux densities, winding inductances and induced emf waveforms. This analysis included the effects of magnetic saturation on these parameters. The calculated machine parameters were used in a detailed dynamic simulation model of the MPC system which included the voltage drops in the power switches, as well as the harmonics in the induced armature emfs. These computer aided analysis techniques and their applications to the design and analysis of the two systems at hand are discussed in detail in Chapter (3.0).

In this chapter, preliminary designs for samarium cobalt based, and strontium ferrite based machines are arrived at. These designs are analyzed with the help of computer aided design tools to ascertain their suitability for meeting the rated (15 hp) and peak power (35 hp) requirements, when operating in conjunction with an electronic power conditioner. Based on the computer aided analysis both machine designs are finalized for implementation, ard the subsequent final machine parameters and hardware are described.

3.1 PRELIMINARY DETERMINATION OF MAGNETIC CIRCUIT GEOMETRY AND WINDING PARAMETERS

An outline of the basic approach used in designing a magnetic circuit geometry and winding parameters $[1,2]$ shall be considered in this section.

The main objective of producing a motor with a commercially feasible combination of cost, efficiency, power rating, size, and weight for use in electric passenger vehicles was borne in mind. In particular, the specifications of the customer were:

1. an electronically commutated permanent magnet dc machine for operation in motoring and generating modes,
2. a nominal voltage rating of 120 volts,
3. a design adaptable to voltages ranging from $96 v$ to 240 v ,
4. a design allowing for proper motor operation at voltage down to 60° of nominal to allow for battery voltage variations,
5. batteries used as the power (voltage) source,
6. an output power of $15 \mathrm{hp}(11.2 \mathrm{kw})$ for 2 hours at a vehicle speed of $55 \mathrm{mph}(86 \mathrm{~km} / \mathrm{hr}$).
7. operation as both motor and generator for 1 minute at 35 hp $(26.1 \mathrm{kw}$) at a vehicle speed of 30 mph ($48 \mathrm{~km} / \mathrm{hr}$), and
8. shaft speed and torque left to the discretion of the designer.

With the above specifications, the following steps were applied to come up with a suitable magnetic circuit geometry and winding design:

ORIGINAL PAGE IS OF POOR QUALTTY

STEP 1 :
Consider the main dimensions of the machine; that is, D, the stator bore diameter, and L, the stator core length. The total flux (or magnetic loading) around the stator periphery at the airgap is given by

$$
\begin{equation*}
M_{L}=\rho \phi \tag{3.1-1}
\end{equation*}
$$

where $p=$ number of poles, and $\phi=$ flux per pole.
The total current (or electric loading) fiswing around the stator periphery is given by

$$
\begin{equation*}
E_{L}=\mathrm{Cl}_{\mathrm{C}} \tag{3.1-2}
\end{equation*}
$$

where C is the total number of active conductors (in this type of machines, two thirds of the total conductors are active at any time, that is, current carrying conductors around the periphery), and ${ }^{\prime} C$ is the current in each active conductor.

The average flux density, B_{av}, at the airgap is thus given by

$$
\begin{equation*}
B_{a v}=\rho \phi / \pi D L=\phi / \tau L \tag{3.1-3}
\end{equation*}
$$

where $\tau=\pi \mathrm{D} / \mathrm{p}$, is the pole pitch. The current density at the stator periphery, J_{S}, is given by

$$
\begin{equation*}
J_{S}=C C_{C} / \pi D \tag{3.1-4}
\end{equation*}
$$

Now, the power developed in the armature, P_{a}, is given by

$$
\begin{equation*}
P_{a}=E I_{a}=\phi C \omega P I_{a} / a \tag{3.1-5}
\end{equation*}
$$

where ω is the speed of the rotating periphery of the rotor in mechanical rad/sec, a is the number of parallel paths in the armature winding, ${ }^{\prime} a$ is the armature current, and E is the machine induced voltage. Rewriting F_{a} as a function of the magnetic and electric loadings, we have

$$
P_{a}=(p \phi)\left(C l_{a} / a\right) \omega=(p \phi)\left(C l_{C}\right) \omega
$$

where $I_{C}=I_{a} / a$. Therefore, it follows that

$$
\begin{equation*}
P_{a}=M_{L} E_{L} \omega \tag{3.1-6}
\end{equation*}
$$

Expressing this power in terms of the machines main dimensions, one can write

$$
\begin{gather*}
P_{a}=\left(\pi D L B_{a v}\right)\left(\pi D J_{S}\right)=K_{0} D^{2} L \omega \tag{3.1-7}\\
\text { where } K_{0}=\pi^{2} B_{a v} J_{S} .
\end{gather*}
$$

Hence, the power developed in the armature is proportional to the shaft speed, ω, stator core length, L, and square of the stator bore diameter, D. However, the volume of the active portion of the machine is $\left(\pi D^{2} L / 4\right)$. Therefore, from Equation (3.1-7), this volume, Vol., becomes

$$
\begin{gather*}
\text { Vol }=K_{1} P_{a} / \omega \tag{3.1-8}\\
\text { where } K_{1}=\pi / 4 K_{0} .
\end{gather*}
$$

Equation (3.1-8) demonstrates that the volume of the active portion of the machine is inversely proportional to the speed. Thus, by maintaining a constant output, a machine designed to operate at a greater speed will have a smaller size and hence entail lesser cost as opposed to a machine designed to operate at a lesser speed. Therefore, in reducing the size, a designer selects the highest practical speed taking into account the limitations of mechanical stresses, and rotational loss considerations (bearings, windage, etc.).

In addition, given that the volume varies inversely with K_{0}, the size (and consequently the cost) of the machine is reduced by making K_{0} as large as possible. Recall that K_{0} is proportional to the product of the magnetic and electric loadings for a given machine.

Of course, the magnetic loading is dependent on the maximum flux density in the iron parts, iror losses, and magnetizing current. The heat dissipated per unit area of stator surface is proportional to the electric loading. Hence, in order to minimize heat dissipation, the electric loading must be reduced. Otherwise, forced ventilation would be required. For our electronically commutated motor, the option of using forced air cooling is permitted if the need arises. The electric loading is dependent on the number of conductors per slot, and the current per conductor in such slots. The number of conductors per slot is dependent on a factor known as the fill factor, and a useful rule of thumb is that the fill factor should not exceed 65% for classes of machines such as this one. It should be brought to the reader's attention that the fill factor for round conductors is lower than that factor for rectangular conductors.

With the above rules in mind, the following basic parameters concerning the samarium cobalt machine of Phase (II) were chosen. This choice is based on experience with such designs:

1. number of poles, $p=6$,
2. number of teeth, $N_{t}=18$,

URIGINAL PAGE 13
 OF POOR QUALITY

3. pole span, $P_{S}=0.666$, notice that the pole span here is the ratio of the pole width to pole pitch,
4. lamination axial length (stack height), $S_{h}=10.16 \mathrm{~cm}(4.0 \mathrm{in})$,
5. Stator outer diameter, $D_{o s}=16.556 \mathrm{~cm}(6.518 \mathrm{in})$, and
6. Stator inner diameter, $D_{\text {is }}=7.777 \mathrm{~cm}$ (3.062 in).

Consider the permanent magnet (pole) as shown in Figure (3.1-1). The magnet (pole) width, M_{w}, is given by the sum of the number of magnet pieces bonded together times the axial depth (width) per magnet. That is, for a pole consisting of 4 pieces, of 0.9 in depth for each, $M_{w}=$ (0.9)(4) $=3.6$ in (9.14 cm). The minimum height of the pole, based on the geometry of Figure (3.1-1), is $H_{\min }=0.393$ in $(0.99 \mathrm{~cm})$. The maximum height of the pole, based on the same figure, is $H_{\text {max }}=0.49$ in (1.24 cm). The radial distance from the bottom of the magnet (pole) to the rotor center, based on Figure (3.1-1), is $R=0.975$ in (2.48 $\mathrm{cm})$. The rotor outer diameter, see Figure (3.1-1) is

$$
D_{\text {or }}=2\left(H_{\text {max }}+R\right)=2.93 \text { in }(7.44 \mathrm{~cm}) .
$$

A nonmagnetic stainless steel sleeve was used to secure the poles firmly on the rotor. An outer sleeve diameter, $D_{\text {slv }}$ of 3.0 in (7.62 cm) implies a sleeve thickness. $T_{\text {spl }}$ as follows

$$
T_{s \ell v}=\left(D_{s \ell v}-D_{o r}\right) / 2=0.035 \mathrm{in} .(0.0889 \mathrm{~cm})
$$

Thus the clearance between the rotor and stator, C_{ℓ}, becomes

$$
C_{\ell}=\left(D_{\text {is }}-D_{s \ell v}\right) / 2=0.031 \mathrm{in} .(0.0787 \mathrm{~cm})
$$

and the nonmagnetic gap (air + sleeve), which is equivalent to air magnetically, is

$$
G_{a p}=T_{\text {sev }}+C_{\ell}=0.066 \mathrm{in} .(0.1676 \mathrm{~cm})
$$

pole pitch, $\tau_{p}=\pi D_{\text {is }} / p=1.6032 \mathrm{in} .(1.072 \mathrm{~cm})$
Having determined the magnet, rotor, and stator bore dimensions, the operating point of the permanent magnet can now be found as described next in Step 2.

ORIGINAL PAGE IS OF POOR QUALITY

typical radial magnet-rotor pole gegmetry

FIGURE (3.1-1) Schematic of Permanent Magnet

ORIGINAL PAGE IS
 OF POOR QUALITY

STEP 2:
Now one proceeds to calculate the magnet operating point as follows: Based on Figure (3.1-1), the magnet radial thickness, $M_{t}=1.046 / 2=$ 0.523 in (1.328 cm).

Hence, the magnet area is given by

$$
M_{a}=M_{t} \cdot \min \left(S_{h}, M_{w}\right)=(0.523)(3 \cdot 6)=1.8828 \text { in }^{2}\left(12.147 \mathrm{~cm}^{2}\right) .
$$

The pole arc calculated at the stator bore is hence given by

$$
\text { pole arc }=D_{i s} \pi P_{s} / p=1.0678 \text { in (2.712 cm). }
$$

Now, the slot span, S_{s}, can be obtained as

$$
S_{s}=\pi D_{i s} / N_{t}=0.5344 \text { in }(1.357 \mathrm{~cm}) .
$$

and a reasonable slot opening is chosen to be $w_{s}=0.085$ in (0.216 cm).
Thus, Carter's coefficient becomes

$$
\mathrm{K}_{\mathrm{s}}=\left(5 \mathrm{Gap}+\mathbf{w}_{\mathbf{s}}\right) \mathrm{s}_{\mathbf{s}} /\left(\left(5 \mathrm{Gap}+\mathrm{w}_{\mathrm{s}}\right) \mathrm{s}_{\mathbf{s}}-\mathrm{W}^{2}\right)=1.034 .
$$

Also the permeance (reciprocal of reluctance or the ratio of flux to mmf) per pole in the air gap becomes

$$
\begin{aligned}
P_{p} & =(\text { pole arc })\left(\min \left(S_{h}, M_{w}\right) / K_{s}\right. \text { Gap } \\
& =56.33 \text { Gauss-inch/Oersted }\left(1.798 \times 10^{-6} \mathrm{wb} / A T\right) .
\end{aligned}
$$

The permeability of the magnet material is given by

$$
\mu_{\ell}=B / H=\left(\Phi / M_{a}\right) /(F / L)
$$

where \varnothing is the flux per pole, F is the mmf, and L is the length of the magnetic path. Hence,

$$
\begin{aligned}
H_{l} & =P_{P} L / M_{a}=(56.33)(2) H_{\min } / 4 M_{a} \\
& =5.88 \text { Gauss } / \text { Oersteds }(7.389 \mu \mathrm{H} / \mathrm{m}) .
\end{aligned}
$$

This gives the slope of the no-load line of the magnetization curye so that the point of instersection of this line with the B-H characteristic supplied by the magnet manufacturer is the operating point (OP) as shown in Figure (3.1-2). The B-H characteristic selected was that of HICOREX 90B Samarium Cobalt; an 18 million Gauss-Oersted Hitachi product, see Figure (3.1-2). The operating point corresponding to an operating flux density, Bop, was found to be

ORIGINAL PAGE II OF POOR QUALITY

$$
\begin{aligned}
\mathrm{B}_{\mathrm{OP}} & =7.20 \text { KGauss }=7.20 \times 1000 \times 6.45 \\
& =46440 \text { lines } / \mathrm{in}^{2}\left(0.72 \mathrm{wb} / \mathrm{m}^{2}\right)
\end{aligned}
$$

Therefore, the magnet flux per pole is

$$
\Phi_{m}=B_{O P} \times 2 M_{a}=174874 \text { lines }\left(1.749 \times 10^{-3} \mathrm{wb}\right) .
$$

Assuming in this preliminary design process a 5°, leakage factor, unique to a radially oriented permanent magnet on a rotor of this type, it follows that the leakage correction factor is 1.05 . Therefore, the airgap flux per pole, a_{a}, becomes

$$
\phi_{a}=174874 / 1.05=166540 \text { lines } / \text { pole }\left(1.665 \times 10^{-3} \mathrm{~Wb} / \text { pole }\right)
$$

Since the airgap area, Ag is

$$
A_{g}=(\text { pole arc })\left(M_{w}\right)=3.84 \mathrm{in}^{2}\left(24.77 \mathrm{~cm}^{2}\right)
$$

it follows that the airgap flux density, B_{g}, is

$$
B_{g}=166540 / 3.84=43.32 \mathrm{~K} \text { lines } / \mathrm{in}^{2}\left(0.668 \mathrm{~Wb} / \mathrm{m}^{2}\right)
$$

Having obtained the operating point of the permanent magnet, and found the airgap flux density, one proceeds now to find the flux densities throughout the magnetic circuit, and calculate the slot dimensions.

STEP 3:
Now one proceeds to the calculation of the slot dimensions as follows: A schematic of a stator slot is shown in Figure (3.1-3). From practical considerations, the wedge used for firmly securing the winding in the slot has a thickness, $W_{e^{\prime}}$ of about 0.062 in $(0.157 \mathrm{~cm})$. Let the thickness of the insulating slot liner be, $S_{l}=0.012$ in (0.030 cm) it follows that the slot winding area, $S_{w a}$ is given by

$$
S_{w a}=\left[(x+2) / 2-2 s_{\ell}\right]\left[\left(D_{A 2}-D_{A 1}\right) / 2-W_{\ell}-2 S_{\ell}\right]
$$

where the distance, x, Figure (3.1-3), is given as

$$
x=D_{A 1} \pi / N_{t}-T_{w} .
$$

TYPICAL ARMATURE (STATOR) SLOT GEOMETRY

FIGURE (3.1-3) Schematic of a Stator Slot

ORIGINAL PAGE IS OF PJOR QUALTTY

In Figure (3.1-3), assuming that $T_{1}=0.04$ in (0.102 cm) and $T_{2}=0.02$ in $(0.051 \mathrm{~cm})$, it follows that the TOOTH TIP $=T_{1}+T_{2}=0.06$ in $(0.152 \mathrm{~cm})$, and $D_{A 1}=D_{\text {is }}+2 X(T O O T H T I P)=3.182$ in (8.08 cm). A.lso, assuming that the average width of a tooth, Figure (3.1-3), $\mathrm{T}_{\mathrm{w}}=$ 0.302 in (0.767 cm) and the yoke thickness, Y YOKE $=0.302$ in (0.767 cm) one can write, using Figure (3.1-3), $x=0.253 \mathrm{in} .(0 . ; 3 \mathrm{~cm})$, $D_{A 2}=D_{O S}-2 Y O K E=5.914$ in (15.02 cm). Therefore, one can calculate $S_{w a}=0.5984 \mathrm{in}^{2}\left(3.86 \mathrm{~cm}^{2}\right)$.

For a double layer winding (2 coil-sides per slot) with 5 conductors per coil-side, 12 Number 16AWG strands of wire (diameter $=0.054$ in $=$ 0.137 cm) were used to form a conductor. The total number of wires per slot is therefore given by

$$
N_{W S}=(2)(5)(12)=120 .
$$

A good check for the slot parameters is to calculate the slot fill factor which is the ratio of the square of the wire diameter times the number of wires (a quantity proportional to the area of the slot occupled by the conductors) to the slot winding area. As was mentioned earicer, the fill factor should not exceed 65°. That is,

$$
\text { fill factor } \left.\left(D^{2} N\right)=\left\{120 \times(0.054)^{2}\right] / 0.5984\right\} \times 1\left(00=58.5_{0}^{\circ}\right.
$$

The above result implies that the slot parameters obtained are acceptable.

Now, one proceeds next to Step 4, in which one calculates the torque associated with this design, at rated current conditions in Step 4.

STEP 4:
Considering the fundamental :omponents of the stator mmf and the equivalent magnet (rotor) mmf , the relationship between the torque produced and the angle between the peaks of the $\because=0$ inmfs is sinusoldal. Assuming instari aneous commutation (no significant delay in current switching due to winding inductance), the maximum average torque will be obtained wher commutation starts at a relative angle bitween the above mentioned two mmf peaks of 120 electrical degress. Tin: rext commutation step occurs when that angle drops to 60 electrical degrees. ideally, maintaining throughout the commutation process, an angle between the two mmfs of 90 electrica! degrees would yifid maximum torque. However, the nature of the electronic commutation process associated with the current source inverter at hand would nit permit such an angle to remain constant. This process of angle variation ia displaved graphically with the useful portion of the torque angle characteristic indicated by the shaded area in Figure (3.1-4). Further elaboration on torque production and profile in this type of machine was given earlier in Chapter (2.0). At the peak of this sinusoid. the torque is given by:

ORIGiNAL PAGE IS OF POOR QUALITY

IDEAL TORQUE PRPOFILE DURING A STATE OF 60° e- NORLIAI. COMMUTATION

FIGURE (3.1-4) Torque - Angle Characteristic

$$
\text { Torque }=K p^{2} \pi\left(c K_{\ell} K_{w} 1 / 2 p\right) 10^{-8}
$$

where p is the number of poles,
Φ is the flux per pole (in lines),
c is the total number of active conductors,
K_{w} is the winding factor,
1 is the current per conductor (Amperes),
K is a constant of proportionality, in case of using torque units in ounce-inch, $k=71$ oz-in/Ampere•lines,
K_{ℓ} is the factor which relates the phase voltage
to the effertive line to line voltage (derived below),
and $c K_{w} 1 / 2 p$ is the winding Ampere-turns per pole. The torque sensitivity, S_{t} is the torque per Ampere, and is given by

$$
\begin{equation*}
S_{t}=\text { Torque } / 1=K p^{2} \phi\left(c K_{\ell} K_{w} / 2 p\right) 10^{-8} \tag{3.1-10}
\end{equation*}
$$

Assuming 5 conductors per layer per slot, the total number of active conductors is given by
$c=(10$ conductors $/$ slot $)(2$ slots $/$ pole $)(6$ poles $)=120$ conductors
Notice that for a 6 pole, 18 slot machine, there are 3 slots per pole. However, it must be emphasized that for this type of machine, only two phases carry current at any given time (neglecting commutation).

Accordingly, in this design, at any given time, two out of three slots per pole carry current (active slots). The calculated number of active conductors ($c=120$) implies that the series connection is assumed. That is, there is one conducting path per phase. Hence, there are 30 turns (or 60 conductors) in series per phase.

Here, the pitch factor is given by

$$
K_{p}=\sin 180 / 2=1
$$

For 3 slots per pole, the electrical angle between slots (or slot pitch) is

$$
\text { slot pitch }=180 / 3=60 \text { electrical degrees }
$$

ORIGINAL PAGE is
 OF POOR QUALITY

ORIGINAL PAGE
 OF POOR QUALITY

and for a 3 phase winding, the number of slots per pole per phase (or slots per phase belt) is 1 . Therefore, the distribution factor is one, and the winding factor, k_{w}, is given by

$$
K_{w}=K_{d} K_{p}=1
$$

Since the conditioner sees the line to line voltage, $v_{\ell \ell^{\prime}}$ instead of the line to neutral voltage, $v_{\ell n}$, then the power supplied to the conditioner is approximated as

$$
P_{c}=\left.\sqrt{3} v_{\ell n}\right|_{\ell}=\left.2\left(\sqrt{3} v_{\ell n} / 2\right)\right|_{\ell} .
$$

The power contributed per active phase is $\sqrt{3} v_{\ell n} l_{\ell} / 2$. From this, one concludes that the factor K_{ℓ} is given by $K_{\ell}=\sqrt{3} / 2=0.866$.

For this class of machines, substituting $K=71 \mathrm{oz}$-in/Ampere-lines as mentioned earlier, the torque sensitivity for the series connection is given by Equation (3.1-10), and is

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{t}}=(71)(6)^{2}(166540)(120)(0.866)(1)\left(10^{-8}\right) / 2(6) \\
& \\
& =36.86 \text { oz.in/Ampere }=0.192 \mathrm{ft} . \mathrm{lb} . / \text { Ampere }(0.260 \quad \text { New }- \\
& \text { ton } \cdot \mathrm{m} / \text { Amp })
\end{aligned}
$$

For the parallel connection (2 conducting paths per phase) of the machine winding, the torque sensitivity becomes half that for the series connection. That is,

$$
S_{t}=0.192 / 2=0.096 \mathrm{ft} . \mathrm{lb} . / \text { Ampere }(0.130 \text { Newton } \bullet \mathrm{m} / \mathrm{Amp}) .
$$

A procedure identical to Steps 1 through 4 was followed in arriving at a magnetic circuit and winding design for the strontium ferrite No. 8 based machine. The resulting machine parameters for this strontium ferrite based machine are given below in Table (3.1-1). For comparison purposes, the corresponding machine parameters of the samarium cobalt based design of Phase (11) is also given in the Table. Furthermore, in the interest of completeness of this comparison, the corresponding parameters obtained for a 4 -pole samarium cobalt machine, arrived at using a similar design process during Phase (1), is also given in the third column of the table.

The above calculated preliminary machine volume and geometry are used in Section (3.2), described next, to obtain the machine open-circuit emf waveforms, inductances, and flux distributions, on the basis of which simulation of the MPC system characteristics is carried out in Section (3.3), where the design of both machines is finalized.

TABLE (3.1-1) SUMNARY OF PARAMETERS CORRESPONDING TO PRELIMINARY DESIGNS OF THE PHASE (II)
SAMARIUM COBALT AND STRONTIUM FERRITE BASED MACHINES

Machine Paramete (Figure 3.1-1 to 3.1-5)	Samarium Cobalt Machine Phase (II)	Strontium Ferrite Machine Phase (II)	Samarium Cobalt Machine Phase (1)
p	6	6	4
N_{t}	18	18	15
P_{s}	0.666	0.666	0.650
S_{h}	4. $0 \mathrm{in}(10.16 \mathrm{~cm}$)	$8.50 \mathrm{in}(21.59 \mathrm{~cm})$	$6.00 \mathrm{in}(15.24 \mathrm{~cm})$
Dos	$6.518 \mathrm{in}(16.55 \mathrm{~cm})$	$6.518(16.55 \mathrm{~cm})$	$6.50 \mathrm{in}(16.51 \mathrm{~cm})$
$D_{\text {is }}$	$3.062 \mathrm{in}(7.78 \mathrm{~cm})$	$4.071 \mathrm{in}(10.34 \mathrm{~cm})$	$3.062 \mathrm{in}(7.78 \mathrm{~cm})$
M_{w}	$3.60 \mathrm{in}(9.14 \mathrm{~cm})$	$8.75 \mathrm{in}(22.22 \mathrm{~cm})$	$6.30 \mathrm{in}(16.00 \mathrm{~cm})$
$H_{\text {min }}$	$0.393 \mathrm{in}(0.998 \mathrm{~cm})$	$0.613 \mathrm{in}(1.56 \mathrm{~cm})$	$0.341 \mathrm{n}(0.864 \mathrm{~cm})$
$H_{\text {max }}$	$0.49 \mathrm{in}(1.24 \mathrm{~cm})$	$0.740 \mathrm{in}(1.88 \mathrm{~cm})$	$0.50 \mathrm{in}(1.27 \mathrm{~cm})$
R	$0.975 \mathrm{in}(2.48 \mathrm{~cm})$	$1.225 \mathrm{in}(3.11 \mathrm{~cm})$	$0.97 \mathrm{in}(2.46 \mathrm{~cm})$
Dor	$2.93 \mathrm{in}(7.44 \mathrm{~cm})$	$3.93 \mathrm{in}(9.98 \mathrm{~cm})$	$2.94 \mathrm{in}(7 \quad-\mathrm{m})$
Tsev	$0.035 \mathrm{in}(0.0889 \mathrm{~cm})$	$0.035 \mathrm{in}(0.0889 \mathrm{~cm})$	$0.035 \mathrm{in}(0.0889 \mathrm{~cm})$
C_{ℓ}	$0.031 \mathrm{in}(0.079 \mathrm{~cm})$	$0.035 \mathrm{in}(0.089 \mathrm{~cm})$	$0.026 \mathrm{in}(0.066 \mathrm{~cm})$
$G_{a p}$	$0.066 \mathrm{in}(\mathrm{U} .168 \mathrm{~cm})$	$0.070 \mathrm{in}(0.178 \mathrm{~cm})$	$0.061 \mathrm{in}(0.155 \mathrm{~cm})$
${ }^{T} p$	$1.6032 \mathrm{in}(4.07 \mathrm{~cm})$	$2.13 \mathrm{in}(5.41 \mathrm{~cm})$	$2.405 \mathrm{in}(6.11 \mathrm{~cm})$

CON'T. TABLE (3.1-1)

Machine Paramete (Figure 3.1-1 to 3.1-5)	Samarium r Cobalt Machine Phase (II)	Strontium Ferrite Machine Phase (II)	Samarium Cobalt Machine Phase (1)
M_{t}	$0.523 \mathrm{in}(1.33 \mathrm{~cm})$	$0.695 \mathrm{in}(1.76 \mathrm{~cm})$	$0.72 \mathrm{in}(1.83 \mathrm{~cm})$
M_{a}	$\begin{aligned} & 1.8828 \mathrm{in}^{2} \\ & \left(12.15 \mathrm{~cm}^{2}\right) \end{aligned}$	$\begin{aligned} & 5.907 \mathrm{in}^{2} \\ & \left(38.11 \mathrm{~cm}^{2}\right) \end{aligned}$	$\begin{aligned} & 4.32 \mathrm{in}^{2} \\ & \left(27.87 \mathrm{~cm}^{2}\right) \end{aligned}$
S_{s}	$0.523 \mathrm{in}(1.36 \mathrm{~cm})$	$0.71 \mathrm{in}(1.80 \mathrm{~cm})$	$0.6413 \mathrm{in}(1.63 \mathrm{~cm})$
K_{s}	1.034	1.024	1.06
P_{p}	56.33	168.34	145
	Gauss-in/Oersted $\left(1.798 \times 10^{-6} \mathrm{wb} / \mathrm{AT}\right)$	Gauss-in/Oersted $\left(5.37 \times 10^{-6} \mathrm{wb} / \mathrm{AT}\right.$)	Gauss-in/Oersted $\left.4.63 \times 10^{-6} \mathrm{wb} / \mathrm{AT}\right)$
${ }^{\mu}{ }_{\ell}$	5.88	8.74	5.7
	Gauss/Oersted ($7.39 \mu \mathrm{H} / \mathrm{m}$)	Gauss/Oersted $(10.98 \mu \mathrm{H} / \mathrm{m})$	Gauss/Oersted (7.16 $\mu \mathrm{H} / \mathrm{m}$)
$B_{\text {op }}$	46440	22575	45472
	$\begin{aligned} & \text { lines } / \mathrm{in}^{2} \\ & \left(0.72 \mathrm{wb} / \mathrm{m}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { lines/in }{ }^{2} \\ & \left(0.35 \mathrm{wb} / \mathrm{m}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { lines } / \mathrm{in}^{2} \\ & \left(0.705 \mathrm{wb} / \mathrm{m}^{2}\right) \end{aligned}$
ϕ_{a}	166540	25400	374170
	lines/pole $\left(1.665 \times 10^{-3} \mathrm{wb} / \text { pole }\right)$	lines/pole ($2.54 \times 10^{-3} \mathrm{wb} /$ pole)	lines/pole $\left(3.74 \times 10^{-3} \mathrm{wb} /\right. \text { pole }$
A_{9}	$3.84 \mathrm{in}^{2}\left(24.77 \mathrm{~cm}^{2}\right)$	$12.06 \mathrm{in}^{2}\left(77.8 \mathrm{~cm}^{2}\right)$	$9.847 \mathrm{in}^{2}\left(33.53 \mathrm{~cm}^{2}\right)$

CON'T. TABLE (2.1-1)

Machine Parameter (Figure 3.1-1 to 3.1-5)	Samarium Cobalt Machine Phase (II)	Strontium Ferrite Machine Phase (II)	Samarium Cobalt Machine Phase (I)
B_{9}	43.32 K	21.06 K	38.0 K
	$\begin{aligned} & \text { lines } / \mathrm{in} 2 \\ & \left(0.668 \mathrm{wb} / \mathrm{m}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { lines } / \mathrm{in}^{2} \\ & \left(0.325 \mathrm{wb} / \mathrm{m}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { lines } / \mathrm{in}^{2} \\ & \left(0.586 \mathrm{wb} / \mathrm{m}^{2}\right) \end{aligned}$
$W_{\text {e }}$	$0.062 \mathrm{in}(0.157 \mathrm{~cm})$	$0.062 \mathrm{in}(0.157 \mathrm{~cm})$	$0.125 \mathrm{in}(0.317 \mathrm{~cm})$
S_{ℓ}	$0.012 \mathrm{in}(0.030 \mathrm{~cm})$	$0.012 \mathrm{in}(0.030 \mathrm{~cm})$	$0.015 \mathrm{in}(0.038 \mathrm{~cm})$
Tooth Tip	$0.06 \mathrm{in}(0.15 \mathrm{~cm})$	$0.075 \mathrm{in}(0.19 \mathrm{~cm})$	$0.05 \mathrm{in}(0.13 \mathrm{~cm})$
Yoke	$0.302 \mathrm{in}(0.77 \mathrm{~cm})$	$0.25 \mathrm{in}(0.63 \mathrm{~cm})$	$0.55 \mathrm{in}(1.40 \mathrm{~cm})$
T_{w}	$0.302 \mathrm{in}(0.77 \mathrm{~cm})$	$0.217 \mathrm{in}(0.55 \mathrm{~cm})$	$0.36 \mathrm{in}(0.91 \mathrm{~cm})$
x	$0.253 \mathrm{in}(0.64 \mathrm{~cm})$	$0.520 \mathrm{in}(1.32 \mathrm{~cm})$	$0.302 \mathrm{in}(0.77 \mathrm{~cm})$
Z	0. $730 \mathrm{in}(1.85 \mathrm{~cm})$	$0.833 \mathrm{in}(2.11 \mathrm{~cm})$	$0.772 \mathrm{in}(1.96 \mathrm{~cm})$
$S_{\text {wa }}$	$0.5984 \mathrm{in}^{2}\left(3.86 \mathrm{~cm}^{2}\right)$	0.530) $\mathrm{in}^{2}(3.42 \mathrm{~cm} 2$	$0.488 \mathrm{in}^{2}\left(3.5 \mathrm{~cm}^{2}\right)$
$N_{\text {ws }}$	120	104	48
fill factor	58.5\%	$57.2{ }^{\circ}$	$56.07{ }^{\circ}$
C	120	96	40
K_{w}	1	1	0.783
K_{ℓ}	$0.86 €$	0.866	1
S_{t} (series) S_{t} (parallel)	$0.192 \mathrm{ft}-\mathrm{lb} / \mathrm{Amp}$ ($0.26 \mathrm{Nm} / \mathrm{Amp}$) $0.096 \mathrm{ft}-\mathrm{Ib} / \mathrm{Amp}$ (0.13Nm/Amp)	$0.234 \mathrm{ft}-\mathrm{lb} / \mathrm{Amp}$ ($0.32 \mathrm{Nm} / \mathrm{Amp}$) (1). $117 \mathrm{ft}-\mathrm{lb} / \mathrm{Amp}$ (0.16 Nu/Anи)	$0.0867 \mathrm{ft}-\mathrm{lb} / \mathrm{Amp}$ (0. $12 \mathrm{Nm} / \mathrm{Amp}$)

ORIGINAL PAGE IS OF POOR QUALITY

3.2 FINITE ELEMENT ANALYSIS AN RESULTING MAGNETIC CIRCUIT AND WINDING DESIGN

In order to analyze the performance characteristics of a machine, it is necessary to know the flux distribution for the flux densities throughout the cross section of such a machine) under its normal rated operating conditions. In the case of the two machines, namely the samarium cobalt and strontium ferrite based permanent magnet machines of interest in this project, which are being designed for use in electric passenger vehicle propulsion, the finite element (FE) method [3-7] was used to obtain the flux distributions, and subsequent machine parameters such as midgap flux density waveforms, induced emf waveforms in the armature, armature winding inductances, etc.

3.2.1 FINITE ELEMENT METHOD AND MIDGAP FLUX DENSITY

This method is one of several numerical methods such as the finite difference (FD) method which have previously been used in the analysis of magnetic fields in electrical machines [8-18]. Although the finite difference (FD) method appears to be simpler to understand, it possesses some disadvantages $[17,28]$ in comparision with the $F E$ method which render the approach less suitable for application in this project. The FE method is essentially a numerical technique of solving the magnetic vector potential (m.v.p.) partial differential equation governing the field distribution in two dimensional magnetostatic problems of the type at hand. The FE method is based on the concept of the magnetic vector potential (m.v.p.), A, where

$$
\begin{equation*}
\nabla \times \bar{A}=\bar{B} \tag{3.2-1}
\end{equation*}
$$

and B is the sought-after magnetic flux density.
The magnetostatic fields in electrical machines are govered by the following Maxwell's equations:

$$
\begin{equation*}
\nabla \cdot \bar{B}=0 \tag{3.2-2}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \times \bar{H}=j \tag{3.2-3}
\end{equation*}
$$

where H is the magnetic field intensity and J is the current density. Using the constitutive relationship given by

$$
\begin{equation*}
\bar{H}=\nu \bar{B} \tag{3.2-4}
\end{equation*}
$$

ORIGNAL PMEE HB OF POOR QUALITY

where v is the reluctivity assumed to be a function of both position and magnetic flux density, in combination with Equations (3.2-1) through (3.2-3), the partial differential Equation [12-17] to be solved becomes

$$
\begin{equation*}
\nabla \times(v(\nabla \times A))=1 \tag{3.2-5}
\end{equation*}
$$

A solution to (3.2-5) arises from a consideration of the total energy stored in the magnetic fields throughout the machine. A functional expression $[15,19]$ for this energy is given by

$$
\begin{equation*}
F(A)=\iint_{s}\left[\frac{1}{2}(B \cdot H)-J \cdot A\right] d x d y \tag{3.2-6}
\end{equation*}
$$

The minimization of this functional with the aid of the theory of variational calculus, in the two dimensional form, satisfies the partial differential Equation (3.2-5) governing the two dimensional field, in addition to the associated natural (Neummann) and Dirichlet boundary conditions [15,19]. In the two dimensional magnetic field case, involving machines of the type treated here, the following additional simplifications are valid [8-23]:

$$
\begin{equation*}
J=J_{z} a_{z} \tag{3.2-7}
\end{equation*}
$$

where a_{z} is a unit vector in the z direction, and the flux density, B, is two dimensional in the $x-y$ directions, that is:

$$
\begin{gather*}
B=B_{x}{ }^{a} x+B_{y}{ }^{a} y \tag{3.2-8}\\
A=A_{z}{ }^{a_{z}} . \tag{3.2-9}
\end{gather*}
$$

The z direction is assumed to be the axial direction in any of the machines at hand, while the x and y directions are in the plane of the cross section of such devices.

With the help of first order triangular elements, the minimization of the functional in Equation (3.2-6) can be carried out numerically by means of a finite element discretization grid, which spans the entire field region being considered.

The resulting m.v.p.s at the $F E$ grid nodes represent a numerical solution to Equation (3.2-5) which satisfies the necessary boundary conditions [15-21]

Since a closed form solution to Equation (3.2-5) cannot be obtained here, a numerical technique such as the $F E$ method is used. This FE technique consists, as alluded to above, of dividing the machine cross section into subregions called elements in which the m.v.p. is a polynomial function of the nodal values of m.v.p. as well as the x and y coordinates of a position in a given element. The most commonly used element is the triangular element which yields a first order polynomial function for the m.v.p.s [9-18].

Focusing our attention on permanent magnet machines (and the electronically controlled class of these machines in particular), an adaption is made in order to implement the FE method. This involves the modeling of the magnetization effect of a permanent magnet by an equivalent winding consisting of a coil in series with a magnetic core whose B-H characteristic in the first quadrant is that of the demagnetization part of the permanent magnet shifted from the second quadrant of the normal four quadrant B-H curve, as described in References (18) and (19) with more detail. These References (18) and (19) are included in Appendices (1) and (2). The magnetomotive force of the equivalent coil becomes the product of the magnet height times its coerciv 'y, H_{C}, for rectangular shaped magnets. In this approach, non-rectangular shaped magnets are divided up into magnet sections with rectangular shapes which approximate the original nonrectangular shape of a given magnet. Thus the process yields surface currents which are assigned to nodes (or elements) in the finite element grids. Figure (3.2-1) shows an example of such surface currents for the magnet shapes encountered in this work.

With the aid of an automatic grid generating scheme described in Reference [29], and summerized in Reference [20], the magnet model, and the finite element method, a system of nonlinear simultaneous algebraic equations is arrived at. These simultaneous algebraic equations are then solved using a nonlinear equation solver (Newton-Raphson), see References [29] and [30].

The solution of the nonlinear equations yields a periodic flux density distribution throughout the machine cross section (as a function of space angle). Since this flux distribution is periodic, the theory of Fourier Series implies that the flux can be expressed as a linear combination of sine and cosine terms $[20,29]$. Hence, one can write the following:

$$
\begin{equation*}
B(\theta)=\sum_{h=1}^{\infty}\left[a_{h} \cos (h \theta)+b_{h} \sin (h \theta)\right] \tag{3.2-10}
\end{equation*}
$$

where
$B(\theta)$ is the flux density as a function of the space angle, θ, in electrical degrees (or radians).
h is the order of the harmonic
a_{h} and b_{h} are the frurier coefficients.
However, the flux density is found to contain only odd harmonics. Thus, Equation (3.2-10) becomes

$$
\begin{equation*}
B(\theta)=\sum_{h=1}^{\infty} b_{2 h-1} \sin (2 h-1) \theta \tag{3.2-11}
\end{equation*}
$$

These flux densities are useful in determining flux linkages, emfs, core losses, etc.

3.2-2 EMFS:

Equation (3.2-11) assumes an infinite number of harmonics. For practical purposes, harmonic terms beyond the $N^{\text {th }}$ term, ($N \simeq 11$ in this case), the fourier coefficient, $b_{2 h-1}$, is insignificant. The above equation can thus be rewritten as follows:

$$
\begin{equation*}
B(\theta)=\sum_{h=1}^{N} b_{2 h-1} \sin \left[(2 h-1) \theta+\sigma_{2 h-1}\right] \tag{3.2-12}
\end{equation*}
$$

Defining the machine effective core length as ℓ, and the pole pitch as ' p. the harmonic flux per pole, ${ }_{2 h-1}$, is given by

$$
\begin{equation*}
\Phi_{2 h-1}=(2 / \pi)\left(\tau_{p} / 2 h-1\right) \ell b_{2 h-1} \tag{3.2-13}
\end{equation*}
$$

Consequently, the electromotive force induced in the armature phase is calculated from the flux linkages based on midgap flux density distribution, and can be expressed in Fourier series form as follows:

$$
\begin{equation*}
e(t)=\sum_{h=1}^{N} 2 \pi f(2 h-1) \phi_{2 h-1} T_{p h} K_{w_{2 h-1}} \cos \left[2 \pi f(2 h-1) t+\delta_{2 h-1}-\right) \tag{3.2-14}
\end{equation*}
$$

or as a function of the space angle

$$
\begin{equation*}
e(\theta)=\sum_{h=1}^{N} 2 \pi f(2 h-1) \phi_{2 h-1}{ }^{\top} p h^{K} w_{2 h-1} \cos \left[(2 h-1) \theta+\delta_{2 h-1}\right] \tag{3.2-15}
\end{equation*}
$$

where f is the fundamental frequency (equal to $120 \times$ rotor $\mathrm{rpm} /$ number of poles). $T_{p h}$ is the number of series turns per phase and $K_{w_{2 h-1}}$ is the winding factor for the inarmonic of order ($2 h-1$). This expression yields the emf waveforms induced in the armature phase windings, which serve as forcing functions in the simulation model used to predict t'e dynamic characteristics and other performance quantities resulting from the interaction between the machine and its power conditioner as detailed in Section (3.3).

FIGURE (3.2-1) Representation of Equivalent Magnetic Effect for the Magnet Shapes of the Brushless Machines for Purposes of Finite Element Field Analysis

3.2.3 WINDING INDUCTANCES:

In calculating the machine winding inductances, an energy and current pertubations technique $[22,23]$, coupled with the FE method, is applied. For this type of electronically commutated brushless de machine, its armature consists of three phase windings, which can equivalently be represented as three magnetically coupled coils. Only two of these three coils are excitef at any given time other than short commutation periods. Let the current through its coils 1 and 2 be i_{1} and i_{2}, and let v_{1} and v_{2} be the terminal voltages of coils 1 and 2 , and λ_{1} and λ_{2} be the flux linkages of coils 1 and 2 , respectively. Then, one can write the following:

$$
\begin{align*}
& v_{1}=R_{1} i_{1} \cdot \partial \lambda_{1} / \partial t \tag{3.2-17}\\
& v_{2}=R_{2} i_{2} \cdot \partial \lambda_{2} / \partial t \tag{3.2-18}
\end{align*}
$$

but $\lambda_{1}=\lambda_{1}\left(i_{1}, i_{2}, 9\right)$ and $\lambda_{2}=\lambda_{2}\left(i_{1}, i_{2}, \theta\right)$.
These flux linkages are naturally dependent on the rotor position angle θ. He. -e, one can write

$$
\begin{align*}
v_{1} & =R_{1} i_{1}+\partial \lambda_{1} / \partial i_{1} \cdot d i_{1} / d t \cdot \partial \lambda_{1} / \partial i_{2} \cdot d i_{2} / d t \\
& +\partial \lambda_{1} / \partial \theta \cdot d \theta / d t \tag{2-2-19}\\
v_{2} & =R_{2} i_{2} \cdot \partial \lambda_{2} / \partial i_{1} \cdot d i_{1} / d t+\partial \lambda_{2} / \partial i_{2} \cdot d i_{2} / d t \\
& +\partial i_{2} / \partial \theta \cdot d \theta / d t \tag{3.2-20}
\end{align*}
$$

If the rotor is held at a fixed position, the term ($d \theta / d t$) becomes zero. In Equations (3.2-19) an (3.2-20) the ($\partial \lambda / \partial i$) terms are the incremental inductances (see Reference [29]), $L_{j k}$. Hence, one can write

$$
\begin{equation*}
L_{j k}=\partial \lambda_{j} / \partial i_{k}, j(\text { and } k)=1,2 . \tag{3.2.21}
\end{equation*}
$$

In addition to the incremental inductances, other accepted definitions of saturated inductances $[35,36,37$] are as follows:

$$
\begin{align*}
& \text { apparent inductance } L_{j k}^{a p t}=\lambda_{j k} / i_{k} \tag{3.2-22}\\
& \text { effective inductance } L_{j k} \text { eff }=2 w_{j k} / i_{k}{ }^{2} \tag{3.2-23}
\end{align*}
$$

where $w_{j k}$ is the energy associnted with the mutual magnetic effect stored in the magnetic field of the machine. A plot of the mutual flux linkage, $\lambda_{i k}$, linking coil j due to current i_{k} in coil k is giver. in Figure (3.2-2). This figure shows the geometrical interpretation of the

ORIGINAL PAGE IS OF POOR QUALITY

incremental, apparent, and effective mutual inductances. In this figure point b represents the operating point of a given magnetic circuit, which will be referred to here as the quiescent point of the magnetic circuit, and it is the point around which one calculates the above mentioned inductances to define the parameters of such a nonlinear device. Here, one ine the following:

$$
\begin{equation*}
\text { effective inductance }=a c / o a \tag{3.2-25}
\end{equation*}
$$

incremental inductan.e $=$ ad/oa.
Notice that the area ocf equals the shaded area obe, and od is parallel to the tangent through the quiescent point b. Also, notice that ac $=$ $2 w_{j} / i_{k}$. Hence ac/oa $=2 w_{j k} / i^{2}$. A similar interpretation can be applied for incremental, apparent and effective self inductance terms, $\mathrm{L}_{\mathrm{ij}}{ }^{\mathrm{inc}}, \mathrm{L}_{\mathrm{ji}}{ }^{\text {apt }}$, and $\mathrm{L}_{\mathrm{ij}}{ }^{\text {eff }}$, respectively. Notice, always these values must be reevaluated at each different operating (quiescent) point when nonlinearities in the magnetic circuit are expected.

Since all the inductance terms which are encountered in the development which is to follow are of the incremental type the superscript, inc, is dropped from cur formulation. Hence, for a fixed rotor position Equation (3.2-19) and (3.2-20) become

$$
\begin{align*}
& v_{1}=R_{1} i_{1}+L_{11} d i_{1} / d t+L_{12} d i_{2} / d t \tag{3.2-27}\\
& v_{2}=R_{2} i_{2}+L_{21} d i_{1} / d t+L_{22} d i_{2} d t \tag{3.2-28}
\end{align*}
$$

The instantaneous power input into coil j is

$$
\begin{aligned}
& P_{j}=v_{i}{ }^{\prime} j \\
& P_{j}=R_{i}{ }^{2}{ }^{2}+i_{j} L_{j 1} d i_{1} / d t+i_{j} L_{j 2} d i_{2} / d t \\
& P_{j}=P_{R j}+P_{j}
\end{aligned}
$$

Here in this case, $j=1,2$. Here also, $P_{R_{j}}=R_{i j}{ }^{2}$ is the Ohmic power dissipated in the jth coil. $P_{j j}$ is the power stored in the magnetic field of the device. The magnetic energy input into the $j^{\text {th }}$ cnil over a time period of t is given by

$$
w_{\phi j}=\int_{0}^{t} P_{i j} \cdot d t .
$$

CALCULATION OF INDUCTANCES FROM MAGNETIC ENERGY CONCEPTS

FIGURE (3.2-2) Gecinetrical Interpretaion of Apparent. Effective, and Incremental Inductance

ORIGINAL PAGE IS OF POOR QUALITY

Hence, the total energy stored in the field of both coils over the time, t, can be written as:

$$
\begin{equation*}
w_{\phi}=\sum_{j=1}^{2} \sum_{k=1}^{2} \int_{i_{k}(0)}^{i_{k}(t)} L_{j k}^{d} i_{k} \tag{3.2-31}
\end{equation*}
$$

Suppose that both currents i_{1} and i_{2} are perturbed by incremental amounts Δi_{1} and Δi_{2} so that the magnetic saturation conditions throughout the machine are almost undisturbed, and hence, the incremental inductances remain practically the same. Under such circumstances the change in stored energy becomes

$$
\begin{align*}
& \Delta w_{\phi}=\sum_{j=1}^{2} L_{j i}\left(i_{j} \Delta i_{j}+\Delta i_{j}^{2}\right) \\
& +\sum_{j=1}^{2} \sum_{k=1}^{2}\left(i_{j}+\Delta i_{j} / 2\right) L_{j k} \Delta i_{k} \tag{3.2-32}\\
& k \neq j
\end{align*}
$$

so that the ? ${ }^{\text {w }}$ stored energy is now

$$
\begin{equation*}
\bar{w}_{\phi}=w_{\phi}+\Delta w_{\phi} . \tag{3.2-33}
\end{equation*}
$$

From the assumption that the incremental inductances are not changed in value due to small perturbations, Δi_{j}, it is easily seen that $\partial L_{i j} / \partial\left(\Delta i_{j}\right)=0$ and $\partial w_{\phi} / \partial\left(\Delta i_{j}\right)=0$. Taking the derivative of Equation (3.2-33) with respect to Δi_{j} and substituting in Equation (3.2-32), yields the following:

$$
\begin{align*}
& \partial \bar{w}_{\phi} / \partial\left(\Delta i_{j}\right)=L_{i j}\left(i_{j}+\Delta i_{j}\right) \\
& \quad+\sum_{k=1}^{2}\left[i_{k} L_{k j}+(1 / 2) \Delta i_{k}\left(L_{j k}+L_{k j}\right)\right] \tag{3.2-34}\\
& \quad k \neq j
\end{align*}
$$

ORIGINAL PAGE IS OF POOR QUALTTY

Differentiating Equation (3.2-34) with respect to Δi_{j} and Δi_{k}, yields the self and mutual inductances, which are accordingly expressed in terms of \bar{W}_{ϕ} as follows:

$$
\begin{equation*}
L_{j j}=\partial^{2} \vec{W}_{\phi} / \partial\left(\Delta i_{j}\right)^{2} \tag{3.2-35}
\end{equation*}
$$

and

$$
\frac{1}{2}\left(L_{j k}+L_{j k}\right) i_{j \neq k}=\left[\partial^{2} \bar{w}_{\phi} / \partial\left(\Delta i_{j}\right) \partial\left(\Delta i_{k}\right]\right.
$$

However, for this type of machine, the mutual inductances are between two identical windings located on the same armature, hence the two colls are experiencing the same saturation conditions. One can therefore write

$$
\begin{equation*}
L_{j k}=L_{k j} \tag{3.2-37}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
L_{j k}=\partial^{2} \bar{w}_{\phi} / \partial\left(\Delta i_{j}\right) \partial\left(\Delta i_{k}\right), j \neq k . \tag{3.2-38}
\end{equation*}
$$

Through perturbing i_{j} and i_{k} by $\pm \Delta i_{j}$ and $\pm \Delta i_{k}$, the stored energies become $\bar{w}_{\phi}\left(i_{i}+\Delta i_{j}, i_{k}+\Delta i_{k}\right), \bar{w}_{\phi}\left(i_{j}-\Delta i_{j}, i_{k}+\Delta i_{k}\right), \bar{w}_{\phi}\left(i_{j}+\Delta i_{j}, i_{k}-\Delta i_{k}\right)$, and $\bar{w}_{\phi}\left(i_{j}-\Delta i_{j}, I_{k}-\Delta i_{k}\right)$. Expanding these energies in Taylor series form about the energy $\bar{w}_{\phi}\left(i_{j}, i_{k}\right)$ of the operating (quiescent)point, truncating terms beyond the second order terms, and combining these equations, one can write the following:

$$
\begin{align*}
& \partial^{2} \bar{w}_{\phi} / \partial\left(\Delta i_{j}\right) \partial\left(\Delta i_{k}\right) \simeq\left[w_{\phi}\left(i_{j}+\Delta i_{j}, i_{k}+\Delta i_{k}\right)\right. \\
& -\bar{w}_{\phi}\left(i_{j}-\Delta i_{j}, i_{k}+\Delta i_{k}\right)-\bar{w}_{\phi}\left(i_{j}+\Delta i_{j}, i_{k}-\Delta i_{k}\right) \\
& \left.=\bar{w}_{\phi}\left(i_{j}-\Delta i_{j}, i_{k}-\Delta i_{k}\right)\right] / \Delta \Delta i_{j} \Delta i_{k} \tag{3.2-39}\\
& =\left[w_{\phi}\left(i_{j}+\Delta i_{j}, i_{k}+\Delta i_{k}\right)-w_{\phi}\left(i_{j}-\Delta i_{j,} i_{k}+\Delta i_{k}\right)\right. \\
& \left.-w_{\phi}\left(i_{j}+\Delta i_{j}, i_{k}-\Delta i_{k}\right)+w_{\phi}\left(i_{j}-\Delta i_{j}, i_{k}-\Delta i_{k}\right)\right] / 4 \Delta i_{j} \Delta i_{k} \\
& +\left[\Delta w_{\phi}\left(i_{j}+\Delta i_{j}, i_{k}+\Delta i_{k}\right)-\Delta w_{\phi}\left(i_{j}-\Delta i_{j}, i_{k}+\Delta i_{k}\right)\right. \\
& \left.-\Delta w_{\phi}\left(i_{j}+\Delta i_{j}, i_{k}-\Delta i_{k}\right)+\Delta w_{\phi}\left(i_{j}-\Delta i_{j}, i_{k}-\Delta i_{k}\right)\right] / 4 \Delta i_{j} \Delta i_{k} . \tag{3.2-40}
\end{align*}
$$

The second term of the right hand side of Equation $1,2-40$) is zero if Equation (3.2-32) is substituted into (3.2-40). Thus,

$$
\begin{align*}
& \partial^{2} \bar{w}_{\phi} / \partial\left(\Delta i_{j}\right) \partial\left(\Delta i_{k}\right)=\left[w_{\phi}\left(i_{j}+\Delta i_{j}, i_{k}+\Delta i_{k}\right)-w_{\phi}\left(i_{j}-\Delta i_{j}, i_{k}+\Delta i_{k}\right)\right. \\
& \left.-w_{\phi}\left(i_{j}+\Delta i_{j}, i_{k}-\Delta i_{k}\right)+w_{\phi}\left(i_{j}-\Delta i_{j}, i_{k}-\Delta i_{k}\right)\right] / 4 \Delta i_{j} \Delta i_{k} \tag{3.2-41}
\end{align*}
$$

Similarly, expanding $\bar{w}_{\phi}\left(i_{j}{ }^{+} \Delta i_{j}\right)$ and $\bar{w}_{\phi}\left(i_{j}-\Delta i_{j}\right)$ about $\bar{w}_{\phi}\left(i_{j}\right)$ and combining both equations,

$$
\begin{align*}
& {\left[w_{\phi}\left(i_{j}-\Delta i_{j}\right)-2 w_{\phi}\left(i_{j}\right)+w \phi\left(i_{j}+\Delta i_{j}\right)\right] /\left(\Delta i_{j}\right)^{2}} \\
& {\left[w_{\phi}\left(i_{j}-\Delta i_{j}\right)-2 w_{f}\left(i_{j}\right)+w_{\phi}\left(i_{j}+\Delta i_{j}\right)\right] /\left(\Delta i_{j}\right)^{2} .} \tag{3.2-42}\\
& {\left[\Delta w_{\phi}\left(i_{j}-\Delta i_{j}\right)-2 \Delta \Delta_{\phi}\left(i_{j}\right)+\Delta w_{\phi}\left(i_{j}+\Delta i_{j}\right)\right] /\left(\Delta i_{j}\right)=}
\end{align*}
$$

It is also easily found that the second term on the right hand side of this equation is zero. Thus,

$$
\begin{equation*}
\left[w_{\phi}\left(i_{j}-\Delta i_{j}\right)-2 w_{\phi}\left(i_{j}\right)+2 w_{\phi}\left(i_{j}+\Delta i_{j}\right)\right]\left(\Delta i_{j}\right)^{2} . \tag{3.2-43}
\end{equation*}
$$

Accordingly, on the basis of Equations (3.2-35), (3.2-38), (3.2-41), and (3.2-43), the incremental self and mutual inductance terms $L_{j j}$ and $L_{j k}$ can be approximated in terms of the perturbed stored energy as follows:

$$
\begin{equation*}
L_{i j} \quad\left[w_{\phi}\left(i_{j}-\Delta i_{j}\right)-2 w_{\phi}\left(i_{j}\right)+w_{\phi}\left(i_{j}+\Delta i\right)\right] /\left(\Delta i_{j}\right)^{2} \tag{3.2-44}
\end{equation*}
$$

and

$$
\begin{array}{ll}
L_{j k} & {\left[w _ { f . } \left(i_{j}+\Delta i_{j}, i_{k}+D \cdot i_{k}{ }^{\prime}-w_{\phi}\left(i_{j}-\Delta i_{j}, i_{k}+\Delta i_{k}\right)\right.\right.} \\
& \left.-w_{\phi}\left(i_{j}+\Delta i_{j}, i_{k}-\Delta i_{k}\right)+w_{\phi}\left(i_{j}-\Delta i_{j}, i_{k}-\Delta i_{k}\right)\right] / 4 \Delta i_{j} \Delta i_{k} \tag{3.2-45}
\end{array}
$$

One examines next the method of calculation of the various energy terms of Equations (3.2-44) and (3.2-45). The energy stored in the material of the machine is given by

$$
\begin{equation*}
W=\int_{B_{1}}^{B_{2}^{2}} H d B \tag{3.2-46}
\end{equation*}
$$

where the magnetic field intensity, H, is a function of the reluctivity, v, and the flux density, B, [22]. The flux density is given by a solution of the algebraic equations obtained from a finite element discretization of the material cross section of the machine. Magnetic field solutions are obtained at the quiescent and perturbed points. Equation (3.2-46) is applied to each element for each of these field solutions to obtain the various energy terms in the right hand side of Equations (3.2-44) and (3.2-45). The inductances are then given by substituting these various eneroy terms into these equations. The reluctivity mentioned above is defined in terms of two values, namely the incremental reluctivity, $\nu_{e}^{i n c}$, and apparent reluctivity, $\nu_{e}^{\text {aFP }}$, for each discretized element, e, evaluated at the quiescent point along the magnetization curve as follows.

$$
\begin{align*}
& \nu_{e^{i n c}}=(\partial H / \partial B) \text { quiescent } \tag{3.2-47}\\
& \nu_{e}^{a p p}=(H / B)_{\text {quiescent }} \tag{3.2-48}
\end{align*}
$$

In general,

$$
\nu_{e}^{i n c} \leq \nu_{e}^{a p p}
$$

where the equal sign applies for linear magnetic materials or the linear part of the B-H characteristic of a nonlinear material. The above definitions of incremental and apparent reluctivities associated with a given element in an FE grid, as well as the energy perturbations per unit elemental volume associated with the two reluctivities are geometrically depicted in Figures (3.2-3) and (3.2-4). The energy perturbations per element are shown in shaded areas for equal field intensity perturbations. Notice the energy perturbation assuciated with the apparent reluctivity is larger than that associated with the incremental reluctivity. The energy perturbations for each element are calculated on the basis of Figures (3.2-3) and (3.2-4) which depend in turn on the quiescent point associated with each element. Since the current perturbations in Equations (3.2-44) and (3.2-45) are small, the reluctivity of each element in the FE grid can be assumed constant for these current increments and equal to either the incremental or apparent reluctivity value defined by Equation (3.2-47) or Equation (3.2-48) for the quiescent point under consideration. Thus, the solution for the field associated with the perturbed excitations is obtained from the quiescent point field solution by solving the global system of m.v.p. equations once, with the excitation perturbation as the forcing function using, either the incremental or apparent elemental reluctivities. A detailed explanation of calculating the $L_{i j}$ and $L_{j k}$ is given in Reference [22] which is included in Appendix (3) of this report for convenience.

The methods described above in Sections (3.2.1) through (3.2.3) were used in the determination of the various parameters (flux distributions, armature emf waveforms, armature wincling inductances, etc.) associated with the samarium cobalt and strontium ferrite based machines, using the preliminary design data given earlier in Section (3.1) of this report. These are the parameters which are crucial to the simulation of the dynamic characteristics of the machine power conditioner interaction. Details are given next in Section (3.2.4) on parameter determination, and in Section (3.3) on the use of these parameters in the dynamic simulation.

ORIGINAL PAGE IS OF POOR QUALTY

Change in Energy Stored Due to Perturbation of Excitation in an Element.

$$
\tilde{W}=e^{n e} w^{ \pm} e^{\frac{\Sigma}{x}} \frac{1}{1} v_{e} n c\left(\Delta B_{e}\right) \cdot B_{e} \cdot d_{m}
$$

Perturbation Along Incremental Reluctivity Line
FIGURE (3.2-3) Change in Energy Per Unit Elemental Volume Due to Perturbed Excitation, Using Incremental Reluctivity

Change in Energy Stored Due to Perturbation of Excitation in an Element.

$$
\dot{W}=\sum_{e=1}^{n e} \pm_{e} \sum_{1} \sum^{\text {ne }} \cdot\left(\Delta B_{e}\right) \cdot B_{e} \cdot d_{m}
$$

Perturbatio،، Along Apparent Reluctivity Line
FIGURE (3.2-4) Change in Energy Per Unit Elemental Volume Due to Perturbed Excitation, Using Apparent Reluctivity

3.2.4 RESULTS OF SAMARIUM COBALT AND STRONTIUM FERRITE BASED MACHINES

In this work, two machines were designed, based on the use of two different permanent magnet materials. The preliminary designs of both were given earlier in Section (3.1). One machine uses high energy product samarium cobalt permanent magnets as a source of excitation on the rotor and the other machine uses less costly and more readily available strontium ferrite No. 8 permanent magnets for rotor excitation. The design steps described in Section (3.1) were also used in that section to arrive at a suitable preliminary machine volume, magnetic circuit geometry, and winding design subject to the required machine performance given earlier in Section (1.2). It is important to point out that in Section (3.1), skewing was not considered. However, it will be shown later in this section that skewing is necessary to improve the machine characteristics, and to enable the MPC systems to reach some of the required power ratings.

The calculated preliminary machine geometry was used in conjunction with the automatic FE grid generating scheme mentioned in Section (3.2-1) to arrive at a discretized machine cross section shown in rigures (3.2-5) and (3.2-6) for the samariuli. cobalt and ferrite machines, respectively. Both machines were then analyzed by calculating their midgap flux density waveforms, and armature winding inductances at no load. It was found from previous work that the emf waveforms [20,27,29] in such permanent magnet machines are hardly affected by the load current (armature mmf). Further work [23] demonstrated that normal armature load current hardly affects the values of the armature winding inductances. This is largely because of the low level of magnetic saturation prevalent in the magnetic circuits of these machines, and the relatively small ampere turns of the armature mmf in comparison with that of the permanent maynets under norma operating concitions (operating power range for these machines). Hence, the magnetic f.ald analysis presented here is largely carried out at no load.

Figures (3.2-7) and (3.2-8) show the no load flux distril utions resulting trom the finite element analysis for a given rotor osition for the samarium cobalt and strontium ferrite machines, respec ely. Figures (3.2-9) and (3.2-10) are the waveforms for the roiur positions shown in the flux plots of Figures (3.2-7) and (3.2-8) of the samarium cobalt and strontium ferrite machines, respectively. Notice that the peak midgap flux density for the samarium cobalt machine is about 49,000 lines $/$ in $^{2}\left(0.760\right.$ Tesla) compared with 19,000 lines $/$ in $^{2}(0.294$ Tesla) for the strontium ferrite machine. In addition, Figure (3.2-11) depicts the midgap flux densities at no load for the strontium ferrite machine at two rotor positions, the first of which is a position different from that given earlier in Figure (3.2-10), while the second is a repeat of Figure (3.2-10) for ease of comparision between the effects two rotor positions. The first flux density wave form (top) in Figure (3.2-11) shows a dip around the peak value of the flux density for a slot opening opposite the center of the magnet. The second figure (bottom) snows two dips centered around the peak value of the flux density for

FIGURE (3.2-5) Finite Element Grid of Samerium Cobalt Machine at a Given Rotor Position

FIGURE (3.2-6) Finite Element Grid of Strontium Ferrite Machine at a Given Rotor Position

$$
F \begin{aligned}
& \text { Is ingenat mes it } \\
& \because \text { of POOR OUALITY }
\end{aligned}
$$

FIGURE (3.2-7) No-Load Equal MVP Conturs (Flux Plot) of the Samarium Cobalt Machine for a Given Rotor Position

FIGURE (3.2-8) No-Load Equal MVP Conturs (Flux Plot) of the Strontium Ferrite Machine for a Given Rotor Position

IROTAT $=1$
no lond

FIGURE (3.2-9) Midgap Flux Density Waveform at No Load in the Samarium Cobalt Machine - Peak Value 48,750 lines $/ \mathrm{in}^{2}$

FIGURE (3.2-10) Midyap Flux Density Waveform at No Load in the Strontium Ferrite Machine - Peak Value $\mathbf{i} 9,050$ lines $/ \mathrm{in}^{2}$

FIGURE (3.2-11) Midgap Flux Density Waveforms at No Load in the Strontium Ferrite Machine - Peak Values are 19,058 lines $/ 1 . \mathbf{n}^{2}$ and 19,049 lines $/ \mathrm{in}^{2}$ Respectively

ORIGINAL PAGE IS OF POOR QUALTTY

two slot openings which are located opposite to the center of the mag net. For these two different rotor positions, the peak flux densities show little or no difference between one another in magnitude, 19,058 lines $/ \mathrm{in}^{2}$ (0.303 Tesla), and 19,049 lines $/ \mathrm{in}^{2}$ (0.302 Tesla), respectively. This demonstrates that flux levels are almost not affected by changes in the rotor position.

Under rated load, armature phase currents $A,-A, B,-B, C,-C)$ were injected in the proper conductor locatio.,s in the finite eiement grids, $3 t$ stator slot locations according to the actual phase belt distribution for a full pitched integral slot winding machine (1 slot per pole per phase arrangement for both machines). Recall that for these electronically commutated dc machines, only two of the three windings are excited throughout the duration of a state. Here, the ac cycle consists of six states as explaned earlier. The exceptions are the very short commutation periods which are neglected here. The phase belt distribution of the above phase currents in the machine cross section can be easily obtained from the fact that the three phase armature winding is a double layer full pitched integral slot winding with one slot per pole per phase. Corresponding finite element analysis of the magnetic fields in the samarium cobalt and strontium ferrite machines under rated load were performed. Figure (3.2-12) shows the flux distribution by means of equal m.v.p. contours under rated load in the samariurn cobalt machine. The corresponding midgap flux density waveform under load is given in Figure (3.2-13). Notice that the peak flux density of about 50,000 lines $/ \mathrm{in}^{2}$ (0.775 Tesla) is only due to the slight magnetization by the armature mmf on one end of the magnet. The slight increase in flux density on one end of the magnet is almost totally cancelled out by an opposite demagnetization effect of the arirature reaction (mmf) on the other end of the magnet. The net result is that load has little or no effect on the magnitude of the total flux per magnet in comparison to the no load values, for rated current values.

Figure (3.2-14) shows the flux distribution by means of equal m.v.p. contours under rated load in the strontium ferrite machine for the same rotor position given earlier in the no load flux plot of Figure (3.2-8). The corresponding midgap flux density waveform under load is given in Figure (3.2-15). Again, it must be noticed that the peak flux density of about 18,680 lines/in ${ }^{2}$ (0.290 Tesla) is only slightly lower than that at no load namely about 19,050 lines $/$ in 2) (0.295 Tesla) due to the slight overall demagnetization caused by the armature minf.

To illustrate possible effects that a change in the rotor position would have on the level of magnetization throughout the magnetic circuit of the strontium ferrite machine, a second equal m.v.p. plot corresponding to a second rotor position is given in Figure (3.2-16) for a rated load case. The corresponding midgap flux density waveform under load is given in the top frame of Figure (3.2-17), where the peak value of the flux density is about 18,470 lines $/$ in 2 (0.286 Tesla). For convenience of comparison the flux density waveform corresponding to the earlier rotor position of Figures (3.n-14) and (3.2-15) is repeated in the bottom frame of Figure ($3.2 \cdot 17$), where the peak density is abou.

FIGURE (3.2-12) Equal MVP Conto'srs of the Samarium Cobalt Machine at Rated Load for a Given Rotor Position

1ROTAI = :
FUIL I OAD
|S|A| = 1
FIGURE (3.2-13) Midgap Flis Denisty Waveform at Rated Load in the Samarium Cobalt Machine - Peak Value 50, 470 lines $/$ in 2

FIGURE (3.2-1\%) Equal MVP Contours of the Strontium Ferrite Machine at Rated Load for Rotor Postion No. 1

FIGURE (3.2-15) Midgap Flux Density Waveform at Rated Load in the Strontium Ferrite Machinn for Roter Position No. 1 . Peak Value 18, 380 lines/in ${ }^{2}$

FIGURE (3.2-16i Equal MVP Contours of the Strontium Ferrite Machine at Rated Load ror Rotor Position No. 2

OF PIOA- gUathy

FIGURE (3.2-17) Midgap Flux Density Waveforms at Rated Load in the Strontium Ferrite Machine for two Rotor Positions No.'s 2 and 1 - Peak Values are 18,470 lines/in ${ }^{2}$ and 18,680 lines/in ${ }^{2}$

18,680 lines/in ${ }^{2}$ (0.290 Tesla). Again this also indicates that the effect of the rotor position on the total tlux picture is rather insignificant in this case. This justifies the neglect of any saliency effects in the ma-chine-power conditioner dynamic simulation models which are to follow. The lack of any significant saliency effect is further demonstrated in the results of the armature self and mutual inductances, which are given later in this section. Finally, it should be observed from the above results of the two machines that the armature mmf at rated loads has an insignificant influence on the overall magnetization picture in these machines, hence this justifies relying on the no load emf waveforms as sources of excitation in the machine-power conditioner dynamic simulation results which will be given in Section (3.3).

The emf waveforms were obtained as described in Section (3.2.2). Since the profiles of the no load (or rated load) midgap flux density were similar for both machines under investigation, one would expect that the emfs of both machines would have very similar profiles. Hence, emf waveforms will be shown only for the strontium ferrite machine. This choice is largely based on the fact that the (BH) energy product of the ferrite magnet material was considerably lower than that product for the samarium cobalt material. Hence, this leads to a considelably larger core for the strontium ferrite machine, with all indications of possible higher armature winding inductances. Hence, it was believed that if electric commutation difficulties are to be encountered, which may inhibit peak power capabilities (35 HP or 26 KW) of the MPC system, the strontium ferrite machine would be the likely "candidate" to lead to such difficulties. Hence, it was believed that if the analysis showed the strontium ferrite design to be capable of the peak 35 HP output, it wculd follow that no difficulties should be encountered in satisfying the same peak power requirement for the samarium cobalt design.

It should be reemphasized that due to the lower energy product strontium ferrite magnets in comparison to the samarium cobalt magnets, the ferrite machine had to be designed with a larger axial core length to meet the power rating of the samarium cobalt machine. Since the winding inductance is proportional to the axial machine length, the longer the armature core the higher the winding inductance. The higher the inductance, the lower the rates of phase current buildup during commutation. Therefore more of the studies (including MPC dynamic simulaticiß) were performed on the ferrite machine case. In the absence of a built prototype (from which experimental results can be obtained), the calculated machine parameter values are sufficient enough to judge the accuracy of the design. The validity of such emf calculations was demonstrated earlier in Reference [20], inluded in Appendix [1] for convenience.

With the above points in mind, the top frame of Figure (3.2-18) shows the no load armature emf waveform of the strontium ferrite machine assuming no armature slot skewing. Notice the high harmonic content in this emf waveform.

Phase (1) of this project encompassed the design, construction and testing of a 4 -pole samarium cobalt machine with a 5 slot armature, entailing a fractional slot winding to reduce harmonics. However, fractional sloting represents difficulties in manufacturing, and hence extra labor and construction costs. Accordingly, it was decided in Phase (11) to resort to a lower cost method for armature emf harmonic reduction, namely by skewing the armature slots. Furthermore, in the machines of Phase (11), the number of poles was increased to six and the number of slots was increased to 18 (entailing a simpler integral slot winding). This change also reduced the complexity of the machine winding and corresponding cost of construction. However, abandoning the fractional slot winding for the integral slot winding, causes the slot harmonics to increase in the absence of other means of harmonic reduction, as was seen in the waveform in the top frame of Figure (3.2-18). Examining the effects of stator slot skewing, see References [24] and [25] of Appendices [5] and [6] and Reference [29], on the back emf, an improvement in the emf profile was noticed as shown by comparing the middle and bottom frames of Figure (3.2-18) for half armature slot and full armature slot skewing, respectively with the top frame of the same figure, where no skewing was assumed. Notice the closeness to a sinusoid of the profile with a skewing by a full slot pitch. Skewing is accounted for analytically by including a skewing factor k_{s} in the winding factor calculated in Section (3.1). For the Phase (II) samarium cobalt and strontium ferrite based motors, k_{s} is given by:

$$
k_{s}=\sin \frac{1}{2}(\pi / 3) / \frac{1}{2}(\pi / 3)
$$

Implying that the winding factor, k_{w} is

$$
k_{w}=k_{s} k_{d} k_{p}=0.955
$$

and the low speed (series connection) torque sensitivity becomes

$$
S_{t}=0.183 \mathrm{ft} . \mathrm{lb} . / \text { ampere }(0.248 \mathrm{Nm} / \mathrm{A}) \text {. }
$$

At high speed (parallel connection), the corresponding torque sensitivity is

$$
S_{t}=0.091 \mathrm{ft} . \mathrm{lb} . / \text { ampere }(0.124 \mathrm{Nm} / \mathrm{A}) .
$$

Table (3.2-1) summarizes the peak armature emf constants for the 4 and 5 turns per coil per phase for the samarium cobalt armature and the 3 and 4 turns per coil per phase for the strontium ferrite armature, when both are onnected for normal rated operation. That is, two parallel paths per phase. Notice that these are 3 coils per phase in both machines. Hence, a 4 turns per coil per phase winding is the same as a 12 turns per phase winding, and so on. These values are given assuming full slot skewing.

A. Unskewed Skator.

B. One Half Slot Skewing.

C. One Slot Skewing.

FIGURE (3.2-18) No Load Armature EMF Waveforms Calculated by the FE Analysis for the Strontium Ferrite Machine, Assuming no Armature Slot Skewing, Half Slot Skewing, and Full Slot Skewing

ORIGINAL PAGE R OF POOR QUALITY

3.2.5 RESULTS OF SAMARIUM COBALT AND STRONTIUM FERRITE BASED MACHINE DESIGN APPLICATIONS - ARMATURE WINDING INDUCTANCE CALCULATIONS

The various armature winding inductances in an electroncially commutated brushless dc machine of th: type at hand are depicted in a machine winding schematic of Figure (3.2-19). These inductances are phase self inductances, $L_{a a^{\prime}} L_{b b^{\prime}}$ and $L_{c c^{\prime}}$ as well as the mutual inductances between the phases, $L_{a b}-L_{b a} L_{b c}=L_{c b^{\prime}}$ and $L_{c a}=L_{c a}$. The line to line inductance terms are consequently ($L_{a a}+L_{b b} \pm 2 L_{b c}$), $\left(L_{b b}+L_{c c} \pm 2 L_{b c}\right)$ and $\left(L_{c c}+L_{a a} \pm 2 L_{c a}\right)$. Upon determining the magnetic field in such a machine using the FE method one can utilize the current and energy perturbation technique of Section (3.2.3) to calculate the incremental and apparent values of these inductance terms at any desired load (or no load) condition at any given rotor position, 0.

For example, in order to calculate the self inductance terms at no load at a given rotor position, θ, one requires the calculation of the quiescent energy term, $w(0)$, and the perturbed energy terms $w\left(-\Delta i_{j}\right)$ and $w\left(\Delta i_{j}\right)$ the subscript j here can be a, b or c. Because of the three phase armature winding symmetries, and the fact that only two windings are excited at any given instant, $j=1,2$, which refers to a and b, or b and c, or c and a. In order to calculate the above quiescent and perturbed energy terms, the magnetic field inside the machine must be calculated for these three conditions. These field distributions are shown in Figurss (3.2-20) through (3.2-22) for the quiescent point at no load, the perturbed point due to a current perturbation of (Δi_{J}) in one of the windings, and the perturbed point due to a current perturbation of $\left(-\Delta i_{j}\right)$ in the same phase winding, respectively, for the samarium cobalt machine. Similar field solutions were obtained for the strontium ferrite machine in order to calculate the corresponding inductance terms. These are not shown here in the interest of brevity. It should be pointed out that close inspection of Figures (3.2-20) through (3.2-22) reveals that the current perturbations are so small that these flux distributions are almost the same with or without current perturbations. In order to calculate the self inductances of the armature phases at rated load, the energy term $w\left(i_{j}, i_{k}\right)$ is calculated from a magnetic field solution obtained with two phase currents, i_{j} and i_{k}, present in the armature coils, where j can be a or b or c and k can be a or b or $c, j \neq k$. Next, the excitation is disturbed in the winding for which the self inductance is to be calculated, that is a current ($i_{j}+\Delta i_{j}$) is assumed and a corresponding magnetic field solution and energy term, $w\left(i_{j}+\Delta i_{j}, i_{k}\right)$, are calculated. Finally, the excitation is disturbed in the same winding, that is a current $\left(i_{j}-\Delta i_{j}\right)$ is assumed and a corresponding magnetic field and energy term, w($\left.i_{j}-\Delta i_{j}, i_{k}\right)$ are calculated.

TABLE (3.2-1) FE DETERMINED AND MEASURED BACK EMF CONSTANTS (Volts/Mech.Radian/Sec)

| SAMAR!UM COBALT | | |
| :--- | :---: | :---: | :---: | :---: |
| | 15 turns/phase | 12 turns/phase |
| FE | 0.0866 | 0.0693 |
| MEASURED | Not Available | 0.0658 |
| | FERRITE | |
| | 12 turns/phase | 9 turns/phase |
| FFE | 0.0792 | 0.0594 |
| IMEASURED | Not Available | 0.0573 |

ORIGINAL PAGE RE
OF POOR QUALTY

Schematic Representation of Machine-Power Conditioner System

FIGURE (3.2-19) Schematic of Machine Phase Windings and Inductances

The field solutions in the samarium cobalt machine case are shown for $\left(i_{j}+\Delta i_{j}, i_{k}\right)$ and $\left(i_{j}-\Delta i_{j}, i_{k}\right)$ in Figures (3.2-23) and (3.2-24), re spectively. Upon substitution of the energy terms $w\left(i_{j}, i_{k}\right), w\left(i_{j}+\Delta i_{j}\right.$. i_{k}) and $w\left(i_{j}-\Delta i_{j}, i_{k}\right)$ in Equation (3.2-44) one obtains the self inductance for the j winding, j can be a, or b or c. In the field perturbation process, if one uses the incremental elemental reluctivities, or the apparent elemental reluctivities, Figures (3.2-3) and (3.2-4), respectively, one obtains the incremental or apparent winding self inductance, respectively.

It must be emphasized that the process of magnetic field solution under perturbed current conditions is a noniterative one, since linearization around the quiescent solution point is assumed. However, the solution for the magnetic field corresponding to each quiescent operating point is of the nonlinear iterative type, and is obtained using the Newton-Raplson method.

In order to determine the effect of the rotor position on the winding self inductances, quiescent field solution points are obtaıned at various rotor positions. These quiescent field solutions are then perturbed to obtain the various inductances at various rotor positions. Three examples of such quiescent field solutions calculated at the beginning, midde and end of one of the six states in an ac cycle. These solutions are depicted by equal m.v.p. contour plots in Figures (3.2-25) through (3.2-27) for the rotor position at the beginning, middle and end of a state, respectively. Similar solutions were obtained in the case of the ferrite machine. However, in the interest of brevity they will not be shown here.

The same process was repeated in calculating the mutual inductances at no load and at rated load for both the samarium cobalt and the strontium ferrite machines, respectively. In the no load case, the current perturbations are $\left(\Delta i_{j}, \Delta i_{k}\right),\left(-\Delta i_{j}, \Delta i_{k}\right),\left(\Delta i_{j},-\Delta i_{k}\right)$, and $\left(-\Delta i_{j},-\Delta i_{k}\right)$ where j and $k(=1$ and 2) but $j \neq k$, and the corresponding energy terms $w\left(\Delta i_{j}, \Delta i_{k}\right), w\left(-\Delta i_{j}, \Delta i_{k}\right), w\left(\Delta i_{j},-\Delta i_{k}\right)$, and $w\left(-\Delta i_{j},-\Delta i_{k}\right)$ were obtained from the perturbed field solutions. Upon substituting these energy terms in Equation (3.2-45) one obtains the mutual inductance term, $L_{j k}$, where j can be a, b, or c and k can be a, b, or $c, j * k$. The incremental or apparent inductances would result upon using the incremental or apparent elemental reluctivities in the solution for the field perturbation, respectively.

At rated load, the perturbed field solutions are obtained for perturbed excitations such as $\left(i_{j}+\Delta i_{j}, i_{k}+\Delta i_{k}\right),\left(i_{j}-\Delta i_{j}, i_{k}+\Delta i_{k}\right)$, (i_{j} $\left.+\Delta i_{j}, i_{k}-\Delta i_{k}\right)$, and $\left(i_{j}-\Delta i_{j}, i_{k}-\Delta i_{k}\right)$. The corresponding energy terms are $w\left(i_{j}+\Delta i_{j}, i_{k}+\Delta i_{k}\right), w\left(i_{j}-\Delta i_{j}, I_{k}+\Delta i_{k}\right), w\left(i_{j}+\Delta i_{j}, i_{k}\right.$ $\left.\Delta i_{k}\right)$, and $w\left(i_{j}-\Delta i_{j}, i_{k}-\Delta i_{k}\right)$. Here again, j can be a, b or c, and k can be a, b or $c, j \neq k$. Upon substitutuion of these energy terms into Equation (3.2-45) one obtains the mutual inductances under load condi-

$$
\because \quad \therefore \quad n \boldsymbol{H} \boldsymbol{H}_{i}^{\prime}
$$

FIGURE (3.2-21) The Perturbed Field at No Load Due to $\left(+\Delta i_{j}\right)$ For the Rotor Position in FIGURE (3.2-20)

FIGURE (3.2-22) The Perturbed Field at No Load Due to $\left(-\Delta i_{j}\right)$ For the Rotor Position in FIGURE (3.2-20)

FIGURE (3.2-23) Perturbed Field Solution Due to a Perturbed Current ($i_{a}+\Delta i_{a}, i_{b}$)

FIGURE (3.2-24) Perturbed Field Solution Due to a Perturbed Current ($i_{a}-\Delta i_{a}, i_{b}$)

FIGURE (3.2-25) Quiescent Field Soltuion at Rated Load, Rutor Position at Beginning of State No. 1

FIGURE (3.2-26) Quiescent Field Solution at Rated Load, Rotor Position at Middle of State No. 1

FIGURE (3.2-27) Quiescent Solution at Rated Load, Position at tind of State No. 1
tion for any specified rotor position. This process was carried out for both the samarium cobalt and strontium ferrite machines. Again, the effect of rotor position on the mutual inductances can be studied by varying the rotor position and repeating the solution for the perturbed fields and associated energy terms as described above. In the above figures, notice that the flux plots differ very little due to the very small perturbation currents.

The series and parallel arrangements of each phase winding, see Figures (3.2-28) and (3.2-29), were implemented to obtain a different torque sensitivity for the low speed (series connection) and high speed (parallel connection) operations. However, it should be pointed out that parallel operation was later found to be sufficient to cover the entire required operating range of the MPC system for this application.

Calculation of the self and mutual inductances for both machines revealed that load and rotor position had small effects on the values of these inductances in comparison to their respective i. 0 load values. This will be shown in detail in data which will be given shortly. Furthermore, subsequent calculation of the inductances of the samarium cobalt machine assuming a winding with 5 and 4 turns per coil (that is 15 and 12 turns per path per phase in the parallel connection) and calculation of the inductances of the strontium ferrite machine assuming a winding with 4 ard 3 turns per coil (that is 12 and 9 turns per path per phase in the parallel connection) gave values which were shown by the dynamic MPC system simulation to require choosing the lower number of turns for each marhine. This will be detailed in Section (3.3). Accordingly, the machines were built with the 12 turns per path per phase and 9 turns per path per phase for the samarium cobalt and strontium farrite cases, respectively. Subsequently, the phase-to-neutral (self) inductances, and line-to-line inductances were measured at no load with the aid of an RLC Digibridge. These inductances were also calculated using the perturbation method outlined above. A comparison between the calculated and measured inductances at no load, as well as the effect of change in rotor position at no load will be given next. Furthermore, calculations are used to predict the effect of load on these inductances, where measurement was not possible under such conditions. These results are also given next. Again, the line-to-line and phase-to-neutral inductances for the series and parallel connections were masurad at no load for both machines with the aid of an ac RLC Digibridge, at ditferent rotor positions (or angies), see References [22] and [23], which are included in Appendices [3] and [4] for convenience. The measured line-to-line inductance $L(0)$ line(a)-line(b) from terminal (a) to terminal (b) is given in terms of the self inductances, $L_{a a}(\theta)$ and $L_{b b}(\theta)$, and the mutual inductance, $L_{a b}(\theta)$, for a given rotor positions $; 9$), as follows:

$$
\begin{equation*}
L(\theta)_{\text {line }}(a) \text {-line }(b)=L_{a a}(\theta) \cdot L_{b b}(\theta) \cdot 2 L_{a b}(\theta) \tag{3.2-49}
\end{equation*}
$$

Figure (3.2-30) shows the incremental and apparent values of the inductance, $L_{a 0}(\theta)$, for the series arrangement of the phase winding, while Figure (3.2-31) shows the incremental and apparent values of the

LOW SPEED
FIGURE (3.2-28) Series Winding Connection

HIGH SPEED
FIGURE (3.2-29) Parallel Winding Connection

$$
\begin{array}{ll}
\because \cdots, & n+\infty, j n t \\
\cdots & \vdots
\end{array}
$$

TABLE (3.2-2) MEASURED INDUCTANCES OF THE Y-CONNECTED SAMARIUM COBALT MACHINE.

Test	Phase Winding	Inductance ($\mu \mathrm{H}$) versus Rotor Angle Rotor Angle - Electrical Degrees				
	Connection	$0{ }^{\circ}$	45°	90°	135°	180°
Phase to Neutral	Series	168.1	169.3	169.5	168.9	168.5
Phase to	Parallel	42.1	42.5	42.4	42.4	42.0
Neutral						
$\begin{gathered} \text { Line } \\ \text { to } \end{gathered}$	Series	376.7	375	363.6	361.5	364.7
Line						
Line to	Parallel	93.8	93.3	90.9	89.9	90.8
Line						
Test	Phase Winding	Inductance ($\mu \mathrm{H}$) versus Rotor Angle Rotcr Angle - Electical Degrees				
	Connection	225°	270°	315°	360°	
Phase to	Series	168.1	169.8	169.0	168.3	
Neutral	I					
Phase to	Parallel	42.2	42.4	42.4	42.2	
Neutral						
Line	Series	376.2	375	364.3	365.7	
Line						
Line to	Parallel	93.9	93.5	91.0	91.0	
Line						

ORIGNAL PAGE IS OF POOR QUALITY

ORIGNAL PAGE IS OF POOR QUALITY

inductance, $L_{\text {line }(a) \text {-line }(b) \text {, for the series arrangement of the phase }}$ winding, for the samarium cobalt machine as function of the rotor position, (θ), over a complete ac cycle cycle ($360^{\circ} \mathrm{e}$). These calculated values were obtained assuming twelve (12) turns per parallel path per phase. Notice, the " x " points represent corresponding measured values.

Figure (3.2-32) shows the incremental and apparent values of the phase winding, while Figure (3.2-33) shows the incremental and apparent values of the inductance, Lline(a)-line(b), for the parallel arrangement of the phase winding, for the samarium cobalt machine as a function of the rotor position angle, (θ). Again, 12 turns per parallel path per phase were assumed, and here also, the " x " points represent the corresponding measured values. There exists little difference between the incremental and the apparent inductance values because the magnetic material is lightly saturated (almost unsaturated).

A summary of the measured values of inductances as a function of rotor position for the samarium cobalt machine is given in Table (3.2-2). There is very little effect of the rosor position on the calculated and measured inductances due to the large effective airgap which includes the very high reluctivity region of the permanent magnet material. However, the calculated values of inductances under load condition are affectd by the load current as indicated over a period of $60^{\circ} \mathrm{e}$ corresponding to one of the six states in an ac cycle. This is shown in the samarium cobalt machine case by the astrisk (*) points in Figures (3.2-30) through (3.2-33). The effect of the load on the inductance values is still marginal, and can be neglected with no significant influence on evaluation of the overall MPC system performance at rated load.

Calculations were performed to determine the inductances of the strontium ferrite machine in a similar fashion to that der nibed above for the samarium cobalt machine. An example quiescent, , load field solution for a given rotor position is shown in equal m.v.p. contours in Figure (3.2-34), and an example quiescent rated load field solution for a given rotor position of the same machine is given in figure (3.2-35). The corresponding calculated and measured values of the incremental phase to neutral self inductance and line to line incremental inductance at no load are plotted versus rotor angle in Figures (3.2-36) and (3.2-37), respectively. Notice, the values of these inductances were also calculated at typical rated load over two states and are shown by the asterisks (*) in both figures. In this case, load had almost no effect on the values of machine inductances. This is largely due to the lower flux densities prevalent in the case of this machine in comparison to the samarium cobalt case. All calulations and measurements were for a winding with 9 turns per path per phase.

- APPRREIT INDUCTANCE O INCREMERTAL ! NJUCTANCE \times TEST A ARTED LORD, APT. 浮 RATED LOAD, INC.
$L_{\text {line (} a \text {)-1ine }(b)}=L_{a a}+L_{b b}+2 L_{a b}$
parallel connection.
FIGURE (3.2-32) Line to Line Armature Winding Inductance, For Parallel Connection, Function of Rotor Postion - Samarium Cobalt Machine

FIGURE (3.2-33) Armature Winding Self Inductance Per Phase, $L_{\text {aa }}(\theta)$, for Parallel Connection, Function of Rotor Postion - Samarium Cobalt Machine

FIGURE (3.2-34) Example No Load Quiescent Field Solution Point for Calculation of Strontium Ferrite Machine Inductances

FIGURE (3.2-35) Example Rated Load Quiescent Field Solution Point for Calculations of Strontium Ferrite Machine Inductances

$$
\begin{array}{ll}
\text { © NO LOAD, APT. } & \text { © NO LOAD, INC. } \\
\text { RATED LOAD, APT. } \\
\times \text { INDUCTAYCE BY MEASUREMENTS } & \text { RATED LOAD, INC. }
\end{array}
$$

Measured and Calculated Phase to Neutral Inductance

FIGURE (3.2-36) Armature Winding Self Inducatance per Phase, $L_{a a}(\theta)$, for Parallel Connection, Function of Rotor Position - Strontium Ferrite Machine

Measured and Calculated Line to Line Inductance FIGURE (3.2-37) Line to Line Armature Winding Induratances, for Parallel Connection, Function of Rotor Position - Strontium Ferrite Machine

TABLE (3.2-3) FE DETERMINED AND MEASURED (LINE TO LINE) INDUCTANCES. SAMARIUM COBALT

	12 turns/phase	15 turns/phase
\|FE	$41.85 \mu \mathrm{H}$	$63.35 \mu \mathrm{H}$
MEASURED	$44.95 \mu \mathrm{H}$	Not available
	STRONTIUM FERRITE	
	9 turns/phase	12 turns/phase
	$42.5 \mu \mathrm{H}$	$75.5 \mu \mathrm{H}$ FE NEASURED

ORIGINAL PAGE IS OF POOR QUALTTY

The average line-to-line inductances were calculatd for the cases of windings with 12 and 15 turns per path per phase for the samarium cobalt case, and 12 turns per path per phase for the strontium ferrite case for subsequent use in the dynamic simultions. These values are given, with the corresponding test values when available, in Table (3.2-3).

As shown in Table (3.2-3), the measured values of the inductances are higher than the calculated ones. This difference is due to endleakage inductance which is naturally included in the measured values whereas end-leakage inductances are not accounted for in the calculated values because of the two dimensional nature of the numerical field solutions obtained. It is essential to point out that where not indicated, calculations were made using the winding with 12 turns/path/phase for the samarium cobalt and 9 turns/path/phase for the strontium ferrite machine. The 15 turns/path/phase for the samarium cobalt and 12 turns/path/phase for the strontium ferrite were used in the preliminary design of the machines. These were abandoned subsequent to analysis and results which will be revealed in Section (3.3).

Also, as mentioned eariier, measurements were used essent.ally to satisfy the calculated results. However, in the absence of the measured values, the calculated ones are accurate enough to predict the behavior of the MPC systems. These calculated inductances as well as other design options and consequent parameters are used in the next section to determine the final design pariiculars of both machines.

3.3 ASSESSMENT OF DESIGN OPTIONS THROUGH DYNAMIC SIMULATION OF MACHINE SYSTEM

A model for simulating the dynamic and transient behavior (including the all important commutation transients associated with transistor switching operations) of the electronically controlled machine systems being considered here, will now be utilized in the process of designing such systems. The machine associated with this system consists of a rotor on which radially oriented permanent magnets are mounted, and a stationary three phase armature which is conrolled by a transistorized current source power conditioner described earlier in Chapters (1.0) and (2.0). This analysis technique and the resulting simulation model were described earlier in the literature in References [24] and [26]. These references are included, for convenience, in Appendices (5) and (7) respectively. However, for the sake of continuity and completeness of this document, a brief recapitulation of the details of this method is deemed appropriate at this stage.

As mentioned in Section (3.2), key parameters used in this dynamic simulation model such as midgap flux density, emf, and winding inductances were obtained by application of the method of two dimensional finite element solution of nonlinear magnetostatic fields to the two machines subject of this report. These key parameters were used in the dynamic simulation model to analyze the commutation transients and determine the exter.t, if necessary, of armature slot skewing, the sufficient number of turns per coil, and whether or not advanced firing is useful, and if so, by what angle must one advance the transistor switching instant?

Given that the power conditioner utilized here is (ideally) of the rectangular-wave currrent-source type, the armature magnetomotive force (mmf) is of a discretely and rotationally stepping nature in space, as was detailed earlier in Chapter (2.0). This is quite different from the usual smoothly rotating mmf of a conventional balanced three phase armature which is supplied with balanced three phase sinusoidally time varying armature currents. As such, the classical phasor diagram (frequency domain) type of analysis is not applicable here, since the machine is continuously in a dynamic state due to the continuous switching of phase currents. A substitute method of analysis of the performance of such a machine, and its associate conditioner, is that in which one uses digital simulation techniques to represent the continuous switching and commutation transients. This simulation technique results in a discrete time nonlinear equivalent network model of the combined system of power conditioner and machine. The topology of such a network is continuously changing due to the electronic switching process taking place throughout an ac cycle on the armature side. Hence, one resorts to network graph methods and techniques [27,28] to obtain the necessary state models representing the six states which necessarily occur in the ac cycle associated with MPC systens of the type at hand.

ORIGINAL PAGE IS OF POOR QUALITY

3.3-1 MODEL DESCRIPTION - MACHINE EQUIVALENT CIRCUIT

Consider a network model for the radially oriented permanent magnet machine part of this MPC system. This machine, a schematic diagram of which was given earlier in Figure (3.2-19), comprises three windings which are the a, b, and c armature phases, in addition to the electromagnetic effect of the permanent magnets on the rotor. This effect can be duplicated by the presence of an equivalent fourth rotating winding, in a very similar manner to a field winding in a synchronous machine. However, in this case the field current is constant, and hence the equivalent field winding appears as if it is supplied by current from a constant current source. This fourth winding is designated as an equivalent winding (f) for the permanent magnet system, whose mmf is proportional to the coercivity of the magnet material times the magnet height (geometries). as described in References [20] and [21], which are included in Appendices (1) and (2) for convenience.

Since the magnet materials used here were samarium cobalt and strontium ferrite, and given that the conductivities of these materials are low, including relatively small induced eddy currents in the thin high resistivity stainless steel sleeves, used for securing (retaining) the magnets on the rotors, see Reference [34] included in Appendix (9) for convenience, rotor damping effects were neglected, with no adverse effects on the accuracy of the simulation. The phase to neutral voltages, v_{a}, v_{b}, and v_{c}, and the voltage of the equivalent field winding, v_{f}. can be expressed in terms of the various winding resistances, inductances and currents as follows:

$$
\begin{align*}
& {\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c} \\
v_{f}
\end{array}\right]=\left[\begin{array}{llll}
R_{a} & 0 & 0 & 0 \\
0 & R_{b} & 0 & 0 \\
0 & 0 & R_{c} & 0 \\
0 & 0 & 0 & R_{f f}
\end{array}\right]\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c} \\
i_{f}
\end{array}\right]} \\
& +d / d t\left\{\left[\begin{array}{llll}
L_{a a} & L_{a b} & L_{a c} & L_{a f} \\
L_{b a} & L_{b b} & L_{b c} & L_{b f} \\
L_{c a} & L_{c b} & L_{c c} & L_{c f} \\
L_{f a} & L_{f b} & L_{f c} & L_{f f}
\end{array}\right]\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c} \\
i_{f}
\end{array}\right]\right\} \tag{3.3-1}
\end{align*}
$$

where R_{a}, R_{b}, and R_{c} are the armature line-to-neutral phase winding resistances, R_{f} is the equivalent field winding resistance, $L_{a a} L_{b b}$, and $L_{c c}$ are the armature line-to-neutral incremental self inductancos, $L_{f f}$ is the equivalent field winding incremental self inductance, and $\mathrm{L}_{\mathrm{ab}} \ldots \mathrm{L}_{\mathrm{fc}}$ are the incremental mutual inductances. In this case, consider the voltage v_{a}, which can be also expressed as

$$
\begin{equation*}
v_{a}=R_{a^{\prime}} i_{a}+d \lambda_{a} / d t \tag{3.3-2}
\end{equation*}
$$

The angle θ is the armature coil position with request to a given rotating reference, or the rotor position with respect to a stator reference. Hence one can write the following:

$$
\begin{align*}
d \lambda_{a} / d t=\partial \lambda_{a} / \partial i_{a} & \cdot d i_{a} / d t \\
& +a^{\lambda} a / \partial i_{b} \cdot d i_{b} / d t \\
& +\cdots+\partial^{\lambda} a / \partial \theta \cdot d \theta / d t \tag{3.3-3}
\end{align*}
$$

Notice that the terms $\left(\partial^{\lambda} a / \partial i_{a}\right),\left(|M||g|_{a} /|M| i_{b}\right), \ldots .$. are the incremental inductances $L_{a a}=\partial^{\lambda} a / \partial i_{a}, L_{a b}=a^{\lambda} a / \partial i_{b}, \ldots$, and $d \theta / d t=\omega$, the angular rotation of the field with respect to the armature winding, that is the rotor speed. Given that no significant demagnetizations were experienced at armature currents of values near the magnitude of the rated design currents, as evidenced earlier in Section (3.2) and in the work of References [20] through [23], the incremental mutual inductance terms ' $\mathrm{fa}^{\prime} \mathrm{L}_{\mathrm{fb}}$ ' and L_{fc} representing the effect of armature reaction on the equivalent field winding can safely be neglected. Since the equivalent field winding is supplied from a constant current source, the derivative $d i_{f} / d t=0$. Hence Equation (3.3-1) can be rewritten as follows:

$$
\begin{align*}
{\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right] } & =\left[\begin{array}{lll}
R_{a} & 0 & 0 \\
0 & R_{b} & 0 \\
0 & 0 & R_{c}
\end{array}\right]\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] \\
& \left.+d / d t \quad\left\{\begin{array}{lll}
L_{a a} & L_{a b} & L_{a c} \\
L_{b a} & L_{b b} & L_{b c} \\
L_{c a} & L_{c b} & L_{c c}
\end{array}\right]\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]\right\} \\
& +\left[i_{f}\right] d / d t \quad\left[\begin{array}{c}
L_{b f} \\
L_{b f} \\
L_{c f}
\end{array}\right] \tag{3.3-4}
\end{align*}
$$

ORIGINAL PAGE is OF POOR QUALITY

For these machines (samaraium cobalt and strontium ferrite), it was found that the variation of the armature windings' self and mutual incremental inductances, as well as line-to-line incremental inductance with respect to rotor position was negligible. This can be clearly ascertained from the results of Section (3.2) and References [22] and [23] included in Appendices (3) and (4). Thus, little error is introduced by assumming that the phase self and mutual incremental inductances are constant and independent of rotor position, 9 . That is,

$$
\begin{align*}
L_{a a} & =L_{b b}=L_{c c}=L \tag{3.3-5}\\
L_{a b}=L_{b a} & =L_{a c}=L_{b c}=L_{c b}=M \tag{3.3-6}\\
R_{a} & =R_{b}=R_{c}=R \tag{3.3-7}\\
{\left[\begin{array}{c}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right] } & =\left[\begin{array}{lll}
R & 0 & 0 \\
0 & R & 0 \\
0 & 0 & R
\end{array}\right] \quad\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] \\
& \cdot\left[\begin{array}{lll}
L & M & M \\
M & L & M \\
M & M & L
\end{array}\right] \cdot d / d t\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right] \\
& \cdot\left[i_{f}\right] d / d t\left[\begin{array}{c}
L_{c f} \\
L_{b f} \\
L_{c f}
\end{array}\right] \tag{3.3-8}
\end{align*}
$$

since $L_{a f}, L_{b f}, L_{c f}$ are functions of the rotor posiion, $\theta(t)$, one can write

$$
\left[i_{f}\right] d / d t\left[\begin{array}{l}
L_{a f}(\theta) \tag{3.3-8}\\
L_{b f}(\theta) \\
L_{b f}(\theta)
\end{array}\right]=\left[i_{f}\right]\left[\begin{array}{c}
\partial L_{a f} / \partial \theta \\
\partial L_{b f} / \partial \theta \\
\partial L_{c f} / \partial \theta
\end{array}\right] \cdot d \theta / d t
$$

The induced emf in phase ' s ' due to the permanent magnet rotor flux is given by

$$
\begin{equation*}
e_{a}=d\left(i_{f} L_{a f}\right) / d t=i_{f}\left(d L_{a f} / d t\right)+L_{a f}\left(d i_{f} / d t\right) \tag{3.3-9}
\end{equation*}
$$

But i_{f} is independent of time, therefore

$$
\begin{align*}
e_{a} & =i_{f}\left(d L_{a f} / d t\right)=i_{f}\left(\partial L_{a f} / \partial \theta\right) \cdot(d \theta / d t \\
& =i_{f}\left(\partial L_{a f} / \partial \theta\right) \tag{3.3-10}
\end{align*}
$$

where is the anglar speed of the rotor. sunce, the vector in Equation ($3.3-3$) is nothing other than the ind emfs in the a, b, and c phase. of the armature, $e^{\prime} e^{\prime} b^{\prime}$ a.d r. iespective!y. Accordingly, one can write the following:

$$
\left[\begin{array}{l}
e_{a} \tag{3.3-11}\\
e_{b} \\
e_{c}
\end{array}\right] \cdot\left[\begin{array}{c}
\partial L_{a f} / \partial \theta \\
\partial L_{b f} / \partial \theta \\
\partial L_{c f} / \partial \theta
\end{array}\right]
$$

Equation (3.3-11) gives an exprassion for the no-load phase-to-neutral back emf of the motor as a function of:

1. rotor angular speed, w,
2. the permanent magnet equivalent field excitation current, if, and
3. the rate of change of the magnetic coupling between stator and rotor with respect to the rotor position, θ.

These no-load emfs, $e_{a} e_{b}$, and e_{c}, are readily obtained from the finite element field solutions as detailed in Section (3.2).

Because the three phases of the machines at hand are. Y-connected with a floating neutral point (i.e. not grounded), one can write

$$
\begin{equation*}
i_{a}+i_{b}+i_{c}=0 \tag{3.3-12}
\end{equation*}
$$

and

$$
\begin{equation*}
d i_{a} / d t+d i_{b} / d t+d i_{c} / d t=0 \tag{3.3-13}
\end{equation*}
$$

From Equation (3.3-8), it follows that

$$
\begin{equation*}
v_{a}=R i_{a}+L\left(d f_{a} / d t\right) * P A\left(d i_{b} / d t * d i_{c} / d t\right) * i_{f}\left(d L_{a f} / d t\right) \tag{3.3-14}
\end{equation*}
$$

Substituting Equation (3.3-13) into Equation (3.3-14) one obtains

$$
\begin{equation*}
v_{a}=R i_{a}+(L-M) d i_{2} / d t+e_{a} \tag{3.3-15}
\end{equation*}
$$

Writing similar expressions for v_{b} and v_{c} as for v_{a} in Equation (3.3-15). Equation (3.3-8) can be rewritten as follows:

Schometis ofaziom of ine mellice model
FIGURE (3.3-1) Machine Model.

FIGURE (3.3-2) Power Conditioner Schematic

$$
\begin{align*}
& {\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=\left[\begin{array}{lll}
R & 0 & 0 \\
0 & R & 0 \\
0 & 0 & R
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+} \\
& {\left[\begin{array}{ccc}
(L-M) & 0 & 0 \\
0 & (L-M) & 0 \\
0 & 0 & (L-M)
\end{array}\right] \cdot d / d t\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{l}
e_{a} \\
e_{b} \\
e_{c}
\end{array}\right]} \tag{3.3-16}
\end{align*}
$$

Equation (3.3-16) is a decoupled system of equations which can be easily solved. The schematic representation of Equation (3.3-16) is shown in Figure (3.3-1). In this schematic the inductances $L_{A A}=L_{B B}=L_{C C}$ $=(L-M)$ of Equation (3.3-i6), and $R_{a}=R_{b}=R_{c}=R$. It should be pointed out that ($L-M$) is equal to half the line-to-line armature winding inductance of Figures (3.2-31), (3.2-33), and (3.2-37).

3.3.2 MODEL DESCRIPTION - POWER CONDITIONER EQUIVALENT CIRCUIT

Now, one considers the development of an equivalent network model to the power conditioner which is shown schematically in Figure (3.3-2). In such a PC equivalent circuit model, transistors are represented as nonlinear resistors having very low values during the "on" state and having extremely highvalues during the "off" state of a particular transistor. This is to simulate numerically the process of switching "on" and switching "off" of the inverter as well as the chopper transistor of the PC. This is the switching "on" and "off" mandated by the electronic communtation process in the inverter, as well as the line current and torque control process accomplished by the chopper. Both functions were explained in detail in Chapter (2.0). In a similar manner, diodes are represented as resistors with extremely low resistance values when they are in the "forward biased" mode, and represented as resistors with extremely high values when operating in the "reverse biased" mode. The input filter capacitor is represented as a time-invıriant capacitancs. The dc source (battery) is represented as an ideal source of emi in series with a resistor equal to the anticipated internal resistance of typical batteries. Here, the chopper inductor is represented as a constant inductance independent of the saturation status in the inductor core. This is justified by the low level of saturation in such an inductor in the normal operating range of the MPC system.

3.3.3 MODEL DESCRIPTION - COMBINED MPC SYSTEM MODEL

Combining the equivalent circuit models of the machine and the power conditioner described above, one obtains the network graph shown in Figure (3.3-3). In this graph the dark lines represent the twigs (T) of the chosen tree and the lighter lines represent the links (L) of the

cotree. To distinguish between different branches and their components, of the graph, two different labels are given per branch. For example, B1 denotes branch No. 1. The second letter attached to the components C, E, L, ard R (for capacitor. emf, inductor, and resistor) identifies the componert in a link or twig and its number in the nework graph. Node NO is assumed to be grounded, and therefore is taken as the reference for the other node voltages. Branch currents are denoted by IB followed by the appropriate branch number while the branch voltages are denoted by VB and followed by the corresponding branch number.

Having identified the tree, cotree, twigs and their components, and the links and their components, standard graph theory techniques are applied as described in Reference [28] and described for this type of system in References [26] and [27], see Reference [26] in Appendix (7). The result of applying these techniques is a set of first-order differential equations (also called state-space equations) of the form

$$
\begin{equation*}
\underline{\theta}=A \underline{X}+\underline{B} \underline{U} \tag{3.3-17}
\end{equation*}
$$

In Equation (3.3-17) X is a vector of the cotree inductor currents comprising the current through the chopper inductor and the currents through two of the machine inductances (since only two o: the three phase windings are excited at a time, and the three phase currents must always add up to zero, $i_{a}+i_{b}+i_{c}=0$, hence only two of the three phase currents are independant variables), and the tree capacitor voltages.

The vector U is the forcing function vector consisting of the battery voltage and the three back emfs e_{a}, e_{b}, and e_{c} obtained from the finite element field analysis of the machines, as given in Section (3.2). The matices A and B are the nonlinear coefficient matrices formed by the inductance (chopper inductor, and motor inductances, where motor inductances are determined by finite elements as describad earlier), capacitance, and resistance values of the network components. For explicit expressions of the state space equations, see Reference [26] which is included in Appendix (7) for convenience. While most of the network components are given, it must be restated that the back emfs and machine inductances were obtained from finite element field analysis during the design stage and were subsequently confirmed by test after construction of the machines. Figure (3.3-4) shows a simplified flow chart of the algorithm used to implement the ahove MPC system model.

This dynamic simulation model which is suited for the type of electronically commutated, brushless dc machine systems, with radially oriented permanent magnets, has been used to simulate the dynamics of two systems of this type. These systems were independently designed and tested. A comparison between the results of the testing of these two systems and the corresponding results of the dynamic simlations verified the validity and excellent accuracy of results of the numerical
simulation. These test and numerical simulation results are displayed in current and voltage oscillogram and computer simulated waveform comparisons ir.cluded in References [2] and [24] given here in Appendices (7) and (5), respectively.

COMPUTER AIDED FINALIZATION OF CHOICE OF DESIGN OPTIONS

Having developed the dynamic network model of the power condi-tioner-permanent magnet machine system for the samarium cobalt and strontium ferrite based machines, and developed a finite element based model for determination of machine parameters, these two models are used in the development and choice of practical options of design modifications to be applied to the preliminary design, in order to insure that the final design of the MPC systems when implemented, will meet the various rated and peak power equirements. These options of design modifications center on:

1. the number of turns per coil in the armature phase windings, and
2. whether armature slot skewing is a necessity and if so, what is the necessary skewing angle,
3. the question of whether the concept of advanced commutation (advanced firing of the inverter transistors which was discussed in Chapter (2.0)) enhances the ability of the MPC system to achieve higher horsepower outputs, and if so, what is a suitable commutation advance angle?

The determination of these various options for design modifications was accomplished by utilizing the combined power conditioner-permanent magnet machine dynamic performance model at various current commands and speeds, using the back-emf profile: and winding inductances obtained from the finite element solution of the magnetic field in these machines, as described in Section (3.2.2). The models are used to predict the performance of the MPC systems, that is, maximum output horsepower capabilities, currents and voltages througout the MPC system, etc. when two different sets of numbers of turns per coil are used in the windings of the samarium cobalt and strontium ferrite based machine, respectively. In the samarium cobalt machine case, the effects of the use of 5 and 4 turns per coil (15 and 12 turns/path/phase) were simulated. The number of turns influences heavily the machine winding inductance, which in turn influences the MPC system performance, such as magnitudes and widths of voltage spikes across the inverter transistors, as well as rates of buildup of commutated phase currents. in the strontium ferrite machine case, the effects of the use of 4 and 3 turns per coil (12 and 9 turns/path/phase) were simulated. Notice that there are three coils per phase in both machines. Hence, for the
 7

FIGURE (3.3-4) Flow Chart of Machine - Power Conditioner Dynamic Model
samarium cobalt case, winding designs of 15 and 12 turns per path per phase were simulated, while in the strontium ferrite case, winding designs of 12 and 9 turns per phase were simulated. The effects of stator slot skewing and commutation advance angle on the output characteristics of both machines were also investigated. Recall that by commutation advance (or advanced firing) angle, one means the relative displacement between the peak of the fundamental of the phase current and the fundamental of the induced armature phase emf. That is, the firing angle corresponds to the time at which one of the transistors of the power conditioner inverter is turned "on" to allow the buildup of current in a given phase. Hence, zero commutation advance means that the two phase current and emf peaks have zero displacement between them, and a 30° electrical ($30^{\circ} \mathrm{E}$) advanced firing is the angle by which the peak of the fundamental of the phase current leads the peak of the fundamental of the phase emf. In this MPC system for zero degrees of commutation advance, a phase current is "switched on" $30^{\circ} \mathrm{E}$ after the zero crossing in the phase emf waveform, and "switched off" $150^{\circ} \mathrm{E}$ after that very zero crossing in the emf waveform. When the inverter transistors' firing is advanced by an angle, δ, the above angles become ($30-\delta)^{\circ} \mathrm{E}$ and $(150-\delta)^{\circ} \mathrm{E}$, respectively.

As mentioned earlier, because the energy product of the strontium ferrite material is considerably less than that of the samarium cobalt material, there is more likelihood for the strontium ferrite machine not to meet the output power requirements than the samarium cobalt machine. This is the main reason why most of the simulation runs which will be shown next were made on the stontium ferrite machine. So that if the strontium ferrite machine meets the power requirements, so most likely will the samarium cobalt machine.

The samarium cobalt and strontium ferrite machines are required to produce at least 15 hp (1 i kw) continuous and 35 hp (26.1 kw) peak ratings. These power ratings have to be developed under a maximum supply voltage of 120 V stipulated by the contractor, maximum transistor currents of 400 A which was dictated by the maximum available current capacity of transistors in the market at the time of construction, and machine speed range of 6000 to 9000 rpm dictated by mechanical consideration for the type of rotors and bearings being considered. Using the emf and inductance values obtained from the finite element analysis discussed earlier, simulation studies were done that yielded performance results which are discussed next.

The maximum powers and peak currents developed by the 15 turn/ path/phase and 12 turns/path/phase winding designs of the samarium cobalt machine between 6000 and 9000 rpm were determined using the MPC dynamic simulation model describe earlier in this section, and are shown in Figures (3.3-5) and (3.3-6) respectively. From Figure (3.3-5), the 15 turn/path/phase winding machine is unable to attain the

35 hp (26.1 kw) peak within the prescribed speed range. On the other hand, not only does the 12 turn/path/phase winding version meet the peak power specifications, but Figure (3.3-6) shows that the phase currents are less than the 400 A . Similar studies were performed on the 12 turns/path/phase and 9 turns/path/phase winding design versions of the strotium ferrite machine as indicated by Figures (3.3-7) and (3.3-8). Again, notice that the version with the lower number of turns meets both the pea! power and phase current requirements. The reason why the peak electromagnetic power developed was much less in magnitude than the required 35 hp (26.1 kw) peak for the 12 turns/path/ phase winding as opposed to the lower 9 turns/path/phase winding for the strontium ferrite machine is explained [24] next.

The MPC dynamic simulation model at hand was used to obtain the starting current profiles on the armature side of the strontium ferrite machine in the motoring mode. This was done for the case with 12 turns/path/phase and 9 turns/path/phase, assuming the same initial value of phase current, with no commutation advance. The resulting starting current profiles were plotted until the phase current reached a steady state value. These two cases for 12 turns and 9 turns are shown in Figures (3.3-9) and (3.3-10), where the steady state ac phase current maximum value of about 28 Amperes and 250 Amperes were reached, respectively. Obviously the lower the number of turns the lower the inductances of the machine armature winding, the higher the current build up rates during commutation, and the higher the steady state values of current and developed power. Advancing the firing angle by $30^{\circ} \mathrm{E}$ leads to the starting and steady state current profile given in Figure (3.3-11), with a maximum steady state ac phase current of about 340 Amperes. Further evidence of the benefits of advanced firing will be discussed later in this section.

The above results indicate that a lower number of turns in both machines enhance the MPC system power and current capabilities, and facilitate the all important electronic commutation process of the phase currents. Therefore, the 12 turns/path/phase winding design for the samarium cobalt and the 9 turns/path/phase winding for the strontium ferrite machines were selected for the final design.

Earlier in Section (3.2.4), it was stated that integral slot windings for both machines (that is, 18 slots and 6 poles which means one slot/ pole/phase) will be used instead of fractional slot windings in order to reduce complexities in th construction process. In so doing, the emf harmonics were increased as was shown in Section (3.2). In order to reduce these harmonics, it was decided to explore the possibility of skewing the stator core by a total amount of half a slot and a full -'jt pitch as described in Reference [25], which is included in Appendix (6) for convenience. The effect of skewing was analytically accounted for by means of a sewing factor included in the winding factor. Figure (3.3-12) shows a typical effect of skewing of the stator slots on the induced armature waveforms. This emf was obtained from the finite element determined mid gap flux density distribution as discussed in

FIGURE (3.3-5) Maximum Power Curves for the Samarium Cobalt Machine

FIGURE (3.3-6) Peak Current Curves for the Samarium Cobalt Machine

$$
\begin{aligned}
& \because \because \operatorname{Min} / \mathrm{ME} \\
& \text { OF POOR QUALTTY }
\end{aligned}
$$

FIGURE (3.3-9) Simulated Current Buildup in the Strontium Ferrite Machine for 12 Turns and Zero Degrees E Commutation Advance

FIGURE (3.3-10) Simulated Current Buildup in the Strontium Ferrite Machine for 9 Turns and Zero Degrees E Commutation Advance

FIGURE (3.3-11) Simuiated Current Buildup in the Strontium Ferrite Machine for 9 Turns and 30° E Commutation Advance

Section (3.2). This figure shows the emf in the case of the strontium ferrite machine, with no skewing, half stator slot skewing and a full stator slot skewing. Notice that the armature skewed by a stator slot pitch produces a waveform approaching a sinusoid, which is better than in the case of either no armature skewing or armatue skewing by a half stator slot pitch.

The resulting emf waveforms with a full slot skewing, for the samarium cobalt and strontium ferrite machines, with the chosen final number of turns/path/phase are shown in Figures (3.3-13) and (3.3-14), respectively. The corresponding emf sensitivity constants in Volts/Mechanical Radian/Second were given earlier in Table (3.2.1). The effect of skewing was also investigated using computer simulated waveforms determined by the dynamic simulation model applied to the strontium ferrite machine case. The phase currents and elctromagnetic torque for the case of no skewing, half slot pitch skewing, and full slot pitch skewing were obtained by simulation. This is shown in Figures (3.3-15) through (3.3-17). As shown by the values indicated at the top of the waveform, steady state phase currents, indicative of MPC system capability increase from 200 Amperes to 227 Amperes when one skews the aramature winding by one stator slot pitch. Thus, it was decided to skew the armatures of both machines by a full stator slot pitch.

Another factor which affects the machine output is the commutation angle. This aspect is detailed in Reference [33], which is included in Appendix (8) for convenience. Recall that a commutation advance of $0^{\circ} \mathrm{E}$ means that the phase current is injected $30^{\circ} \mathrm{E}$ after the zero crossing of the phase emf. Normal firing is a commutation advance of $0^{\circ} \mathrm{E}$. Consider Figure (3.3-18) showing a sketch of the emf and phase current waveforms during normal firing, and at a commutation advance of 30 degrees electrical. The period of conduction (when a phase current flows) is $120^{\circ} \mathrm{E}$. It can be seen that at normal firing, both waveforms are centered with respect to one another, thus maximizing the volt-ampere product for a given current and speed. However, under heavy loads, this normal firing angle limits the maxiumum value of current buildup. This is because higher values of emf oppose this current buildup at the instant of switching-on a phase under normal firing. Therefore, by advancing the commutation to a point where the emf is reduced (to zero), one allows a larger rate of current buildup, thus permitting capabilities for heavier loads.

The above results and discussion lead one to look favorably upon the idea of advanced commutation, which was analyzed by simulation of "advanced firing" using the model at hand. The effect of advanced firing on machine performance is clearly illustrated by the computer simulated waveforms of Figures (3.3-19)* and (3.3-20)* for the strontium ferrite machine. These figures are plots of the simulated machine phase current and elecromagnetic torque for the cases of $2 e r 0^{\circ} \mathrm{E}$ and $30^{\circ} \mathrm{E}$ of advanced firing of the strontium ferrite machine system. Figures (3.3-21)* and (3.3-22)* are plots of the simulated phase current for the cases of $0^{\circ} E$ and 30 degrees electrical commutation advance for the 12

(b)

Phase to Neutral r ien Cireult Voltage Wovelorm for a) No thering, b) Half slot Fir a skewing, c) Pull slot Pitch skeving.

FIGURE (3.3-12) Typical Effect of Skewing on Armature Induced EMF in the Strontium Ferrite Machine for No Skewing, Half Slot Skewing, and Full Slot Skewing at 8000 rpm .

FIGURE (3.3-13) Armature Induced EMF Waveform of the S marium Cobalt Determined by Finite Elements, 9000 r.p.m.

FIGURE (3.3-14) Armature Induced EMF Waveform of the Strontium Ferrite Determined by

Finite Elements, 9(XX) r.p.m.

FIGURE (3.3-15) Strontium Ferrite Machine Phase Current and Electromagnetic Torque in Amperes and Newton Meter, No Skewing, Zero Commutation Advance, at 8000 r.p.m., 9 Turns/Path/Phase.

FIGURE (3.3-16) Strontium Ferrite Machine Phase Current and Electromagnetic Torque in Amperes and Newton Meter. Half Slot Skewing, Zero Commutation Advance, ai 8000 r.p.m., 9 TurnsiPath/Phase.

FIGURE（3．3－17）Strontium Ferrite Machine Phase Current and Electromagnetic Torque in Amperes and Newton Meter，One Slot Skewing，Zero Commutation Advance，at 8000 r．p．m．， 9 Turris／Path／Phase

turns/phase winding at 9000 rpm of the samarium cobalt machine system. As these figures indicate, the values of the phase current and electromagnetic torque increased remarkably as the commutation advance changed from 0 degrees to 30 degrees electrical. The effect of advancing commutation on the developed electromagnetic power is further illustrated for the case of the samarium cobalt machine in Figures (3.3-23)* and (3.3-24)*, where advanced commutation by 30 degrees electrical lead to an increase in maximum electromagnetic power from 17.4 kw to 23.2 kw . Hence, a commutation advance of 30° electrical was seiected to be used in the final design, thus requiring a rotor position sensor which permitted this capability of $0^{\circ} \mathrm{E}$ and $30^{\circ} \mathrm{E}$ of advanced commutation for both machines.

The above effective use of computer simulation tools in assessing various design options led to the choice of reduced numbers of turns/ path/phase of 12 and 9 for the samarium cobalt and strontiumm ferrite machines, respectively. It also led to the decision to skew both armatures by one stator slot pitch, an led to the choice of providing advanced commutation capabilities in the rotor position sensor and power conditioner, in order to insure meeting all the rated and peak power requirements. Thus, final machine designs were arrived at as described in the next Section (3.4).
3.4 FINALIZATION OF MOTOR DESIGN

In the previous two sections, it was shown that it is highly desirable to introduce three motor design modifications on the original preliminary designs of the samarium cobalt and strontium ferrite based machines given in Section (3.1). These three motor design modifications can be summerized as follows:

1. It was found from finite element magnetic field analysis, Section (3.2), that skewing the armature (stator) slots by one slot pitch leads to considerable reduction in the harmonic content of the induced armature emf waveforms. The reduction in the harmonic content of the induced armature emf hat an additional beneficial effect on the peak power capability of the machine at hand, which was demonstrated by the results of the dynamic analysis of the MPC systems' interaction, Section (3.3). Accordingly, it was decided to skew the armature slots by one slot pitch.
2. It was found from finite element magnetic field analysis, Section (3.2), that a reduction in the number of turns per path per phase from 15 turns/path/phase to 12 turns/path/phase (from 5 turns/coil to 4 turns/coil) in the case of the samarium cobalt based machine, and a corresponding reduction in the number of turns per phase from 12 turns/path/phase to 9 turns/path/ phase (from 4 turns/coil to 3 turns/coil) in the case of the strontium ferrte based machine, led to a considerable reduction in the armature inductances. This was shown, on the basis of

FIGURE (3.3-19) Phase Current and Electru.iagnetic Torque for the Case of 0° Advanced Commutation of the Strontium Ferrite Machine, at 8000 r.p.m., 9/Turns/path/phase

FIGURE (3.3-20) Phase Current and Electromagnetic Torque for the Case of 30° Advanced Commutation of the Strontium Ferrite Machine, at 8000 r.p.m., 9/Turns/path/phase.

$$
\begin{aligned}
& \text { … } \because: 70
\end{aligned}
$$

FIGURE (3.3-21) Phase Current of the Samarium Cobalt Machine with the 12 Turn Winding at 9000 rpm and 0° Advanced Commutation

FIGURE (3.3-22) Phase Current of the Samarium Cobalt Machine with the 12 Turn Winding at 9000 rpm and 30° Advanced Commutation.

FIGURE (3.3-23) Electromagnetic Power of the Samarium Cobalt Machine with the 12 Turn Winding at 9000 rpm and 0° Commutation Advance

FIGURE (3.3-24) Electromagnetic Power of the Samarium Cobalt Machine with the 12 Turn Winding at 9000 rpm and 30° Commutation Advance.
the dynamic analysis of the MPC systems' performance of Section (3.3), to lead to a considerable increase in the peak power capability of both motor system. (with the machine armatures connected in the parallel mode). Therefore, it was decided to build both machine armature windings with the lesser number of turns per phase, namely 12 turns/path/phase and 9 turns/ path/phase in the samarium cobalt and strontium ferrite based designs, respectively.
3. It was demonstrated on the basis of the analysis of the dynamic performance of the MPC systems in Section (3.3) that advancing the switching "on" and "off" of the inverter transistors by 30 degrees electrical (advanced firing by $30^{\circ} \mathrm{E}$) leads to dramatic increases in the peak power capabilities of both machines, and facilitates considerably the process of phase current commutation that must take place every $60^{\circ} \mathrm{E}$ in the ac cycle on the armature side of the inverter/converter bridge. Therefore, it was decided to design and build the rotor position sensors of both machines with a capability of normal switching "on" and "off" of the inverter transistors (zero advanced firing), as well as a capability of advanced firing by $30^{\circ} E$ in the ac cycle on the armature side.

With the three above design modifications decided upon on the basis of the results of the aforementioned computer aided design methods (finite element determination of machine parameters, Section (3.2), and simulation of the MPC system dynamic interaction using the FE determined parameters, Section (3.3), the two preliminary machine designs given earlier in Section (3.1) were finalized. Accordingly, the final designs of both samarium cobalt based, and strontium ferrite based machines led to the two armature core designs shown schematically in Figures (3.4-1) and (3.4-2). The main desig, dimensions, and machine parameters are given below in Table (3.4-1).

TABLE (3.4-1) PARAMETERS AND CHARACTERISTICS OF THE SAMARIUM-COBALT BASED AND STRONTIUM FERITE BASED MOTORS FROM DESIGN CALCULATIONS AND TEST

Parameter and Units	Samarium Cobalt Co_{5} Design	Strontium Ferrite Number 8 Design
motor outside diameter, in. (cm)	7.88(20.02)	7.88(20.02)
motor length, in. (cm)	13.35(33.91)	18.85(47.88)
weight, lbs.(kg)	60.0(27.2)	127.0(57.16)
stator lamination outside diameter, in. (cm)	6.518(16.56)	6.518(15.56)
stator lamination stack length, in. (cm)	4.00(10.16)	8.50(21.59)
stator lamination inside diameter, in. (cm)	3.062(7.78)	4.071(10.24)
number of stator slots	1d	18
number of poles	6	6
rotor (magnet str.) outside diameter, excluding sleeve, in. (cm)	2.930(7.44)	3.930(3.98)
rotor outside diameter including sleeve, in. (cm)	3.000(7.62)	4.000(10.16)
rotor (magnet structure) axial length, in. (cm)	3.60(9.14)	8.75(22.23)

Parameter and Units	Samarium Cobalt Co_{5} Design	Strontium Ferrite Number 8 Design
rated input voltage (on dc side), volts	120.0	120.0
rated armature current (on dc side), amperes	125.0	125.0
rated horsepower, hp.	15.0	15.0
*speed at rated horsepower, r.p.m.	*8680	*8840
*torque sensitiviu, at high speed armature winding connection, lb. ft./ampere (Newton Meter/Ampere)	*0.0885(0.22999)	*(0.0992)
back emf sensitivity (constant) at peak of sine wave for high speed armature winding connection, volts/mech. radian/sec.	0.1200	0.0993
armature winding resistance (line to line) for high speed armature cor.nection $25^{\circ} \mathrm{C}$, ohms	0.0047	0.049
*torque sensitivity at low speed armature connection, lb. ft/ampere (Newton Meter/ampera)	*0.1770(0.23998)	*0.1464(0.19849)

TABLE (3.4-1) CON'T.		
Parameter and Units	Samarium Cobalt Co_{5} Design	Strontium Ferrite Number 8 Design
back emf sensitivity at peak of sine wave for low speed armature connection volts/mech. radian/sec.	0.2400	0.1986
armature winding resistance resistance (line to line) for high speed armature connection $25^{\circ} \mathrm{C}$, ohms	0.0047	0.0049
*torque sensitivity at low speed armature connection, ib.ft./ampere (Newton Meter/ampere)	*0.1770(0.23998)	$0.1464(0.19849)$
back emf sensitivity at peak of sine wave for low speed armature connection, volts/lirech. radian/sec.	0.2400	0.1986
armature winding resistance (line to line) for low speed armature connection $25^{\circ} \mathrm{C}$, ohms	0.0188	0.0196
maximum r.p.m. for low speed armature connection, r.p.m.	4300	4500

On the basis of the final designs summarized above, the samarium cobalt based and strontium ferrite based machines were constructed. A pictorial review of the construction steps may be useful here.

Figures (3.4-3) and (3.4-4) show the stator core of the samarium cobalt based machine after assembly, before and after installation of the slot lining material. Notice the six inch long scale included in the picture for proper perspective. Figures (3.4-5) through (3.4-8) show the armature of the samarium cobalt based machine installed in its aluminum housing, viewed from different angles. Again, notice the six inch long scale included for proper perspective. Figure (3.4-9) depicts the samarium cobalt magnet based rotor in its finished form after installation of the nonmagnetic stinless steel magnet retainment sleeve. The major componencs of the samarium cobalt based motor: the armature in its casing, the end bells, the rotor, the rotor position sensor, and through-bolts are all shown in Figure (3.4-10), with a six inch long scale again for proper perspective. Finally, Figures (3.4-11) through (3.4-13) depict the assembled samarium cobalt based machine including its rotor position sensor at one end of the shaft.

FIGURE (3.4-3) Stator Core View No. 1 Samarium Cobalt Machine

FIGURE (3.4-4) Stator Core Viaw No. 2 Samarium Cobalt Machine

FIGURE (3.4-5) Armature
View Number 1 Samarium Cobalt Machine

FIGURE (3.4-7) Armature
View Number 3 Samarium
Cobalt Machine
FIGURE (3.4-7) Armature
View Number 3 Samarium
Cobalt Machine
FIGURE (3.4-7) Armature
View Number 3 Samarium
Cobalt Machine

FIGURE (3.4-6) Armature View Number 2 Samarium Cobalt Machine

FIGIIRE (3.4-8) Armature
View Number 4 Samarium
Cobalt Machine
original page CHEK AND WHITE PHOTOGRAPH

FIGURE (3.4-9) Assembled Rotor Samarium Cobalt Machine

FIGURE (3.4-10) Components of Samarium Cobalt Machine

Figures (3.4-14) and(3.4-15) show the stator core of the strontium ferrite based machine after assemoly, while Figures (3.4-16) and (3.4-17) depict that core during the process of installing the armature winding. Notice the six inch long scale included in the pictures for proper perspective. Figures (3.4-18) through (3.4-21) show the completed armature after it was installed in its aluminum housing, again notice the six inch long scale included in these pictures. Figures (3.4-22) and (3.4-23) show the rotor shaft and magnet assembly, while Figure (3.4-24) depicts the complete rotor assembly after installing the nonmagnetic stainless steel magnet retainment sleeve. Figure (3.4-25) illustrates the completed armature in its housing, as well as the rotor, in the presence of the six inch long scale for oroper perspective. Finally, Figures (3.4-26) through (3.4-28) depict the assembled strontium ferrite based machine including its rotor position sensor at one end of the shaft. Notice the presence of a twelve inch long scale included in these pictures for proper perspective.

For comparison purposes, Figures (3.4-29) and (3.4-30) illustrate the completely assembled samarium cobalt and sroritium ferrite based machines side by side. For proper perspective notice the presence of a twelve inch long scale in both of these pictures. Both of these machines are designed for operation by the same power conditioner whose design is detailed in the next Chapter (4.0).

FIGURE (3.4-11) Assembled Samarium Cobalt Machine View Number 1

FIGURE (3.4-12) Assembled Samarium Cobalt Machine View Number 2

FIGURE (3.4-13) Assembled Samarium Cobalt Machine View Number 3

FIGURE (3.4-15) Sator Core View Number 2
Strontium Ferrite Machine

FIGURE (3.4-16) Partially Wound Armature View Number 1 - Strontium Ferrite Machine

FIGURE (3.4-17) Partially Wound Armature View Number 2 - Strontium Ferrite Machine

FIGURE (3.4-18) Armature View Number 1 Strontium Ferrite Machine

FIGURE (3.4-19) Armature View Number 2 Strontium Ferrite Niachine

FIGURE (3.4-20) Armature Number 3 Strontium Ferrite Machine

FIGURE (3.4-¿1) Armature View View Number 4 Strontium

Ferrite Machine

original page
AND WHITE PHOTOGRAPH

FIGURE (3.4-22) Shaft and Magnet View Number 1 - Strontium Ferrite Machine

FIGURE (3.4-23) Shaft and Magnet View Number 2 - Strontium Ferrite Machine

FIGURE (3.4-24) Shaft and Magnet View Number 3 - Strontium Ferrite Machine
*

3

FIGURE (3.4-25) Components of Strontium Ferrite Machine

FIGURE (3.4-26) Assembled Strontium Ferrite
View Number 1

FIGURE (3.4-28) Assembled Strontium Ferrite

OMGINAL PACE
 BLACK AND WHITE PHOTOGRAPH

FIGURE (3.4-30) Samarium Cobalt and Strontium Ferrite Machines View Number 2

REFERENCES CITED IN CHAPTER (3.0)

1. Overton, B. P., "Notes on Machine Design," Industrial Drives Division, Kollmorgen Corporation, Radford, VA.
2. Sawhney, A. K., A Course in Electrical Machine Design, Dhanpat Rai ε Sons, Dèlhi-110006, 1977.
3. Zienkiewicz, O. C., The Finite Element in Engineering Science, McGraw-Hill Book Company, London, 1971.
4. Alan, J. D., The Finite Element Method, Clarendon Press, Oxford, 1980.
5. Huebner, Kenneth H., The Finite Element Method for Engineers, New York: John Wiley ε Sons, 1975.
6. Desai, C. S. and Abel, J. F., Introduction to the Finite Element Method, New York: Van Nostrand Reinhold Co., 1972.
7. Strag, G. andFix, G. J., An Analysis of the Finite Element Method, Englewood Cliffs, NJ, Prenice-Hall, Inc., 1973.
8. Ahmed, S. V. and Erdelyi, E. A., "Nonlinear Vecter Ptential Equations for Highly Saturated Heteroplar Electrical Machines," IEEE Transactions on Aero-Space, Vol. 2, pp. 885-903, 1964.
9. Erdelyi, E. A., Ahmed, S. V., and Hopkins, R. E., "Nonlinear Theory of Synchronous Machines On-Load," Transactions IEEE, Power Apparatus and Systems, Vol. PAS-85, pp. 792-801, 1966.
10. Erdelyi. E. A. and Fuchs, E. F., "Nonlinear Magnetic Field Analysis of D.C. Machines - Part I: Theoretical Fundamentals, and Part II: Application of the Improved Treatment," Transactions IEEE Power Apparatus and Systems, Vol. PAS-89, PP. 1546-1564, 1970.
11. Demerdash, N. A., Hamilton. H. B. and Brown, G. W., "Simulation for Design Purposes of Magnetic Fields in Turbogenerators with Symmetrical and Asymmetrical Rotors - Part I Model Development and Solution Tehnique," IEEE Transactions On Power Apparatus and Systems, PAS, Vol. 91, 1972, pp. 1985-1992.
12. Demerdash, N. A. and Hamilton, H. B., "Simulation for Design Purposes of Magnetic Fields in Turbogenerators with Symetrical
13. Demerdash, N. A. and Hamilton, H. B., "(lse of Computerized Magnetic Field Solutions in Design Optimization of Turbogenerators," IEEE Transactions on Magnetics, Vol. MAG-11, pp. 1532-1534, 1975.
14. Silvaster, P. and Chari, M. V. K., "Finite Eiement Solution of Saturable Magnetic Field Problems," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-83, pp. 1642-1652, 1970.
15. Chari, M. V. K. and Silvesier, P., "Analysis of Turbo Alternative Magnetic Field by Finite Elements," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-90, pp. 454-464, 1971.
16. Demerdash, N. A. and Nehl, T. W., "An Evaluation of the Methods of Finite Elements and Finite Differences in the Solution of Nonlinear Electromagnetic Fields in Electical Machines," IEEE Transactions on Power Apparatus an Systems, PAS, Vol. 98, pp. 74-87, 1979.
17. Anderson, O. W., "Transformer Leakage Flux Program Based on the Finite Element Method," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-92, pp. 682-689, 1973.
18. Brauer, John R., "Saturated Magnetic Energy Functional for Finite Element Analysis of Electric Machines," Conference Paper C-75-151-6, IEEE-PES Winter Meeting, New York, January 26-31, 1975.
19. Fousd, F. A., Nehl, T. W., and Demerdash, N. A., "Magnetic Field Modeling of Permanent Magnet Type Electronically Operated Synchronous Machines Using Tinite Elements," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-100. 1981. pp. 4125-4135.
20. Fouad, F. A., Nehl, T. W., Demerdash, N. A., "Permanent Magnet Modeling for Use in Vector Potential Finito Element Analysis in Electrical Machinery," IEEE Transactions on Magnetics, Vol. MAG-17, 1981, pp. 3002-3004.
21. Nehl, T. W., Fouad, F. A., and Demerdash, N. A., "Determination of Saturated Values of Rotating Machinery Incremental and Apparent Inductances by a Perturbation Method." IEEE Transactions on Power Apparatus and Systems Vol. PAS-101, 1982. pp. 444 1 -4451.
22. Demerdash, N. A., Fouad, F. A., and Nehl, T. W., "Determination of Winding Inductances in Ferrite Type Permanent Magnet Electric Machinery by Finite Elements," IEEE Transactions on Magnetics, Vol. MAG-18, 1982, pp. 1052-1054.
23. Nehl, T. W., Fouad, F. A., Demerdash, N. A., and Maslowski, E., "Dynamic Simulation of Radially Oriented Permanent Magnet Type Electronically Dperated Synchronous Machines With Parameters Obtained From Finite Element Field Solutions," IEEE Tranactions on Industry Applications, Vol. IA-18, pp. 172-182, 1982.
24. Nehl, T. W., Fouad, F. A., and Deinerdash, N. A. "Digital Simulation of Power Conditioner - Machine Interaction for Electronically Commutated DC Perrianent Magnet Machines." LEEE Transactions on Magnetics, Vol. MAG-17, 1981, pp. 3284-3286.
25. Demerdash, N. A., and Nehl, T. W., "Dynamic Modeling of Brushless DC Motors for Aerospace Actuation," IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-16, No. 6, 1980, pp. 811-821.
26. Nehl, T. W., "A discrete time model of a power conditioner-fed permanent magnet brushiess dc motor system for aerospace and electric vehicle applications for design purposes using finite elements for machine parameter determination," Ph.D. Dissertation, EE Dept., Virginia Polytehnic Institute and State University, Blacksburg, VA, May 1980.
27. Balabanian, N. and Bickart, T. A., Electrical Network Theory, New York: Wiley, 1969.
28. Fouad, F. A. "Finite Element Analysis for Design and Optimization Purposes for Electronically Operated Electric Machines in Propulsion and Actuation Applications," Ph.D. Dissertation, Electrical Engineering Department, Virginia Polyechnic Institute and State University, 1981.
29. Nehl, T. W., "Comparison Between the Finite Difference Methods Applied to Nonlinear Magnetic Fields in Power Apparatus," M. S. Thesis, Virginia Polyterhnic Institute and State University, Blacksburg, Virginia, October 1976.
30. Fano, R. M., Chu, L. J., and Adler, R. B., "Electromagnetic Fields. Energy and Forces," The MIT Prese, 1968.
31. Demerdash, N. A., "Finite Element Analysis of Electromagnetic Fields in Fiectrical Devices," Class Notes for EE 5321 and EF 5322. Virginia Polytechnic Institute and State Liver:iv. Blacksburg, VA 24061, 1979.
32. Nehl, T. W., Demerdash, N. A., Fouad, F. A., "Impact of Winding Inductances and Other Parameters on the Design and Performance of Brushless DC Motors," Daper Accepted for Publication in the IEEE Transactions on Power Aoparatus and Systems. (Will be Presented at the 1984 IEEE-PES Winter Meeting, Dallas, TX.)
33. Nagarkatti, A. K., Mohammed, O. A., and Demerdash, N. A., "Special Losses in Rotors of Electronically COmmutated Brushless dc Motors Induced by Non-Uniformity Rotating Armature MMFS," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, 1982, pp. 4502-4507.
34. Rader, L. T. and Litscher, E. C., "Some Aspects of Inductance When Iron is Present," Trans. AIEE, Vol. 63 (1944), March, pp. 133-139.
35. Matsch, L. W., "Electromagnetic and Elecromechanical Machines," Intext Educational Publishers, 1972.
36. Fano, R. M., Chu, L. J., and Adler, R. B., "Electromagnetic Fields, Energy, and Forces," The MIT Press, 1968.

4.0 POWER CONDITIONER

The power conditioner, the design of which is detailed in this chapter, is depicted in the photographs of Figures (4.0-1) through (4.0-3). The power components are described next.

4.1 POWER COMPONENTS

The power components of the power conditioner at hand are the transistor switches, the chopper inductor, the filter capacitor and all the associated diodes, and other support equipment. All these are detailed below.

4.1.1 POWER TRANSISTORS

The choice of transistors for the inverter and chopper functions was very straightforward. At the time (early 1980), there was only one transistor available at reasonable cost of sufficiently high ratings to perform these functions without resorting to paralleling techniques. This was the Toshiba Giant Transistor 2SD648. This transistor was rated at 300 V ($\mathrm{V}_{\mathrm{CEO}}$) and 400A (I_{C}). This voltage rating was barely adequate to handle the sum of the supply voltage plus the back e.m.f. plus an allowance for switching transients. No other iransistor was available with a collector current rating over 300A. while having an adequate voltage rating except a Power Tech transistor at about three times the cost. Since peak power conditioners required an inductor current of slightly over 300A, this eliminated other transistors. The use of this transistor had several deleterious effects on the fina: design:

1. the mechanical mounting provision required excessive space, causing the total electronics package to be unnecessarily large (even though it was within the specifications), and
2. the lack of external access to the base of the output transistor of the Darlingtor pair caused the turnoff time to be long, which led to higher switching losses than necessary.

Transistors more suitable are now available, and their use is discussed in Section 6.2.

FIGURE (4.0-3) The Power Conditioner - A Side View

In order to prevent any possiblity of transistors Q_{M} and Q_{B} of Figure (2.1-3) turning on simultaneously due to any noise or malfinction in the control electronics, one transistor was used for both functions, the collector and base being switched to the appropriate circuit points by a DPDT relay.. A relay to perform this function which would take advantage of the "dry" (no-load) switching characteristics was designed and built in-house. The control of this relay is discussed in section 4.4.2.

4.1.2 SNUBBER DESIGN

The snubbers (shown in Figure (4.1-1)) were designed to absorb the energy stored in the distributed inductance of the leads of the power transistors. This distributed inductance was estimated to be less than $.25 \mu \mathrm{H}$. Using this value, the energy stored at a transistor current of 300A is

$$
w=\frac{1}{2} L I^{2}=\frac{1}{2} \times .25 \times 10^{-6} \times 300^{2}=.0113 \mathrm{~J} .
$$

It was necessary that the snubber capacitor absorb this energy without allowing the transistor voltage to exceed about 275 V , when the steady siate open circuit voltage across the transistor may be as high as 230 V . Since the energy stored in the capacitor is $C E^{2} / 2$, the capacitance may be found from the relation:

$$
\frac{1}{2} \times C \times\left(E_{\text {max }}^{2}-E_{o . c .}^{2}\right)=w
$$

or .

$$
\left.C=2 w /\left[E_{\max }^{2}-E_{0 . c}^{2}\right]=2 x .0113 / 275^{2}-230^{2}\right]=1 \mu F
$$

To provide a safety factor, a value of $1.76 \mu \mathrm{~F}$ was used.
To insure that this capacitor was completely discharged during the time that the power transistor was conducting, the time constant of the RC circuit was taken to be a maximum of $10 \mu \mathrm{~s}$. Thus, if $R C=10 \mu \mathrm{~s}$,

$$
R=10 \times 10^{-6} / 1.76 \times 10^{-6}=5.7 \Omega
$$

A value of 5Ω was used. Since, at each discharge of the snubber capacitor, an energy of $C E^{2} / 2$ is dissipated in the resistor, the power rating of this resistor must be

$$
P=\frac{1}{2} C E^{2} f_{m}=\frac{1}{2} \times 1.76 \times 10^{-6} \times 275^{2} \times 450=30 \mathrm{~W}
$$

for the inverter transistors and

$$
P=\frac{1}{2} \times 1.76 \times 10^{-6} \times 275^{2} \times 5000=333 \mathrm{~W}
$$

for the chopper transistor.

Not only would the power dissipated in the snubber resistor of the chopper be excessive, but the distributed inductance of this portion of the circuit was too high for the $1.76 \mu \mathrm{~F}$ capacitor. Therefore, the switching transient for this transistor was suppressed by clamping to the positive and negative busses. The clamping network is shown in Figure (4.1-2). This proved to be a very effective means of transient suppression, restricting the peak voltage across the transistor to about 150 V . However, it did not improve the operation of the transistor within the safe operating area.

4.1.3 BASE DRIVE DESIGN

The base drives for the power transistors were designed to provide a base current of 4 A at a base-emitter voltage of 2 V . In order to remove the stored charge and to turn off the transistor as rapidly as possible, the base drive was designed to apply a negative voltage to the base- emitter junction when the transistor is to be turned off. This was accomplished by using a bridge circuit made up of complementary npn-pnp transistors. The transistors chosen for this purpose were ZN6486 npn transistors and ZN6489 pnp transistors. The circuit is shown in Figure (4.1.3).

Shown in this figure is the 6 N 135 optical coupler which provides electrical isolation between the low-level electronics and the base drive. When current flows through the input diode of this device, the light sensitive transistor is turned on. This causes a low voltage to be applied to the gates of the VN46AF field effect transistors, turning them off. This, in turn, allows the drains to rise to their high level. Point X is driven high and point Y is driven low by the inverter transistor VN46AF. Thus, a positive $V_{S E}$ is established. When the input is deenergized, the process is reversed to establish a negative voltage $V_{B E}$.

The $.25 \Omega$ resistor serves to limit the base current in the power transistor. With a base-emitter voltage of about 2 V on the power transistor in saturation and a collector-emitter voltage of about $1 V$ on each drive transistor, a total voltage drop of about 4 V is expected across the transistors at saturation. Since the supply voltage is 5 V , a drop of $1 V$ is expected on this resistor at a base current of 4 A . Thus the value of .258 was chosen.

4.1.4 CHOPPER INDUCTOR DESIGN

The function of the chopper inductor is to reduce the switching frequency of the chopper. A maximum chopper frequency no greater than 5 kHz was desired. This frequency would be attained when the

Snubber Networ:'s

FIGURE (4.1-1) Snubber Network

CLAMPIN, NH:THORK

FIGURE (4.1-2) Clamping Network

ORIGINAL PAGE IS
 OF POOR QUALTTY

back emf was one half of the applied voltage. Under these consditions, the on and off times of the chopper would be equal. It was decided to use a current differential of 15A. That is, the chopper was turned off at a current level 15A higher than the current at which it was turned on. On the basis of these values, the necessary inductance was calculated as

$$
L=[v \Delta T / \Delta I]=[57.5 \times .0001 / 15]=.383 \mathrm{mH} .
$$

This inductance was to be obtained at 200A inductor current.
The core of the inductor was chosen as Allegheny-Ludlum Steel Corporation lamination $\mathrm{L}-10$, in .014 inch (.036 cm) thick AISI alloy number M-15. A triple thick lamaination stack was used, so that the cross-sectional area of the core, A_{c} was 1.25 inch (3.175 cm) by 3.75 inch (9.525 cm). The window area was 1.5 inch (3.81 cm) by 3.5 inch $(8.89 \mathrm{~cm})$. An air gap length, L_{a} of .125 inch (.3175 cm) was used. The effective air gap area was found by adding the gap length to each of the cross-sectional dimensions as 1.375 inch (3.493 cm) by 3.875 inch $(9.843 \mathrm{~cm})$. Thus the effective air gap area, A_{g}, was

$$
A_{g}=3.493 \times 9.843=34.4 \mathrm{~cm}^{2}
$$

and the permeance of the gap was

$$
\begin{aligned}
P & =A_{g}{ }^{\mu_{0}} / 2 L_{a}=34.4 \times 10^{-4} \times 4 \pi \times 10^{-7} / 2 \times .31 .75 \times 10^{-2} \\
& =6.8 \times 10^{-7} \text { MKS units. }
\end{aligned}
$$

If the flux density in the core, B_{C}, at 200 A is taken to be 1.2 Tesla, with a stacking factor of 94 , then the flux density in the air gap is

$$
\begin{aligned}
B_{g} & =B_{C} k_{s}\left[A_{C} / A_{g}\right] \\
& =1.2 \times .94 \times[1.25 \times 3.75 / 1.375 \times 3.875]=.992 \text { Tesla } .
\end{aligned}
$$

Then the mmf of the air gap is

$$
\begin{aligned}
F_{g} & =B_{g}\left[1_{a} / \mu_{0}\right]=.992 \times .3175 \times 10^{-2} \times 2 /\left[4 \pi \times 10^{-7}\right] \\
& =5013 \mathrm{AT} .
\end{aligned}
$$

At a flux density of 1.2 Tesla, the field intensity in the core is given by the manufacturer's data as 4 Oersted or 318 AT per meter. The iength of the core is given as .38 m , so that the mmf in the core is

$$
F_{C}=L_{C} \times H_{C}=.38 \times 318=121 \mathrm{AT} .
$$

Thus, the total mmf is 5134AT. If the current is 200A, then the number of turns,

$$
N=F / I=5134 / 200=25 \text { turns. }
$$

ORTCMAL PMGE B OF POOR QUALTTY

ORIGINAL PAGE IS
 OF POOR QUALITY

Since the reluctance of the core is almost negligible, the inductance can be calculated as

$$
L=N^{2} P=25^{2} \times 6.8 \times 10^{-7}=425 \mu \mathrm{H} .
$$

The windings were made of Number 8 AWG magnet wire, 25 turns/layer, 5 layers/coil, 2 coils, giving a total of 10 strands in parallel.

The length of the average turn is 13 inches. Thus, the length of 25 turn coil is 27.1 ft . The resistance of Number 8 AWG wire is $.794 \Omega / 1000) \mathrm{ft}$. The winding resistance is

$$
R=27.1 \times .794 / 10=2.15 \mathrm{~m} \Omega \text {. This gives a calculated }
$$ copper loss at rated current of 120A of 31W. Since Number 8AWG copper wire weighs $50 \mathrm{lb} . / 1000 \mathrm{ft}$. the weight of the winding is

$$
w=27 \times 10 \times 50 / 1000=13.5 \mathrm{lb} .
$$

The core weight is given as 17.7 lo., so that the total weight of the inductor is 31.2 lb .

4.2 COOLING OF PUWER CONDITIONER COMPONENTS

The power conditioner unit consists of seven Toshiba Giant G-TR2SD648-1 transistors, [1], as well as eight International Rectifier 40) Ampere fast recovery rectifiers, [2]. Both of these devices use a "hockey-puck" type package which allows double side cooling. The maximum operating junction temperatures are $125^{\circ} \mathrm{C}$ and $175^{\circ} \mathrm{C}$ for the transistor and diode respectively. To prevent failure of these devices due to excessive junction temperatures during the normal and peak operating conditions, temperature limits on the transitors and diodes of $115^{\circ} \mathrm{C}$ an $165^{\circ} \mathrm{C}$ were imposed in order to provide a $10^{\circ} \mathrm{C}$ minimum safety margin.

Thermal data on these two devices can be found in References [1] and [2]. Based upon this data, a simplified steady state thermal model of these elements can be expressed in terms of three thermal resistances $R_{J C}, R_{C S}$, and $R_{S A}$ as shown in Figure (4.2-1). Here $R_{J C}$ represents the thermal resistance between the junction and the case while R_{CS} an $\mathrm{R}_{\text {SA }}$ represent the thermal resistances between the case and the sink and between the sink and ambient respectively.

The power dissipated in these devices is assumed to flow from the junction to the case, from the case to the heat sink, and finally frum the heat sink into ambient as shown in Figure (4.2-1). Consequently the dissipated power P_{D} can be expressed in terms of the thermal resistances - $R_{J C}, R_{C S} R_{S A}$) and the junction, case, sink, and ambient temperatures . $T_{J}, T_{C}, T_{S}, T_{A}$ \} as follows:

$$
\begin{align*}
& P_{D}=\left[T_{J}-T_{C}{ }^{j / R_{J C}}[\text { Watts] }\right. \tag{4.2-1}\\
& P_{D}=\left[T_{C}-T_{S}\right] / R_{C S}[\text { Watts] } \tag{4.2-2}\\
& P_{D}=\left[T_{S}-T_{A}\right] / R_{S A}[\text { Watts] } \tag{4.2-3}
\end{align*}
$$

Since both $R_{J C}$ and $R_{C S}$ are known from the data sheets, [1] and [2], there is only one unknown parameter remaining and that is the thermal resistance of the heat sinks.

The maximum allowable value of R_{SA} such that the thermal limits of the transistors and ciodes are not exceeded can be determined by examining the operating points at which the losses are maximum. For the two systems, subject of this report, this corresponds to the 35 hp peak operating point. Even though the 35 hp peak rating is for one minute only, which is less than the time required to reach steady state temperatures, the heat sinks were sized to handle this load continuously as a safety precaution.

It will be assumed that at the 35 hp operating point the inverter-motor system has an overall efficiency of 75° with an input battery voltage of 115 V and the maximum ambient temperature of $50^{\circ} \mathrm{C}$. The average dc current flowing into the inverter in this case would be

$$
\begin{equation*}
I_{D C}=[(35 \times 746 / 0.75) / 115]=302.7 \mathrm{~A} \tag{4.2-4}
\end{equation*}
$$

At the peak rating point, the chopper transistor Q_{M} would be on continuously ard would therefore have to handle l DC continuously. The inverter transistors on the other hand, see this current only one third of ine time. Therefore Q_{M} bears the heaviest thermal load at this operating point.

To calculate the chopper losses under these conditions requires the value of $V_{C E}$ for the value of $I_{D C}$ given in Equation (4.2-4). The transistor data sheets, [1], indicate that with a nominal base current of 4 Amperes, the collector to emitter voltage drop of this transistor at a current of 302.7 [A] is 1.40 [V]. Therefore the forward conduction losses are

$$
\begin{equation*}
P_{D}=V_{C E_{s a t}} I_{D C}=302.7 \times 1.40=423.8[\text { Watts }] \tag{4.2-5}
\end{equation*}
$$

Assuming that the junction temperature of the transistor is limited to $T_{\text {J }}$ $=115^{\circ} \mathrm{C}$, then the temperature differential between the sink and the maximum ambient temperature of $50^{\circ} \mathrm{C}$ is
$\left.T_{S}-T_{A}=(115-423.8 \times 0.04)-50\right)=48.048^{\circ} \mathrm{C}$
Consequently the maximum thermal resistance of the chopper transistor heat sink, such that T_{J} is below $1155^{\circ} \mathrm{C}$, is given by:

TIIERMAL MODEL OF TRANSISTORS AND DIODES

TRANSISTORS

DIODES

FIGURE (4.2-1) Steady State Thermal Model of Power Conditioner Transistors and Diodes

$$
\begin{equation*}
R_{S A}=48.048 / 423.8=0.113\left[{ }^{\circ} \mathrm{C} / \mathrm{W}\right] \tag{4.2-7}
\end{equation*}
$$

To reduce the overall system complexity and cost, it was decidid not to use liquid cooling. Therefore only forced or natural ventilation using air as the heat transfer medium was examined. Also since both the transistors and diodes use a hockey puck package, it was decided to utilize double sided cooling to maximize the heat tra isfer.

Based upon the size of the transistors and the mounting clamps, a heat sink with a width of fice inches and a length cf about six inches (. 152 m) was determined as the minimum size required to adequately mount these transistors. These specifications were met by two six inch long heat sinks, Thermalloy Number 6740 heat sink extrusions, Reference [3].

The maximum allowable power dissipation vs CFM of air flow for thi: heat sink are plotted in Figure (4.2-2) assuming a maximum junction temperature of $115^{\circ} \mathrm{C}$ at ambient temperaiures of 25 and 50°. These curves were plotted using thermal data of this heat sink from data obtained in Reference [3]. Notice that even at the maximum ambient temperature of $50^{\circ} \mathrm{C}$, this heat sink can handle the full 423.8 Watt load with 96 CFM of forced ventiiation. Consequently this sink was chosen since it is close to the minimum size heat sink necessary for the given transistor cooling configuration.

In the case of the diodes, the length of the heat sinks was reduced from 6 inches (. 452 m) to 4.5 inches (.114 m) due to a smaller diode package and because of the higher allowable function temperatures of $175^{\circ} \mathrm{C}$ (limited to $165^{\circ} \mathrm{C}$). Since the maximum junction temperature of the diodes was limiied to $165^{\circ} \mathrm{C}$, the maximum power dissipations versus CFM at ambient temperatues of 25 and $50^{\circ} \mathrm{C}$ was obtained using data given in (3), and is plotted in Figure (4.2-3). The diode power loss, with a constant de current of $300[\mathrm{Aj}$ corresponding to 35 hp is only $332[W]$. This amount of heat can easily be dissipated by the heat sink without exceeding the T , limit of $165^{\circ} \mathrm{C}$.

The above mentioned diode and transistor heat sinks were mounted in a tunnel with the heat sink fins aligned with the axis of the tunnel. Two ventilation fans were mounted at the end closest to the chopper transistors in order to provide the coolest air for this switch. Temperature measurements of the transistor and diode temperatures verified that all switching devices remained within safe tempersture limits under all operating conditons with the ventilation fans on.

4.3 POSITION SENSOR

In order to control the firing of the inverter transistors during commutation, it is necessary to know which state of the commutation sequence is appropriate. It is thus necessary to sense the rotor position

> FIGURE (4.2-2) Maxinum Steady State Power Dissipation Versus ft'minutes of Alr Flow for the Transistor Heat Sinks
max. steady state power dissipation of diode heat sinks

FIGURE (4.2-3) Maximum Steady State Power Dissipation Versus ft^{3} /minutes of Air Flow for the Diode Heat Sinks
and to find in which $60^{\circ} \mathrm{E}$ arc the rotor is positioned. This sensing is accomplished by two sets of three Hall sensors mounted on the stator. These Hall sensors are excited by a six pole permanent magnet field mounted on the rotor.

4.3.1 SENSOR ROTOR

The assembly of the rotor of the position sensor is shown in Figure (4.3-1). Each of the six magnets shown is made of samarium-cobalt and has cross-sectional dimensions of . 008 m (.3in.) by .012 m (. 462 in .). These magnets are mounted on a hexagonal hub . 02 im (. 812 in .) across the flats. After mounting, potting and grinding the magnets, a retaining sleeve is cemented in place on the outer diameter. This sleeve, made of soft magnetic steel, increases the pole span and provides structural integrity for the rotor at high speed to avoid depending on the cement holding the magnets to the hub.

The flux density in the air gap is calculated to be . 315 Tesla ($20.3 \mathrm{KL} / \mathrm{in}^{2}$).

4.3.2 SENSOR STATOR

The stator assembly of the rotor position sensor (exclusive of the housing and mounting hardware) is shown in Figure (4.3-2). The laminations are made of 29 guage AISI type $\mathrm{M}-15$ steel. These are cement. ed together and machined to receive the Hall effect sensors These sensors are spaced 20° apart mechanically, which provides a spacing of $60^{\circ} \mathrm{E}$. The second set of sensors is mounted 130° from the first. Thus, for advanced firing, the second set of sensors is located $390^{\circ} E$ (or $30^{\circ} \mathrm{E}$) from the first set. As a result of this geometry, the output of $+^{\prime}$ = sensors is as shown in Figure 4.4-2 of the next section.

4.4 LOW LEVEL CONTROL ELECTRONICS

The function of the low level control electronics is to control the firing of the power transistors of the inverter and chopper in acrordance with the rotor position, the commanded motoring or braking torque, the desired direction of rotation, and the need for advanced firing. In addition, there are several protective functions which are incorporated into this system. The circuit diagram of the low level control electronics is shown ir Figure (4.4-1). The de power supply for the low level control electronics, as well as t, base drives, was a commercially available multiple output supply.

> ORIGINAL PAGR IS OF POOR QUALITY

FIGURE (4.3-2) RPS Stator Assembly

4.4.1 THE PROM

ORIGNAE Mat
OF POOR Gjiciny
The heart of the control electronics network is a 256×8 bit PROM which is composed of two N82S126 PROMs operating in parallel. The eight input signals to this PROM are the six rotor position outputs (normal and advanced firing), the forward/reverse signal, and the normal/advanced firing signal. Six of the eight outputs (three on each PROM) are used for controlling the inverter transistors. The other two outputs (one on each PROM) are used to control an alarm circuit to shut down the inverter in the case of an illegal set of inputs from the rotor position sensor.

Figure (4.4-2) is a timing diagram showing the state of the six outputs of the rotor position sensor for any shaft position, together with the necessary state of the inverter transistors for proper torque production. On the basis of this diagram, the contents of the PROM are chosen as in Table 4.4.1. In setting up this table, the input number is the hexadecimal equivalert of the binary number $a_{7} a_{6} a_{5}{ }_{4}{ }^{a} 3^{a}{ }^{a}{ }^{a}{ }^{a}{ }^{a} 0$ where $a_{7}=$ normal/advanced firing signal ($1=$ advanced).
$a_{6}=$ forward/reverse signal ($1=$ reverse)
$a_{5}=$ rotor position sensor output C^{\prime}
$a_{4}=$ rotor position sensor output B^{\prime}
$a_{3}=$ rotor position sensor output A^{\prime}
$a_{2}=$ rotor position sensor output C
$a_{1}=$ rotor position sensor output B
$a_{0}=$ rotor position sensor output A.
Thus, for a command of forward, advanced firing when A, A^{\prime} and B^{\prime} are high and B,C and C' are low, the input number would be 10110100 binary or B 4 hexadecimal.

The output number is the hexadecimil equivalent of the binary number $b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}$ where
$b_{7}=$ output 4 of PRON U4 ($0=$ alarm)
$b_{6}=$ output 3 of PROM U4 ($0=\mathrm{Q} 6$ on)
$b_{5}=$ output 2 of PROM U4 ($0=\mathrm{Q} 5$ on)
$b_{4}=$ output 1 of PROM U4 ($0=Q 4$ on)
$b_{3}=$ output 4 of PROM U3 $(0=$ alarm $)$
$\mathrm{b}_{2}=$ output 3 of PROMU3 ($0=\mathrm{Q} 3$ on)
$b_{1}=$ output 2 of PROM U3 ($0=Q 2$ on)
$b_{0}=$ output 1 of PROM U3 ($0=$ Q1 on)

Reverse

Position					Normal				A^{\prime}	B'	C^{\prime}	Advanced				
		B			2	34	45						3			
0																
30		0			1	01	10		0	0	0		10	00	00	
60		0			1	01	10		1	0	0		10	01	10	
90		0			0	11	10	0	1	0	0		10	01	10	
120		0			0	11	10		1	1	0		0	11	10	0
150		1			0	10	01	0	1	1	0		0	11	10	0
180		1			0	10	01		1	1	1		0	10	01	0
210		1			0	0	01		1	1	1		0	10	01	0
240		1			0	0	01	10	0	1	1		0	00	01	0
270		1			0	0	00		0	1	1	1	0	00	01	
300		1			0	0	00		0	0	1		0	00	0	
330		0			1	0	00	1	0	0	1		0	00	0	
360		0			1	00	00		0	0	0			00	0	

Forward
Normal
Advanced
A B C $\quad Q_{1} 23456$
$\Lambda^{\prime} B^{\prime} C^{\prime}$
$Q_{1} 23456$

000	100010	00	0		00	0		0
000	100010	10	0		00	0	0	1
100	100001	10	0		00	0	0	1
100	100001	11	c	0	10	0	0	I
110	010001	11	(0	10	0	0	1
110	010001	11	1	0	10	1	0	0
111	010100	11	1	0	10	1	0	0
111	010100	01	1	0	01	1	0	0
011	001100	01	1	0	01	1	0	
011	001100	00	1	0	01	0	1	
001	001010	00	1	0	01	0	1	0
001	001010	00	0	1	00	0	1	

FIGURE (4.4-2) Timing Diagram (RPS - Inverter)

Thus, for the previous example with an input of B4, the output from Table (4.4.1) would be 11101011 binary or EB hexadecimal. It should be noted that this PROM configuration permits advanced firing for either direction of rotation.

In addition to the data inputs, each PROM chip has two inhibit gates, $C E_{1}$ and $C E_{2}$. The presence of a positive voltage on either gate will prevent any output from going negative and thus turns off the inverter transistors. One of these inhibit gates is used to turn off the inverter during regeneration. The signal to accomplish this is taken from the brake potentiometer through U2A and U8B to inhibit gate $C E_{1}$.
. second signal which can operate this inhibit gate through U8B is the current inhibit signal from pulse generator U9A. The second inhibit gate, $C E_{2}$, is controlled by the flip-flop U9B, which is actuated by any alarm signal received from NAND gate U7C.

4.4.2 TORQUE CONTROL AND BRAKING

The control of the torque of the machine in both motoring and regenerative braking modes is accomplished by controlling the current flowing to or from the machine. This is done by measuring the current in the chopper inductor, comparing it to a reference signal coming from the accelerator or brake potentiometer, and turning the chopper transistor on or off according to whether the difference is positive or negative by a sufficient amount.

The inductor current is sensed by measuring the mmf around the inductor lead with a pair of Hall sensors which will be described in the next section. The outputs of these sensors are amplified by operational amplifiers UIC and U1D. These op-amps also remove the bias from the sensor signals. At the same time, the output of the accelerator or brake potentiometers is being filtered and bu'fered by op-amps U1A and U1B.

For motoring control, the output of U1A, which becomes more negative as the accelerator setting is increased, is added to the output of U1C, which becomes more positive as the inductor current increases. The input to pin 4 of U5A will be positive f the irductor current exceeds the commanded value and negative if it is smaller than the commanded value. A small amount of positive feedback is provided to pin 5 of U5A to generate a hysteresis of about 15A in the inductor current. If the inductor current is high enough +, overcome the hysieresis of U5A, the output of this comparator will be low, causing the output of NAND gate U7A to be high, the output of NAND gate U7B to be low, turning off the 2 N 2222 transistor and, therefore, turning off the chopper transistor. If the inductor current is low enougi, to overcome the hysteresis of U5A, an opposite switching effect occurs, turning on the chopper transistor, providing the inhibit inputs 1 and 2 of NAND gate U7A are positive.

TABLE (4.4-1) PROM CONTENTS

PROM CONTENTS

I	0	I	0	I	0	I	0	I	0	I	0	I	0	I	0
00	DE	20	DE	40	ED	60	ED	80	DE	AO	DB	C0	BD	EO	BE
01	BE	21	BE	41	EB	61	EB	81	DE	A1	DB	Cl	BD	E1	BE
02	77	22	77	42	77	62	77	82	DE	A2	DB	C2	BD	E2	BE
03	BD	23	BD	43	DB	63	DB	83	DE	A3	DB	C3	BD	E3	BE
04	DB	24	DB	44	BD	64	BD	84	DE	A4	DB	C4	BD	E4	BE
05	77	25	77	45	77	65	77	85	DE	A5	DB	C5	BD	E5	BE
06	EB	26	EB	46	BE	66	BE	86	DE	A6	DB	76	BD	E6	BE
07	ED	27	ED	47	DE	67	DE	87	DE	A7	DB	C7	BD	E7	BE
08	DE	28	DE	48	ED	68	ED	88	BE	A8	77	C8	ED	E8	77
09	BE	29	BE	49	EB	69	EB	89	BE	A9	77	C9	ED	E9	77
OA	77	2A	77	4A	77	6A	77	8A	BE	AA	77	CA	ED	EA	77
OB	BD	2B	BD	4B	DB	6B	DB	8B	BE	AB	77	CB	ED	EB	77
OC	DB	2C	DB	4 C	BD	6C	BD	8C	BE	AC	77	CC	ED	EC	77
OD	77	2D	77	4D	77	6D	77	8D	BE	AD	77	CD	ED	ED	77
OE	EB	2E	EB	4E	BE	6E	BE	8E	BE	AE	77	CE	ED	EE	77
OF	ED	2F	ED	4 F	ED	6 F	DE	8F	BE	AF	77	CF	ED	EF	77
10	DE	30	DE	50	EL	70	ED	90	77	BO	EB	DO	77	F0	DE
11	BE	31	BE	51	EB	71	EB	91	77	B1	EB	D1	77	F1	DE
12	77	32	77	52	77	72	77	92	77	B2	EB	D2	77	F2	DE
13	BD	33	BD	53	DB	73	DB	93	77	B3	EB	D3	77	F3	DE
14	DB	34	DB	54	DB	74	DB	94	77	B4	EB	D4	77	F4	DE
15	77	35	77	55	77	75	77	95	77	B5	EB	D5	77	F5	DE
16	EB	36	EB	56	BE	76	BE	96	77	B6	EB	D6	77	F6	DE
17	ED	37	ED	57	DE	77	DE	97	77	B7	EB	D7	77	F7	DE
18	DE	38	DE	58	ED	78	ED	98	BD	B8	ED	D8	EB	F8	DB
19	BE	39	BE	59	EB	79	EB	99	BD	B9	ED	D9	EB	F9	DB
1A	77	3A	77	5 A	77	7A	77	9A	BD	BA	ED	DA	EB	FA	DB
18	BD	3B	BD	5B	DB	7 B	DB	9B	BD	BB	ED	DB	EB	FB	DB
1 C	DB	3C	DB	5 C	BD	7 C	BD	9 C	BD	BC	ED	DC	EB	FC	DB
1D	77	3D	77	5D	77	7 D	77	9D	BD	BD	ED	DD	EB	FD	DB
1 E	EB	3 E	EB	5 E	BE	7 E	BE	9 E	BD	BE	ED	DE	EB	FE	DB
E	ED	3F	ED	5 F	DE	7 F	DE	9F	BD	BF	ED	DF	EB	FF	DB

Regenerative braking is controlled by an identical process. Additionally, when a braking command is generated by the brake potentiometer, the output of U2A is switched negative. The negative output of U2A performs three functions:

1. the output of the accelerator comparator U5A is ciamped low;
2. the relay which switches the chopper transistor from the motoring to the braking configuration is driven to the traking position through the time delay circuit of U2C: and
3. a negative pulse is generated by the exclusive OR gates U10A and U10B, which is transmitted through AND gate U8A to pulse generator U9A. This triggers a 500 ms negative pulse, which inhibits the firing of the chopper transistor and the inverter transistors during the time of the relay switc'ning. Thus, the relay is never tarrying appreciable current during the switching operation.

4.4.3 THE CURRENT SENSOR

It became evident early in the design process that the use of a shunt for current sensing would initroduce a large power loss. In order to avoid this loss, an electronic sensor using Hall effect devices was designed and built. This sensor detected the magnetic field surrounding the wire carrying the current and generated a voltage proportional to the field intensity.

The Hall effect sensors used were Sprague Electric Company type UGN-3501T Linear Output "Hall Effect" Sensors. These sensors have a nominal output voltage of 3.6 Volts with no magnetic field. This output voltage varies by about 6.67 Volts per Tesla of magnetic flux. The maximum linear range of the device is about ± 0.2 Tesla. In order to obtain the maximum sensitivity appropriate to this application, the flux density of 0.2 Tesla should correspend to 300A. Such a flux density required the use of a magnetic core.

A ferrite core (Magnetics Incorporated type 41605-TC material G) was placed around the wire in order to increase the magnetic field due to the current. It was desired to obtain a flux density of 0.2 Tesla with only one turn of wire. This would permit the sensor to be slipped over the wire. To achieve such a flux density would require an air gap of . 074 inches. This would be coo small to insert the Hall effect devices. Thus, an air gap of .093 inches (236 cm) was used. This air gap, at a magnetomotive force of 300 Ampere-turris, has a field intensity of 1.27×10^{8} Ampere-tirns per meter which corresponds to a flux density of . 16 Tesla. Given the sensitivity of the Hall effect devices, the output of the device changes by about 1 Volt at an inductor current of 300 Ampere.

4．4．4 PROVISION FOR SERIES－PARALLEL OPERATION

At the outset of the project，it was not clear whether the drive cycle requirements for acceleration could be met with a limiting current of about 300 Amperes．For this reason，provision was made to double the number of turns per phase，and so to double the torque constant，by using two sets of coils which could be connected either in a series or parallel configuration．A relay was to be usfd to accomplish this switching．Provision for driving this relay has been provided in the control electronics．

A switch has been provided which furnishes a signal to the inputs of U2D，U10C，and U10D．The output of U2D can be used ts control a pair of power transistors to drive a relay which would accomplish the series－parallel switching operation．The exclusive OR gates U1OC and U10D generate a negative pulse any time the selector switch is operated in either direction which triggers the current inhibit pulse generator U9A to turn off the chopper and inverter transistors during the switching operation．

A commercially available relay capable of performing this switching operation would have been prohibitively expensive．An attempt was made to fabricate a relay which would take advantage of the＂dry switching＂characteristic of the application．This relay did not perform satisfactorily．Since it was found that the system permitted perfor－ mance within the specified drive cycle without this series－parallel switching provision，the relay an its associated power transistors were removed．This does restrict the accelerating capability at low speed， even though the sytem performance is within specifications．For this reason，the low－level electronics still retains this switching capability to permit the addition of the relay，if desired．

4．4．5 PROTECTIVE CIRCUITS

In Section 4．4．1，the provision for alarm signals to deactivate the PROM and turn off the inverter transistors was mentioned．There are three such alarm sigrials incorporated into the system：

1．The fourth output of either PROM will go negative if that PROM receives an illegal input from the rotor position sensor．

2．Failure of a current sensor will cause the alarm buss to go ne－ gative．

3．Exiessive inductor current will cause the alarm buss to go ne－ gative．

The first of these alarm functions was discussed in Section 4．4．1． The last two functions are accomplished primarily in comparator chip U6．

Elements U6A and U6B are used to detect the failure of a current sensor. Since the two sensors are used in opposite senses (trat is, one goes more positive and one more negative for increasing current), the sum of the two outputs should remain near zero. This sum is formed in U2B and applied to comparators U6A and U6B in opposite senses. Thus, an excessive discreparicy of either polarity between the two sensor outputs will generate an alarm signal.

Comparator elements U6C an U6D art used to detect an excessive current of either polarity through the ductor and to generate an alarm signal by drawing down the output buss.

It should be noted that when the output of flip-flop U9B is in the alarm state (pin 9 low), this signal is fed to the NAND gate U7A as well as to the PROM. In this way, the chopoer transistor, as well as the inverter transistors, is turned off during any alarm condition.

Any time an alarm triggars U9B, there is a visual indication of this in the LED connected to the output of the flip-flop.

REFERENCES CITED :N CHAPTER (4)

1. Toshiba Giant Transstor Catalog and Technical Data, Toshiba Corporation, Tokyo Japan, March 1, 1979.
2. 401 PDL Series, Power Silicon Rectifiers, Data Sheet Number PD-2.02, International Rectifier, Semiconductor Division, EI Segundo, California, April 1973.

5.0 PERFORMANCE OF MACHINE-POK =R CONDITIONER SYS EMS

In this shapter, the results of testing of the samarium cobalt and strontium ferrite based machines, whose designs were described in Chapter (3.0), when both machines are operated by the power conditioner detailed earlier in Chapter (4.0), are detailed for both the motoring and regeneration modes.

First the test setups used in ostaining all the experimental data are detailed in Section (5.1). The raw data resulting from the testing process is given in Section (5.2), while the methods of power loss and efficiency calculations are given in Section (5.3). In Section (5.4), some resulting data corrections are introduced, in addition to MPC systen loss interpolation formulas. Finally, in Section (5.6) the MPC systems' losses and efficiencies under the standard SAE J227-a Schedule D drive cycle are obtained.

5.1 TEST SETUPS OF MPC SYSTEMS

Setup (1)

The bulk of the performance test data were obtained during MPC system tests ..hich were conducted using a test setup (1) depicted schemtically in figure (5.1-1). In this test setup, the MPC system undergoing testing is connectd to (energizsd from) a de supply which consists of motor-generator (MG) set filtered with a shunt capacitance of about 0.1 Farad to simulate a battery. Proper current, voltaje, and power instrumentation at the conditioner dc input side, and at the machine (armature) ac input terminals is indicated in Figure (5.1-1).

The machine is connected through a torque transducer and a pulleybelt system to the dynamometer. Proper torque and sreed instrumentation are shown in the schematic of Figure (5.1-1). Piuper instrumantation for machine and conditioner temperatures was achieved by thermocouples. The instrumentation for a number of these variables was connected to a data acquisition (DA) system as indicated schematically in Figure (5.1-1), and detailed for the 16 channels o! the DA. system in Table (5.1-1)

It must be emphasized that this secup (1) permits the flow of power from the de supply, through the MPC system, to the dynamometer and vice versa, as indicated by the arrows of power flow in Figure (5.1-1).
MPC SYSTEM TEST SEITP (1)

TABLE (5.1-1). IDENTIFICATION OF FUNCTIONS OF DATA LOGGER CHANNELS.

$$
c^{-3}
$$

TABLE (5.1-2)	IDENTIFICATION OF INSTRUMENTATION IN TEST SETUP (1) - SEE FIGURE (5.1-1).
INSTRUMENT	FUNCTION
	IDENTIFICATION AND TYPE

[^2]

FIGURE (5.1-2) Setup (1) When Testing the Samarium Cobalt Machine

FIGURE (5.1-3) Setup (1) When Testing the Strontium Ferrite Machine

Thus, setup (1) provides the capabilities necessary for testing the MPC systems in the motoring as well as the regenerating modes of operation. Proper identification of the various instruments used in Setup (1) is given in Table (5.1-2). Photographs of the Setup (1) while conducting tests on the MPC systems are shown in Figures (5.1-2) and (5.1-3). Setup (2)

Due to production scheduling constraints at the manufacturers' premises, a limited number of motoring test runs on both MPC systems had to be carried out using setup (2), which is shown schematically in Figure (5.1-4). In this test setup, the MPC system undergoing testing is connected to (energized from) a static converter dc supply. Proper current, voltage, and power instrumentation at the conditioner dc input side, and at the machine (armature) ac input terminals is indicated in this figure. The machine undergoing testing is solidly coupled to the Phase (1) machine, which in turn functions as an alternator (generator) the ouput of which is dissipated in adjustable load racks (adjustable resistance load), with proper output instrumentation. Proper instrumentation for machine and conditioner temperatures was through thermocouples.

It must be emphasized that this Setup (2) permits the flow of power from the dc supply, through the MPC sytem, to the Phase (1) machine which is acting as an alternator, in one direction as indicated by the arrow of power flow in Figure (5.1-4). Thus Setup (2) provides for testing the MPC systems in the motoring mode of operation only. Proper identification of the various instruments used in Setup (2) is given in Table (5.1-3). Photographs of this test setup are shown in Figure (5.1-5) and (5.1-6).

The results of testing the samarium cobalt and strontium ferrite based machines to determine their various performance characteristics, when operating in conjunction with the power conditioner detailed in Chapter (4.0), are given in the next secion. The bulk of the testing runs for both machines were performed using the testing Setup (1), Figure (5.1-1), while the remaining runs were performed using the testing Setup (1), Figure (5.1-4).

TABLE (5.1-3)	IDENTIFICATION OF INSTRUMENTATION IN TEST SETUP (2) - SEE FIGURE (5.1-2)	
INSTRUMENT	FUNCTION	IDENTIFICATION AND TYPE
V_{1}	Voltmeter	Fiuke, Digital Multimeter, Model
A_{1}	Ammeter	8021A, S/N 2190765 Fluke, Digital Multimeter, Model
W_{2}	Wattmeter	8050A, S/N 2856340, with T and M Research Products, Inc., Coaxial Shunt, Model K20,000-40, S/N 6011 Clarke Hess, Digital V-A-W meter,
N_{1}	Tachometer	Model 255, S/N 440, with T and M Research Products, Inc., Coaxial Shunt, Model K20,000-40, S/N 7914 Shimpo Ind. Co., Ltd., Digitacho
$A_{2} \& A_{3}$	Ammeters	DT-103B, S/N 770430 Weston, AC Ammetrs, Model 433,
W_{3}	Wattmeter	S/N 182.976 and S/N 183051, with Electrical Instrument Service Inc., Current Transformers, Model TR-2A S/N ES9089 and S/N ES9090, respectively. Sensitive Research, Polyphase
		Wattmeter, Model PDLW, S/N ES10728, With the above mentioned Current Transformers.

YPC SYSTEA TEST SETUP (2)

FIGURE (5.1-5) Setup (2) When Testing Samarium Cobalt Machine

FIGURE (5.1-6) Setup (2) When Testing Strontium Ferrite Machine

Omennal page
 BLACK AND WHITE PHOTOGRAPA

ORIGINAL PAGE IS OF POOR QUALTTY.

5.2 TEST RESULTS OF MPC SYSTEMS

THE SAMARIUM COBALT BASED MACHINE

The samarium cobalt based machine, the design of which is detailed in Chapter (3.0), was built and tested while in operation in conjuction with the power conditioner, whose design was detailed in Chapter (4.0), under various load conditions. This included a two hour run at a rated load of $15 \mathrm{hp}(11.2 \mathrm{kw})$ motor output, followed immediately by a one minute run at a peak load of $35 \mathrm{hp}(26.1 \mathrm{kw}$) motor output. For the purpose of identification of the various load runs, the run numbers are plotted in Figure (5.2-1), with coordinates designated by the inductor current (which is approximately proportional to the developed torque) versus the machine speed, that is, the points are plotted in the Ampere-RPM plane. This data was recorded when the machine was operated with paraliel connected armature paths.

The dc inductor current is not to be confused with the de line current which is delivered from the source to the MPC system during motoring, and delivered from the MPC system to the source during regeneration. Notice that without chopping, the dc inductor current is approximately equal to the dc line current, whereas during chopping the inductor current is considerably greater than the dc line current.

Each run is identified in this current - speed plane of figure (5.2-1) by a run identification number. These identification numbers do not follow any pattern in this diagram, but are rather based on the sequence in which these runs were performed. These numbers have been preserved in their original form in order to make it easier to relate to the raw data in these investigators' files. Thus, as far as the reader is concerned, the run identification numbers are of no consequence, except for book keeping purposes. Notice, in the currentspeed plane, Figure (5.2-1), only one run, namely run 98, required advanced commutation by 30° in the inverter bridge. This ruri, which is the peak load run of $35 \mathrm{hp}(26.1 \mathrm{kw}$) motor output is designated by a cross (${ }^{+}$) rather than the usual dots for normal runs with no advanced commutation (firing). It should be pointed out that run 64 is that in which the MPC system was loaded for two continuous hours at its rated output of $15 \mathrm{hp}(11.2 \mathrm{kw})$.

The results of the various runs (for the motoring mode) in the inductor current-speed plane of Figure (5.2-1) are given in Table (5.2-1), except for the two hour rated hp run number 64, which is given separately in Tables (5.2-2) and (5.2-3). Table (5.2-2) contains the various MPC system current, voltage, input and output power, torque, as well as speed values taken at increments of 5 minutes throughout the test period of 125 minutes, while Table (5.2-3) contains the

thirteen temperatures previously defined in Table (5.1-1), recorded at increments of 5 minutes, also throughout the 125 minutes run 64 .

In Tables (5.2-1) and (5.2-2), the following symbols designated the various currents, voltages, input and output powers, torque, as well as speed in the MPC system under consideration:

$$
\begin{aligned}
I= & \text { dc line current (not to be confused with inductor current) } \\
& \text { of MPC system in Ampres (A). }
\end{aligned}
$$

$V=$ de supply voltage into MPC system in Volts (V),
$P_{\text {in }}=$ total power input into MPC system including 200 Watts consumed by the low level control electronics, in Watts (W),

T = shaft output torque of motor in Newton Meters (NM),
$N=$ the motor shaft speed in RPM,
and
$P_{\text {out }}=$ total shaft output power from the MPC system in Watts (W).

Notice that in Tables (5.2-1) and (5.2-2) there is an entry for each data set which indicates whether such data was obtained using the test Setup (1) of Figure (5.1-1), or such data was obtained using the :est Setup (2) of Figure (5.1-4).

Furthermore, the ambient temperature, θ_{1}, the motor core (center stack) temperature, θ_{5}, the motor end turn temperature, θ_{7}, the inverter transistor case temperature, θ_{8}, and the chopper transistor case temperature, ${ }^{\theta}$, are plotted over the 125 minutes duration of the rated 15 hp run number 64, in Figure (5.2-2), when the power conditioner was tested in conjunction with the samarium cobalt based machine.

The results of the various runs for the regeneration mode in the current-speed plane of Figure (5.2-1) are given for this samarium cobalt based machine in Table (5.2-4). This table contains the various MPC system, current, voltage, input and output power, torque as well as speed values. Also, one must notice that in this table, $P_{\text {in }}$ represents a mechanical input which is used to drive the samarium cobalt machine as a generator feeding a six legged converter (full wave rectifier bridge) that is equal to the torque times the speed. Meanwhile, $P_{\text {out }}$ represents the gross electric power returned to the battery from the MFC system minus 200 Watts consumed in the low level control electronics. These runs were performed exclusively using test Setup (1), Figure (5.1-1), where power flow reversal was possible.

oricinal page is OF POOR QUALITY

TABLE (5.2-1) TEST DATA OF MOTORING RUNS FOR THE SAMARIUM COBALT BASED MACHINE WHEN ARMATURE PATHS WERE CONNECTED IN PARALLEL
*When Test Setup (2) Was Used, These Variables Were Obtained Indirectly by Calculations from Measured Quantities

$\begin{aligned} & \text { RUN } \\ & \text { No. } \end{aligned}$	TEST Setup	N, RPM	1. Amps	T, NM	V, Volts	$P_{\text {in }}$, Watts	$P_{\text {out }}$ Watts
65	1	9830	38.14	4.07	115.36	5618.9	4189.6
66	1	8960	83.98	6.75	116.23	9961.0	6333.4
67	1	8230	127.74	15.25	115.78	14989.7	13143.1
68	1	7200	197.10	25.08	115.90	13043.9	18909.9
69	1	7140	9.72	1.69	115.97	1327.2	1263.6
70	1	7180	43.00	5.76	115.85	5181.5	4330.9
71	1	8000	119.04	14.57	116.01	14009.8	12206.1
72	1	5400	7.46	1.35	115.28	1060.0	763.4
73	1	$54{ }^{\text {a }}$	33.36	5.76	114.57	4022.0	3258.5
74	1	3600	5.24	2.03	115.98	807.7	765.3
75	1	3600	22.84	6.10	116.13	2852.4	2299.6
76	1	1790	3.24	2.03	115.90	575.5	380.5
98	1	6900	290.08	36.27	116.93	34119.0	26207.5
148	2	1865	14.10	6.42*	116.20	1838.4	1254.5*
149	2	1814	29.6	13.37*	115.70	3624.7	2539.8*
150	2	3600	63.1	15.34*	115.70	750.7	5784.6*
151	2	5400	85.6	15.26*	117.00	10215.?	8631.1*
152	2	7165	98.4	13.15*	115.4	11555.4	9864.8*
153	2	1812	58.9	23.90*	115.3	6991.2	4536.1*
154	2	3758	106.50	25.13*	117.70	12735.0	9962.9*
155	2	5620	148.90	24.80	118.50	17804.2	1453.9*
156	2	1935	86.80	31.10	115.20	10199.4	6301.9*
157	2	3700	152.00	32.39*	117.00	17984.0	12548.4*
158	2	54.28	222.90	32.60	117.60	26413.0	18330.0*
159	2	3720	221.30	38.05*	117.00	26092.1	14824.1*

TABLE (5.2-2) TEST DATA OF THE 15 hp RATED OUTPUT 125 MINUTES RUN NO. 64 FOR THE SAMARIUM COBALT BASED MACHINE WHEN ARMATURE PATHS WERE CONNECTED IN PARALLEL-TEST SETUP (1) WAS USED, DATA TAKEN EVERY 5 MINUTES

time Min.	N, RPM	1 . AMPS	$T,$ NM	V, Volts	$P_{\text {in }}$ Watts	$P_{\text {out }}$ Watts
0	8560	110.86	12.88	115.32	12984.4	11545.9
5	8510	110.14	12.54	115.50	12921.2	11176.4
10	8550	109.60	12.54	115.43	12851.1	11228.9
15	8580	109.82	12.54	115.39	12872.1	11267.1
20	8600	109.38	12.54	115.66	12850.9	11293.4
25	8570	110.46	12.54	115.46	12953.7	11254.0
30	8660	110.00	12.20	115.84	12932.3	11066.0
35	8620	109.72	12.54	115.48	12370.5	11219.7
40	8680	109.38	12.54	115.89	12876.0	11398.4
45	8700	109.46	12.20	116.05	$12 ¢ 02.8$	11114.9
50	8680	110.16	12.20	115.99	12977.4	11089.4
55	8660	110.12	12.20	115.89	12961.8	11063.8
60	8640	110.64	12.54	115.81	13013.2	11345.9
65	8660	109.98	12.20	115.88	12944.5	11063.8
70	8660	110.28	12.20	115.87	12978.1	11063.8
75	8660	110.64	12.20	115.87	13019.9	11063.8
80	8660	110.56	12.20	115.83	13017.2	11063.8
85	8630	111.42	12.54	115.88	13111.3	11332.8
90	8650	111.64	12.20	116.03	13153.6	11051.1
95	8650	111.88	12.54	116.18	13198.2	11359.0
100	8660	111.80	12.54	115.94	13162.1	11372.2
105	8660	110.74	i2.20	115.99	13135.2	11063.8
110	8660	111.40	12.54	116.03	13049.2	11063.8
115	8660	111.40	12.20	116.00	13085.6	11063.8
120	8660	111.14	12.20	115.94	13985.5	11063.8
125	8660	111.14	12.20	116.10	13135.9	11063.8

CRIGHAL : AGE IS OF POOR QUALITY

TABLE (5.2-3) TEMPERATURE TEST DATA OF THE MPC SYSTEM (SAMARIUM COBALT BASED MACHINE) FOR THE 15 hp RATED OUTPUT 125 MINUTES RUN NO. 64 AS INDICATED BY THEROMOCOUPLES DEFINED IN TABLE (5.1-1)-TEST SETUP (1) WAS USED. DATA TAKEN EVERY 5 MINUTES

Time, Min.	$\begin{aligned} & \theta_{1} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \theta_{2}{ }^{\prime} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{\theta_{3}} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{9} 4 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{\theta_{5}} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{\theta} 6 \\ & { }^{\circ} \mathrm{C} \end{aligned}$
0	24.2	29.2	29.1	37.7	40.4	41.6
5	24.5	36.2	33.2	49.8	57.3	58.7
10	24.6	42.7	38.0	60.2	71.7	72.8
15	24.6	48.6	42.8	68.7	83.6	84.4
20	24.7	53.9	46.5	75.9	93.5	94.1
25	25.2	58.6	50.8	82.2	102.0	102.6
30	25.1	62.7	54.3	87.7	109.3	109.8
35	25.4	66.2	57.4	92.3	115.4	115.7
40	25.4	69.2	59.5	96.0	120.6	120.8
45	25.6	72.0	62.5	99.7	125.0	125.2
50	25.9	74.1	64.2	102.3	129.0	129.0
55	25.9	76.1	66.1	104.8	132.4	132.3
60	26.1	78.0	67.6	106.7	135.3	135.2
65	26.0	79.5	68.7	108.8	137.9	137.7
70	26.2	80.7	69.8	111.0	140.1	139.8
75	26.2	82.0	71.2	112.3	141.9	141.7
80	26.2	83.1	72.1	113.6	143.6	143.3
85	26.4	84.0	73.0	114.8	145.2	144.8
90	26.6	85.0	73.1	115.6	146.7	146.3
95	26.6	85.8	73.8	116.6	147.9	147.6
100	26.8	86.5	74.5	117.3	149.2	148.8
105	26.6	87.1	74.7	118.3	150.2	149.8
110	27.0	87.7	74.8	119.3	151.2	150.6
115	26.8	88.4	75.5	119.7	151.7	151.2
120	26.9	88.6	76.1	119.8	152.3	151.8
125	27.2	89.1	76.0	120.3	153.0	152.5

ORIGNAL PAGE IS OF POOR QUALITY

TABLE (5.2-3) Continued

Time, Min.	${ }^{\theta} 7$ ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & { }^{\theta} 8^{\prime} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{0} 9 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{\theta} 10^{\prime} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \theta_{11} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \theta_{12} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{\theta} 13 \\ & { }^{\circ} \mathrm{C} \end{aligned}$
0	41.6	28.3	32.8	27.3	27.4	25.6	27.3
5	59.3	29.3	36.2	29.1	29.1	25.8	28.3
10	73.7	29.8	37.5	30.5	30.1	26.0	28.9
15	85.5	30.1	38.2	31.5	31.0	25.7	29.4
20	95.4	30.3	38.7	32.2	31.6	26.2	29.8
25	103.8	30.7	39.1	32.7	31.9	26.5	30.1
30	111.1	31.1	39.3	33.0	32.2	26.8	30.3
35	117.2	31.2	39.5	33.2	32.6	27.0	30.6
40	122.3	31.6	39.8	33.6	32.8	27.1	31.1
45	126.7	32.0	40.3	34.0	33.2	27.6	31.3
50	130.5	32.2	40.4	34.2	33.6	28.0	31.7
55	133.8	32.3	40.7	34.6	33.9	27.8	31.8
60	136.8	32.7	41.0	34.9	34.2	28.1	32.1
65	139.3	32.8	41.3	35.1	34.3	28.2	32.3
70	141.4	32.9	41.4	35.3	34.7	28.8	32.6
75	143.3	33.2	41.6	35.6	34.8	28.0	32.7
80	145.0	33.5	41.6	35.7	35.0	28.3	32.8
85	146.6	33.5	41.9	36.0	35.2	29.0	33.2
90	148.0	33.5	42.0	36.2	35.4	29.0	33.2
95	149.3	33.5	42.2	36.2	35.5	28.7	33.2
100	150.5	33.7	42.3	36.4	35.6	28.9	33.5
105	151.6	33.7	42.3	36.5	35.6	28.8	33.5
110	152.3	33.9	42.5	36.6	36.0	29.4	33.8
115	153.0	33.8	42.5	36.6	36.0	29.0	33.8
120	153.6	33.8	42.5	36.8	36.1	29.0	33.8
125	154.2	34.0	42.7	36.9	36.2	29.1	34.0

5.2.2 THE STRONTIUM FERRITE BASED MACHINE

The strontium ferrite based machine, tine design of which is also detailed in Chapter (3.0), was built and tested while in operation in conjunction with the power conditioner developed in the course of this investigation, see Chapter (4.0). Testing was carried out under various load conditions. This included a two hour run at rated load of 15 hp (11.2 kw) motor output, followed immediately by a one minute run at a peak load of $35 \mathrm{hp}(26.1 \mathrm{kw})$ motor output. The de chopper inductor current, and the speed recorded for each of these test runs, ds well as those corresponding inductor currents and speeds for all other pertinent load runs are plotted in the chopper inductor current (Am-peres)-speed (RPM) plane of Figure (5.2-3). This data was recorded when the machine was operated with parallel connected armature paths. Again, the dc inductor current is not to be confused with the dc line current which is delivered from the source to the MPC system during motoring, and delivered from the MPC system to the source during regeneration. Again, notice that without chopping the dc inductor current is approximately equal to the dc line current, whereas during chopping the inductor current is considerably greater than the dc line current.

Notice, in the current-speed plane of Figure (5.2-3) runs 138 and 140 required advanced commutation by $30^{\circ} \mathrm{E}$ in the with inverter bridge. Run 138, which is the peak load rur of 35 hp (26.1 kw) motor output is again designated by a cross (${ }^{+}$) rather than the usual dots for normal runs with no advanced commutation (firing). It should be pointed out that run 3 is that in which the MPC system was loaded for two continuous hours at its rated output of $15 \mathrm{hp}(11.2 \mathrm{kw})$. The current and speed data for run 3 is almost identical to run 6.

The results of the various runs for the motoring mode $;$ the inductor current-speed plane of Figure (5.2-3) are given in T. le (5.2-5), except for the two hour rated power run number 3, which is given separately in Tables (5.2-6) and (5.2-7). Table (5.2-6) contains the various MPC system current, voltage, input and output power, torque as well as speed values taken at increments of 5 minutes throughout the test period of 145 minutes, except for a ten minute interruption between the 65 min . and the 75 min . points. This interruption, which was not due to any MPC system failure but due to reasons external to the MPC system, was compensated for by extending the test duration to 145 min . in lieu of the required 120 min . test duration. Table (5.2-7) contains the thirteen temperatures previously defined in Table (5.1-1), recorded at increments of 5 minutes throughout the 145 minutes run number 3, except for the 10 minute interruption period. The symbolism in the tables is identical to that used and previously explained in the samarium cobalt case given above.

Furthermore, the temperatures, $\theta_{1}, \theta_{5}, \theta_{7}, \theta_{8}$, and θ_{9}, which were defined earlier in this section, are plotted over the 145 minutes duration of the rated 15 hp run number 3, in Figure (5.2-4), when the power conditioner was tested in conjunction with the strontium ferrite based machine.

ORICinal page is OF POOR QUALITY

TABLE (5.2-4) TEST DATA OF REGENERATION RUNS FOR THE SAMARIUM COBALT BASED MACHINE WHEN ARMATURE PATHS WERE CONNECTED IN PARALLEL
** For these runs no net power can be returned to battery, speed and torque are too low.

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	TEST SETUP	N, RPM	I, AMPS	T, NM	V, VOLTS	$\begin{aligned} & \mathrm{P}_{\text {in' }} \\ & \text { WATTS } \end{aligned}$	$\begin{aligned} & P_{\text {out' }} \\ & \text { WATTS } \end{aligned}$
77	1	8750	8.12	1.08	116.35	989.6	744.8
78	1	8750	37.40	5.15	117.20	4718.9	4183.3
79	1	8720	63.22	8.81	117.78	8044.9	7246.0
80	1	8700	86.04	12.34	118.15	11242.5	9965.6
81	1	7140	6.30	0.95	116.24	710.3	532.3
82	1	7140	29.54	5.15	116.91	3850.6	3253.5
83	1	7120	49.78	8.81	117.54	6568.8	5651.1
84	1	7100	66.98	12.07	117.81	8974.2	7690.9
85	1	5360	4.66	1.08	116.03	606.2	340.7
86	1	5350	21.58	5.15	116.68	2885.3	2318.0
87	1	5350	35.90	8.68	117.13	4863.0	4005.0
88	1	5320	47.66	11.79	117.41	6568.3	5395.8
89	1	3590	2.78	1.08	116.03	406.0	122.6
90	1	3590	14.00	5.15	116.47	1936.1	1430.6
91	1	3580	22.90	8.68	116.69	3254.1	2472.2
92	1	3560	30.20	11.79	109.45	4395.3	3105.4
93	1	1800	1.30	0.95	116.00	179.1	* *
94	1	1800	6.22	5.02	116.19	946.2	522.7
95	1	1790	9.78	8.68	116.28	1627.0	937.2
96	1	1800	12.10	11.52	116.40	2171.5	1208.4
100	1	5330	56.20	14.37	94.84	8020.7	5130.0
101	1	5400	55.00	16.54	95.45	9353.1	5049.8
102	1	7100	77.98	14.51	115.97	10788.3	8843.3
103	1	7100	78.30	15.59	82.97	11491.3	6296.5
104	1	3600	34.10	14.78	106.79	5571.9	3441.5
105	1	3600	32.80	15.32	107.27	5775.5	3318.4
106	1	1800	12.60	14.91	115.94	2810.5	1260.8
107	1	1800	9.70	15.45	115.96	2912.2	924.8
;08	1	4600	98.00	14.64	116.00	13184.6	11168.0
109	1	8600	98.68	15.73	115.94	14166.3	11241.0

FIGURE (5.2-3) Inductor Current (Torque) - Speed
Plane for the Strontium Ferrite Machine with Parallel Connected Armature Paths.

ORIGINAL PAGE is OF POOR QUALITY

TABLE (5.2-5) TEST DATA OF MOTORING RUNS FOR THE STRONTIUM FERRITE BASED MACHINE WHEN ARMATURE PATHS WERE CONNECTED IN PARALLEL
*In this case there appeared to be an error in the torque measurements which are rectified in the last two columns.

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	TEST SETUP	$\begin{gathered} \mathrm{N}, \\ \mathrm{RPM} \end{gathered}$	1. AMPS	$\begin{aligned} & \mathrm{T}, \star \\ & \text { NM } \end{aligned}$	V, Volts
4	1	9440	34.74	4.07	108.65
5	1	8900	61.76	7.12	107.93
6	1	8500	119.90	14.57	115.61
7	1	6950	178.74	23.73	115.85
8	1	7110	7.78	1.69	115.96
9	1	7110	40.48	6.44	115.29
i0	1	7160	104.16	14.57	114.15
12	1	5450	6.24	2.03	116.00
13	1	5450	36.96	7.12	114.83
14	1	5470	86.94	15.25	113.44
15	1	5600	168.72	26.44	111.32
16	1	3580	4.12	2.03	115.90
17	1	3590	25.22	7.12	115.93
18	1	3760	62.64	12.54	115.02
19	1	3660	108.14	24.40	116.02
20	1	1700	2.50	2.03	115.88
21	1	1850	15.10	7.12	115.88
138	1	6750	297.58	37.69	120.92
139	1	5400	222.26	31.86	114.30
140	1	5400	260.05	38.37	116.00
141	1	3600	176.04	33.35	116.10
142	1	3600	225.08	37.42	117.00
143	1	1800	87.22	30.78	116.20
144	1	1800	109.32	34.44	115.60
145	1	1800	36.17	15.18	115.70
146	1	1800	58.28	24.00	116.30

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

TABLE (5.2-6) TEST DATA OF THE 15 hp RATED OUTPUT 145 MINUTE RUN NO. 3 FOR THE STRONTIUM FERRITE BASED MACHINE WHEN ARMATURE PATHS WERE CONNECTED IN PARALLEL - TEST SETUP (1) WAS USED, DATA TAKEN EVERY FIVE MINUTES
*Defective Data Point

TIME,	N, MIN.	RPM	AMPS	T,
0	8460	114.56	13.55	V,
5	8760	107.24	12.88	115.98
10	8840	107.32	12.54	115.63
15	8800	108.08	12.54	114.67
20	8780	108.86	12.20	113.48
25	8750	109.64	12.54	112.56
30	8750	110.16	12.20	111.52
35	8810	110.32	12.20	111.59
40	8750	111.08	12.20	110.64
45	8800	111.60	12.20	110.61
50	8720	113.10	12.20	109.65
55	8800	113.88	12.20	110.28
60	8800	114.40	12.54	109.75
65	8780	114.70	12.20	109.19

TEN MINUTE INTERRUPTION OCCURED DUE TO EMERGENCY EXTERNAL TO MPC SYSTEM

80	8740	113.24	12.20	108.98
85	8800	114.34	12.20	109.02
90	8740	115.44	12.20	108.34
$95 *$	$8800 *$	82.20^{*}	8.81^{*}	$98.12 *$
100	8800	115.18	12.20	108.75
105	8780	115.74	12.20	108.26
110	8850	116.26	12.20	107.77
115	8870	116.34	12.20	107.94
120	8880	116.60	12.20	107.61
125	8900	117.48	12.20	107.68
130	8900	117.48	12.20	107.74
135	8900	117.60	12.20	107.26
140	8910	118.08	12.20	107.39
145	8910	118.30	12.20	107.14

ORIGINAL PAGE IS
OF POOR QUALTTY

TABLE (5.2-7) TEMPERATURE TEST DATA OF THE MPC SYSTEM (STRONTIUM FERRITE BASED MACHINE) FOR THE 15 hp RATED OUTPUT 145 MINUTES RUN NO. 3 AS INDICATED BY THEROMOCOUPLES DEFINED IN TABLE (5.1-1)-TEST SETUP (1) WAS USED, DATA TAKEN EVERY 5 MINUTES

Time, Min.	$\begin{aligned} & 0_{1}, \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{\theta_{2}} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{\theta_{3}} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \theta_{4^{\prime}} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \theta_{5}, \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{\theta} 6^{\prime} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
0	24.2	39.8	40.8	48.2	53.5	54.0
5	24.7	41.8	40.8	56.6	64.5	64.5
10	24.7	44.4	41.7	63.1	72.1	72.0
15	25.0	47.5	43.5	68.2	78.8	78.8
20	25.2	50.2	45.6	73.0	84.7	84.7
25	25.2	52.8	48.2	76.3	90.0	89.9
30	25.3	55.1	50.2	80.0	94.7	94.6
35	25.2	57.1	52.2	83.0	98.8	98.8
40	25.4	49.1	54.2	86.3	102.6	102.7
45	25.7	60.8	56.6	88.5	106.2	106.3
50	25.8	63.5	58.7	91.2	109.5	109.7
55	25.7	64.1	59.9	93.3	112.6	113.0
60	25.7	65.6	61.2	95.6	115.7	116.0
65	26.0	67.0	63.0	97.3	118.5	118.8
TEN MINUTES INTERRUPTION OCCURRED DUE TO EMERGENCY EXTERNAL TO MPC SYSTEM						
80	26.3	67.2	64.4	94.2	113.6	114.2
85	26.2	67.7	63.8	97.0	117.2	117.6
90	26.4	68.8	64.3	98.8	120.2	120.6
95*	26.3*	70.0*	65.3*	98.2*	118.6	118.7*
100	26.5	70.0	65.3	99.4	121.2	121.6
105	26.8	70.7	64.7	101.5	123.9	121.6
110	27.0	72.1	66.1	103.0	126.4	126.7
115	26.7	72.8	67.8	104.7	128.3	128.8
120	26.9	73.8	67.7	106.3	130.2	130.7
125	27.0	74.8	68.3	107.2	132.0	132.4
130	27.1	75.3	69.6	108.5	133.6	134.2
135	27.0	76.3	70.3	109.7	135.2	135.7
140	27.1	76.9	71.3	110.4	136.7	137.1
145	27.2	77.7	71.4	111.3	138.0	138.5

TABLE (5.2-7) Continued

$\begin{aligned} & { }^{\theta} 7^{\prime} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 8_{8}{ }_{8} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{\theta_{9}}{ }^{\prime} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{\theta} 10^{\prime} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{\theta} 11 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \theta_{1}^{\prime} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{8}{ }_{13}, \\ & { }^{\circ} \mathrm{C} \end{aligned}$
52.3	28.2	31.8	28.5	28.7	34.4	28.0
61.7	31.1	38.2	31.0	30.9	39.2	29.8
69.1	30.8	40.6	33.2	33.0	37.4	30.7
75.8	31.2	42.2	34.8	34.5	36.1	31.1
81.4	31.5	43.2	36.3	36.1	34.5	31.8
86.4	31.9	43.9	37.5	37.2	37.4	32.2
90.9	32.1	44.5	38.3	38.2	38.6	32.5
94.9	32.4	44.9	39.3	39.2	41.8	33.4
98.5	32.5	45.5	40.0	39.8	39.7	33.1
101.8	32.7	45.6	40.5	40.3	38.3	33.0
105.0	32.9	46.0	40.9	40.8	36.0	33.2
108.0	33.2	46.3	41.5	41.5	38.2	33.6
110.8	33.5	46.7	42.2	42.1	39.1	34.0
113.4	33.7	47.2	42.5	42.5	44.1	34.3

TEN MINUTES INTERRUPTION OCCURED DUE TO EMERGENCY EXTERNAL TO MPC SYSTEM

108.9	33.2	44.7	41.6	41.6	37.0	33.4
112.3	33.7	46.1	42.0	42.1	39.5	34.1
115.2	34.1	47.1	42.5	42.5	42.1	34.5
114.2^{*}	33.2^{*}	44.5^{*}	42.8^{*}	42.8^{*}	$42.7 *$	36.3^{*}
116.1	34.1	46.6	43.0	43.0	40.8	36.7
118.8	34.4	47.6	43.6	43.3	37.8^{*}	37.1
121.1	34.6	46.0	42.8	41.6	\cdots	37.0
123.0	34.5	$44.5 *$	41.0	39.7	$\cdots--$	35.2
124.7	34.6	44.1	39.7	38.6	$-\cdots-$	34.7
126.4	34.6	43.9	38.8	37.9	$-\cdots$	34.2
128.0	34.8	43.9	38.4	37.6	$\cdots--$	34.2
129.5	34.7	44.1	38.3	37.5	$\cdots \cdots$	34.2
130.9	34.8	44.1	38.2	37.4	$\cdots \cdots$	34.2
132.2	35.0	44.2	38.3	37.4	$\cdots \cdots$	34.2

* Problems with thermocouples

Similarily, the results of the various py: eration runs, performed using - "up (1), which are plotted in the curict-speed plane of Figure (5.2\% are given for this strontium ferrit uased machine in Table (5.2.8)

5.2.3 HE THERMAL CHARACTERISTICS :HE MPC SYSTEMS

Thermocouples were placed at thin tast key locations throughout the MPC systems to monitor the temper,necs. θ_{1} through θ_{13}, which were defined in Table (5.1-1). The tatution of these temperatures during the two hour rated load (15 hp) rurs was given for the samarium cobalt and strontium ferrite based system in Tables (5.2-3) and (5.2-7) respectively. Five most important temperatures were selected and plotted versus time in Figures (5.2-2). and (5.2-4) for the above mentioned MPS system, respectively. Those temperatures were; the ambient, the stator mid core (center of stack), the stator end turns, the chopper transistor case, and the inverter transistor case. It must be noticed that the samarium cobalt based machine appeared to reach steady state temperatures quicker than the strontium ferrite machine. This is largely due to the lesser weight and smaller volume of the samarium cobalt unit in comparison with the strontium ferrite unit. The transistor case temperatures (chopper and inverter) appear to stabilize quickly in both cases. Notice that there was a 10 minute shutdown period in the strontium ferrite case, which was compensated for by the larger running time as shown in Figure (5.2-4).

No forced ventilation was used with the machines. However, forced ventilation by appropriately chosen fans, and air ducting was used for the power conditioner, as detailed earlier in Chapter (4.0).
5.2.4 TYPICAL CURRENT AND VOLTAGE OSCILLOGRAMS THROUGHOUT THE MPC SYSTEMS OBTAINED USING TEST SETUP (2) TAKEN AT 7.5, 15, and 35 hp

Various voltage and current wave forms at approximately $7.5 \mathrm{hp}, 15$ hp , and 35 hp motor output were obained at about rated MPC system voltage, using test setup (2). Figure (5.1-4). A lisi of these oscillograms is given in Table (5.2-9) for the samarium cobalt based MPC system, with oscilloprams shown in Figures (5.2-5) through (5.2-22). Mieanwhile, a list of these oscillograms is given in Table (5.2-10) for the strontium ferrite based MPC system, with oscillograms shown in Figures (5.2-23) through (5.2-40).

ORICHAL PAGE RE OF POOR QUALTTY

TABLE (5.2-8) TEST DATA OF REGENERATION RUNS FOR THE STRONTIUM FERRITE BASED MACHINE WHEN ARMATURE PATHS WERE CONNECTED IN PARALLEL

* For these runs an error in the torque transducer is corrected for in the last two columns.
** For these runs lio net power can be returned to battery, torque is too low.

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	TEST SETUP	$\begin{array}{r} \text { NPM } \end{array}$	I'	$\begin{aligned} & \text { T, }{ }^{*} \\ & \text { NM } \end{aligned}$	$\begin{gathered} \text { Vits } \\ \text { VOLT } \end{gathered}$
22	1	8820	1.38	0.00	116.17
23	1	8820	37.34	3.73	117.23
24	1	8780	61.04	6.44	117.6
25	1	8780	81.20	9.49	118.17
26	1	7120	6.54	0.00	116.49
27	1	7120	28.86	3.73	117.07
28	1	7100	47.78	6.44	11740
29	1	7100	64.92	9.49	117.90
30	1	5400	4.56	0.00	116.30
31	1	5400	19.90	3.05	116.67
32	1	5400	34.78	6.10	117.11
33	1	5360	46.98	9.49	117.45
34	1	3610	3.02	0.00	116.25
35	1	3610	13.24	3.05	116.41
36	1	3608	22.72	6.10	116.76
37	1	3606	30.00	9.49	109.09
38	1	1800	1.36	000	116.08
39	1	1800	6.00	3.39	116.25
40	1	1803	9.74	6.44	116.32
41	1	1804	12.10	9.49	116.43
42	1	5410	48.24	9.49	117.31
124	1	8430	86.64	13.56	117.88
125	1	8450	85.4?	14.37	115.65
126	1	7180	72.76	12.88	115.60
127	1	7140	69.40	13.83	115.00
128	1	5400	53.00	13.56	115.00
129	1	5400	51.20	14.64	115.00
130	1	3600	32.10	13.83	115.00
131	;	3620	29.50	14.51	115.00
132	1	1810	11.40	13.56	!:5.60
133	1	1810	8.6	14.91	115.00

ORIGPIEL PRAR OF PCOR QUALITY

TABLE (5.2-8) Continued

$\begin{aligned} & P_{\text {in }}{ }^{\prime *} \\ & \text { Watts } \end{aligned}$	$P_{\text {out }}{ }^{\prime}$ Watts	Corrected T. NM	Corrected $P_{\text {in }}$, Watts
0.0	**	1.40	1293.2
3445.2	4177.4	5.13	4738.2
5921.2	6978.3	7.84	7208.4
8705.6	9395.4	10.89	9989.9
0.0	561.8	1.40	1043.8
2781.1	3178.6	5.13	3814.9
4788.2	5409.4	7.84	5829.1
7055.9	7454.1	10.89	8096.8
0.0	330.3	1.40	791.7
1724.7	2121.7	4.45	2516.4
3449.5	3873.1	7.50	4241.1
5326.7	5317.8	10.89	6612.5
0.0	151.1	1.40	529.3
1153.0	1341.3	4.4 .5	1682.3
2304.8	2452.8	7.50	2833.7
3583.6	3072.7	10.89	4112.3
0.0	**	1.40	263.9
639.0	497.5	4.79	902.9
1215.9	933.0	7.84	1480.3
1797.8	1208.8	10.89	2057.3
5376.4	5459.0	10.89	6169.6
11970.6	10013.1	14.96	13206.5
8684.3	8211.0	14.28	10737.0
10340.7	7781.0	15.23	11387.4
7668.0	5895.0	14.96	8459.7
8278.7	5688.0	16.04	9070.4
5213.8	3491.5	15.23	5741.6
5500.5	3192.5	15.91	6031.2
2570.2	1117.8	14.96	2835.6
2826.1	789.0	16.31	3091.4

In these tables, the following is an explanation of the symbolism used:
$I_{\text {ph }}$ is the motor phase current,
$I_{c h}$ is the chopper inductor (choke) current,
$V_{C E}$ (inv) is the inverter traansistor collector to emiter voltage,
$V_{C E}(Q M)$ is the chopper transistor collector to emitei voltage,
$V_{L N}$ is the phase to neutral voltage on the machine side,
and
$V_{L L}$ is the line to line voltage on the machine side.
These oscillograms are self explanatory, and should be examined carefully by the interested reader (referring to the appropriate key in either table (5.2-9) or Table (5.2-10). Notice that Figures (5.2-7), (5.2-13), (5.2-15), (5.2-21), (5.2-25), (5.2-31), and (5.2-39) represent a magnified view of the collector to emiter voltages during the various transistor switching transisents. This is in order to show the voltage spikes which accompanied the switching process, after proper snubbing was applied. Details of the necessary snubber circuits were included ear!ier in Chapter (4.0).

The reader is invited to observe the effect of advanced firing at 15 and 35 hp motor output on the various current and voltage waveforms. Also, attention is drawn to the effect of chopping on these current and voltage oscillograms at 7.5 hp motor output. All this is shown for both the samarium cobalt based and strontium ferrite based MPC systems.

In the next section, methods of calculation of the various MPC system perfromance characteristics are detailed. Proper examples are given using the test data detailed in this section.

ORIGinal Page is OF POOR QUALITY

TABLE (5.2-9) OSCILLOGRAMS OBTAINED FROM THE SAMARIUM COBALT MACHINE SYSTEM

1. Motoring, QM Fully on, 0° Advance, $115 \mathrm{~V}, 15.1 \mathrm{Hp}$ (11.3 kw) at Load Rack
$I_{\mathrm{ph}} \quad 20 \mathrm{mV} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div} \quad$ Figure (5.2-5)
($R_{\text {shunt }}=.0002488 \Omega$)
$V_{C E}$ (inv) $20 \mathrm{~V} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div}$
Figure (5.2-6)
$V_{C E}$ (inv) $50 \mathrm{~V} / \mathrm{div} \quad 5 \mu \mathrm{~s} / \mathrm{div}$ Figure (5.2-7)
$V_{\text {LL }} \quad 50 \mathrm{~V} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div} \quad$ Figure ($5.2-8$)
$V_{\mathrm{LN}} \quad 50 \mathrm{~V} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div} \quad$ Figure (5.2-9)
2. Motoring, QM Fully on, 30° Advance, $105 \mathrm{~V}, 15.8$ (11.8 kw) Hp at Load Rack
$I_{\mathrm{ph}} \quad 20 \mathrm{mV} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div} \quad$ Figure (5.2-10) $\left(R_{\text {shunt }}=.0002488 \Omega\right)$
III. Motoring, OM Chopping, 0° Advance, $115 \mathrm{~V}, 7.5 \mathrm{Hp}$ (5.6 kw) at Load Rack
$'_{\mathrm{ph}} \quad 10 \mathrm{mV} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div}$ Figure (5.2-11) $\left(R_{\text {shunt }}=.0002488 \Omega\right)$
$V_{C E}(\mathrm{QM}) \quad 20 \mathrm{~V} / \mathrm{div} \quad 50 \mathrm{\mu s} / \mathrm{div}$ Figure (5.2-12)
$V_{C E}(\mathrm{QM}) \quad 20 \mathrm{~V} / \mathrm{div} \quad .5 \mu \mathrm{~s} / \mathrm{div}$ Figure (5.2-13)
$V_{C E}($ inv $) \quad 20 \mathrm{~V} / \mathrm{div} \quad .5 \mu \mathrm{~s} / \mathrm{div}$ Figure (5.2-14)
$V_{C E}$ (inv) $20 \mathrm{~V} / \mathrm{div} \quad 5 \mu \mathrm{~s} / \mathrm{div}$ Figure (5.2-15)
$V_{\text {LL }} \quad 50 \mathrm{~V} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div} \quad$ Figure (5.2-16)
$V_{\mathrm{LN}} \quad 20 \mathrm{~V} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div} \quad$ Figure (5.2-17)

TABLE (5.2-9) Continued

IV. Motoring, QM Fully on, 30° Advance, $120 \mathrm{~V}, 35 \mathrm{Hp}$ (26. kw) at Load Rack

$V_{L N}$	$50 \mathrm{~V} / \mathrm{div}$. $5 \mathrm{~ms} / \mathrm{div}$	Figure (5.2-18)
$V_{L L}$	$50 \mathrm{~V} / \mathrm{div}$. $5 \mathrm{~ms} / \mathrm{div}$	Figure (5.2-19)
$V_{C E}($ inv $)$	$20 \mathrm{~V} / \mathrm{div}$	$.5 \mathrm{~ms} / \mathrm{div}$	Figure (5.2-20)
$V_{C E}{ }^{\text {(inv) }}$	$50 \mathrm{~V} / \mathrm{div}$	5 us/div	Figure (5.2-21)
${ }^{\text {ph }}$	$50 \mathrm{mV} / \mathrm{div}$. $5 \mathrm{~ms} / \mathrm{div}$	Figure (5.2-22)
	$\left(R_{\text {shunt }}=.0002488\right.$		

ORIGNAL PAGE IG OF POOR CUALITY

TABLE (5.2-10) OSCILOGRAMS OBTAINED FROM THE STRONTIUM FERRITE MACHINE SYSTEMS

1. Motoring, OM Fully on, 0° Advance, $115 \mathrm{~V}, 14.2 \mathrm{Hp}(10.6 \mathrm{kw})$ at Load Rack
$I_{\text {ph }} \quad 20 \mathrm{mV} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div} \quad$ Figure (5.2-23)

$$
\left(R_{\text {shunt }}=.0002488 \Omega\right)
$$

$V_{C E}($ inv $) ~ 20 \mathrm{~V} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div}$ Figure (5.2-24)
$\vee_{C E}$ (inv) $50 \mathrm{~V} / \mathrm{div} \quad .5 \mu \mathrm{~s} / \mathrm{civ}$ Figure (5.2-25)
$V_{\text {LL }} \quad 50 \mathrm{~V} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div} \quad$ Figure (5.2 .26)
$V_{\text {LN }} \quad 50 \mathrm{~V} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div} \quad$ Figure $(5.2-27)$
11. Motoring, QM Fully on, 30° Advance, $105 \mathrm{~V}, 15.8$ (11.8 k.v) Hp at Load Rack
'ph $\quad 20 \mathrm{mV} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div} \quad$ Figure (5.2-28)

$$
\left(R_{\text {shunt }}=0.0002488 \Omega\right)
$$

111. Motoring, QM Chopping, 0° Advance, $115 \mathrm{~V}, 7.6 \mathrm{Hp}(5.7 \mathrm{kw})$ at Load Rack
$I_{\text {ph }} \quad 10 \mathrm{mV} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div} \quad$ Figure (5.2-29)

$$
\left(R_{\text {shunt }}=.0002488 \Omega\right)
$$

$V_{C E}(\mathrm{QM}) \quad 20 \mathrm{~V} / \mathrm{div} \quad 50 \mu \mathrm{~s} / \mathrm{div}$ Figure (5.2-30)
$V_{C E}(\mathrm{QM}) \quad 50 \mathrm{~V} / \mathrm{div} \quad .5 \mu \mathrm{~s} / \mathrm{div}$ Figure (5.2-31)
$V_{C E}(\mathrm{MV}) \quad 20 \mathrm{~V} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div}$
Figure (5.2-32)
$V_{\text {LN }} \quad 20 \mathrm{~V} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div} \quad$ Figure (5.2-33)
$V_{\text {LL }} \quad 50 \mathrm{~V} / \mathrm{div} \quad .5 \mathrm{~ms} / \mathrm{div} \quad$ Figure $(5.2-34)$
'ch $\quad .5 \mathrm{~V} / \mathrm{div} \quad .2 \mathrm{~ms} / \mathrm{div} \quad$ Figure (5.2-35)
(37.8 mv/A)

TABLE (5.2-10) Continued

IV. Motoring, QM Fully on, 30° Advance, $120 \mathrm{~V}, 33.9 \mathrm{Hp}$ (25.3 kw) at Load Rack

$V_{L N}$	$50 \mathrm{~V} / \mathrm{div}$	$.5 \mathrm{~ms} / \mathrm{div}$	Figure (5.2-36)
$V_{\text {LL }}$	$50 \mathrm{~V} / \mathrm{div}$	$.5 \mathrm{~ms} / \mathrm{div}$	Figure (5.2-37)
$V_{C E}($ inv $)$	$20 \mathrm{~V} / \mathrm{div}$	$.5 \mathrm{~ms} / \mathrm{div}$	Figure (5.2-38)
$V_{C E}($ inv $)$	$50 \mathrm{~V} / \mathrm{div}$	$5 \mu \mathrm{~s} / \mathrm{div}$	Figure (5.2-39)
C_{ph}	$50 \mathrm{mV} / \mathrm{div}$	$.5 \mathrm{~ms} / \mathrm{div}$	Figure (5.2-40)

$$
\left(R_{\text {shunt }}=.0002488|L|\right)
$$ OF POOR QUALITY

ORIGNAL PAGE IS OF POOR QUALITY

Fig. (5.2-5)

Fig. (5.2-6)

 Wr: : .i. 17. 'GLXCK AND WHITE PHOTOGRAPH

${ }^{2} W^{2}$
Fig. (5.2-10)

Fig. (5.2-11)

Fig. (5.2-12)

4

Fig. (5.2-13)

Fig. (5.2-14)

Fig. (5.2-15)

Fig. (5.2-17)

Fig. (5.2-18)

ORICINAL PAGE
 BLACK AND WHITE PHOTOGRAPH

2

Fig. (5.2-19)

1

Fig. (5.2-22)

W $\frac{1}{2}$

Fig. (5 2-23)

Fig. (5.2-24)

Fig. (5.2-25)

Fig. (5.2-26)

Fig. (5.2-27)

Fig. (5.2-28)

M

Fig. (5.2-29)

Fig. (5.2-30)

Fig. (5.2-31)

Fig. (5.2-32)

Fig. (5.2-33)

ORIGINAL PAGE

$$
\begin{equation*}
r_{\Lambda_{2}} r^{r} \tag{5.2-34}
\end{equation*}
$$

Fig. (5.2-35)

Fig. (5.2-36)

$$
7^{r-2}-7^{r}-r^{r}
$$

Fig. (5.2-37)

Fig. (5.2-38)

Fig. (5.2-39)

5.3 METHODS OF CALCULATION OF MPC SYSTEMS PERFORMANCE CHARACTERISTICS

One of the most important parameters, which determines how satisfactory the performance and design of a given MPC system are, is the system efficiency. In order to determine this efficiency, one requires knowledge of the total input power irito the MPC system and the total output power from the system. The difference between the input power and the output power is the system losses which can be broken down into ohmic, rotational, switching, and stray loss components. However, the switching losses are related to the rotor position, and its speed. Hence, they can be associated with the rotational loss component.

In this section, the method of determining the input and output powers for both test setups (1) and (2), Figures (5.1-1) and (5.1-4), will be outlined. Based on such input and output power data, the efficiencies will be calculated. It will then be shown that, due to an error in the torque measurements taken by means of a torque transducer, for the strontium ferrite based MPC system on a certain date, the corresponding effic!ency values were found to be unrealistically high. Upon close examination of those torque readings, in conjunction with all the other data collected with it on that date (input power, speed, etc.), it was found that there exists a constant torque offset in all these readings. The determination of the magnitude of this offset is explained later in this section. It must be pointed out that no correction was required for the test data associated with the samarium cobalt based MPC system, the data of which were taken on other dates.

After making the necessary offset correction in the torque values, the input power, output power, system losses, and efficiencies were recalculated for the strontium ferrite based MPC system. On an inductor current-speed plane, curves of constant efficiency were plotted for both MPC systems, as will be given later on in this section. Finally, on the basis of the loss data obtained from the various test runs, generalized loss formulas for the calculation of losses and efficiencies of both MPC systems, for motoring and regenerating modes of operation, as functions of machine speed and torque, were developed. These equations were obtained using a least squares fit of the system loss data obrained by tests for both the samarium cobalt and strontium ferrite based machines.

5.3.1 METHODS OF CALCULATION OF SYSTEM INPUT AND OUTPUT POWER FOR TEST SETUPS (1) AND (2) WITH EXAMPLES

Setup (1): For test setup (1), in the motoring mode, the input power, $P_{\text {in }}$ was calculated as the product of the dc line voltage, V, read by voltmeter, V_{1}, Figure (5.1-1), times the dc line current, 1 , read by ammeter, A_{1}. That is

$$
\begin{equation*}
P_{\text {in }}=V \cdot 1+200 \quad \text { Watts. } \tag{5.3-1}
\end{equation*}
$$

The 200 watts term represents the power consumed by the low level coritrol electronics, which were supplied independently in this setup. However, in an actual vehicle situtation this power must be supplied by the battery. Justification of neglect of the effect of the voltage ripples in the dc line voltage on the input power, $P_{i n}$, was based on observation of this ripple magnitude on an oscilloscope screen, where it was found to be in the millivolt range and consequently insignificant.

Upon examination of the test setup (1), Figure (5.1-1), it becomes obvious that the output power, $P_{\text {out }}$ can be calculated as

$$
\begin{equation*}
P_{\text {out }}=T \cdot N(2 \pi / 60) \quad \text { Watts } \tag{5.3-2}
\end{equation*}
$$

where, T is the torque reading of the transducer, T_{1}, in Newton Me ters, and N is the machine speed in RPM, measured by the tachometer, N_{1}. A pictorial display of the above is given in Figure (5.3-1).

Example (1): Consider motoring run number 67 in Table (5.2-1) in which; $V \equiv 115.78$ Volts, $1=127.74$ Amperes, $N=8230$ RPM, and $T=$ 15.25 NM. For this run we have,

$$
\begin{aligned}
& P_{\text {in }}=115.78 \times 127.74+200.0=14989.7 \text { Watts } \\
& P_{\text {out }}=15.25 \times 8230 \times 2 \pi / 60=13143.1 \text { Watts }
\end{aligned}
$$

Therefore, the overall motoring system efficiency, " ${ }_{\text {system }}$, at this torque and speed is

$$
\begin{aligned}
\pi_{\text {system }} & =\left(P_{\text {out }} / P_{\text {in }}\right) \times 100 \% \\
& =(13143.1 / 14989.7) \times 100=87.7 \% .
\end{aligned}
$$

For the regeneration mode
the input power, $P_{i n}$, is the mechanical power delivered by the dynamometer, and hence can be calculated as follows

$$
\begin{equation*}
F_{i n}=T \cdot N(2 \pi / 60) \text { Watts. } \tag{5.3-3}
\end{equation*}
$$

ORIGNAL PACE M OF POOR QUALITY

> hay- © 33 as
> FIGURE (5.3-2) Rotational Losses as Function of Speed
for the Permanent Magnet Alternator of Test Setup (1)

8132891445689

All symbols are as previously defined.
The output power, $P_{\text {out }}$, is the net elecirical power returned to the battery. That is

$$
\begin{equation*}
P_{\text {out }}=V \cdot 1-200 \text { Watts } \tag{5.3-4}
\end{equation*}
$$

where the 200 Watts represent the power which must be supplied from the battery to the low level control electronics of the MPC system in an actual vehicular propulsion situation.

Example (2): Consider regeneration run number 108 in Table (5.2-4) in which; $V=116.00$ Volts, $1=98.00$ Amperes, $N=8600$ RPM, and $T=14.64 \mathrm{NM}$. For this run we have,

$$
\begin{aligned}
& P_{\text {in }}=14.64 \times 8600 \times 2 \pi / 60 \\
&=13184.6 \text { Watts } \\
& P_{\text {out }}=116.00 \times 98.00-200
\end{aligned}=111680 \text { Watts. } . ~ \$
$$

Therefore, the overal regeneration MPC system efficiency, $\eta_{\text {system }}$ at this torque and speed is

$$
\begin{aligned}
\eta_{\text {system }} & =\left(P_{\text {out }} / P_{\text {in }}\right) \times 100 \% \\
& =(11168.0 / 13184.6) \times 100 \%=84.7 \% .
\end{aligned}
$$

setup (2): For test setup (2), which functions only in the motoring mode, see Figure (5.1-4), the input power, $P_{\text {in' }}$ was calculated as the product of the de line voltage, V, read by voltmeter, V_{1}, figure (5.1-4), times the dc line current, 1 , read by ammeter, A_{1}. That is

$$
\begin{equation*}
P_{i n}=V \cdot I \cdot 200 \text { Watts. } \tag{5.3-5}
\end{equation*}
$$

Again, the 200 Watts term represents the power consumed by the low level control electronics, which were supplied independently in this setup. However, in an actual vehicle situation this power must be supplied by the battery. Again, the voltage ripple effect in the dc line was iound to be insignificant as mentioned above.

Upon examining test setup (2) of Figure (5.1-4), it becomes obvious that the output power, $P_{\text {out' }}$ is the sum of three power components. These power components ars:

1. $\quad p_{\text {out }}^{\text {alt }}=$ the output power of the permanent magnet alternator, given by the reading of wattmeter, W_{3}, which is the power dissipatated in the resistance load.
2. $\quad P_{\text {ohmic }}^{\text {alt }}=$ the ohmic losses in the armature of the permanent magnet alternator, which is given by knowledge of the armature current reading, $1^{\text {alt. }}$, of ammeter A_{2} or A_{3}, and the armature resistance per phase, r_{a}, of that alternator. Thus, $p_{\text {ohmic }}^{\text {alt }}$ is given as, $p_{\text {ohmic }}^{\text {alt }}=3 \cdot\left(1^{\text {alt }}\right)^{2} \cdot r_{a}$ Watts(5.3-6).
3. $\quad P_{\text {rotational }}^{\text {alt }}=$ the rotational losses of the permanent magnet alternator, which are determined once the speed is read by tachometer, N_{1}, and is read from an experimentally obtained curve of these rotational losses as function of speed. This rotational loss curve is given for convenience in Figure (5.3-2).

Accordingly, the output power, $P_{\text {out' }}$ in test setup (2) is given by $P_{\text {sut }}=P_{\text {out }}^{a l t} * P_{\text {ohmic }}^{\text {alt }}+P_{\text {rotational }}^{\text {alt }}$
A pictorial display of the above is given in Figure (5.3-3).
Example (3): Consider motoring run number 158 in Table (5.2-1)in which; $V=117.60$ Volts, $1=222.90$ Amperes, $N=5428$ RPM, $P_{\text {out }}=$ 17889 Watts, and $1^{\text {alt. }}=109.5$ Amperes. At a speed of 5428 RPM, the rotational losses of the permanent magnet alternator, $P_{\text {rotational }}^{\text {d }}$ read

$$
\begin{aligned}
& \text { from Figure }(5.3-2) \text { as } \\
& P_{\text {rotational }}=193 \text { Watts. }
\end{aligned}
$$

For an alternator curffit, $l^{\text {alt. }}$, of 109.5 Amperes, the alternator armature ohmic losses, $P_{\text {ohmic }}^{\prime}$ for an armature resistance per phase, $r_{a}=$.01246 Ohms at $35^{\circ} \mathrm{C}\left(r_{a}=0.01200\right.$ Ohms at $\left.25^{\circ} \mathrm{C}\right)$

$$
\mathrm{P}_{\text {ohmic }}^{\text {alt }}=3 \times 0.01246 \times(109.5)^{2}=448 \text { Watts. }
$$

Hence, $\mathrm{P}_{\text {out }}$ of the MPC system, Equation (5.3-7), becomes,

$$
P_{\text {out }}=17889.0+448+193=18530.0 \text { Watts. }
$$

Here, the input power is

$$
P_{\text {in }}=117.60 \times 222.90=26413.0 \text { Watts. }
$$

Therefore, the overall motoring MPC system efficency, $n_{\text {system' }}$ at this load is

$$
\begin{aligned}
n_{\text {system }} & =\left(P_{\text {out }} / P_{\text {in }}\right) \times 1008 \\
& =(18530.0 / 264 i 3.0) \times 1008=70.28 .
\end{aligned}
$$

It may be of interest to some readers to separate the MPC system losses into two components, one loss component would be losses in the machine and the other would be losses in the power conditioner. Although, this will not be done here, because of lack of need for such loss identification, these authors wish to provide the data base on which sunn less separation can be accomplished. In order to accomplish this task one needs to know the rotational losses as function of mutor speed for both machines, as well as the resistance values per phase of the armature windings of both machines.

Figures (5.3-4) and (5.3-5) contain plots of the rotational losses obtained by test versus machine speed for the samarium cobalt and the strontium ferrite based machines, respectively. It should also be pointed out that the armature resistances per phase for parallel path connection, (line to neutral) at $21.7^{\circ} \mathrm{C}$ are 0.00238 Ohms and 0.00236 Ohms, obtained from tests performed on the samarium cobalt, and strontium ferrite machines, respectively. These data may be of interest to those who may wish to separate the MPC system losses into motor losses and power conditioner losses.

5.3.2 IDENTIFICATION AND CORRECTION OF ERRORS IN TEST DATA TAKEN AT LOW TORQUE POINTS - DETERMINATION OF TORQUE OFFSET

During the analysis of the test data of the strontium ferrite based MPC system, see Tables (5.2-5), (5.2-6), and (5.2-8), a discrepancy became apparent when unrealistically high efficiencies were calculated at various operating points in both the motoring and regenerating modes. In order to find reasons for this digcrepancy, the electrical power, $P_{e^{\prime}}$ and the mechanical power, $P^{\prime}{ }^{\prime}$ ' were ploted versus torque a speeds of 3500 , 5400 and 7200 RPM, for both the motoring and regenerating modes, as shown in Figures (5.3-6), (5.3-7), and (5.3-8), eespectively. Notice that in the motoring mode, the electrical power, P_{e}, is the input power, $P_{i n}$, into the MPC system, and the mechanical power, P_{m}, is the output power, $P_{\text {out }}$ from the MPC system. Meanwhile, in the regenerating mode, the electrical power, P_{f}, is the output power, $P_{\text {out }}$ returned to the battery from the MPC system, and the mechanical power, P_{m}, is the input power, $P_{i n}$, into the MPC system.

$$
\begin{aligned}
& \boldsymbol{\gamma} \cdot \quad . \quad \cdot \cdots,
\end{aligned}
$$

POWER FLOW-TEST SETUP (2)
(MOTORIMG ONLY)

FIGURE (5.3-3) Power Flow - Test Setup (2)
. otational losses jersus speez
Samar .um Cobalt Machine-Phase (il

$$
\begin{array}{r}
\because \text { OR } \\
\because \text { OF POOR QUALITY. }
\end{array}
$$

mery

Upon close examination of Figures (5.3-6) through (5.3-8), it becomes evident that the discrepency in values of MPC system efficiency could be accounted for by a shift of the P_{m} curves by a certain torque value. This shift compensates for a constant error (offset) in the torque transducer readings. The magnitude of this shift is determined such that at no load (zero torque, that is zero mechanical power, P_{m}) the electrical power, $P_{e^{\prime}}$ is equal to the rotational losses at the given speed, plus the 200 Watts of low level control electronic losses, plus a reasonable no-load loss in the power components of the power conditioner. This torque magnitude was found, on the basis of Figures (5.3-6) through (5.3-8), to be equal to 1.4 Newton Meters error in the torque transducer readings. Accordingly, after the application of this shift, Figures (5.3-6) through (5.3-8) yielded Figures (5.3-9) trough (5.3-11) .

The above means that an increase in the torque reading for the regeneration runs and a decrease in the torque readings for the motoring runs by 1.4 Newton Meters of torque at any speed is necessary throughout Tables (5.2-5), (5.2-6) and (5.2-8). This yields the additional corrected torque, and output or input power columns given in these tables for the strontium ferrite based MPC system, for motoring and regeneration, respectively.

5.3.3 DETERMINATION OF INTERPOLATION FORMULAS FOR SYSTEM LOSS.

The performance data for both the samarium cobalt and strontium ferrite based MPC systems were given in Section (5.2) in terms of speed, torque, current, voltage, and input as well as output powers. From the input and output powers, the system loss corresponding to a given speed and torque was easily obtained as shown earlier in this section. However, in order to show the system loss (or system performance) at various speeds and torque, cumbersome tables were given for both MPC systems operating in the motoring and regenerating modes as shown in Section (5.2). Presenting the data in this manner makes it rather difficult to utilize such information, as in the calculation of the system drive cycle efficiency. Furthermore, the tabulated data presents no direct insight as to how parameters such as the speed and torque may affect the system losses.

FIGURE (5.3-6) Plot of Electrical and Mechanical Powers Versus Torque at 3500 RPM for the Strontium Ferrite MPC System Before Torque Shift

FIGURE (5.3-7) Plot of Electrical and Mechanical Powers Versus Torque at 5400 RPM for the Strontium Ferrite MPC System Before Torque Shift

FIGURE (5.3-8) Plot of Electrical and Mechanical Powers Versus Torque at 7200 RPM for the Strontium Ferrite MPC System Before Torque Shift

FIGURE (5.3-9) Plot of Electrical and Mechanical Powers Versus Torque at 3500 rpm for the Strontium Ferrite MPC System After Torque Shift

FIGURE (5.3-10) Plot of Electrical and Mechanical Powers Versus Torque at 5400 rpm for the Strontium Ferrite MPC System After Torque Shift

FIGURE (5.3-11) Plot of Electrical and Mechanical Powers Versus Torque at 7200 rpm for the Strontium Ferrite MPC System After Torque Shift

Given the above disadvantages of tabulating the data, one needs to present the data in a simple and more accessible form; that is in a mathematical form. This calls for curve fitting the given MPC system loss data using a suitable mathematical loss expression. Various interpolating techniques are given $[1,2]$ in books on Numerical Methods. The technique used in numerical curve fitting of the system losses corresponding to the samarium cobalt and strontium ferrite MPC sytems in the motoring and regenerating mode is that which is based on the least-squares Approximation method. This method offers a means for all points in the test data collection, by minimizing the square of the error.

Consider either the motoring or the regenerating mode of operation of either the samarium cobalt or the strontium ferrite MPC system. The (rotational) losses in the machine portion of the system are dependent on the shaft speed and torque. This also applies to varying degrees to the stray losses in the machine, the switching losses in the power conditioner, and the ohmic losses in the MPC system. In other words, the system loss, SL, can be written as follows:

$$
\begin{equation*}
S L=f(w, T) \tag{5.3-8}
\end{equation*}
$$

where ω is the shaft speed in radians/second, and T is the torque in Newton-meters. Let SL be a polynomial function as follows:

$$
\begin{align*}
S L & =c_{1} h_{1}(\omega, T)+c_{2} h_{2}(\omega, T)+\cdots+c_{n} h_{n}(\omega, T) \\
& =\sum_{i=1}^{n} c_{i} h_{i}(\omega, T) \tag{5.3-9}
\end{align*}
$$

where the $h_{i}(\cdots, T)$ are various combinations of $\omega, \omega^{2}, \cdots, T, T^{2}, \cdots$, $\omega T, \omega T^{2}, \omega^{2} T, \cdots$ and the coefficients c_{i} are chosen so that SL gives a best approximation to the system loss data. For each pair of ω and T, an equation can be written for the system loss as given by Equation (5.3-9). Thus for m pairs of ω and T (or m data points), m equations can be written. In matrix form, these equations are given by

or

$$
\begin{equation*}
\underline{S L} \equiv \underline{H} \cdot \underline{C} \tag{5.3-10}
\end{equation*}
$$

Let the actual system loss be given by the vector $S L^{a}$. The error introduced by approximating SL ${ }^{a}$ with SL is given by

$$
\begin{equation*}
E=S L^{a} \because S L^{\circ} \because S L^{a}-H_{0}^{\prime} \cdot E \tag{5.3-11}
\end{equation*}
$$

Setting the error vector, to zero and solving for \underline{C} in Equatin (5.3-11), one obtains the following:

$$
\begin{equation*}
\mathrm{C}=\mathrm{H}^{-1} \mathrm{~S} \mathrm{~L}^{\mathbf{a}} \tag{5.3-12}
\end{equation*}
$$

Equation (5.3-12) can be easily programmed and solved by such methods as Gauss Elimination, Gauss-Seidel and so forth [1, 2]. By trying various combinations of the basic functions, $h_{i}(w, T)$, a vector \underline{C} can be obtained which minimizes the square of the error, $E \cdot E{ }^{\top}$.

In our case a computer software package [3] was available to help solve Equation (5.3-12) subject to the smallest E - E^{\top} possible. The results (system loss interpolation formulas) corresponding to the samarium cobalt MPC system in both the motoring and the regenerating modes and the strontium ferrite MPC system in both the motoring and the regenerating modes will be given in the next Section (5.4).

ORICHNAL PACE R OF POOR QUALTTY

5.4 CORRECTED TEST RESULTS AND INTERPOLATION FORMULAS FOR SYSTEM LOSS CALCULATION

Abstract

The corrected values of torque and output or input power for the strontium ferrite based MPC system were arrived at as described in Section (5.3), and tabulated in the corrected torque and output or input power forms of Tabies (5.2-5), (5.2-6) and (5.2-8). There was no apparent torque transducer error in the test dati of the samarium cobalt based MPC system.

Application of the MPC system loss intarpolation method described in Section (5.3.3) yielded the following general MPC system loss formula, which is valid for both machine systems at hand, in the motoring and regenerating modes of operation:

$$
\begin{align*}
& \text { MPC system losses }=c_{1}{ }^{+} c_{2} T+c_{3} T^{2+}+c_{4} T^{3+} c_{5} T^{4+}+c_{6} T^{s} \\
& { }^{*} c_{7}{ }^{\omega+} c_{8} \omega^{2}+c_{9} \omega^{3}+c_{10}{ }^{\omega T+} c_{11} \omega T^{2} \\
& { }^{+} c_{12} \omega^{2} T{ }^{+} c_{13} \omega^{2} T^{2} \text { Watts } \tag{5.4-1}
\end{align*}
$$

where T is the machine shaft torque in Newton Meters, and ω is the machine shaft speed in mechanical radians per second. The constants c_{1} through c_{13} are given in Table (5.4-1) for parallel connected winciing paths per phase, for the samarium cobalt based and strontium ferrite based systems, respectively. Notice also that equation (5.4-1) is not valid for loss calculation at a shaft speed $\omega=0$. This loss formuia includes the 200 Watts of losses in the low level control electronics associated with the MPC systam for both machines.

Accordingly the relationship between the input power, output power and MPC system losses given by Equation (5.4-1) can best be understood for the motoring and regenerating modes by the power flow diagrams of Figures (5.4-1) and (5.4-2), respectively. On the basis of these figures, the MPC system efficiencies for motoring and regenerating modes can be expressed, respectively, as follows:
$\eta_{\text {Motoring }}=P_{\text {out }} / P_{\text {in }}=[T . \omega /(T . \omega+$ MPC System Losses $)] \times 100 \%$
and
$n_{\text {Regenerating }}=P_{\text {out }} / P_{\text {in }}=[(T . \omega-$ MPC System Losses $) / T . \omega \times$ 1008

At this stage, examples of application of the loss and efficiency calculation formulas (5.4-1) through (5.4-3), to specific test runs in Ta bles (5.2-1) through (5.2-8) would be very useful.

TABLE (5.4-1) CONSTANTS OF MPC SYSTEM LOSS FORMULA, EQUATION (5.4-1)

Constants						
	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	
Machine and Mode						
Samarium Cobalt Motoring	-2648.02442	1189.4347	-58.88318	1.55152	-0.03042	
Samarium Cobalt Regeneration	-515.57409	995.91247	-328.54064	47.64375	-3.17101	
Strontium	-3432.20449	25.84914	127.05699	-12.4	376	0.43403
Ferite Motoring						
Strontium Ferrite Regeneration	-1602.39470	1172.56686	-211.82710	20.27762	-1.00633	

TABLE (5.4-1) Continued

Constants			c_{6}	c_{8}	c_{9}	c_{10}
Machine and Mode		c_{6}		c_{7}		
Samarium Cobalt Motoring	0.00026	3.85509	-0.00005	-5.01872	0.1537 ?	
Samarium Cobalt Regeneration	0.07896	0.49068	-0.00091	0.00000	-0.16417	
Strontium Ferrite Motoring	-0.00499	18.75077	-0.02882	0.00002	-1.03153	
Strontium Ferrite Regeneration	0.02091	-1.91232	0.01115	0.00000	-0.74595	

-

	TABLE (5.4-1)	Continued	
Constants		c_{13}	
Machine and Mode	c_{11}	c_{12}	
Samarium Cobalt Motoring	0.15377	0.00594	-0.00017
Samarium Cobalt Regeneration	0.03466	0.00012	0.00012
Strontium Ferrite Motoring	0.04923	0.00052	-0.00003
Strontium Ferrite Regeneration	0.05301	-0.00049	0.00002

POWER FLOW IN MPC SYSTEM (MOTORING)

FIGURE (5.4-1) Power Flow - MPC System (Motering)

POWER FLOW IN MPC SYSTEM (REGENERATION)

MPC System Losses
FIGURE (5.4-2) Power Flow - MPC System (Regenerating)

Example (1):
Consider motoring test run number 68 for the samarium cobalt based MPC system, Table (5.2-1). This run had a speed reading of 7200 RPM and a torque reading of 25.08 Newton Meters.
Substituting

$$
\omega=7200 \times 2 \pi / 60=754.0 \text { Radians } / \text { Sec } .
$$

and $T=25.08$ Newton Meters into Equation (5.4-1) yields an MPC system loss of 4211.7 Watts. Substituting this MPC system loss, and the above torque and speed into Equation (5.4-2) yields an MPC system efficiency, ${ }^{\text {M Motoring' }}$ of

$$
{ }^{n} \text { Motoring }=81.8 \%
$$

The above should be compared with an MPC system loss value, based on test, of 4134.0 Watts and an MPC system efficiency of 82%. Notice that the MPC system loss and efficieny values obtained from test are very close to the corresponding values obtained from the "curve fitted" loss interpolation formula.

Example (2):
Consider regeneration test run number 79 for the samarium cobalt based MPC system, Table (5.2-4). This run had a speed reading of 8720 RPM and a torque reading of 8.81 Newton Meters. Substituting,
$\omega=8720 \times 2 \pi / 60=913.2$ Radians $/$ Sec .
and $T=8.81 \quad$ Newton Meters
into Equation (5.4-1) yields an MPC system loss of 810.0 Watts. Substituting this MPC system loss, and the above torque and speed into Equation (5.4-3) yields an MPC system efficiency, ${ }^{\prime}$ Regenerating' of

$$
\eta_{\text {Regenerating }}=89.9 \mathrm{\%}
$$

The above should be compared with an MPC system loss value based on test of 798.9 Watts and an MPC system efficiency of 90%. Notice that the MPC system loss and efficiency values obtained from test are very close to the corresponding values obtained from the "curve fitted" loss interpolation formula.

Example (3):
Consider motoring test run number 10 for the strontium ferrite based MPC system, Table (5.2-5). For this run, we have

$$
\omega=7160 \times 2 \pi / 60=749.8 \text { Radians } / \text { Sec } .
$$

and the corrected test reading of the torque, T, is

$$
T=13.17 \quad \text { Newton Meters }
$$

Hence, from Equation (5.4-1) we have
MPC system loss $=2353.0 \quad$ Watts
and it follows from Equation (5.4-2) that

$$
{ }^{n} \text { Motoring }=80.8 \quad \%
$$

The above should be compared to the following obtained directly from corrected test data:

$$
\text { MPC. system loss }=2215.1 \text { Watts }
$$

and

$$
n_{\text {Motoring }}=81.7 \text { \%. }
$$

Example (4):
Consider regeneration test run number 126 for the strontium ferrite based MPC system, Table (5.2-8). For this run, we have
$\omega=7180 \times 2 \pi / 60=751.9$ Radians $/$ Sec.
and the corrected test reading of the torque, T, is

$$
T=14.28 \quad \text { Newton Meters } .
$$

Hence, from Equation (5.4-1) we have
MPC systen, loss $=2567.9$ Watts
and it follows from Equation (5.4-3) that
${ }^{n}$ Regenerating $=76.1$ \%

The above should be compared to the following obtained directiy from corrected test data:

MPC system loss $=2526.0 \quad$ Watts
and

$$
{ }^{\eta} \text { Regenerating }=76.5 \% .
$$

Furthermore, Tables (5.4-2) through (5.4-5) give a comparison between the MPC system losses obtained directly from test data, and the corresponding MPC system losses obtained from the loss iterpolation formula of Equation (5.4-1) at various torques and speeds, for both samarium cobalt and strontium ferrite based MPC systems in the motoring and regeneration modes. Furthermore, the equi-efficiency contours based on test for the samarium cobalt, and strontium ferrite based MPC systems are given in the Ampere-RPM plane in Figures (5.4-3) and (5.4-4), respectively.

The MPC system performance at rated (15hp) 11.2 kw and peak (35 hp) 26.1 kw motor output including MPCsystem test voltage, test current and corresponding losses and efficiences obtained from test are given in Tables (5.4-6) and (5.4-7), repectively, for both MPC systems developed and tested in this investigation. Observe that advanced commutation by $30^{\circ} \mathrm{E}$ was necessary to attain the 35 hp peak motor output for both machines. Detailed discussion of the effects of advanced commutation was given earlier in Chapters (2.0) and (3.0).

At this stage, the calculation of the cycle efficiency when such an MPC system is used to propel a 1364 kg (3000 Lbs.) vehicle over a standard 122 seconds SAE drive cycle is in order. This is given next.

TABLE (5.4-2) SAMARIUM COBALT (parallel) MACHINE - MOTORING
$\left[\begin{array}{rrrr}\hline \begin{array}{l}\text { SPEED } \\ \text { (RPM) }\end{array} & \begin{array}{c}\text { TORQUE } \\ \text { (N-M) }\end{array} & \begin{array}{c}\text { LOSS(TEST) } \\ \text { (watts) }\end{array} & \begin{array}{c}\text { LOSS(FORMULA) } \\ \text { (watts) }\end{array} \\ \hline 8230 & 15.25 & 1849.1 & 1817.6 \\ 7200 & 25.08 & 4137.6 & 4211.7 \\ 8000 & 14.57 & 1806.0 & 1789.2 \\ 5400 & 1.35 & 296.7 & 305.0 \\ 5400 & 5.76 & 765.5 & 804.8 \\ 3600 & 6.10 & 553.2 & 520.9 \\ 6900 & 36.27 & 7916.5 & 7909.0 \\ 1865 & 6.42 & 584.8 & 534.5 \\ 1814 & 13.37 & 1585.4 & 1228.8 \\ 5499 & 15.26 & 1587.5 & 1480.1 \\ 7165 & 13.15 & 1690.6 & 1734.8 \\ 1812 & 23.90 & 2456.9 & 2307.6 \\ 3785 & 25.13 & 2776.3 & 2865.4 \\ 1935 & 31.10 & 7898.7 & 3944.4 \\ 5428 & 32.60 & 7886.1 & 11284.6 \\ 3720 & 38.05 & 11272.2 & \\ & & & \\ \hline\end{array}\right.$

FIGURE (5.4-3) Equi-Efficiency Contours - Samarium Cobalt Case

FIGURE (5.4-4) Equi Efficiency Contours - Strontium Ferrite Case

TABLE (5.4-3) SAMARIUM COBALT (parallel) MACHINE - REGENERATION

SPEED (RPM)	TORQUE $(N-M)$	LOSS(TEST) (watts)	LOSS(FORMULA) (watts)
8750	1.08	244.7	259.1
8750	5.15	534.8	53557
8720	8.81	797.3	810.0
8700	12.34	1274.8	1268.1
7140	5.15	596.4	542.6
7120	8.81	916.4	873.1
7100	12.07	1281.6	1373.0
5360	1.08	265.4	264.6
5350	5.15	566.8	558.0
5350	8.68	857.1	871.7
3590	5.15	505.2	562.6
3580	8.68	781.3	819.5
3560	11.79	1289.1	1200.8
1800	0.95	288.2	215.7
1790	8.68	689.5	676.6
5400	16.54	4301.6	4308.1
3600	14.78	2129.3	2085.8
3600	15.32	2456.0	2482.7
1800	14.91	1549.1	1593.8
1800	15.45	1986.9	1970.7
8600	14.64	2014.14	2015.5
8600	15.73	2922.6	2900.7

ORIGINAL PAGE IS OF POOR QUALITY

TABLE (5.4-4) STRONTIUM FERRITE (parallel) MACHINE - MOTOR:NG

SPEED	TORQUE (R-M)	LOSS(TEST) (watts)	LOSS(FORMULA) (watts)
9400	2.67	1335.6	1370.2
8900	5.72	1535.7	1528.8
8500	13.17	2341.0	2278.8
7110	5.04	1115.1	975.2
7160	13.17	2216.9	1353.0
5450	0.63	564.4	561.2
5450	5.72	1180.2	1292.4
5600	25.04	4300.5	4403.9
3760	11.14	3019.3	2974.7
3660	23.00	3932.8	3799.4
1850	5.72	841.9	843.8
6750	36.29	10536.3	10562.1
5400	30.46	8382.4	8204.0
3600	31.95	8595.6	8745.2
1800	29.38	4798.0	6956.5
1800	33.04	6610.7	2703.8
1800	22.60	2718.8	

TABLE (5.4-5) STRONTIUM FERRITE (parallel) MACHINE - REGENERATING

$\begin{aligned} & \text { SPEED } \\ & \text { LOSS(FORMULA) } \\ & \text { (watts) } \end{aligned}$		TORQUE (RPM)	($\mathrm{N}-\mathrm{M}$)	(watts)
8820	5.13	559.9		563.6
8760	10.89	592.6		571.2
5400	1.40	461.2		462.4
5400	7.50	367.3		362.3
5360	10.89	793.6		794.0
1000	4.79	405.2		393.7
1803	7.84	5470		576.5
1804	10.89	848.1		828.4
8430	14.96	3190.9		3322.7
8450	15.77	4273.1		4228.1
7180	14.28	2523.9		2567.9
7140	15.23	3604.3		3368.8
5400	14.96	2563.1		2649.8
5400	16.04	3380.7		3525.8
3600	15.23	2249.0		2255.3
3620	15.91	2837.6		2693.9
1810	14.96	1717.2		1714.2
1810	16.31	2301.9		2339.3

TA3LE (5.4-6) PERFORMANCE OF THE SAMARIUM COBALT AND STRONTIUM FERRITE MACHINES AT RATED POWER CONDITION

Quantity	Armature Connnection	DC Line Voltage (Volts)	DC Line Current (Amps)	Speed (RPM)
Sachine	Parallel	115.8	110.6	8640
Strontium Ferrite	Parallel	115.6	107.2	8760

Quantity Machine (\%)	System Input (Watts/hp)	System Output (Watts/hp)	System Efficiency
Samarium Cobalt (15.2)	13013.2	11345.9 87.2	(17.4)
Strontium Ferritte (14.1)	12600.2	10531.1	(16.9)

ORTENAL PAGE IS
OF POCR QUALITY

TABLE (5.4-7) PERFORMANCE OF THE SAMARIUM COBALT AND STRONTIUM FERRITE MACHINES AT PEAK POWER CONDITION
$\left\{\begin{array}{|cccccc}\text { Quantity } & \begin{array}{c}\text { Armature } \\ \text { Connection }\end{array} & \begin{array}{c}\text { DC Line } \\ \text { Voltage } \\ \text { (Volts) }\end{array} & \begin{array}{c}\text { DC Line } \\ \text { Current } \\ \text { (Amps) }\end{array} & \begin{array}{c}\text { Speed } \\ \text { (RPM) }\end{array} \\ \hline \text { Samarium Cobalt } & \text { Parallel } & 116.9 & 294.1 & 6900 \\ \hline \text { Strontium Ferrite } & \text { Farallel } & 120.9 & 297.6 & 6750\end{array}\right.$.

	System Output (Watts/hp)	$\underset{\substack{\text { System } \\ \text { Efficiency } \\ \text { (\%) }}}{ }$
$\begin{array}{cr} \text { Samarium Cobalt } & 34119.0 \\ (35.2) & 76.8 \end{array}$	26207.5	(45.7)
Strontium Ferrite 36183.4 (34.4) 70.9	25651.9	(48.5)

FINH-FFFICIFNCY CONIOIRS OF MPG SYSTF.M FROM Th.ST
(Simarium Cobalt Machine/Parrallel Connection)

FIGURE (5.4-3) Equi-eificiency Contours Samarium Cobalt Case

EquI-EFFICIfNCY CONTOURS OF SIPC SYSTEM FROM TFST
(Stront ium Ferrite Macitine/Paralle! (annection)

FIGURE (5.4-4) Equi-efficiency Contours Strontium Ferrite Case

5.5 VEHICULAR DRIVE CYCLE EFFICIENCY

In this section the samarium cobalt and stontium ferrite based MPC systems will be assumed to be utilized in the propulsion of a 1364 kg (3000 lbs.) vehicle, subject to the standard SAE drive cycle J227a-Schedule D shown in Figure (5.5-1), which depicts a typical urban pattern of driving. The performance of the two MPC systems developed during the course of this investigation is quantified here, subject to: (1) vehicular characteristics such as wind and tire resistances, as given in Reference [6], and (2) the above mentioned drive cycle.

Accordingly, the SAE J27a-Schedule D cycle efficiency of each of the two above mentioned MPC systems (when these systems are assumed to propel the above vehicle is calculated here. That is, the vehicle characteristics are always the governing factor in determining the MPC system torque and speed. This is accomplished by dividing the drive cycle into five regions, Regions (1) through (5), as shown in Figure (5.5-1). Furthermore, each region is divided into many time increments, Δt, during each of which the MPC system torque, T, and speed, ω, are calculated on the basis of the drive cycle and vehicle conditions, and are considered constant throughout the given Δt at their value at midpoint through Δt, see Figure ($5.5-1$). Once T and ω are calculated for each time increment, Equations (5.4-1) through (5.4-3) yield the MPC system losses, input and output powers, and efficiency, whether the system is in the motoring or regenerating mode of operation. The input energy into the MPC system and the output energy from the MPC system are thus calculated for each time increment $(\Delta t)_{i}, i=1,2, \cdots$, L, where L is the total number of time increments in a given region, j, under insideration, where $j=1,2, \cdots, 5$. Hence, for a region, j, one call write the following:

$$
\begin{align*}
& W(\text { losses })_{j}=\varepsilon_{i=1}\left(\text { MPC } \text { Losses }_{i}\right)\left(\Delta t_{i}\right) \quad \text { Joules } \tag{5.5-1}\\
& W(\text { input })_{j}=\varepsilon_{i=1}\left(P_{i n_{i}}\right)\left(\Delta t_{i}\right) \quad \text { Joules } \tag{5.5-2}\\
& W \text { (output })_{j}=\Sigma_{i=1}\left(P_{\text {out }_{i}}\right)\left(\Delta t_{i}\right) \quad \text { Joules } \tag{5.5-3}
\end{align*}
$$

where, W (losses) ${ }_{j}$ is the total lost energy in region, j, the MPC system using Equation (5.4-1) to obtain the system losses, (MPC Losses ${ }_{i}$), and W (input) ${ }_{j}$ is the total input ener.iy for the duration of region, j, into the MPC system. Notice that, if motoring

$$
\begin{equation*}
p_{i n_{i}}=\left(T_{i} \omega_{m_{i}}\right)+\left(\text { MPC Losses }{ }_{i}\right) \quad \text { Watts } \tag{5.5-4}
\end{equation*}
$$

and if regenerating,

FIGURE (5.5-1) SCHEMATIC OF DRIVE CYCLE SAE J227a - SCHEDULE D

$$
\begin{equation*}
P_{i n_{i}}=\left(T_{i} \omega_{m_{i}}\right) \quad \text { Watts. } \tag{5.5-5}
\end{equation*}
$$

Here, $\omega_{m_{i}}$ is the machine speed for the $i^{\text {th }}$ increment. Also, W (output) ${ }_{j}$ is the toal output energy for the duration of region, j, from the MPC system. Notice that, if motoring,

$$
\begin{equation*}
P_{\text {out }}=\left(T_{i} \omega_{m_{i}}\right) \quad \text { Watts } \tag{5.5-6}
\end{equation*}
$$

and if regenerating,

$$
\begin{equation*}
P_{\text {out }_{i}}=\left(T_{i} \omega_{m_{i}}\right)-\left(\text { MPC Losses }{ }_{i}\right) \quad \text { Watts. } \tag{5.5-7}
\end{equation*}
$$

The net input energy, $W_{\text {INTOT }}$, from the source into the MPC system is given by

$$
\begin{equation*}
W_{\text {INTOT }}=\left(\Sigma_{j=1} W(\text { input })_{j}\right)-W(\text { output })_{4} \quad \text { Joules } \tag{5.5-8}
\end{equation*}
$$

because regeneration takes place only during region (4). The net useful MPC system output energy to the drive shaft, WOUTTOT, is

$$
\begin{equation*}
W_{\text {OUTTOT }}=\Sigma_{j=1} W \text { (output) }{ }_{j} \quad \text { Joules } \tag{5.5-9}
\end{equation*}
$$

because there is no useful output to the drive shaft in regions (3), (4), and (5).

Accordingly, the overall cycle effficiency is the ratio between the net useful output, WOUTTOT, and the net input energy, WINTOT, that is

$$
\begin{equation*}
\eta_{\text {cycie }}=W_{\text {OUTTOT }} / W_{\text {INTOT }} \times 100 \text { q } \tag{5.5-10}
\end{equation*}
$$

Now the methods of calculation of all these powers and energies during each of the five regions are detailed next.

REGION (1):

In this region, figure (5.5-1), the electric vehicle must be accelerated (propelled) from zero velocity to a cruising velocity of $72 \mathrm{Km} / \mathrm{h}$ (45 mph) in 28 seconds subject to the forces shown in the schematic of Figure (5.5-2). Suppose that this region is divided into two subregions where the first subregion consists of accelerating the vehicle from

ORIGINAL PAGE is OF POOR QUALITY

$$
\text { 203 } 3
$$

VEHICLE DYNAMICS

M
= Mass of Vehicle, KG
$\mathrm{F}_{\text {propulsion }}$
$=$ Propulsion Force, N
${ }^{\text {F resistance }}$
$=$ Tire (Road) and Wind (Drag) Resistance Force, N
a
$=$ Vehicle Acceleration, M/SEC ${ }^{2}$
$=$ Vehicle Speed, M/SEC

FIGURE (5.5-2) VEHICLE MODELING FOR DRIVE CYCLE CALCULATIONS
zero velocity to a velocity, v_{GS}, at which the gear is shifted. In this application, $V_{G S}$ is taken to be half of the cruising velocity, ${ }^{{ }^{C}} \mathbf{C R}$. The second subregion is the region from the velocity, $v_{G S}$, to the velocity, ${ }^{\prime}{ }_{C R}$.

Let the time corresponding to the velocity $v_{G S}$ be $t_{G S}$. Also let the constant acceleration of the vehicle within the first subregion be a_{1} and the coustant acceleration of the vehicle within the second subregion be a_{2}. Assume that the gear ratio at velocities below $v_{G S}$ is $G R_{1}$ and the gear ratio at velocities above $v_{G S}$ is $G R_{2}$. The gear ratio is defined here to be the ratio of the angular speed, ω_{m}, of the motor to the angular speed, ${ }^{\omega} W_{W}$, of the wheels of the vehicle. For rectilinear motion in the first subregion of region (1).

$$
\begin{equation*}
v_{G S}=a_{1} \cdot t_{G S} \tag{5.5-11}
\end{equation*}
$$

and for rectilinear motion in the second subregion,

$$
\begin{equation*}
v_{C R}=v_{G S}+a_{2}\left(t_{a}-t_{G S}\right) \tag{5.5-12}
\end{equation*}
$$

where t_{a} is the time corresponding to the velocity ${ }^{v_{C R}}$. Substituting Equation (5.5-11) into Equation (5.5-12), where $v_{G S}=v_{C R} / 2$ and assuming that $a_{2}=a_{1} / 2$, and solving for a_{1}, one obtains the following:

$$
\begin{equation*}
a_{1}=\left(2 v_{C R}-v_{G S}\right) / t_{a}=3 v_{C R} / 2 t_{a} \tag{5.5-13}
\end{equation*}
$$

from which

$$
\begin{equation*}
{ }^{t_{G S}}=v_{G S} / a_{1}=t_{a} / 3 \tag{5.5-14}
\end{equation*}
$$

For the $i^{\text {th }}$ instant of time, t_{i}, where

$$
\begin{equation*}
t_{i}=t_{i-1}+\Delta r \tag{5.5-15}
\end{equation*}
$$

where Δt is a constant time increment used throughout the drive cycle in which $t_{0}=0$, one can write the following for the first subregion:

$$
\begin{equation*}
v_{i}=a_{1} t_{i} \tag{5.5-16}
\end{equation*}
$$

The accelerating force (Newtonian) is given by

$$
\begin{equation*}
F_{i}=M \cdot a_{1} \tag{5.5-17}
\end{equation*}
$$

oricinal page is
 OF POOR QUALITY

where M is the mass of the vehicle under consideration. The rate of work done by this force is

$$
\begin{equation*}
P_{i}=F_{i} v_{i} . \tag{5.5-18}
\end{equation*}
$$

Let the gear efficiency which is the ratio of the power supplied to the wheels to the power developed by the motor be k. In subsequent calculations for purposes of this work, k is taken to be unity $(100 \%$ gear efficiency). Then, the power developed by the motor is given by

$$
\begin{equation*}
P_{m_{i}}=P_{i} / k . \tag{5.5-19}
\end{equation*}
$$

If tiee radius of a wheel is R_{W}, then the angular speed of the wheel is giver by

$$
\begin{equation*}
{ }^{w} W_{i}=v_{i} / R_{W} \tag{5.5-20}
\end{equation*}
$$

and the angular speed of the motor is given by

$$
\begin{equation*}
\omega_{m_{i}}=G R_{1} \cdot \omega_{W_{i}} . \tag{5.5-21}
\end{equation*}
$$

The motor shaft torque is therefore given by

$$
\begin{equation*}
T_{m_{i}}=P_{m_{i}} / \omega_{m_{i}} \tag{5.5-22}
\end{equation*}
$$

Now the system losses, MPC Losses ${ }_{i}$, during motoring as a function of $\omega_{m_{i}}$ and $T_{m_{i}}$ are then calculated using Equation (5.4-1) where the constants are given in the first and second rows of Table (5.4-1) for the two MPC systems developed in the course of this inyestigation. Hence, the total input power into the MPC system becomes

$$
\begin{equation*}
P_{i n_{i}}=P_{r_{i}}+(\text { MPC Losses }) . \tag{5.5-23}
\end{equation*}
$$

Therefore, the change in input energy to the MPC system from time, t_{i-1} to time, t_{i} is given by

$$
\begin{equation*}
\Delta W_{i n_{i}}=P_{i n_{i}} \cdot \Delta t . \tag{5.5-24}
\end{equation*}
$$

The change in outout energy from the MPC s_{y}, tem from t_{i-1} to t_{i} is given by

$$
\begin{equation*}
\Delta W_{\text {out }}=P_{m_{i}} \cdot \Delta t . \tag{5.5-25}
\end{equation*}
$$

Thus, the total energy into the MPC system 'rom time ($=0$) to time ($=$ ${ }^{\prime}{ }_{G S}$) becomes

$$
\begin{equation*}
W_{i n_{11}} \stackrel{n}{i=1}_{n_{11}}^{\Sigma} \Delta_{i n_{i}} \tag{5.5-26}
\end{equation*}
$$

and the total energy output of the system in this time becomes

$$
\begin{align*}
& W_{\text {out }_{11}}=\sum_{i=1}^{n_{11}} \Delta W_{\text {out }_{i}} \tag{5.5-27}\\
& 1=t_{G S} / \Delta t .
\end{align*}
$$

where ${ }^{n_{11}}=t_{G S} / \Delta t$.
Writing an equation similar to Equation (5.5-16) for the second subregion.

$$
\begin{align*}
v_{i} & =v_{i-1}+a_{2}\left(t_{i} \cdot t_{i-1}\right), \quad n_{12} \geq i>n_{11} \\
& =v_{i-1}+a_{1} \Delta t / 2, \quad n_{12} \geq i \leq n_{11} \tag{5.5-28}
\end{align*}
$$

where n_{11} and n_{12} designate the beginning and end of the second subregion in region (1), respectively. The accelerating force is given by

$$
\begin{equation*}
F_{i}=M \cdot a_{1} / 2 \tag{5.5-29}
\end{equation*}
$$

and the rate of work done by this force is given by Equation (5.5-18). Also, the power developed by the motor and the angular speed of the wheels of the vehicle are given by Equation (5.5-19) and (5.5-20), respectively, for $n_{12} \geq \mathrm{i}>\mathrm{n}_{11}$. The angular speed of the motor is given by

$$
\begin{equation*}
\omega_{m_{i}}=G R_{2} \cdot \omega_{W_{i}} . \tag{5.5-30}
\end{equation*}
$$

The corresponding motor shaft torque is given by Equation (5.5-22). As described earlier, the losses, MPC Losses ${ }_{i}$, in the MPC system, the change in input energy to the MPC system, and the change in output energy for a duration of Δt seconds within this subregion are given by Equations (5.5-23) through (5.5-25), respectively. Therefore, the total energy into the MPC system from time ($=t_{G S}$) to time ($=t_{a}$) is given by

$$
\begin{equation*}
W_{i n_{12}}=\sum_{i=n_{11}+1}^{n_{12}} \Delta W_{i n_{i}} \tag{5.5-31}
\end{equation*}
$$

and the total energy out of the MPC system for this period becomes

$$
\begin{equation*}
W_{\text {out }_{12}}=\sum_{i=n_{11}+1}^{n_{12}} \Delta W_{\text {out }} \tag{5.5-32}
\end{equation*}
$$

where
ORIGRAL PREE :
OF POOR QUALIT:

$$
n_{12}=t_{a} / \Delta t
$$

Hence, for Region (1), the total energy into the MPC system is given by Equations (5.5-26) and (5.5-31). That is,

$$
\begin{equation*}
W_{i n_{i}}=\varepsilon_{i=1}^{n_{11}} \Delta W_{i n_{i}}+\varepsilon_{i=n_{11}+1}^{n_{12}} \Delta W_{i n_{i}} . \tag{5.5-33}
\end{equation*}
$$

The total energy output of the MPC system for Region (1) is given by Equations (5.5-27) and (5.5-32). That is,

$$
\begin{equation*}
W_{\text {out }_{1}}=\sum_{i=1}^{n_{11}} \Delta W_{\text {out }_{i}}+\sum_{i=n_{11}+1}^{n_{12}} \Delta W_{\text {out }} \tag{5.5-34}
\end{equation*}
$$

REGION (2):

In this region, Figure (5.5-1), the electric vehicle must be maintained at the cruising velocity of $72 \mathrm{~km} / \mathrm{h}$ (45 mph) for 50 seconds. This implies that the acceleration of the vehicle is zero and

$$
\begin{equation*}
v_{i}=v_{C R}, \quad n_{2} \geq i>n_{12} \tag{5.5-35}
\end{equation*}
$$

where n_{12} and n_{2} designate the beginning and end of Region (2), respectively. In addition, the power developed by the motor, $P_{m_{i}}$, the angular speed of the wheels, " W_{i} ' the angular speed of the motor, $\omega_{m_{i}}$ ' the developed motor torque, $T_{m_{i}}$, the input power to the MPC system, $P_{i n_{i}}$, and the changes in input energy, $\Delta W_{i n_{i}}$, and output energy, $\Delta W_{\text {out }}{ }_{i}$. remain constant at their values at the end of Region (1), $1=$ n_{12}.

Therefore, the total input energy into the MPC system in this region is given by

$$
\begin{align*}
W_{i n_{2}} & =\varepsilon_{i=n_{12}+1}^{n_{2}} \Delta W_{i n_{i}} \\
& =\left(\left(n_{2}-n_{12}\right) \cdot \Delta W_{i n_{i}} l_{i=n_{12}}\right. \tag{5.5-36}
\end{align*}
$$

and the corresponding total output energy from the MPC system is given by

$$
\begin{align*}
W_{\text {out }_{2}} & =\varepsilon_{i=n_{12}+1} \Delta W_{\text {out }_{i}} \\
& =\left[\left(n_{2}-n_{12}\right) \cdot \Delta W_{\text {out }_{i}}\right]_{i=n_{12}} \tag{5.5-37}\\
\text { where } n_{2} & =\left(t_{a}+t_{C R}\right) / \Delta>t .
\end{align*}
$$

REGION (3):

In this region called the coasting region, Figure (5.5-1), the electric vehicle must be decelersted at a constant rate from the cruising velocity of $72 \mathrm{~km} / \mathrm{h}$ for 10 seconds. This deceleration is accompl'shed by the resistance force acting on the vehicle due to the wind (or эerodynamics), tires to road friction, and chassis losses, see Figure (5.5-2). The above resistance was given in terms of power(in kw) as a function of velocity (in $\mathrm{km} / \mathrm{hr}$) in Reference [6]. This information is repeated here in mathematical form, as a polynomial function of velocity in Equation (5.5-38) below.

$$
\begin{equation*}
\operatorname{Res}(v)=-33.3+201.5 v-0.11 v^{2}+0.36 v^{3} \tag{5.5-38}
\end{equation*}
$$

where Res is the equivalent power of the resistance force in Watts and v is the velocity of the vehicle in meters per second.

At any instant, i, within this region ($n_{3} \geq i>n_{2}$), where n_{2} and n_{3} designate the times at the beginning and end of region (3), respectively, the deceleration can be assumed to be equal to the deceleration at instant, $(i-1)$, so long as the time interval, Δt between i and ($i-1$) is small enough. Let this deceleration (given below as negative acceleration) be a_{3}. Then applying Equations (5.5-17) and (5.5-18) , a_{3} is given as follows:

$$
\begin{equation*}
a_{3}=-\operatorname{Res}\left(v_{i-1}\right) / v_{i-1} \cdot M . \tag{5.5-39}
\end{equation*}
$$

The velocity, v_{i} at instant i becomes

$$
\begin{equation*}
v_{i}=v_{i-1}+a_{3} \Delta t \tag{5.5-40}
\end{equation*}
$$

The angular speed of the wheels is given by Equation (5.5-20) and the angular speed of the motor is given by Equation (5.5-21) or Equation $(5.5-30)$ depending on whether the velocity, v_{i} is less than or greater than the velocity, ${ }^{\prime}{ }_{G S}$, at which the gear is shifted.

By coasting, we mean that the accelerator is no longer applied, and the pwoer supplied from the battery to the MPC system, except the power (200 Watts) supplied to the low level zontrol electroniccs, is immediately interrupted That is,

> ORIGRAL PARE
> OF POOR QUMLTY

Also, the vehicle attains its current velocity, v_{i}, by virtue of its stored kinetic energy or momentum less the energy spent to overcome the wind and tire resistance, as well as chassis losses mentioned earlier. This implies that the mechanical power out of the MPC system is zero. That is,

$$
\begin{equation*}
P_{\text {out }}=0 . \tag{5.5-42}
\end{equation*}
$$

Therefore, the total energy supplied to the MPC system is given by

$$
W_{i n_{3}}=\sum_{i=n_{2}+1}^{n_{3}} P_{i n_{i}} \cdot \Delta t=200\left(n_{3}-n_{2}\right) \cdot \Delta t
$$

and the total energy delivered by the motor is given by
n_{3}
$W_{\text {out }_{3}}=\Sigma_{i=n_{2}+1} P_{\text {out }_{i}} \cdot \Delta t=0$
where $n_{3}=\left(t_{a}+t_{C R}+t_{C O}\right) / \Delta t$.

REGION (4):
In this region, Figure (5.5-1), the electric vehicle is retarded until it attains zero velocity in 9 seconds. It is important to note that in this region the machine ceases to act as a moter but acts as a generator, returning its output power to the battery. To best understand what takes place within this region, consider that it is divided into two subregions: a regenerative braking subregion and a mechanical braking subregion. The reason for applying mechanical braking is the fact that at some point within the region, regeneration ceases to be possible because of low machine speed and generated emf. In order to stop the vehicle, mechanical braking is used to bring the vehicle to stand still (zero velocity).

Consider the regenerative braking subregion. Assume that the vehicle is retarded at a constant rate \mathbf{a}_{4} meters per second, until it attains zero velocity. Then far rectilinear motion of the vehicle from some velocity, v_{i-1}, at instant t_{i-1} to zero velocity at the instant (t_{a} * ${ }^{t}{ }_{C R}{ }^{*}{ }^{t} \mathrm{CO}^{*}{ }^{t_{b}}$), the retardation (or negative acceleration) can be written as follows:

$$
\begin{equation*}
a_{4}=-v_{i-1} /\left(T T B-t_{i-1}\right) \tag{5.5-45}
\end{equation*}
$$

where $n_{4} \geq i>n_{3}$. Therefore $(i-1) \geq n_{3}$ and $t_{i-1} \geq t_{a}+t_{C R}+t C O$. Notice that in Equation (5.5-45), TTB $=t_{a}{ }^{+}{ }^{-}$CR ${ }^{+} t_{C O}{ }^{*} t_{b}$, shown in Figure (5.5-1). Also, notice that n_{3} and n_{4} designate the instants in time at the beginning and end of Region (4), respectively.

The velocity, v_{i}, of the vehicle at instant, t_{i} becomes:

$$
\begin{equation*}
v_{i}=v_{i-1}+a_{4} \cdot \Delta t \tag{5.5-45}
\end{equation*}
$$

The angular speed of the wheels of the vehicle is given by Equation (5.5-20), from which the angular speed of the motor, $\omega_{m_{i}}$, will be given by either Equation (5.5-21) or Equation (5.5-30), depending on whether the velocity of the vehicle, v_{i}, is less than or greater than its velocity, ${ }^{\prime}{ }_{G S}$, when the gear is shifted.

From instant n_{3} until such a time when regeneration is no longer practical, the brakes are applied essentially to instruct the control slectronics of the MPC system to cause regeneration. In which case the machine is producing a torque opposite to the direction of the torque during motoring, that is, it produces a retarding torque. Notice that the machine torque in this case is opposite to the machine speed, ω_{m}.

From the plots of power versus torque shown in Figures (5.E-9) through (5 3-11) for the strontium ferrite NIPC system and from similar plots for the samarium ccbz! 4 MPC system, optimum torque values of about $10 \mathrm{~N}-\mathrm{m}$ and $14 \mathrm{~N}-\mathrm{m}$ for the strontium ferrite and samarium cobalt machines, respectively, were found to regenerate the most power. Hence it will be assumed here that the brakes are applied such that a constant retarding torque of 10 (or 14) $\mathrm{N}-\mathrm{m}$ is developed. That is,

$$
\begin{equation*}
T_{m_{i}}=T O R \quad N-m \tag{5.5-47}
\end{equation*}
$$

where TOR $=14 \mathrm{~N}-\mathrm{m}$ or $10 \mathrm{~N}-\mathrm{m}$ dspending on whether the machine is the samarium cobalt or strontium ferrite type. The corr ssponding losses, Loss; in the MPC system are given as a function of the speed, $w_{m_{i}}$ and the torque $T_{m_{i}}$ in Equation (5.4-1) with the cor.. iants nf + ie second and fourth rows of Table (5.4-1,

The mechanical power from the machine is given by

$$
\begin{equation*}
P_{m_{i}}=T_{m_{i}} \cdot w_{m_{i}} \tag{5.5-〔8}
\end{equation*}
$$

Since the power returned from the MPC system to the battery is in a direction opposite to the input power from the b ttery to the MPC system, the former direction of flow of F wer will be assigned a negative direction to preserve the chosen convention. In other words, the input power from the battery to the MPC system during regenerative braking is given by

$$
\begin{equation*}
P_{i n_{i}}=-P_{m_{i}}+\left(\text { MPC Losses }{ }_{i}\right) \tag{5.5-49}
\end{equation*}
$$

the crange in input energy into the MPC system is given by Equation (5.5-24). Since none of the mechanical power developed by the machine is used to propel the vehicle, the "useful" output power and change in output energy are zero. Thus the total "useful" output energy during regenerative braking is given by

$$
\begin{equation*}
W_{\text {out }_{4 r b}}=0 \tag{5.5-50}
\end{equation*}
$$

and the total input energy into the MPC system is given by

$$
W_{i n_{4 r b}}=\sum_{i=1}^{n_{4 r}} P_{i n_{i}} \cdot \Delta t
$$

where $n_{3}<n_{4 r}<n_{4}, n_{4}=T T B / \Delta t$ and $n_{4 r}=t_{i} / \Delta t$ correspond: to the instant at which regeneration ceases, when the motur speed is below a certain threshold beyond which regeneration is impractica.

Now consider the mechanical braking subregion. This subregion begins where regr, erative braking stops. This point corresponds to the instant at which no net power is returned to the battery. Therefore, the input power into the MPC system is solely given by Equation (5.5-41), which is the 200 Watts supplied to the control electronics. The velocity of the vehicle and the instant at which regeneration ceases was determined by a simple iterative process. Let this instant be t_{r}, and let an instant, $t_{i-v}<t_{r}$ be when regenerdion still holds. Instant, $t_{i}>t_{r}$, is when regeneration is no longer practicable. Notice that (t_{r} $\left.-t_{i-1}\right)<\left(t_{i}-t_{r}\right)$. This iterative process to find t_{r} co ists of successively halving the interval at between t_{i-1} and t_{i} until t_{i} approaches t_{r}. This is the poirit where the power, $P_{i n_{i}}$ at instant, t_{i} returned to the battery is zero (or is within some previously chosen tolerance value).

Beyond instant, t^{\prime}, mechanical traking takes place. Notice that when the machanical brakes are aplied the conirol electronics are designed to deactivate the entire MPC system. In this case no power iconsumed by the MPC system, except for the 200 Watts which must be delivered continuously to the control electronics. That is, the total energy supplied to the MPC system is given by

$$
\begin{equation*}
W_{i n_{4 m b}}=200\left(n_{4}-n_{4 r}\right) \cdot \Delta t . \tag{5.5-52}
\end{equation*}
$$

The "useful" output energy is zero
Therefore, for the braking region, the iotal input energy into the MPC system is given by

$$
\begin{align*}
& W_{i n_{4}}=W_{i n_{4 r b}} \cdot W_{i n_{4 m b}} \\
&={ }^{n_{4 r}} \\
& 1 P_{i n i} \cdot \Delta t \cdot 200\left(n_{4}-n_{4 r}\right) \cdot \Delta t .
\end{align*}
$$

The "useful" output energy from the MPC system is given by

$$
W_{\text {out }_{4}}=0 .
$$

MEGION (5):
By idling, Figure (5.5-1), we mean that the electric vehicle is at a standstill for 25 seonds. The only power consumad in the MPC system is the 200 Watts taken up by the low level control electronics. The total energy supplied by the battery to the MPC system is wr.iten as follows:

$$
\begin{equation*}
w_{i n_{5}}=200 t_{i} \tag{5.5-55}
\end{equation*}
$$

where t_{i} is the idling time, Figure (5.5-1), not to be confused with the general time instant, t_{i}, used throughout this development. The output energy from the MPC system used to propal the electric vehicie in Region (5) is therefore zero. "hat is,

$$
\begin{equation*}
W_{\text {out }_{5}}=0 \tag{r}
\end{equation*}
$$

Thus for the entire vehicular driv: cycle, the total eriergy, $W_{\text {INTOT, }}$ supplied from the batery to the MPC system can be written is follows:

$$
\begin{equation*}
W_{\text {INTOT }}=W_{i n_{1}}+W_{i n_{2}}+i_{i n_{3}}+W_{i n_{4}}+W_{i n_{5}} \tag{5.5-57}
\end{equation*}
$$

Also, for the entire vehicular drive cycle, the total output energy, $W_{\text {OUTTOT, }}$ from the MPC system is given by

$$
\begin{equation*}
W_{\text {OUTTOT }}=W_{\text {out }}+W_{\text {out }}+W_{\text {out }_{3}}+W_{\text {out }}+W_{\text {out }}^{5} \tag{5.5-58}
\end{equation*}
$$

Therefore from equations $(5.5-57)$ and (5.5-58), the vehicular drive cycle efficiency, ${ }^{n}$ cycle, is given by Equation (5.5-10).

This method of drive cycle analysis described above was applied to the samarium cobalt based and stroritium ferrite based MPC systems. In the case of the samarium cobalt based MPC system, a cycle efficiency, $n_{\text {cycle }}=83.6 \%$ was obtained. Meanwhile, in the case of the strontium ferit based MPC system, a cycle efficiency, $\eta_{\text {cycle }}=75.0 \%$ was obtained.

The above cycle efficiencies were obtained subject to the following

$$
\begin{aligned}
& v_{C R}=20 \text { meters } / \text { second }=72 \mathrm{~km} / \mathrm{h} \\
& v_{G S}=10 \text { meters } / \text { second }=36 \mathrm{~km} / \mathrm{h} \\
& M=1364 \mathrm{~kg} \\
& G R_{1}=20.1448 \\
& G R_{2}=10.0724 \\
& R_{W}=0.279 \text { meters }
\end{aligned}
$$

and

$$
\Delta t=1.0 \text { seconds. }
$$

These cycle efficiency calculations complete the design, construction and testing of the two improved electronically commutated brushless dc machine systems developed in the course of this investigation. In the following chapter, conclusions, assessment of results and experience gained from this work, and prospective future effort is outlined.

REFERENCES CITED IN CHAPTER (5)

1. Johnson, L. W. and Riess, R. D, Numerical Analysis, AddisonWesley Co., 1977.
2. Beckett, R. and Hurt, J., Numerial Calculations and Alger-
3. SAS User's Guide, SAS Institute, Inc. SAS Circle, Box 8000, Car 1, NC, 27511-8000.
4. Demerdash, N. A., Miller, R. H., Nehl, T. W., Overton, B. P., and Ford, III, C. J., "Comparison Between Features and Performance of Fifteen HP Samarium Cobalt and Ferrite Brushless DC Motors Operated by Same Power Conditioner," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-102, 1983, Pp. 104-112. [See Appendix (10).]
5. Miller, R. H., Nehl, T. W., Demerdash, N. A., Overton, B. P., and Ford, C. J., "An Electronically Controlled Permanent Magnet Synchronous Machine-Conditioner System For Electric Passenger Vehicle Propulsion," Proceedings of the IEEE-IAS-1982 Meeting, San Francisco, Octcber 4-7, 1982, pp. 506-511. [See Appendix (11).]
6. Ross, J. A., and Wooldridge, G. A., "Preliminary Power Train Design for a State of the Art Electric Vehicle," DOE/NASA/0592-78/1 Report, NASA CR-135340, Rohr Industries, Inc. RHR-78-035, April, 1978.

6.0 CONCLUSIONS AND PROPOSED IMPROVEMENTS

In this chapter, conclusions are drawn on the basis of the work reported on in Chapters (1.0) through (5.0) of this report. In addition, suggested options for future improvements on such brushless MachinePower Conditioner system components are discussed in light of the findings of this investigation.

6.1 PROJECT ACCOMPLISHMENTS

The samarium cobalt and strontium ferrite based machine-power conditioner (MPC) systems developed in this investigation were dynamometer tested under rated $15 \mathrm{hp}(11.2 \mathrm{kw}$) output conditions. These tests were run for each MPC system for a period of two hours. This was done to ascertain the thermal characteristics of each MPC system, and determine its ability to operate continuously under rated conditions. These tests were conducted successfully, and revealed overall MPC system efficiencies of about 88°, and 84°, for the samarium cobalt and strontium ferrite based systems, respectively, at rated $15 \mathrm{hp}(11.2 \mathrm{kw}$) conditions.

The two MPC systems were also dynamometer tested successfully 1 nder peak load conditions of $35 \mathrm{hp}(26.1 \mathrm{kw})$ for more than one minute each. These tests were made to ascertain the ability of both MPC sys:tems to deliver high values of output power for short periods of time for purposes of acceleration, hill climbing, and other overload conditions. These tests revealed efficiencies of about 77_{\circ}° and 71_{\circ}° for the samarium cobalt and strontium ferrite based systams, respectively, at peak one minute output of 35 hp (26.1 kw).

Other loading conditions covering the entire range of output from zero to peak value were conducted successfully for purposes of obtaining the loss and efficiency characteristics for both systems. On the basis of thee tests, the SAE J227a Schedule D drive cycle efficiencies were :alculated for both MPC systems developed here. These drive cycle e.iciencies were found to be about 84° and 75° for the samarium cobalt and strontium ferrite based systems, respectively, when propelling a vehicle of 1364 kgs (3000 lbs). Accordingly, the goals of this project have been accomplished, and the experience gained here points to a number of possible future improvements which are discussed next.

6.2 PROPOSED MACHINE IMPROVEMENTS

An additional mechanical gear should be considered in lieu of the series-parallel switching arrangement which was designed into the motor. For both machines developed here, test results have demonstrated that the acceleration time of 28 seconds can be met using the parallel connection only. For faster acceleration or less battery drain, an additional mechanical gear would be more economical thar the switching arrangement. In addition, an entirely mechanical gear shift would be less confusing to the operator than a hybrid mechanical-electrical system.

Sophisticated computer aided design tools have been perfected since the inception of this project. These tools are namely; 1) the ability to determine, with high degree of certainty, the magnetic loading conditions, and motor parameters using the method of magnetic field analysis by finite elements, 2) the ability to vary machine geometry in computer modeling, and study their impact on machine parameters, and 3) the ability to include parameters numerically obtained above in predicting MPC system dynamic performance. While the use of these tools would not be expected to achieve spectacular improvements in system performance, significant improvements would be anticipated. Perhaps the most significant benefit of this approach is the radical reduction of the risk of costly design mistakes, with their consequent prototype reconstruction.

Resorting to a higher voltage, lower current system would result in some advantages in the motor fabrication process and may lead to reduction in battery drain during starting and peak power conditions. Further discussion of the impact of higher voltages on the system performance is given in the next section.

The rotor position sensing could be accomplished with four detectors instead of the present six detectors. The magnet structure which excites these sensors could be simplified. Furthermore, the resort to sinusoidally shaped phase currents through power electronic control techniques can lead to some improvements in commutation, and associated motor performance, including possible reduction of losses.

6.3 PROPOSED POWER CONDITIONER IMPROVEMENTS

Since the beginning of this project, significant improvements in characteristics and capabilites of solid state power switching components have been introduced into the market. In any future effort of redesigning and building MPC systems similar to the two systems developed here, these new and improved solid state switching components (transistors and diodes) can have significant impact on design simplification. and improvement of efficiencies of such systems.

These improved transistors and diodes make it more feasible to eliminate the choke arid chopper from the present power conditioner circuit, and merge their function of dc line current, torque and speed
control into the inverter/converter bridge portion of the power conditioner. This would simplify significantly the physical layout and packaging of the power conditioner. It would also permit the additional operating mode of plugging, and would provide for continuous full regenerative braking torque thi sugh zero speed.

Built-in "flyback" diodes available with improved power transitors make it possible to choose s.naller heat sinks, and further shorten leads, and other conections involved in the layout and packaging of such systems. This reduces system inductances and has beneficial effects on commutation characteristics, and accompanying losses. Liquid cooling schemes should also be considered for purposes of achieving packaging and layout improvements.

Improved power switching components, and reduced inductances of lead connections, resulting from improved packaging and layout, can ead to significant simplification of snubber and clamping circuitry, and achievement of higher MPC system ratings, if desired.

Resorting to higher values of rated supply voltage can lead to significant reduction in system current magnitudes, and hence can lead to improvements in system efficiencies. The newer improved transistors mentioned above are generally designed for higher voltage, lower current operation, and thus would be suited to the suggested higher operating voltages. This reduction in current magnitudes can also simplify the phase commutation process, and lead to alleviation of ($\mathrm{L} \mathrm{di} / \mathrm{dt}$) problems associated with the commutation process. Namely, this would reduce voltage spikes associated with commutation. These are the voltage spikes which are a main cause of solid state switching component failure.

Much room is left for improvement of protective systems suited for use in these brushless dc electronically commutated machines. Such future improvements should be directed towards increasing user abuse resistance of such MPC systems. In additicn, faster "turn on "/"turn off" times of the low power level control electronic components would enable turning off most of the control electronics during idling and coasting periods. This would lead to further power conditioner performance improvements.

Finally, the acomplishments of this inves igation, which were detailed above, should serve as a solid base from which future improvements can be launched.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the efforts of Mr. B. P. Overton in the design, fabrication, and testing of the machines reported on here, and the efforts of Messers C. J. Ford and S. Coulon in the design, fabrication, and testing of the power conditioner used to operate these machines. Messers Overton, Ford, and Coulon are of the Industrial Drives Divisior, of Kollmorgen Corporation, Radford, Virginia, formerly R and D Center of Inland Motor.

Our thanks also go to Dr. R. J. Churchill, former Vice President and Director of Inland Motor R and D in the early stages of this investigation, who provided the facilities for construction and testing of this hardware. Our thanks also go to Mr. W. Keeney, Vice President of Engineering, Industrial Drives Division of Kollmorgen Corporation, Radford, Virginia, who managed the Kollmorgen team in the final stages of this investigation.

The authors wish to acknowledge the efforts of numerous previous graduate students who obtained their MS or Ph.D. degrees on the basis of work related to this project. Prominent among those students is F . A. Fouad.

The authors wish to express their gratitude to Ms. Roxan J. Rickborn, Mrs. Lynne K. Sawyer and their associates for the patience and perseverance they exhibited in typing the manuscript of this report.

APPENDIX (1)

ON THE MAGNETIC FIELD ANALYSIS BY FINITE ELEMENTS

Fouad, F. A., Nehl, T. W., and Demerdash, N. A., "Magnetic Field Modeling of Permanent Magnet Type Electronically Operated Synchronous Machines Using Finite Elements," IEEE Transactions on Power Apparatus and Systems, PAS-Vol. 100, 1981, pp. 4125-5135.

- 1981 IEEE. Reprinted, with permission, from the IEEE Transactions on Power Apparatus and Systems, Vol. PAS-100, pp. 4125-5135, 1981.

F. A. Fouad, Student Member, T, W. Nehl, Member, N. A. Demerdash, Senior Member
Virginis Polytechnic Institute and Staic Univeraity
Blacksburg, VA 24061

Abstract-The finite element method is applied to the anal \bar{y} is of electronically operzted permanent magnet type synchronous machines. In this class of machines, the armature MMF is a discretely forward stepping one of high harmonic content. The discretely stepping MMF 25 accounted for by a series of finite element field solutions as the rotor moves throughout one complete cycle of the ac armature current. Because of the discretely forward travelling MMF, a series of finite element grids depicting the rotor at various equally spaced locations, covering its movement during one cycle of the armature current, is required. This is accomplished by means of an automated algorithm for generation of the required finite element grids. This allows one to match any stator grid to any rotor grid for any given displacement between the two grids. This matching is done in the air gap region by fitting it with a suitable row of triangular elements. In addition, a permanent magnet model is developed based upon the magnet geometry and material properties. This method was applied to the analysis of a 15 hp samarium cobalt machine at boch rated and no load conditions. The caiculated results were in excellent agreement with search coil measurements at both of these operating conditions. These solutions were then used to determine the midgap EMF waveforms. The calculated midgap EMF was in excellent agreement with an oscillos am of the actual EMF in both waveshape and magnitude. The core losses at rated and no load conditions were also determined on the basis of this field analysis and found to be closer to test resulte than those calculated using standard design calculation procedures.

INTRODUCTION

Electronically operated permanent magnet type synchronous machines are finding increasing use in actuation, machine tool drives, vehicle propulaion, brushless excitation systems for large turbine generators, as well as other applications. In this class of machines, the armature MF is a fiscretely forward stepfing one of high harmonic content.

A review of the literature reveals that the bulk, if not the totality, of previous investigations of magnetic fields in synchronous machines, using various numerical techniques, was directed towards the study of large synchronous generators of the cylindrical and salient pole rotor type. 1-7 Also, Erdelyi et al 16 have investigated the ripple effect on the flux picture due to the movement of rotors versus stators in brush type dc machines. In these investigations, classical synihronously rotating, or stationary MMF concepts were used. That is, the MFs due to the armature and field were considered stationary with respect to each other for a given load condition.

81 WM 179-1 A paper recomended and approved by the Sif. Rotacing Machinery Comittee of the IEEE Power tutneering Soclety for presentriion at the IEEE PES Winter Meeting, atlanta, Georgia, February 1-6, 1981. Manuscript submitted September 2, 1980; made available for printina December l, 1980.

Thin, however, is not the case for electronically operated synchronous machines with nonsinusoiddl armature currents. In this case, the field is no longe: smoothly rotating, but rather a discretely forward stepping one. Hence, the classical approach mentioned above is not applirable. Therefore, a new approach, based on a series of finite element solutions, is incroduced. In this approach, the stepping MMF is accounted for by a Beries of field solutions over one complete ac cycle of the armature current. This series of solutions corresponds to equally spaced rotor positions over the ac cycle. Based on the resulting series of solutions, a number of impertant performance characteristics are calculated. These calculated characteristics include core losses, eddy and hysteresis, in which minor loop effects due to distorted flux density profiles are included. These calculations include midgap flux density waveforms, induced midgap EMFs in the armature, magnetization and demagnetization patterrs in the permanent magnets, as well as other parameters. 10

Further use of this type of field analysis in the determination of key machine parameters for purposes of dynamic simulation of machine-power conditioner interaction is given in a companion paper. 14 It is shown in reference (14), how helpful such a magnetic field wadel is, in the prediciton of machine performance in the absence of actual hardware for physical testing.

SYSTEM DESCRIPTION

The method of analysis presented here is applied to a three phase, $15 \mathrm{hp}, 7600 \mathrm{rpm}, 120$ volt, 4 pole elec tronically operared samarium cobalt permanent magnet synchronous machine. This machine is fed by a cransistorized power conditioner. The machine-power conditioner unit is shown in Figure (1).

Figure 1. Machine-Power Conditioner Unit in its Final Form

A schematic diagram of the combined machine-power conditioner unit is depicted in Figure (2). The power conditioner consists of a two quadrant hysteresis type de current chopper and a three phase transistorized Anvertur-conveitter uridgi. The cioppor sontreis the ds line current which feeds the inverter-converter bridge. This 15 equivalent tc controlling machine torque. The bridge converts the dc current into three phasf ac
currente of approximntely rectangular ghape as idealized in figure (2). Notice that during one complete cycle, there are six switching or current sidtes; The switching from state to state is controlled by a rotor position sensor wr ated on the motor shaft. The rectangular current block. produce a discretely stepping stator (armature) NMF wave in the air gap as described next.

Figure 2. Machine-Power Conditioner Schemaric and Idealized Phase Currenta.

REPRESENTATION OF THE DISCRETELY STEPPING ARMATURE MMF

The behavior of permanent magnet synchronous machines with diacretely stepping (or nonuniformy rotating) armature MFs become slear upon examination of the electromagnetic interactions inside such a machine. Figure (3) gives a cross sectiomal view of the 15 hp tachine described earlier. Included in this figure are the locations of tie individual phase windings. A. B, and C in the fractional slot atator core.

Figure 3. Machine Crose Section View with Locacion af Three Phase WindingenficinM PMcis is

Using thisspatial distribution of the phase windings in conjunction sith the ideaileed phase rut: tet given in Figure (2), one obcains the spatial distribution of the armature MMF for selected points, over one complete ac current cycle. Each current cvole consista of six states as mentioned earlier. At the beginning of each scate, during the motoring mode, the stator MMF leads the rotor MMF by 120 electical degrees in the direction of rotation. This angle decreases at the end of the same gtate due to rotor motion and the fact that the armature MMF remains stationary during a state. At the end of such a state, the rotor position sensor signals the power conditioner co initiate the next current state. This produces a óO electrical degree forward jump (or step) of the armature MMF in the direction of rotation. At this point, the two MMFs are again separated by 120 electracal degrees. This process is repeited six times over each ac current cycle. These repetitive, discrete armature MPF jumps lead to a machine oper, tion which is analogous to a conventional synchronous machine operating with a variable torque angle that fluctuates between 120 and 60 electrical degrees six times in one ac cycle. Such operation would produce a pulsating torque profile.

To simulate the electromagnetic interactions during these current scates, the location of the rocor with respect to the stator wust be deterwined. Figure (5) depicts the currents inosde the stator slots at the beginning of the first atate. The resulting spatial distribution of the armature MMF is given ismediatelv b blow the atator slots in the same figure. Notice that this waveform is unsymetrical due to the fracrional slot winding. The position of the rotor tagnetic (MMF) axis lags by 120 electrical degrees at the heginning of this state as shown in Figure (4), while at the end of the same state, thia angle reduces co 60 electrical degrees as shown in Figure (5). Figure (6) shows the beginning of the next state.

In order to adequately represent the stepping nature of the magnetic field picture inside this machine, thirty fleld solutions, spanning one ac cycte, were obtained uaing the method of finite elements. Consequently, each of the six current stares is represented by five solutions. The implementation of these solutions requires the ability to rotate the rotor finite element grid with respect to the stator grid. Detail: of this process are given next.

GENERATION OF MACHINE FINITE ELEMENT GRIDS

The thirty field solutions mentioned above require chirty different finite element grids. Generation of these grist cenually would be extremely tedious because of the coaplex copologiea involved and the fact that all four pole pitches muat be included due to the fractional alot vinding in this case.

The scator grid is generated automatically by meane of generalised stator slot pitch module as hown in Figure (7). The rotor grid is gencraced in a oimilar manner uaing the generalized rotor pole acdule given in the same fisure. These modules are cotally flexible in the sence that all gajor geowetrical dimensions can be specified at will. furthermore, the number of atator and rotar modules in a given grid ia completely controlled by the user. This allows one to model nither aingle pole pitch or the entire machine croas section if required.

The Einite clement g:ids for the chirty fieid solutions are generated by fixing the etator grid with respect to the coordinate axts and rotating the rocor grid Ath respect to the etetor for the thirty positions.

At each position the rotor and stator grids are joined cogether in the air gap by means of a row of elements that us uniquely determined for each posicion by means vt an air gap fitting algorithm, details of which are to ot found in sppendix (A). It must be emphasized that

Fig. 4. Spatial Listribution of Stator and Rotor Mmps at Start of State (1)

Fig. 5. Spatial Distribution of Stator and Rotor MmFe at Find of State (1)

Fig. 6. Spatial Distribution of Stator and Rotor MMFs at Start of State (2)

Fig. 7. Finite Element Grid of a Stator Slot and a Rotor Pole Pitch Modules
the stator and rocor grids are generated only once during this sequence of solutions. The stepping of the rotor is accomplished by rotation of the nodal coordinates that form the rotor grid. However, the element equations that represent the rotor and atator postions are in-

Fig. 8. Finite Element Grids at Start of State (1)

Fig. 9. Finite Element Grids at End of State (1)
variant to this angular displacement (or stepping) and hence are calculated only once. This counterclockwit. rotation of che rotor grid vursue che statoris clearly shown in Figures (8) and (9) which depict the rotor positions at the beginning and end of state number one, respectively. In the next section, a megnet model applicable to the inite element wethod is derived. This model is based upon the magnet geometry and material properties.

PERHANENT TAGNET MODEL

A permanent magnet model suitable for use with the finite element method is derived in this seceion in terms of the magnet geowetry and material properties. Consider the simple magnetic circuit consiating of a permanent magnet in series with an iron core and air gap, as hown on the left side of Figure (10). If one neglects the MOF drop in the iron core, the operating point of the magnet is obtained from the intersection of the magnet's normal demagnetization characteristic and the alr gap line. Thia intersection is marked by point 11 on the right side of Figure (10). Inclusion of che magnetic aturation in the iron core itiat is, the MP drop in the iron), slifes the operating point to point 2 as ahown in the IIgure.

This agnetic circuit can be replaced by an equivalent cjecuit consisting of coil in serles with the aame iron core and dir gap. This coil has the aam dimenstons and magnetization profile as the maget. Howere, the intersection of chis profile with the H (field intensicy) axis is shifted from the poit.t. H_{C}

Fig. 10. Operating Point of a Magnetic Circuit Containing a Permanent Magret
(cuercivity), to the origin, Figure (10), The arpere curns, NI, of t.is equivalent coil are obtained by multiplying the neight of the magnet in the direction of magnetization, $h_{P M}$, by the coercivity, H_{C}, in the case of rectangular shafed magnets.

For nonrectangular magnets, such as the one shown in Figure (11), modifications to the above mentioned approa h are required. The curved portions of such magnets are represented by a series of infinitely thin rectargular layers which approximate this curve in a staircase fashion. This yields the continuous current sheets shown also in Figure (11). Thia technique has been successfully applied to the 15 hp machine introduced earlier. The accuracy of this approach is verified later in this paper by means of search coil flux and flux density measurements, under both rated and open circu:' conditions. Calculated and oscillogram waveformes of the midgap EMFs were also in agreement both in shape and magnitude as will be shown later in phis paper.

Fig. Il. Equivalent Representa:ion of Samariua Cobalt Magnut of the 15 HP Machine

PINITE ELEMENT SOL'TIONS OF THE 15 HP FA HINE

The aucomitic grid gencration process and the magnet model were applied to the analyais of the electronically operated 15 hp samaritum cobalt permanent magnet synchronous machine. The no load and rated load field distributions vert obtained by mane of the finite element wethod for two dimensional nonlinear magnetoscatic ficld problema. The nonlinenr algebraic equations were solved by the Newton Rapher. ilgorithes,9,10 Furthermore, these results as ued to calculare core lusses and back EMF waveform luring both no load and rated load operation.

Rated Load Case
Under rated load condition a number of field alolutlous ia requited fur each of tire six siates in ail .. rycle. Five solutions per state were found adequate. That is the rated load conditicn was simulated by thirty field solutions, which cover one complete ac cycle, in order co include the effects of the steppins, armature MEF. These solutions are iater used to determine the core losses in the stator laminal:- Three of these thirty field solutions are depir. ures (12) through (14), by means of map? . . e. potential contours, corresponding to ti esgirnity middle and end of state number one res..citive?.. 1 , assumed all along in these solutions tiat magnetoscatic field formulation holds in spite of any rinot fod; cur rent disrurbance caused by the sudden atder "Mr jumps.

The radial air gap flux density waveroms for the beginning and end of grate number ane are shown in Figures (15) and (1'), respectively. The effect of the slot openings and the rotor movement are clearl. visible in these Eigures. The radial dir gap flux densities are used later in this paper to generate the phase midgap EMF profiles.

No Load Case

The field distrioution and radial alt gap flux density wavetorms at no Yoad were obtained foz elgnt equally spaced rotor positions spanning one stator slot pitch of 24 rechanical degrees. Covering only one slut plech during no load operation is sufficient to accurately account for the effects of flux pulsations due to slocting.

The field distribution inside the machine. at th. ifsst n^{\prime} thege eight rotor positions, iu given in Figure (17). The corresponding radiai air gap flux derisity profile is given in Figure (18). This protile is used to determine the no load (or upen circuit) baik EMF vaveforn later in chis paper.

SEARCH COIL VERIFTCATLON OF RESLLIS

The machine, analyzed in the previous section. was constructed with two search colls for flux mrdulurments. One of these colls was wrapped around t seatur tooth near the air gap to measure the average twoth flux density. The other coll was wrapped around thret teeth in order to give an approximate value of the total slux per pole. The exact flux per pole can not be measured by such means in this machine due to the fractional slot winding.

The induced search coll voltages under raied and no load conditions were recorded by an uscilloscope. These voleages were then Fourier analvzed and ineegratil co yield flux profiles. 10 the flux proille, of the coil around one tooth, was zubsequently divided by the cross-sectional ares of the tooth stem ylelding the average conth flux density waveform.

The average tooth flux density profiles, based on search coil masuremp...s a: rated and no load, are given by the molid line curves in Figures (19) and (20) reapectively. The corresponding finite element calculated flux densities in each of the firtetn teeth art indicated by the circied points. Theqe flux denstties vere calculated by avaraging the elemental radial frux densities in the lower tooth stems. Examination of these figuren reveals excellent agreesent between measured and calculated results.

Fig. 12. Flux Distribution at Rated Load, Start of State (1)

Fig. 13. Fiux Distribution at Rated Load, Middle of State (1)

Pig. 14. Flux Distribution at Rated Load, End of State (1)

Fig. 15. Mid-Gap Radial Flux Density Waveform at Rated Load, Start of Scate (1)

Fir. Io, Mid-Cap Rad. 'a Flux Densicy Waveform at Raced Load. End of State (1)

Fig. 17. Fiux Distribution at No Load

Fig. 18. Mid-Gap Radial Flux Density Waveform at No Load

Fig 19. Average Tooth Flux Density at Rated Load

Pig. 20. Average Tocth Flux Density at No Load

The measured profiles of the tneal flux passing through the search coil that spans three teeth are given by the solid line curves in Figures (21) and (22) for rated and no load operation respectively. The corresponding finite element flux values are indicated by the circled docs in the figures. These points were obtalned by calculating the total flux passing through fiftean consecutive sets of three teeth. That is. flux in teeth $(1,2,3)$, flux in teeth $(2,3,4), \ldots$, and flux in teeth (15,1,2). Examination of these fixures reveals excellent agreement between measured and calculated results.

Fig. 21. Flux Through Three Coneecutive Stator Ieeth at Rated Load

Fig. 22. Flux Through Three Consecutive Stator Teethat No Load

This agreesenc becween search coll measurements and the finite element results confires the wildity of che magnet model for this clase of machinus. Such accurate valuat of local flux dansitien and toeal flux are aucenamry for the precise deteraination of core losses and midgap EMF vaveforme, respectivaly. The calculation of tnese paramaters ia discuesed next.

CALCULATION OF THE MLDGAP ENH UAVETORH

The aideap EuF vaveform during rated and no loac operation were obtained from the finite elemant solu: tons given earlier. The aterting polne for this calculation ts the radial air gap flux damity diatribucion. This diatribution to reprecented by a Fourier sertes as lallows:

$$
\begin{equation*}
s_{g}(\theta)=\sum_{h=1}^{N_{h}}\left(a_{i} \sin (h \theta)+b_{h} \cos (h \theta)\right] \tag{1}
\end{equation*}
$$

where: $\mathrm{B}_{\mathrm{g}}(\mathrm{B})$ is the radial air gap fiux denetey
θ is the space angle (alectrical degrees) h if the harmonic order
N is the cotal number of hermonir

> ficients corresponding to the set of rotor pusitions per state.

The harmonic components of the flux per pole, oh, are then calculated from the machine geometry and the ait gap flux density, equation (1), ds follous:

$$
\begin{equation*}
\theta_{h}-\frac{2}{\pi} \ell_{m} t_{p}\left[a_{h} \sin (h \theta)+b_{h} \cos (h \theta)\right] / h \tag{2}
\end{equation*}
$$

where: ℓ_{m} is the effective machine length (stator axial mength times stacking faccor:
if is the pole pitch at mid air gap
Jnce the harmonic flux per prle is known, the mideap fmp waveform, eph, is obtained from the ciase rate of change of this flux in conjunction with the harmonic winding, factors, k_{w}, and the number of geries tums zer phaze, Tph, as follows:

$$
\begin{equation*}
e_{p h}=-T_{p h} \sum_{h=l}^{N_{h}} k_{w_{h}} \frac{d \phi_{h}}{d t} \tag{1}
\end{equation*}
$$

Fig. 23. Midgap EMF Per Phase at Rated Load

Fig. 24. Midgap EMF Per Phase at No Load

Fig. 25. Measured mi Per Phase at No Load fipen Circutt Peak Vortage - 63.5 V)

The mideap EMF profiles for the 15 hp machine de rated and no lnad were calculated using t^{\prime} i, procidure at a seed of 1750 spa. The rated and no lijaduadyap eats proflles for these condilitons are given in Figures (2j) and (24), resperitively. These vaveforms include all ij harmonics we o adaivee the radial die gat ilux detsity waveform lite meesured zir vaveform per phase (opencircu. (s) at no load at a apeed oi 7750
 parison of :4.4 lu lead EMFi. Figura (24) and. 25). reveals oxcesient agreement in both wevestiape and megitudes (wichin :.22). The gar profiles are neari atnusoidal due to :he fractiunal slrt winding. As empected, etz midgep eff under load drops from tis nu lond value due to the demagnerizazion effect of the areature reaction. However, thiu disp in the EMF is very slight because of the propertien ot samarium sobalt agnets which have permability close to that of air. That is, armetur demagnetizasion is almost regligit le.

These tidgap EMT waveforms are used in a network mode: of this machine-power conditioner unft as tescribed in a rompanion paper. 14 This model is used to simuidte the dynamic interactions between the machane ard its associated soild state power condithoner. A further apolifatine ar shese ficid ouiutions for the decteraination of core losses is given next.

Due to the nature of the magnetic fields in this :lass of machanes, flux density variations with time in mann regions of the stator laminated core are not sinuso1da, Dut rather highly distorted waveforms with consuderable hamonic content. This is particularly the sase near the tooth tips. Under such conditio: i, an actual fiuy density waveform (rajiai and rangential components) in the various parts of the stator laminations must be used to ottain a better estimate of the core losses.

One of the salient advantages of using the finite element wethod in this analys's is that one can obtain the flux densit; profile in aach part of the stator core over a somplete cycle of the armature current, including the iafluence of the switchisg pattern of the given power conditioner to whict the machire is connected. Using the 30 finite element solutions described eariier, the radial and tangential flux density profiles over one complete ac cyule of the rated armature current is obtamed for each of the twenty four iron elements in one slct pitch module, Figuze (7). Thzee of these flux density proSiles are given in Figures (26), (27) and (28) for elements located in the tooth tip, in the tooth stem, and in the core, respectively. Norice that all of these profiles aie nonsinusoicial. Also, notice the flux density in the rooth stem is essentially radial, as expected, while in the core it is mainly tangential.

A similar procedure was followed to obtain the flux densit: profiles in these elements at no load. Fo: a given no ioad solution the tangential and radial flux density values are determined in each elemenc of a siven slot module and its corresponding sister elements in ail other modules of the corc. These firyeen flux density values are distributed with a chift of one slot Fitch from one another. This process is repeated for

-14. 26. Flux Densit; Profile in the Stator Tooth Tlp at rated Liad
earh of the eight no load soiutions in which the rotor was shitted in equal steps over a stator slot pitch as described earlier. Thts is in order to easure accurate :iux densey protiles.

The hysteresis and eddy current core losses at rated and no load are calculated using these flux aensity profiles and the measured Epstien loss curves.

Fig. 27. Flux Density Profile in the Stator Tonth Stem at Rated Load

Fig. 28. Flux Density Profile in the Stator Core at Rated Load

The combined eddy and hysteresis losses per unit weight, w_{t}, can be expressed as follows:

$$
\begin{equation*}
w_{t}=w_{e}+w_{h} \tag{4}
\end{equation*}
$$

where we is the edjy current loss component given by

$$
\begin{equation*}
v_{?}=k_{e} c_{1} f^{2} B_{p}^{2} \tag{5}
\end{equation*}
$$

and w_{h} is the hysteresis lnss component defined by

$$
\begin{equation*}
w_{h}=k_{h} c_{2} f B_{p}^{a} \tag{6}
\end{equation*}
$$

The value of the peak $f l u x$ density, B_{p}, in a given element in the core is obtained from the flux densicy profile of that element such as shown in Figures (26)(28). The frequency, f, is the fundamental frequency of this waveform (or profile). The constants c_{1}, c_{2} and a are determined from the Epstein loss characterintic for the given lamination, which is based on sinuscidally time varying flux densities. This loss characteristic can be expressed mathematically as a sum of the eddy and hysteresis components as follows: 15

$$
\begin{equation*}
w=c_{1} f^{2} B^{2}+c_{2} f B^{\alpha} \tag{7}
\end{equation*}
$$

The correction factors k_{e} and k_{h} in equations (5) and (6), which account for the effect of distortion of the fiux density waveform are determined on the basis of harmonic flux density magnitudes and flux density reversals, reapectively, as outlined in a method successfully introduced by Lavers, et al. 11, 12, 13

The method outlined above was applied to the 15 hp machine given earlzer. The resulting core losses unde:
rated and no load conditions are given in Table (1) for a speed of 7750 rpm . Also given here is the core loss

1	Finite Element Calculation		Design TestCalcu-TotalCoreTationTosses	
	Rated Load	No Load		
Eddy current loss (watts)	121.5	124.5	--	--
Hysteresis loss (watts)	70.3	70.5	--	--
Total core loss (watts)	191.8	195.0	136.5	330

calculated by standard design techniques that account only for the fundamental component of flux density. It must be noted that the core losses obtained from testing actual machines are generally 1.5 to 2.0 times higher than those calculated values. This is due to interlaminations short circuits resulting from the high pressure applied to stator cores to improve the stacking factor, etc. Reference (15) contains detailed explanations of this phenomenon. One must notice from Table (1) that the finite element based core loss values are much cioser to test than those given by standard design calculations.

Fig. 29. Core Loss Density Distribution at Rated Load

Fig. ? 0 . Core Loss Density Distribution at No Load
Figures (29) and (30) show the total core loss density distribucions under both rated and no load conditions. The regions of high loss densities are easily visible in these plots and are, as expected, in the tooth tips and in the tooth stems near the stator core. Notice also the shift in the position of these regions under raced load conditions due to ammature reaction. This type of distribution may be used as input data to a thermal analysis program for design calculations and optimization.

CONCLUS IONS

The essential comporents of a finite element modei for the simuiation if tiue eiectromagnetic performance of electronically operated permanent magnet synchronous machines were introduced. These included a model for simulating permanent magnets, lased upon geometrical and material properties, and a generalized automatic finite element grid generator which allows rotation of any rotor versus any stator grids. The steppirg nature of the armature MMF was accounted for by taking a series of field solutions corresponding to the movement of a rotor during one cycle of the armarure curvent.

This approach was applied to a 15 h p samarium cobalt machine. The rated and no load field solutions for this machine were verified by mears of flux and flux density measurements obtained from search coils. Excellent agreement was obtained in all cases between. measured and calculated results. The M1dgap EMF waveforms were calsulated with excellent agreement between numerical and corresponding test resuits in magnitude and profile. The core losses in the stator core were also calculated und were closer to test values in comparison to those calcuiated by standard design procedures. The approach given here is presently being excended to include the calculation of winding inductances for various rctor positions and levels of saturation. Machine parameters which were calculated on the basis of these fleld solutions wert key elements in a machine-power conditioner network model which was used to simulate the dynamic interactions between the electromagnetic and electronic parts of such systems as outlined in reference (14).

ACKNOWLEDGETINIS

These authors wish to acknowledge the financial support of the following contracts: 1) DOE/NASA LeRC contract Number DEN3-65 and 2) Air Force SCEEE contract number SIP/78-i7. In particular we wish to acknowledge the interest and the many stimulatir:8 discussions of Mr. E. Maslowski of NASA LeRC and Dr. F. Brockhust of the APL at WPAFB, We also wish to acknowledge the efforts of Mr. B. P. Overton of Inland Motor R\&D, Radford, VA, in the design, fabrication and testing of the machine studied here. Our thanks also go to Dr. R. Churchill, Director of Inland Motor R\&D wh.o provided the facilities for construction and testing of tais hardware.

REFERENCES

1. Ahamed, S. V. and Erdelyi, E. A., "Nonlinear Vector Potential Equations for Highly Saturated Heteropolar Electrical Machines," IEEE Transactions on Aero-Space, Vo1. 2, pp. 896-903, 1964.
2. Erdelyi, E. A., Ahamed, S. V., and Hopkins, R. E., "Nonlinear Theory of Synchronous Machines On-Load," Transactions IEEE, "ower Appararus and Systems, Vol. PAS-85, Pp. 792-801, 1966.
3. Chari, M. V. K. and Silvester, P., "Analysis of Turbo Alternator Magnetic Field by Finite Elements," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-90, Pp. 454-464, 1971.
4. Demerdash, N. A., Hamilton, H. B., and Brown, G. W. "Simulation for Design Purposes of Magnetic Fields in Turbogenerators with Symetrical and Asymmetrical Rotors - Part [- Model Development and Solution Technique," IEEE Transactions on Power Apparatus and Systems, PAS, Vol. 91, Pp. 1985-1992, 1972.
5. Demerdash, N. A. and Hamilton, H. B., 'Simulation for Design Purposes of Magnetic Fields in Turbogeneratore witl, Symetrical and Asymmetrical ORAMAR Rotorpart II - Model Calibration and ApplicaOF POOR QUALTTY
tions," IEEE Transactions on Power Apparatus and Svstems, FAS, Vol. 91, pp. 1992-1999, 1972.
6. Euchs, E. F. and Erdelyi, E. A., 'Nonlinear Theory of Turboalternators Part II: Load Dependent Synchronous Keactances." IEEE irans. on Fower Apparatus and Svstems, PAS, Vol. 92, pp. 592-539, 1973.
7. Char-, M. V. K., Minnich, S. H., Tandon, S. C., Csendes, 2. J. and Berikery, J. "Goad Characteristics of Synchroncus Generatuis by the Finite-Element Method," Paper presented at IEEE PES Winter Power Meetinge New York, NY, February 1980.
8. Chari, M. V. K., "Finite-Element Analysis of NonIInear Magnetic Fields," Ph.D. Dissertation, McGill University, Montreal, Quebec, 1970.
9. Silvester, P. and Chari, M. V. K., "Finite Element Solution of Saturatle Magnetic Field Problems," LEEE Transactions on Power Apparatus and Systems, Vol. PAS-89, pp. 1642-1652, 1970.
10. Fouad, F. A.,. "Finite Element Analysis for Design and Optimization Furpuses for Electronically Operated Electric Machines in Propuisior and Actuation Applications," Ph.D. Dissertation, Electrical Engineering Dept., Virginia Polytechnic Institute and State University, Expected 1980/81.
11. Lavers, J. D. and Biringer, P. P., "Prediction of Core Losses for High Flux Densities and Distorted Flux Waveforms," IEEE Transactions on Magnetics, Vol. MAG-12, Na. 6, November 1976.
12. Lavers, I. D., Biringer, D. P. and Hollitscher, H., "A Simple Method of Estimating the Minor Loop Hysteresis Loss in Thin Laminations," IEEE Transactions on Magnetics, Vol. MAG-14, No. 5, September 1978.
13. Lavers, J. D., Biringer, P. P. and Hollitscher, H., "Estimation of Core Losses when the Flux Waveform Contains the Fundamental plus a Single Odd Harmonic Component," IEEE Transactions on Magretics, Vol. MAG-13, Nu. 5, September 1977.
14. Demerdash, N. A., Nehl, I. W. and Maslowski, E., "Dunamic Modeling of Brushless DC Motors in Electronic Propuision and Electromechanical Activation by Digital Techniques," 1980 IAS Annual Meeting Conference Record, pp. 570-579, Oct. 1980.
15. "Magnetic Circuits and Iransformers," By Members of the Staff of the Elec. Eng. Dept., the MIT nress.
16. Erdeivi, E. A. and Fuchs, E. F., "Norlinear Masnetic Field Analysis of DC Machines, Fart : and II," Trans. IEEE on Power Apparatus and Systems, Vol. PAS-89, 1970, pp. 1546-1564.

APPENDIX (A)

The grid fitting (matching) which wust take place in the air gap to combine the stator and rotor grids, at each of these rotor positions, was accomplished by means of an algorithm designed for that purpose. This deorithm ties the two grids by the generation of a row of elements in the air gap region. The unique feature of this algorithm is that it is independent of the number of rotor poles or stator slots, and can be used to match any two FE grids with a common boundary. The two node lines shown in Figure (31-A) represent the innermost and outermost layers of nodes of the stator and rotor grids, respectively.

The following steps summarize the salient features of this algorithm:

1. The number of nodes along the inner and outermost layers of the stator and rotor grids, respectively, are counted. The one with the fewer number of nodes is designated side (I) and the other is designated side (II) as shown in Figure (31-A). If both sides have the same number of nodes, then one side is arbitrarily designated side (I) and the other, side (II).
2. Side (II) is then divided into regions, R_{1}, R_{2}, \ldots, R_{k}, which are defined by the nodes of side (I) as shown in Figure (31-B).
3. Determine the midpoints of each region.
4. Nout, those nodes on side (II) thot are =lecos: to these midpoints are identified as "pivot," nodes, P_{1}, P2, P_{k}.
5. Starting with the right-hand most node on side (I), one connects finis node with the first pivot node on side (II), and then to the next node on side (I) and so on, in a $2 i g z a g$ fashion. This process is repeated until the last node on side (I) is zeached as shown in Figure (31-C).
6. The nodes between each pair of pivots on side (II) (if any) are joined with the node on side (I) to which these pivots have been connecced, as shown in Figure (31-D).
7. If only one pole pitch is simulated, then the two nodes at each end of the two sides are connected together as shown in Figure (31-D). This completes the connection of the two grics.
8. If the entire machine is represented, as was the case here, the two ends weet on the same line. Further details on the implementation of this scheme as well as the automatic machine finite element grid generation are to be found in reference (10).

Fig. 31. Automation of Rotor and Stator Finite Element Grid Matching in the Air Gap

For biographical scketches of the authors please refere to other papers in the IEEE PAS Transactions.

Discussicns
Stephen H. Minnich (General Electric Corporate Research and Development, Schenectady, NY): This paper provides a valuable illustration of the application of the finite element method to the analysis of an electrical machine of complicated geometry. Of particular value is the demonstration of a method for automatically stepping the rotor porton of the finte element grid in angular position to simulate the rotation of the rotor. While the par, "r seems basically well done, the following comments are offered.

In equation (2). it appears that the sines and cosines should be interchanged in the two terms inside the brackets. If (2) was derived from (1) by integrating the flux density to obtain the flux, the sine would integrate into the cosine, the vice versa. The authors then proceed to derive a quantity called the "midgap EMF" which is compared with the "measured EMF waveform". Was the "measured EMF waveform' the terminal voltage, or was it actually derived from a measurement in the argap? The authors say that comparison of Figures (24) and (25) "reveals" excelient agreement in both waveshape and magnitudes. Clearly this comparison cannot be made by the reader, since (24) has no voltage scale, and to the eye both (24) and (25) look sinusoidal. If a numerical tigure of merit was used on the waveshape to ge: the numerical figure quoted (2.2%), that figure of merit should be described. The authors further state that the "midgap EMF" drops only slight. ly under load. A numerical comparison of the calculated value versus the measured valu: at load could have been given, and the term, "slightly", could have been quantified.

In any event, the "midgap EMF" bears only a quanitative relationship to the terminal voltage. It is a classical approximation used when no further information is available, and is not appropriate to use in processing finite element results.

Rigorously, the phase terminal voltage is the time derivative of the armature phase flux linkages. The flux linkages for any single armature turn can be found from the difference between the vector potentials of the two conductors forming the turn. The vector potential for each (transposed) conductor the average of the vector potentials over the area of the conductor (and clearly must be evaluated in the siot and not in the airgap). The total phase flux linkages, for a given rotor position, are found by summing the individual turn flux linkages. If the flux linkages are thus determineci ior each rotor position, the time waveform of the armature flux linkages is determined, and differentiation of this tıme waveform gives the terminal voitage. The authors had this information available from therr stepped finite element solutions, and the paper would have been more meaningful, had it been used.

Further, the finte element solution is two dimensional. While the length of the machine is not mentioned, it can be assumed that the machine is short enough that end effects are important. Apparently, no correction for end effects was attempted. If so, and in view of the inexact estimate of the terminal voltage discussed above, $15 n$ 't the degree of agreement of the calculated and measured terminal voltages somewhat less meaningful than implied in the paper?
A similar comment applies to the core loss comparison. The fact that the present calculated value was higher than a conventional one and that the measured losses were even higher is a rather vague justification. The coarseness of the core loss profiles indicated in Figures (29) and (30) belies much exactutude in calculation described.

The paper remains a valuable illustration of a useful and necessary lechnique in the application of finite elements. This discussor wished only to point out a conceptual error in the terminal voltage calculation and io mention other objective factors bearing on the comparison of the results with test.

Manuscript recelved March 2, 1981.

S. T. Lakhavani (Westinghouse Electric Corp., Pittsburgh, PA): The authors are to be commended on their contribution to finite element modeling of losses in electric machines. Accurate prediction of core ioss is important to the electric machine designer particularly for the design of high efficiency machines.
The existence of rotational flux is clear from Figures 12,13 and 14 in the region where the tooth stem joins the stator core. Perhaps the authors would like to incorporate estimation of rotational losses in regions where these occur. These losses are also known as iron losses due to eiliptically polarized mangetic fields and can be estimated by taking the sum of the individual alternating power loss due to the magnitude of the major and minor axis flux densities. ${ }^{12}$ Taking rotathonal loss into account could lead to further improvement in the prediction of core loss.

ORICMAL PACE IS

Some questions for the authors that come to my mind are:

1. Did you establish bounds on the aspect ratio of the triangular elements generated by the arr gap fithng algorithm?
2. Did you use the solution obtanned at a particular time as initai condition to obtan solution at the subsequent ume step?
3. What harmonics are present in stator tooth tip at rated load (Fig. 26)? Did your loss calculation take into consideration all harmonics?

REFERENCES

[1] F. J. Young and H. L. Schenk, "Iron Losses Due to Elliptrally Polarızed Magnetic Fields' Journal of Applied Physics. Vol. 37. No. 3, pp. 1210-1212, March 1966.
[2] T. Yamaguchi and K. Narita, "Rotational Power Loss in Commercial Silicon-Iron Lamınations" Electrical Engıneering in Japan, Vol. 96, No. 4, 1976.

Manuscript received March 2, 1981.
F. A. Found, T. W. Nehl, and N. A. Demerdash: We wish to thank the discussors Mr. Lakhavani and Mr. Minnich for their interest in the paper and for their stimulating quesuons which help complete the record on this work. We will first respond to the points ratsed by Dr. Lakhavani, then to those raised by Mr. Minnich as follows:

1) Dr. Lakhavani is correct in pointing out that the nature of the magnetic field in many regions in the core, parucularly those where the seeth and yoke join, is indeed elliptuc. This consideration has been taken into account in a manner very similar to the procedure described in references (1) and (2) in the discussion.
2) Dr. Lakhavani raises the point of whether criteria were established to avoid creation of elements whit large aspect ratios by the airgap fitting algorithm. The design of the iogic of this algorithm included provisions which would circumvent the problem is practucal cases. However, in extreme cases where large discrepency exists between the number of nodes on the two sides (boundaries) of two adjacent grids, one can not rule out ill cond.tioned (large aspect ratio) type elements. This was never encountered in all the cases we have solved using this algorithm.
3) We answer the second questions (2) raised by Dr. Lakna 'ant in the affirmative. The solution obtained at a particular rots, position (time) was used as the inutial condition in obtaining tre solution at the next rotor position (next instant in time).
4) Harmonics up to the fifteenth order were of significance in the flux density waveform of Figure (26). The loss calculation included the effect of all harmonic components which could be caiculated with reasonable accuracy based on the number of flux density data points used in forming the elemental flux density waveforms.
5) Mr. Minnich is correct in notucing the typographical error in equation (1). This equation should read as follows:

$$
B_{g^{\prime}}(1)=\sum_{h \cdot l}^{N_{h}}\left[1_{h} \operatorname{Cus}(h, 1)-b_{h} \sin (h \theta)\right] / h
$$

6) in response to one of Mr. Minnich's questions concerning the comparison between the catculated and measured emf waveforms, we wish to state that the test waveform was obtained under no load condition, and represents the no-load phase in neutral voltage waveform. For this condition, the flux is almost entirely radial through the teeth, see Figure (17), and hence, the induced emf can be calculated from the midgap flux with reasonabie accuracy in that class of machines. This, however, is not the case in problems involving large synchronous machines, with significantly higher degrees of saturation in the teeth. In such cases with high saturation one should catculate flux inkages and induced emfs from the mean magnetic vector potentuals in the conductors, as was done earlier in the work of Demerdash, et. al.. see references (4) and (5) in the paper, as well as reference (17) given below.
It is worth pointing out that the peak values of the calculated and measured emfs are 62.1 volts and 63.5 volts, respectively The calculated value of the emf under load is 60.4 volts. Incidentally. all this information is in the paper, see Figures (23) through (2^{\natural}).
7) Mr. Minnich points to the fact that "Rigorously, the phase: r minal voltage is the time derivative of the armature phase nux
linkage'. We are well aware of that and as pointed out above have used this approach since 1971. However, these emfs generated here were intended for further use as forcing functions in a simplified machine-power conditioner model (18), in which individual machine winding inductances must be represented. That meant that the emfs behind these inductances must be used. It must be pointed out that this approach gave numerical results of machine-power conditioner current and voltage waveforms that were in excellent agreement with corresponding test data as evidenced in reference (18). Obviously, this approach would not be valid in machines with considerable saturation such as turbogenerators.
8) With regard to end region effects on the induced emf at no load in such machines, our experience confirms that these effects can be neglected. Under load, the flux linkage through three teeth (approximately a phase belt span) was measured by a search coil, Figures (21). Plotted also in that figure are the calculated values of flux without end effects, where one can see clearly the agreement between calculated and measured data. This would not be true if end effects were significant as suggested by Mr. Minnich.
9) The core loss calculations inherently contain many uncertainties due to factors such as interlaminanon shorts, etc. It is generally recognized that calculated loss values are usually 50% to 60% of
measured values, see reference (15). Accordingly, the method introduced here represents some improvemen! over previous efforts. Also, the resulting loss density distribution, Figures (35) and (36), are of value to designers in predictine possible lecations of hot spots.
Finally, we hope we have responded adequately to all the :nteresting and pertinent questions raised by the discussors.

REFERENCES

[17] N. A. Demerdash and H. B. Hamilton, "A Simplified Approach of Determination of Saturated Synchrunous Reactances of I arge Turbogenerators Under Load," IEEE Transactions on Power Apparatus and System, PAS, Vol. 95, 1976. pp. 650-569.
[18] N. A. Demerdash, T. W. Nehl, and E. Maslowskı, "Dynamic Modeling of Brushless Motors in Electric Propulsion and Electromechanical Actuation by Digital Techniques," Proceedings of the 1980 IEEE Indusiry Applications Society Annual Meeting. 80 CH 1575, Cincinnati, Ohio, Sept. 28-Oct. 3, 1980, pp. 570-579.

[^3]
APPENDIX (2)

ON MAGNETIC FIELD ANALYSIS BY FINITE ELEMENTS

Fouad, F. A., Nehl, T. W., Demerdash, N. A., "Permanent Magnet Modelıng for Use in Vector Potential Finite Element Analysis in Electrical Machinery," IEEE Transactions on Magnetics, Vol. MAG-17, 1981, pp 3002-3004.
(c) 1981 IEEE. Reprinted, with permission, from the IEEE Transactions on Magnetics, Vol. MitG-17, pp. 3002-3004, 1981.
F. A. Fouad
T. W. Nehl
N. A. Demerdash

Abstract - A method for simulation of permanent magnet effects on the magnetic field in electrical machines is given. The method is suited for use with magnetic vector potential mumerical models for the analysis of magnetic fields in electrical machines containing permanent magnets. The method was applied to the solution of magnetic fields under no load and load In two $154 \mathrm{H}, 120$ volt ferrite and samarium cobalt permanent magnet type brushless dc machines using finite elements. Search coil measurements of both flux and flux densities in the two machines were used to verify the present permanent magnet model. The numerical analysis and measurement results of the flux densities were in excellent agreement.

INTRODUCTION

Previous investigators introduced a number of permanent magnet models for field calculations, some examples of these can be found in references (1) and (2). Many of these methods contained assumptions which restricted their use. In this paper, a simplified and practical way of modeling peruanent magnets for numerical field solutions is introduced. The method is applicable to magnet structures of various geometries and materials.

Experimental verification of the validity of this magnet modeling approach was carried out by applying this model combined with the finite element method, to the analysis of the magnetic fields in two 15HP electronically commutated brushless dc machines. These machines were designed and built for use in propulsion of comuter type electric passenger vehicles. One of these machines contains a 6-pole strontium ferrite No. 8 rotor structure, while the other contains a 4 -pole 18 MCO, samarium cobalt rotor structure.

PERMANENT MAGNET MODEL

Consider a simple magnetic circuit which consists of a permanent in series with an iron core and airgap as shown in figure (1). If the MMF drop in the iron core is neglected, one obtains the operating point of the magnet from the intersection of the magnet's normal demagnetization characteristic and the airgap line, point il in figure (1). Inclusion of magnetic saturation in the iron core shifts the operating point to point \#2 as depicted in the figure.

This magnetic circuit can be replaced by an equivalent one which consists of a coil in series with the same iron core and airgap as shown in Figure (2). This coll and its core have the same dimensions and magnetization profile as the magnet. However, the intersection of this profile with the H axis is shifted from the point, - H_{C} (ccercivicy), to the origin as shown in the figure. The flux densities at the operating points \#l and \#2 of this circuit would be identical to those of the previous magnetic circuit, Figure (1), if the following relation is satisfied:
$\mathrm{NI}=H_{C}{ }^{\prime} h_{p m}$
where NI is the coil's ampere-turns (MF) and $h_{\text {pm }}$ is the height of the magnet in the direction of magnetization,

Manuscript received March 23, 1981.
These authors acknowledge the financial support of the following contcacte: 1) DOE/NASA LeRC contract NO. DEN3-65 and USAF/SCEEE Contract NO. SIP/78-17. We also wish to acknowledge Inland Motor R\&D, Radford, Virginia in the design, fabrication and testing of the machines studies here.
T. W. Nehl, F. A. Fouad, and N. A. Demerdash are with the Department of Electrical Engineering, Virginia Folytectinic Ingtitute and State University, Blackoburg Folytectinic Ingtitute a Virginia 24061, U.S.A.

Fig. (3) Equivalent Representation ot a Composite Shape Radially Oriented Mapnet.

Fig. (4) Equivalent Representation of a Trapezoidal. Tangentially Oriented Magnet.

APPLICATION OF THE MAGNET MODEL TO PRACTICAL PROBLEMS

The model detailed above yields current sheet equivaients of permanent magnets. These current sheet equivalents can be converted to nodal currents on the outer imandaries of these magnets in any finite element (4) or thite difference (5) magnetic field simulation. Accordinglv, this model coupled with the finite element method wats used in the calculation of the field distribut ions inside the two permanent magnet brushless do II: "t:abes, ment ioned earlier, under no load and load con-
 a口ornang the field. in these machanes is (3, 4):

$$
\begin{equation*}
\frac{\ddot{r}}{\cdot x}\left(\frac{\cdot A}{d y}\right)+\frac{A}{d y}\left(v \cdot \frac{A}{\cdot v}\right)=-J \tag{2}
\end{equation*}
$$

whore Λ and J are the z components of the magnetic vec(ar molental (MVI), and current density, respectively, wi.i!, ist the nonlinear material reluctivity.

Sr inad Case
The bristleses de machine with strontium ferrite N. . 8 magnets: A suitable finite element (FE) disritization of the cross-section of this machine is Ltiont in Fipure (5). The no load magnetic field dis-- ibution was determined and is depicted by the equal :If contours of Figure (6).

Radial flux densities in stator tooth stems closest to the airgap were measured by search coils, and the corresponding waveform is given in Figure (7). Also, plotted in the same figure are the corresponding radial flux densities calculated using the present magnet model. It is clear from this figure that the measured and numerically obtained flus densities are in close agreement.

Fig. (7) Experimental and Digital Results of the Average Tooth Flux Density it No Load of the Ferrite Magnet Machine.

The Load Case

Under load, one must inject armature phase currents in these finite element grids at stator slot locations according to the actual phase belt distribution, as detailed in a previous paper by these authors (5). The stator currents are directly related to, and electronically controlled by the rotor position as explained in references (5), (6) and (7). It must be pointed out that proper design of these machines requires that the armature MMF (reaction) be weak in comparison with the equivalent magent MMF to avoid permanent magnet demagnetization (8).

Accordingly, the magnetic field distributions under rated load conditions in the ferrite and samarium cobalt machines mentioned above were calculated and are depicted by the equal MVP contours of Figures (8) and (9). Comparison between the calculated and search coil measured radial tooth flux densities in both machines under raced load are given in Figures (10) and (11) for the ferrite and samarium cobalt cases, respectively. Close agreement between measured and calculated densities are evident. This confims the validity of this magnet modeling approach under load for the two magnet types.

iis. (5) Finite Elemenc 1,id of the Ferrite Magnet Ma.ininc.

Fig. (6) Flux Distribution at No Load of the Ferrite Magnet Machine

Fig. (8) Flux Distribution at Load of the Ferrite Machine.

Fig. (9) Flux Distribution at Load of the Samarium Cobalt Machine.

Fig. (10) Average Tooth flux Density at Load of the Ferrite Machine.

Fig. (11) Average Tooth flux Density at Load of the Samarium Cobalt Machine.

CONCLUSIONS

A permanent magnet model suited for use with the two dimensional magnetic vector potential finite element merhod was presented in this paper. This model is simple to implement in practical problems in the form of equivalent current sheets. These current sheets are functions of magnet geometries and material characteristics. This magnet model has been used in the numerical solution of the magnetic fields in two machines with ferrite and samarium cobalt magnets. The comparison between the search coil test and nuserically obtained flux densities reveals the validity of this magnet model in the calculation of tha magnetic field in such machines under no load as well as load condicions.

REFERENCES

[1] K. Reichert, "The Calculation of Magnetic Circuits with Permanent Magnets by Digital Computers", LEEE Transactions on Marnetics, Vol. MAG-6, 1970, pp. 283-288.
[2] W. J. Harrold, "Calculation of Equipotencials and Flux Lines in Axially Symetrical Permanent Magnet Assemblies by Computer", IEEE Transactions of Magnetics, Vol. MAG-8, 1972, Pp. 23-29.
[3] P. Silvester, and M. V. K. Chari, "Finite Element Solution of Saturable Magnetic Fiald Probleme", IEEE Transactions on Pover Apparatug and Systean, Vol. PAS-89, pp. 1642-1652, 1970.
[4] N. A. Demerdash, asi is. y. Hamilton, 'Simulation for Design Purposes of Magnetic Fields in Turbogenerators with Symetrical and Asymmetrical Rotors - Parts I and LI", IEEE Transactions on Powe: Apparatus and Systems, PAS, Vol. 91, pp. 19851999, 1972.
[5] F. A. Fouad, T. W. Nehl, and N. A. Demerdash, "Magnetic Field Modeling of Permanent Magnet Type Electronically Operated Synchrounous Machines Using Finite Elements," Paper No. 81WM179-1, Accepted for Publication in Full in the LEEE Transactions on Priver Apparatus and Systems.
[6] T. W. Nehl, "A Discrete Time Model of a Power Conditioner Fed Permanent Magnet Brushless DC Motor Systems for Aerospace and Electric Vehicle Applications for Design Purposes Using Finite Elements for Machine Parameter Determination", Ph.D. Dissertation, Department of Electrical Engineering, Virginia Polytecinic Institute and State University, May 1980.
[7] F. A. Fouad, "Finite Element Analysis for Design of Classical and Electronically Operated Electric Machines", Pis.D. Dissertation, Electrical Engineet ing Dept., Virginia Polytechnic Institute and State University, May 1981.
[8] M. McCaig, "Permanent Magnets in Theory and Practice", John Wiley \& Sons, 1977.

ON CALCULATION OF MACHINE WINDING INDUCTANCES
 BY ENERGY PERTURBATION AND FINITE ELEMENT METHODS

Nehl, T. W., Fouad, F. A., and Demerdash, N. A., "Determination of Saturateu Values of Rotating Machinery Incremental and Apparent Inducatances by an Energy Perturbation Method," IEEE Transactions on Power Apparatus and Systems, PAS-Vol. 101, 1982, pp. 4441-4451.
© 1981 IEEE. Reprinted, with permission, from the LEEE Transactions on Power Aparatus and Systems, Vol. PAS-101, pp. 4441-4451, 1982.

DETERMINATION OF SATURATED VALUES OF ROTATING MACHINERY INCREMENTAL and apparent inductances by an enercy perturbation method

T. Y. Neh1, Member
F. A. Fouad, Member
N. A. Demerdash, Senior Member
Virgiaia Polytechnic Institute and State University
Blacksburg, VA 24061

Abstract - Energy and winding current perturbations form the basis of a method for calculation of the saturated apparent and incremental inductances of rotating machinery as functions of rotor position and machine winding excitation currents. The method is totally general and utilizes numerical field calculation techniques in obtaining stored energy in the mapnetif circuits of such machines. Thus, it can be applied to a wide class of machinery with practically any cross-sectional contours and number of windings. It can be used at any given set of excitations (any loads). This method was applied to the calculation of the apparent and incremental inductances of a 15 hp samarium cobalt permanent magnet synchronous machine. The necessary numerical field sol:itions were obtained by finite elements at both rated and no load conditions. The calculated inductances, at various rotor positions, were compared with those obtained during laboratory meagurements and the agrement between calculated and measured values was consistently very good. The advantage of this method over the more traditional calculations of only the direct and quadrature axes inductances (or reactances, including transient and subtransient components) is that the entire n. n matrix of incremental inductances that truely govern the dynamic performance of an n winding machine can be determined regardless of the validity of a rotating $d-q-c$ frame of reference.

INTRODUCTION

The accurate calculation of machine winding apparent and incremental inductances and their variation with saturation and rotar angle is crucial to the dynamic analysis of such devices. This is especially true in the case of electronically operated machines $[1-3]$. which are often charazterized by nonsinumoidal current waveforms, and consequently nonsinusoidal min waveforms. These MAF waveforms of ten move in discrete jumps rather than the familiar unf form rotation when sinusoidal currents are involved $[4]$. Such machines are finding increasing acceptance in many applications.

Previous investigations have centered almost exclusively on the calculation of saturated values of the steady state and transient reactances such as the direct and quadrature synchronous reactances, etc., see references [5] through [9]. [18]. Such reactances are useful when both the machine currents and Mir are sinusoidal, in which case one can resort to aniformly rotaripg $d-q-a$ frame of reference for machine modeling $[10,11]^{2}$. However, with the rapid increase in the use of elect:noirallv operated machines, the currents and

MMFs are no longer sinusoidal in many cases, and the armature MMF no longer rotates uniformly but rather jumps in discrete steps. Therefore, the concept of a uniformy rotating d-q.o frame of reference, and its associated direct and quadrature reactances is 111 suited. This is due to the fact that the relative angular position of stator MMF with respect to the rotor d-axis is cyclically alternating between upper and lower bounds (equivalent to a pulsating load (torque) angle). These bounds are set by the phase current commation timings. Also, in such electronically operated machines the time rates of change of currencs (di/dt) are much higher than those encountered in conventional ones, because of the fast (high frequency) electronic switching involved. Accordingly, in order to nredict accurately the dynamic behavior and performance of such machine systems one must have accurate knowledge of values of the self and mutual incremental ($d \lambda / d i$) machine winding inductances, rather than the apparent values $(\lambda / 1)$. This is because inductive voltage terms (ix/dt) encountered in such machine models can be readily expressed as [($d / / d$) ($d i / d r$)] when saturation is an important factor.

The crucia: rcle played by such machine inductances is demonstrated in references $[8,14,15]$ in which the performance of a 15 hp ferrite permanent magnet machine was analyzed for two different winding configurations (inductances) corresponding to 12 and 9 series turns per phase. For the winding with 12 series turns, the maximum power attainable at the rated speed and voltage was only 4 hp . Reducing the number of series turns by three to a total of 9 turns and modification of elot configuration reduced the machine inductances drastically. This permitted an increase in the peak horsepower output capability of that machine to over 34 hp for the same supply voltage. This example clearly illustrates the need for accurate knowledge of such inductance values during the design tage.

In this paper, an approach for accurate ralculation of the apparent and incremental self and mutual inductances of rotating machinery in terms of saturation level and rotor angle is given. This approach is based on the perturbation of the magnetic field distribution Inside the machine for a given set of uinding currents (saturation level) by means of small current increments (perturbationa). The magnetic field distributions and the energy perturbations due to such current increments are determined by means of the finite element method. For machine with n windings, this method is uned to determine the complete ($n \times n$) inductance matrix for each set of apecified vinding currents and rotor angle (posicion). Dy obtaining these inductances for a series of current set: spanning one complete ac cycle of operation, one can calculate the variation of these inductances during both normal and abmormal modes of operacion.

To experimentally verify the validity of this approach, the inductances of a prototype 1 ? hp samarium cobalt permanent magnet eynchronous machine are ralculated for both no load and rated load operating conditions as functions of the rotor angle. The ralculated and experimentally meanured values of inductance were found to be in good agreement.

ENERGY STORED IN MULTI-WINDING ROTATING MACHINES
Any multi-winding rotating machine consisting of n coupled windy $; s$ (colls) can be electrically modeled in terms of the cerminal voltage, v_{j}, the winding cur-

6? WM 237-6 A paper recownended and apprived by the IEEE Rotating Machinery Cramittee of the IEE Porer Engineering Society for presentation at the I'EE PES 1982 Winter Meeting, New Tork, New York, Janul ry 31. February 5. 1982. Manuscript submitted September li4, ;481: made avallable for printing Decemter 2. 1981.
rent, i_{j}, and the cotal fiux Linkage, λ_{f}, of the fth cuil as rollows:

$$
\begin{equation*}
v_{j}=R_{j} I_{f}+\frac{d \lambda_{i}}{d t} \tag{1}
\end{equation*}
$$

where $j=1,2,3, \ldots, n$.
A special case of such a machine with 3 coils on the stator and two coils on the direct and quadrature axes of the rotor is shown achemacically in Figure (1).

Figure (1) A Schematic of Representation of a Rotating Machine with a Three Coil Armature and a Two Coil Field Hindinge.
Due to magnecic saturation, the total flux linkage of the jth coil becomes a nonlinear function of the nwinding currents at given rotor angle, θ. Therefore, one can write

$$
\begin{equation*}
\lambda_{j}=\lambda_{j}\left(1_{1}, x_{2}, \ldots, 1_{j}, \ldots, 1_{n}, \theta\right) \tag{2}
\end{equation*}
$$

Accordingly, for the fth coll, equation (1) can be expanded using the chain rule as follows:

$$
\begin{align*}
v_{j}=R_{j} i_{j} & +\frac{\partial \lambda_{1}}{\partial I_{1}} \frac{d 1_{1}}{d t}+\frac{\partial \lambda_{j}}{\partial 1_{2}} \frac{d 1_{2}}{d t}+\cdots+\frac{\partial \lambda_{j}}{\partial 1_{j}} \frac{d i_{j}}{d t} \\
& +\cdots \cdots+\frac{\partial \lambda_{j}}{\partial I_{n}} \frac{d i_{n}}{d t}+\frac{\partial \lambda_{j}}{\partial \theta} \frac{d \theta}{d t} \tag{3}
\end{align*}
$$

However, for a fixed rotor poaition the last term In equation (3) equals zero becsuac (do/dt) which equels the rotor angular peed would be equal to zero. Here in equation (3) the partial derivative of the llux ilnkege, ${ }^{i}$, with respect to a windiag current $i_{i m}(k=1,2, \ldots, j$, $\ldots, n)$ in the incromental inductance, ific, that:.

$$
\begin{equation*}
L_{j k}^{\operatorname{lnc}}=\frac{\partial \lambda_{j}}{\partial i_{k}} \tag{4}
\end{equation*}
$$

where $f=1,2, \ldots, n$ and $k=1,2, \ldots, n$. accordirgly, for a given fixed rotor position, upon zubstitutias equation (4) into equatior (3), one obtains the terainal voltage of the fth coil in tern of the incremencal inductance coefficients of follows:

$$
\begin{aligned}
v_{j}=R_{j} i_{j} & +L_{j 1}^{i n c} \frac{d 1_{1}}{d t}+L_{j 2}^{i n c} \frac{d i_{2}}{d t}+\cdots+L_{j \pm}^{i n c} \frac{d i}{d t} \\
& +\cdots+L_{j n}^{i n c} \frac{d i_{n}}{d t}
\end{aligned}
$$

The inatantaneous terminal power of the fth coil, Pj, can be obtained by multiplying equation (5) by the coil current, i_{j}, that is

$$
\begin{align*}
& p_{j}=v_{j} i_{f}=R_{j} i_{j}^{2}+i_{j} L_{j 1}^{\operatorname{Inc}} \frac{d 1_{1}}{d t}+i_{j} L_{j 2}^{\operatorname{Inc}} \frac{d i_{2}}{d t} \\
& \tag{6}\\
& +\cdots+i_{j} L_{j j}^{\operatorname{inc}} \frac{d i}{d t}+\cdots+i_{j} L_{j n}^{\ln c} \frac{d i_{n}}{d t}
\end{align*}
$$

The first term in this equation, which contains R. represents the inatantaneous power dissipated in the jth coil, while the remaining terms represent the instantaneous marenetic energy ntorage of the jth coil. Accordingly the stored ragnetic energy, w_{f}, due to the flux linkage, λ_{j}, can be ixpresesd as follows:

$$
w_{j}=\sum_{k=1}^{n} \int_{i_{k}(0)}^{i_{k}(t)}\left(i_{j k}^{\operatorname{Inc}} i_{j}\right) d i_{k}
$$

Therefore, the cotal stored global energy, w, ussocidtec with the entire syatem of n coupled coils can be writcen as follows:
$w=\sum_{j=1}^{n} w_{j}=\sum_{j=1}^{n}\left\{\sum_{k=1}^{n} \int_{i_{k}(0)}^{i_{k}(t)}\left(L_{j k}^{i_{j}} i_{j}\right) d i_{k}\right\}$
If one disturbs the n curtents by increments ot current, $\Delta i_{j}, j=1,2, \ldots n$ which are so small that the incremental inductances, ifnc, can be assumed to remain constant, one can express the corresponding incremental change, Δw, in the cotal energy, w, as follows:
$j v=\sum_{j=1}^{n}\left\{\sum_{k=1}^{n} \operatorname{Linc}_{j k}^{\operatorname{inc}_{k}+\Delta 1_{k}} \int_{1_{k}}^{\left.\left.1_{j}\right) d i_{k}\right\}^{i}, ~}\right.$
Splitting the sumation in equation (9) into the selt (diagonal, $j=k$) term and mutual (off diagonal, $j \in k$) terme yields the following:

$$
\begin{align*}
\Delta v= & \sum_{j=1}^{n} L_{j j}^{\operatorname{sac}} \int_{i_{j}}^{i_{j}+\Delta 1_{j}}\left(i_{j}\right) d i_{j}+ \\
& \sum_{j=1}^{n}\left\{\sum_{k=1}^{n} L_{j k}^{\operatorname{inc}} \int_{(k \not j)}^{1_{k}+\Delta 1_{k}}\left(i_{j}\right) d 1_{k}\right\} \tag{10}
\end{align*}
$$

In order to numerically perfora the integration in equation (10), the man value concept (trapezoidal rate) is assuad to prevall regarding the current functions. Accordingly, equation (10) can be rewritcen in sumation form as follows

$$
\begin{aligned}
& \Delta w=\sum_{j=1}^{n}\left(i_{j} i_{j}+\Delta 1_{j} / 2\right) L_{j j}^{\text {inc }}+ \\
& \left.\sum_{j=1}^{n} \sum_{k=i}^{i} i_{1}+\Delta 1,2\right) \Delta 1_{k} I_{j k}^{\operatorname{inc}} j \\
& \text { (kpt }
\end{aligned}
$$

Hence, the cotal energy ecored in the magnetic ifeld. inclioding che ecfecte of current perturbation, that is the zan (percurbed) slobal energy, w, associated with the ... get of currente $\left(\left(i_{j}+\Delta 1_{j}\right), j=1,2\right.$, \ldots, n) can ber *ir resy ed at the sum of w and Δw of equations (8) and (ii respectively, that is

$$
\omega=\omega+\Delta w
$$

CALCILATION OF INDUCTANCE FROM ENERCY EFRUURAT IUN

Since the inctamental inductances, inc art os sumed to remein constant around the quiterent purin: $1_{1}(j=1,2, \ldots n)$ these inductances are considorece independent of the amell variations in the winding currente, $\Delta_{i j}(j=1,2, \ldots, n)$ that is:

$$
\begin{equation*}
\frac{\partial L_{i k}^{\operatorname{Inc}}}{\partial\left(\Delta L_{j}\right)}=0 \tag{13}
\end{equation*}
$$

Furthermore, the global energy, w, associated with the quiescent point is independent of the incremental current perturbations, $\Delta 1_{f},(1=1,2, \ldots, n)$.
Hence, we have

$$
\begin{equation*}
\frac{\partial v}{\partial\left(I_{1}\right)}=0 \tag{14}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\frac{\partial U}{\partial\left(\Delta I_{j}\right)}=\frac{\partial w}{\partial\left(\Delta I_{j}\right)}+\frac{\partial(\Delta w)}{\partial\left(\Delta I_{j}\right)}=\frac{\partial(\Delta w)}{\partial\left(L i I_{j}\right)} \tag{13}
\end{equation*}
$$

substitucing for aw from equation (11) into equation (15) yields the following:
$\frac{\partial 0}{\partial\left(\Delta 1_{j}\right)}=\left(1_{1}+\Delta 1_{j}\right) i_{j 1}^{\operatorname{Inc}}+\sum_{k=1}^{n} \Delta i_{k}\left(L_{j k}^{\operatorname{Inc}}+L_{k j}^{\operatorname{Inc}}\right) / 2$

Taking the partial derivative of ecuation (16) with reapict to ($\Delta \mathrm{I}_{\mathrm{j}}$) sives

$$
\begin{equation*}
L_{j j}^{\operatorname{Inc}}=\frac{\partial^{2} a}{\partial\left(\Delta 1_{j}\right)^{2}} \tag{17}
\end{equation*}
$$

Furthermore, taking the partial darivative of equetion (16) with respeit to $\left(\Delta L_{h}\right)$ yields

$$
\begin{equation*}
\left(L_{j k}^{\text {iac }}+L_{k j}^{\operatorname{Lnc}}\right) / 2-\frac{\partial^{2} \theta}{\partial\left(\Delta L_{f}\right) \partial\left(\Delta I_{k}\right)} \tag{18}
\end{equation*}
$$

However, for this type of achice, the mutual inducrances are between windinge of equal number of turns. Hence, nven under eaturation, these mutuale are equal. that is:

$$
\begin{equation*}
\operatorname{lin}_{k}^{\ln c}=L_{k j}^{\ln c} \tag{19}
\end{equation*}
$$

Titi : = : ationship prevalling in this case does not restr the applicability of this method in cases whert pe mutual inductances are not equal.
in: .. .is can write the following:

$$
\begin{equation*}
\cdots \frac{\partial^{2} \bar{w}}{\partial\left(\Delta i_{f}\right) \partial\left(\Delta 1_{k}\right)} \tag{20}
\end{equation*}
$$

4* the global margy, w, calculated at an operat: ' int wish perturbed excitation currente, ($1_{1}, x_{2}$,
 .. , let the slobal eflergy, w, ralculated at an oper* in point wizh perturbed excitation currents, (i_{1}, i_{2},
. . $\left.\left(i_{j} \pm \Delta i_{j}\right), \ldots,\left(i_{k} \pm \Delta i_{k}\right), \ldots, i_{n}\right)$, be referred tu
$\because \cup\left(1_{j} \pm \Delta 1_{j}, 1_{k} \pm \Delta 1_{k}\right)$. Here, $j=1,2, \ldots, n$ and - $1,2, \ldots, \ldots$.

From standard partial difference equationa, set reference [13], the partial derivatives in equations (17) and (20) that define the incremental inductances, $L_{j j}^{\text {inc }}$ and $L_{j k}^{\operatorname{lnc}}$, can be writiten in terme of the perturbed global energies defined above as tollows:
$L_{j j}^{\text {inc }}=\frac{\partial^{2} \bar{w}}{\partial\left(\Delta 1_{j}\right)^{2}}=\left\|w\left(i_{j}-\Delta 1_{j}\right)-2 w+u\left(1_{j}+L i_{i}\right)\right\| /\left(L_{i}\right)^{2}$
and

$$
\begin{align*}
& i_{j k}^{\text {inc }}=\frac{\dot{\partial}^{2} \dot{m}}{\partial\left(\Delta i_{j}\right) \partial\left(\Delta i_{k}\right)}+\left[w\left(i_{j}+\Delta i_{j} \cdot i_{k}+\Delta i_{k}\right)\right. \\
& -v\left(i_{j}-\Delta i_{j}, i_{k}+\Delta i_{k}\right) \\
& -w\left(1_{j}+\Delta 1_{j}, 1_{k}-\Delta 1_{k}\right) \\
& \left.+w\left(1_{j}-\Delta 1_{j}, 1_{k}-\Delta 1_{k}\right)\right] /\left(4 \cdot \Delta 1_{j} \cdot \Delta 1_{k}\right) \tag{22}
\end{align*}
$$

 FITHOD TOR INDUCTANCE CALCUKATIONS

The slobal atored mageric energy for a given set of winding currents ($i_{1}: 1_{2}, \ldots, i_{n}$) and a siven (ilxad) rotor poaition, 0 , is calculated by mans of the nonlinetr, two dimanional fiaite elemant method as dencribed in reference (14) The norlinear atyebrate equations that reoult frow the finite clement discretiation are colved uelag the quadratically convergent Newion lipheon ethod.

The nonlinear finite olement oolution yields the flux danaity in each triangular eleant of the chosen frid. Civen thean liux dansitios, one can define the operating point aloat the b-in curve of each elemant an ehoma in Figure (2). Beeed on this operating point one cen define two value of reluctivity; incremental, yfine, and apparwat, ypP, for each element, e, af follow:

$$
\begin{align*}
& v^{i \Delta c}-\left.\frac{\partial H}{\partial B}\right|_{\text {quiescent }} \tag{23}\\
& v_{e}^{\text {app }}-\left.\frac{H}{B}\right|_{\text {quiencent }} \tag{24}
\end{align*}
$$

where the sybol

sion is to be evaluated at the quiescent operating point of the given element as determined frow the nonlinear field solution. In general, one can write the follow ing

$$
\begin{equation*}
v_{e}^{\text {inc }} \leqslant y_{e}^{\operatorname{app}} \tag{25}
\end{equation*}
$$

However, in the case of linear media (linear b-h characteristic), the two reluctivities ire equal:

$$
\begin{equation*}
v^{\text {inc }}=v_{e}^{\text {app }} \tag{26}
\end{equation*}
$$

In order to calculate the $L_{f f}$ and $L_{j k}$, incramental or apparent inductance values, equations (21) and (22) are va!sa. However, chis reruires the calculation of the perisrbed energies $w\left(1_{j} \pm \Delta i_{f}\right)$ and $w\left(1, \pm \Delta 1_{j}, i_{1}\right.$ $\left.\pm \Delta 1_{k}\right)$ associated with the current incraments $\pm \Delta f_{\text {, a }}$ a : $\Delta 1_{k}^{k}$ about the operating point $\left(i_{1}, i_{2}, \ldots, 1_{j}, \ldots, 1_{k}\right.$.

Figure (2) Graphical Representation of Apparent and Incremental Reluctivicies in Monlinear Materials Including Energy Perturbation.
$\ldots . i_{n}$). Since che currenc disturbances are mell, the reluctivity of each elemat can be aspumad constant for chese currenc incremencs and equal to one of thit two valuex defined by equations (23) and (24) for the fiven operating point. Consequently the algebraic equations produced by the fintte element discretiation are liacarized about (around) the quieacent operatins peint, Pigure (2). Hence no iterations are required to obtain $\cup\left(I_{j} \pm L I_{j}\right)$ and $v\left(I_{j} \pm C I_{j}, i_{k} \pm \Delta I_{k}\right)$ once the operating point of fach element has been deteralaed for a siven set of currenta. It the incramatel raluctivieiea, as defined by equation (23), Pifure (2), are ueed to deceratue the perturbacions in enerifed, Δv. (oxcase or asficit sis show in Figure (2)) due to the currsat percurbations, equations (21) and (22) will finld the for creacntal values of $L_{j 1}$ and $L_{j k}$, aeanly Lfec and Lipe. Sinilarily the use of the appitrest valued of elemedtal reluctivities, equation (26), leade to the arpareat valuas of laductances.

It mist be omphasized that the incremental values rather than the apparent values of inductancea are the onas of primiry importance in the dynanic analyais of electronically operated machines. This is again due to the highly nensinusoldal nature of the eurrent and mif vaveform !nwived, and the nonlineartites in the various magetic circuite of such syatem.

APPLICATION OF THE ENEPGY PER'URBATION IECHNIQUE TO 15 HP PERMANENT MACNET MACHINE

The 15 hp samarium-cobalt permanent magnet synchrnnoum machinn under investigacion as a practical example bias ouile an component cf an advanced electroifcally oumutated eleciric vehiclu propulsion unit. The machinc has an 18 slot stator which houses the three phase Y-connected armature winding. Each phase winding is split tnto two halves which can be connected einher In series or parallei (for a total of 24 serien turna or 12 series turns in paralle. with another 12 series tums). The purpose of this series/parallel arrangement is to provide a different corque sensitivity for each of the low and high speed operation.

The rotor consists of a six pule samarium cobait permanent magnet structure. The magnets are retained by a nonmagnetic stainless steel slope to allow high speed ($9000 r_{;}$m) operation.

Machine Inductance Measurament

The liae to line and phase to teutral inductances for the series anc paraliel connectitins, were measurec at no load, using an a. RLC Digibridge, at lifferent rocor positions (angles). These inductances are siven in Table (1), for rotor angles covering an entire $3 u^{\circ}$ slectricai cycle.

It aust be pointed out that such a machine can de represented by ihree armature (stator) colls, while the samarium-cobalr misgnet structure $1 s$ equivalent to p tield winding coll which carries co.rstane current Hence, in the fuductance calcuiation which icilows one must obtain the "hree welt and chree mutual inductances of che armature winding. The self inductances were directly measured in the cest described above, and are given in Tabie (1) by the phase to neutral inductance readings. Kowever, the mutual inductancen were only indirectly meaeured, and are incorporated in the values of the line to line inductance readinge givan in Table (1). For example, the masured line to ine indurtance (0) (from termanal (a) :o terminal (b)) ine(a)-line (b)
can be expressed in terma cf the sel: inductances, $L_{a x}{ }_{(\theta)}^{(\theta)}$ and $L_{b b}{ }^{(\theta)}$ as veil an the mutual Inductance,
L_{ab} (d) as follow:

$$
\begin{equation*}
\underset{\operatorname{line}(a)-1 \operatorname{lne}(b)}{(\theta)} \underset{a b}{L(\theta)}+\underset{b b}{L(\theta)}+\underset{a b}{2 L(j)} \tag{27}
\end{equation*}
$$

where is the rotor angular posirion defined in Figure (1). Thut, measurament of that inductance is an indireci mans of verifying the mutual torim $L_{\text {a }}{ }^{(\theta)}$. It mut alr be polated out that all these measured values are apparent iaducrances, obtalued at the no load conditiva (xero armature curreat).

Calculation of the Apparent und Incremencal Machine Induetances

The preseat enurgy perturbation method for calculation of saturated values of apparent and incremental Laductances. was uned here in the calculation of the apparent and incremantal vindint inductances of the 15 hp permanat mapat fuchronous machine described sbove. For this type of mehtoe the armature is represented by chree colls, al. 2 and 3j, as shown schemetically in Tigure (1). In chis case, these are the a, b and c phace viadiags. The rotor concalns one equivalent winding on the direct axis. Thi: windint is carrying fixed value of field curreat. $1 f$. (that is ($d i f / d t$) $=0$) un an equivaleat representation to the manetic effecta of a permanes magner, tee reference [16]. Purthermore, paet experience has shown tha: rotor damplng
effects are negligible for this type of machine construction as shown in the work of Nagarketti [19]. nence no damper windings are considered. Accordingly, the injuctance matrix repzesenting the armature windings, for a given (fixed) rotor position, θ, can be mitter as Ecllows:
$L(\epsilon)=\left[\begin{array}{ccc}L(e) & L(\theta) & L(\theta) \\ -a b c & a b & a c \\ L(e) & L(\theta) & L(\theta) \\ b a & b b & b c \\ L(H) & L(\theta) & L(\theta) \\ c a & c b & c c\end{array}\right]$
where $L_{\text {ab }}^{(\theta)}=L_{(\theta)}^{(\theta)} L_{(\theta)}^{(\theta)}=L^{(\theta)}$ and $L^{(\theta)}=L^{(\theta)}$ because
the number of burns ${ }^{\text {ac }}$ per phase for the $a, b^{c b}$ and c windings is the same. These inductance coefticients can represent either the apparent or incremental valu's depending on the type of analysis and application under consideration. These coefficients were determined using the method presented above as described next.

Inductances at No Load - The Self Inductances

At no load, the only flux sustaining excitation is that associated with the permanent magnets on the rotor. Accordingly, a quiescent field solution point if that in which the armature (stator) windings carry no current. The magnetic vector potential (m.v.p.) contour lines for a quiescent point at a given rotor position, ${ }^{f}$, are given in Figure (3). An entire eross-section is covered in order to render the algorithm readily applicable to cases with fractional slot windings.

In order to obtain the apparent self inductance of phase (a) of the armature winding, equation (21) in confunction with the appareut reluctivities of equation (24) are used. Equation (21) requires two current perturbations in the phase (a) winding. These current perturbations, $\left(+\Delta i_{a}\right)$ and $\left(-\Delta i_{a}\right)$. where Δi_{a} is about 10% of the rated load current produce two w.v.p. contours for $\left(+\Delta i_{a}\right)$ and $\left(-\Delta i_{a}\right)$ at the given rotor position ds shown in Figures (4) and (5), respectively, for the sf les armature winding connection. The magnetic field energies at the quiescent point and the two perturbation points were thus determined and substituted in equation (21) to yield the apparent self inductance of phase (a) for the series connection.

Repeating this process at different rotur position angles yields the inductances term $L_{a p}^{a p}(\theta)$. This apparent rhase (a) inductance is plotsed in Figure (6) over a complete cycle oi 360° electrical range of the rotor angle, G, for the series winditug connection. The test measurement values of $\mathrm{L}_{\mathrm{aa}}^{\mathrm{app}}(\theta)$ are also plotted in the same figure. One can see that the range of calculated values of $L_{\text {app }}(\theta)$ varies slightly with the rotor position between about 156.5 and 158.2 micro ienries (μH). This should be viewed in comparison with a range berween 169.8 and $168.1 \mu \mathrm{H}$ for the measured
values of the same inductance for the series connection given in Table (1). The difference between the test and calculated values is due to the inductance component associated with the end turns, which is included in the measured values. This end turn inductance is not included in the calcuiated vaiues. This is because the calcul tions are based on two dimensional field solutions which do not include the three dimensional armature winding end effects. The phase (a) winding apparent inductances when connected parallel, were obrained from calculations and from test measurements and arc given in Figure (7).

Repeating the steps described above for calculation of the magnetic ene:gies using current perturbation $\left(+\Delta i_{a}\right)$ and $\left(-\Delta i_{a}\right)$, while using the incremental reluctivities of equation (23) in place of the apparent relactivities for the finite elements in the field solution, one obtains the incremental self inductance of phase (a) at a given rotor position. Varying the rotor position over 360° electrical and repeating the perturbation process one obtains the incremental inductance, $\mathrm{L}_{\mathrm{aa}}^{\mathrm{inc}}(\mathrm{y})$, as a function of the rotor position, θ, as given in Figure (6) and (7) for the series and paraliel ohase winding connections. respectively. As one expects, whenever some degree of saturation is present in a given magnetic circuit, the values of the incremencal inductances are less than the corresponding apparent inducrances, see reference [17]. This is exactly what the results presented here reveal. One would expect that the incremental inductance values would be reduced further from the corresponding appare:it ones as the degree of saturation in the magnetic circuit, at the quiescent point, is increased. It must be pointed out tha: in permanent magnet machines such as the one at hand only moderate levels of magnetic saturation are encountered.

The self inductance terms $L_{b b}^{a p p}(\theta), L_{b b}^{\text {inc }}(\theta), L_{c c}^{a p p}(H)$ and $L_{C C}^{i n c}(\theta)$, can be directly obtained from $L_{\text {and }}(\theta)$ and Linc (θ) by phase shifts in the curves of Figures (6) and (7) of 120° and 240° electrical, respectively. This is because of the inherent symmetry in the three phase armature winding at hand.

Inductances at No Load - The Mutual Inductances

In order to determine the mutual inductance terms $L_{a b}(\theta), L_{b c}(\theta)$ and $L_{c a}(\theta)$ of equation (28) at no-load, using equation (22) above, one starts with a no-load quiescent field solution for a given rotor position such as the quiescent field solution of Figure (3). In addition, when one wishes to detcrmine the apparent and incremental values of sav $L_{a b}(\theta)$, or, must obtain four perturbed field solutiors corresponding to four set of current perturbations $\left(+\Delta i_{a},+\Delta i_{b}\right),\left(+\Delta i_{a},-\Delta i_{b}\right)$, $\left(-\Delta i_{a},+\Delta i_{b}\right)$ and $\left(-\Delta i_{f,},-\Delta i_{b}\right)$. In one calculation, one must use the apporent values of elemental reluctivities at the quiesce it point, to obtain four solutions and energies for ca.culation of the apparent inductance, Lapp (θ). In anothi r calculation, one must repeat the prucers uaing the incrementel values of elemental re-

TEble (1) Measured Inductancea of the Y-Connected 15 HP Samarium-Cobalt Pecanant Magnet Synchronous Machine

Test	Phase Winding Connection	Inductance [$\mu \mathrm{H}$] Vert ${ }^{\text {S Rotor Angle }}$								
		Rotor Angle - Elec' rical Degrees								
		0°	45°	90°	135°	180°	225°	270°	$315{ }^{\circ}$	360°
\| Phase to N:utral	Series	168.1	169.3	169.5	168.9	168.5	168.1	169.8	169.0	168.3
\| Phase to Neutral	Parallel	42.1	42.5	42.4	42.4	42.0	42.2	42 *	42.4	42.2
I I.ine to Line	Series	376.7	375	363.6	361.5	364.7	376.2	375	364.3	365.7
Line t, Line	Parallel	93.8	93.3	90.9	89.9	90.8	93.9	03.5	91.0	91.0

luctivities at the quiescent point to obtain four additional field solutions and energies for the calculation of the incremental intuctance, $\mathrm{L}_{\mathrm{ab}}(\theta)$. Thus, one obtains a total of eight perturbed field solutions at a given rotor position in order to obtain the in-

$L_{\text {an }}$ sexits conterion.
Figure (6) Inductance, $L_{a a}(\theta)$, for Series Phase Winding

© appanent inouctance Imenenemtal Imouc:ance

Figure (7) Inductance $L_{a a}(\theta)$, for Parallel Phase Winding

- arpabent inductame - incaemental :nüctamce y tes: - anted Lord, rp:. ated gorginc.

staizs conntction
Figure (8) Inductance, $L_{\text {line (a)-line (b) }}$, for the Series Phase Winding

 x TESt \triangle RATEO LOME, APT. MATEO LOAD.iNC.

phevin consetion.
Figure (9) Inductance, $L_{\text {line (a)-Iine (b) }}$, for the Parallel Phase Winding
ductance values $L_{a b}^{a p p}(\theta)$ and $L_{a b}^{\text {inc }}(\theta)$. While this may seem excessive from a computational standpoint, in reality it is not. This is because none of the perturbed solutions requires any iterations on tae elemencal reluctivities, where such elemental reluctivity
values are frozen at the quiescent point as explained earlier, see Figure (2). The process is repeated for as many rotor positiors, 0 , as one desires. Again, in chis case the current percurdations Δi_{a} and Δi_{b} were about 10% of the rated load current.

Upon calculating the values of $L_{a b}^{a p p}(\theta)$ and $L_{a b}$ inc (θ) over a range of rotor posirions coverang a complere cycle of 360° electrical, for the series and parallel phase winding connections, the apparent and incremental values of the line (a) to line (b) inductances,
 lated by means of equation (27). The results of these calculations are given in Figures (8) and (9) for the series and parallel piase winding connections, respectively. Also, given in the same figures are the weasured values of apparent line (a) to line (b) inductances. It should be noted that the calculated apparent values of this inductance ranged from 335 to 341 LH for the series connection. while the corresponding measured test values ranged from 362 to 377 wH . This represents very good agrement between test and calculations when one takes notice of the fact (mentioned earlier) that the calculations do no: include the three dimensional armature winding end effects. This is because all the numerical field analysis given here are only two dimensional.

Inductances at Load - The Self and Mutual Inductances

In this type of machine only two phases of the armature winding carry current of equal magnitude and opposite polarity under load, except during very short periods of time when phase currant commutation takes place. That is, throughout the 360° electrical of armature current cycle one can represent the armature current by six current states, \#1 threugh \#6, as shown schematically in Figure (10), where the very short commatation periods are neglected.

Accordingly, during state \#l, che armature winding carries current in phase (a) and phase (b) only. Hence, with magnitudes of armature current at their rated load value (115 Amperes), the phase (a) and (b) windings, each in the parallel connection mode, were ex-ited accordingly, Thus, a quiescent field solution representine state $" 1$ was obtained in this machine at a rotor position corresponding to its location, with respect to the armature windings, at the beginning of the state. This solution is shown in m.v.p. contour form in Figure (ll). Two more quiescent field solutions were obtained for the appropriate rotor positions at the middie and end if state \#1, as shown in Figures (12) and (13), respectively.

Figure (10) Idealized Phase Current of the Analysed Zlectronically Operated Synchronous Machine.

Current perturbations ($i_{a}+\Delta i_{a}, i_{b}$) and (i_{d} $\Delta i_{a}, i_{b}$) were performed using the apparent reluctivities. The corresponding perturbed field solutions are shown in m.v.p. contour form in Figures (14) and (15) respectively, for the initial rotor position in state \#1, which is shown in Figure (11). The process was repeated for the two other rotor positions coverjng the state, and the apparent self inductances of phase (${ }^{\prime}$) were calculated. The resulting three values of apparent self inductances under load wera calculated from the resultiag values of perturbed energies according to equation (21). The process was repeated using incremental reluctivities in the elements, from which the incremental self inductances under load were also obtained at the three rotor positions covering state \#]. Results of both apparent and incremental self inductances of phase (a) under load are plotted in Figure (7) for the parallel phase winding connection. Inspection of this figure shows the effect of load on the values of the self inductances. This load effect is not as pronounced in this type of machine, in which the magnetic circuit is not heavily saturate?. However, such an effect would be much more pronounced in other machines in wnich considerable saturation is enccuntered in their maenetic circuits. Such an effect would tend to $d:$ eas 2 or increase such inductance values depending on whether the armature load current tends to magnetize or demagnetize the magnetic circuit of a given machine, respectively.

Fig. (11) Quiescent Field Solution at Rated Load, Rotor Position at Beginning of State \#1.

Fig, (12) Quiescent Field Solution at Rated Load. Retor Position at Middle of State 11.

Fig. (13) Quiescent Field Solution at Rated Load, Rotor Posirion at End of State il.

Figure (14) Pertirbed Fiesi Solution Due to a Perturbed Current $\left(i_{a}+\Delta i_{a}, i_{b}\right)$.
A process of current perturbation and corressonding percurbed field solutions was carried out using apparent then 1 :remeral finite element reluctivities, starting from the aforementioned three quiescent load points (with three rotor positions) covering state \#l. The perturbation currents were $\left(i_{a}+\Delta i_{a}, i_{b}+\Delta i_{b}\right)$, $\left(i_{a}+\Delta i_{a}, i_{b}-\Delta i_{b}\right),\left(i_{a}-\Delta i_{a}, i_{b}+\Delta i_{b}\right)$ and ($i_{a}-\Delta i_{a}, i_{b}-\Delta i_{i}$). Hence, the corresponding magnetic energies were n btained for use in equation (22) to determine the apparent and incremental mutual inductances, $\left.L_{a b}^{P}{ }^{(} \theta\right)$ and $L_{a b}^{i n c}(\theta)$, at load.

Using the loal values of the self and mutual, apparent and iacremental inductances determined as described above, the corresponding line (a) to line (b) apparent and incremental inducta. ces were calculated using equation (27). These results are plotted for the parallel phase winding connection in Figure (9).

CONCLUSIONS AND RECOMMENDATIONS
A method for determination of saturated values of apparent and incremental inductances of windings in rotating machinery was introduced. The method is based on current and energy perturbation concepts, as well as numerical solution of the nonlinear field problems in such rotating machinery. The method takes full account of the two dimensional intricacies of magnetic circuit geometry and nonlinearity in such machines, as well as machine winding interactions. The method was applied successfully to a 15 hp , six pole, samariumcobalt permanent magnet electronically operated synchronous machine. Results of calculation of winding self and mutual inductances were in very good agreement with corresponding measured valuis, bearing in mind that armature winding end effects were not included in the numerical procedure of inductance calculation.

Prediction during the design and development stage of marhine winding inductances, particularly in eleccronically commutated machines, where the high rates of current switching (high frequencies) are encountered is extremely important. This is because of the crucial role played by the inductive voltage drop term (dN/dt) in tetermining the overall performance of such machines. Such important role is also played in conventional machinery applications where accurate knowledge of values of winding inductances (or reactances) in kay in successful and accurate performance and design calculations. This method is most suited for such a role. Application of this powerful method to determination of inductances in heavily saturated machines will be reported in the future by these auchors. Furthermore, if three dimensional field effects in end regions of machine windings are included in the future, as a result of further advanced in computer technologies and field analysis, one could envisage applying this present energy and current perturbation in the deter-

Figure (15) Perturbed Field Solution Due to a Perturbed Current ($i_{a}-\Delta i_{a}, i_{b}$).
mination of more dccurate values of such machine inductances at any desirad normal or abnormal loading conditions.

ACKNOWLEDGEMENTS
These authors wish to acknowledge the financial. support given by NASA Lewis Research Center/Dedartment of Energy Contract NO: DEN3-65, and wish to acknowledge in particular the keen interest of the contract monitor Mr. E. Maslowski of NASA, LeRC in che various investigations conducted under this contract, of which this is one. The authors wish to thank Dr. R. ChurchiJl, Vice-President, and Mr. B. P. Overton, Senior Design Engineer, of the Research and Development Center, Industrial Drives Division, Kollmorgen Corporation, for availing and providing access to the manufacturing and test facilities of the R and D Center and the Industrial Drives Division.

REFERENCES
[1] Delco Electronics, "Final Report on the Electromechanical Flight Control Actuator," Final Report NASA-JSC Cont act NO. NAS9-14952, General Motors Corporation, Delco Electronics Div., Santa Barbara Operations, Goleta, CA, 1978.
[2] Sawyer, B., and Edge, J. T., "Design of a SamarIum Cobalt Brushless DC Motor for Electromechanical Actuator Applicarions", Proceedings, of the IEEE-National Aerospace and Electronics Conference, Dayton, Ohio, 1977.
(3) Edge, J. T., "An Electromechanical Actuator Technology Development Prugram", Paper NO. 780581, Society of Automotive Engineers, Proceedings of tie Aerospace Fluid Power and Control Technologies S;mposium, 1978.
(4] Demerdash, N. A., and Neh1, T. W. "Dynamic Modeling of Brushless DC Motors for Aeroepace Acutation", IEEE Transactions on Aerospace and Electronic Systems, Vol. 16, No. 6, 1980, pp. 811821.
[5] Char1, M. V. K. and Silvester, P. "Analysis of Turbo Alternator Magnetic Field by Finite Elements" . IEEE Transactions on Power Apparatus and Systems, VoI, PAS-90, pp. 454-1 $64,1971$.
[6] Demerdash, N. A. and Hamilton, H. B., "Simulation for Design Purposes of Magnetic Fields in Turbogenerators with Symmetrical and Asymmetrical Rotors - Part I Model Development and Solution Technique, and Part II - Model Calibration and Applications", IEEE Transactlons on Power Apparat us and Systems, PAS, VO1. 91, 1972, Pp. 19851999.
[7] Fuchs, E. F. and Erdelyi, E. A., "Nonlinear Theory of Turboalternators Part II: Load Dependent Synchronous Reactances", IEEE Trans. on Power Apparatus and Systems, PAS, Vol. 92, pp. 592-599, 1973.
[8] Demerdash. N. A. and Hamilton, H. B., "A Simplified Approach to Determination of Saturated Synchronous Reactances of Large Turbogezerators Under Load", IEEE Trans. on Power Apparatus and Systems, PAS, Vol. 95, pp. 560-569, 1976.
[9] Chari, M. V. K., Csendes, Z. J., Minnich, S. H., Tandon, S. C. and Berkery, J., "Load Characteristics of Synchronous Generators by the Finite Element Method", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-100, 1981, pp. 113.
10) Concordia, C., "Synchronous Machines Theory and Performance," John Wiley \& Sons, Inc., New York, 1951.
[il] Say, M. F., Alternating Current Machines, John Wiley and Sons, New York, 1976.
[12] Nehl, T. W., Fouad, F. A., Demerdash, N. A., and Maslowski, E.. 'Dynamic Simulation of Radially Oriented Permanent Magnet Type Electronically Operated Synchronous Machines with Parameters Obtained from Finite Element Field Solutions", Paper Acceptes for Publication in the IEEE Transactions on incustry Applications, Presented at the 1980 IAS Meeting, Cincinnati, Ohio.
[13] Brica, Carnahan, Luther, H. A. and Wilkes, J. O., "Applied Numerical Methods", John Wiley \& Sons, Inc., 1969.
[14] Fouad, F.A., "Finite Element Analysis For Design of Classical and Eiectronically Operated Machines", Ph.D. Dissertation, Electrical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA, May 1981.
[15] Neh1, T. W., "A Discrete Time Model of a Power Conditioner Fed Permanent Magnet Brushless DC Mocor Systems for Aerospace and Electric Vehicle Applications for Design Purposes Using Finite Elements for Machine Parameter Determination", Ph.D. Dissertation, Department of Electrical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, May 1980.
[16] Fouad, F. A., Nehl, T. W., and Demerdash, N. A., "Magnetic Field Modeling of Permanent Magnet Type Electronically Operated Synchronous Machines Using Finite Elements", IEEE Transactions on Power Apparatus and Systems, PAS-Vol. 100, 1981, pp. 4125-4135.
[17] Fano, R. M., Chu, L. J. and Adler, R. B., "Electromagnetic Fields, Energy and Forces", The MIT Press, 1968.
[18] Hannalla, A. Y., "Analysis of Transient Field Problems in Electrical Machines Allowing for End Leakage and External Reactances", IEEE Transactions on Magnetics, Vol. MAG-17, Pp. 12401243, 1981.
[19] Nagarkatti, A. K., "Study of Performance and Certain Special Aspects of Electronically Commutated Brushless D.C. Motor for Electric Vehicles", M.S. Thesis, Department of Electrical Engineering, Virginia roiytechnic Institute and State University, Blacksburg, VA, May 1980.

THOMAS W. NEHL ($M^{\prime} 79$) was born in Tubingen, West Germany, on December 22,1952 . He received the R.S., M.S., and Ph.D. degrees in electrical engineering from Virginia Poiytechnic Institute and State University in 1974, 1976, and 1980 respectively.

During the summer of 1976 Dr . Nehl was employed by the National Bureau of Standards where he developed a finite element package for the solution of their noncestructive testing program. During the summer of 1977 he was employed at the NASA Johnson Space Flight center
where he was engaged in the modeling of brushless dc machine rype electromechanical actuator systems. From 1978 to 1980 , he was employed as a research associate in t. © Department of Electrical Engineering at VPI\&SU.

Dr. Nehl is presently an assistant professor of electrical enginee:ing ar. VPI $\& S U$. His current research activities unclude; finite element fieid analysis of machines, digital simulation of electronically operated machines, simulation of machine and electronic failure modes in electronically operated machine syste's, nondestructive testing and evaluation, and power el itronics.

Dr. Nehl is currently serving on the Synchronous and the Machine Theory Subcomittees of the IEEE/PES. He is a member of ASEE, Sigma Xi, Phi Kappa Phi, and Eta Kappa Nu. Dr. Neh1 is the author and co-author of more than 20 transactions and technical papers in the power and magnetic field areas.

FAKHRY A, FOUAD was born in Cairo, Egypt, on January 18, 1948. He received the B.Sc.E.E. with l.- hars and M.Sc. degrees from Cairo Universi:y, Egypt in 1971 and 1975, respectively. In June 1981, he received the Fh.D. degree in Electrical Engineering from Virginia Polytechnic Institute and state Universi,

From 1971 to 1977 he was with the Faculty of Engineering, Zagazig Univer \boldsymbol{j}^{\prime} :y, Egypt as a Demonsirator. He was with the Department of Electrical Engineering at VPIESU as a Graduate Research Assistant and Research Associate from 1977 to 1979 and from 1979 to 1981, respectively. Presently Dr. Fouad is a Visiting Assistant Professor in the Department of Electrical Engineering, VPI\&SU.

Dr. Fouad is a member of the Honor Society of Phi Kappa Phi, Sigma Xi, AAAS and IEEE. Dr. Fouad's current interests include numerical analysis of electromagnetic field in electric machinery for design and optimization purposes, as well as the dynamic modeling of machines including interaction with any associsted power electronics and contrcl subsystems.

NABEEL A. DEMERDASH ($M^{\prime} 65$ - SM'7') was born in Cairo, Egypit, on April 26, 1943. He received the B.Sc. E.E. degree with distinction and first class honors from Coi:o University, Egypt, in 1964 and the M.S. and Ph.D. degrees in Electrical Engineering from the University of Pittsburgh, Pittsburgh, Pennsylvania, in 1967 and 1971, respectively.

From 1964 to 1966 he was with the Faculty of Engineering, Cairo University as a Demonstrator. From 1966 so 1968 he was with the Department of Electrical Engineering, University of Pittsburgh, as a Sraduate Teaching Assistant. In 1968 he joined the Large Rotating Apparatus Division of Westinghouse Electric Corporation, East Pittsburgh, Pennsylvania as a Development Engineer, where he worked on Electromagnetic Field Modeling in Rotating Machinery and the development of the asymmetrical rotor for large steam :urbine-driven generators. Since 1972 Dr. Demerdash has been with the Virginia Polytechnic Lnstitute and State University, Blacksburg, VA, where he is presently a Professor in the Deparment of Electrical Engineering.

Dr. Demerdash is a Senior Member of IEEE and is currently serving as member of the Rotating Machinery Comittee of PES, IEEE, as well as the Synchronous Machinery and the Machine Theory Subcomittees of PES. IEEE. He previously served as secretary and subspquently vice chairman of the Synchronous Machines Subcommittee of PES, IEEE. Dr. Demerdash is a past Chairman of the Virginia Mountain Section of IEEE. He is a member of ASEE, Sigma Xi and Eta Kappa Nu. Dr. Demerdash is the author and co-author of numerous papers in various IEEE Transactions, Dr. Demerdash's current interests and research activities include Electromechanical Propulsion and Acutation, Dynamic Modeling of Solid State Controlled and Operated Electrical Machines, Numerical Analysis of Electromagnetic Fields in Electric Machinery, as well as Machine-Power System Dynamics.

Discussion

S. H. Minnich (General Electric Co., Schenectady, NY): The authors have made a distinction between two kinds of reluctivity (permeability) which can be defined at a given operating pont on the B-H characteristic. Their use of the term "incremental" reluctivity, in the sense they have defined it is a natural one, in terms of the common meaning of that word. Unfortunately, in magnetics, the term "incremental" has a special, and different, meaning. 1,2,3 Figure I shows the "incremental" loops which are obtained when small perturbations in H are applied around a fixed operating point. The slope of these small loops is the incremental permeability

Figure 1. Schematic Representation of Incremental Minor Loops
The technically accepted terminology for the concept to which the authors refer is "differential" permeability. ${ }^{1}$ It is the slope, $\mathrm{dB} / \mathrm{dH}$, of the B-H characteristic at the point in question. I believe that the above distinction is widely recognized. The authors should consider changing their terminology to minimize future confusion. A possible terminology for the inductance corresponding to the differential permeability would be the differential inductance. Although it is not so crucial, I would point out that what the authors call the "apparent" permeability is called the "normal" permeability in [1].

It appears that the no-load inductanc- measurements the authors refer to were made with a locked rotor, in which case it should have been (for small signals) the incremental permeability that described the B-H path in the stator iron. In that case, the measured value might have been expected to be smaller than a value corresponding to the "apparent" permeability or to the "differential" permeability; the latter are the calculated values which the authors use for comparison, and the measured value was actually larger than either. The authors correctly point out that the end winding inductances would have to be subtracted from the measured value for a true comparison. It is not possible to comment further without understanding the kind of iron used in the stator, and the open-circuit operating point on its B-H characteristic. Since permanent magnet machines have magnetic circuits which are (effectively) mostly air, the inductances may be insensitive to any assumption made about the stator permeability. It does not appear that the comparisons made are significant in sorting out the different kinds of inductance.
The authors have couched all their calculations in terms of the energy method of evaluating inductances. It appears that the same concepts would apply if the inductances were calculated in terms of flux linkages. Only one calculation would be necessary per inductance in that case. Would the authors comment on this point.

In the middle of the second column of page 1 , the authors describe an incrcase in machine capability obtained from a decrease in the number of turns in the phase windings. This argument seems somewhat irrelevant. Decreasing the number of turns from 12 to 9 will decrease the inductances by ($\mathbf{3} / 4)^{\mathbf{2}}$ or nearly a factor of one-half. This has nothing to do with any magnetic calculation procedure. It is mentioned that this increase in capability was obtained at the "same" supply voltage. This is a rather artificial result. The selection of the number of turns in the winding and the selection of the rated supply voltage are interrelated in a well known way in order to assure that the machine draws rated current (a number usually set by thermal limits). If the turns are changed without changing the terminal voltage, one or the other of the configurations was not a consistent design. Perhaps the authors would like to clarify this point.

RI-ERENCES

1. Bozorth, Ferromagnelism, Van Nostrand, New York, 1951, pp 6. $539 \mathrm{ff}, 845 \mathrm{ff}$.
2. Magnetic Circuits and Transformers, Staff, Electrical Engineering Departmetit- MIT, MIT Press, 1965, p. 198.
3. S. H. Minnich, 'Incremental Permeabilities for Transtent Analysis of Large Generators by the Finite-Element Method," J. Appl. Phys. 52 (3), March 1981, p. 2428.

Manuscripi received February 2t. 1982.
T. W. Nehl, F. A. Fourd and N. A. Demerdash: These authors wish to thank Mr. S. H. Minnich for his interest in tne paper, and offer the following in response to the various points and queries put forward by Mr. Minnich:

1) The use of the term "incremental permeabslity" as unlized in our paper is an accepted way of refering to the physical process and method of calculation explaned in the paper. Identical utilization of the same term can be found in many textbooks, an example of which is a book by Fano, Chu and Adler, which is Reference (17) in our paper. In this particular type of application (samarium cobalt permanent magne: machnnes, with M15-29 Gauge Stator Lamınations), subject of this paper the hysteresis effect is almost nonexistant. That is, the B-H characteristic of the stator core lamination material is a single valued curve for all pracucal purposes. Hence, the slope of the minor hysteresis loops, refered to by Mr. Minnich as the "incremental permeability" is equal to the slope of the tangent to the single valued B-H characteristic used in the paper. Again, minor hysteresis loops are almost nonexistant in this class of applications.
2) The authors wish to point out that the use of the term "apparent permeability" in place of what Mr. Minnich refers to as the "normal permeability" is an acceptable usage in many textbooks on magnetic. fields, an example of which is again Reference (17) in our paper.
3) Because of the almost nonexistant hysteresis effect in the type of application subject of our paper, the distinction suggested by Mr. Minnich between "differential permeability or inductance" and "incrementai permeability or inductance" is negligible. Hence, for all practical purposes, the two terms are one and the same in this class of applications. The above line of reasoning is further enhanced by the low level of saturation which inherently exists in magnetic circuits of permanent magnet machines of the type at hand. This is in addition to their large effective airgap reluctance in proportion to the ferrous portion of the magnetic circuit reluctance.
4) We wish to confirm that the no load inductance measurements were made with a locked rotor. Also, the incremental and apparent permeabilities as defined in the paper were used in the corresponding calculations. The inductance measurement was carried out using a commercially available inauctance bridge.

However, we wish to point out to Mr. Minnich that the main reason both the calculated incremental and apparent inductances are lower than the measured inductance values is due to the fact mientioned in our paper, namely that the contribution of the end connections (with its three dimensional magnetic field nature) to the values of inductances could not be included in the two dimenstonal field calcultion, while it naturally is included in the measured values. Thus, the fact that the measured inductance values were greater than those calculated from the two dimensional field model is consistent with what one would have ex. pected as a result of the inability to account for the end turn connections in a two dimensional field model. It mist be pointed out that the proportion of the end connections to the effective length of the armature conductors burried in the armature slots is not insignificant. Therefore, without including the three dimensional end connection ei. fect, one could not possibly have expected to have measured values of inductances that would be less than those calculated ones. This is particularly the case in view of the lightly saturated state of the magnetic circuit. Accordingly, we could not agree with Mr. Minnich in suggesting that the measured values should have been less than the calculated ones. In fact, based on "educated intuition" one would expect the opposite of what Mr. Minnich suggested.
5) Mr. Minnic'. raises the question as to why we chose to calculate the various machine winding inductances through energy calculations, rather than directly by flux linixages with the various windings. The choice of the energy calculation concept was made because it is independent of the degree of complexity of the contours of the ferrous (iron) and current carrying parts of any magnetic circuit under consideration.

Thus, the same algorthm of inductance calculation can be utilized, in conjunction with any two-dimensional magnetic field calculation aigorithm, to determine the inductances associated with any given electric device. On the other hand, had we chosen the flux linkages approach, the resuiting algorithm would have been limited to the contours of the case at hand, or at most to that class of contours for the parucular type of machins being analyzed.
6) The decrease of he values of the machine inductances by a factor $(3 / 4)^{2}$ due to reduction in the number of turn from 12 to 9 per coil is a cey factor in the design of the type of machine at har: 1 , where high rates of current switching is encountered (as high as 400 Hz for the inverter swithing). This leads to the imposition of a limitation on the rate of phase current build-up from the instant of "switching on" of a given phase, which is inversely proportional to the value of line to line machine inductance. This is because the rate of current build up, (dıdt), per phase is equal to (neglecting resistance):

$$
\begin{equation*}
(\mathrm{di} / \mathrm{dt})^{\simeq} 1 / L(E-e(t)) \tag{1}
\end{equation*}
$$

where E is the de voltage source, while $e(t)$ is the ins:antaneous value of the back emf induced in the phases by magnet rotation. Thus based on equation (1) above, the higher the inductance, the lower the (di/dt). This is while the available switching time per phase in an ac cycle is determined by the inverter frequency, and hence no flexibility is possible in its duratoon. Therefore, unless the current build \downarrow) rate. (di/dt), is higher than a minimum value (function of the inverter frequency), one may not be able to reach the desired value of armature current per phase within the period of time during which this particular phase is "switched on", see the "on" and "off" periods in the phase current cycie diagram Figure (10) in the paper.

The fact that the peak current values, and hence peak puwer (and in some instances rated power) capabilities of this class of machines are indeed heavily dependant on the motor inductances, are well documented in a number of earliet papers and publications by these authers, see Reference (19) of the paper, as well as References (18) and (19) listed below.

In all such investigations, one must have access to reliable values of machine winding inductances during the design stage in order to predict the current build-up rate given in the above equation. Designers, in so far as we know, are usually unable to provide such data with certainty, and hence the use of a method such as the one given in this paper for obtanning these inductances is almost indespensible for accurate predictuon of performance of machine systems of this tyre.

The line of reasoning offered by Mr. Minnich irt the relationship between the number of turns, the supply voltage, and rated current is valid for constant speed machines. However, it is rather simplistic and totally inconsistent with the basic design facts of this class of machines in
which operating speeds vary widely. Mr. Munnich states in his discussion that, "the selection of the number of turns in the winding and the selection of the rated supply voltage are interrelated in a well known way in order to assure that the machine draws rated current." We wish to point to Mr. Minnich that this relationship becomes very direct and simple only if one is dealing with sinusoidal current and voltage waveforms, and when the machine speed is function of a given supply frequency in addition to the number of poles (synchronons speed). This is not the case at hand, where the phase currents are from pure sinusoidals, and the rated speed of a given machine is only limited by the upper bounds of mechanical stresses on the rotating members.

Accordingly in the case of the machine at hand, one can keep the same supply voltage, while reducing the number of turns and increasing the rated machine speed for the same magnetic circuit flux per pole (permanent magnet) while maintaining that level of supply voltage. Thus, reduction of the number of turns per phase was how lower machine winding inductances were achieved, in order to allow the necessary current buildup rate, equation (1). This is in order to reach the required current levels during the fast switching periods to which the machine winding is subjected. Based on the above, we could not disagree more with the statement made by Mr. Minnich that, "If the turns are changed without changing the terminal voltage, one or the other of the configurations was not a consistant design." Thus, one can see the key role of the inductance values in setting machine current build up rates, and hence machine current leveles during the avalable "on' time per phase. Notice, the machine power capability is directly proportional to the machine current level.
We hope we have responded adequately to all pertinent points in Mr. Minnich's discussion. We finally wish to express our apprectation to Mr. Minnich for his interest in the paper, and for his various queries, which we are sure were very helpful in enabling us to clarify ambuguities in this investigation.

REFERENCES

18. T. W. Nehl, F. A. Fouad, N. A. Demerdash, "Digital Simulation of Power Conditioner-Machine Interaction for Electronically Commutated DC Permanent Magnet Machines." IEEE Transactions on Magnetics, Vol. MAG-17, No. 5, 1981, pp. 3284-3286.
19. T. W. Nehl, F. A. Fouad, N. A. Demerdash and E. Maslowskı, "Dynamic Simulation of Radially Oriented Permanent Magnet Type Electronically Operated Syuchronous Machines with Parameters Obtained from Finite Element Field Solutions." IEEE Transa:tions on Industry Applications, Vol. 1A-18, Number 2. 1982, pp. 172-182.

Manuscript received June 22, 1982

APPENDIX (4)

ON CALCULATION OF MACHINE WINDING INDUCTANCES BY ENERGY PERTURBATION AND FINITE ELEMENT METHODS

Demerdash, N. A., Fouad, F. A., and Nehl, T W., "Determination of Winding Inductances in Ferrite Type Permanent Magnet Electric Machinery by Finite Elements," IEEE Transactions on Magnetics, VOL. MAG-18, 1982, pp. 1052-1054.
© 1982 IEEE. Reprinted, with permission, from the IEEE Transactions on Magnetics, Vol. MAG-18 pp. 1052-1054, 1982.
determinaticn of winding inductances in ferrite type permanent magnet electric machinery by finite elements

Abstract

A key design factor in ferrite type permanent magnet machines is the accurate knowledge of the values of machine winding inductances during the design stage. In the present paper, a methot which is based on perturbation of the energy stored in the magnetic field, and on numerical models of simulation of such permanent magnets is used in calculating machine inductances. The effect of change in the values of these winding inductances with magnet position throughout the cycle of operation of such machines is given. These inductances also include the apparent and incremental values, whose definition is direcily related to the choice of apparent or incremental reluctivities in the energy perturbation process. Results of application of this method to the calculation of inductances in a 15 hp 6-pole ferrite type electronically operated permanent magnet machine are given. These calculated values of inductances are in good agreement with the measured values.

INTRODUCTION

Permanent magnet machines are finding increasing acceptance and use in many applications. These applications include machine tool drives, electro-mechanical propulsion in electric vehicles, and recently in robotics. In most of these applications, solid-state control and operation of these machines is used. In applications where machine weight and volume must be kept to a minimum, samarium-cobalt (rare earth) materials are most preferred for use in manufacturing the needed permanent magnets. However, because of the relatively high price, availability, and probleas of security of supply of cooalt, ferrite type magnets are proving to be just as effective in the wanufacturing of machines with performance equivalent to
those manufactured with samarium cobalt magnets ${ }^{[1]}$. This is done at an acceptable sacrifice in increase in machine weight and volume, and represents no difficulties in many of those applications where weight and volume limitations are not stringent.

An example of such a machine is a $15 \mathrm{hp}, 120$ volt, b-pole, 8840 rpm electronically commatad brushless dc machine (operated from a dc source through a 3 phase solid-state inverter/converter) which was built and rested for possible use as a propulsion unit for electric vehicles, a cross-section of which is given in Figure (1). The armature (stator) winding of such a machine is of the 3 phase type. A successful design of such machines is predicated upon reasonably accurate knowledge of the armature winding self and mutual phase inductances. The crucial role played by these inductances is due to the fast electronic witching of the phase currents during comutation. Hence, the $\mathrm{L}(\mathrm{di} / \mathrm{dt})$ terms play a mor role in determining the ability of the machine and its corrasponding electronic controller to achiave the necessary current buildup rate and level to meet the rated power and peak power requirements. The phase currant buildup during commutation (di/dt), can be approximated by:

$$
\begin{equation*}
(d t / d t) \equiv[E-e(t)] / L \tag{1}
\end{equation*}
$$

where E is the $d c$ source voltage, while $e(k)$ is the instanteous value of the back enf induced in the given phase undergoing comeutation. Thus, on the basis of equation (1) above, the higher the induc-
*Manuscript received June 20, 1982. The authors are with iirginia Polytechnic Institute and State University, Blacksburg, VA 24061.
tance, L, the lower the current buildup rate (di/ $\mathrm{dt})$, the longer it takes to reach the necessary rated current. This is while the available switching time during which current buildup can take place is limited in an ac cycle of armature current by the aforementioned 3 phase inverter/converter frequency. Further details on these aspects are to be found in reference [2]. Accordingly, the accurate calculation during the design stage of winding inductances in such permanent magnet electronically comutated machines is of paramount importance.

BACKGROUND OF METHOD OF INDUCTANCE CALCULATION In a previnus paper ${ }^{[3]}$, these authors presented a methad, which is based on perturbations of winding currents, and the associated incremental change in the energy stored in the magnetic fieid, to calculate such machine inductances. This approach enables one to circumvent the difficulties associated with calculating such parameters using the fluxlinkage approach, particularly in the presence of complex, and continuousiy changing contours (due to rotor position change) in rotating machinery. This perturbation method will only be briefly described here for the sake of continuity. The percurbation method at hand is applied in the calculation of the 3 phase armacure winding inductances of the above mentioned 15 ferrite type permanent magnet brushlass dc machine, a schematic representation of which is gaven in Figure (2).

The method of finite elements [S] is used to determine the field distribution under nn load, as weli as some load cases. Representation of the ferrite permanent magnet pleces mounted on the rotor was cairied out in the finite element magnetic field modeling according to a method described by these authors in a previous paper ${ }^{[4]}$. In this approach a permanent magnet is replaced by an electromagnet whoge excitation is supplied from a constant current source, Figure (2), and whose te*al ampere turns are functions of the permanent magnet geometry and coercivity.

Fig. '.

Fig. 2.

The current/energy perturbation method of calculation of inductances ${ }^{[3]}$ is based upon consideration of the total energy stored in the magnetic field of a given device comprising n windings. Consider the voltage at the terminals of the jth winding, one can write

$$
\begin{gather*}
v_{j}=R_{j} i_{j}+\frac{\partial \lambda_{1}}{\partial i_{1}} \frac{d i_{1}}{d t}+\frac{\partial \lambda_{1}}{\partial 1_{2}} \frac{d i_{2}}{d t}+\ldots+\frac{\partial \lambda_{j}}{\partial L_{1}} \frac{d i_{j}}{d t} \\
+\ldots+\frac{3 \lambda_{1}}{d 1_{n}} \frac{d i_{n}}{d t}+\frac{\partial \lambda_{1}}{\partial \theta} \frac{d \theta}{d t} \tag{2}
\end{gather*}
$$

However, for a fixed fotor position the lant term in equation (2) equals zero because ($d G / d t$)
which equals the rotor angular spead would be equal to zero. Here in equation (2) the partial derivative of the flux linkage, λ_{j} with respect to a winding current $i_{k},(k=1,2, \ldots, j, \ldots, n)$ is the incremencal inductance, $L_{j k}^{i n c}$. Therefore the total stored global energy, w, associated with the system $o:$ n-coupled windings can be written as:

$$
\begin{equation*}
w=\sum_{j=1}^{n} w_{j}=\sum_{j=1}^{n}\left\{\sum_{k=1}^{n} \int_{i}^{i_{k}(0)}(t)\left(L_{j k}^{i n c} i_{j}\right) d i_{k}\right\} \tag{3}
\end{equation*}
$$

In reference [3], it was shown that the self and mutual inductance terms of the various n windings can be expressed as the partial derivatives of the global stored energy, w, with respect to various winding current perturbations, Δi_{j}. These derivatives can, in turn, be expanded around a "quieacent" magnetic field solution obtained for a given set of winding currents, in cerms of various current perturbations $\pm \Delta i_{i}$ and $\pm \Delta i_{k}$ in the j th and k th windwindings, ant the resuiting cnange in the global energy. For the type of machine at hand where $L_{j k}$ $=L_{k j}$, this process yields for the self and mutual inductance terms the following:

$$
\begin{equation*}
L_{j j}=\frac{\partial^{2} w}{\partial\left(\Delta i_{j}\right)^{2}}\left[w\left(i_{j}-\Delta i_{j}\right)-2 w+w\left(i_{j}+\Delta i_{j}\right)\right] /\left(\Delta i_{j}\right)^{2} \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
L_{j k}=\frac{\partial^{2}}{\partial\left(\Delta i_{j}\right) d\left(\Delta i_{k}\right)} & =\left[w\left(i_{j}+\Delta i_{j}, 1_{k}+\Delta i_{k}\right)\right. \\
& -w\left(i_{j}-\Delta i_{j}, i_{k}+\Delta i_{k}\right) \\
& -w\left(i_{j}+\Delta i_{j}, i_{k}-\Delta i_{k}\right) \\
+w\left(i_{j}-\Delta i_{j}, i_{k}\right. & \left.\left.-\Delta i_{k}\right)\right] /\left(4: \Delta i_{j} \cdot \Delta i_{k}\right) \tag{5}
\end{align*}
$$

Here, the global energy w at the quiescent point is calculated from a magnetic field solution whose excitation current set in the n windings is (i_{1}, i_{2},
$\left.\ldots . i_{j}, \ldots, i_{k}, \ldots i_{n}\right)$. Also, the global energy $w\left(i, \Delta i_{f}\right)$ is the energy calculated from a magnetic field soldtion whose excitation current set in the n windings is $\left(1_{1}, i_{2}, \ldots ., \ldots,\left(i_{f} \pm \Delta 1_{j}\right), \ldots . i_{n}\right)$, and the global energy $w\left(i_{j} \pm \Delta i_{j}, i_{k} \pm \Delta i_{k}\right)$ is the ..icrgy calculated from a magnetic field solution wnose excitation current in the n windings is $\left(i_{i}, i_{2}, \ldots .\left(i_{j} \pm \Delta i_{j}\right), \ldots .,\left(i_{k} \pm \Delta 1_{k}\right), \ldots ., i_{n}\right)$.

The perturbed field solutions can either the obtained using the incremental or apparent relucivities of the various finite elements, thus, yielding the incremental or apparent winding self and mutual inductances as will be show in the next section.

MODELING OF THE PERTUREED EXCITATION CURRENTS

Upon obtaining a solution to the nonliawar magnetic field problem in the crose-section of a tiven machine, for given eet of anding excitation cur--ents (which will be referred to as the quieerent solution point for that set of excitation currenta), one obtaing a givan value of reluctivity for each Sement within the crose-section, including those
dents in iron. Samples of such quiescent solu:ions are displayed graphically in Figures (3) and (4) for a no-load case, as well as rated load case, urspectively, for a giver rotor position.

At any such given quiescent solution the status rf each iron element can be rapresented 14 the $B-H$

Fig. 4. .
gaturation characteristic by the quiescent value of reluctivity (perneability) shown graphically in Figune (5). Also, tav magnetic energy stored in the field within each element is equal to the product of the shaded area of Figure (5) times elemental area times the effective axial length of a given machine.

Once a nonlinear fiejd solution is determined throughout the continuum (the quiescent solution), the incremental and apparent reluctivities for each element are known, and are graphically displaved for a given iron element by the tangent and cord passing through the quiescent point as shown in Figures (6) and (7) respectively. A perturbation of the excitation of any winding in a given machine yields a change in the field intensity in an element wiich is shown by ($\pm \Delta H$) in Figures (0) and (7).

Should one desire to obtain the incremental inductances, one must carry out the perturbation process to the field solution along the incremental reluctivity line as shown in Figure (6). In this process the incremental reluctivities are "frozen" at their quiescent point values. This is done while salving for the effect of excitation perturbation throughout the field region, using a linearized finite element solution (along the incremental reluctivity line) around the quiescent point. This process yields for every element an excess or deficite energy per element due to the positive and negative current perturbations, respectively. These energies are represented schematically by che shaded areas in Figure (6). Thus, the new global energies, $w\left(i_{j} \pm \Delta i_{j}\right)$ are determined as the algebraic sum of the quiescent and excess or deficit energies for all the elements.

Substituting $v\left(i_{j} \pm \Delta i_{j}\right)$ in equation (4) yields the incremental self inductance, $L_{j j}^{i n c}$, of the jth winding. Peifurbing two currents 1_{j} and i_{k} in the $j^{j j}$ and k uindings, one can similarily obtain the four global energies, $w\left(i_{j} \pm \Delta i_{j}, i_{k}=\Delta i_{k} j\right.$. Upon substituting these four energies in equation (5), one obtains the incremental mutual inductanct, $\frac{1 n c}{\text { inc }}$. A similar process, with the perturbed field solutions having been detereined, using the values of the apparent reluceivities at the quiescent point of Figure (7), yields the apparent self and mutual inductances $L_{j j}^{\text {app }}$ and $L_{j k}^{a p p}$, respectively. Results of such calculations are compared with measured inductance values for the above mentioned 15 hp ferrite permanent magnet machine, and are given next.

RESULTS

The method described above was used to calculate the inductances associated with the three phase armature vinding of the 15 hp ferrite type permanent magnet electronically commutated brushless dc machine mentioned above. These is hp machine winding inductances were also measured in the laboratory,

using a comercially available digital inductance bridge.

The results of calculation and measurement of phase to neutral self inductances, ${ }_{a}$, at various rotor positions, e, which cover the entire 360° electrical cy-le are given in Figure (8). These are the values of the familiar term of the self inductance per phase. The calculated and measured values were obtained at no load, and are compared in the same Figure (8).

It must be pointed out that the measured values of self inducrances naturally include the contribution of the end connections of the coils of the windings. However, the end connection contribution to these inductance values is not included in the calculated values, because the calculation algorithon is based on a two dimensional field solutivn, while such end effects would require three dimensional ficld modeling for their inclusion in the calculated values. Because of the small contribution of the end connections, this was not done in the calculated values. This also explains the slight difference in values between the calculated and measured inductances which are plocted in Figure (8).

The results of calculation and measurement of the line to line inductance, $L_{11 n e(a)-1 i n e(b), ~ w h i c h ~}$ is calculated from the values of the phase self inductances, L_{aa} and L_{bb}, and mutual inductance, L_{ab}. as

$$
\begin{equation*}
\mathrm{L}_{\text {inne }(\mathrm{a})-1 \text { ine }(\mathrm{b})}^{(\theta)}=\mathrm{L}_{\mathrm{aa}}^{(\theta)}+\mathrm{L}_{b b}^{(\theta)}+2 \mathrm{~L}_{\mathrm{ab}}^{(\theta)} \tag{7}
\end{equation*}
$$

is ploted in figure (9) as a function of the rotor position angle, ${ }^{\text {a }}$, over the complete 360° electrical cycle. This lifie to line inductance calculation is shown rather than the mutual inductance term, since a direct measurement of that value vas far easier to obtain in the laboratory. The closeness of the results of the calculation and measurement is indicative of the validity of the autual inductance term, $L_{a b}^{(\theta)}$, obrained by calculation using the energy and excitation current perturbation aethod outlined above. The slight discrepancy between the calculated and measured values is due to the fact, mentioned above, that the present calculation eethod soes not include the effect of the and connections of the coils, while the matoured values, maturelly include the end connaction concribution to the winding inductances.

Tha values of the phase aelf inductance, and line to line inductance vere calculated under rated load condicions, and ploted in Pigurea (8) and (9) respectively. The affect of the load (armature) currents on the winding inductances is negligible ai can be clearly sean in both figures.

CONCLUSIONS
The present energy and excitation current perturbation method has been shown here to be effective in the calculation of self and mutual inductances of windings of machines containing fertite type rermanent magnets. These calculated inductances were 324

APPENDIX (5)

ON SIMULATION OF MACHINE-POWER CONDITIONER DYNAMIC TNTERACTION OF BRUSHLESS DC MOTOR SYSTEMS

Nehl, T. W., Fouad, F. A., Demerdash, N. A., and Maslowski, E., "Dynamic Simulation of Radially Oriented Permanent Magnet Tÿ̈́ Electronically Operaced Synchronous Machines With Parameters Obtained From Finite Element Field Solutions," IEEE Transactions on Industry Applications, Vol. IA-18, 1982, pp. 172-182.
(c) 1982 LEEE. Reprinted, with permission, from the IEEE Transactions on Industry Applications, Vol. IA-18, pp. 172-182, 1982.

Dynamic Simulation of Radially Oriented Permanent Magnet-Type Electronically Operated Synchronous Machines with Parameters Obtained from Finite Element Field Solutions

thomas W. NEHL, member, ieee, FAKHRY A. FOUAD, NABEEL A. DEMERDASH, senior memfer, ieee, and EDWARD A. MASLOWSKI

Abstract

Absfrucs-A dymanice medel for simolation of the trameleat interaction betwee ralidily orleated permanat magaet-type syochrenems machimes and thair cerreepeading tramioteriaed eurreat source power conditionars in prosomed. Sene key anchise parameters meat in this dyounic maded were obtalined froa fialte element fiold solution. This dynamic model wat moed to obtain the trassient frteraction between a $15-10 p$ samarien cobalt radially oriented permanent angat electromically epersted symehroaces machtes and its correapeadias power conditioner. Th machise we cenotrweted for efectric velicie propulaica. Exceilent correlation betwern varipus digitally staciated and acteal tex curremt and voltage waveformes, in varlowe bracches of the machlae-conditioner metwork, has bere schieved. These reacits are givea. This modelime approach is applied to mechimes durting the dasig stage, where the fialte elcoment acodoling is the anly way to obtein the moceseary machise parametery for dymanic stumblation. It is shown mew such a combinatioe of the jodyenents that can prove coutly to remedy owce the mardware is in place. This is dom through an setual design example of an saditional machime tring manufacturyd for eiectric propulalom applications.

INTRODUCTION

ELECTRONICALLY operated permanent magnet-lype synchronous machines are finding increasing application as prime movers in actuation, machine tool drives, and vehicle propulsion [2], [3], [5]. These machines, when operated from square-wave current-source-type power conditioners, experience discretely steppung armature magnetomotive forces (MMF's), rather than the smoothly rotating MMF's of classical systems with sinusordally time-arying armature currenth. For this reason, clasacal frequency domain-type approaches are

[^4]in ralid and can lead to substantial errors when used to predict the performance of such devices [2].

In this paper, a totally digital approach to the simulation of the instantancous interactions between such machune-power conditioner systems is described and verified against measured results. This modeling approach combines use of the twodimensional finite element method for solving nonlinear magnei -static field problems and associated miachine parameter decermination [1], [2], [3], with a discrete time nonlinear network model based on generalized network graph theory concepts [2], [6]. The advantages of the approach presented here over those used in similar problems by other investigators [7]-[13] can be summarized in the following points.

1) The machine parameters are determined by the finite element method. Therefore, the impact of machine winding and geometry changes on the overall system can be assessed without the construction of costly prototypes.
2) The voltage drops across all nower switching elements (transistors, thyrnstors. diodes, etc.) ate included.
3) The entire machune-power conditioner nerwork (excluding the snubbers) are included in the analysis using only one network graph. No reduced order network inodels corresponding to the individual switching states of the network are used because the voltage drops across tine switching elements are not neglected. This greatly sumplifies the modeling of systems with a large number of dafferent switching states, since only one network graph and its corresponding state equations need be used. Furthermore, the use of one network graph to cover all stares and modes of operation resuits in a model that is anore general.
4) No rotating reference frames, which tend to ubscure the physical interpretation of parameters and results, are used. Consequently, all model parameters can be obsaned directly from test measurements, if .vailable, or by means ut the finte element method and/or from desggn calculations.
5) The instantaneous branch voltages, currents, and powers throughout the system, as well as the instantaneous electromagnetic machine torque and power. are calculated and automatically plotted versus tume.
6) Furthermore, the status of all power switches (transistors, thyristors, diodes, etc.) is determined and autoratically plotited versus time.
7) Constant, as well as variable-speed, operation can be accommodated, including the dynamics of the rotating masses [2], [s].
8) Digital, :atice than analog or hybnd, techniques are used to integrate the aifterential equations. which result in higher accuracy. lower cost, and greater flexibility.

The combined finite eiement field analysis and the discrete time machins-power conditioner modeling app; oach introduced in this paper are applied to two prototype systems. The first is a 15 -hp $120 . \mathrm{V}$ samarium cobalt permanent magnet (radially onented) synchronous machine for a electric vehicle propulston. which is operated from a current-source-type power conditioner. The no-load back eiectromotive force (EMF) waveforms for this machine were obtained by means of the finite element tnethod. These waveforms are in excellent agreement with the measured waveforms [1], [2] , [3]. The finite element calculated EMF's are subsequently used, as will be shown in a later section of this paper, as forcing functions for the discrete time machine-power conditioner network model. Excellent agreement between simulation and measured voltage and current waveforms is achieved.

This method is then applied to the design of a similar system in which a ferrite-type magnet machine is the prime mover. The effects of winding inductances, stator slot skewing, and commutation advance on the overall $\mathrm{s} ;$ stem performance are given prior to actual construction. Significant design "pitfalls" were avoided as a result of using this approach, as will be seen in later sections.

NETWORK MODEL FOK RADIALLY ORIENTED PERMANENT MAGNET SINCHRONDUS MACHINES

A lumped parameter network model for radially onented permanent magnet synch onous machines based upon a fourwinding machine represei ation is derived. Three of the four windings represent the thize armature phases, a, b, and c. The lourth one, f. is a fictitious winding, which is an equivalent lield winding that represents the permanent mignet system on the rotor as was shown in the companion pape: [1]. It will be shown that the effec! of the fictitious field winding togethes with its corresponding de field current is equivalent to a set of three-phase back EMF waveforms that can be readily obtained from testing the actual hardware, if available, of by means of the finite element method using design date if such hardware is not available [1], [2], [3].

Because of the poor electrical conductivities asociated with samarium cobalt and ferrite-type magnets. and the relatively low level of induced eddy currento in the thin high resistivity stainkss steel sleeve used in retaining the magnets [4]. rotor damping effects can be neglected for the mactines sturied here without affectung the accuracy of the simulation results. Hence, no damper windings are included in this model. The voltages and currents of the various machin windings are
therefore governed by the coupled circuit equation (1), ex. pressed in matrix form as follows [2].

$$
\begin{align*}
{\left[\begin{array}{l}
v_{a} \\
u_{b} \\
v_{c} \\
v_{f}
\end{array}\right]=} & {\left[\begin{array}{cccc}
R_{n} & 0 & 0 & 0 \\
0 & R_{b} & 0 & 0 \\
0 & 0 & R_{c} & 0 \\
0 & 0 & 0 & R_{f}
\end{array}\right] \cdot\left[\begin{array}{l}
i_{i g} \\
i_{b} \\
i_{c} \\
i_{f}
\end{array}\right] } \\
& +\frac{d}{d t}\left\{\left[\begin{array}{llll}
L_{a a} & L_{a b} & L_{a c} & i_{a f} \\
L_{b u} & L_{b b} & L_{b c} & L_{b f} \\
L_{c a} & L_{c b} & L_{c c} & L_{c f} \\
L_{f a} & L_{f b} & L_{f c} & L_{, f}
\end{array}\right] \cdot\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c} \\
i_{f}
\end{array}\right]\right) \tag{1}
\end{align*}
$$

where R_{a}, R_{b}, R_{c} are the phase to-neutral winding resistances $[\Omega]: P_{f}$ is the field winding resistance $[\Omega]: L_{a a}, L_{b b}, L_{c c}$ are the phase-to-neutral self-inductances $[H]: L_{1 j f}$ is the field winding self-inductance $[H]$: and $L_{a b}, \cdots, L_{f i}$ are the mutual inductances $[H]$

In reality, the permanent ragnet (field excitation) system is equivajent to a constant current field winding, whose ampere turns are proportional to the coercivity of the permanent mag. net material and the magnet geometries [1]; therefore the field current i_{f} is constant. Also. it was found from magnetic field search coil measurements [1], for this class of machmes, that the armature currents have little (or negligible) effects on the magnet flux distributions under normal load operating conditions. That is, no significant demagnetizations are expenenced as long as the armature current remains withan the same order of magnitude as the rated design values; see [1]. Therefore, the mutual inductance te:י'ss $L_{f a}, L_{f b}$, and $L_{f c}$, which represent the armature re* two., can be dropped from (1) without significantly affecting the accuracy of the modeling approach. Therefore, for this class of machines, (1) can be rewritten as follows:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=} & {\left[\begin{array}{ccc}
R_{a} & 0 & 0 \\
0 & R_{b} & 0 \\
0 & 0 & R_{c}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]} \\
& +\frac{d}{d t}\left\{\left.\left[\begin{array}{lll}
L_{c d} & L_{a b} & i_{a c} \\
L_{b c} & L_{\Delta b} & L_{b c} \\
L_{c c} & L_{c b} & L_{c c}
\end{array}\right]\left[\begin{array}{l}
i_{c} \\
i_{b} \\
i_{c}
\end{array}\right] \right\rvert\,\right. \\
& +\frac{d}{d r}\left[\begin{array}{l}
L_{a f}
\end{array} i_{f}\right. \tag{2}\\
L_{b f} & \cdots \\
L_{c f} & i_{f}
\end{array}\right] .
$$

The amarium cobalt of ferrite-type perimanent magnets used in the radially oriented rotor structures examined here have permeabilities close to that of iree space. Ther fore, saliency effects nomally associated with such structures can be neglected. This was borne out by measurements of the line-
to-line winding inductance of the 15 hp samanum cobalt machines, which is analyzed later in this paper and used in comparisons between simulation resul:s obtained from this model and corresponding test results. In this machine, the maximum variation of the line-to-line inductance with respect to the rotor position was only ± 4.8 percent from a nominal value of $105 \mu \mathrm{H}$; see [2]. Consequently, the self inductances $L_{a a}, L_{b b}$, and $L_{c c}$, as well as the phase mutuals $L_{a b}, L_{b a}, L_{a c}$, $L_{c a}, L_{b c}$, ant $L_{c b}$, are assumed constant and independent of rotor position. Accordingly, in a balanced three-phase case, wuch as the cases for which this model is intended. one can write

$$
\begin{align*}
& L_{a a}=L_{b b}=L_{c c}=L \tag{3}\\
& '_{a b}=L_{b a}=L_{a c}=L_{c a}=L_{b c}=L_{c b}=M \tag{4}\\
& R_{a}=R_{b}=R_{c}=R \tag{5}
\end{align*}
$$

Substituting from (3). (4), and (5) into (2) yields the following:

$$
\begin{align*}
{\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=} & \left\{\left[\begin{array}{lll}
R & 0 & 0 \\
0 & R & 0 \\
0 & 0 & R
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]\right\}+\left\{\left[\begin{array}{lll}
L & M & M \\
M & L & M \\
M & M & L
\end{array}\right]\right. \\
& \left.\cdot \frac{d}{d t}\left[\begin{array}{l}
l_{a} \\
i_{b} \\
i_{c}
\end{array}\right]\right\}+\left\{i_{f} \frac{d}{d t}\left[\begin{array}{l}
L_{a f} \\
L_{b r} \\
L_{c f}
\end{array}\right]\right\} . \tag{6}
\end{align*}
$$

The mutual inductances between the field and the phase windings $L_{a f}, L_{b f}$, and $L_{c f}$. on the other hand, are functions of the rotor position $\theta(t)$. Therefore, the last vector term of (6) can be rewritten as follows:

$$
i_{f} \cdot \frac{d}{d t}\left[\begin{array}{c}
L_{a f}(\theta) \tag{7}\\
L_{b f}(\theta) \\
L_{c f}(\theta)
\end{array}\right]=i_{f} \cdot\left[\begin{array}{l}
\frac{\partial L_{a f}(\theta)}{\partial \theta} \\
\frac{\partial L_{b f}(\theta)}{\partial \theta} \\
\frac{\partial L_{c f}(\theta)}{\partial \theta}
\end{array}\right] \cdot \frac{d \theta}{d t}
$$

The derivative of the totor angle $\theta(t)$, with respect to time, is the angular velocity ω of the rotor. Inspection of (7) reveals that the induced voltage in the phase wirdings due to the permanent inagnet rotor is proportional to 1) the strength of the magnets $i_{f}, 2$) the speed of the rotor ω; and 3) the rate of change of the magnetic coupling between the stator and rotor at a given rotor position θ. Consequently, this vector term is the no-load phase-to-neutral back EMF vector with components, e_{a}, e_{b}, and e_{c}. Therefore. (7) can be written as follows:

$$
\omega i_{f}\left[\begin{array}{l}
\frac{\partial L_{a f}}{\partial \theta} \tag{8}\\
\frac{\partial L_{b f}}{\partial \theta} \\
\frac{\partial L_{c f}}{\partial \theta}
\end{array}\right]=\left[\begin{array}{l}
e_{0} \\
e_{b} \\
e_{c}
\end{array}\right] .
$$

Also, because of the nature of the flcating neutral Y. connection to the attached power conditioner units, the phase currents must satisfy the following.

$$
\begin{equation*}
i_{a}+i_{b}+i_{c}=0 \tag{9}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\frac{d i_{a}}{d t}+\frac{d i_{b}}{d t}+\frac{d i_{c}}{d t}=0 . \tag{10}
\end{equation*}
$$

Substituting from (8) ard (10) into (6) gives, after simplification. the following system of first-order differential equations which govern machine dynamics in this case:

$$
\begin{align*}
{\left[\begin{array}{l}
v_{a} \\
v_{b} \\
v_{c}
\end{array}\right]=} & \left\{\left[\begin{array}{lll}
R & 0 & 0 \\
0 & R & 0 \\
0 & 0 & R
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]\right) \\
& +\left\{\left[\begin{array}{ccc}
(L-M) & 0 & 0 \\
0 & (L-M) & 0 \\
0 & 0 & (L-M)
\end{array}\right]\right. \\
& \left.\cdot \frac{d}{d t}\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]\right\}+\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right] . \tag{11}
\end{align*}
$$

This is a simple decoupled system of equations in which the inductance term ($L-M$) is equal to half the open-circust line-to-line inductance ($2 L-2 M$). This can easilv be calculated [3] or measured if the hardware is available. The accuracy of this model in predicting instantaneous machine voltage and current waveforms during various modes of operation is demonstrated later in this paper by comparison with oscillograms obtained during dynomomenter load testing of a 15 hp samarium cobalt machine of this type. In the next section, the machine model is combined with a network model of the elec. tronic power conditioner unit which is used to drive this machue.

COMBINED MACHINE.POWER CONDITIONER NETWORK MODEL.

The radially oriented permanent magnet synchronous machines can be driven in a variety of ways. These include sinusoidal voltage and current sources as well as nonsinusoidal voltage or current-scurce power conditioners. In particular. the simulation of the instantaneous interactions between such machines and a nonsinusoidal current source inverter-converter (or power conditioner) is examined here.

The schematic diagram of a transistorized current-source power conditioner and its attached machune is given in Fig. 1. The power conditioner consists of 1) a two-quadrant hysteresistype current chopper for current magnitude control; and 2) a three-phase inverter-converter bridge which inverts dc into ac during motoring and vice versa during regenerative braking. The switching of the inverter transistors during the motoring mode is controlled by a Hall effect rotor position sensur mounted on the rutor shaft. The power conditioner produces

Is 1 Machme-power conditioner schematic and idealized motor curfents.
a three-phase armatuie current which is rectangular in nature. as shown in the idealized current waveforms in Fig. 1.

The machine is modeled by (11). This equation is equivalent. on a per phase basis, to the phase-to-neutral winding resistance. one half of the line-to-line winding inductance ($1,-M$), and the phase-to-neutral back EMF voltage, all connected in series. The three phases are wye-connected with a floating neutral. The attached power conditioner is also represented by a lumped parameter network model [2]. The switching action of the antuparallel transistor diode pars is represented by nonlinear resistances. These resistances assume low values corresponding to the forward conduction resistance while in the "on" state, and assume large resistances to simulate the "off" state [2], [5]. The status of the nonlinear resistors representing the power transistors is controlled by Boolean representations of the chopper and inverter switching logic. The status of each of the doode resistors is determined on the basss of the doode voltages themselves, forward or reversed bused. The other components of the power conditioner are modeled by standard lumped parameter circuit elements. The state equations for this nonlınear, nonplanar network are obtamed using network graph theorems [2]. [5], [6] in the standard form.

$$
\begin{equation*}
x=A \cdot x+B \cdot u \tag{12}
\end{equation*}
$$

where \boldsymbol{x} is :he state vector which consists of the capacitor voltage. the current through the chopper inductor, and the currents through two of the machine inductances, and u is the forcing function vector consisting of the battery voltage and , he three back EMF's, e_{a}, e_{b}, and e_{c}, and A and B are the nonlinear coefficient matrices of the network [2].

The branch voltages v_{B} and currents i_{B} throughout the network are completely defined in terms of the state vector x and the forcing function vector u as follows [2]:

$$
\begin{equation*}
v_{B}=G \cdot x+H \cdot u \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{B}=L \cdot x \div M \cdot u \tag{14}
\end{equation*}
$$

where $\boldsymbol{G}, \boldsymbol{H}, \boldsymbol{L}$, and M are functions of the network topology [2].

The nonlineat state model, (12), is integrated forward in time over equally spaced time intervals 7 . These tume intervals are taken small enough so that the nonimear coefficient matrices A and B can be assumed constant over the integration interval (nonlmearity of A and B is caused only by the status of the diodes and transistors and not by machine inductances which are assumed constant throughout for this type of system). The integration was periormed by a moditied exponential series in which the state vanables at the t_{k+1} instant of time, $\boldsymbol{x}\left(t_{k+1}\right)$, are related to the state variables and inpuis at time $t_{k}, \boldsymbol{x}\left(t_{k}\right)$ and $\boldsymbol{u}\left(t_{k}\right)$ by

$$
\begin{equation*}
\boldsymbol{x}\left(t_{k+1}\right)=\boldsymbol{(k)} \cdot \boldsymbol{x}\left(t_{k}\right)+\boldsymbol{\theta}(k) \cdot \boldsymbol{u}\left(t_{k}\right) \tag{15}
\end{equation*}
$$

where $\Phi(k)$ and $\theta(k)$ are the state transition matrices [0] calculated at time $t=t_{k}$.

The back EMF's which constitute part of the input forcing function vector u in the machine-power conditioner networh model are obtained either from test measurements if the hardware is available. or from finte element solutions of the magnetic field over the cross section of the machine under investigation [1]. [2], [3], [5]. In either case. the EMF profile is represented by a Fourier series oi the following form:

$$
\begin{align*}
e\left(\theta_{R}, \phi\right)= & \sum_{h=1}^{N_{h}}\left[a_{h} \sin \left(\frac{p h \theta_{R}}{2}+\phi_{h}\right)\right. \\
& \left.+b_{h} \cos \left(\frac{p^{\prime} \cdot \theta_{R}}{2}+\phi_{h}\right)\right] \tag{10}
\end{align*}
$$

where

$$
\begin{array}{ll}
e & \text { EMF constant [V/mech, rad/s] } \\
N_{h} & \text { number of harmonics. } \\
a_{h}, b_{h} & \text { Fourier coefficients [V/mech. } \mathrm{rad} / \mathrm{s}] \\
\theta_{R} & \text { rotor position [mech. } \mathrm{rad}] \\
\phi_{h} & \text { phase shift [elec. rad] } \\
p & \text { number of poles. }
\end{array}
$$

The back EMF's. e_{a}, e_{b}, and e_{r}, can therefore be written in terms of $e\left(\theta_{R}, \phi\right)$ as follows.

$$
\begin{gather*}
e_{a}=\omega e\left(\theta_{R}, 0\right) . \quad e_{b}=\omega e\left(\theta_{R},(-2 \pi / 3)\right) \\
e_{c}=\omega e\left(\theta_{R},(-4 \pi / 3)\right) \tag{17}
\end{gather*}
$$

These EMF waveforms were obtained from finite element field analysis and from test. Excellent agreer ent between calcu. lated and measured EMF's was achieved as demonstrated in [1], for the 15 -hp machine analyzed in the next section.

The modeling approach outlined here, and given in detal in [2]. is applied to the analysus of a $15-\mathrm{hp}$ samarium cobalt synchronous machine designed, fabricated, and tested for use in electric vehicle propulsion. It will be demonstrated that combining the finite element method for EMF determination with the machine-power conditioner network model gives excellent results when compared with actual hardware test data.

EXPERIMENTAL VERIFICATION OF THE COMBINED FINITE ELEMENT FIELD ANALYSIS AND MACHINE-POWER CONDITIONER NETWORK MODEL

The discrete time machine-power conditioner model in conjunction with the finite element field analysis method were applied to the simulation of the $15-\mathrm{hp} 120 . \mathrm{V}$ radially oriented samarium cobalt permanent magnet synchronous machine mentiened earlier. This machine was designed, built, and tested for use in electric vehicle propulsion. The machine is operated by means of a current-source power conditioner similar to the one shown in Fig. 1.

The back EMF waveforms for this machine were determined by means of the finite element method, as described in detal in [1]. For the sake of completeness, the back EMF voltage waveforms, obtained from the field analysis under rated and no-load conditions at a machine speed of $7750 \mathrm{r} / \mathrm{min}$, are given in Figs. 2 and 3, respectively. The peak of the noload back EMF agrees to within 2.2 percent of the measured peak [1]. Inspection of these figures reveals that the armature reaction at rated load has a negligible effect on both the shape and peak magnitude of the EMF's, as expected. The finite element determined no-load EMF waveform of Fig. 3 is represented by (17) in the discrete time machine-power conditioner model.

This machine-power conditioner system was tested under a variety of operating conditions using the dynamometer test setup shown in Fig. 4. Table I summarizes the modes of operathon (motonng or regenerative braking), the commanded currents (or torque), and the machine speeds for the three representative test cases against which the model is verified here.

The oscillogram and computer-simulated waveforms (CSWF) of the machine phase current for case 1 are given in Fig. 5. Excellent agreement between the two is evident in both overall waveshapes and magnitudes and in the frequency of the sawtooth component caused by the current chopper. The central commutation spikes, which are clearly visible in the CSWF. can be seen in the original oscillogram but were too faint for reproduction.

The oscillogram and CSWF of the phase current for case 2 is given in Fig. 6. The agreement between the measured and sumulated results is excellent. Notice aiso that in this case the phase current failed to reach the commanded current of 300 A. This is due to the current-limiting effect of the winding inductance at higher speeds. This can have a significant impact on the overall system performance, as will be demonstrated in the next section. The oscillogram and CSWF of the line-toline machine voltage, for this case, is given in Fig. 7. Again the agreement between measured and calculated results is excellent.

The first two cases verified the accuracy and validity of the model for simulating the machine power-conditioner operation in the motoring mode.

The oscillogram of the machine phase current during regenerative braking, case 3 of Table I, is in excellent agreement with the corresponding CSWF. as shown in Fig. 8. Additional ventientions of this mode! are given !n \{2\}, including other machines of this type.

Fig. 2. Finite elemeni-determined back EMF's at rated load ot the samarium cobalt machıne

Fig. 3. Finite element-determined back EMI's at no-load of the samarium cobalt machine.

Fig. 4. Dynamometer testing of the samarium cobalt machine.

TABLEI
SUMMARY OF TEST RUNS SIMULA TED

$\begin{aligned} & \text { Cive } \\ & \text { Jumber } \end{aligned}$	Mode of Operacion	$\begin{aligned} & \text { Current } \\ & \text { Comand } \quad \text { A] } \\ & \hline \end{aligned}$	Rotor hpeed [rpm]
1	Motoring	68.5	1100
2	Motoring	Maximum (300)	1750
3	Regeneration	91.0	7440

Fig. 5. Oscillogram and CSWF phase current, motoring at $3100 \mathrm{r} / \mathrm{min}$, current command of 68.5 A .

Fig. 6. Oscillogram and CSWF of phase current, motoring at $7750 \mathrm{t} / \mathrm{min}, Q_{M}$ fully "on."

Fig. 7. Oscillugram and CSWF of line-to-line voltage, motoring at $7750 \mathrm{r} / \mathrm{min}, Q_{M}$ fully "on."

Fig. 8. Oscillogram and CSWF of phase current, regenerative braking at $7740 \mathrm{r} / \mathrm{min}$, current command of 91 A.

APPLICATION OF THE COMBINED FINITE ELEMENT FIELD ANALYSIS AND NETWORK MODEL TO THE PREDICTION OF THE DYNAMIC PERFORMANCE OF A PROPULSION UNIT PRIOR TO CONSTRUCTION

The primary application for this simulation model is as a design tool to save on prototype development costs and to speed up the design process. The design optumization procedure, using the modeling techniques described in this work, can be summarized as follows.

1) First, the ratings of the machine and the power condinoner unit are determined from the basic system requirements and constraints.
2) The machine horsepower and torque requirements are then used to obtan a specific machine voiume and geometry depending upon the required performance of the machine.
3) The selected machine geometry is then inputted into a nonlinear finte element magnetic field analysis program, which was given in [1], from which the motor open-circuit EMF , aveforms, inductances, flux distributions, and core losses are calculated [1], [3].
${ }^{1}$ The calculated machine parameters are then fed into the system network model aleng with the preliminary power conditioner parameters.
4) The simulated performance is then used to reiterate the machine and power conditioner designs.
5) Steps 1-5 are repeated untul the opimum machinepower conditioner design for the given specifuations and constraints is found.

This design procedure eliminates much of the guesswork out of the design process, and at the same tume provides better accuracy than less sophisticated methods commonly used at present.

The usefulness of this modeling technique in the design process can best be allustrated by an actual design example. Specifically. this approach was applied to the analysis of a new design for a radially oriented permanent magnet synchronous machine for electric vehicle applications. In this proposed machine, use is made of cheaper fernte permanent magnets for the magnet structure as an alternative to the more expensive samarium cobalt permanent magnets used in the aforementioned 15 hp prototype motor.

This proposed ferrite machine must conform to similar performance specifications required of the samarium cobalt unit described earlier. That is, the machine must have a 15. hp continuous $2-\mathrm{h}$ rating and a peak $1-\mathrm{min}$ rating of 35 hp . The machine is connected to a current-source power condithoner which has an absolute maximum current rating of 400 A due to the transistor switches. This conditioner is energized from a $120 . \mathrm{V}$ dc battery supply. The desired speed at rated conditions is $9000 \mathrm{r} / \mathrm{min}$; however, this rated speed does not represent one of the design constraints and can be adjusted to higher or lower values if required.

A first cut design of this machine consisted of an 18 -slot stator and a 0 -pole rotor structure. The pole pieces were designed using M8 ferrite magr.ets with a residual induction of 3.85 KG and 3.25 KG at $20^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, respectively. The initual three-phase winding consists of 12 series turns pet

Fig. 9. Finite element discretization of the territe muchine.

Fig 10. Finite element-determined no-load flux distribution in the territe machine.
phase. The fractional slot winding of the samarium cobalt machine was abandoned duc to the higher fabrication costs involved with such windings. The calculated line-to-hne inductance of this corfiguration was $173.2 \mu \mathrm{H}$.

In order to predict the performance of this preliminary machine design, it was necessary to obtain accurate back EMF's for the machine-power conditioner network model. This was accomplished by means of a finite element solution for the magnetic field distribution inside the inachine at noload, as described in [1]. The finite element grid used to discretize the cross section of the ferrite machine is given in Fig. 9. The corresponding no-load flux distribution, assuming a worst-case magnet temperature of $100^{\circ} \mathrm{C}$, is given in Fig. 10 . The radial air-gap flux density profile was then obtained using the procedure outlined in [1]. This profile is given in Fig. 11 over one electrical cycle. Notice that the peak anr-gap flux density for the ferrite machine is only 16000 lines $/ \mathrm{in}^{2}$ compared with 50000 lines $/ \mathrm{in}^{2}$ for the samariumi cobalt machine [1], [2], [3].

Once the air-gap flux density profile is known, the back EMF's are obtained in terms of a Fourier series using a procedure given in [1], [2] , and [3]. Since a fractional slot winding is not used in this case, it was decided to examine the effects of stator slot skewing on the back EMF's in order to elimmate harmonics as well as to reduce the tendency for cogging. The impact of skewing was accounted for by means of a skewing factor [14]. The finite element calculated back EMF waveforms corresponding to a skewing factor of zero, one half, and one slot pitch are given in Figs. 12, 13, and 14, respec-

$$
\text { JROTAT } \quad 1
$$

NO LOAO
f1g. 11. F-mite element-determıned no-load radial air-gap flux density profile of the ferrite machine.

Fig. 12. Finite element-determined no-load back EMF profile of the ferrite machine with no skewing.

1.if. 13. Finite element-determined no-load back EMF profile of the ferrite machine with half-slot pitch skewing.

Ity 14. Firite element-determined no-load back EMF profile of the ferrite machine with one-slot pitch skewing.

TABLE II
Finite Element-Determined peak Phase to neutral Back EMF VOLTAGE SENSITIVITIES (V/mech. rad/s) OF THE FERRITF MACHINF

	Amount of Slot-Skewing		
	None	half Slos Pitch	$\begin{aligned} & \text { Fuld Slot } \\ & \text { Pitch } \end{aligned}$
$\begin{array}{\|l\|} \hline 9 \text { Iurns } \\ \text { per Phase } \\ \hline \end{array}$	0.06095	0.05230	0.04954
$\begin{aligned} & 12 \text { Turns } \\ & \text { per Phase } \end{aligned}$	0.08127	0.06973	0.06605

TABLE III
FERRITE MACHINE SIMULATION RESULTS

	Simulation Ridn Identification				
	Run \#1	Run 2]	Run 31	Run \#4:	Run ${ }^{\text {W }}$
Speed [rpm]	8000	9000	9000	9500	10000
Series Tums Per Phase	12	9	9	9	9
Line to Inte Inductance [$\mu \mathrm{H}$]	173.2	92.81	92.8	92.8	92.8
Commutation Advance [elec. des.]	0	0	30	30	30
Peak Phase Voltage [V]	63.3	43.41	143.4	45.8	48.21
Peak Phaze Current [A]	30.01	287.4	346.1	307.6	272.2
Peak Electromanetic Power thp!	4.01	25.9	38.7	36.3	33.8
Skewing	None	1 slot	1 lot	1 slor	1 slor
Current Command $\|A\|$	400	400	400	400	400

tively. Inspection of these figures clearly demonstrates the harmonic filtering effects produced by skewing. The peak voltages per mechanical radian per second for these three cases are given in Table II for windings with 9 and 12 series turns, respectively.

These back EMF profiles were used as input forcing functions to the combined machine-power conditioner system model in order to predict the system response to changes in the following system parameters: 1) winding inductances (9 and 12 series turns per phase); 2) stator slot skewing; 3) commutation advance angle; and 4) machine speed.

The commutation advance angle is the relative displacement between the peak of the fundamental of the phase current and the peak of the fundamental of the phase back EMF. Zero commutation advance means that the two peaks have zero displacement between them. An advance of 30 electrical degrees means that the phase current leads the phase EMF by 30 electrical degrees.

Five different simulation runs were made using the system model. These runs are designated run $1, \cdots$, run 5 , and are given in Table III. The results of these runs; the phase current and the developed electromagnetic machine power are also given in this table.

The first simulation, run 1, was made with the high inductance winding (12 tums per phase), zero commutation advance. and no skewing. Under these conditions, a peak developed electromagnetic power of only 4 hp was well below the required 35 -hp peak rating. This is due to the fazt that the phase-current steady-state value dropped from an initial value of 150 A to a final value of only $30 \cdot \mathrm{~A}$ peak at a constant machine speed of $8000 \mathrm{r} / \mathrm{min}$, as shown in Fig. 15. This rapid decay of the machine current is due to the fact that the rectangular phase curients, produced by the current-source inverter, see Fig. 1, produces discretely forward stepping arma-

Fig. 15. Simulated current decay in the ferrite machine for simulation run 1 .
C.

Fig. 16. Simulated developed electromagnetic power of the ferrite machine for simulation run 1.
ture MMF's [1], [2], [3]. This means that the field picture insid the machine must change almost instantaneously to follow the nearly instantaneous change in the armature currents at the six switching points during an ac cycle (Fig. 1). Obviously, the rate at which these currents can change is limited by the inductance of the winding. Therefore, as the machine speed (and hence inverter frequency and magnitudes of back EMF's) increases, the amount of current t uildup during the decreasing period of an ac cycle drops dramatically, as displayed vividly in Fig. 15. This drop in the phase current produces a corresponding drop in the developed electromagnetic machine power, as shown in Fig. 16. This inductance limiting effect is much more severe in systems of this type than in machines with sinusoidally time-varying currents. Consequently, applying classical frequency domain-type analysis to such devices can only lead to gross errors in the prediction of the performance.

To alleviate this current limiting, a second winding design consisting of nine series tums per phase, which reduces the inductance almost in half, was analyzed. Four additional simulation runs (rurs 2, 3, and 4) were made (Table III). Inspection of the results of these four simulations reveals that reducing the inductance nearly in half (and hence dropping the EMF's by 25 percent) produces nearly an order of magnitude difference in the maximum machine output. This is clearly illustrated in Figs. 17 and 18, which show the current and power buildup, respectively, corresponding to an initial phase curient of 150 A and a machine speed of $9000 \mathrm{r} / \mathrm{min}$. The current, and hence machine power, at this speed can be increased even further by initiating the phase-current buildiep when the opposing EMF is zero (commutation advance of 30 electrical degrees), as shown in Figs. 19 and 20. The penalty for this is increased torque or power ripple, which can be clearly seen by comparing Figs. 18 and 20.

o decree advance
Fig. 17. Simulated zurrent buildup in the ferrite machine for simulation run 2.

Fig. 18. Simulated developed electromagnetic power of the ferrite machine for simulation rur 2 .

30 DEGRES ADVANCE
Fig. 19. Simulated current bulldup in the ferrite machine for simuldtion run 3.

30 decare apyance
Fig. 20. Simulated developed electromagnetic power of the ferrite machine for simulation run 3 .

The fourth and fifth simulation runs demonstrate the trade-offs between machine speed (or EMF) and maximum current and power. These trade-offs are very critical in transistorized power conditioners, where the peak currents must be held below a certain threshold value to prevent device failure.

This design example demonstrates the usefulness of this modeling approach in the design evaluation process in pointing out windings with suitable inductance values which permit fulfilling the specified machine output. The cost of a typical
simulation (constant speed) run is $\$ 7.87$ and requires 74 s of central processing unit (CPU) time on an IBM 3032 digital computer. For this modest expenditure of computer resources, the engineer obtains plots of all 23 branch voltages, currents, and powers versus time, a plot of all logic signals versus time, as well as plots of many other variables as specified by the user.

CONCLUSION

A modeling approach, which combines the finite element method for machine parameter determination with a discrete time machine-power network model, was successfully applied to the simulation of solid-state operated, radially oriented permanent magnet synchronous machines. The approach was applied to the simulation of a 15 hp samarium cobalt synchronous machine connected to a current-souice power conditioner, which was designed, built, and tested for use in electric vehicle propulsion. Excellent agreement was obtained between computer and measured voltage and current waveforms throughout this system.

The model was then applied to the design of a simid: system using less expensive ferrite permanent magnets. The effects of winding inductance, stato: slot skewing, and advancing the firing or commutation angle were thoroughly analyzed. The results of this analysis clearly demonstrated the inadequacy of classical frequency domain-type approaches to such problems. Furthermore, it was shown that this totally digital approach produces results rapidly and is inexpensive to use, thereby freeing the designer from many tedious hand calculations and guesswork, and at the same time providing valuable insight into the behavior of such devices during the design plocess.

ACKNOWLEDGMENT

These authors wish to acknowledge the efforts of Mr. B. P. Overton of Inland Motor R\&D in the design, fabrication, and testıng of the machine studied here. Our thanks also go to Dr. R Churchill, Vice President and Director of Inland Motor $R \& D$, who provided the facilities for construction and testing of this hardware.

REFERENCES

$11]$ F. A. Fouad, T W. Nehl, and N. A. Demerdash. "Magnetic field modeling of permanent magnet-type electronically operated synchronous machines using finite elements." IEEE Trans Power Apr Syst., vol. PAS-i00. no. 9. pp. 4125-4135. 1981
$\{2 \mid$ W W. Nehl. "A discrete tume model of a power conditioner-fed penmanent magnet brushless de motor system fo: aerospace and electric vehacle applications for design purposes using finite elements for machine parameter determination," Ph.D. dissertaton, Dep. Elec. Eng., Virginia Polytechnic Inst and State Univ., Blacksburg. May 1980.
[3] F A Fouad, "Finite element analyais for design of classical and electronically operated electric machises," Ph.D. dissertaion. Dep. Elec. Eng. Virgınia Polytechnic Inst. and State Univ., Blacksburg, May 1981
14] A K Nagarkatt, ' Study of performance of cerrain special aspects of electronically commutated de motor for electric vehicles," M.S. thesis. Dep. Eler. Eng. Virgınia Polytechic Inst. and State Univ., Blacksburg, May 1980.
[5] N. A. Demerdash and T. W. Nehl, "Dynamic modeling of brushless de motor-power conditioner unit for electromechanical actuator application." Power Electronics Specialists' Conf., 1979.
|6| N. Balabanian and T. A. Bickant, Electrical Network Theory. New York: Wiley, 1969.
171 D. W Novotny and F. A Fath. "The analysis of induction
machines controlled by senes connected semiconductor swithes. IEEE Trans. Power App. Syst., vol PAS-87, no 2, pp 597-605. 1968.
[8] P. C. Krause and T A. Lipo. "Analysis and simplified representations of a rectifier-inverter induction notor dnive." IEEE Trans. Pow: App. Syst., vol. PAS-88, no. S, pp 588-596, 1969
19] T A. Lipo, "The analysis of induction motors with voltage control by symmetrically triggered thyristors," IEEE Trans Power App Syst., vol. PAS-90, no 2. pp. 515-525. 197!
[10] T. A Lipo and F G Tumbull, "A nalysts and comparison of two types of square wave inverter drives." IEEE. Irans Ind Appl, vol 1A-11, no. 2 , pp 137-147, 1975.
[1I] G. Singh and B C. Kuo. "Modeling and simulation of variabiereluctance step motors with application to a high-performance printer system," IEEE Trans Ind Appl, vol [A-1], no 4, pp 373-383, 1975.
[12] T A Lipo and E. P Cornell, "State-vanabie steady-state analysis of a controiled current induction motor drive," IEEE Trans ind Appl., vol. IA-11. no. 6, pp. 704-712, 1975
[13] R. L. Steigerwald and T. A. Lipo. "Analysis of a novel forcecommutation starting scheme for a load-commutated synchronous motor drive," IEEE Trars Ind. Appi.. vol lA-15, no 1. pp 14-24, 1979
[14] M. G. Say, The Performance and Design of Alternaiting Current Machines. London: Pitman and Sons, 1963

Thomas W. Nehl (M'79) was born in Tubingen. West Germany, on December 22, 1952 Hie received the B.S.. M.S, and Ph D degrees in electrical engineering from Virginaa Polytechnic Insutute and State University, Blacksburg, in 1974, 1976, and 1980, respectively
He consulted for the Farrax, VA, County Department of Public Works in the surnmer of 1974 on explosion-proofing the existing electrical switchgear and moiors utilized in their pumping stations During the suinmer of 1976 he was employed by the National Bureau of Standards as an engineering intern, where be developed a finite element package for the solution of sinusoidal eddy current problems in support of their nondestructive testing program. During the summer of 1977 he was employed as an engineering intern at the NASA. Johnson Space Flight Center, Heuston. TX, where he was engaged in the modeling of brushless dc machine type electromechanical actuarar systems. From 1978 to 1980 , he was employed as a Research Associate in the Deparment of Electncal Engineering at Virginia Polytechnic Institute and State University where he was involved in the design. fabrication, and analysis of brushless dc motors for actuation and propulsion applications as well as finite element field analysis in support of the computer simulations and analysis of these systems. He joined the faculty of Virginia Polytechnic Institute and State University as an Assistant Professor of Electncal Engineering during the summer of 1980, where he is presently employed His current research activities include finste element field analysis of machines, digutal simulation of electronically operated machines, simulation of machine and electronic failure modes in electronically operated machine systems. nondestructive testing and evaluation and power electronics

Dr. Nehl is currently serving on the Synchronous and the Machine Theory Subcommittees of the IEEE Power Engineering Society He is a member of the American Society of Engineering Education. Sişma X_{1}, Phi Kappa Phi, and Ela Kappa Nu.

Fakhry A. Foend was born in Cairo. Egypt, on January 18, 1948. He received the B.Sc E.E with honors and M.Sc degrees from Cairo University, Cairo, in 1971 and 1975, respecuvely; and the Ph D degree in electincal engineering from Virginia Polytechnic Institute and State University. Blackburg, in 198!

From 1971 to 1977 he was with the Faculty of Engineering, Zagazig University. Egypt, as a Demonstrator. He was with the Department of Electrical Engineering at Virgina Polytechnic Institute and State University as a Graduate Research Assistant and CiPMMA PACE IS OF POOR QUALTTY

Research Associate from 1977 to 1979 and from 1979 to 1981 respectively He is presently a Visting A ssistant Professor in the Department of Ele :trical Engineering at that institution. His current interests include numerical analysis of eiectromagnetic fieids in clectric mehhnery for design and optimization purposes. as well as the dynamic modeling of machines, including miaeraction with any associated power electronics and conirol subsystems

Dr Fouad is a member of the Honor Society of Phi Kappa Phi, the Scientific Research Society of Sigma X1, and the American Association for Advancement of Science.

Nabeel A. Demerdash (M'65-SM'74) was born in Caıro, Egypt, on April 26, 1943. He received the B.Sc.E.E. degree with distinction and first class honors from Cario University, Cairo. in 1964, and the M.S. and Ph.D. degrees in electrical engineering from the University of Pittsburgh. Pittsburgh, PA, in 1967 and 1971, respectively.

From 1964 to 1966 he was with the Faculty of Engineering, Cairo University, as a Demonstrator. From 1966 to 1968 he was with the Department of Electrical Engineering. University of Pittsburgh, as a Graduate Teaching Assistant. In 1968 he joined the Large Rotatung Apparatus Division of Westinghouse Electric Corporation, East Pittsburgh, PA, as a Development Engineer, where he worked on electromagnetic field modeling in rotating machinery and the development of the asymnietrical rotor for large steam turbine-driven generators. Since 1972 he has been with the Virginia Polytechnic Instutute and .tate University, Blacksburg, VA, where he is presently a Professor in the Department of Electrical Engineenng. He consulted for NASA Johnson Space Center. Houston. TX, during the summers of 1975 and 1976 on modeling of electronically controlled motors for aerospace applications. His currer:t
interests and research activities include electromechanical propulsion and acutation, dynamic modeling of sohd-state controlled and operated electrical machines, numerical analysis of electromagnetic fields in electric machnery, as well as machme-power system dynanus.

Dr. Demerdash currently serves as a member of the Rotating Machinery Committee to IEEE Power Engineering Society (PES) as well as the Synchronous Machinery and the Machine Theory Subcommittees of PES He previously served as Secretary and subsequently Vice Chairman of the Synchronous Machines Subcommittee of PES He is d past Chairman ot the Virginia Mountain Section of IEEE. He is a member of the American Society for Engineering Education, Sigma Xı, and Eta Kappa Nu

Fdward A. Maslowski was born in Foster Township, PA. on August 17. 1934. He recesved the B.S. degree in physics from John Carroll University, Cleveland, OH, in 1958, and the M.S. degree in electrical engineering trom the University of Toledo. Toledo, OH, in 1976

From 1959 to 1961, he was employed by the Frankford Arsenal, Philadelphia. PA, where he was engaged in research on metal embrutulement caused by the absorption of gases From 1961 to the present he has been employed by the NASA Lewis Research Center. Cleveland, OH, and has been involved in the design of a space environmental facility for the scale testing of space power systems, research on radiation effects on power semiconductors. design of the radıosotope Brayton power system, development of energy conversion devices for laser power transmission, development of applications of satellite data for tand use applications, and development of electnc vehicle traction motors for a joint NASA and Department of Energy (DOE) program. He has authored and co-authored a number of NASA publications in the areas of vacuum technology. insirumentation, and electric vehicle testing.

APPENDIX (6)

ON SIMULATION OF MACHINE-POWER CONDITIONER DYNAMIC INTERACTION OF BRUSHLESS DC MOTOR SYSTEMS

Nehl, T. W., Fouad, F. A., and Demerdash, N. A., "Digital Simuiation of Power Conditioner - Machine Interaction for Electronically Commutated DC Permanent Magnet Machines," IEEE Transactions on Magnetics, Vol. MAG-17, 1981, pp. 3284-3286.
© 1981 IEEE. Reprinted, with permission, from the IEEE Transactions on Magnetics, Vol. MAG-17, pp. 3284-3286, 1981.

T. W. Neh1, Member

F. A. Fuuad, Mewber
N. A. Demerdash, Senior

Gher

Abstract - The electromagnetic interactions between a cransistorized chopper-invertar power condithoner and lts associated permanent magnet machine is analyzed digitaliy by an experimentally verified time dorain state model. The model is applied to the design of a syscem based on a ferrite cype machine. The impact on the overall system performance of skewing the stator core to reduce the harmonics in the induced machine EMF is determined using this model. The EMF waveforms for zero, hals, and one slot pitch skewing are decermined by finite element analysis of the fields inside the machine. Furthermore, the tapact on the system performance of varying the commutation angle to overcome inductance caused performance limita:ions is examined for each of the three cases of stator skewing.

INTRODUCTION

Electronicaliy commatated permanent magnet dc machines are finding increasing use as primemovery in actuation, industrial drives, and vehicle propulsion. When operated from square wave current source power condicioners, such machines .vibit armature mifs which rotate in diacrete steps or mps of 60 electrical degrees each. For this reason, irequency dowain type =odels based on smoothly rotating inMs dre inadequate. In this paper, a discrete time model of such a machine power conditioner system, Figure (1), which includes the voltage drops across the pover switches, references (1) through (3), is used, in conjunction with machine parameters determined by finite elements (FE), references (4) and (5), co simulate the dynamic interactions becteen the machine and its associaced power conditioner, during the design procass of a $15 \mathrm{HP}, 120 \mathrm{~V}$ ferfite nermanent magnet brushless de machine. This systen was designed as a prime mover for the propulsion of elactric passenger vehicles. In this paper three aspecta of this design process will be analyzed in detail, namely:

Figure (1) Scheantic of the Machine-Power Conditionar Uait.

Manuscript received March 23, 1.981
These acthors acknowledge the financtal support of the following contracte: 1) DOE/NASA LeRC contract NO. DEN3-65, and USNF/SCEEE Contract NO. SIP/78-17. We also wigh to acknowledge Inland Moror RcD, Radford, Jirginia in the design. fabrication and testing of the machinow scudies here.
T. W. Nehl, F. A. Yound and N. A. Demerdash are with the Departwent of Electrical Engineering, Vireinia Polytechnic Institute und state University, Blacksburg, Virginid 24061, U.S.A.

1) The impact on the induced machine EMF ing the stator core by zero, one half, and one pitch. This is determined by means of the iin. ment method as detailed in references (4) and will be shown that, for non-fractional slot win :n马s. skewing greatly reduces the harmonic content o: o EMF and thus reduces losses, notse, and the tem anc; for cogeing.
2) The combined effects of the machine i,...ctances and EMF waveshapes, for the above three i.hes $J:$ skewing, on the overall system performance is : rermined using the system state model.
3) The effect of varying the commutation inl: archine performance for the three cases of ske ..is is scudied.
and
where $\quad x$ is the vector of state variables,

MODEL DESCRIPTIOA

The ferrite based machine-power conditioner, wi:analyzed here consists of a current chopper in. .'.s with a three phase inverter-converter bridge. is power conditioner is in turn connected to the: :ee phase permanent magnet machine as shown schemat: ill: in Figure (1). This entire syscem is represent; iv 4 nonlinear state model, reference (3), as follow.

$$
\underline{\dot{x}}=\underline{A} \underline{x}+\underline{B} \underline{u}
$$

d $\quad \underline{Y}=\underline{\sim} \underline{z}+\underline{0}$ $\underline{\underline{u}}$ is the vector of forcing functions, \bar{A}, B are nonlinear coefficient matricin. Y is the vector of output variabies (branct currents, voltages, etc.). and C. ${ }^{\underline{g}}$ are nonlinear coefficient matrices. The nonlinearity is due to the fact that the stutus ut the diodes and transistors is simulated by low sosistances during conduction and high resistances juring the off state. The sratus of the transistors idsterained by boolean logic which mimulates the actual control logic of the system. The atatus of the aiodes is decermined after each eime incegration by an tecrative procedure which sete the diode resistances ach rding : the voltages acrosa chese devices.

This model has been successfully applled, sort an electromechanical actuator for filght conts lipp... cations and to an electromechanical propulsiun inse : $:$: electric vehicles with excellent agreement but. .ren oscillograms and computer s!mulated waveforms, midence (1) through (4). For the sake of completenes, sato. of these results is included here in Figures ($:$) and for a similar electric vehicles propulsion unat that has the same performance specifications but use:s a samarius cobalt based machine. Examination ot these ifures reveals axcellent agreement between the simularions and cest. Purther comparisons are given in itr referencee sentioned above.

Figure (2) Oscillogram and Compuzer Simutated Waveform of the Phase Current at 16 HP of the Saniriuan Cubalt lartine.

5ikur '3) Oscillogram and Computer Simulated Line to Neutral Phase Voltages at 16 HP of the Samarium Cobalt Machine.

Tha: madel wil? now be used to assess the impact sator lot skewing and conmutation angle on the : $::$, tem performance of a new ferrite based de-
aPPI : A,ITION OF MODEL TO THE FERRITE MACHINE

:tw: of thewang the Stator Core on the EMF

fhe : irrite machine consists of an 18 slot, three " armirure winding and a 6 pole, ferrite permanent an: risir structure. Since there is only one slot - The per phase one expects a large harmonic content the bulucid phase voltages. These harmonics increase man:tude of the torque puisations and they tend to se the hulldup of phase currentz at heavy loads. : : ncrmir., the even number of slots increases the tenwi : he machane to cog due to the variable reluct-- betwen the stator and rotor.

I: urler to reduce the EMF harmonics and the ten$\therefore \therefore$ for ugging, it was decided to explore the possi..ivnt skewing the stator core over one half and one... slo: iftch. The induced phase to neutra! EMF was -ermine b" a two dimensional nonlinear finite element .. sulution over the cross-section of the machine as Eribu in references (4) and (5). The effects of wing wire accounted for by means of harmonic skewing :urs arplied to the ilux lin! se per phase, see THE : (i) and (6).
Ftpires ($4-\mathrm{A}$) through ($4-\mathrm{C}$) display the predicted © ti, beutral EMF for the ferrite machine for zero,
adi lot pitch, and one full slot pitch skew, re\because :vil. Notice the large shird harmonic component : the ':nshewed stator core. Increasing the skew of wa., core to one slot pitch results in an almost

.arr (4) Phase to Neutral Open Circuit Voltage Waveform for a) No Skewing, o) Hall Slot Pitch Skeuing, c) Fuli Slot Pitch Skeving.
sinusoiddi EMF waveform, Figure $(1-C)$. The effects of these different stator cores on the overali system performances will le determined next.

Effect of Siator Skew and Commutation Advance on the Overall Machíne-Power Conditsoner Performatise

The threr EMF waveforma given in Figure (4) were used as forcing functions for the sustem state model described earlier. The system performance was then obtained for the chree cases of skewing with comutation advances of 0° and 30° electrical, respertivelv, at a machine speed of 8000 rpm and a batter: voltape ot 100 . A commutation advance of 0° means that the phast current is injected 30° electrical aiter the zero crossing of the no load phase EMF. A commutation advance of 30^{2} elfotrical refers to the injection of the phase current at the instant of zero crossing of the EM'. Advancing the commutation allows a larger buildup of current during heavy loading since the motor voltage opposing the current buildup is redured. Commutation advance is of particular importance in square wave, current sorre type inverters since the stator mMF jumps in discrete steps at the six commeation points in an ac cycle.

Plots of the inseantaneous machane phate currents and electromagnetsc torques for skewtig of zero, one half, and one slot pitch, all with zero commutation advance are piven in Figures (5) through (7). Inspection of these figures reveals that the torque ripnie is reduced by 50 nercent as the skewing of the stator increases from 0 to one slot pitch. The teduted EMF harmonics, as skewing is increased, also dllows the current to buildup to larger vaiues, as demonstrated by the current waveforms, from 201 to 227 Amperen (peak).

The effects of the cummutation advance on the three cases is clearlv evident by comparison between Figures (5), (6), and (7) and the corresponding three cases with commutation advance of 30° electricil given in Figures (8), (9) and (19), respectivelv. In ald three cases, significant increases in the phase current were realized by advancing the commutation by 30^{6} electrical. An increase in the curtent buildup of ut to 287 Amperes (peak) is demonstrated. The ofr nequtive aspece of advancing comatacion th the increase tr corque rapple which is clearly evident in these theures.

CONCLUSIONS

The impac: 0 : skewing the stator core ni a teritit permanent magnet machine on the overall periormance of an electronically comutated brushiess propulsion system ior electric passenger vehicles was decermined. It vas found that akewing the rate by one slot pitch reduced the torque ripple by 50 percent. Furthermore, it vas found that the wachire phase currents reached values higher by more thin 13 percent for the skewed stators.

The Impact of advancing the commation to aid current buildup under heavy loads was also tetermined. It vas found in all cases that advancing the cumatation significantly increasec the maxisum level of the phast current by as high as 44 percent. Based un thest reaults a nev protorvpe ferrite permanent magnet brughless dc machint was constructed and is currently undergoing testing.

Figure (7) Machine Phase Currint and Electromannetic Torque, Sti.'ur Skewed One Slot Pitch, Zero Cin. mutation Advance.

Figure (8) Machine Phase Current and Electromagnetic Torque, Unskeved S:ator. 30° Commeation Advance.

Figure (9) Machine Phase Current and Eleceromagnetic Torque, Seacor Skewed One Half Slot Pitch, 30° Commeation Advance.

Figure (10) Machine Phase Curren: and Electromagneric Torque. Stat, : Skeved One Slot Pizch, 30° Commutation Advance.

METEMACES

(1) T. W. Nehl. "A Discrete Tise Model of a Power Canditioner Fed Peranent Manct Brushless DC Motor Systens for Aerospace and Electric Vehicle Applications for Design Puppose Uaing Finize Ph.D. Dissertition. Departeest of Electrical Ergineering. Virginal Polytechnic Institute and State University, Mav 1980.
[:] N. A. Demerdash. T. W. Nehl and E. Maslowski, "Dynamic Modeling of Brushless motorn in Electric Propulsion and Electromechanical Aeutazion by Bigital techniques." Proceedings of the 1980 IEFL Industry ipplications Snciecy Ann'jal Meerlny. 80 CM 1575. C'ncinnat'. Ohlo, Sept. 28-0ct. J, 1980. pp. 570-579.

131 N. A. Desserdash and T. W. Nehi, "Dynamic Molt- ang of Brushless DC Motors fur derospace Aculuat $1 . "$ IEEE Irancactions on Aerospace and Electroni. Syetent, Vol. ASS-16, Mo. 6, 1980. pp. B11-8. .
(4) F. A. Touny, I. W. Noh1, and N. A. Deaserdanh. Magnetic Pieid Modeling of Permaneat Magnet. 'pe Electronically Operated Synchronous Machines , Lax Finite, Elements." Paper accepted for Publicat on in Fuli in the IEXE Trantactiont on Power Ap". atus and Syrcems, presented at the IEEE/PES Winter Meeting, At lanta, Georgiz, Feb. 1-6, 1981.
 Classical and Electronically operated Elecer. Machines," Ph.D. Dlasertation, Electefidi $E \cdot: b$ nearing Dept., Virginia Polytechnic Instltut ind State University, May 1981.
(6) M. G. Say, Aleernating Current Machincs. Jom Jiley and Sune, New York, 1976.

APPENDIX (7)

ON SIMULATION OF MACHINE-POWER CONDITIONER DYNAMIC INTERACTION OF BRUSHI SSS DC MOTOR SYSTEMS

Demerdash, N. A., and Nehl, T. W., Dynamic Modeling of Bushless DC Motors IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-16, 1980. pp. 8i1-821.
© 1981 IEEE. Reprinted, with permission, from the IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-16, pp. 811-821, 1980.

Dynamic Modeling of Brushless dc Motors for Aerospace Actuation

N.A DEMERDASH, Senior Member, IEEE
T.W NEHL, Member, IEEE

Virginia Polytechnic Insutute and State
University

Dynamic Modeling of Brushless dc Motors for Aerospace Actuation

Abstract

A discrete time model for simulation of the dyammics of samarium coball-lype permaneat magmel brushless dc machines is preseated. The similation model inctudes modeling of the interaction between these mixhimes and their atteched power conditioners. These are transistorized conditioner uaits. This model is part of an overall discrete-time manlysis of the dymamic performance of electromechanical actuators, which was condected as part of prototype development of sach actuators studied and built for NASA Johnson Space Center as a prospective alterative to hydraulic actuators presently used in shmetile orbiter applications. The resultiag numerical simulations of the varions machine and power conditioner current and voltage waveforms gave excetient correlation to the actual waveforms collected from actual hardware experinental testiag. These results, mumerical and experimental, are presented here for machine motoriag, regeneration and dyamaic braking modes. Application of the resulting modet to the determiastion of machine current and torque proflles during closed-loop actuator operation were tho samblyad and the results are givew mere. These results are given in light of an overall view of the actuator systiem components. The applicability of this method of analysis to desifg optimization and trouble-abootion in such prototype development is siso discussed in light of the reselts at hase.

Manuscript received December 14, 1979; revised April 12, 1940.
This work was supported by the National Aeronattics and Space Administration Johnson Space Center Contract NASP-15091.

Authers' address: Depertment of Electrical Engineering, Virginia Polytechnic Institute and State University, Blacksburs, VA 24061.
$\overline{0018.9251 / 80 / 1100-0811500.75 \text { (C) } 1980 \text { IEEE }}$

Introduction

The bulk of the simulation models and studies of solid-state power conditioner-fed electrical machines were based on either steady-state phasor-equivalent circuit concepts or hybrid-analogue simulation of power conditioner-machine dynamics. Details of these studies can be found in the literature in references such as [1] through [10]. These methods were proven useful in many cases. However, there are other applications in which a totally digital approach with an abandonment of the bulk of classical steady-state machine theory concepts may prove more advantageous. The work reported on in this paper lies within such a category where these authors believe a digital approach is most suitable.

In this paper the ingredients of an instantaneous machine-power conditioner dynamic modeling approach are given. This approach is part of an overall electromechanical actuator (EMA) model which is to be reported on in forthcoming papers. The power conditioner-machine (PCM) modeling approach is used in the development of an instantaneous simulation model te predict the transient performance of a power conditioner (PC) fed samarium-cobalt permanent magnet brushless dc machine. Features of this PCM prototype and the accompanying EMA system are given in the following sections.

Numerical results of this simulation model reveal, when compared with experimental test data collected from the EMA-PCM prototype, a high degree of correlation in both amplitudes as well as profiles of various instantaneous currents and voltages.

Results of this analysis presented here include also the determination of motor torque and dc line current profiles during normal closed-loop actuator applications.

Overall System Description

The 17 -hp, $270-\mathrm{V}, 8$-pole, 9000 rpm bi ushless dc motor, subject of this paper, was built as a prime mover in an EMA system. This system was manufactured for the NASA-Johnson Space Center for the purpose of studying possible replacements of present hydraulic actuator systems in aerospace control applications. The main incentives for such an actuator replacement are weight and volume reductions, increased reliability, facility of maintenance, reduction of fire and toxicity hazards, controllability as well as possible economic benefits.

The EMA for which this motor was buil consists of four independent servo loop channels, a functional block diagram of which is shown in Fig. 1. Each channel consists of a low-level control electronics (LLCE) package, an electronic power conditioner (PC) which consists of a chopper iilverter arrangement, a PC-fed 17 -hp permanent magnet-three phase stator wound brushless de machine and a gear box

Fig. 1. Functional block diagram of EMA
.'ig. 2. Cross section of EMA motor.

assembly which couples the active (rotating) motor outputs to a common hinge output actuator shaft.

Description of Machine and Power Conditioner

Of particular interest in this paper are the instantaneous dynamic performance of the machine-power conditioner portion of each channel and the means of digitally simulating such performance. A salient feature of this 17 -hp motor is the 24 -slot 7 -mil vanadium-permendur laminated stator structure housing the three-phase PC-fed stator winding. This is a sealed stator assembly which can allow the circulation of a coolant fluid through the partially filled stator slots [11, 12]. Another salient feature of this motor is the 8 -pole samarium-cobialt permanent magnet rotor structure. This rotor asembly consists of 48 blocks (6 blocks per pole) of 18 MGO samarium-cobalt material mounted on an octagonal rotor shaft. The magnet retaining scheme consists of fiber glass banding cured in epoxy compounds. A cross-sectional view of the rotor and stator is given in Fig. 2, while a photograph of the actual rotor is given in Fig. 3. Under rated 17 hp , 9000 rpm conditions this motor produces an output

Fig. 3. Assembled rotor.
Fig. 4. Power conditioner machine schematic.

torque of $13.558 \mathrm{~N}-\mathrm{m}(120 \mathrm{lb}-\mathrm{in})$ at a rated line voltage of 270 V and a dc line current of 60 A .

The power conditioner shown schematically in Fig. 4 consists of an input filter (capacitor), a combination series/shunt type chopper for dc line current magnitude limiting and control, a chopper inductor, and a configuration of six transistor-diode switches which form the three-phase inverter/converter bridge. This bridge has a capability of allowing the machine to function in three modes of operation, namel/, motoring, plugging (dynamic braking), and regenerative braking, in both the forward and reverse rotational direction for each. Also shown in Fig. 4 is the current path through which the conditioner and machine during one of the six switching states which take place during motoring.

Shown in Fig. 5 in idealized form are the A, B, and C machine phase currents during a forward motoring mode. These phase currents, with their block (rectangular pulse) nature, produce a stepping (hopping) armature (stator) at each inverter switching instant. This magnetomotive force (MMF) stepping occurs every 60 electrical degrees, as demonstrated schematically in Fig. 5 for this 17 -hp machine corresponding to points (1) and (2) before and after a switching instant, as marked in the idealized currents. Torque is produced as a result of this angular displacement between the position of the peak of the armature MMF and the corresponding position of the
peak of the rotor MMF (the rotor MMF is produced by the permanent magnets). This torque is proportional in magnitude to the product of the two MMF amplitudes and the trigonometric sine of the angular displacement between the two MMF peaks (18). The torque angles between the stator and rotor MMFs are depicted ar the beginning and end of a switching state in Fig. 6. The expected motor torque profile is also shown in the figure. This predicted profile will be confirmed in the results of this dynamic simulation given in this paper. Accordingly, the rotor is forced into a rotational motion in a direction which tends to decrease the angular displacement between the two peaks (rotor MMF tries to follow armature MMF). This continue, until the next switching instant, at which time the armature ivivir moves forward in a discrete stepping fashion as explained earlier. This in turn maximizes the angular displacement between the iwo MMFs, and increases the torque, and the rocess of rotor motion is repeated to diminish this angular displacement. This results in a pulsating torque profile versus angular rotor position (or time) such as demonstrated schematically in Fig. 6.

The initiation of switching of the inverter transistors is accomplished by means of low-level logic signals generated by a rotor position sensor (RPS). The RPS-generated signals insure a switching sequence which guarantees that the armature MMF would remain leading the rotor MMF (magnets) in the direction of motion during the motoring mode, while the opposite is the case during the plugging mode. The RPS sensors are part of the LLCE depicted schematically in Fig. 1. Another key element in the LLCE package is a dc line current sensor which is used to control the duty cycle of the chopper transistors (on/off periods) in accordance with the torque (or current) commands. It is important to note that for this class of machines the average electromagnetic torque is linearly proportional to the magnitude of the average dc line current. Hence in this case, current commands and torque commands are synonymous.

Machine-Power Conditioner Modeling Approach

This model is used to predict instantaneous machine currents, voltages, torques, speeds, as well as inst?ntaneous voltages, currents and power dissipation thre aghout the various components of the PC. It also gives the instantaneous values of the various control signals throughout the EMA system. Therefore, this model is not to be confused with any frequency domain type approaches for prediction of EMA dynamics. The state-space discrete time approach [15] is utilized throughout. This includes the machine model, the PC, the control system, and the rotating masses.

The model, in its present form offers the capability of simulating the entire closed-loop operation of the EMA. This is accomplished by means of a

Fig. 5 Armature (stator) MMF immediately before and after a switching instant.
Fig. 6 Torque angles and torque profile due to conditioner switch. ing.

end of switching period

Fig. 7 Functional block diagram of overall EMA in single-channel format.

Fig 8 Power conditioner machine network graph.

fourteenth-order state variable model. The model was used in obtaining instantaneous values of the system state variables in response to a given input position command (step, ramp, etc.). In this simulation the dynamics of all the major components of the EMA are included. An overall block diagram representation of the components of this model and their interactions is depicted in Fig. 7. Further details on the complete EMA model will be given in forthcoming papers. Also, [11] contains details of this portion of the study.

Representation of Components of the Power Conditioner

An essential element of the composition and development of this model is the representation of individual components in the PCM network. All transistors are represented by nonlinear resistances. These resistances assume extremely low values to simulate the "on" states for such devices. The value of this resistance is based upon the collector-to-emitter voltage drop at rated transistor current. Likewise, extremely high values of resistances are used to simulate the "off" state of such transistors.

Diodes are represented by similar nonlinear resistances which assume extremely low values during for346
ward bias (based on the voltge drop across a diode at rated current), and extremely high values during reverse bias.

Other discrete components of the PC are the input filter capacitor which is represented as a time invariant capacitance, the battery which is modeled as an ideal emf source in series with a resistance which represents the internal ohmic dissipation in the battery, and the chopper inductor which is represented as a nonlinear time variant inductance whose value is dependent upon the saturation status in the inductor core. This time-variant inductance is therefore dependent upon current through the choke winding.

Machine Representation

In this model, each phase is represented with its leakage inductance in series with the active self and mutual components of the phase inductance, where the active self and mutual inductance voltage drop is nothing other than the induced back emf due to the resultant flux distribution linking the stator windings. Further, in series with this emf-leakage inductance is a resistance representing the ohmic dissipation and voltage drop in each phase.

Power Conditioner-Machine Network State Equations (PCMNSE)

Substitution of the component models described above in the PCM schematic of Fig. 4 yields the nonplanar network graph shown in Fig. 8. This network is nonlinear because of the inherent nonlinearities in the component characteristics as detailed above.

The heavy-lined branches in this figure represent the twigs of the chosen tree. The thin-lined branches belong to the cotree, see [14]. The assumed direction of the current in each of these branches is indicated by a solid arrow for the twigs, and by the outline of an arrow for the links. The sense of the branch voltages with respect to the assumed current orientations is determined by employing the consumer (load) system of notation.

For purposes of identification, each branch is characterized by two different labels; a branch label and a branch component label. The branch label identifies the branch number and is denoted by the prefix B and the branch number. For example, BI denotes branch one. The component labels are identified by the prefixes C, E, L, and R (capacitor, emf, inductor, and resistor) and the component number. In addition (1) the branch labels, each node is identified by the prefix N and the chosen node number. Node NO is taken to be at ground or zero volts potential and is therefore used as the reference for the other node voltages.

Branch currents are denoted by the prefix IB followed by the appror riate branch number. For ex-

Similarly, the branch voltage is symbolized by VB16. The state variables for this network are the branch voltages of the twig capacitors and the currents through the link inductors. This corresponds to VB5, IB21, IB22, and IB. 3 .

Standard graph theory techniques [14] were applied to this network, from which one obtains a system of first-order differential equations whose coefficients are nonliner (chopper inductor, back
of equations can be written in abbreviated matrix notation as follows:

$$
\begin{equation*}
F_{n} \cdot x_{n}=G_{n} \cdot x_{n}+H_{n} \cdot u_{n} \tag{1}
\end{equation*}
$$

In expanded form, following the branch current and voltage notations explained above with reference to Fig. 9, (1) can be rewritten as follows:

$$
\left[\begin{array}{cccc}
\mathrm{C} 1 & 0 & 0 & 0 \\
0 & \mathrm{~L} 2 & 0 & 0 \\
0 & 0 & \mathrm{~L} 1+\mathrm{L} 3 & \mathrm{~L} 1 \\
0 & 0 & \mathrm{~L} 1 & \mathrm{~L} 1+\mathrm{L} 4
\end{array}\right] \cdot \frac{d}{d t}\left[\begin{array}{c}
\text { VB5 } \\
\text { IB21 } \\
\text { IB22 } \\
\text { IB23 }
\end{array}\right]
$$

Equation (1) was transformed to the standard statespace format by premultiplying equation (1) by the inverse of F_{n} which gives:

$$
\begin{equation*}
x_{n}=\left(F_{n}^{-1} \cdot G_{n}\right) \cdot x_{n}+\left(F_{n}^{-1} \cdot H_{n}\right) \cdot u_{n} \tag{3}
\end{equation*}
$$

where F_{n}^{-1} is given as follows:

$$
F_{n}^{\prime}=\left[\begin{array}{cccc}
\frac{1}{\mathrm{Cl}} & 0 & 0 & 0 \\
0 & \frac{1}{\mathrm{L2}} & 0 & 0 \\
0 & 0 & \frac{(\mathrm{LI}+\mathrm{L} 4)}{\mathrm{LIL4}+\mathrm{L} 3 \mathrm{LI}+\mathrm{L} 3 \mathrm{L4}} & \frac{-\mathrm{LI}}{\mathrm{LIL4}+\mathrm{L} 3 \mathrm{LI}+\mathrm{L3L4}} \\
0 & 0 & \frac{-L .1}{\mathrm{LIL4}+\mathrm{L} 3 \mathrm{LI}+\mathrm{L3L4}} & \frac{(\mathrm{LI}+\mathrm{L} 3)}{\mathrm{LIL4}+\mathrm{L} 3 \mathrm{LI}+\mathrm{L} 3 \mathrm{~L} 4}
\end{array}\right]
$$

TABLEI
Summary of Experimental Test Cases

mode ot operation	motor speed in rpm	ICMDs amperes
Wotoring (forward)	4500, 5000, 5025	41.5, 31.5, 32.5
Regenerating (forward)	5101	-38.0
Plugging (torward)	240	32.0

Fig. 9. (A) CSWF of machine phase A current during forward motoring. Speed 5000 rpm , ICMD 31.5 A , and 30° commutation advance. (B) Oscillogram of machine phase currents during forward motoring. Speed 5000 rpm, ICMD 31.5 A , and 30° commutation advance.

In this final formulation of the PCM model, all matrix manipulations were carried out in explicit parametric symbolic form in order to minimize computational effort and time. This is the case since a number of these coefficient matrices have to be updated at every increment for which the network parameters' values change.

The discrete-time solution approach was based entirely un a modified exponential series (state-space)
method [19]. Thus the PCM model was put in the form $\boldsymbol{x}=\boldsymbol{A} \cdot \boldsymbol{x}+\boldsymbol{B} \cdot \boldsymbol{u}$, where the values of the state variables at the $(K+1)$ th time instant are related to the values of the state variables at the (k) th time step by the state transition matrices $\Phi_{1}(\tau)$ and $\theta_{\star}(\tau)$ as follows:
$x\left(t_{k+1}\right)=\Phi_{k}(\tau) \cdot x\left(t_{k}\right)+\theta_{k}(\tau) \cdot u\left(t_{k}\right)$
where τ is the chosen time increment. Here. one must reemphasize that the matrices Φ_{k} and Θ_{k} may be reevaluated at every instant k in the time solution, depending on the status of changes in the network parameters. These parameters are in turn functions of the state variables and switching commands as outlined earlier.

This approach was used in conjunction with a solution algorithm which is detailed in [11] and [12] as well as [19]. In this algorithm successive icrementation of time takes place over the transient period under consideration accompanied by nonlinear network iterative techniques to ascertain the status of all the diodes in the network. In the following section, results of practical application of this algorithm are compared with corresponding experimental test data obtained from the actual EMA hardware.

Comparison Between Numerically and Experimentally Obtained Performance Data

A number of conventions must be established to facilitate the comparison between experimental and numerical data included here. It will be agreed upon. in this paper, that the time origin in all the waveforms included here is at the farthest left-hand side of the figures. The edge of a positive half waveform closer to the time origin will be referred to as the "leading edge." On the other hand, the edge of a positive half waveform farthest from the time origin will be referred to as the "trailing edge." The computer simulated waveforms for various currents and voltages which were obtained using the model presented in this paper, will be referred to by the abbreviation CSWF. It should be pointed out that various CSWFs and their corresponding oscillogram counterparts have been obtained under slightly different operating conditions (speed, current, command, etc.). This is because of the fact that these investigators had no direct control over the experimental test procedures and conditions, since they were performed at a different facility.

The PCM model is verified by comparisons of CSWFs with actual oscillograms obtained frona tests performed on the EMA. These comparisons are made for modes of operation, speeds and dc line curren: commands, ICMDs which are summarized in Table : for the actual test conditions.

Fig. 9(B) shows experimentally obtained oscillograms of the machine phase currents at a speed of 5000 rpm and with a commutation advance of 3 C elec-

Fig. 10. (A) CSWF of current through Q1-D1 inverter switch during forward motoring. Speed 500 rpm, ICMD 31.5 A , and 30° commutation advance. (B) Oscillogram of current through Q2-D2 inverter switch during forward motoring. Speed 5025 rpm, ICMD 32.5 A , and 30° commutation advance.
trical degrees. Examination of the current waveforms reveals the same characteristic overshoot and undershoot at the leading and trailing edges of the oscillogram and the CSWF given in Fig. 9(A). The positive peaks of the current oscillograms shown in Fig. 9 are indicated by an X on the corresponding CSWF. Bott the oscillogram and the CSWF display the same chopper frequency of 9 peaks per haif cycle. Notice also the two slope current transient present in both cases in the middle of the positive and negative current cycle. This can be attributed to the switching "on" of diode DR shown in Fig. 4 during commutation.

Figure $10(B)$ depicts the occillogram of the current through one of the transistor-diode switches in the sixlegged inverter-converter bridge leading to the machine phases. A corresponding CSWF is given in Fig. 10(A). Excellent correlation between the various ripples and pulses in the oscillogram and the CSWF are self-evident upon examining these figures. Time congruence between the occurrence of the various ripples and pulses is also evident in these figures.

Fig. 11. (A) CSWF of IM during forward motoring. Speed $\mathbf{5 0 0 0}$ rpm, ICMD 32.5 A , and 30° commutation advance. (B) Oscillogram of IM during forward motoring. Speed 4500 rpm , ICMD 41.5 A , and 30° commutation advance.

Fig. 11(B) depicts the oscillogram of the main dc line current for a motoring mode. Notice the current dips which are occurring at regular intervals. The almost identical ripple and dip pattern is also evident in the CSWF given here in Fig. 11(A). Again the agreement between the numerical and test results is excellent.

Fig. 12(B) gives the oscillogram of phase current for the generating (or regenerative braking) mode at a rotor speed of 5101 rpm , while Fig. 12(A) depicts the corresponding CSWF of one of the three phase currents at the same speed. Again agreement between the oscillogram and the CSWF is excelient.

Fig. 13(B) depicts the oscillogram of the phase current obtained while the PCM was operating in the braking mode at a speed of 240 rpm . The corresponding CSWF for the same phase current is given in Fig. 13(A). Again, excellent correlation can be seen between the two waveforms.

PHASE A MACHINE CURRENT CIAI

(A)

(B)

Fig. 12. CSWF of machine phase A current during forward regeneration. Speed 5101 rpm and ICMD -38.0 A. (B) Oscillogram of machine phase current during forward regeneration. Speed 5101 rpn and ICMD -38.0 A.

A major performance characteristic which is a key in determining the dynamic performance of the motor is the developed electromagnetic (elestromechanical) machine torque. This was calculated as the sum of the products of the phase back emf times the phase current for the A, B, and C windings, divided by the machine speed. The resulting transient electromagnetic torque profile is given in Fig. 14. As expected, the resulting profile gives a pulsating type torque with a nonzero average superimposed on which is a torque ripple of substantial magnitude. This confirms the earlier prediction associated with the vaiiable torque angle between the armature and rotor MMFs, due to the "hopping" nature of the stator MMF. This is equivalent to a classical synchronous machine in which the torque angie vartes in a cyclical fashion.

This torque is a key component in the determination of the overall EMA servo-loop performance to various input position commands. Results of this additional work have been reported on by these authors in (12) and will be expended on and reported on in forthcoming papers. For instance, this present model can be used to predict the torque and dc machine line current throughout the duration following a step input

(A)

(B)

Fig. 13. (A) CSWF of machine phase A current during forward plugging. Speed 240 rpm, ICMD 40 A , and 30° commutation advance. (B) Oscillogram of current through phase B (top curve) and current through Q2-D2 inverter switch during forward plugging. Speed 240 rpm , ICMD 32 A , and 30° commutation advance.
fla, position command. This is demonstrated in the profiles given in Figs. 15 and 16 for the machine current and torque including the effect of all components in the servo loop. Here, positive current and torque represent motoring mode, and negative values indicate regenerative or dynamic breaking, depending on machine speed. The profiles in Figs. 15 and 16 correspond to a step command of 2.75° mechanical in llap position.

Based on the con of results presenicd atuvive, and the excellent cortelation between the digitally simulated and experimentally obtained data, one can see clearly the validity of the modeling approach presented here for the PCM package. This is a major incentive towards further application and use of this model in the simulation of desig: modifications and new designs of this ciass of motors and power conditioners. This can save significant prototype production costs during optimization (design improvement). Also,

MACHINE ELECTROMAGNETIC

Fig. 14. Transient sorque of isotor during forward motoring. Speed 5000 rpm. ICMD 32.5 A , and 30° commutation advance.
this model can be used as a trouble-shooting tool as will be outlined in the next section, namely in troubleshooting related to electrical transients in such a system.

Use of Switching Logic Diagram in Diagnosis of Design Problems and Trouble-Shooting of Transients

In studying the electrical transients which are produced during the operation of such a PCM package, one is confronted with the extreme difficulties associated with the fast changing state (topology) of the network. This is due to the many electronic switching operations involved

Upon examining the voltage and current waveforms throughout the machine-network combination, one can easily spot spikes and pulses in such waveforms, where at first glance it is extremely difficult to attribute such transients to their proper cause (source). To alleviate this difficulty of identification of the cause (source) of a specific transient, a logic diagram was computer plotted with the help of the present EMA-PCM model, Fig. 17, in which the status of the various on-off periods of all the switches and diodes in the network are given over ithe simulation of duration of operation. The notation in Fig. 17 corresponds to that in Fig. 4. If the time (x axis) scale is chosen properly to correspond to the obtained current and voltage waveforms, one can superimpose this graph of Fig. 17 for the forward motoring mode, or others similar to it in other modes, on top of any current waveforms such as given in Figs. 9-13. This is to help identify the specific switching operation which is the cause of a particular spike or pulse contained in these waveforms.

Fig. 15. Machine current following 2.75° nap command

Fig. 16. Machine torque following 2.99° nap command

For example, one can trace the relationship, on a one-to-one basis, byween the on-off periods of the chopper transistor QM and diode DM during the motoring mode, the on-off status of which are shown in Fig. 17, and the corresponding sawtooth-like component of the phase current evident in Fig. 9.

Another example of identification of the cause of a transient, using the logic diagram of Fig. 17, is the congruence, in the time frame, of the undershoots (negative) and overshoots (positive) in the phase cutrent waveforms preceding each of the negative and positive half cycle with the "on" periods of the

Fig 17 EMA logic ugnals during forward motoring. Speed 5000 rpm, ICMD 32.9 A , and 30° commutation advance.
diodes D4 and DI, respectively. Reference shouid be made here to the PCM schematic, Fig. 4.

It is now evident that such a diagram, Fig. 17, is an extremely valuable educational tool in helping one understand the complex interactions which take place in the operation of such a PCM system. Furthermore, this simulation model, if used in conjunction with a magnetic field finite element [16,17] analysis tool for prediction of motor parameters (emf waveforms, inductances, etc.) can be applied to extensive ends in the magnetic design tailoring to a particular motor improvement as well as power conditioner design and vice versa to achieve goals specified by constraints in a given case. Aspects of the application and use of the present model along these lines will be covered in forthcoming papers.

Conclusions

The development of a detailed transient model for simulation of the instantaneous performance of a power conditioner fed samarium-cobalt permanent r iugnet brushless dc machine has been presented. The model emphasized in this paper was part of a more comprehensive development of an overall fourteenth. order electromechanical actuator dynamic model for the simulation of the transient performance of an EMA prototype manufactured for NASA-JSC. The fourteenth-order model will be reported on in forthcoming papers.

The numerical results of the instantaneous machine and power conditioner currents and volages had a high degree of correlation to actual experimental test data performed on the prototype. This was the case under all possible opurating modes (motoring, regenerative braking, and plugging). The accuracy of the model and its suitability for parametric design studies enabled these authors to use it in investigations of improvement of machine-power conditioner commutation characteristics, to reduce electrical transients and improvement of instantaneous torque profiles.

This model will be further innproved by the addition of a motor magnetic field analysis capability using the method of finite elements. This will enable one to use the present model as a comprehensive design optimization and analysis tool in lieu of costly prototype fabrication and testing. Also, it will bring the performance of prototypes of such devices, whenever they are fabricated, closer than ever to the ultimate goals and constraints set for them. It will help identiíy unreasonable or impractical goals. This in itself results in substantial savings in developmer.l costs in laboratory and shop work. Further, this technique can be extended to encompass other power conditioner configurations.

Acknowledgment

We wish to acknowledge in particular the encouragement and enthusiasm offered by Mr. J.T. Edge of the Johnson Space Center. We wish to thank Mr. Edge for his many stimulating and useful suggestions which he offered freely throughout the duration of the contract, and without which !his work would have been incomplete.

References

[1] R.L. Steigerwald and T.A. Lipo. 'Analysis of a novel forced-commutation starting scheme for a load-commutated synchronous motor drive," IEEE Trans. Ind. Gen. Appl., Jan./Feb. 1979.
12] F. Harashima, H. Naitoh, and T. Haneyoshi, "Dynamic performance of self-zuntrolled synchronous motors fed by current-source inverters." IEEE Trans. Ind. Gen. Appl.. Jan./Feb. 1979.
[3] W. McMurray, "Thyristor commutation in de choppers-A comparative study." IEEE Trons. Ind. Gen. Appl. Nov./Dec. 1978.
[4] S. Martinez and F. Aldana. "Current-source double de-side forced commutated inverter." IEEE Trans. Ind. Gen. Appl., Nov./Dec. 1978.
[9] E.P. Cornell and T.A. Lipo. "Modeling and design of controlled current induction motor drive systems." IEEE Truns. Ind. Gen. Appl., July/Aug. 1977.
[6] E. P Cornell and T A. I ipo, "State-variable sleady-state analvis of a comionlled current indiailoon monor drive." IEt:E Truns Ind. tien. Appl. Nov./Des 1975.
[7] T.A. Lipo, and F.G. Turnbull. "Analysis and comparion of two types of square-wave inverter drives." IEEE Trans. Ind. Ger. Apph., Mer./Apr., 1975.
(8) G.R. Slemon, S.B. Dewan, and J.W.A. Wilson, "Synchronous motor drive with current-Lource inverier." IEEE Irens. Ind. Cien. Appl., vol. IA-1U, May/ june Iyi4, pp. 412-416.
[9] R.A. Turton and G.R. Skemon, "Stability of synchronous motors supplied from current source inveriers," IEEE Power Enzinetrint Soc., 1978 Summer Meeting, Los Angeles, Paper No. F78.741-1.
$110]$ R.A. Turton and G.R. Skmon. "Sability of a synchronous motor drive using a current source inverter with power factur control." IEEE Power Engumering Soc., New York, 1979 Winter Power Meeting. Paper No. F79-217-1.
[II] T.W. Nehl, Ph.D. Dissertation, Dep. of Electrical Engineering, Virginia Polytechnic Institute and State Univ. Biacksburs, Va., May 1900.
[12] N.A. Demerdash and TW. Nehl, "Numerical simularion of dynamics of brushless de motors for aerospace and other applications." Final Rep Virginia Polviechnic Instutute and State Univ. NASA ! JSC) Contract No. NAS9-1509, submi. ted to NASA-Johnson Space Center, Houston. TX, 1978.
113] Deico Electronics, "Final report on the electromechanical fligh control actuator." Final Rep. Contract No NAS9.14952, General Motors Corporation, Deico Electroniss Oiv, Santa Barbara Operalions, Goleta. CA. 1978
[14] N Balbanian and T.A Bickart, Elecirical Nelwork Theory New York. Wiley, 1969.
[15] J.A Cadzow and H.R. Mariens, Discrete-Time and Com. puter Controlled Systems. Engiewood Ciffs. NJ. PrenticeHall. 1970.
[16] N.A. Demerdash and T.W. Nehi, "An evaluation of the methods of finite elements and finite differencesyn the solutuon of nonlinear eleciromagnetic fields in electrical machines," IEEE Trans. Power App. Syst., Vol, PAS-98. pp 74-87, 1979.
[17] P. Silvester and M.V.K. Chars, "Finite element solution of saturable magneuc field problems,' JEEE Trans. Power App. Syst., Vol PAS-89, pp 1642-1652, 1970
[18] A E. Fitzgerald and C. Ǩingsley, Jr. Electric Machinery, Second Ed New York McGraw-Hill, 1961
[19] N.A. Demerdash and T.W. Nehl, "Dynamic modeling of brushless de motor-power conditioner unit for clectromechanical actuator application," Proc Power Electronics Specialists Conf., San Diego. 1979. pp 333-343

Nabeel A. Demerdash (M'65-SM'74) was born in Cairo, Egypt, on April 26, 1943. He received the B.Sc.E.E. degree with distinction and first class honors from Cairo University, Egypt, in 1964, and the M.S. and Ph.D. degrees in Electrical Engineering from the Univers:ty of Pittsburgh in 1967 and 1971, respectively.

From 1964 to 1966 he was with the Faculty of Engineering, Cairo University as a Demonstrator. From 1966 tc 1968 he was with the Department of Electrical Engineering, University of Pittsburgh, as a Graduate Teaching Assistant. In 1968 he joined the Large Rotating Apparatus Division of Westinghouse Electric Corporation, East Pittsburgh, Pennsylvania, as a Development Engineer, where he worked on Electromagnetic Field Modeling in Rotating Machinery and the development of the asymmetrical rotor for large steam turbine-driven generators. Since 1972 he has been with the Virginia Polytecnnic Institute and State University, Blacksburg, where he is presently an Associate Prciessor in the Department of Electrical Engineering. He consuited for the Power Distribution and Control Branch of the Control Systems Development Division as a visiting scientist at the NASA-Johnson Space Center, Houston, during the summers of 1975 and 1976, on modeling of electrical motors for aerospace applications.

Dr. Demerdash is currently serving as a member of the Rotating Machinery Committee of IEEE, as well as Chairman of the Synchronous Machinery Subcommittee and a member of the Machine Theory Subcommittee of the IEEE. Dr. Demerdash is the Vice-Chairman of the Virginia Morntain Section of IEEE. He is also a past Chairman of the Industrial Applications Chapter of the Virginia Mountain Section of IEEE. He is a member of the American Society oi En-incering Education, Sigma Xi, and Eta Kappa Nu. Dr. Demerdash is the author and coauthor of more than 30 transactions and technical papers in th: : power and magnetic fields areas. Dr. Demerdash's cuirent interests include electromechanical propulsion and actuation, dynamic modeling of solid-state controlled and operated electrical machines, numerical analysis of electromagnetic fields in eiectric machinery, as well as machine-power system dynamics.

Thomas W. Nehl (M'78) was born in Tuebingen. West Germany, on December 22, 1952. He received the B.S.E.E., M.S.E.E., and Ph.D. degrees from Virginia Polytechnic Institute and State University in 1974, 1976, and 1980, respectively. Presently he is an Assistant Professor of Electrical Engineering at VPI\&SU,

He consuited for the Fairfax County Department of Public Works in the summer of 1974 on explosion proofing of the electrical switchgear and motors utilized in pumping stations. During the summer of 1976 he was employed by the National Bureau of Standards as an engineering intern, where ne ceveiupeúa finite element package for the solution of sinusoidal eddy current problems in support of their nondestructive testing program. During the summer of 1977 he was employed as an engineering intern at the NASA Johnson Space Flight center where he was engaged in the modeling of electromechanical actuator systems, using permanent magnet brushless de motors.

Dr. Nehl is a member of the machine theory and synchronous machines subcommittee of IEEE, PES. He is also a member of Sigma Xi, Eta Kappa Nu, and Phi Kappa Phi. Dr. Nehl's current interests include numerical analysis of elec. tromagnetic fields in electrical machines and the dynamic modeling of machines and their associated power electronics.

APPENDIX (8)

ON IMPACT OF INDUCTANCES OF MACiHINE WINDINGS ON BRUSHLESS DC

Nehl, T. W., Demerdash, N. A., and Fouad, F. A., "Impact of Winding Inductances and Other Parameters on the Design and Performance of Brushless DC Motors," Paper Accepted by IEEE-PAS, for publication in the IEEE Transactions on Power Apparatus and Systems.

- 1983 IEEE. Reprinted, with permission, from the IEEE Transactions on Power Apparatus and Systems, to appear in a 1984 Issue of the PAS Transactions.
mpar: UF WINDING IndLCTANCES aND OTHER PARAMETERS ON THE DES:GN AND PERFORMANCE OF BRUSHLESS DC MOTORS
F. A. Found, Member

Virginia Polytechnic Institute and Stace Universty

SUMMARY

The computer aided design process applied to two electronically operated brushless dc motors fititended for use in electric vehicle propulston is described. The components of this process are a time doma in Jynamic simulation model of the brushless dc motor system in which the machine parameters, inductances and emfs, are obtained enitrely from finite element field andilysts of the magnetic circutt arrived at by the designur. Thts computer aided design process is used to determine the correct winding configurations for two machines. One of thesa macnines utilizes a samarium cobalt permanent magnet rotor, while the other utilizes a strontium ferrite parmanent magnet rotor. Both machines are required to achieve, as a minimum, 15 hp continuous and 35 hp peak motor ratings subject to the constraints of a maximum dc supply voltage of 120 V , a speed range of 6000 to 9000 rpm, and a maximum current of 400 A . This 400 A limit is due to limitations on the avallable power switching components. A schematic diagram of tre main components of these two systems, is given in Figure (1).

motor dower conditioner sinematic and idealized MOTOR CURAENTS

Figure $\| l l$ senematic of Brushless $O C$ Motor System.
The combuter aided design process is used to andiyze two prelimsnary winding designs per machine trat appedred feasible based on standard design procedure:. The difference between the varlous preliminary derigns was the totai number of series turns per phase.

The windirg inductances and the induced back emf waveforms (funcamental and hamonics) are obtained by finite element field analysis of these preliminary designs. Tnese key machine parameters, which critically impact the performance of the system, are then used in the dynamic simulation model 0 : the entire machine-over conditioner urit that forms the brushless de machine.

This model was used to predict the max'mum power developed over the desired speed range for the four cases constderea here. The effect of the 7 :ro and thirty degree commute*ion advance (detafled in trit paper) on the performance of the systemn $n=:$ is, determined. A sample of these results is cispiayed in Figure (2) for the samarium cobalt machice.

Figure (2) Maxtmum Power Curves for the Samariunt Cobalt Machina.

Based on this computer aided prediction, the two designs with the lower number of series turns were implemented, see Figure (3) and subsequently tested. In these tests, both machines met the desired performance goals for rated and peak power conditions without any design modif.cations. This demonstrates the usefulness of such a computer aided design approach in the design of electronically operated machine systems.

Figure (3) The Assembled :Hotors (Samarium Cobal: . Short Machine).

ORTAMAL PNCE IS OF POOR QUALTTY

T.W. Nehi, Member

N.A. Demerdash, Senior Member
F.A. Fouad*, Member

Virginia Polytechnic Institute and State University

ABSTRACT The computer aided design process of two electronically operated brushless dc motors interded for use in elactric vehicle propulsion is described. The components of this process are a time domai.: dynamic simulation model of the brushless de motur system in which the machine paramenters, inductances and emfs, are obtained entirely from finite element field analysis of the magnetic circuit arrived at by the designer. This computer aided design process is used to determine the correct winding configurations for two machines, the permanent magnet rotor one of which is of samarium cobalt, and of ferrite for the other. Both machines are requirer to achieve 15 hp continuous and 35 hp peak ratings as motors, subject to the consiraints of a maximum dc supply voltage of 120 V and a maximum surrent of 400 A due to limitations on the availabie power switching components. In addition, the effects of changes in the firing angle of the inverter transistors, with respect to the induced winding emf's, are examined. The results of ihis work demonstrate that the jerformance of such systems is inductance limited especially in high speed (frequency applications. The two macnine designs selected as a result of this analysis were fabricated and subsequently tested in the laboratery. Both machines met the desired performance goals as precicted by the camputer aided design process. These results, as well as those from previous investigations. demonstrate the usefulness of this approach in analyzing electronically operated machine systems with nonsinusoidal phase currents and emf's which cannot aci quately be handled by classical frequency domain analysis.

In ODUCTTON

Electronically operated brushless dc motors are presently being investigated for possible use in a number of applications such as electric vehicle propulsion [1] and flight control actuation [2], [3]. This is due to the potential performance advantages of these motors such as reduced weight and volume, reduced maintenance, and increased reliability. The machine phase voltages and currents are highly nonsinusoidal due to the switching action of the power conditioner switches; therefore, slassical frequency domain techniques are not well suited to the analysis of such systems [4], [5]. For this reason, a time domain dynamic simulation model sultable for implementation on the digital computer is uesirable. Such a model is available and has been used successfully to predict the dynamic behavior of both an electromechanical flight control actuator [4] ard an lectric vehicle propulsion unit [5].

The major difficulty in the implementation of this design process at its early stages is the uncertainity of the values of machine inductance and emf parameters ot tained by established design techniques. For this reason a numerical method for the calculation of these parameters was chosen to bridge this gap in the design process. The finite element method [6] is well suited to this task. In this work the winding inductances are calculated by means of an energy perturbational approach using the finite element method wnich was detaileo in earlier references [7]. [8]. Due to the low level of saturation in the cores of the machines considered here, [9], the induced emf waveforms resulting from the armature flux linkage are calculated from the midgap flux density waveforms which are obtained from finite elament field solutions [9]. The use of numerically determined parameters as inputs to the dynamic simulation model represents a powerful computer aided design step for such systems.

In this work, the above mentioned cor:suter aided design tools are applicd to the design of two brushiess dc motors, for electric vehicle propulsion, subject to the same set of performance and system constraints. One of these motors is based on a samarium cobalt permanent magnet rotor, while the other is based un a strontium ferrite magnet rotor. The analysis presented here is restricted to tile selection of one of two possible winding configurations, obtained from a preliminary design for each machine. The selection of the correct windings takes into account the effects of changing the firing angle of the inverter power switching transistors The selected machine designs were impleinented and ooth met all of the required performance and system constraints, thereby validating this design approach.

SYSTEM DESCRIPTION

The basic configuration of the two trushless dc machine systems under consideration is shown in Figure (1). Each of these systems consists of a 120 V supply battery which is a constraint on the rated voltage of the system, a transistorized power conditioner, and a three phase permanent magnet machine. The intended application for these systems is electric vehicle propulsion. For this application the required performance secifications are:

A continuous two hour rating of 15 hp corresponding to a vehicle cruising speed of 55 mph
2. A peak rating of 35 hp for one minute for hill climbing.

Notice that these performance specifications must be met with a maximum supply voltage of only 120 V (battery constraint). Under this constraint, the machine winding inductances become a very important factor in whether or not these performance specifications can be met. This low supply voltage also imposes large curients of several hundred amperes which must be switched by the power transistors. Consequently, the transistor ratings must also be considered in the design process.

Power SOnditioner Description

One power conditioner is used to drive either one of the two machines. This power conditioner consists of a transistornzed current cnopper for curient masnitude control anc a three phase transistorized inverter/converter bridge for inverting dc to trice phase ac anc vice versa, [1]. The chopper and inverter both make use of Toshiba 2 SD648 monolitic dariington power transistors rated at $300 \mathrm{~V} V_{\text {cE(SUS) }}$ and a 400 A maximum collector current. These fimits must be satisfied at both the continuous and peak rated operating points.

Voltage transierts seen by these transistors are affected largeiy by the transistor switching speed, circuit layout and by the snubber networks. It will be assumed in tnis work that the snubber networks are capable of keeping the voltage transients below 300 V . Therefore che snubber networks will not be considered here. The current rating, however, was imposed as one of the constraints on the system during the design process.

The basic function of the power conditioner is illustrzted by the idealized current waveforms during the motoring mode of operation shown below the circuit diagram in figure (1). During this mode of operation, - oc powe supay

- FILENEADSCITOA

Figure (1) Machine-Power Conditioner Schematic and Idealized Phase Currents
the power conditioner control logic receives information on the position of the rotor vid two sets of threc equally paced Hall devices, [1]. One set of Hall devices is used for nomal firing while the other set is used to aavance the firing by thirty degrees at high load conditions, [1]. The rotor cosition is translated into one of six discrete current states as shown in Figure (1). Each current state produces an armature maf which rema ins fixed in space for sixty electrical degrees until the next current state. After the rotor completes sixty electrical degrees f rotation the phase currents are, ideally, switched instantaneously inta tre succeeding current state. This would result in a siep or hop (of the armature nunf) of sixty electrical degrees in the direction of rotation. This process is repe'ted six times per electrical revolution resulting in a d.scretely jumping or hopping mimf, [4], [5]. In an actual physical system, however. the magnetic fields inside such a machine cannot change instantaneously due to stored magnetic energy asscciated with the currents flowing in the windings. Therefore, these winding inductances play an important role in determining the overall system performance especially at high frequency and high load conditions. [5].

The Dower conditioner can also function in the
regenerative braking mose in order to recover some of the kinetic energy associated with a moving vehtcle during braking. During this mode the six inverter transistors are turned off resulting in a three phase full wave rectifier bringe. This paper will deal oniy with the motoring mode of operation, conseouencly regeneration wili not be cons'dered here.

Machine Descriptions

The above mentioned power conditioner was designed to operate either one of two machines. One machine uses high energy product samarium cobalt per. manent magnets while the other one makes use of cheaper and more readiiy avaliable strontiun ferrite permanent magnets. From previous experfence with a four pole, fifteen slot samarium cobalt motor of the same rating; it was decided to increase the number of poles to $s i x$ and the number of slots to elghteen. This was done to decrease the machine volume and weight as well as reduce the compiexity of the montne winding. Since the fractional slot winding was abandoned, it was decided that both armatures would be skewed one full slot pitch to reduce harmonics in the backemf, [10]. Based upon these assumptions, the stator laminations and rotor structure were designed using standard magnetic, themmal, and mechanical design procedures. The resulting preliminary designs of the samarium cobalt and ferrite machines are shown in the cross-sectional views of Figures (2) and (3), respectively.

Figure (2) Cross-Section of the Samarium Cobalt Machine

Figure (3) Cross-section Strontium Ferrite Machine

The desired speed range for the rated 15 hp point was chosen between 6,000 and $9,000 \mathrm{rpm}$ due to core loss, mechanical, and other design considerations.

For the samarium cobalt machine, the preliminary design process indicated that windings with twelve and fifteen turns per phase were feasible. For the strontium ferrite machine the choice was found to be between two designs, one with nine and the other with twelve turns per phase.

Therefore the design problem at this stage is reduced to picking the correct number of turns for the armature windings of the two machines. The various factors influencing the final choice of the winding configuration are discussed next.

FACTORS AFFECTIMG MACHINE PERFORMANCE

The correct choice of the number of turns for the two machine designs given above depends on a number of factors such as the backemf constant of the machine, the winding inductances. and the angle between the phase currents and emfs (commutation angle).

impact of Emfs and Inauctances

The machine winding inductances must be low enough so that the current can buildup to the required values at continuous and peak operating points, under the above mentioned supply voltage constraint of 120 V . Also, the maximum allowable value of this inductance
is strongly dependent upon the number of poies since this determines the frequency of the phase currents. If ins inductances are too large, the recuired power must de oblaincu at a lower speed freguency: and hence reduced backemf. Therefore, the magnitude of the current must increase correspondingly to keep the machine output power constant. ihis situation can be tolerated so long as the maximum current handling capability of the transistors is not exceeded.

The winding inductance varies with the square of the number of turns while the induced backems varies linearly with speed. Therefore small changes in the total number of Eurns reduces the no load speed only linearily while dramatically reducing the inductances. Such small changes in the winding can produce dramatic changes in the maximum machine power output at a given speed and supply voltage, as will be shown later. Ideally, the inductance of a machine should be kept as iow as possible for a given emf constant. Tris can be accomplisned in a number of ways such as operating the core at higher flux densities, improved permanent magnet materials, reducing the slot and end leakage inductances, and 50 on.

Impact of the Commutation Angle

Another factor affecting the machine output is the angle between the injected phase currents and the induced phase voltages, [i], [10]. Nomally, current is injected into a phase winding thirty electrical degrees after the backemf passes through zero (zero cormutation advance or nomal iiring). Since the period of conduction is 120 electrical degrees, the phase current and emf waveforms are centered with respect to each other. This maximizes the voltrampere product for a given current and machine speed. Under heavy loads this firing angle limits the maximum value of current buildup since the current is injected only after the backemf reaches $\sin \left(30^{\circ}\right)$ of its peak value (for sinusoida! backemfs). Since this emf opposes the current buildup,it may be necessary, under peak load conditions, to advance the firing of the inverter transistors by thirty degrees to the point where the induced backemf is zero (thirty degree commutation advance or advanced firing!. This reduces the voltampere product, however this is more than compensated for by the substantial increase in current magnitude, as will be seen later.

The following two sections w." describe the ma-chine-power conditioner model used in the computer aided design process and how the machine parameters are determined. These computer aided design models are then apolied to the preliminary designs of the two machines mentioned above to determine the effects of the emfs, inductances and commutation advance on thes overall system performance.

MACHINE MODEL AND PARAMETER DETERMINATION

The electrical behavior of the two wye connected (floating neutral) brushless de machines is modeled by a wye connected three phase network consisting of a series connected resistance, inductance, and voltage source per phase, see Figure (4).
The justification for this rather simple model was given earlier in reference [5]. Also, this model has been used very successfully in the analysis of similar machines in previous investigations, [4], [10].

The voltage sources in the three legs of this model represent the induced backemfs per phase produced by the rotating permanent magnet rotors. The backemf waveforms are calculated from the midgap flux density waveforms which are obtained from two dimensional nonlinear finite element field analysis, [9].

Table (2) FE Determined and Measured (Line to Line/2 Inductances

	SAMARIUM COEALT	
	12 Furneiphase	15 Fumrsiohasa
FE	41.85 H	65.35 HH
MEASURED	44.95 LH	Not availabie
	FERR	
	6 Iums/Phase	I2 Turns/Phase
FE	42.5 HH	75.5 HH
MEASURED	46.0 ; H	Not available

In summary there are three bajic simplifications which lead to this rather simple machine model and which are justified on the basis of the physical nature of these brushless machines at hand. These simplifications are as follows:

1. The series inductance per phase in the equivalent carcuit modei is for ali practical purposes indeperdent of the rotor position, as determined by both finitl element field andlysis and inductance measurement from the actual hardware, see reference [8]. This is largeiv due to the large effecti e airgap that is inherent to such machines. This large effective airgap is caused by the fact that the magnetic permeability of magnet materials, samarlum cobalt or ferrite is practically equal to air.
2. The permanent magnets are eiectrically and electromagnetically equivalent to a field winding with a constant excitation current. Hence, the transient inductance phenomencn and corresponding time constants associated with ac amature - dc field interaction during dynamic conditions is not present here.
3. The edcy current damping effects in the rotors of such machines have been shown to be rather insingnificant in comparison to machine ratings, see the work of reference [12]. Accordingly, the subtransient inductance phenomenon, and corresponding time constants associated with ac armature - rotor amping interaction during dyamic conditions is absent here for all practical purposes.

The above three factors lead to the racher simple model of an induced amature emf in series with an inductance equal to the phase to neutral self inductance minus the mutual phase to phase inductance per each leg of the three phases in the machine. Further details were included in this aspect in references [5] and [8].

This machine model is incorporated into the dynamic simulation mode: of the entire machine-power conditioner system which is described next.

MACHINE-POWER CONDITIONER DYNAMIC SIMULATION MODEL

The dynamic simulation model used here to analyze the above mentioned machine designs was developed originally to analyze a similar system intended for use as an electromechanical actuator for fiight control applications, [4]. Later, the same model was successfully applied to the analysis of an electronically commutated brushless dc motor for electric vehicle propulsion, [5]. In this previous work, some or all of the machine inductances and emfs were obtained from test measurements. However, in this work at hand, both the machine inductances and backemfs were calculated using the finite element method applied to the given preliminary magnetic circuit and winding designs.

In this model, tre machine-power conditioner shown schematically in Figure (1) is replaced by a lumped parameter nonlinear network model shown in Figure (7). Inspection of this figure reveals that the machine is replaced by the simplified machine model of Fiyure (4). The power switches are modeled by nonlinear resistances which take on low values during conduction ano high values when switched off.

Figure (7) Macnine-Power Conditioner Network Model
The dynamic simulation model is written in standard state space form as

$$
\begin{equation*}
\dot{\underline{x}}=\underline{A x}+\underline{B u} \tag{1}
\end{equation*}
$$

where \underline{x} is the vector of state variables which conststs of the cotree inductor currents and the tree capacitor voltages, \dot{x} is the derivative of \underline{x} with respect to tine, A, B are coefficient matrices, whicn must be recalculated whenever a diode or transistor changes state, and \underline{u} is the vector of forcing functions, which are the battery voltage and the backenfs. The branih voltages, currents, powers, etc. are refered to as the cutput variables and are symbolized by the vector y. These can be defined in terms of the state variables, i, ind the forcing functions, \underline{u} as follows:

$$
\begin{equation*}
y=\underline{C x}+\underline{D} \tag{2}
\end{equation*}
$$

where C, \mathbb{D} are coefficient matrices which must be updated whenever a transistor or diode changes state (switches on or off). Since the state model is a function of the status of the diodes and transistors, the four coefficient matriccs must be recalculated whenever the network changes state. A simplified flow chart of the algorithm used to implement this model is given in Figure (8). Further details on this model can be found in references [4] and [11]. Sample comparisions between phase current, ansistor switch voltage, phase to neutral and line to voltages obtained by this model and from test aic 3ted from reference [11] in Appendixa for conventenc. The application of this model to the two machines uesiribed eariler is given next.

Figure (8) Flow Chart of Machine-Power Conditioner Dynamic Model

RESULTS

The two machines described earlier are required to proauce at least 15 hp continuous and 35 ho peak ratings using up to the fili thircy deynee commintation advance fi necessary. These pcwer ratings have to be developed under the following constraints:

1. Maximum supply voltage of 120 V ,
2. Maximum transistor currents of 400 A , and
3. Machine speeds should fall in the speed range of 6000 to 9000 rpm if possible.

In order to detenmine whether or not the two machine designs are capable of delivering these ratings the following simulation studies using the data of Tables (1) and (2), were performed:

Study (1)

The oerformance of the two samarium cbalt and the two ferrite machines was calculated for speeds of 6000 , 7500 , and 9000 rpm with a fixed battery voltage of 120 V, with the chopper transistor Q_{M} fully on, and with zero commutation advance.

Study (2)

The runs described above were repeated except that the commutation advance was increased to the full thrity degrees.

Portions of these results are displayed in Figures (9) throught (12). The maximuin powers and peak cuirents developed by the two proposed winding designs of the samarium cobalt machine between 6000 and 9000 rpm are plotted in figures (9) and (10), respectively. inspection of Figure (9) reveals that the fifteen turn version of the samarium cobalt machine is unable to achieve the 3 hp peak power within the desired speed range even with the full thirty degree commtation advance. The twelve turn versior, on the other hand, meets all of tie performance specifications with phase currents less tian 400 A , see Figure (10). Notice that the 400 A points are indicated in Figures (3) and (11) by the 'x's.

Inspection os Figures (11) and (12) revealed a similar picture for the two designs of the strontlum ferrite machine. ine version with the twelve turns was unable to meet the performance specifications while the nine turn varsion did. Notice that the ferrite machine producred more than 15 hp throughout the specified speed range. This is no problem since the 15 ho rating is a minimum mather than an absolute rating. Also the copper transistor Q_{M} can be switched to oroduce any output less than the maximum.

Sample current and power waveforms outained from the various simulation runs are given in Figures (13) through (16) for the twelve turn version of samarium cobalt machine at 9000 rpm and the two firing angles. The phase currents at zero and thirty degree commutation advances are displayed in Figures (13) and (14) respectively. Notice that with zero advance the phase current decays from i ts initial vaiue of 150 A to a final peak value of 87 A . Advancing the riring by thirty degrees produces a drametic increase in the magnitude of the steady state phase currents over the previous case.

The impact of the commutation advance on the electromagnetic power, is also ciearly shown in Figures (15) and (16). Notice that both the magnitude of the power as well as the percentage of the power ripple increase with increasing commutation advance, see figure (16).

Figure (9) Maximum Power Curves for the Samarium Cobait Machine
Figure (10) Peak Current Curves for the Samarium

Figure (11) Maximum Power Curves for the Strontium Ferrite Machine
Figure (12) Peak Current Curves for the Stontium Ferrite Machine

Figure (i3) Phase Current of the Samarium Cobalt Machine with the i? Turn Uinting at 2000 rpm and 0° Commutation Advance

Figure (14) Phase Current of the Samarium Cobalt Machine with the 12 Turn Winding at $£ 000 \mathrm{rpm}$ and 30° Commutation Advance

Based upon these results, the samarium cobalt machine was constructed with twelve series... ns per phase and the strontium ferrite machine was constructed with nine series turns per phase, see Figure (17). These machines were tested in the lab and both met the required performance goal. as documented previous!, in reference [1].

Figure (17) The Assembled Brushless DC Motors. (Samarium Cobalt-Short Machine, Strontium FerriteLong Machire)

CONCLUSIONS

The impact of winding inductances and the commutation angle between tho ohase currents and induced backemfs fer phase on the performance of two brushiess dc moter designs was determined using the given computer aided designed aporoach. The perfomance of two brushless motors, one based on samarium cobalt magnets and the other one on strontium ferrite magnets was obtained from a time domain dynamic simulation model of such systems. A time domain model is necessary since the majority of the voltages and currents are nonsinusoidal. The motor emf and inductance paramters used in this simulation were obtained directly from finite elemert field analysis of the preliminary machine designs.

The analysis remonstrated the importance of the machine inductances on the performance of such systems over a given speed (rrequency) range. Furthermore, varying the commutation advance was shown to produce dramatic. changes in the machine output over the entire speed range. Based on these results, the designs of the two machines were finalized and implemented. Subsequent testing of the two machines confimed their ability to meet all of the design goals as predicted. Accoruingly, this computer aided design approach presented here is well suited for the design of such systems.

Future efforts in this area should be directed towards more detailed machine models sulted for more complex systems in which the inductance variations due to rotor position and saturation level cannot be ignored in their dynamic simulations. Results from this design example demonstrated very strangly the usefulness of sucn computer aided design soois in tie dridiy=is ana design discussions taken in the course of this project of brushless dc motor systems with their nonsinusoidal voltages and currents.

ACKHOWLEDGEMENTS

These authors wish to acknowledge the Eiectric and Hybrid Vehicle Office of the NASA-Lewis Research Center and the Electric and Hybrid Vehicle Division of DOE for their financial support of this project under NASA/DOE Contract DEN3-65.

REFERENCES

[1] Demerdash, N. A., Miller, R. H., Nehl, T. W., Overton, B. P., and Ford, C. J., "Comparison between Features and Peformance Characteristics of Fifteen MP Samarium Cobalt and Ferrite Based Brushless DC Motors Cperated by Same Power Conditioner," Paper accepted for publication in the IEEE Transactions on Power Apparatus and Systems, presented at the PES winter meetirig, New York, January 31 - February 5, 1982.
[2] Edge, J. T., "An Electromechanical Actuator Technology Development Program," Paper No. 780581. Euciety of Automotive Engineers, Proceedings of the Comtrol Technologies Symposium, 1978.
[3] Sawyer, B. ard Edge, J. T., "Design of a Samarium Cobalt Brushlass DC Motor for Electromechantcal Actuator Applications," Proceedings of the IEEEVational Aerospac, and Electronics Conference, Dayton, Ohio, 1977.
[4] Demerdash, N. A. as Neht, T. W., "Dynamic Modeling

* Of Brushless DC Motors for Aerospace Accuation," IEEE Tranaactions on Aerospace and Electronic Suetems, Vol. AES-16, No. 6., 1980, pp. 311-821.
[5] Nehl, T. W., Fouad, F. A., Demerdash, N. A. and Maslowski, E., "Dynamic Simulation of Radially Oriented Permanent Magnet Type Electronicaliy Operated Synchronous Machines with Parameters Obtained from Finite Element Field Solutions," IEEE Transactions on industry Applications, Vol. IA-18, Number 2, 1982, pp. 172-182.
[6] Chari, M. V. K. and Silvester, P. "Analysis of Turbo Alternator Magnetic Field by Finite Elements." IEEE Pransactions on Power Apparatus and Systeme, Vol. PAS-90, 1971, pp, 454-464.
[7] Fouad, F. A. "Finite Element Analysis For Design of Classical and Electronically Operated Machines," Ph. D. Disesptation, Virginia Polytechnic Institute and State University, Blacksburg, VA, May 1981.
[8] Nehl, T. W., Fouad, F. A., and Demerdash, N. A. :
* "Determination of Saturated Values of Rotating Machinery Iricremental and Apparenti Inductances by and Energy Perturbation Method," Paper accepted for publication in the IEEE Transactions on Power Apparatus and Syotems, presented at the PES Winter meeting, New Yoirk, January 31 - February 5, 1982.
[9] Fouad, F. A., Nehl, T. W., Demerdash, N. A., "Magnetic Field Modeling of Permanent Magnet Type

Electronically Operated Synchronous Machines Using Finite, Elements," IEEE Transactiona MA Power Apparatus and Syutems, VOI. PAS-100, No. 4, Sept. 1981, pp. 4125-2135.
[10] Neh?, T. W., Fouad, F. A., and Demerdash, N. A., "Digital Simuilation of Power Conditioner - Machine Interaction for Electronically Commutated DC Permanet Magnet Machines," IEEE Manscetions on Magnetics, Vol. MAG-17, No. 5, 1981, pp. 3284-3286.
[11] Neh1, T. W., "A Discrate Time Model for a Power Conditioner Fed Permanent magnet Brushless oC Motor System for Aerospace and Electric Vehicle Applications for Design iurposes Using Finite Elements for Machine Paramster Determination," :h. D. Dibsertation, Viryinia Polytechnic Institute and State University, Blacksburg, VA, May 1980.
[12] Nagarkatti, A. K., Mohamined, O. A., and Demerdash, N. A. "Sperial Losses in Rotors of Electronically Commtated Brushless de Motors Induced by Mon-Uniformly Rotating Armature MMFs," Papaer presented at the 1382 PES Winter Power Meeiing, New York, NY, and will be published in full in the IEEE Transactions on Power Appai itus and Sisetems.

* Names and Affiliations are Blanked Out During the Review Process in Accordance with the IEEE-PES AuthorReviewer Anonymity Rules.

APPENDIX

The dynamic simulation model used in this work was verified using oscillograms cbtained during laboratory testing of similar brushless de motors from previous investigations, see references [4], [5], and [11]. For the sake of completeness, portions of there results will be repeated here.

Prior to the design and construction of the two motors described in this paper, the model was verified using test results ootained from a four pole, fifteen slot samarium cobalt brushless de motor for electeric vehicle propulsion, [5], [11]. The continuous and peak ratings of this macine were identical to those of the two machines subject of this paper.

Various oscillograms and their correspending computer simulated waveforms (CSWF) during the motoring mode of operation, at a speed of 7750, are given in Figures ($A-1$) through ($A-4$). Inspection of these figures reveals excellent agreement between the two sets of results. Further verification of this model can be found in references [4], [5], and [11].

Figure (A-1) oscrillogram and CSWF of the Phase Current. [Horizontal: i ms/div, Vertical: 50V/div]

(A-2) 0scillogram and C.SWF of the Phase Voltage. [Horizontal: $1 \mathrm{~ms} / \mathrm{div}$, Vertical: 50V/div]

Figure ($A-3$) oscillogram and CSWF of the Line to Line Voltage. [Horizontal: $1 \mathrm{~ms} /$ div, Vertical: $50 \mathrm{~V} / \mathrm{div}]$

Figure (A-4) Oscillogram and CSWF of an Inverter Transistor Voltage. [Horizontal: $1 \mathrm{~ms} / \mathrm{div}$, Vertical: $50 \mathrm{~V} / \mathrm{div}$]
tranent ragnets (p.m.) which are of rare earth cobalt - we a parily flat internal surface which one could : A tead stiely assume to be circular. However, in rect to firther simplify the analysis, and since the cactal thickness of the p.m. is substantial, we have asumed the p.m. to extend to the axis, except in the anermapht regions where epoxy fills the space below :ee sieu:. . This greatly simplifies the calculations \therefore make the analysis somewhat approximate. We just\therefore this a the light of a more drastic assumption su,11) fodt in such problems, namely that the currents "e putw ixial as though the conductor is isulated. The su l., ied end effects that exist in finite lengtin :unducto: : are ignored.

For a sinusoidal time variation of the current ne may represent the rotor current density vector as $j(r, \psi, z, i)=\sqrt{2} J_{\text {rns }}(r, \psi, z) \cos (\omega t-\theta)$, where $\omega=2 \pi f$. The spact components of the r.m.s. vector $\bar{J}_{\text {rms }}$ are J_{r}, \therefore and $i z$, which are themselves r.m.s. quantities. ine current being assumed axial, hence, $J_{r}=0$, $J_{\psi}=0$ and $j j_{z} z=0$ everywhere. Consider a whole composite cinder. with a solid inner core of the p.m. envelopcc $b:$ a stainless steel sleeve of radii b and c, where , c. \because symetry consideration, $\partial!_{2} / \partial \psi=0$. Then :rot Mavell's equations it follows that J_{2} oatisfies the beiriclicz equation, that is $[2,3]$
$\frac{d^{2} z_{z}}{a r^{2}}+\frac{1}{r} \frac{d J}{d r}-T^{2} J_{z}=0$, where $\tau^{2}=j u a w, j=\sqrt{-1}, \mu$ and ; are the relative permeability and conductivity of the material. This is a modified Bessel equation of order zero. lts general solution may be expressed as:

$$
\begin{equation*}
J_{2}(r)=A I_{0}(\tau r)+B K_{0}(\tau r) \tag{1}
\end{equation*}
$$

where I_{1}, and K_{0} are the modified Bessel functions of the first and second kinds, buth of order zero, and A a ad B are constants (see references [3] and [5]).

The r.m.s. electric and magnetic fields satisfy the relations: curl $\bar{E}_{r m s}=-j \mu \omega \bar{h}_{r m s}$ and $\bar{E}_{r m s}=\bar{J}_{r m s} / a$. The currert being axial, the only non-zero components of $\bar{E}_{\text {rms }}$ and $\bar{H}_{r m s}$ are E_{2} and H_{ψ}. These relations then yield the following:
$-j_{\omega} \omega H_{0}=-\frac{\partial E_{z}}{\partial r}=\frac{-1}{\sigma} \frac{\partial J_{z}}{\partial r}=\frac{-\tau}{\sigma}\left(A I_{0}^{\prime}(i r)+B K_{0}^{\prime}(\tau r)\right)$
hence, one can write

$$
\begin{equation*}
H(r)=\frac{1}{\tau}\left(A I_{1}(\tau r)-B K_{1}(\tau r)\right), \tag{2}
\end{equation*}
$$

since $I_{0}^{\prime}=I_{1}$ and $K_{0}^{\prime}=-K_{1}$, where I_{1} and K_{1} are the moditieu Bessel functions of the first and second kind, both, of order one [3]. Except for these functions, the subscript 1 will denote quantities for the sleeve while subscript 2 will denote those for the p.m. It is assumed that the rotor surface r.m.s. current density J_{s} is known.

Applying eq. (1) to the p.m., and letting $B=0$, sin. $K_{0}(\tau r)+\infty$ as $r \rightarrow 0$, at $r=c$ let $J_{S_{1}}$ and $J_{s_{2}}$ be the r.-... current denstities in the sleeve and the p.m.,
 $A=I_{3} / I_{0}\left(\tau_{2} c\right)$ and $\tau_{2}=(j \mu 202 \omega)^{\frac{1 / 2}{2}}$. Accordingly. Ir. equation (2) we obtain the field on the surface : : he p.m. as

$$
\begin{align*}
& (c)=J_{s_{2}} C_{2}, \tag{3}\\
& \text { were } C_{2}=I_{1}\left(\tau_{2} c\right) /\left(\tau_{2} I_{0}\left(\tau_{2} c\right)\right) \tag{4}
\end{align*}
$$

The payer loss fur length $\&$ of the p.m. is given $\mathrm{b}:$
$P_{2}=\int_{0}^{c}\left|j_{z_{2}}\right|^{2} \frac{2 \pi \ell r}{\sigma_{2}} \mathrm{dr}$.
(1.e obtains the following result [3]:
${ }_{2}=\left|\mathrm{J}_{\mathrm{s}_{2}}\right|^{2} \frac{1}{\sigma_{2}}$ Real $\left(\mathrm{C}_{2}\right) 2 \pi \mathrm{c}$.

At the common boundary the continuity of the electric and magnetic fields yields the relations: $E_{\Sigma_{1}}(c)=E_{2_{2}}(c)$ and $H_{\psi_{1}}(c)=H_{\psi_{2}}(c)$. By Ohm's law the former becones $J_{s_{1}} / \sigma_{1}=J_{s_{2}} / \sigma_{2}$, while by use of equation (3) the latter condition yields $H_{\psi 1}(c)=J_{s_{2}} C_{2}$. Using these values for the sleeve in equations (1) and (2), one obtains:

$$
\begin{aligned}
& A=J_{S_{1}}\left(K_{1}\left(\tau_{1} c\right)+\tau_{1} \frac{\sigma_{2}}{\sigma_{1}} C_{2} K_{o}\left(\tau_{1} c\right)\right) / F(c, c), \\
& B=J_{S_{1}}\left(I_{1}\left(\tau_{-} c\right)-\tau_{1} \frac{\sigma_{2}}{\sigma_{1}} C_{2} I_{o}\left(\tau_{1} c\right)\right) / F(c, c),
\end{aligned}
$$

where the denominator is defined by the function:
$F(x, y)=I_{1}\left(\tau_{1} x\right) K_{0}\left(\tau_{1} y\right)+K_{1}\left(\tau_{1} x\right) I_{o}\left(\tau_{1} y\right)$.
From equation (1), one obtains for $r=b$,

$$
\begin{equation*}
J_{s}=J_{z_{1}}(b)=J_{s_{1}} C_{1}=J_{s_{2}} \frac{\sigma_{1}}{\sigma_{2}} c_{1} \tag{6}
\end{equation*}
$$

where $C_{1}=\left(F(c, b)+\frac{\sigma_{2}}{\sigma_{1}} C_{2} G_{0}\right) / F(c, c)$,
with $G_{0}=\tau_{1}\left(K_{0}\left(\tau_{1} c\right) I_{0}\left(\tau_{1} b\right)-I_{0}\left(\tau_{1} c\right) K_{0}\left(\tau_{1} b\right)\right)$.
From equations (2) and (6) one obtains:
$H_{\psi_{1}}(b)=J_{s} C_{c}$,
where $C_{c}=\left(G_{1}+\frac{\sigma_{2}}{\sigma_{2}} c_{2} F(b, c)\right) /\left(c_{1} F(c, c)\right)$,
with $G_{1}=\frac{1}{\tau_{1}}\left(I_{1}\left(\tau_{1} b\right) K_{1}\left(\tau_{1} c\right)-K_{1}\left(\tau_{1} b\right) I_{1}\left(\tau_{1} c\right)\right)$
The power loss in the sleeve may be found in the same manner as in the p.m. However, to avoid solving many integrals in this case, we use the fact that the total dissipative loss per unit length in the composite system is the real part of the product of the conjugate of the total r.m.s. current I in the composite conductor. and the r.m.s. voltage drop per unit length 3]. The latter being the same throughout the conductor as the surface value which is J_{s} / σ_{1}. Now by Aupere's law

$$
\begin{equation*}
I=H_{\Psi 1}(b) 2 \pi b=J_{s} C_{c} 2 \pi b \tag{12}
\end{equation*}
$$

Hence the cotal loss in length $\&$ of the composite conductor is

$$
\begin{equation*}
P=\left|J_{s}\right|^{2} \frac{1}{\sigma_{1}} \operatorname{Real}\left(C_{c}\right) 2 \pi b l . \tag{13}
\end{equation*}
$$

The loss formula for the p.m., equation (5), can be written in terms of J_{s} as

$$
\begin{equation*}
P_{2}=\left|J_{s}\right|^{2}\left(\frac{o_{2}}{\left|C_{1}\right|^{2} \sigma_{1}^{2}}\right)\left(\operatorname{Real}\left(C_{2}\right)\right) 2 \pi c l \tag{14}
\end{equation*}
$$

Therefore, the power loss for length $\&$ of t ile sleeve is $P_{1}=P=P_{2}$,
or $P_{1}=\left|J_{s}\right|^{2} \frac{1}{\sigma_{1}}$ Real $\left(c_{c}-\frac{c_{2}}{\left|c_{1}\right|^{2}} \frac{c_{2}}{\sigma_{1}} \frac{c}{b}\right) 2 \pi b l$.
If the system consists of the sleeve oniy, the loss is still given by equation (15) or equation (13) after substituting $O_{2}=0$. This makes $P_{2}=0$, and
$c_{c}=G_{1} / F(c, b)$.
(16)

Pheceding pace blank not fumed 363 m 364

Omitting the factor $2 \pi b 2$ or $2 \pi c l$ in the loss formulas one can evaluate the loss per unit surface area of the sleeve and the p.m. Integrating these losses over the total area of these members we obtain an estimate for the loss in these members for the given system configuration.

When evaluating C_{c} and the other constants of Beasel functions with cumplex arguments involving tare encuuntered. These functions are then themselves complex, and are expressible as shown in equations (17) below in terms of Kelvin's functions which are well tabulated 3 3,5].

$$
\begin{align*}
& I_{n}\left(f^{l / 2} x\right)=1^{-n}\left(\operatorname{ber}_{n} x+j \text { bei } i_{n} x\right), \tag{17a}\\
& x_{n}\left(f^{1 / 2} x\right)=j^{n}\left(\operatorname{ker}_{n} x+j \text { kei } i_{n} x\right) \tag{17b}
\end{align*}
$$

The loss formulas stated above require a knowledge of the rotor surface r.m.s. current density J_{S}, which we now proceed to determine. Further details are in Ref. $\{6\}$.

TANCENTLAL FIELD ON ROTOR SURFACE DUE TO STATOR CURRENT

Figure (3) shows a portion of the stator current sheet idealized as a thin layer of conductors, and also the m.m.f. and current sheet space relationship. Consider the loop 1-2-3-4-1 of tangential width, W, and negligible radial height, with the side $3-4$ lying very close to the rotor surface ($r=b$). Fr mim Ampere's law we have the approximate relationship:
$H_{\psi_{1}}(b) .2 W=r . m . s . c u r r e n t$ enclosed by the loop.
Let A and A_{m} represent the r.m.s. value and the amplitude of the stator current sheet in amperes per unit circumferential length. Then the right hand side of the previous equation has the value AW. Henca $H_{W_{1}}(b)=A / 2$. Combining this with equation (9) and noting that $A=A_{\text {mim }} / \sqrt{2}$ we obtain

$$
\begin{equation*}
\left|J_{t}\right|=A_{m} /\left(2 \sqrt{2}\left|c_{c}\right|\right) \tag{18}
\end{equation*}
$$

If F_{m} is the amplitude of the stator fundamental m. m. f. wave, a quantity that is known frim the motar design details, then from basic theory and with reference to Figure (3), one has the relationahip:

Figure (3). Stator Current Sheet and M.M.F. Waveform Relationship.

$$
F_{m}=\frac{2}{\pi} A_{m} x \frac{\text { pole pitch }}{2}
$$

If the stator bore is of radius a, then the poie pitch $=\pi a / p$, where p is the number of pole-pairs.

$$
\begin{equation*}
A_{m}=F_{m} p / \ldots \tag{19}
\end{equation*}
$$

This value of A_{m} cannot be used directly in equation (18). This is because as seen by a rotor point, the excitation function will be in general a discontinucus periodic sinusoid, as will be explained below. However, this function can be resolved into hermonic components using the above value of A_{m}, Each hat monic amplitude can then be substituted for A_{m} in equalion (18) to obtisin J_{s} corresponding to that harmonin. The losses are then found by applying the loss formilas to each harwonic.

HARMU IIC CF STATOR EXCITATION FUNCTION

We shall consider only the fundasental component of the stator m.m.f. and ignore the effect of the space harmoinics of the latter. To simplify she analysis we will regard the fundamental to be contered on the polar (direct) axis even though it is displaced for the latter, when on load, by the load angle. Now, different points on the rotor surface will be swept by different 60 degree bands of the statur m.m.f. wave during a switching operation. This is because the portion of the stator $\mathrm{m} . \mathrm{m}$.f. wave seen by a rotor point is a function of its position, which we designate by its angular distance γ from the interpolar (quadrature) axis. As seen by a rotor point the excitation function, which is the scator current sheet, will therefore have waveforms such as depicted in Figure (4) depending on its position angle r. Clearly these waveforms possess substantial harmonic content, besides a non-zero average when $\gamma \neq 0$. These waveforms may be represented by the general formula $[6]$.

$$
\begin{equation*}
A(\theta)=A_{i \pi} \cos \left(\theta-\frac{2 \pi}{3}+\gamma\right), \tag{20}
\end{equation*}
$$

where $0 \leqslant y \leqslant \pi / 2$, and A_{m} is given by equation (19). The general vaveform, which has the period $T=2 \pi / 6$ can be represented by the following Fourier series:

$$
\begin{equation*}
A(\theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right), \tag{21}
\end{equation*}
$$

where $a_{n}=\frac{2}{T} \int_{0}^{T} A(\theta) \cos \left(\frac{2 \pi n \theta}{T}\right) d \theta, n=0,1,2, \ldots, \infty$.
A1so, $b_{n}=\frac{2}{T} \int_{0}^{T} A(\theta) \sin \left(\frac{2 \pi n \theta}{T}\right) d \theta . n=1,2 \ldots, \infty$.
Substituting for $A(\theta)$ from equation (20) and solving these integrals, one obtains for the harmonic amplitudes the following reaults, in which $K_{1_{n}}=(6 n-1) \pi / 3$, $K_{2_{n}}=(6 n+1) \pi / 3$, and $-2 \pi / 3-Y:$

$$
\begin{align*}
a_{n} & =A_{m}\left(a_{1}+a_{2}\right), \tag{22}\\
\text { and } b_{n} & =A_{m}\left(B_{1_{n}}+B_{2_{n}}\right), \tag{23}\\
\text { where } a_{1_{n}} & =\left(\sin \left(K_{1_{n}}+\phi\right)-\sin \phi\right) / K_{1_{n}} \\
a_{2_{n}} & =\left(\sin \left(K_{2_{n}}-\phi\right)+\sin \phi\right) / K_{2_{n}}, \\
B_{1_{n}} & =\left(\cos -\cos \left(K_{1_{n}}+\phi\right)\right) / K_{1_{n}}, \\
B_{2_{n}} & =\left(\cos -\cos \left(K_{2_{n}}-\phi\right)\right) / K_{2_{n}},
\end{align*}
$$

1) at TME Molat axis tue wave fonm it as molow s

a (0) - A men con (0-T/B) - A mes cos (0-27/3. Y)
2) at the intemeolan akis the mave rome is as rollows

31 at ant mont ogramit the mave romm is eyonesseo as

Figure (4). Waveforms of Stator Excitatıon Currents.

PROCEDURE FOR CALCULATING POWER LOSS

The loss at a rotor point is clearly a function - of its position angie γ. A closed form solution that aims at integrating the power loss per unit area over the range of γ is not practicable, partiy because of the varying geometry of the rotor. As such one has to resort to numerical integration. For this, the range of γ is divided into a number of small intervals, and the loss for each interval is calculated based upon the value of γ for its mid-point. The procedure is outlined below [6].

Step: 1 Obtain value of F_{m} and other motor particulars from motor design sheet.
Step: 2 Calculate value of A_{m} from equation (19).
Step: 3 Calculare the fundamental frequency in hertz from $f=6 p \times R . P . M . / 60$, where p is the number of pole-pairs and R.P.M. is the rotor speed in revolutions per minute. The factor 6 is for the number of switching oferacions per cycle.
Step: 4 Divide the region between the quadrature and direct axes into a number of small intervals. Assign position angle values $\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots$ to the mid-points of these intervals. Conver: mechanical degrees into electrical radians by mulifiplying the former by $p \pi / 180$.
Step: S Starting with $\gamma=\gamma_{1}$, decermine the excitation function harmonic amplitudes using equations (22) and (23).

Step: 6 Set n w 1 to begin with the fundamental.
Step: 7 Find value of C_{c} from equation (10) corresponding to the harmonic frequency nf. Where only the sleeve exista set $\sigma_{2}-0$, or obtain c_{c} from equation (16).
Step: 8 Aseign value if harmonic amplitude to an in equation (18), and calculate $\left|J_{s}\right|$ correaponding to this harmonic.
Step: 9 Evaluate losaes for this harmonic in the compoaite system, the p.m., and the sleeve using equations (13), (14) and (15). The factor 2π in these equations wust now be replaced by the angular width Δy of the interval. Multiply the losses obtained by $4 p$; this is because y varies over a range of $\pi / 2$ rather than 2π
radians, and as there are p le-pairs.
Step:10 Increment n by unity, and repeat steps 7 through 10 until all harmonics found significant have been considered.
Step:ll Repeat steps 6 through 10 for all orher inter val angles, namely $\gamma_{2}, \gamma_{3}, \ldots$, and add up the harmonic loss components.

SUMMARY OF RESULTS

The foregoing procedure was applied in the carje o: a $15 \mathrm{hp}, 120$ volt brushless d.c. motor, the relevant detalls of which are stated in Appendix (A).
a computer program was written to eviluate the losses. Tables of the Kelvin functions in equation (17) were stored in arrays, and interpolation was done by cubic splines. The results obtainec are summarized below for two speeds and three different curients, while the variation of the losses with the position anple y, at one particular g, eed and current, is deptcted in Figure (5). Further results can be found in Reference [6].

Figure (5). Eddy Current Loss Densities at Different Position Angles for 9000 r.p.m., 250A.

Speed, $\therefore . \mathrm{p} . \mathrm{m}$.	Current A	Loss in sleeve, W	Loss in p.m., W	Total Loss, W
9000	$250 *$	15.6	25.9	41.5
9000	180	8.1	13.4	21.5
9000	110	3.0	5.0	8.0
4500	250^{*}	9.2	18.6	27.8
4500	180	4.8	9.7	14.5
4500	110	2.8	3.6	5.4

This corresponds to about a 35 hp peak rating (for one minute operation)

CONCLUSIONS

The man conclusions can be summarized in the following points:

1. The rotor losses are significantly affected bv the motor speed, that is, by the frequency of suitching operations, and vary as the square of the current, as is to be expected.
2. The loss in the permanent magnets is about two
thirds of the total Icases in the rotor of this machine.
3. As several simplifying assumptions were marie in the theory, such as treating J_{2} as a function of the depth (r) only, ignoring the end eftects, etc., the loss values obtained must be regarded as the least rotor losses to be expected.
4. The rotor losses considered here are those due to the tangential field excitation. Those due to the radial field are excluded here because their calculation is part of the design routine and because their magnitude is relatively very small in machines with semi-closed slots and large air gaps, as was confirmed by actual calculacion in chis case.

REFERENCES

[1] N. A. Demerdash, F. C. Lee, T. W. Nehl, and B. P. overton, "A brushless d.c. motor-power conditioner unit designed and tuilt for propulsion of electric passenger vehicies - Phase $1 "$ in Proc. Int. 1980 Elec, Yeh, Exion \& Conf., St. Louls, ito, May 20-22, 1980.
[2] P. Moon and D. E. Spencer, Foundstions of Electrodynamics, Boston Tech. Publ., 1965, PD. 138-144.
[3] N. W. McLachlan, Bessel Functions for Engineers, Oxford Univ. Preas, 1941, Pp. 134-141.
[4] R. L. Stoll, The Analysis of Eddy Currenta, Clarendon Press, 1974, p. 10.
[5] Abramowitz, M. and Stegun, I.A., Editors "Handbook of Mathematical Functions with Formulas, Graphs, and Mathemarical Tables," U. S. Department of Comerce, National Bureau of Standards Applied Mathematics Series. 55, Noveraber 1970.
(6) A. K. Nagarkatti. "Study of Performance and Cercain Special Aspects of Electronically Commutated Brushless D.C. Motor for Electric Vehicles", M.S. Thesis, Department of Electrical Engineering, Virgir la Polytechnic Institute and State University, Mav. 1980.

Acknowledrements

This investigation was part of a larger project ${ }^{[1]}$ funded by NASA (Lesis)/DOE under MASA Contract DEN3-65 in DOE's prograz of research on electic vehicle rechnology. The authors are grateful to all their colleagues in this project for their contributions, in particular to Dr. R. J. Chuxchill, Vice-President, and Mr. B. P. Overton, both of The R ani D Center, Industrial Drives Division, Kollmorgen Corporation, for participating in fruitful discusaiona and supplying the necessary data.

APPENDIX (A)

Number of pole-pairs, $p=2$
Length of rotor core, $t=6 \mathrm{in} .(15.24 \mathrm{~cm})$
Stator bore radius, e $1.331 \mathrm{in} .(3.89 \mathrm{~cm})$
For atainless steel sleeve:
Outer radius, b - 1.505 1a. (3.82em)
Inner radius, $c=1.470$ in. (1.73 em)
Resiscivity, $1 / \sigma_{1}=20.35 \times 10^{-6} 0 \mathrm{~m}-1 \mathrm{n}$.
(7.2 $\times 10^{-7}$ Oh-meter)

(12.2×10^{-7} henery)
neter
For permonenc magnets:
Width of pole, w 1.44 in . (3.657 cm)
Resistivity, $1 / \sigma_{2}=19.60 \times 10^{-6}$ Ohmin.
(4.978×10^{-7} Ohemeter;
Permeability, $\mu_{2}=3.19$ lines/Amp.in
(12.566×10^{-7} henery)
meter
Anpere-turns per pole, $F_{\mathrm{a}}=3.92$ per Arpere.
Further detalls on this motor can be found in reference [1].

ASHOK A. NAGARKATTI was born June 30, 1934 in Bangalore, India. Graduated with degrees in mathematics and physics in 1953 from Negpur University, and in electrical power engineering in 1957 from Birla Inst. of Technology and Sclence buth in India and an M.S.E.E. from Virginia Polytachnic Institute and State University in May, 1980. Worked 5 years with CEC (Tingland) as apprentice/funior engineer, S years with Heavy Electricals (India) as motor designer, and 10 years with Kizloskar Electric in Bangalore responsible for design and development of large high voltage motors.

OSAMA A. MOHAMMED was born on November 29, 1953 in Cairo, Egypt. He received a B.Sc. in Electrical Engineering from the Faculty of Engineering, Zagazig University at Snaubra, Cairo with first class distinction and honors in June 1977. "ince that time he served as a demonatrator of electrical engineering in his faculty until December 1978. In January 1979, he foined the graduate program at the Electrical Engineering Department, Virginia Polytechnic Institute and Stice University, Blacksburg, Virginia, as a graduate research assistant. He received the M.S. degree in electrical engineering in September 1980 and is working towards his Ph.D. degree. His current interests involve numerical techniques of analysis of electromagnetic fields in electrical devices.

Mr. Yohamed is a student member of the Institute of Electrical and Electronics Engineers.

NABEEL A. DEMERDASH (M'65 - SM'74) was born in Cairo, Egypt, on April 26, 1943. He received the B.Sc. E.E. degree with distinction and first class honors irom Cairo University, Egypt, in 1964 and che M.S. and Ph.D. degrees in Electrical Engineering from the University of Pittsburgh, Pittsburgh, Pennsyivania, in 1967 and 1971, respectively.

From 1964 to 1966 he was ith the raculty of Engineering, Cairo University as a Demonatrator. From 1966 to 1968 he wab with the Department of Electrical Engineering, University of Pittsburgh, as a Graduate Teaching Assistant. In 1968 he joined the Large Rotating Apparatus Division of Wetinghouse Electric Corporation, East Pittsburgh, Penneylvania, as a Development Engincer, where he worked on Electromagnetic Field Modeling in Rotating Machinery and the development of the asymmertical rotor for large steam turbine-driven generators. Since 1972 Dr. Demerdash has been with the Virginia Polytechnic Institute and State University, Blacksburg, VA, where he is presently a Professor in the Department of Electrical Enginearing.

Dr. Demerdash is a Senior Member of IEEE and is currently serving as a member of the Rotating Machinery Comittee of PES, IEEE, as well as the Synchronous Machinery and the Machine Theory Subcomittees of PES, IEEE. He previously served as secrecary and subsequently vice chairman of the Syachronous Michines Subcomittee of PES, IREE. Dr. Demerdash is a past Chairman of the Vireinia Mountain Section of IEEE. He is a member of ASEE, Sifin Xi B.ad Eta Kappa Nu. Dr. Demerdash is the author and co-suthor of numarous papers in various IEEE Transactions. Dr. Demerdash's current interests and research activities include Electromechanical Propulsion and Acutation, Dynalic Modeling of Sulld State Controlled and Operated Electrical Machlies, Numerical Analysia of Electromagnetic Fields in Electric Machinery, as well as Machine-Power Systen Dynamics.

Discussions

John A. Mallick (General Electric Company, Schenectady, NY): The author, of this paper have altempled to calculate the eddy current losses in the permanent magnet and support pieces of an eiectronically commutated motor, but this discusser is thot convinced of the validity of their modelling and calculation procedure.

First of all, the authois mention that the losses caiculated here are due only 'o the tangential component of the magnetic field of the stator winding; this 15 not true, since the radial and tangential field components are connected via Gauss' law for magnetic fields. Given their model of a machine with an infinitesimal air gap between the outer shell and the stator current sheet, their use of the tangericiai magnetic field as an outer boundary condition is proper; however, this model will then account for all of the losses due to that current sheet excitation, not just those due to the tangential field.

The authors have chosen a model in which the field quantities are independent to the angle $w ;$ a much more realistic model could have included the angular variation at very litile .acrease in complexity, since only the space fundameital is used. Why have the authors chosen such a model as they did?

The determination of $h_{\psi \mid}(b)$ in the paragraph preceding equation: 18 is in error. The authors' model uses a current sheet backed by siaior iron which presumably has a permeability much greater than that of free space: therefore, H_{ψ} will exist only on the air gap side of the current sheet, being near . . 10 parallei to the irmn surface. Thus equation is should be muliplied by a factor of 2 to accouni for the change in the line integral of H_{4}. The calu slated losses will increase by a factor of 4 .

The authors do not indicate how many harmonics were used in evaluation of the loss formula presented. Using the data given in Apnendix A, one can calculate a classical skin depth for the fundamental at 9000 RPM to be on the corder of 0.5 inches, with higher order skin depths varyin,$\ldots-1 / 2$. This skin depth is large compared .o the sleeve thickness, so it seems to this discusser that using Bessel functions to calculate the current there to be somewhat of an overkill; a simpler approach would give comparable accuracy.

Manuscript received February 26, 1982.
A. K. Magarkati, O. A. Momammed and N. A. Demerdash: These duthory wish to thank Dr. J. A. Mallick for his interest in the paper, and offer the following clarifications and comments in response to the various points rassed in Dr. Mallick's discus"on:

1) The authors wish to reemphasize what was already stated in the paper, namely that the calculation method given in this paper is presented only as an approximation to the eddy current losses in the metaice sleeves of such machines. There is experimental evidence based on measured rotational losses at no-load and load conditions in the motor at hand, which demonstrates the validity of the results obtaned b) this approximate calculation method. This evidence is given in the Table below, in which the rotational losses are given for the ISnf motor at hand under no lond as well as at rated load operating conditions:

Measured Rotational Losses at 7800 R.P.M.

sotational Losses at No-Load	Rotational Losses at Rated Lond, at a Current 134 Ampe de line
490 Watts	520 Watts

This table reveals that an increase in the value of rotational loss $0^{\prime \prime}$ only 30 Watts took place at a load of 134 Amps of hine current (shightly above rated), in comparison with the no-load rotational loss. This in crease is attributed to the additional sleeve and magnet losses at load as well as changes in the core losses resulting from the existence of an ar mature mmf under load. Our calculation as shown in the paper predicts a sleeve and magnet loss greatet than 8 Watts and less than 21.5 Watts according to the loss table given in the paper. This range lies within the total increase in rotational losses of 30 Watts mentioned above, which includes the aforementioned increase in the core losses as well as the sleeve and magnet eddy current losses subject of this paper. Therefore. it seems tha: despste the assumptions made in the analysis, the resulting calculated loss values are within the bounds obtaned from the experimental data, and hence the method represents a reasonable approach.
2) We wish to emphasize that our statement that "only losses due to the tangential component of the stator magnetic field are considered here' ' meant that we are nct including the flux density pulsations (ripples; due to the tooth-slot effect as the sleeve and magnet rotate continuously past the slotted stator. This pulsation which results from the variation in, the radial magnetic reluctance from tooth to slot ex. perisnced by every portion of the sleeve and magnet is not accounted for here. Also, the one dimensional nature of our formulation, which is acceptable in many similar applications, tends to ignore the largely two dimensional nature (tangential and radial) of the stator field effects on the axially induced eddy currents. We do not beiieve that any magnetic field laws were violated, subject to the stated assumptions.
3) We disagree with Dr. Mallick's statement that "the auihors have chosen a model in which the field quantities are independent to the angle, Ψ ". Indeed the excitation function along the outer sleeve boundary with the airgap is a complicated function of the angular posution alons the sleeve as shown in Figure (4) of the paper and explained in the section on "HARMONICS OF STATOR EXCITATION FUNCTION'
Dr. Mallick states that "e much more realistic model could have included the angular variation ai very littie increase in complexity, since only the space fundamental is used'". We wish to emphasize that this analysis indeed allows for the angular variation in the tangential exctiation function, and not only considers the fundamental component of excitation at every discretized point on the sleeve, but also its harmonic components, again as given in equations (21) through (23), and as subsequently explained in the algorithm.
4) We do not agree with Dr. Mallick's suggestion that the excitation function in equation (18) should be multeplied by a factor of two. Thu is because of the fact that closer examination of the magnetic field lines linking the stator conductors (which are the source of exctiation) reveals that these lines have to ross teeth and slots, in much the same manner as the leakage fux path.
Because of the large slot to tooth width in the conductor region, it is not an unreasonable assumption to ake the return field path shown in Figure (3) by line ($1-2$) in the loop to be ef sively air. Hence, the justification arises for the statement " $\mathrm{H}_{\Psi_{1}}(b) \cdot 2 \omega=r . m$.) current enciosed by loop".
5) The authors do not agree with the suggestion made by Dr. Mallick that skin depth does not warrant the use of Bessel functions. This s because of the existance of a conducting medium below the sleeve. namely the permanent magnet, which adds a considerable conducting thickness below the sleeve. Also, it must be noticed that the frequenc: of the excitation function is six times that of the inverter frequencs (motor speed). This is because of the nature of the excitsinon wave form. see Figure (4) of the paper. Thus, we believe that the 0.5 inclies depth of penetration mentioned by Dr. Mallich is incorfect.

We conclude by again thanking Dr. Mallick for the opporiunaty given to us by his questions to illucidate the various points of potential ambiguity which the raised in his discustion.

Manuscript received June 7 , 1942.

APPENDIX (10)

ON THE PERFORMANCE OF THE SAM,RIUM-COBALT AND STRONTIU A-FERRITE BASED BRUSHLESS DC MACHINE-POWER CONDITIONER SYSTEMS

Demerdash, N. A., Miller, R. H., Nehl, T. W., Overton, B. P., and Ford, C. J., "Comparison Between Features and Performance of Fifteen HP Samarium Cobalt and Ferrite Brushless DC Motors Operated by Same Power Conditioner," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-102.

- 1983 IEEE. Reprinted, with permission, from the IEEE Transactions on Power Apparatus and Systems, Vol. PAS 102 , Pr. $\overline{104-112, ~} 1983$.

N. A. Demerdash, Senior Member R. H. Miller, Member T. W. Nehl. Member
 Virginia Polytechnic Institute and State Univeralt,
 Biacksiuly, Yighaid

B. P. Ovirrton, Senior Member
C. J. Ford. III, Membe -
R and D Center, Industrial Drivea divicior: Kollmorgen Corporation

Radford, Virginia

Abstract - The impact of samarium-cobalt and ferrite magnet materials on the design and performance characteristics of electronically comatated brushless dc motors of equal horsepower ourput is presented. This is accouplished through the design, construction and testing of two $15 \mathrm{hp}, 120$ volt brushless dc motors built for propuleion of electric vehicles, and similar applications. In one of chese meors, samarium-cobalt (Sm Cog) is used as permanent magnet material, while in the ocher the magnets were made of otrontiur ferrite number 8 . The , wo machines were bullt t operate from the same power conditioner, which consisted of a transistor chopper in sertes with a three phase full wave inverter/converter bridge, which coneisis of six tran-sistor-diode switcins. Both of the two motors achieved 1 continuoun 2 hour rating of more than 15 hp with a pedk une minute rating of 35 hp . System efficienc, (cumbined mozor and onditioner) under rated conditions ot 90\% was achleved for both machines. Detalls of these and other performance characteristics and design parameters are presented and analyzed to assess the impact of the choice of magnet material on design and $p e r f o r m a n c e f o r ~ t h i s, ~ a s ~ w e l l ~ a s ~ o t h e r ~ a p p l i c a t i o n s . ~$

INTRODUCTION

Electronically comatated brushless de wotors are Increasingly becoming practical for numeroue industrial spplications. These applications ir.cludi "ectromechantcal propuls; .. : all as many actuation systems. Examples ot sur. + : resopments can be found in the Ifterature such as [1] through (4).
[he. . it .t. . . . the elassical brush type cominutator allows one .. design such machines for operathun at much higher soeeds than standard brush type de machines. Suct. hiph rated speeds lead to considerable reduction in weight and volume of these electronically -ommutated machines in comparison vith a brush type machine ot the same rated horsepower.

The use of petmanent zagnets as gources of exchcuthon on the rotors of these machines leads to the elimanation of rotating armatures. Accordingly, alth the resulting atationaty armatures in chese brushless machines, considerable improvement in the chermal characteristics of such motors can be achieved for a given horsepuver rating. Also, the elimination of a rotating armature leads to a number of additional windiag deaign stupliflcations.

The advenc of magnetically powerful samarium-cobalt cype permanent magners made is puwsible to design and construct such motore with increasing horsepower ratings so ds ro mike chem ititable for poselble use in
propulsion of electric passenger vehfcies ana siadiar applicationg(1-4). Only samarium-coball was used in the development of brushiess dc motors 17 these pruvious efforts $[1-4]$. However, the cust anu the uncertar. avallability of cobalt as a strateglc material have bec ome of increasing concern to many potentiai userio ut suc brushless dc motors. This was a majur factor in propelling the duthors to develop, build and teat two brushless dc motors of the same narduteriscica. One was bullt with 18 MGO samarium- cobal: rotor maknets, while the otner was built using strontium-tertite number 8 magnets, for purposes ut cumpartsun and assessment of ferrizes as subatitutes tur yaimatim- ubait.
the two motors are rated 15 hp , tt 120 volts de line voltage, and can be operated by the same elect., nic power conditioner. Boch motorg were truted, and can safely develop a peak horsepower of 35 hp tor one minute. Overall motor-conditioner etflexenctes ot jbout 90\% were encountered when operating buch machines. Cuar parison between the variuus design teatures and asperis Involved in both motors, as well ds the resulting performance is believed to contain several wntribucions to the present state of the art.

ELECTRONLC PUWER CONDITIONER-MUTUK INIERACTIUN

It is only recently that electronically commeated brushless dc motor systems have been develuped using samarium-cobalt permanent magnets and power transistors as switching elements for electronic comutation (power conditioning), see references [1] chrowigh [0]. (s ucr a system, the machine consists of a three phase type ac armature munted on the $\leq t a t o r$, and a rocor whos: excitation. is supplied by a syatea of permanent masiet poles. As shown in che machine-power conditioner schematic of Figure (1), the three phase armature is connected to a three phase invercer/converter (awtoring: regenerative braking) bridge which contains six power cransistor-diode switches, $Q_{i}-D_{1}$ through $Q_{D}-J_{r}$. The chree phase inverter/converter bridge Ly connecied tu 4 serics/shunt type two quadrant chopper tor di liak current magitude limiting and control since the de line current is proportiona. to the motor corcue, the chupper functions also as a torque concruller. In ehls chopper, the transiacor (in conducta during the "on" state while the diode D_{M} conducts during the "otf" state of che chopper in the motoring mode. The transistor i), conducta during the "on" state while the diude D_{3} conducts during the "off" arate ui che chopper in the regener, tive braking mide This peraits micoring and regeneration when the line to line value of the motor back enf is conolderably lower than che supply volcage. Both motors wre deaigned so that at rateu power and speed the chopper wat continuously on to minimize suitching loseas. The chopper is connected to the dc supply through an input capacitor fitter for ripple reduct.on. This conditioner permits the mach'ng to function in a motoring state and in s regenerablve braking acate, which is dest able iut lecter rificiency in electromechanical propulaion and almalar applicitions.

The inverter tranalstors Q_{l} thioukn V_{0} - ee swittir ed "on" and "off" by tontrol signaly kenerated b, a Hall-effect rotor position sensur (rps). In ehis work, the ris erfectively einsisted of tyo sets of chicec Hall devices diaplaced trom each ocher by 30^{*} elecerinal.
is is to enable one to use a normal inverter transisr firing mode under rated 15 hp conditions and an adnced inverter transistor firing mode for peak power
15 hp . Te-hnical aspects of the need for advanced ring are discussed later on in this paper.

c

Figure (1) Machine-Power Conditioner Schematic and Idialized Motoring Currents

Promer sequential switching of Q_{1} through O_{6} ieads io a, b and c phase current wave forms such as idealized in block form in Figure (1). In this figure one can see the extrtance of six distinct armature current states. This establishes in the motor a stator (armature) mof which travols in discrete jumps of 60° electrical eacin time switching takes place from one current state to the next. The rotor mmf (magrets) is contindously forced to fallow that motion. The resuit is equivalent to that of a synchronous machine in which the torque angle (angle between a mature and field mmfs) varies cyciluill: from beginning to end of each of the six armature current states between $? 20^{\circ}$ and 60° electrical durin normal inverter transistors' firing, and between 150° nd 90° electrical for a 30° electrically advanced fs 7 g of Q_{1} through Q_{6}, as shown in Figur (2). Shor in dotted lino form for convenience in Fag'. . .1) is the path of tite current through the conditi,..c. and machine during the first 60° electrical it the armatur wrent yrle given in ithe figure

Figurc (2) Internal Torque Angles for Normal and 30° Electrical of Advanced Inverter Transistor Firing, at Reginning and End of an Armature Current State

The diodes, D_{1} through D_{6}, provide current paths during phase current commatation. They also function as a three phase full wave rectifier bridge during machine operation in the regenerative braking mode. The diodes, D_{M} and D_{B}, provide the necessary do line current paths during the "off' periods of the trarsistors UM_{M} and Q_{B} lin the motoring and regenerative braking moits, respectively. The function of the diode, I_{R}, is to provide a return path for the current trough th - wopper inductor during the switching instances when the path through tie inverter may be blocked momentarily. Thus it eliminates the danger of any severe (Ldx/dt) type voltage transients. Figure (3) shows the overall machine-power conditioner system and supporting inscrumentation during dynamometer testing of the ferrite permanent magnet jased motor.

Figure (3) Motor-Power Conditioner During Dynameter Testing of the Ferrite Based Machine

IMPACT OF SYSTEM PERFORMANCE REQUIREMENTS ON ROTOR POSITIOH: SENSOR (RPS) DESIGN

Both the ferrite based and samarium cobalt based rotors developed in this work were intended for propulstonof a 1363 kg (3000 lb.) passenger vehicle. A number of stringent performance requifements had to be met. These included continuous operation for 2 nours under rated torque and speed, pertormance under schedule D oi

 up to 10% grade, etc. Accordingly, both of these motars were required to have a 15 hp continuous (2 hours) rating and a peak 35 hp one minute rating, both at a nominal voltage of about 115 voits. The peak power requirement meant that the system must have the capability of withstanding and building up to a peak dc line current of about 300 Amperes, and sustaining this current for one minute, with the motor winding at its normal operating temperature.

However, it has been shown in two previous investigations by Ne'il, et.al. [5, 6] that the system capability of build up of dc line current, for purposes of achieving peak horsepower ourput at rated voltage, is heavily depe tont on number of factors. These factors are: 1) winding indu:tance values, 2) the waveform profiles of induced back emfs in the armature phases, and 3) the time of firing of an inverter transistor switch of a given phase with respect to the back emf wave form of that phase. The third factor mentfoned ahove is a key element in the design of a suitabie rps fcr thest mocors.

It will be agreed here that when an inverter transistor is fired at the instant of zero crossing in the phase emf wave form, with a positive rate of increa of that emf with respent to time, such firing will be re-
rered to as a 30° electrical advanced firing. Meanwhile, when such firing takes place with a delay of 30° electrical after the above mentioned zero crossing in the emf wave fusm, such firing will be refered to as normal (or zero electrical advanced) firing, Figure (2).

It was found by Nehl, et. al. $[5,6]$ that skewing of the armature slots by one slot pitch, in addition to 30° electrical advanced inverter transistor firing is necessary to achieve the required peak horsepower rating of 35 hp at iis volts dc line voltage. Advanced inverter transistor firing facilitates the process of dc line current buildup, because it permits the buildup process to start at a time when the phase back emf of the \boldsymbol{w}^{-}.or, opposing the supply voltage and flow of the dc ine current, is at its lowest value. That of is zero at the instant of start of the transistor firing. For details references $[5,6]$ should be consulted.

This advanced firing state has a slight adverse effect on the motor efficiency. Accordingly, it was decided to use such advanced firing only for peak power operating conditions, and use normal firing during rated operating conditions. Trerefore, the rps for each of the motors at liand was designed with the equivalent of two sets of three Hall effect devices, as can be seen in figure (4). One set of three Hall devices (nomal firing) is activated during normal rated operating conditions, while the other set (30° elac. advanced firing) is activated for peak output power operation.

Figure (4) Rotor Position Sensor

DESIGN OF THE SAMARIUM-COBALT BASED AND FETRITE BASED MOTORS

The samarium cobalt and ferrite based motors developed in this investigation are shown in crosssection in Figures (5) and (6) respectivelv. Again, these motors were both designed for a contin, us rating of 15 hp at 115 volts de line voltage, with a capability for a peak one minute rating of 35 hp at the same rated voltage (the suppl.y voltage apecified could range from 90 to 12(volts). The stator core lamination stack of the samarium-cobalt based motor can be seen in Figure (7). Heanwhile, the rotor and assembled armature in its housing ara given 1. Figure (8). The stator core lamination stack of the ferrite based motor is shown in Figure (9). The rotor and aesembled armature in its housing are 3 iven in Figure (10).

Details on the various de tgn characteristics of these two motors are given in Table (1). It should be observed that the outside core (stator laminations) diameter was 6.518 inches (16.56 cm) in boti designs. Meanwhile, the stack length of the samarium-cobalt
 motor was 8.5 inches (11 j4 (m). It is anteresiang to point out that the weithe it the sanaritu--oodit motor, about 60 lbs . (27 kg), 1 s Less than haif of the weight of the ferrite motor, dor it 127 lbs. (57.796 kg). It is also interesting for one so compare the weight rat 20 of the two motors, which is about 1.0 is 2.0 , to the ratio of the energy product of che jartaculdr samariumcobalt and ferrite materidls used, whith is about 5.0 co 1.0 .

Figure (5) Cross-Section of the Samarium-Cobalt MotcrOuter Lamination Dameter $=6.518$ Inches 110.556 (. 1)

Figure (6) Cross-Section of the Ferrite Jtor-Outer Lamination Hameter $=6.518$ Inches $(16.556 \mathrm{~cm})$

Figure (7) Stator Core of the Samarium-Cotalt Motor

Figure (8) Assembled Armature, Housing and Rotor of the Samarium-Cobalt Motor

Figure (9) Stator Core of the Ferrite Motor

Figure (10) Assembled Armature, Housing and Rotor of the Ferrite Motor

Another important feature of the armature windings of both motors is the existance of two groups of colls per phase. This is to enable one to operate both machines as shown in Figure (11) with a series mode (one path per phase) or a paraliel mode (two parallel paths per phase), for low speed and high (rated) speed, respectively.

These motors were designed for operation in ronjunction with a two speed vehicle transmission. Accordingly, the series winding connection $1 s$ intended for vehicle speeds below $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. ($24 \mathrm{~km} . \mathrm{p} . \mathrm{h}$.). The parallel winding connection is intended for vehicle speeds above $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. Above a vehicle speed of 30 m.p.h. ($48 \mathrm{~km} . \mathrm{p} . \mathrm{h}$.) the high speed transmission gear ratio is used in conjunction with the parallel winding connection.

Both machines were designed in such a manner that natural air cooling would be sufficient for normal operating conditions, in both motors T.E.N.V. enclosures were used. As will be shown later, the temperture rise of the ferrite motor was not large enough to affect the magnet strength in such a way as to adversely affect the performance.
Tabel (1) Parameters and Characteristics of the Samarium-Cobalt Based and Ferrite Based Motors From Design Calculations and Test

Purameter and Units	SamariumCobalt $\mathrm{Sm} \mathrm{Co}_{5}$ Design	Strontium Ferrite 48 Design
motor outside diameter, in. (cm;	$7.88(20.02)$	7.88 (20.02)
motor length, in. (cm)	13.35(33.91)	18.85 (47.88)
weight, lbs. (kg)	60.0 (27.2)	127.0 (57.6)
stator lamination out ide diameter, in. (cm)	$6.518(16.56)$	6.518 (15.56)
stator lamination stack length, in. (cm)	4.00 (10.16)	8.50 (21.59)
stator lamination inside diameter, in. (cmi)	$3.062(7.78)$	4.07. (10.34)
number of stator slots	18	18
number of poles	6	6
rotor (magnet str.) outside diameter, excluding sleeve, in. (cm)	2.930(7.44)	3.930 (9.98)
rotor outside diameter, including sleeve, in. (cm)	3.000(7.62)	4.000 (10.16
rotor (magner structure) axial length, in. (cu)	3.60 (9.14)	8.75 (22.23)
magner (radial) length (in direc- tion of magneti- zation), in. (cm)	0.490(1.24)	0.740 (1.88)
magnet cross-sectional area per pole (perpendicular to flux), in. ${ }^{2}\left(\mathrm{~cm}^{2}\right)$	3.766(24.30)	12.163(78.47)
$\begin{aligned} & \text { total magnet volume } \\ & \left(\text { all poles), in. }{ }^{3}\right. \\ & \left(\mathrm{cm}^{3}\right) \end{aligned}$	11.072(181.4)	54.004 (885.0)
total magnet weight (all poles), lbs. $(k g)$	3.23(1.47)	$9.56(4.34)$
rotor inertia constant, lb, ft. sec? (kg. m²)	$0.00234(0.00317)$	0.01200(0.0163)

Table (1) Continued

Parameter and Units	$\begin{gathered} \text { Samarium } \\ \text { Cobalt } \mathrm{Sm} \mathrm{Co}_{5} \\ \text { Design } \end{gathered}$	Strontium Ferrite \#8 Design
Y-connected armature winding	yes	yes
armature winding configuration (connection)	serles/parallel	series/parallel
method of harmonic reduction	skewing by one stator slot	skewing by one stator slot
maximum allowable winding temp. ${ }^{\circ} \mathrm{c}$	170.0	170.0
rated input voltage (on de side), volts	120.0	120.0
rated armature current (on dc side), amperes	125.0	125.0
rated horsepower, ht	15.0	15.0
*speed at rated horsepower, r.p.m.	*8680	*8840
*torque sensitivity at high speed armature winding connection, lb . ft . /ampere (Newton lieter) Ampere)	*0. 0885 (0.11999)	*(0.0992)
back emf sensitivity (constant) at peak of sine wave for high speed armature winding connection, volts/ mech. radian/sec.	0.1200	0.0993
armature winding resistance (line to line) for high speed armature connection $25^{\circ} \mathrm{C}$, ohns	0.0047	0.0049
*torque sensitivity at low speed armature connection, 1b. ft./ampere (Newton Meter/ ampere)	*0.1770(0.23998)	*0.1464 (0.19849)
back emf sensitivity at peak of sine wave for low speed armature connection volts/mech. radian/ sec.	0.2400	0.1986
armature winding resistance (line to line) for jnw speed armature connection $25^{\circ} \mathrm{C}$, ohms	0.0188	0.0196
maximum r.p.m. for Low speed armature connection, r.R.m.	4300	4500
maximum horsepower hp \qquad	35.0	35.0
*motor speed at maximum horsepower r.p.t.	*6900	*6750
armature current at maximum horsepower, amperes	291.6	291.6
Thermal Iime Constant (minutes)	35 min.	45 min.
Steady State Top Rise Above Amb. $25^{\circ} \mathrm{C}$	$128^{\circ} \mathrm{C}$	$113^{\circ} \mathrm{C}$
*Obtained from Teat	Measurements	

PERFORMANCE CHARACTERISTICS OF THI: SAMARIUM-CGBAL

 AND FERRITE 14OTORSThe two motors were dynamometer zes:ed inecr rated and peak power conditions. The corresponding performance data are given below.

Rated Power Performance Test Results
The two notors were dynamoneter cesced under tated conditions, using the same power conditioner described above. This test vas run continuously for two hours to obtain the thermal characteristics of buch motors as well as the conditioner. This is in order to ensure the ability of both units to operate continuously under rated condicfons.

Typical readings of input de lise voltage, dc line current, motor speed, motor input power, motor out,put power, and motor as well as overall systam (combined motor-conditioner) efficiences, obtained during this test, are given in Table (2) for both morors. It should be noted cnat these test readings are subject to normal instrumentation errors of about 2%.

Examination of the data of Table (2) reveals that both motors performed equally well, and that motor efficiencles of 97% are Fosible, with an attainable combined system (motor-conditioner) efficiency of about 90\%. (Design calculations indicated motor efficiency of 96% for both units).

Oscillograms of machine phase current, line to neutral voltage, and line to line voltage at rated lad for the samarium-cobalt motor are given in Figures (12), (13) and (14), respectively. Aiso, oscillograms of ma hine phase current, line to neutral voltage and line to line voltage at rated load are given in Figures (15), (16) and (17), respectiveiy for the ferrite motor.

Figure (11) Schematics of Armature Winding for Low Speed and High Speed Connertions

Figure (12) Phase Current Oscillogram of tue SamariumCobalt Motor Under Raced Load (Ordinate 80.4 Amperes/div., Absciss $-0.5 \mathrm{~m} \mathrm{sec} / \mathrm{div}$ d

Tab:e (2) Performance of the Samarium-Cobalt and Ferrite Motors at Rated Conditions

Figure (13) Lane to Neutraj Voltage Oscillogram of the Samarium-Cobalt Mutor Inder Rated Load (Ordinate $=50$ Volts/div., Abscissa $=$ $0.5 \mathrm{r} \mathrm{sec} . /$ div.)

Figure (14) Line to Line Voltage Oscillogram of the Si...driun-Cobalt Motor Under Rated Load (Ordinste $=50$ Volts/d'v., Abscissa $=$ 0.5 m sec. $/ \mathrm{div}$.

Figure (15) Phase Current Oscillogram of Ferrite Motor Under Rated Load (Ordinate $=80.5$ Amperes/ div., Abscissa = 0.5 m eec./div.)

Figure (16) Line to Neutral Voltage Oacillogram of the Ferrite Motor Under Rated Laad (Ordinate 50 Volts/div., Abscisea $=0.5 \mathrm{~m} \sec . / \mathrm{div}$.)

Figure (17) Line to Line Voltage Oscillogram of the Ferrite Motor Under Rated 10 ad (Ordinace $=$ 50 Volts/div., Abscisas $=0.5 \mathrm{mecc} . / \mathrm{div}$.)

Pejk Pover Performance Test Results

The two motors were dynanometer tested under peak load contitions of more than 35.0 hp for more than one minute each. This test is supposed to ascertain the ability of he motor and conditioner to deliver high values of output power for short periods of time, for purposes of acceleration and other overload conditions.

Readings of input de line voltage, de line current, motor speed, motor output power, and overall system (motor-conditioner) efficiencies, obtained during peak power dynamometer testing, ar: given in Table (3) for both motors. Noise problems were enccuntered in the digital instrument reading the motor input power. Therefore, this power and the tsolated motor efficiency are not available in this data.

It should be pointed out that it was necessary to advance fire the inverter transistors by 30° electrical in order to achieve the de line current build up necessary to attain a peak motor output powar of 35 hp , for both motors with a terminal de voitage of about 120 volts or less.

Examination of the test data in Table (3) reveals that both motors performed will, with a somewhat higher overall syatem efficiency for the samarium-cobalt motor under peak power conditions. It is worth mentioning that peak powers of more than 42 hp have been reached by these motors at a de line voltage of 150 volts.

Oscillograms of machine phase cixient, line to neutral voltage, and line to line voltage at peak load conditions are given in Figures (18) rhrough (23), for ne samarlum-cobalt and furrite motors, respectively.

 Cobalt Motor 'inde Ppak coan (irn 7ate $=$
 div.)

Figure (19) Line to Neutral Voltage Oscillogram of th. Samarium-Cobalt Motor Under Feak Lcad (Ordinat $=50$ Volrs/djv., Abscissa $=$

Figure (20) Line to Line Voltage Oscillogram of the Samarium-Cobalt Motor Under Peak Load (Ordinate $=50$ Vclts/div., Abscissa 0.5 w sec./div.)

Performance Quantity	(3) Perfo Armaure Connection	DCace of Volne Voltage (Volts)	Samarium DC Line Current (Amps)	t and Motor Speed (RPM)	Ee Moto Motor Input (Watts)	at Peak Powe Motor Output (Watts) / (uy	of 35 HP Motor Efficiency (\%)	Overall System (\%)
Samarium- Cobalt Motor	Parallel	115.0	287.5	6900	*	26184.6/35.	**	79.2
Ferrite Motor	Parallel	120.y	297.6	6750	*	26072.2/35.	**	74.0

* Motor Input Power Reading Was Not Outained
* Could Not Be Calculated Because Motor Tnput Power Is Not Known.

Figure (21) Phase Current Oscillogram of the Ferrite Motor Under Peak Load (Ordinate $=201$ Amperes/div., Abscissa $=0.5 \mathrm{~m} \sec . / d i v$.

Figure (22) Line to Neutral Volt age Oscillogram of the Ferrite Motor Under Peak Load (Ordinate = $50 \mathrm{Volts} / \mathrm{div} . \mathrm{Absissa}=0.5 \mathrm{~m}$ sec./div.)

Figure (23) Line to Line Voltage Oscillogram of the Ferrite Motor Under Peak Laad (Ordinate 50 Volts/fiv., Abscissa $=0.5 \mathrm{~m}$ sec./div.)

DISCUSSION OF RESULTS

The test results given above indicate that the differences in the rated power, efficency, peak power capability as well as motor-conditioner interaction characteristics of the two machines were insigniticant. However, there are significant differences in some of the design parameters.

The most obvious difference is in the volume and weight ratios of the two motors. Both ratios were about 2.0 to 1.0 in favor of the samarium-cobalt motor. This indicates that, in applications where weight or volume is of primary importance, samarium-cobalt designs would be favored.

A comparison between the rotor inertias of the two machines shows a ratio of aboul 5.0 to 1.0 in favor of the samarium-cobalt. This may be significant in servo type applications where fast response is an important consideration.

The cost of the permanent magnet material for the samarium-cobalt motor was abour five times that of the ferrite motor. However, this was slightly offset by the longer stack and additional copper as well as labor for the ferrite motor. Wheaever magnet material availability and security of supply is of primary consideratton, the ferrite motor by be favored. The above considerations indicate that for general purpose propulsion and similar applications, the ferrite design is preferable.

CONCLUSIONS

Results of this investigation show that electronically commutated brushless dc motors of equal horsepower and equal performance can be constructed using samarium-cobalt or ferrites for magnet materials. Tle choice of the magnet material impacts weight, volume and motor inertia the most, with samarjum-cobalt leading to sigaificant reductions in all three. From the standpoint of magnet material cost and security of supply, ferrites appear to be preferable. It has been shown that motor-power conditioner efficiencies of 90\% or better are practical and achievable It has also been shown that peak horsepower outprets of more than double the rared value are achievalie, espectally by use of the concept of advanced prase current firing to maximize dc lint current build-up during commation. Power conditioners built entiareiy by use of power cranEistors for the present ratings were shown to be practical.

ACKNOWLEDGEMENTS

These dithors wish to acknowledge the financial support gi a by NASA Lewis Research Center/Department Energy Contract No: DEN3-65, and wish to acknowledge the keen interest and useful guidance of the contract monitor Mr. E. Maslowski of the Lewis Research Center. The authors wish to thank Dr. R. Churchill, Vice-President, efearch and Development Center, Industrial Drives Divisi ., Kollmorgen Corporation, Radford, Va., for availing the manufacturing and test facilities of both the R and D Center and the Industr'al Drives Division.

PEPERENCES

[1] Delco Electrenice, "Finel Report on the Electromehanical Flight Control Actuator", Final Repor", NASA-JSC: Contract NO. NAS9-14952, General Motors Corporation, Delco Electronics Div., Santa Barbara Operations, Goleta, CA, 1978.
[2] Sawyer, B. and Edge, J. T., "Deaign of a SamariumCobalt Brushlesa DC Motor for Electromecharical Actuator Applications", Proceedings of the IEEENational Aerospace and Electronics Conferance, Dayton, Chas, 1977.
[3] Edge, J. T., "An Elecrromechanical Actuator Technology Development Program", Paper NO. 780581, Society of Automotive Engineers, Proceedings of the Aerospace Fluid Power and Control Technologies Symposium, 1978
[4] Demerdash, N. A., Lee, F. C., Nehl, T. W. and Overton, B. P., "A Brushless DC Motor-Power Conditioner Unit Designed and Built for Propulsion of Electric Passenger Vehicles Phase (I)", Paper NO. EV: 801', Proceedings of the International Electric Vehicle Conference and Exposition, St. Louis, NO, 1980.
[5] Nehl, T. W., Fouad, F. A. and Demerdash, N. A., "Digital Simulation of Power Conditioner-Machine Interaction For Electronically Commutated DC Permanent Magnet Machines", Paper Presented at the LEEE-Interaag 81, Grenable, France, Accepted for Publication in the November, 1981 IEEE Transaction on Magnetics.
[6] Nehl, T. W., Fouad, F. A., Demerdash, N. A., and Maslowski, E., "Dynamic Simulation of Radially Oriented Permanent Magnet Type Electronically Operated Synchronous Machines with Paramenters Obtained from Finite Element Field Solutions", Paper Accepted for Publication in the IEEE Transactions on Industry Applications.
[7] "Electric Vehicle Test Procedure-SAE J227a", Society of Automorive Engineers, Inc., 1976.

NABEEL A. DEMERDASH (M'65 - SM'74) was born in Cairo, Egypt, on April 26, 1943. He received the B.Sc. E.E. degree with distinction and first class honors from Cairo University, Egypt, in 1964 and the M.S. and Ph.D. degrees in Electrical Engineerit. z from the University of Pittsburgh, Pittsburgh, Pennsylvania, in 1967 and 19/1, respectively.

From 1964 to 1966 he was with the Faculty of Engineering, Cairo University as a Demonstrator. From 1966 t~ 1968 he was with the Department of Electrical Engineering, liniversity of Pittsourgh, as a Graduate Teaching Assistant. In 1968 he foined the Large Rr ting Apparatus Division of Westinghouse Electric Corporation, East Pittsburgh, Pennsylvanfa, as Development Engineer where he worked on Electromagnetic Field Modeling in Rotating Machinery and the development of the asymmetrical rotor for large steam turbine-driven generators. Since 1972 Dr. Deserdash has been with the Virginia Polytechnic Institute and State Universicy, Blacksburg, VA, where he is presently a Professor in the Department of Electrical Engiaeering.

Dr. Demerdagh is a Senior Member of IEEE and is currently serving as a member of the Rotating Machinery Committee of PES, IEEE, as well as the Synchronous Machinery and the Machine Theory Subcommittees of PES, IEEE. He previously served as secretary and subsequently vice chairman of the Synchronous Machines Subcommittes of PES. IEEE. Dr. Demerdash is a past Chairman of the Virginia Mountain Section of IEEE. He is a member of ASEE, Sigme Xi and Eta Kappa Nu. Dr. Demerdash is the author and co-nuthor of numerous papers in various IEEE Transactions, Dr. Demerdash's current interesta and research activitiea include Electromechanical Propulsion and Acutation, Dynanic Modeling of Solid State Contrulled and Operated Electrical Machinet, Numerical Analycis of Electromamatic Fielde in Elec*ric Machinery, as well as Machine-Pover Syaten Dynamics.

ROBERT H. MILLER (S'47-M'48) wes born on Nov. 28 1925 in Glenside, Pennaylvania. He received the B.S. degree in electrical engincaring from Virginia Polytechnic Institute in 1948 and the Ph.D. degree from M.I.T. in instrumentation in 1964.

From 1948 to 19.49 he worked on carrier communications systems for Western Union Research Laboratories in New York, N.Y. From 1949 to 1950 he worked on magnetic amplifiers and resolvers for Kearfote (Jmpany in New York. From 1950 to 1953 he was involved with aircraft c !uipment specifications for Gruman Aircr ft in

Bethpage, N.Y. From 1954 to 1963 he wis . Ch , ,taff of Poly-Scientific Corporation, Blacksbuig, VA, first as chief electrical engineer, and later as chiet engineer, vice president for engineering, and then vice presjdent fur research and deveiupatal. Jinte 1964 ite has been a member of the faculty of Virginia rolytechnic listitute and State University, where he is -urrent ly an associate professor of electricd kngneering. His research interests are in the ared of electromechanical devices.

THOMAS W. NEHL (M' 79) was born in Tubirgen, West Germany, on December 22, 1952. He seceived the B.b., M.S., and Ph.D. degrees in electrical engineering from Virginia Polytechic Institute and State University in 1974, 1976, and 1980 respectively.

During the summer of 1976 Dr. Nehi was employed by the National Bureau of Standards where he develmped a finite element package for the solution of their rondestructive testing program. During the summer ot 1977 he was employed at the NASA Johnson Spuce Flight center where he was engaged in the modeliag of brushless do machine type electromechanical actuator systems. From 1978 to 1980, he was enployed as a research associate in the Department of Eiectir il Engineering at VPIdsi:.

Dr. Nehl is presenti, sn assistant professor of electrical engineering at VPI\&SU. His curient research activities include; finite element field analysis of machines, digital simulation of eiectronically operated machines, simulation of machine and electronic failure modes in electronically operated machirie systems, nondestructive testing and evaluation, and power electronics.

Dr. Nehl is currently serving on the synchronous and the Machine Theory Subcommittees of the IEEE/PES. He is a member of ASEE, Sigma Xi, Phi Kappa Pni, and Eta Kappa Nu. Dr. Nehl is the author and co-author of more than 20 transactions and technical papers in the power and magnetic field areas.

BERNARD P. OVERTON was horn in Prince Edward County, Virginia on November 14,1923 . ite received a B.S. degree in Electrical Engineering from Virginia Polytechnic Institute in 1956.

From 1956 to 1967 he was with the Wright Machinery Company Division, Sperry Rand Corporation, Durham, Norch Carolira as an Asrociate Engineer, Senior Engineer and Acting Section $H \in$. $\dot{\text {, , Motor Development Group. Respon- }}$ sibilities inclucied the design and development of special and unusual motor components such as AC servo motors. AC tachomecers, DC motors and stepper motors, both permanent magnet and variable reluctance. Since 1967 he has been with Inland Motor Divisiuns, Kollmorgen Corporation, Radford, Virgiuia as a Senior Engineer, and Senior Staff Engiseer - 'esearch and Development Center. Responsibilities include the design of special $X C$ motors, alcernators, steper motors, motor-generacor sets and power DC servo motors.

Kr. Overton is a member of Tau Beta Pl_{1} and a senior nember IEEE. He is currently the chairman of the IAS chapter, Virginia Mountain Section, IEEE.

CHARLES J. FORD, III wat born in Rictumond, Virginia on November 2, 1954. He received a B.Sc. degree in Electrical Engineering Techoology from Virginia Polytechnic Institute and State University in 1977. He $1 s$ currantly doing graduate work toward a M.Sc. in Electrical Engineering at VPIbSU as a part-time student.

During his undergraduate studies, Mr. Ford worked at the Reynolds Metal Can Development Center as part cf the cooperative work-study program. In 1977 he joined the Research and Development Group of Inland Motor Division of Kollmorgen Corporation, in Rarford, Virgin1a. His responaibilities have included the development of brushless d.c. motor controllers for electric vehicle applications and for underwater drives.

APPENDIX (11)

ON THE PERFORMANCE OF THE SAMARIUM-COBALT $\overline{A N D}$ STRONTIUM-FERRITE BASED BRUSHLESS DC MACHINE-POWER CONDITIONER SYSTEMS

Miller, R. H., NehI, T. W., Demerdash, N. A., Overton, B. P., and Ford, ©. J., "An Electronically Controlled Permanent Magnet Synchronous Machine - Conditoner System for Electric Passenger Vehicle Propulsion," Proceedings of the 1982 IEEE-IAS Annual Meeting 82CH1817-6, San Francisco, October 4-7, 1982, pp. 506-511.

- 1983 IEEE. Reprinted, with permission, from the Proceedings of the 1982 IEE-IAS Annual Meeting San Francisco, October 4-7, 1982, pp. 506-511.
 SYSTEY fOR ELECTRIC PASSEIGER VEHICLE PROPL'LSION

Virginia Polviechnic Institute and Stare iniversity
Blacksburg, Virginid
B. P. Overton, Senior Member
C. I. Ford, III, Member
R and D Center, Industrial Drives Division
Kollmorgen Corporation Radford, Virginia

Abstract - An electronically computated brushless dc motor system was designed and built for che propulsion of a $3000 \mathrm{lb}(1362 \mathrm{~kg})$ passenger vehicle. For this syscem, an electronic power condicioner and two motors were built. One of the motors used samariumcobalt aagnets and the other used strontium ferrite magnets for the field excitation. Some of the wajor details of the design of the motors and of the power condicioner are preseated. Dynamometer tests vere run on the machines. The results of this testing are described. The machines vere demonstrated to be capable of developing 15 hp continuously and 35 hp intermittantly. Under rated operating conditions, the efficiency of either machine vas about 90%.

INTRODUCTION
The development of large power cransistors has ade possible the electronic comutation of integral horsepower brushless dc motors. Such motors are increasingly becomiag practical for various industrial applications, such as machine cool drives or actuators for robots or aircraft. Examples of such applications arn listed in references [1] through [3].

The elimination of the brushes and commutator, which is made possible by the electronic comutation, provides several important advantages:
(1) Much nigher rotor speeds are possible. This leads to a pronounced reduction in weight and size for a given horsepower rating.
(2) The armature windings can be placed on the stator, where the cooling of the coils can more readily be accomplished.
(3) The placing of the armature windings on the stator simplifies the vincing configuration.

As the pxternal energy product of permanent magnets has increased. it has becose practical to dnaign brushleas dr motors of larger horsepower ratings. By using rotor ragnets of 18 MrO smarius-cobalt and of stront, um-fertite number 8 , the authors were able to lesign, build and test evo motors of sufficient power rating as to make them auitable for the propulsion of electric passenger vehicles.

The goal of the work vas to develop an electronic power conditionez-motor syatem capable of propelling a 3000 lb (1362 kg) vehicle under schedule D of the : SAE J227a standard drive cycle[4]. This required that the systes be capable of auetained (2 hour) operation at an output of 15 hp anc short-tern (1 minute) operation at an output of 35 hp . As the teat refults show, each of these goals has been mex.

Description of the Motors
In this work, two motore were designed and built. for the purpose of minimising the size and veight, one of the motory was constructed using samerium-cobalt maynets for the field excitation. Becsuse of the expense and possible scarcity of this magner material, a aecond antor was designed and buift using strontiumferrite agnete. The perfirmance of the two motors wac nearly the same, while the ferrite excited motor was abcut twice the weight and one and one-half times the volume of the samarium-cobalt cxitted motor.

In both motors, balanced three-phase i-connected windings were used. These windings were arranged 10 two groups so that they could be connected in series or in parallel. This arrangement was made so that higher starting corque could be obtained without excesisive current in the electronic power conditioner. However, the test results confirmed that suificient torque was avaifable in the parallel connection to mett the drive cycle specification. Accordingly, no provis:on was made in the final system hardware to switcin to serits operation at low speed.

Both machines used naturai air woling of the T.E.N.V. enclosures. Photographs of the major components of the two machines are shown in Figures (1) and (2). The major design parameters are listed in Table (1).

Figure (1) Components of the samartum-, wiblt Notus

Figure (2) fomponent: of the forrice .ator

' Parameter, Units	$\begin{aligned} & \text { Samarium-Cobalt } \\ & \mathrm{SmCo}_{5} \text { Design }^{2} \end{aligned}$	Strontium Ferrite $48 \text { Design }$
imotor outside diameter, in. (cm)	7.88 (20.02)	7.88 (20.02)
$\begin{aligned} & \text { motor lenget, } \\ & \text { in. (cm) } \end{aligned}$	13.35 (33.91)	18.85 (47.88)
$\begin{aligned} & \text { imotor weight, Lb. } \\ & \text { i(kg, } \end{aligned}$	60.0 (27.2)	127.0 (57.6)
$\begin{aligned} & \text { total magnet } \\ & \text { 'weight, Lb. (kg) } \end{aligned}$	3.23 (1.47)	9.56 (4.34)
```irotor inertia \| constant, Lb. ft. - sec}\mp@subsup{}{}{2}\mathrm{ (kg.m```	0.00234 (0.90317)	0.0120 (0.0163)
Irated horsepower, \|hp (continuous (2 hour rating)	15.0	15.0
peak horsepower, inp (one minute rating)	35.0	35.0
speed at rated horsepower	8680	8840
\| number of poles	6	6
torque sensitiviity (parallel coninection) !.b.ft/ lampere (Ner:on \|meter/ampere	0.0885 (0 11999)	0.0732 (0.0993)
'emf senstivity   : (line to line),   ivolts/mech.   rad./sec.	0.1200	0.0993
thermal time constant, minutes	35	45
'supply voltage, ivolts	120	120

Mounted on the shaft of the anchines was a set of six small magnets which were used to control three Hall effect sensors to deternine the rotor position in order to synchronize the awitching of the electronic drive circuit. This rotor position sensor divided a rotation of 360 electrical degrees into six arcs of 60 slectrical degrees. This provided the timing for the awitching seyunis described in the naxt eection. A second set of Hall-effect sensors was mounted in position 30 electrical degrees removed frem the first set. Dy using chis alternate set of aensors, edvanced firing of the comutatine tranaiatore could be aecomplished. The need for this provision to discunsed below.

## Descripeion of the Power Cotillgener

The function of the blectroaic power conditioner was two-fold: to convert the dc supply voltege to thret-phase se voltage of the proper phase to dra.e the motor, and to control the currunt supplied so the motur in order to regulace the developed terque. The development of this type of power conditioner is described in references [1]-[3] and [5]-[7].


Figure (3) Hotor-Power Conditioner Network Schenatic
A scrametic diagren of the circuit including tine afjor pows switching elements is thown in Figure (3). In this diagran, the conmatation is accomplished by the three phase inverter/converter (notoring/renenerative braking) bridge comprising the six transistors, $Q_{1}$ through $Q_{6}$, and the six diodes, $D_{1}$ through $D_{6}$. The current control is accomplished by the two quadrant chopper comprising transiators $Q_{M}$ and $Q_{B}$ and diodes $Q_{n}$ and $D_{3}$.

In the motoring aode, the chopper regulates the currant to the motor by turniag on $\mathrm{O}_{\mathrm{H}}$ if the inductor current is too low. When the inductor current hes increased by a predeterminad incrament beyond the set value, $Q_{M}$ curne off, and the inductor current flous through diode $D_{M}$. During regenerative braking, the transietor $Q_{b}$ is turned on until the inductor current has risen by an increment above the set vaiue. $Q_{y}$ is then turned off, ami the snduczor curreat flow through $D_{3}$ and onto the battery.

In the motoring mode, proper wuitching of $Q_{1}$ through $Q_{6}$ leads to phase $a, b$ and $c$ current vevefores such as are idealized in Figure (3). In this figure, one can see the existence of six distinct areature states. This establishes in the motor a stator (armecure) af which travels in discriste jumpa of 60 electrical degrees. The rotor (eagnets) is continusouly forced to follou that cotion. The rasult is equivalene to that of a synchronous bachine in wich the torque angle (between the two mefs) varies during each switching cycle between an initial $120^{\circ}$ and aimal $60^{\circ}$ electrical angle. Tor advanced firing of the commatating transistors, this angle varies between $150^{\circ}$ and $90^{\circ}$ lectrical as shown in Pigure (4).

The diodes, $D_{1}$ through $D_{6}$, provide cursent paths during the avitching operation when the inverter tranalstore are monatarily off. Thay aleo function as a three-phase full wave rectifier bridge in the regenerative lraking mode. Diode bu provides a path for the ivductor current duting the owieching inetanc..; when de path through the inverter is momentari' lockid.

In order to eliminate one transistc which reduces cost, and to prevent any accidental fit...ig of $Q_{M}$ and $Q_{B}$ sixultancously, one transistor was used for both functions. This tranalator was evitched between the two positions by means of a DPDT relay.


Figure (4) Advanced Firing Concept

## LMPACT OF COHPUTER AIDED ANALYSIS ON THE MOTOR-CONDITIONER SYSTEM DESIGN

It is worth emphasiziag that the various voltage and current vaveforms throughout such motor-conditioner system are heavily nonsinusoidal in mature, see references [1]-[3] and [5]-[7]. Heace, may clasaical frequency domain (phasor type) mathods are not applicable to the analysis and prediction of performance of such systers. In fact, use of auch methods without regard to their linitazions when analyzing such aystema can lead to bislesding results. This led so the developmant of a dynamic timedomain mimulation model, see refersnce [7], aited for the soalyais of such systeas. This model requiras: 1) knowledge of the vareforms of phase eafs induced in the armature wisdings of such machines, 2) the values of the self and mutual inductances of the phase vindinge of aoch motors, and 3) other wotor-conditioner circuit parameters. The deternination of the en vaveforme, and linductancas, asociated with auch mehines is accomplished by uee of the sathod of finite clemente co analyze the magnetic field in these mechines, as described in detail in referances [8] and [9], respectively.

The above mationed computer-aided analyais sools were used to exanine the validity of the preliminary designs of the motor-conditicner syeten at hand befors such deaigns vere fizalized and implemated. This was cartied out in the following order:

1) Upon obtaining prolinimary designs of the samilumcobalt and ferrite motors, the an waveforas and uinding inductancet vere deterained for both mehines by ifnite alemente, ueing enthods deecribed in refarences [8] and [9], reapectively.
2) These parameters wer used in the dyonic aimilasion oodel of the motor-coaditioner syaten, see reference (7) and (6) for furthar details. The remults of the Eimulatiot revealed that under the constraint (liposed by cuntomet) of a upply voltage of 120 volts de, only 4 bp peak output could be obteined at the rated spacd [6]. This rather liated output capability can be attributed directly to the nachina imductancen. In order te reacify chis situaticn. the number of windint turne par phase vas reciuced, see references (9] and [6].

This design changa tios also simulated, and it led to a new peak output of 26 hp . This was euch closer to the goel of "Y hp. Howver, additional design changes vere nec. beary to achieve the 35 hp
goal.
3) The idea of advancing the firing time of the inverter transigtors by 30 electrical degrees was airn simulated. This reduces the vaiue of the amf posing the currenc buildup at the instant or switching.

The combined reduction in the number of turns and advanced firing led to f predicted motrr-conditioner peak outrut of about 38.7 hp . With this result in mind, these design changes were introduced to the final design, and implemented in the construction of the hardware. Results of th. actual tescing of the hardware given later in this paper revesl that the developed syatem is capable of producing the required 35 hp one minute output rating in both the samarium-cobalt and ferrite motor cases.

## Power Conditioner Deaign Featuren

The power transistors used for both the chopper and inverter transistors wert Toshiba 2SD,48, with a rated collector current of 400 A and a rated voltage $V_{\text {CEO }}$ of 300 V . The 300 rating requited chat careful atcention be given to the suubber design to prevert exceasive voltage spikes during the switchiog instants. The snubber circuit is shown in Figure (5). Even with chase snubbers, it was neceasary to place a 9000 is capacitor bank across the inverter buss to prevent excexalve voltage spikes.


Tigure (5) Saubber Network
The power crapsistors a powne lodes were sounted on heat sinks which were ar.anged in the form of a sunnel through which coojint, wis weat forced (see Figure (6)). Howner, ain e t.e only pracelcal way of mounting these diodes was in seat sinks that were much lerger than neceasary, ch, eyaten remained very cool. Case cempepaturea for the inverter and chopper tranelstors, at the ead of the two hour 15 hp run, were $35^{\circ}$ and $44.2^{\circ} \mathrm{C}$, reapectively. If the lectronic package wre arraged se that the zuanal was vercical, natural convective cooling vould probebly have been sufficient. Howaver, project cooelralmes pracluded that option.

The inductor wan buile on an Allegheny-Ludlum L-10 core, uning a etack halght of $3.15 \mathrm{in} .(9.53 \mathrm{~cm}$.). Each air gap wae . $125 \mathrm{in} .(.318 \mathrm{~cm}$.$) . On this core,$ two coila vere placed, each soil consiating of tea parallel etrabis of is A.W.G. yire. These two colle were connected in parallel. This arrargement provided an inductance of 425 wH at 200 A . The loss in this inductor at the rated current of 120 A was only 31 W .


Figure (6) System Harduare Duzing Testing
In order to meanure the curreni in the inductor for the purpose of controlling the chopper, a pair of Hail effect sensors was used. Euch sensor consisted of toroidal ferrite core with a siot cut in it to provide an air gas of .093 in. (. 23 cm cm ). In mis air gap a Sprague UCN-3s01 T Hall effec. ensor was mounted. The assembly vas then placed around the wire leading to the inductor. This provided a reasonably linear current measurement with a sensitivity of 3.3 $\mathrm{mV} / \mathrm{A}$. One of these sensors controlled the chopper in the metoring mode, while the other sensor controlled the chopper in the regenerative braking mode. The output of the two sensors was compared and the difference ied to an alarm circuit, so that failure of a semaor vould generate $4 n$ alarm snd shut down the syster before the chopper transiator could : destroyed.

A schematic diagram of tio low-level electronic logic ind control circuit is shown in figure (7). At the heart of the control network is a pair or N825126N programable read-only memories. Each of theac mamories has eight inpuis and four outpues ( $256 \times 4$ ). \$1x of the inputs are used by the two rotor position sensors (normal and advanced firing), and six of the outputs are used for the control of the inverter cransiscors. The remaining two inpurs are used for a forward/

rigure (7) Low Level Control Logic
reverae control (to control the order of firing of the inverter transistors) and for a normal/advanced firing control (to select which rotor position sensor will control the inverter transistors). The remaining two sutputs, one on each FROin, are connecied to an alarm circuft to shut down the syatem in the event $r$ : an abnosmel set of signals frcm the rotor position sensurs. One of the PROM intibit inputs is used to shut down the injerter in the event of a malfunction ansm in response to an excessive inductor current, loss of a current mensor, or melfunction of a rotor posirion sensor. The ocher PROM inhibit input is used to shut down the inverter for a period of 0.5 second during awitching operations between wotoring and regeretative braking modes (or during a series/parallel switching if this were used).

## PERFORMANCE OF MOTOR-CONDITIONER SYSTEM

In order to evaluate the performance of the two machines described above, both vere operated using the same power conditioner detalled above. This included tne testing of both motors using a standard dynamoweter test setup. Tine teating progrom consisted of the following:

1) Testing of the motor-power conditioner syatems was carried out at an ourput equel ro the rated value of 15 lip . This teat sas . urried out for a cinitinuous period of two hours to simulate cruising by a 3000 Lb vehicle at a apeed of 55 mph ( 88 kph ) on level road. The highlighte of the data obtained from this test are given in Table (2). As can be seen, the overall system efficiencies under rated conditions vere $88.72 \%$ and $91.18 \%$ for the same luw-cobalt and ferrite motor cases, respectivel:

Periormance puentisy Motor	DC Line Voltage (Voles)	DC line Current (Ampa)	ilotor Speed   ( $\mathrm{PPM}^{(1)}$	Motor   OutDut   (Wates)   (hp)	Overall Systen cfficlency (2)
Samarium-   Cobselt   Moto:	116.0	110.2	868	$\begin{aligned} & 11341.71 \\ & 15.2 \end{aligned}$	88.72
Ferrite Motor	115.6	107.3	8840	$11299 . \%$ 15.1	91.18

2) Testing of the notor-pouer conditioner nystems was carzied out nt ar. output equal to 35 hp . This rest vas perforeed for a period of one minute to eimulate a $10 \%$ srade hill elimbing by a 3000 lb vahicie at aper: of about 30 mph ( 48 kph ). The haghlighes of the data obtained from this tast are given in Table (3). As can be secte the goal of 35 hp vas reached by both motore. Howover. chis power ves developed at apeeds lower than the rated opes for both machisee. Advanced firing (comencetion) of the ieverter srensistors by 30 clectrical degrees wan required to achieve the 35 hp output in both cases.
3) Teft'ing of the entor-pover conditioner syatens was carrie' out at various other hordepower outputs $s$ ser peads. This data mas obralned in order to extablish the avetes charecteristic partormance over the e tre motoring range of operation. This dace is rotted in the form of equi-effictency contours in the torque-

Tahle (3) Performance of the Samarium-Cobalt and Ferrite Motors at Peak Power of 35 HP

Yerfor-   ma-ce   Quaistity   Motor	DC Line Voltage (volts)	DC Line Current (Amps)	Motor   3peed   (RPM)	Motor Output (Watcs) (hp)	Oversil System   (\%)
\| Samarium   Cobalt   Motor	115.0	287.5	6900	$\begin{gathered} 26184.6 / \\ 35.1 \end{gathered}$	79.2
$\begin{aligned} & \text { if rrite } \\ & \text { irgtor } \end{aligned}$	120.9	297.6	6750	26632.2/ 35.7	74.0

speed plane as siven in Figures (8) an' (9) for the samarium-cobalt and ferrite motors, respectively.

Num rrous oncillograme of voltage and current vaveforms in the conditioner and motor at various load conditions were taken and are given in references [5] and [10].


Flgure (8) Equi-Efficiency Contours in the TorqueSpeed Plane (Firsc quadrant), SamariumCobalt Case.


Figure (9) Equi-Efficiancy Contours in che TorqueSpeed Elane (First quadrant), Fertite Cise.

This work revealed that ferrite type permanem: magnets can be used in motor aesigns to produce machine performance characteristics equivalent to those produced by machines designed with samarium-cobalt magnets. However, chis is done at the expan, f inc:eased motor weight and volume as aiven in tepaper. The ferrites are certainly preferable in appifations where welynt and volume are not cricical. The secure availatild'y of ferritas in comparison to satierium-cobalt render these ferrites an attractive alternative to fare earth materials.

Furthermore, this work demonetrates that power eransistors are well suited for integral horgepowex motor control applications of this $k$ ad. Born goals of a continuous 2 hours 15 hp output at eificiences of about $90 \%$, and one minute 35 hp output were accomplished. Furthermors, with a higher suppiy voitage of 150 volts, ar. output of more than 42 hp was achieved. These results reveal that such sybtema are well suiteu for propulsion of electric vehicles and simitay apiliaclons.

## ACKNOWLEDTHMENTS

These auchors pish to acknowledge the : inancial support given by . $\because$ A Lewis Researoh Center' Department Energy Contract so: DEN $3-65$, and wish to acknowledge the keen interest ant useful guidance of the concrac: monitor Mr. E. Maslowski o the Lewis Reseurch Center. The authors wish to thank Dr. R. Churchill, Vice-President, Research and Development Center, Industrid] Drives Dlvision, Kollmo ert Corporation, Radford, $\because a$. . for avalling the manufactur ng and tas. facilities of 'oth the $R$ and $D$ Center and the Induetrial orives Division.

## ZEPERENCES

[1] Delco Electronics, "Final Report on the Electromechanical Flight Contiol Actuatoi", firal Report NASA-JSC Contract No. NAS9-14952, General Motors Cosporation, Delco Electronics Div., Santa Barbara Operations, Goleta, CA, 1978:
[2] Sawyer, B. and rigen J. T., "Design of a SerariumCobelc stushlesy $D C$ Motor for Elactromechanical Actuator Applications", Proceedings of the LEEE= Narional Aeros ace anu Electronics Confurence, Dayton, Ohio, 1977.
(3) Edge, j. T., "An ElectroLechanical detuator Technology Development Program', Paper No. 78058 i, Society of Autoworive Engineers. Pifteedings ot the Aerospace Fluid Yomer and Control Technologies Symposium, 1978.
[4] "Electric Venicle Te\&t Procsdure-SAE J227a". Societ" of Automotive bingineers, inc.. 1976.
[5] Demerdash, N. A., Miller, R. h., Neh1, [. W., overton, B. P., Ford. C. J., "Comparison Berveen Festuref and Performance Characteriatjes of Fifceen HP Samarius Cobalt and Fe rice Bdaed Jr shlese DC Motore Operati, by Same Pover Conditioner", Papepresented at the 1982-14EE PES Vineer Meeting, Hew York, N. T. Jan. 31-Feb. 5, 1,82, Accepred for Publication in the IEEE Ira aactionz on Pover Apgaratus and Syates.
[6] Hehl, T. W., Found, F. A., Demerdash, N, A., and Malowal. E., "Dymence Siaulation of Radially Orisated Permanat Kagnet Type Elecironically Oparated Synchronoua Macnines with Paramanters Ubtainec from Fiaite Element Field Solutions", IEEE Iramactions on Industry Applications, Vol. 1A-18, PP. 172-182, 1982.
17] Deardash, N. A. and Nehl. T. W. 'Dynamic Mocs'.bnk of Brushleas de Motol for Aerospace Actuation", IEEE Iransactiona on Aecuapace and Electronic

Systems, Vol. 16, Number 6, pp. 811-821, 1980.
[8] Fouau, F. A., Nehl, T. W., and Demerdash, N. A., "Magnetic field modeling of permanent magnet-type electronically operated synchronous machines using finite elements," iEEE Trans. Power App. Syat., Vol. PAS-100, no. 9, pp. 4125-4135, 1981.
[9] Neh1, T. W., Fouad, F. A., and Demerdash, N. A., "Derermination of Saturated Values of Rotating Macninery Incremental and Apparent Inductances by a Perturbation Merhod", Paper presented at the IEEE-PES Winter Meeting, New York, Jan. 31-Feb. 5, 1982, Accepted for publication in full in the IEEE Transactions on Power Apparatus and Systems.
[10] Final Report on NASA/DOE Contract DEN3-65, "Improved Electroni:ally Comutated Brushless DC Motors for Electric Vehicle Propulsion," to be published in December, 1982.

# ON THE PERFORMANCE OF A FUNCTINAL PROOTYPE OF A SAMARIUM-COBALT BASED BRUSHLESS DC MACHINE-POWER CONDITIONER SYSTEM - PHASE (I) 

Demerdash, N. A.. Lee, F. C., Nehl, T. W., and Overton, B. P., "Practical Application of Power Conditioning to Electric Propulsion for Passenger Vehicles," Proceedings of the 1980 IEEE Power Electronics Specialists Conference $80 \mathrm{CH} 1529-7$, Atlanta, June $\overline{16-20}$, 1980 , pp. 211-219.

© 1983 IEEE. Reprinted, with permission, from the Proceedings of the 1982 IEEE Power Electronics Specialists Conference, Atlanta, June 16,-20, 1980, pp. 211-219.

# Reprinted From: <br> pese'80 RECORD 

# IEEE Power Electronics SPECIALISTS CONFERENCE—1980 

Formerly POWER CONDITIONING SPECIALISTS CONFERENCE (1970-71) POWER PROCESSING AND ELECTRONICS SPECIALISTS CONFERENCE (1972) FOWER ELECTRONICS SPECIALISTS CONFERENCE (1973-80)

## Dunfey Hotel

ítlanta, Georgia
June 16-20, 1980

The 1980 Power Electronics Specialists Conference was sponsored by the Aerospace and Electronic Systoms Sociefy, the Electron Devices Society, the Industrial Control and Instrumentation Society, the Magnetics Soclety, the Power Engineering Society, the Circuits and Systoms Sociaty and the Region 6 San Diego Section.
N. A. Demerdash, F. C. Lee, T. W. Nehl

Department of Electrioal Engineering
Virginia Polytechnic Institute
and State University
Blacksburg, VA 24061
B. P. Overton

Research and Development
Inland Motor Division
Kollmorgen Corporation Radford, VA 24141

## ABSTRACT

A runctional mode: (prototype) 15 HP (continous rating), 120 volt, 4 -pole, 7600 r.p.s. samarium-cobalt permanent magnet type brushless dc motor-transistorized power conditioner unit was designed, fabricated and tested for specific use in propulsion of electric passenger venicles. (This work was fundet by NASA-Lewis/DOE under phase (I) of NASA contract No. DEN3-65 as part of DOE's program on research and development of electric vehicle technology.) This now brustiess motor system including its power conditioner package has a number of important advantages over existing systems such as reduced weight and volume, higher reliability, potential for improvements in efficiencies, etc. These advantages are discussed in this paper in light of the substantial test data collected during experimentation with the newly developed conditioner wotor propuision system. Details of the power conditioner design philosophy and particulars are given in the paper. Also, described here are the low level (signal) electronic design and operation in relation to the remainder of the system.

## INTRODUCTION

By and large almost all primemovers in various electrical propulsion systems are orush-type traction d.c. series or compound connected motors. These sotors, if properiy designed, perform their intended runction quite adequately. However, there are various advantages that are atributed to brushless type propulsion systens which are lacking in ordinary brush d.c. motor type systems. Some of the eajor advunteges of the present brushless system, built around an electronically comatated samarium-cobalt type permanent megnet motor as a primesover, can be aumerized as follows: 1) the elimination of bruahes leads to reduction in maintenance requirements and henoe potentially more relian ble system, 2) the elinination of brushes leads directiy to higter upper bounde on possible motor rated speds and consequentiy reduoed waight and volume of eleotric mahinery for given horsepower, 3) in brushless motor permenent aset
type rotor is utilized, hence the so familiar rotating armature winding of the classical d.c. macrine is eliminated, which means simpler and potentially cheaper construction, and 4) the eliminam tion of a rotating armature, with consequent mounting of an armature winding on the stator leads to improved thermal characteristics for such machines with potential for improved motor overall performance and efficiencies. This is in addition to a number of other indirect but tangible advantages which are inherent in a brushles motor and are lacking in classical brush type machines.

Accordingly, an electronically commutated brushiess d.c. motor propulsion system for use in eiectric passenger vehicles, with specific vehicle weight and performance characteristics was developed, fabricated and tested. This was done with a main goal of meeting specific venicle performance requirements as given in SAE electric venicie drive cycle J227a Sche-duled-D standards. The main design, fabrication, testing steps and procedures as well as performance characteristics of this system are summarized with emphasis given here to the tranaitorized power conditioner built for this motor. The main components of the system are described next.

## MOTOR-POWER CONDITIONER

A permanent magnet type brushiess d.c. machine, designed to withstand peak lyad of 35 HP for one einute duration was construoted. A achematic diagram showing the cross aectional configuration of the machine is given in Figure (1). As can be seen the gotor consists of a 15 slot wound atator uaing atandard laminated structure for the eagnetic ofrcuit of the stator. A fractional siot stator winding design was chosen to reduce armature -.t.f. and E.E.f. harmonios and hence reduce any tendenciea for oogging. The stator core was installed in corrigated Aluminu housing for improved loss disaipation and henoe better mainine thermal oheracteristios.

The rotor consists of a 4-pole permenent magnet arrangement glued to a suitable steel shaft. $A$ nonmagnetic stainless steel magnet retaining sleeve in conjunce tion with suitable "Epoxy" type glue were used surrounding the magnets for bonding and retainment purposes.

The stator winding was built with an interesting reature of 3 -taps per phase, which allous one to vary the operative (effectivs) number of turns per phase in the stator winding. This feature provides the operator the fiexibility of controli= ing the torque speed characteristics of the motor. This torque-speed controlability feature is demonstrated clearly in the torque speed characteristics given in figure (2), which were obtained on the basis of measured motor torque sensitivities (Lb.ft/Ampere) for each of the three stator winding ta;s per phase. This feature can be rued if desired to supply the partial function of a transmission, hence it provides the option of overall design simplification of the drive train by virtue of this torque-speed characteristic controliability. This feature, if exploited to lts full extent, can either lead to extreme simplification or elimination of a mechanical transmission, thus leading to savings in weight, valume, reliability and cost of an overall drive train. The taps can be seen clearly in figure (3) in the partially assubbled view of the stator and its housing, and in the multi-terminal appearance of the motor ( 9 terminals, 3 terminals per phase) in Figure (4).

-anmatuafe winoing
MOTOR CROSS SECTION
Figure (1)
Motor Cross-Section

motor torouk speed cmapacteristics based on measuaed toroue constants and measuned qotational losses

Figure (2)
Torque Speed Characteristics


Figure (3)
Partially Assemsled Armature


Figure (4)
Assembled Motor

The motor is energized by a solid state transistorized power conditioner (P.C.) shown schematically in Figure (5). Shown also in Figure (5) are the idealized motor phase currents, $1_{A}, i_{B}$, and $1_{C}$. The main functions of the P.C. in relation to motor operations are mainly two. The first of these is proper sequencing and switching of the phase currents of the motor, which is demonstrated by the idealized current wave forms of figure (5). This properly sequenced switching leads to a continuousily forward stepping stator m.m.f. which is kept 120 electrical degrees ahead of the rotor m.m.f. at the instant of occurance of every switching opertion. The proper angular displacement between the stator and rotor m.m.f.s is controlled and guaranteed by a Hall-effect rotor position sensor, which is elaborated on in following sections of this paper. The second of these functions is the controlability of the magnitude of the d.c. line current. In tisis type of machines torque is linearly proportional to the magnitude of the d.c. line current, hence controlability of the line current or motor torque are synonimous. Description of the P.C. and functions of its verious components and control scheme is given next.

## POWER CONDITIONER FEATURES

The main features of the power conditioner shown schematically in figure (5) are: 1) a d.c. line input capacitor filter for ripple elimination and/or reduction, 2) a combination series/shunt type (two quadrant) chopper for d.c. ilne current (motor torque) magnitude limiting and control, and 3) a configuration of six tran-sistor-diode switches which constitute the three phase inverter/converter bridge.

The inverter/converter bridge has a capability of allowing the machine to function in three separate modes of operation. Namely, these modes are: motoring, plugging (dynamic uraking) and regenerative braking. Shown aiso in Figure (5) in idealized form are the $A, B$ and $C$ machine phase currents during a forward motoring mode. Shown in dotted line form is the path of current through conditioner and machine during the first $60^{\circ}$ elactrical of the current oycle given in figure (5), with the chopper in the "on" position for motoring. The "on/off" aignals which activate the six transistors in the inverter bridge are generated by a Halleffect rotor position sensor (R.P.S.) which is shown schenatically in figure (6), with the aotual herduare shown in Figure (7).


MOTOR POWER CONDITIONER SCHEMATIC AND IDEALIZED MOTOR CURRENTS

Figure (5)
Motor-Conditioner Schematic


POSITION SENSOR
Figure (6)
Position Sensor Scheatic and Output Signala

## THE ROTOR POSITION SENSOR AND LOW LEVEL

 SIGNAL ELECTRONICSThe rotor position sensor divides each 360 degrees electrical into six segments or current states of 60 degree widths. The three RPS output signals for nine consecutive current states are shown in the bottom part of the Figure (6). The RPS consists of a seperate rotor and stator core which contains three Hall devices mounted in slots displaced from each other by 30 mechanical or 60 electrical degrees. The adjustable RPS stator core makes it possible to vary the cosmutation angle if needed.

The output signals generated by the RPS are used as an address to "look up" the status of the six inverter transistors from a $32 x 8$ bit programmable read only memory or PROM which is shown schematically in Eigure ( 8 ). The PROM contains the invertur switch configurations, in table form, for all six states during both forward and reverse motoring, while during regenerative braking, all inverter switches are kept off regardiess of the current state. The PROM is also used in the over current protection scheme to turn off all eight transistors by means of the chip disable line. Use of the PROM to perform these defoding tasks greatiz simplifies the circuitry when compared with discrete logic gate type implementation.


Figure (7)
Rall Effect Rotor Position Sensor R.P.S.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH


Figurg ( 8 )
Digital Processor

Controlling the chopper is a d.c. line current sensor coupled with a hysteresis type control approach which is depicted scheuaticaly in figure (9). This current sensor-hysteresis controller controls the duty cycie (on/off times) of the transistor switch. $Q_{M}$ in the motoring mode, and controls the duty cycle of the transistor switch, $Q_{B}$, in the braking mode. The output signal of the current sensing and colitrol device which is also depicted in Figure ( 9 ) is red into the digital processor of figure (8). The output signals of the processor control the two chopper transitors, $Q_{M}$ and $Q_{B}$, as well as the inverter/converter bridge transistors, $Q_{1}$ through Q6.


CURMENT SENSOR-MOTORING MODE

P1gure (9)
D.C. Line Curreat Sensor and Chopper Control

THE D.C. LINE CURRENT SENSOR-CONTRCLLER SCHEME

The regulation of the average machine torque (or current) can be accomplished by means of an open loop technique such as pulse width modulation (PWM; or by means of a closed loop system utilizing a hysteresis type controller, Figure (9). The closed loop approach was chosen for this application because of the following advantages: inherent stability, controllabe de ripple, and simplfication of the protection schemes. The current sensor consists of coaxial type current shunt, which is located in the de link between the chopper and inverter network, and an amplifier which is used to boost the output of the current shunt. The input current command, ICMD, is amplitude limited at around 300 A for protection purposes. The amplitude limited current command is then passed through a rate limiter to filter out rapid variations or noise in the ICMD. The rate and magnitude limited current command signal, IMC, is then compared with the output of the current sensor, IM, using a hysteresis type conparator. The comparator produces a logical valued out= put, QMC, which controls the switching of $Q_{M}$ and $Q_{B}$ at a rate required to keep IM within the specified tolerance during motoring and regeneration respectively. One additional feature of this controller is that the meximum chopping frequency can be controlled by varying the specified current tolernince. The frequency decreases for increases in the current tolerance and vice versa.

The diodes, $D_{1}$ through $D_{6}$, provide current paths during phase current commutation. They also constitute the converter bridge in the braking mode. The diodes, $D_{M}$ and $D_{B}$, provide the necessary d.c. line current paths during the "off" perlods of $Q_{M}$ and $Q_{B}$ respectively. The anan function of the diode, $D_{R}$, is to provide a return path to the current through the chopper inductor back into the source at the switching instances when such path through the inverter gay be blooked momentarily, thus it eliminates the danger of any severe voltage transients which may accompeny the transistor switching of $Q_{1}$ through Q6.

The chopper transistors $Q_{M}$ and $Q_{B}$ employ a high frequency, tripleadiffused four-terminal power Derifiston, and the inverter transiatora employ aingle-dife rused power Darilngton for ruseedness. The high Irequency Deriington block MT-114\# oonsiets of one driver PT-4500 which feeds three peralleled PT-4500 tranaistors that forma the power stace to provide 300 amperes or current. The lay frequency power Darlington blook MT-1146 is
made uf of one driver ti-7511 whict feeds six-paralleled PT-7511 transistors that provide 300 Amperes rating. $h$ view of the motor-power conditioner hardware during the final assembly stages is given in sigures ( 10 ) and (11).


Figure (10)
Power Conditioning During Assembly


Figure (11)
Final Assembly of Motor and Conditioner

## BASE DRIVE SCHEME FOR POUER TRANSISTORS

The particular Dariington power block eployed in the electric vehicle propulsion syeter has an intriguing feature; that 18, the avaliability of a second base toriminal. The oxtra base terninal of the four-terainel power Darlington provides the opportualty to drive reverse current through the enitter and base junction of both the power atage and the driver stage.

A noteworthy base drive sohese was developed for the four terinal Dariingtion device (2). This base drive has the ability to provide two reverse currents inde-
pendent of each other allowing the driver stage and power stage of the Darlington to be turned ofr at their own charge seep-out rates. This two loop control of the reverse curr rit enhancus the possibility of a quicker turn-off, Figure (12), when $d_{1}(t)$ is clocked off $d_{2}(t)$ is clocked on for a predescribed length of time. The pulse width of $d_{2}(t)$ is proportional tu the amount of time needed to fully turn off the switching device. With dif clocked high, a high influx of eurrent enters the dot on the primary side. By transformer action a current is induced on tin tasfe. secondary which supplies two independent currents for revurse biasing the device. The magnitude of current needed for the iriver stage loop and the power stage loop is dictated by the amount of minority carriers stored in the baseemitter juncticn of both, respectively. The diodes on the secondary of the current transformer are to provide a high impedance path during the "on" state of the power Darlington to prevent any drive current being shunted to ground. For detailed description and performance testing of the two-loop base drive scheme reference (2) should be consulted.


## MOTOR-POWER CONDITIONER (M.P.C.) TEST RESULTS

The motor-power conditioner (M.P.C.) are shown during dynamoter load teating in Figure (13). A typical wave form of the phase curpent during motoring, with d.c. line current ohopper fully operative is showa in the osoillogrem of Figure (24) at partalal load conditiona (72.6 Appres), with corresponding line to line voltage oscillogram given in Figure (15).


Figure (13)
Motor-Conditioner Unit During Dynarometer Load Testing

Also, shown in Figure (16) is an oscillogram of the collector to emitter voltage across the chopper transistor $Q_{M}$, while in Figure (17) the corresponding oscillogram of current through $Q_{M}$ is given. Furthermore, the oscillogram of the current through the cnopper inductor under the seae operating load conditions is shown in Figure (18).

The motor-power conditioner system was further tested while the chopper was completely in the "on" operating mode at all times. The line current was 146.6 Ameres at a motor speed of $7755 \mathrm{r} . \mathrm{p} . \mathrm{m}$. This corresponds to a motor net output power of 16 HP. The corresponding oscillogram of the phase current for this case is given in Figure (19) with corresponding line to line voltage waverorm shown in the oscile logran of Figure (20). The corresponding collector to estter voltage across one of the inverter transistor switches is shown in the oscillogran of Figure (21).

[^5]

Figure (14)
Phase Current at 72.6 Amperas D.C. Line Current Uith Chopper Operating


Figure (15)
Line to Line Voltage at 72.6 Amperes D.C.


Pisure (16)
Voltage Acrose $Q_{M}$ at 72.6 Amperes D.C.


Figure (17)
Current Through $Q_{M}$ at 72.6 Amperes D.C. Line


Figure (18)
D.C. Line Current With Chopper OperatingAverage Value 72.6 Amperes

Figure (19)
Phase Currest at 146.6 Alaperes D.C.


Figure (20)
Line to Line Voltage Et 146.6 Amperes D.C.


Figure (21)
Voltage Across an Inverter Switch at 146.6 Aeperes D.C.


##  <br> Figure (23) <br> Line to Line Voltage at Regenerative Braking at 95 Aaperes D.C.



Table (1)
Two Hour 16 HP Test Run

Quantity	Test Value
D.C. Line Voltage   D. C. Line Current   Motor Speed   Tep Position   M.P.C. Unit Input   Power   P.C. Losses   Motor Armature   Ohmic Losses   Motor Rotational   Losses   M.P.C. Unit   Output Power   Motor Ef:iciency,   P. ${ }^{\text {ПM }}$ Efriciency,   ${ }^{7}$ P.C.   M. P.C. Combined Efficiency, nM.P.C.	120.0 volts 133.7 Aaperes 7813 R.P.M. Two Turna/Coil 15341 Watts 2432 Watts 341 Watts 517 Watts 12051 Watts 93.48 84.18 78.68

Other runs with various soter speeds, cur. rents and uinding tap positions were ade and loss as well as efficiency data of these fins are to be found a reference (1). Based on this aet of data numerically simulated M.P.C. overall drive oycle efriciencias for the saE drive eycle J227a-schecule-p vere found to be as rollows:

ПM.P.C. $=768, ~ n M=90.468$
and ${ }^{n}$ P.C. $=84.478$
A peay horsepower of sore than 22 HP for one pilnute was reached by the motor-pouer conditioner unit, where trana'stor voltage transients due to hish current switching precluded higher loada unleas aone P.C. design changes were made. However, there nal motor characterictics indicated capablilty of reaching the soal 35 HP for one ainute without any difficulty.

A prototypo or an electronically comwutated brushless d.c. motor for electric pasaanger vehicle propulsion has been bullt. Motor efriciencies and other operating cheracteristis exceeded the preset (required) coala vith sotor rated officiency better than 93.48. An overall motor weight of less than 85 Lbs was reached. The scheme at hand orfored the use of control of motor torque-sped characteristics through winding tap changing as an option in lieu of part, or all, of transmission function in the drive train. Themajority of the preset goals for the power conditioner were met. However, acme design changea may be necesaary to improve the erficiency and to be able to met the 35 HP for one minute as fak rating. These necessary improvesents in the power conditioner in addition to further motor design 1aprovenents will be reported on in conclusion to phase (II) of this project.

## ACXNOWLEDGEMENTS

These authors wish to acknowledge the Electric and Hybrid Venicle uffice of the HASA-Levis Research Center and the Electrie and Hybrid Vehicie Division of DOE for their financial support of this project under phase (I) of masa Lekis Contract Mo. DEM3-65. In particular we wish to acknolviedse Mr. Edvard Masiouski of mASA-Levis for his many conments and useful as well as stimulating suggetinns without which this work would have been left incomplete. We with to acknowledes Mesaera. D. J. Shortt, R. Carter, P. S. Coulon and $C$. Ford for their work on the desifa, fabrication and testing of many of the ubsystens of this M.P.C. Unit, all of VPI and 30 , Blacksbure, Va and Inland Motor $h$ and D, Radford, VA, respectivedy.

## MEFEREMCES

[1] Deserdesh, N. A., Lee, F. C. and Nehl, T. W., An Improved Eleceronically Coneutated Brushlese D.C. Hotor for Eleotric Passenger Vehicie Propulsion Phase (I)", 1 Einal Report lo Ehan (I) of Musiohurind contrict Mo. DIMB-K5, to be submitted to Masa Levis hesearon Center, Cleveland. OH.
[2] Carter, i. A., and lee, F. C., eA Mey Base Drive for Tranalitorised Electric Vabiole Propulaion", Power Con 7. Preeectings, 1980 .

"For sale by the National Technical Information Servic". Springlield, Virginia 22161


[^0]:    ${ }^{1}$ See a separate list of references provided at the end of each chapter in this raport.

[^1]:    $60^{\circ}$

[^2]:    

[^3]:    Manusc:1pt recerved May 11, 1981

[^4]:    Paper IFCSD 81-22, approved by the Industrial Drives Committee of the IEEE Industry Application Socisty for prasentation at the 1980 Industry Applications. Society Annual Mcating, Cincinnati, OH, September 28-October 3. This peper was supposted by U.S. Depertment of Energy/National Aeronautces and Space Administration LeRC Contrics No. DEN3-65 and U.S. Air Force SCEEE Contract No. SIP/78-17. Manuscript released for publication June 1, 1981.
    T. W Nehl. F. A. Fnusd, and N. A. Demerdash are with the Depurtment of Electrical Engineering. Virginia Polytechnic Institute and State Univeruly, Blacksburg. VA 24061.
    E. A Maslowski is with the NASA Lewis Research Center. Cleveland, OH .

[^5]:    A typical wave form of the phase current during recenerative braking, with chopper control in operation is depicted in the oscillogram of pigure (22) at a current of 95 Aeperea peak, with the corresponding line to line voltage oacillograt depicted in Figure (23). Also, depicted in Pigure (24) is an oscillogram of the current through the chopper transistor, $Q_{B}$, durias this regeneration condition. Many other voltege and current oacillograns under various loading condio tions and memine tap positions wero obtaiaed but lisitations on publication apace yill not permit including then here. For further detalis reference (i) should be oonsulted.

