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ABSTRACT 

The stability of the two-dimensional flow induced by the tranverse 

oscillation of a cylinder in a viscous fluid is investigated in both the 

linear and w,aak1y nonlinear regime. The major assumption that is made to 

simplify the problem is that the oscillation frequency is large in which case 

an unsteady boundary layer is set up on the cylinder. The basic flow induced 

by the motion of the cylinder depends on two spatial variables and is periodic 

in time. The stability analysis of this flow to aXially periodic disturbances 

therefore leads to a partial differential system dependent on three variables. 

In thE! high frequency limit the linear stability problem can be reduced to a 

system dependent only on a radial variable and time. Furthermore, the 

coefficients of the differential operators in this system are periodic in time 

so that F10quet theory can be used to further reduce this system to a coupled 

infinite system of ordinary differential equations together with uncoupled 

homoge,neous boundary conditions. The eigenvalues of this system are found 

numerically l:LDd predict instability entirely consistent with the experiments 

with drcu1ar cylinders performed by Honji [1981]. Results are given for 

cylinders of elliptic cross section and it is found that for any given 

eccentricity the most dangerous configuration is when the cylinder oscillates 

parallel to its minor axis. Some discussion of nonlinear effects is also 

given and for the circular cylinder it is shown that the steady streaming 

boundary layer of the basic flow is significantly altered by the instability. 

Research reported in this paper was completed while the author was in 
residE!Dce at ICASE, NASA Langley Research Center, Hampton, VA 23665 and was 
supported by the National Aeronautics and Space Administration under NASA 
Contract No. NAS1-17070. 
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INTRODUCTION 

Our concern is with the stability of a class of flows which exhibit the 

phenomenon usually referred to as "steady streaming." In particular, 

motivated by the recent experiments of Honji [1981], we consider in detail the 

stability of the flow induced by the transverse oscillations of a circular 

cylinder of radius a in a viscous fluid of kinematic viscosity v. This 

flow has been investigated by several authors following the boundary layer 

approach used by Schlichting [1932]. For a detailed discussion of the steady 

streaming induced by the oscillation of the cylinder the reader is referred to 

the papers of Stuart [1966] and Riley [1967]. 

The experiments of Honji [1981] illustrated clearly a phenomenon 

surprisingly not reported in previous experimental investigations of the flow. 

We refer to the observation made by Honji that the two-dimensional flow 

induced by the motion of the cylinder is unstable to axially-periodic vortices 

of thE! Taylor-Gartler type at sufficiently large values of the amplitude of 

oscillation of the cylinder. The instability occurs in the Stokes layers at 

the cylinder in the locations where they are parallel to the direction of 

motion of the cylinder. The instability is apparently of the centrifugal type 

and is initially in the form of vortices ali.gned with the local flow 

direction. However, the steady streaming associated with the basic flow 

convects the dye used to visualize the vortices away from the Stokes layer. 

At larger amplitudes of osciallation the dye streakes produced by the vortices 

disappear and the flow is said by Honji to be turbulent and separated. It was 

suggested by Honji that the instability might be of the type which is known to 

occur in a Stokes layer on a torsionally oscillating cylinder and it is this 

possihility that we shall investigate in this paper. 
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This latter type of instability has been investigated in detail by 

Seminara and Ha11 [1976, 1977], Park, Barenghi and Donne11y [1980] and Hall 

[1981]. Suppose then that an infinitely long cylinder oscillates torsionally 

about its axis with angular velocity Q cos wt in a viscous fluid. At 

sufficiently small values of w the flow is purely circumferential whilst if 

w is slowly increased then at a critical value of w = w 1c an array of 

vortices, periodic along the cylinders, develops in the boundary layer at the 

cylinder. The strength of the vortices increases as w is increased further 

but at a second critical value of w, say wc2 ' the vortices interact with 

each other and the flow rapidly becomes turbulent with no apparent periodicity 

along the cylinders. The theoretical description of this flow for w < wc2 

given by Seminara and Hall [1976, 1977] was verified experimentally by Park, 

Barenghi, and Donnelly [1980]. However, the secondary stage of the 

instability is perhaps only partially explained by the subharmonic instability 

mechanism described by Hall [1981]. It is of interest to note that the values 

of wc1 ' wc2 are quite close so that, once the initial vortex structure has 

been set up, a relatively small increase in w leads to a turbulent flow. 

Thus, if this instability mechanism is indeed operating in the experiments of 

Honji, it is clear that the two-dimensional flows of the type discussed by 

Schlichting [1932], Stuart [1966], etc. will be greatly altered. The primary 

aim of the present investigation is to determine the parameter range in which 

the two-dimensional solution is a stable solution of the Navier-Stokes 

equations. The feature of the basic flow which makes a stability calculation 

nontrivial is, of course, the fact that the basic flow depends upon time and 

two spatial coordinates. 

It is to be expected that at sufficiently large amplitudes of oscillation 

the boundary layer at the cylinder will separate and the attached flow 
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strategy of the type discussed by Schlichting and subsequent authors fails. 

The results of Honji suggest that this does not occur before the instability 

mechanism is operational. Thus our stability calculation provides an upper 

limit for the oscillation amplitude beyond which there is no reason to compute 

the ba!;ic flovl. It is therefore likely that any laminar separation theory for 

the oscillatlng cylinder problem will not be relevant to experimental 

observations. However, the success of laminar separation theory in high 

Reynolds numb(~r steady flows (see Smith [1982]) suggests that this might not 

be the case. 

Suppose then that a circular cylinder of radius a oscillates with 

velocity Uo cos wt along a diameter in a fluid of viscosity v. The 

parameters which govern the two-dimensional flow are 

2 
S 

wa 
=--

v (lola) 

A 
Uo =:-
wa (1.lb) 

U2 

R 0 ---s wv (1.lc) 

The frequency parameter S is taken to be large so that the unsteady boundary 

layer on the cylinder is thin compared to its radius. The parameter A 

represents the ratio of the amplitude of oscillation of the cylinder to the 

cylinder radius and is taken to be small. Stuart [1966] has discussed the 

crucial role played by the steady streaming Reynolds number in 

determining the nature of the steady streaming set up outside the Stokes layer 

on thE! cylinder. If Rs is small the motion is determined by solving the 

Stokes equations whereas for large Rs an outer boundary layer flow exists. 
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In order to obtain some idea about the parameter regime in which an 

instability might occur we note that the first order oscillatory flow set up 

by the motion of the cylinder is confined to a thin layer of thickness 

(v/w) 1h at the cylinder and so the radius of curvature of the paths of fluid 

particles is of order a. Thus, the Taylor number which characterizes this 

U2 
_1/2 

boundary layer flow is of order 
0 

3/2 = Rs The instability 1/2 8 • 
a \! w 

mechanism described by Seminara and Hall [1976, 1977] operates when this 

Taylor number is 

of interest is 

0(1) so 

R ~ 8 1/2 • 
s 

we conclude that in the present problem the regime 

For this reason we confine our attention in this 

paper to the stability of the two-dimensional flow around the cylinder in the 

limit 8 + 00, R ~ 0(8 1h ). We further note that in this limit A is 
s 

O( 8- 1/4) so that the boundary layer on the cylinder is essentially a Stokes 

layer. 

The above comparison between the torsionally and transversely oscillating 

cylinder flows ignores the spatial variation around the cylinder of the first 

order boundary layer flow in the latter case. An examination of this 

structure shows that the flow is locally most unstable at the positions 

e = ± TI/2 if the direction of oscillation is along the x-axis. We shall show 

that a self-consistent asymptotic description of the linear stability problem 

is possible for R ~ 8 1h , 8 + 00. Furthermore, we show that the instability 
s 

is confined to 8 -1/8 neighbourhoods of the positions e = ± TI /2. More 

precisely we show that the flow is formally unstable when 

R > R s sc 
RO 8 1/2 + R 8 1f4 + R 81/ 8 + ••• 

1 2 (1.2) 

where 0(1) constants to be evaluated. In fact, we 
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determ:lne only RO' Rl and find that the resulting critical value of A 

agrees almost exactly with the experimental results of Honji. 

Thf~ analy~;is used for the circular cylinder problem can be easily modified 

to more complicated steady streaming flows. We shall show that, having 

investIgated the linear stability problem for the circular cylinder we can, to 

first order i.n 8, write down the eritical stability parameter with only a 

knowledge of the first order outer potential flow. However, at the next order 

there ,are technical differences between the circular cylinder problem and for 

examp11:! the problem associated with elliptic cylinders. We shall see that 

these technical differences depend on whether or not the stagnation point of 

attachment of the steady streaming coincides with the most unstable part of 

the boundary layer. 

Some discussion of nonlinear effects for {R - R } ~ 0(8 1/4 ) 
s sc 

is given. 

For the circular cylinder problem a strong interaction between the steady 

streaming and the instability occurs. In fact it appears that the higher 

modes of instability lead to the separation of the steady streaming boundary 

layer within 1m angle 0(8-1/8 ) of the point of attachment of the layer. 

The procedure adopted in the rest of this paper is as follows. In Section 

2 the linear stability problems is formulated for 8 + 00, R ~ 8 1/2 
s 

and an 

asymptotic solution of the problem is given. In Section 3 the results of the 

numerical solution of the eigenvalue problem obtai.ned in Section 2 are given 

and compared to Honji's experimental observation. 

In Section 4 we discuss the relevance of our calculations to more 

complicated flows. More precisely we consider the stability of the flow 

induced by the oscillation of an elliptic cylinder. We consider an ellipse 

with major and minor axis a, b with major axis inclined at angle a to the 

x-axis in which direction the cylinder is oscillating. We find that, 
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depending on the values of a and bla, there are two or six locations where 

instability will occur. In Section 5 we consider the nonlinear development of 

the instability whilst in Section 6 we draw some conclusions. 

2. FORMULATION AND SOLUTION OF THE LINEAR STABILITY PROBLEM IN THE LIMIT S + 00 

The first step in our formulation is to note that by a simple change of 

axes we can take the cylinder to be held fixed whilst the fluid at infinity 

oscillates with speed Uo cos wt parallel to the x-axis. It is convenient 

for us to work in cylindrical polar coordinates (r,8,z') with the z' axis 

along the axis of the cylinder. We now define the variables n, z, and T by 

w 1/2 
n = (r-a)(zv-) , 

Z = z,(~) 1/2 
2v ' 

T = wt. 

Following the scalings discussed in Section 1 we write 

where T 

R 
s 

and is, of course, the Taylor number. 

(2.1a) 

(2.1b) 

(2.1c) 

(2.2) 

We shall 

investigate the stability of the boundary layer on the cylinder in which the 

basic velocity field is (u,v,O) with 

u = 
1/ cos e uO(n,T) 

(2vw) 2 { ]14 + ••• }, 
S 

(2.3a) 
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(2.3b) 

where in particular 

-n 
vo = cos T - COS(T-n)e , 

whilst u
O

' vI' etc. can be found in, for example, Stuart [1966]. 

Following the scalings used by Seminara and Hall [1976] we perturb the 

basic flow such that the new velocity field is 

~ = (u,v,O) + (I 2vw U(n,8,z,T), UOV(n,8,z,T), 1 2vw W(n,8,z,T)), (2.4) 

whilst the Icorresponding pressure perturbation is pwv P(n, 8, z, T). If the 

above expression is substituted into the Navier-Stokes equations we find 

that U, V, W, and P satisfy 

(2.5a) 

L'V (2.5b) 

(2.5c) 

(2.5d) 

Here the nonlinear terms Q1' Q2' and Q3 are given by 
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Q1 = 2(U au + W au) _ .! v2 
an az 2 • 

Q2 = 2(U av + W av) an az , 

Q3 
= 2(U aw + w aw) , an az 

whilst the operator L' has been defined by 

2 2 25/ 4 T 1/2 sin 8 
L' __ a _ + _a _ - 2 ~ - ___ --1t-r-___ v_O ~ 8 

an 2 az2 aT s74 a 
(2.6) 

We further note that the O( S - 1/4 ) terms not shown explicitly in (2.5) 

comprise both linear and nonlinear terms. However the linear terms not shown 

explicitly vanish when 8 = ± n/2 and for that reason are negligible in the 

following analysis. The nonlinear terms not shown explicitly do not vanish at 

8 = ± n/2 but the smallness of the disturbance which we assume in Section 5 

means that, to the order considered in this paper, these terms are also 

negligible. 

For the remainder of this section we neglect the nonlinear terms in (2.5) 

and assume that P, U, V are proportional to cos kz whilst w is 

proportional to sin kz. Here k is a constant axial wavenumber and it is 

now convenient to eliminate W, P from the linearized form of (2.5) to give 

(2.7a) 

(2.7b) 
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which are to be solved subject to 

u v = ~~ == 0, n = ° 
(2.8) 

U,V + 0, n + 00. 

The operator L appearing in (2.7) is simply L' with replaced by 

It can be seen from (2.7) that the 8 variation of the disturbance is 

slow compared to the T and n variations. The 8 dependence of U and 

V can therefore be taken care of by a WKB type of approach. However, since 

we arE~ interE~sted in the most unstable disturbances, it is convenient for us 

to USE! a multiple scale method. We can see from (2.7) that, ignoring the term 

_1/4 8 
proportional to 0 as' the 'effective' Taylor number of the flow is 

'. T sin" 8 which has local maxima at 8 = ± 1T /2. Hence in the neighbourhood 

of say 8 = 1T /2 the effective Taylor number is T{ 1 - (8 - 1T /2)2 + ••• }. 

The symmetry of (2.7) about 8 = 'IT /2 means that when the WKB formulation is 

used the point 8 = 1T /2 is a turning point. Since the local Taylor number 

has a maximum at 8 = 1T /2 the turning point is of the second order and the 

usual scaling analysis shows that a transition layer of thickness 0(8- 1/8) 

exists near 8 = 1T/2. This situation is similar to that found by Hall [1982] 

who investigated the growth of small wavelength Gortler vortices in boundary 

layerl3 on concave walls. In that problem the most unstable modes have a 

verti,C!al structure concentrated in an internal transition layer which again 

corresponds to a second order turning point. 

The discussion above clearly applies to the neighborhood of 8 - 1T /2 

but let us concentrate on the transition layer at 8 =1T/2 and write 
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We seek a solution of (2.7) by expanding U in the form 

(2.8) 

together with a similar expansion for V. The Taylor number T then expands 

as 

T +... . 
2 

(2.9) 

Here we have anticipated that the first-order correction to T from TO is 

o(s- 1/4) rather than o(s- 1/8) as might be expected from (2.8). The above 

expansions are then substituted into (2.7) and e replaced by 

Tr/2 + s- 1/8 <P. If terms of O(SO) are equated we obtain 

(2.10) 

and the appropriate boundary conditions are 

n = 0, 

(2.11 ) 

n + 00. 

The partial differential system (2.10), (2.11) governs the centrifugal 

instability of a Stokes layer on a cylinder driven by a pressure gradient 
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rather than by the motion of the cylinder as was thE~ case in Seminara and Hall 

[1976] .. The major difference is that in the latter paper the function Vo is 

replaced by -n COs(T-n)e • In order to determine the value of 

above 'which exponentially growing solutions of (2.10), (2.11) exist we seek 

periodllc solutions of the latter system by writing 

"" "" 
Uo = A(iP) l: u~(n )e

inT 
, Vo = A(iP) l: v~(n)einT. 

-00 -00 

The sequences of functions therefore satisfy the ordinary 

differential system 

(2.12) 

n = 0 

Un Vn 0 0' 0+ ,11+"", with n = 0,±1,±2,··· • 

The numerical solution of (2.12) will be discussed later and it suffices to 

say that the eigenrelation k = k(TO) can be determined. The amplitude 

function A(iP) remains undetermined at this order. 

At order -1/8 
S the partial differential equations satisfied by 

are found to be 
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a2 
k2_ 2 a a2 

k2}U
1 

- 2k2 TO VO VI {- - -}{--
an

2 dT an2 

25/4 T 112 a _ a2 
k2)u

O UoJ [vO(-2 - - v 0 a~ an onn 
(2.13a) 

a2 
2 a } avo 25/ 4 T 112 - avo 

{- - k - 2 - V - 4 an U1 vo~ 
an

2 dT 1 0 

together with boundary conditions identical to (2.11). The differential 

system for (U1, VI) is an inhomogeneous form of (2.10), (2.11) and so we 

require that a solvability condition must be applied if the system is to have 

a solution. However, it can be inferred from (2.12) that the sequence of 

eigenfunctions {Un}' {Vn} are such that either 

0, n even, 0, n odd 

or 

b) Un = 0, n odd, Vn = 0, n even. 

In fact, our calculation showed that the most unstable mode corresponds to b) 

above. In either case we see that the inhomogeneous terms on the right-hand 

sides of the equations for U1 and VI are proportional to e±iT UO' 

±iT V 
e 0 in which case the solvability condition is automatically satisfied. 

The solution of the system for (U1 , VI) can be written 

U1 
dA A 

= d~ U1 + B(~) Uo 

(2.13b) 
00 00 

dA I inT un + B(~ ) I inT un 
- d1> e 1 e 0 

-00 -00 
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together with a similar expression for V1. Here B is another amplitude 

function to be determined at higher order. 

At order 
_1/4 

f3 the function pair is found to satisfy 

25/ 4 T liz a a2 
k2]u

1 l\} 2 - [ i[>2 
TO]VO ~ {v [-- - v + 2k Vo T1 -z 0 o an2 Onn 

a2: 
k2 - 2 ~} V -

avo 25/ 4 T 1/2 -- aV1 avo 
iP

2 
{-z - 4 an u2 == Vo a~- 2 an Uo dT 2 0 , 

dn 

whilst: the boundary conditions are again identical to (2.11). The forcing 

terms on the right-hand side of the above equations are synchronous with the 

solutions of the homogeneous forms of the equations and a solution for (U2 'V2) 

will not in general exist. However, by considering the partial differenti.al 

system adjoint to (2.10), (2.11), we find that a solution exists if 

d
2A . 2 

-2 + ].I[T1 - iP ]A = 0 
diP 

(2.14) 

where ].I is given by 

2 21T 00 

J 
+ _. 

k J u vo Vo dn dT 
0 0 ].I - - 1 1 21T 00 

U+(a
2

2 
- k2)U

1
]dn 

+ A 

u+ U :2 /4 T /z J J [vo V V1 - v + Vo dT 0 00 onn 1 an 

(2.15) 

and (U+,V+) satisfy the adjoint differential system 
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{~ - k 2 + 2 ~ }v + = 2k 2 T - U + 
an 2 aT 0 v 0 ' 

u+ au+ v+ 0, = an- = = nO, 

u+ , v+ + 0, n + 00. 

The eigenvalues of the adjoint system are of course identical to those of 

(2.10), (2.11) and can be obtained by Fourier expanding (U+, V+) to obtain 

an infinite set of coupled ordinary differential equations. 

The constant ~ is a function of k and our computation suggests that it 

is positive near the critical value of TO. Such a result is not unexpected 

since it means that nonaxisymmetric disturbances to a Stokes layer on a 

cylinder are more stable than axisymmetirc disturbances. This result was 

found by Duck and Hall [1980] for the case when the flow is driven by the 

motion of the cylinder whilst the present results show that this is also the 

case if a pressure gradient is driving the Stokes layer. The ampli tude 

equation (2.14) has solutions which decay to zero when <P + ±oo if ~ > O. 

These solutions are 

A(<p) = A (<p) 
n 

(2.16) 

where is the nth parabolic cylinder function and the value of 

corresponding to An is 

(2.17) 



-15-

The least stable mode corresponds to n :::: 0 in which case 

(2.18) 

The expansion procedure described above can be continued to any order and we 

note here that the next nonzero term in the expansion of T is T2, 

3. 111E NUMERICAL SOLUTION OF THE LINEAR EIGENVALUE PROBLEM 

The solution of eigenvalue problems such as (2.12) is now a routine 

proc€!dure and we shall give only the essential details of the calculations. 

The first step is to reduce (2.12) to a finite set of equations by setting 

Un = Vn :::: 0 for I n I > M. We then replace 00 by noo so that (2.12) has 

been approximated by a finite system of equations on a finite interval. Of 

cour~le, it fs necessary to vary noo and M to find appropriate values which 

enable us to solve (2.12) with sufficient accuracy. 

If n is sufficiently large then satisfy 

[_d
2 

_ k2 _ ][d2 
2] n 2in -' - - k U = 

dn
2 

dn
2 

0 

d
2 

2 
[-2 - k - 2in]v~ = O. 

dn 

There are three independent solutions of these equations which decay 

exponentially to zero when n + 00. Thus, if n is restricted to the range 

-M ~ n ~ M we can use these solutions to integrate the differential equatfons 

from n = nO) to n = 0 thus obtaining 6N + 3 independent solutions of the 

redueed system of equations. This integration was carried out using a fourth-
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order Runge-Kutta scheme with step length h. These independent solutions of 

(2.12) can be combined at n = 0 to satisfy 6M + 2 of the required boundary 

conditions there. The remaining boundary condition is automatically satisfied 

if k = keTO) is an eigenvalue of the reduced system. This eigenvalue of 

the reduced system will depend on M, noo and h but by increasing M, noo and 

decreasing h an eigenvalue of (2.12) can be obtained. 

In our calculations it was found that M = 6, noo = 10, and h = 0.25 

gave results correct to the accuracy given in this section. In Figure 1 we 

have shown the neutral curve k = keTO) and the minimum of this curve 

corresponds to 

k = k 
c 

11. 99, 

.51 

It is interesting to note that the corresponding value of 

(3.1a) 

(3.1b) 

for a 

torsionally oscillating cylinder in - 230. so that transverse oscillations of 

the cylinder produce a much more unstable flow. There is no obvious physical 

reason why this should be the case. 

The eigenfunctions corresponding to Figure 1 were normalized by taking 

ug"CO) = 1 and have the property that Un = 0, Vn+l = 0 when n is an odd 

integer. The functions corresponding to the critical case are shown 

in Figure 2. We note that the disturbance is most pronounced near n ~ 3. 

It is interesting to note that an asymptotic solution of (2.12) in the limit 

a + 00 with T ~ a4 shows that the vortices become concentrated in an 

internal viscous layer of thickness In this layer the functions 

n n UO' Vo can all be expressed in terms of parabolic cylinder functions. A 

similar calculation for the torsionally oscillating cylinder problem shows 
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that 'IIrhen a + 00, with the vortices become concentrated in a layer of 

thickness a --2/3 near n = 0 and the eigenfunctions are then determined in 

terms of the Airy function Ai(x). 

In order to check the eigenvalues shown in Figure 1 the solution of the 

adjoint system was computed in a similar manner. The adjoint eigenfunctions 

were found to have the property for n an odd integer. The 

inhomogenous system for U1 ' VI was found by a shooting procedure similar to 

that llsed for (2.12). The integrals appearing in the definition of )l were 

then ,evaluat(~d using Simpson's rule. We obtained )l = .033 with TO,a as 

given by (3.1a,b). The critical value of Tl is therefore given by 

TIc = 5.51 

so that the critical value of Rs is 

R = R s sc 
(3.2) 

If Rs is greater than Rsc the vortices grow exponentially in time but 

remain localized near e = rr/2. In order to compare our result with those of 

Honji we rewrite (3.2) in the form 

A = A = ~~ [1 + .23 + ••• ]. 
c f3 74 p:t74 (3.3) 

We further note that, in the notation of Honji, A is equal to the ratio of 

the cylinder oscillation amplitude dO to the diameter D = 2a and that the 

Strouhal number St defined by Honji is related to f3 by 
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St = ~ B. 
1T 

In Figure 3 we have compared our theoretical prediction of A = dO/D with 

Honji's results. We recall that above the lower of the two sequences of 

experimental points Honji observed Taylor-Gortler vortices. There seems 

little doubt that the instability mechanism discussed here is responsible for 

the vortices seen by Honji. Surprisingly we see that (3.3) is in excellent 

argument with Honji's results even for A ~ 1 even though (3.3) is formally 

valid only in the limit B + 00. 

4. LINEAR THEORY FOR MORE GENERAL STEADY STREAMING FLOWS 

We shall in this section discuss the modifications to the expansion 

procedure of Section 3 which are necessary when the basic flow does not have 

the symmetry of the circular cylinder problem. Suppose then that we consider 

the stability of the boundary layer induced by the outer potential flow 

Uo U(x) cos wt interacting with a rigid wall of local radius of (convex) 

curvature aR(x). Here x is a dimensionless variable which measures 

distance along the wall. We again take n to be a normal variable scaled on 

the Stokes layer length scale (2vlw) 1/2 and the basic flow in the boundary 

layer will be of the form (2.3) with sin 6, cos 6, and sin 26 replaced by 

U(x), U'(x) and 1/2 U(x) U'(x) respectively. 

At any local station x along the wall the local Taylor number T~ which 

governs the stability of the boundary layer is given by 
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and instability of the localized type discussed in Section 3 will occur at 

x = ~ which is a maximum of the function 

neighborhood of xm we write 

~ (x - x )S+1/8 
m 

2 -1 U (x) R (x). In the 

and expand the disturbance as in (2.8). The only essential differences are 

that the coefficients of the amplitude equation (2.14) are altered because: 

(1) the rad:f.us of curvature must: be expanded locally, and (2) the terms 

corresponding to the S - 1/4 terms in (2.3) remain O(S - 1/4) near x = ~ and 

so contribute! to the linear term in (2.14). However, the first-order term in 

the expansion of the Taylor number does not depend on these higher order 

alterHtions and so we can say that, correct to first order, the boundary layer 

is locally nEmtrally stable at x::: xm if 

d
2 2 

dx
2 (~ ) < 0, x = x 

m 

and TR, = 11.99, x = x . 
m 

It is in fact more convenient to work with the overall nonlocal Taylor number 

T defined by 
23/2 u2 

- 0 
T ==. if 3/2 • 

aV 2w 

We then conclude that the boundary layer is unstable to centrifugally driv'en 

vortices when 

(4.1) 
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where denotes the largest maximum value of We see that, 

having performed the calculation of Section 3, the critical configuration 

defined by (4.1) can to first order be written down with a knowledge of only 

the outer potential flow and the local radius of curvature. We illustrate the 

simplicity of the procedure by considering the stability of the flow induced 

by the oscillation of an elliptic cylinder in a viscous fluid. 

The basic flow induced by the high frequency oscillation of an elliptical 

cylinder has been given by Davidson and Riley [1972]. We suppose that the 

ellipse has major and minor axis of length 2a, 2b respectively and that the 

cylinder oscillates with velocity Uo cos wt in a direction making an angle 

-a with the x axis. In order to find the critical Taylor number for the 

flow we require the first order potential flow and the local radius of 

curvature of the ellipse. The potential flow is obtained in a routine manner 

by mapping the ellipse onto a circle of radius 1/2 (a+b). 

parmetric representation of the ellipse 

x = a cos ~, y b sin ~, 

then the slip velocity of the potential flow is 

UO(l+K)sin(<jJ-a) 
UOU ( <jJ) = ----,::----;:;----;o-~tl-T 

(sin2 ~ + K2 cos2 ~) 72 ' 

o .;; ~ < 2n, 

where K 

If we use the 

b/a. 

The radius of curvature is easily obtained in terms of ~ and we find that 

the local Taylor number T~ is given by 
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and it follmV's that the flow is locally neutrally stable at <Pm if 

dT,t 
~ = 0, <P = <I> • m 

We shall take a to be held fixed whilst K and a the angle of attack vary 

and compare the critical Taylor number T for the flow with that appropriate 

to a circular cylinder of radius a. 

The valuE~s of T,t at which the flow is locally neutrally stable at some 

value of <I> are found by considering the maxima of the function 
m 

(4.2) 

UnlikE! the circular cylinder case there can be more than two values of A-. at 'Ym 

which this function has a maximum. In view of the symmetry of the problem we 

can restrict a to the range 0 < a < n/2 and <I> to the range 0 < <P < n. 

After some calculations it can be seen that the results for arbitrary 

valuel:l of a can be understood by first considering the case a = O. In 

this case the function 5(<1» has a maximum at <I> = <I> :: n /2 1 
for all values 

of K. However, when K < 13/5 two further maxima occur at 

-1 I 2K2 
<I> :: <I> = sin and 

2 3(1-K2) 
<!> = <I> :: n - <1>2 • 3 These two extra maxima 

emanate from <I> = 0 when K = 13/5 and 

for K < /315 . 

Hence for K < 1375 there are six potentially unstable points on the cylinder 

and the most unstable points are <I> = <1>2' <P3' <1>2 + n, <1>3 + n. The migration 
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of the most unstable point away from ¢ = TI/2 is due to the relatively large 

increase in curvature away from ¢ = TI 12 caused by increasing the 

eccentricity of the ellipse. We note that when a = 0, K = 1375 the scaling 

of Section 3 needs a more significant alteration since ¢ = TI 12 is then a 

fourth-order turning point. We must then choose to work in a 8- 1/12 

neighbourhood of TI 12. The appropriate amplitude equation then has the term 

proportional to q,2 A in (2.3) replaced by q,4 A. 

In Figure 4 we have shown the dependence of TITo (where TO is the 

critical value for the case K = 1) on K with a = O. We obtain a familiar 

cusp-shaped curve and we note that for K > 13/5, TITO is a single valued 

function of K. The lower curve for K < 1375 corresponds to the two equally 

unstable locations ¢2 and ¢3 and passes through the origin. This means 

that the critical value of TITO can be made arbitrarily small by taking the 

limit K + O. We can see in Figure 5 that in this limit the locations of the 

most unstable positions approach ¢ = O,TI where the radius of curvature is 

clearly greatest. 

The results for a * 0 are obtained by describing the unfolding of 

Figures 4 and 5 when 0 < a « 1. The upper and lower curve to the left of 

the cusp move up and to the left when a increases from zero. The lower 

curve for a = 0 is in fact two coincident curves corresponding to ¢ = ¢2 

The other one of these curves remains connected to (T/TO = 1, 

K = 1) and (T/TO' K = 0) but moves downwards until T/TO is eventually a 

monotonically increasing function of K on this branch. Ultimately the 

branch the T 4K5 
which corresponds to a = TI 12 asymptotes to curve TO - (I+K)2 

whilst the detached upper branches rapidly move to be left and upwards when 

a increases. Finally when a = TI/2 there are only two maxima on the 

cylinder at ¢ = 0, TI • In Figures 4 and 5 we have illustrated this process 
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for a few values of a. The curves I, II, and III of these two figures 

correspond. 

Suppose now that we have an elliptical cylinder with K fixed and we 

requirl~ the most stable or unstable orientation of this ellipse in an 

oscillatory flow. It follows from Figure 4 that if we wish to keep the flow 

stable then we choose a = 0 whilst if we wish to set up an unstable flow 

then we take a = 1T /2. Next suppose that a the angle of attack is held 

fixed l~nd K can be varied. We see from Figure 4 that for some values of a 

there is range of values for K which give a flow more stable than that 

around a circular cylinder of radius a. The most pronounced effect of 

increasing ec'centricity corresponds to the a = 'IT /2 case. Here we see that 

changing say K from I to liz produces a decrease in the critical Taylor 

number by a factor of ~20. 

5. THE NONLINEAR DEVELOPMENT OF THE INSTABILITY FOR THE CIRCULAR CYLINDER PROBLEM 

We shall now describe the manner in which finite amplitude effects become 

import.ant close to the critical Taylor number. We suppose that Rs differs 

from :Lts critical value by On the basis of weakly nonlinear 

stability theory we expect that the azimuthal velocity component set up will 

be of magnitude 0(6(20-1)/4). The most illuminating choice for 0 is that 

which ensures that the azimuthal structure of the disturbance is determined at 

the same order as is the amplitude of the disturbance. The appropriate choice 

of 0 is 0 = V4 and we therefore expand T in the form 

... (5.1) 

where TOc is the critical value of TO. 
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The disturbance quantities D, V, W, and P then expand as 

(5.2a) 

V = 6-1/8 V k -1J4 [ k z + VMO ] cos z + 6 VI cos kc Z + V2 cos 2 0 c c 

-3/8[ 2k Z + V5 cos 3k Z + VM1 ] + + 6 V3 cos kc Z + V4 cos ••• c c (5.2b) 

W = 6-1/8 W sin k Z + 6- 1/4 [WI sin k Z + W2 sin 2 k z] 0 c c 'c 

(5.2c) 

+ P + 6-1/8 -114 + a-3 /8 P + ••• MO PM1 + 6 PM2 ~ M3 (5.2d) 

where apart from PMO ' PM1 , and PM2 which depend only on T and <l?, the 

coefficients in' these expansions are functions of T, <I> and n. The 

functions PMO ' PM1 , and PM2 are essentially pressure eigenfunctions needed 

to satisfy all the required conditions on the mean velocity field. (See 

DiPrima and Stuart [1975]) for a discussion on the need for such 

eigenfunctions in centrifugal instability problems.) 
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It is now a straightforward procedure to substitute from (5.2) into (2.5) 

and successively equate like powers of -1/8 8 • At order 
-1/8 

8 we find that 

(Uo, VO) satisfy the linear stability problem (2.10) with TO == TOc ' k = kc 

so that 

where 
00 

Vo == L e im V~ 
-00 

Here the functions {U~}, {V~} satisfy (2.12) with k == k c ' TO == TOc' At 

order we find that the term proportional to sin kc z, cos kc Z again 

satisfy (2.13a) so that (U1 ,V1 ) is given by (2.13b). In addition to the 

fundamental modes generated at this order there are first harmonic and mean 

flow correction terms produced by the nonlinear terms 

appearing in (2.5). After some manipulation we can show that (U2'V2) and 

(UMO,VMO) can be expressed in the form 

,. 
(UMO,VMO ) = A(~)(A'(~)UMO,A(~)VMO) 

,. " 
WherE! (U

2
,V

2
) satisfy 
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a2 
4k2 a a

2 
4k~}U2 - 8k2 

TOc Vo V2 {- - - 2 -H--
an

2 c aT an2 c 

k2 
TOc v2 + 2{UO u - u DOnn} , c 0 Onnn On 

(5.3) 

n = 0 

n + 00. 

The mean flow correction terms VMO satisfies 

a2 avMO a A A 

-2 (VMO ) - 2 -,,- = ~ {uo voL 
an aT on 

VMO = 0, n 0,00 • (5.4) 

The forcing term on the right-hand side of the equation for VMO has the 

property that 

so that VMO tends to zero exponentially when n + 00. The dependence of 

VMO on the slow variable ~ induces the normal velocity component 

From the equation of continuity we have 

-7/4 n A 

-2 TOc J VMO dn, 
o 

(5.5) 

which tends to a function of T when n + 00. Thus there exists a weak outer 

potential flow down by the mean velocity field in the Stokes layer. The outer 

potential flow decays algebraically in the normal direction and has a normal 
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veloc.ity which matches with (5.5) • However, the matching requires an 

azimuthal velocity field of order -5/8 
S in the Stokes layer which tends to a 

given function of T and ~ when n + 00. This veloc.ity field is an 

'eigensolution' driven by the pressure field PMO which is then determined by 

matching with the outer potential flow. This outer flow is determined by 

first noting that when n + 00, UMO can be written as 

00 

UMO = A(~)A'(~) I Sn e
inT (5.6) 

-00 

where 

21T 00 

a _2-7/ 4 T J J -inT d d 
I-' n = Oc V MO e nT, 

o 0 
n = ±l, ±3, ±5,···, 

and 

n = 0, ±2, ±4,···. 

In order to determine the outer flow we write 

so that the radial and azimuthal variations are now on the same length scale. 

The radial and azimuthal velocity components then expand as 

(5.7) 

V = S-3/8(vw) 112 { I ::n einT + ••• }, 
-00 
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where ~ = 0 for n even whilst for n odd ~ satisfies 
n n 

~ + 0, 
n 

The solution of (5.8) is 

~ 
n 

~ + 0, 
n 

o. 

leI> I + 00 (5.8) 

(5.9) 

The amplitude function A(<I» is determined as a solvability condition on the 

differential system obtained by equating fundamental terms of order -3/8 e 

after substituting for U, V, W, and P from (5.2) into (2.5). The. required 

condition is 

(5.10) 

where ~ is given by (2.15) with k = kc and TO = TOc. The constant y is 

defined by 

where 
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1 2 
TOC[VO V2 

... 
- 3k

2[! u 
... ... 

p := - k + 2V
MO vol u

2n 
+ u

2 UOn] 2 c c 2 0 

... 1 .... " 1 " " 
- [U2 

U + "2 U2n 
U - U U -"2 Uo U2nnn

] 
Onnn Onn On 2nn 

and 

[u
O 

2U
O 

V
MOn 2V 2 UOn 

1 " 
vol • Q -- v2n + + u2 VOn + + "2 u2n 

The amplitudE~ equation (5.10) must be solved subject to the condition 

A + 0, liP I + 00 

and of coursle reduces to (2.14) for A« 1. We postpone a discussion of the 

solution of (5.10) until after an investigation of the effect of a finite 

amplitude solution on the steady streaming of the basic flow. 

The fundamental terms of order -3/8 
S in (5.2) can be calculated when the 

solvability condition (5.10) is satisfied. The equations for the first and 

second harmonic functions of order 
-3/8 

S can be solved directly without 

recourse to a solvability condition. The radial mean flow function UMO is 

determined by (5.5) so that at order -3/8 
S it remains for us to discuss the 

azimuthal mean flow function VM10 This function satisfies the equation 

(5.11) 

which is to be solved subject to 

n = 0,00. (5.12) 
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However, the form of the nonlinear terms in (5.11) means that VM1 has a 

steady term in its Fourier series expansion. If the steady part of VMl is 

denoted by VMIO then the appropriate boundary conditions for VMIO are 

VM10 = 0, n = 0 

(5.13) 

d 
+ 0, an VMIO 

n + 00. 

Thus the steady flow in the boundary layer induced by the finite ampli tude 

disturbance does not decay to zero when n + 00. In fact we see from (5.11) 

and (5.12) that when n + 00 

where d is a constant to be calculated numerically. We found that 

d = -4.39 so that the azimuthal velocity component of the disturbance tends 

to -4.39 Uo S-3/8 A ~! when n + 00. It is known (see Stuart [1966J) that 

the steady part 

3 • 2 -
3

/
4 

T O~2 U 0 

of the azimuthal velocity component of the basic flow tends to 

S-3/8 <P when n +00 with [6 -1f/2) =<1> S-1/8. We see then 

that the steady streaming of the two-dimensional flow is modified by the 

instability. Moreover, it follows that in the outer steady streaming boundary 

layer the steady part of the basic flow and the instability cannot be found 

independently • This outer layer is of thickness as -1J4 and if we take the 

variable I:" -- (_r - a) Q 1/4 1 k f d f1 i t fi t S fJ we 00 or an outer stea y ow g ven 0 rs 
a 

order by 

u = 

where ~ satisfies 
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(5.14) 

which must be solved subject to 

ljIi; + 0, ~ + 00 

(5.15) 

IjI + T [3~ _ 23 / 4 • 4.39 T-
OC

1h AdA] 
i; Oc 23/2 d~ , 

~ + 0. 

If we set A = ° above we obtain the equations governing the attachment of a 

steady streaming boundary layer within a 

In that case (5.14) is solved subject to 

0, 

-1/8 
(3 

~ = 0, 

and the symmetry of (5.10) about ~ = ° means 

applied since either A or dA = ° 
d~ 

at ~ = o. 

the condition (5.15) reduces to 1jJ + 
3~ 

~ 
~ TOc 23/2 ' 

neighborhood of e = Tf /2. 

(5.16) 

that (5.16) can still be 

We note that for large ~ 

+ 0, so that, assuming that 

the boundary layer remains attached for finite values of ~, the extra term 

proportional to 
dA 

A d~ in (5.15) merely produces an origin shift in the large 

~ asymptotic solution of (5.14). However, we must recognize the fact that 

the tE!rm can be positive for some so that the slip velocity (5.15) 

can change sign at intermediate values of ~ • If the magnitude of the 

invisdd slip velocity is sufficiently large where this occurs then the 

attached flmv strategy fails and the steady streaming boundary layer will 

prematurely detach from the cylinder. This possibility does not occur for more 

genercll flows where the point of attachment of the steady streaming layer and 

the m()st unstable position do not coincide. In this case the steady stream:tng 

driven by thE! instability is weak compared to that of the basic flow. 
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We return now to discuss the solution of (5.10) which of course depends 

crucially on the sign of y. 

result that 

Our calculations gave the totally unexpected 

y -.087, 

which means that finite amplitude solutions of (5.10) bifurcate subcritically 

from the eigenvalues of the linear problem and are unstable. In the work of 

Seminara and Hall [1976} the corresponding constant was found to be positive 

and this difference caused a great deal of concern. After exhaustive checks 

of the computer code, and in fact a repeat of the calculations using an 

independent program we believe that y is indeed negative and the 

bifurcations are indeed subcritical. This could in principle be checked by a 

complete numerical investigation of the problem by Fourier expanding the 

velocity field in the z-direction but the complicated nature of the basic flow 

makes such a calculation non-trivial. 

6. CONCLUSIONS 

We have shown that oscillatory viscous flows interacting with rigid 

boundaries of convex curvature can become unstable to Taylor-Gortler vortices. 

In particular, the flow induced by the transverse oscillations of a circular 

cylinder is linearly unstable to Taylor-Gortler vortices localized where the 

slip velocity of the potential flow outside the boundary layer on the cylinder 

is a maximum. The results of our theory are in excellent agreement with 

Honji's observations over a wide range of values of the frequency parameter 

B even though our results are formally valid only in the limit B + 00. 

For an elliptical cylinder there are as yet no experimental results 

available. It would be interesting to see whether the cusp shaped curve for 
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a = 0 in Figure 4 could be found experimentally. There is no reason to 

suppose that the sensitive dependence of the critical Taylor number on the 

eccentricity and the angle of attack predicted in Section 4 could not be 

reproduced experimentally. 

The results of our nonlinear calculations are unexpected because of the 

prediction of the subcritical nature of the instability_ It is almost 

invarJlably the case in the Taylor problem that the bifurcation to a Taylor 

vortex flow is supercritical but DiPrima and Sjbrand [1983] have found 

subcdtical bifurcation when considering the flow between counter-rotating 

cylinders. In fact, if we do not restrict the wavenumber to be that 

corresponding to the minimum on the neutral curve there will always be a 

finitE~ band of wavenumbers where the Landau coefficient y is negative in the 

steady Taylor problem. This band of wavenumbers lies to the left of the point 

on the neutral curve where the wavenumbers on the left and right-hand branches 

are tn the ratio 1: 2. In the present problem the constant y becomes 

singular where the neutral values of the wavenumbers are K= .34 and 2K. 

In fact, near K the constant y behaves like 
1 

that to the left so 
K - K 

of R there is a finite range of values of K for which y is positive. 

However, calculations show that the range of wavenumbers is only of length 

0(10-1 ) and y then becomes positive again. 

If the instability is indeed subcritical then we presume that close to the 

critical Taylor number sufficiently large perturbations to the basic state 

will grow. It is possible that higher order nonlinear effects eventually 

cause these perturbations to equilibrate and that it is why Honji, observes 

some kind of steady state with Taylor-Gortler cells. In fact, even if 

nonlinear effects are not stabilizing at higher order then, because of the 

localized nature of the instability with the flow unstable in a 
-1/8 

(3 
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neighborhood of the most susceptible positions of the boundary layer we might 

expect that some periodicity along the cylinder would be observed. Indeed, it 

is known in parallel or nearly parallel flow stability theory that Tollmien

Schlichting waves can be observed even though they are subcritcally 

unstable. In the present problem, the subcritical nature of the bifurcation 

could be investigated by solving the full stability equations by Fourier 

analyzing in the z-direction and solving a large system of coupled nonlinear 

partial differential equations but such a computation would be nontrivial. 

Finally, we point out that perhaps Honji's results might in fact suggest 

that the instability does not develop supercritically in the manner usually 

found in the Taylor problem. We refer to the fact that Honji gave two 

experimentally determined curves, one represents the onset of 'streaked flow' 

and a higher curve above which the streak could be observed because the flow 

was then separated and turbulent. We saw in the previous section that some 

finite amplitude solutions of (5.10) would cause the steady streaming boundary 

layer to separate prematurely. Thus our nonlinear calculations do in fact 

suggest an increasingly likely breakdown in the basic flow structure when the 

Taylor number is increased. Alternatively the separated flow observed by 

Honji could be simply the unsteady two-dimensional separation of the Stokes 

layer on the cylinder. 

The author acknowledges some useful comments by Professor N. Riley in 

connection with the range of validity of the expansion procedures of Davidson 

and Riley for the elliptic cylinder problem. 
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Figur.e Captions 

Figure 1. ThE! neutral curve of the linear problem. 

Figure 2. o 1 
ThE~ eigenfunctions UO' V1 corresponding to the critical case 

TO = 11.99, k = .51. 

Figure 3. A eomparison between Honji's expermental points and linear theory. 

Figure 4. The dependence of on K for a = O,O.2,O.4,n/2. 

Figure 5. The dependence of ~m on K for a = O,O.2,O.4,n/2. 
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